WorldWideScience

Sample records for led-induced fluorescence imaging

  1. LED-Induced fluorescence and image analysis to detect stink bug damage in cotton bolls.

    Science.gov (United States)

    Mustafic, Adnan; Roberts, Erin E; Toews, Michael D; Haidekker, Mark A

    2013-02-20

    Stink bugs represent a major agricultural pest complex attacking more than 200 wild and cultivated plants, including cotton in the southeastern US. Stink bug feeding on developing cotton bolls will cause boll abortion or lint staining and thus reduced yield and lint value. Current methods for stink bug detection involve manual harvesting and cracking open of a sizable number of immature cotton bolls for visual inspection. This process is cumbersome, time consuming, and requires a moderate level of experience to obtain accurate estimates. To improve detection of stink bug feeding, we present here a method based on fluorescent imaging and subsequent image analyses to determine the likelihood of stink bug damage in cotton bolls. Damage to different structures of cotton bolls including lint and carpal wall can be observed under blue LED-induced fluorescence. Generally speaking, damaged regions fluoresce green, whereas non-damaged regions with chlorophyll fluoresce red. However, similar fluorescence emission is also observable on cotton bolls that have not been fed upon by stink bugs. Criteria based on fluorescent intensity and the size of the fluorescent spot allow to differentiate between true positives (fluorescent regions associated with stink bug feeding) and false positives (fluorescent regions due to other causes). We found a detection rates with two combined criteria of 87% for true-positive marks and of 8% for false-positive marks. The imaging technique presented herein gives rise to a possible detection apparatus where a cotton boll is imaged in the field and images processed by software. The unique fluorescent signature left by stink bugs can be used to determine with high probability if a cotton boll has been punctured by a stink bug. We believe this technique, when integrated in a suitable device, could be used for more accurate detection in the field and allow for more optimized application of pest control.

  2. LED-Induced fluorescence and image analysis to detect stink bug damage in cotton bolls

    Science.gov (United States)

    2013-01-01

    Background Stink bugs represent a major agricultural pest complex attacking more than 200 wild and cultivated plants, including cotton in the southeastern US. Stink bug feeding on developing cotton bolls will cause boll abortion or lint staining and thus reduced yield and lint value. Current methods for stink bug detection involve manual harvesting and cracking open of a sizable number of immature cotton bolls for visual inspection. This process is cumbersome, time consuming, and requires a moderate level of experience to obtain accurate estimates. To improve detection of stink bug feeding, we present here a method based on fluorescent imaging and subsequent image analyses to determine the likelihood of stink bug damage in cotton bolls. Results Damage to different structures of cotton bolls including lint and carpal wall can be observed under blue LED-induced fluorescence. Generally speaking, damaged regions fluoresce green, whereas non-damaged regions with chlorophyll fluoresce red. However, similar fluorescence emission is also observable on cotton bolls that have not been fed upon by stink bugs. Criteria based on fluorescent intensity and the size of the fluorescent spot allow to differentiate between true positives (fluorescent regions associated with stink bug feeding) and false positives (fluorescent regions due to other causes). We found a detection rates with two combined criteria of 87% for true-positive marks and of 8% for false-positive marks. Conclusions The imaging technique presented herein gives rise to a possible detection apparatus where a cotton boll is imaged in the field and images processed by software. The unique fluorescent signature left by stink bugs can be used to determine with high probability if a cotton boll has been punctured by a stink bug. We believe this technique, when integrated in a suitable device, could be used for more accurate detection in the field and allow for more optimized application of pest control. PMID:23421982

  3. Smartphone Cortex Controlled Real-Time Image Processing and Reprocessing for Concentration Independent LED Induced Fluorescence Detection in Capillary Electrophoresis.

    Science.gov (United States)

    Szarka, Mate; Guttman, Andras

    2017-10-17

    We present the application of a smartphone anatomy based technology in the field of liquid phase bioseparations, particularly in capillary electrophoresis. A simple capillary electrophoresis system was built with LED induced fluorescence detection and a credit card sized minicomputer to prove the concept of real time fluorescent imaging (zone adjustable time-lapse fluorescence image processor) and separation controller. The system was evaluated by analyzing under- and overloaded aminopyrenetrisulfonate (APTS)-labeled oligosaccharide samples. The open source software based image processing tool allowed undistorted signal modulation (reprocessing) if the signal was inappropriate for the actual detection system settings (too low or too high). The novel smart detection tool for fluorescently labeled biomolecules greatly expands dynamic range and enables retrospective correction for injections with unsuitable signal levels without the necessity to repeat the analysis.

  4. Analyzing LED-induced haemal fluorescent spectra on laboratory small albino rat

    Science.gov (United States)

    Gao, Shumei; Luo, Xiaosen; Lan, Xiufeng; Jiao, Fangxiang; Lu, Jian; Ni, Xiaowu; Xu, Jiaying; Lu, Shiyue; Shen, Jian; Liu, Jiangang

    2002-04-01

    Native fluorescence spectral characteristics of red blood cells were studied in the visible region in this paper. Blood samples were collected from normal small albino rats. Native fluorescence spectra of the erythrocyte were induced using Light Emitting Diode (LED) at yellow wavelength about 570+/- 16 nm ((Delta) (lambda) 0.5approximately equals 32nm). As the rat's erythrocyte content of in physiological water is increasing, the fluorescent primary emission peak is red shifted from 588 nm to above 615 nm. Furthermore, the fluorescence intensity at about 600 nm was found to be maximal while the rat's erythrocyte consistence is 1%. Moreover, it is shown in large numbers of experiments that LED-induced fluorescence spectra of the erythrocyte are similar with the whole blood. It may make sense for low- intensity light therapy.

  5. Portable LED-induced autofluorescence imager with a probe of L shape for oral cancer diagnosis

    Science.gov (United States)

    Huang, Ting-Wei; Lee, Yu-Cheng; Cheng, Nai-Lun; Yan, Yung-Jhe; Chiang, Hou-Chi; Chiou, Jin-Chern; Mang, Ou-Yang

    2015-08-01

    The difference of spectral distribution between lesions of epithelial cells and normal cells after excited fluorescence is one of methods for the cancer diagnosis. In our previous work, we developed a portable LED Induced autofluorescence (LIAF) imager contained the multiple wavelength of LED excitation light and multiple filters to capture ex-vivo oral tissue autofluorescence images. Our portable system for detection of oral cancer has a probe in front of the lens for fixing the object distance. The shape of the probe is cone, and it is not convenient for doctor to capture the oral image under an appropriate view angle in front of the probe. Therefore, a probe of L shape containing a mirror is proposed for doctors to capture the images with the right angles, and the subjects do not need to open their mouse constrainedly. Besides, a glass plate is placed in probe to prevent the liquid entering in the body, but the light reflected from the glass plate directly causes the light spots inside the images. We set the glass plate in front of LED to avoiding the light spots. When the distance between the glasses plate and the LED model plane is less than the critical value, then we can prevent the light spots caused from the glasses plate. The experiments show that the image captured with the new probe that the glasses plate placed in the back-end of the probe has no light spots inside the image.

  6. LED induced autofluorescence (LIAF) imager with eight multi-filters for oral cancer diagnosis

    Science.gov (United States)

    Huang, Ting-Wei; Cheng, Nai-Lun; Tsai, Ming-Hsui; Chiou, Jin-Chern; Mang, Ou-Yang

    2016-03-01

    Oral cancer is one of the serious and growing problem in many developing and developed countries. The simple oral visual screening by clinician can reduce 37,000 oral cancer deaths annually worldwide. However, the conventional oral examination with the visual inspection and the palpation of oral lesions is not an objective and reliable approach for oral cancer diagnosis, and it may cause the delayed hospital treatment for the patients of oral cancer or leads to the oral cancer out of control in the late stage. Therefore, a device for oral cancer detection are developed for early diagnosis and treatment. A portable LED Induced autofluorescence (LIAF) imager is developed by our group. It contained the multiple wavelength of LED excitation light and the rotary filter ring of eight channels to capture ex-vivo oral tissue autofluorescence images. The advantages of LIAF imager compared to other devices for oral cancer diagnosis are that LIAF imager has a probe of L shape for fixing the object distance, protecting the effect of ambient light, and observing the blind spot in the deep port between the gumsgingiva and the lining of the mouth. Besides, the multiple excitation of LED light source can induce multiple autofluorescence, and LIAF imager with the rotary filter ring of eight channels can detect the spectral images of multiple narrow bands. The prototype of a portable LIAF imager is applied in the clinical trials for some cases in Taiwan, and the images of the clinical trial with the specific excitation show the significant differences between normal tissue and oral tissue under these cases.

  7. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L. Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Changyeun Mo

    2014-04-01

    Full Text Available In this study, we developed a viability evaluation method for pepper (Capsicum annuum L. seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB, which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  8. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-04-24

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400-700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400-700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600-700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  9. Multimodal fluorescence imaging spectroscopy

    NARCIS (Netherlands)

    Stopel, Martijn H W; Blum, Christian; Subramaniam, Vinod; Engelborghs, Yves; Visser, Anthonie J.W.G.

    2014-01-01

    Multimodal fluorescence imaging is a versatile method that has a wide application range from biological studies to materials science. Typical observables in multimodal fluorescence imaging are intensity, lifetime, excitation, and emission spectra which are recorded at chosen locations at the sample.

  10. Fluorescence live cell imaging.

    Science.gov (United States)

    Ettinger, Andreas; Wittmann, Torsten

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein (FP) tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate FP constructs by spinning disk confocal microscopy. © 2014 Elsevier Inc. All rights reserved.

  11. Image calibration in fluorescence microscopy.

    NARCIS (Netherlands)

    Zwier, J.M.; van Rooij, G.J.; Hofstraat, J.W.; Brakenhoff, G.J.

    2004-01-01

    A fluorescence image calibration method is presented based on the use of standardized uniformly fluorescing reference layers. It is demonstrated to be effective for the correction of non-uniform imaging characteristics across the image (shading correction) as well as for relating fluorescence

  12. Assessing Photosynthesis by Fluorescence Imaging

    Science.gov (United States)

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  13. Multi Spectral Fluorescence Imager (MSFI)

    Science.gov (United States)

    Caron, Allison

    2016-01-01

    Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.

  14. Multispectral open-air intraoperative fluorescence imaging.

    Science.gov (United States)

    Behrooz, Ali; Waterman, Peter; Vasquez, Kristine O; Meganck, Jeff; Peterson, Jeffrey D; Faqir, Ilias; Kempner, Joshua

    2017-08-01

    Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.

  15. Fluorescence lifetime imaging using light emitting diodes

    International Nuclear Information System (INIS)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A; Elson, Daniel S; Hares, Jonathan D

    2008-01-01

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM

  16. Boronic acids for fluorescence imaging of carbohydrates.

    Science.gov (United States)

    Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D

    2016-02-28

    "Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.

  17. Comprehensive phantom for interventional fluorescence molecular imaging.

    Science.gov (United States)

    Anastasopoulou, Maria; Koch, Maximilian; Gorpas, Dimitris; Karlas, Angelos; Klemm, Uwe; Garcia-Allende, Pilar Beatriz; Ntziachristos, Vasilis

    2016-09-01

    Fluorescence imaging has been considered for over a half-century as a modality that could assist surgical guidance and visualization. The administration of fluorescent molecules with sensitivity to disease biomarkers and their imaging using a fluorescence camera can outline pathophysiological parameters of tissue invisible to the human eye during operation. The advent of fluorescent agents that target specific cellular responses and molecular pathways of disease has facilitated the intraoperative identification of cancer with improved sensitivity and specificity over nonspecific fluorescent dyes that only outline the vascular system and enhanced permeability effects. With these new abilities come unique requirements for developing phantoms to calibrate imaging systems and algorithms. We briefly review herein progress with fluorescence phantoms employed to validate fluorescence imaging systems and results. We identify current limitations and discuss the level of phantom complexity that may be required for developing a universal strategy for fluorescence imaging calibration. Finally, we present a phantom design that could be used as a tool for interlaboratory system performance evaluation.

  18. Portable LED-induced autofluorescence spectroscopy for oral cancer diagnosis

    Science.gov (United States)

    Yan, Yung-Jhe; Huang, Ting-Wei; Cheng, Nai-Lun; Hsieh, Yao-Fang; Tsai, Ming-Hsui; Chiou, Jin-Chern; Duann, Jeng-Ren; Lin, Yung-Jiun; Yang, Chin-Siang; Ou-Yang, Mang

    2017-04-01

    Oral cancer is a serious and growing problem in many developing and developed countries. To improve the cancer screening procedure, we developed a portable light-emitting-diode (LED)-induced autofluorescence (LIAF) imager that contains two wavelength LED excitation light sources and multiple filters to capture ex vivo oral tissue autofluorescence images. Compared with conventional means of oral cancer diagnosis, the LIAF imager is a handier, faster, and more highly reliable solution. The compact design with a tiny probe allows clinicians to easily observe autofluorescence images of hidden areas located in concave deep oral cavities. The ex vivo trials conducted in Taiwan present the design and prototype of the portable LIAF imager used for analyzing 31 patients with 221 measurement points. Using the normalized factor of normal tissues under the excitation source with 365 nm of the central wavelength and without the bandpass filter, the results revealed that the sensitivity was larger than 84%, the specificity was not smaller than over 76%, the accuracy was about 80%, and the area under curve of the receiver operating characteristic (ROC) was achieved at about 87%, respectively. The fact shows the LIAF spectroscopy has the possibilities of ex vivo diagnosis and noninvasive examinations for oral cancer.

  19. Spectral selective fluorescence molecular imaging with volume holographic imaging system

    Directory of Open Access Journals (Sweden)

    Yanlu Lv

    2016-03-01

    Full Text Available A compact volume holographic imaging (VHI method that can detect fluorescence objects located in diffusive medium in spectral selective imaging manner is presented. The enlargement of lateral field of view of the VHI system is realized by using broadband illumination and demagnification optics. Each target spectrum of fluorescence emitting from a diffusive medium is probed by tuning the inclination angle of the transmission volume holographic grating (VHG. With the use of the single transmission VHG, fluorescence images with different spectrum are obtained sequentially and precise three-dimensional (3D information of deep fluorescent objects located in a diffusive medium can be reconstructed from these images. The results of phantom experiments demonstrate that two fluorescent objects with a sub-millimeter distance can be resolved by spectral selective imaging.

  20. Fluorescence imaging of soybean flavonol isolines

    Science.gov (United States)

    Kim, Moon S.; Lee, Edward H.; Mulchi, Charles L.; McMurtrey, James E., III; Chappelle, Emmett W.; Rowland, Randy A.

    1998-07-01

    Experiments were conducted to characterize the fluorescence emission of leaves from four soybean ('Harosoy') plants containing different concentrations of flavonols (kaempferol glycosides). The investigation utilized genetically mutated soybean flavonol isolines grown in a constant environment, thus limiting factors known to affect fluorescence emission characteristics other than different kaempferol glycosides concentrations. Flavonol isolines included OX922, OX941, OX942, OX944. The first two isolines contain kaempferol (K) glycosides; K3, K6, and K9, and the latter two did not have K3, K6, and K9. A fluorescence imaging system (FIS) was used to characterize steady state florescence images of the sample leaves measured at wavelengths centered at 450, 550, 680, and 740 nm with an excitation at 360 nm. Images taken with FIS greatly complement non-imaging fluorescence measurements by characterizing the spatial variation of fluorescence within leaves. We also acquired fluorescence emission spectra to characterize spectral features of the soybean flavonol isolines. The emission spectral shape of the fluorescence emission characteristics were not significantly different between the soybeans that contain kaempferol glycosides and the ones that do not contain kaempferol glycosides. Typical emission maxima of green vegetation in the blue, green, red, and far-red bands were noticed in all four soybean isolines. However, plants containing kaempferol glycosides, OX922 and OX941 had significantly lower intensities throughout the wavelength regions. These results imply that fluorescence emission intensities in the fluorescence emission bands studied are significantly affected by the presence and absence of kaempferol glycosides concentrations (UV radiation screening compounds). Pure kaempferol glycoside dissolved in solution show minimal fluorescence emission when excited with the absorption maximum radiation at 365 nm. However, a broad band emission can be seen in the green

  1. Multiphoton fluorescence lifetime imaging of human hair.

    Science.gov (United States)

    Ehlers, Alexander; Riemann, Iris; Stark, Martin; König, Karsten

    2007-02-01

    In vivo and in vitro multiphoton imaging was used to perform high resolution optical sectioning of human hair by nonlinear excitation of endogenous as well as exogenous fluorophores. Multiphoton fluorescence lifetime imaging (FLIM) based on time-resolved single photon counting and near-infrared femtosecond laser pulse excitation was employed to analyze the various fluorescent hair components. Time-resolved multiphoton imaging of intratissue pigments has the potential (i) to identify endogenous keratin and melanin, (ii) to obtain information on intrahair dye accumulation, (iii) to study bleaching effects, and (iv) to monitor the intratissue diffusion of pharmaceutical and cosmetical components along hair shafts.

  2. Optimization of microsatellite DNA Gelred fluorescence imaging ...

    African Journals Online (AJOL)

    user1

    2012-10-11

    Oct 11, 2012 ... In order to explore the best microsatellite DNA Gelred imaging technology, this study compared its dosage by using three methods; precasting gels method (PG), staining sample method (SS) and immersion gels method (IG). The results show that agarose gel electrophoresis (AGE) fluorescence imaging ...

  3. Coral monitoring with fluorescence imaging lidar

    Science.gov (United States)

    Sasano, Masahiko; Kiriya, Nobuo; Yamanouchi, Hiroshi; Matsumoto, Akira; Hitomi, Kazuo; Tamura, Kenkichi

    2011-06-01

    It has been pointed out that globally hermatypic corals in coral reefs have been seriously damaged in recent years, and it is predicted that such damages will expand in area in the future. It is important to monitor corals globally, in detail, and over long-term periods, for preservation of the marine environment and biodiversity. The spot-check method, one of the major coral monitoring methods, is operated by snorkelers or divers, and therefore, its operation is limited by the seastate, and its monitoring areas are often for specific observation points. On the other hand, the satellite remote sensing, another major coral monitoring methods, can cover composite coral reef areas, but the image resolution is a few meters, and it is not possible to monitor small size coral colonies and deep sea areas. The boat-based fluorescence imaging lidar system has been developed to complement these coral monitoring methods. This system obtains linear coral observation data along the boat track, and makes it possible to build a cooperative coral monitoring network. Since most hermatypic corals have fluorescent proteins, living tissues can be monitored using the blue-to-green fluorescence from UV excitation. It is possible to observe the UV-excited fluorescence images from live coral even in the daytime, by the UV excited fluorescence imaging lidar. Additionally, laser bathymetry is also possible by time-of-flight measurement. We have succeeded in observing the pseudo-coral fluorescent images and depths down to 30 m depth at the testing basin. Secondly, we have succeeded in observing the live coral fluorescent images and their depths by the lidar system using a glass-bottom-boat at Taketomi island, Okinawa, Japan. The system summary and observed data are reported in this paper.

  4. Laser-induced fluorescence imaging of bacteria

    Science.gov (United States)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  5. Fluorescein Derivatives in Intravital Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Michael S. Roberts

    2013-08-01

    Full Text Available Intravital fluorescence microscopy enables the direct imaging of fluorophores in vivo and advanced techniques such as fluorescence lifetime imaging (FLIM enable the simultaneous detection of multiple fluorophores. Consequently, it is now possible to record distribution and metabolism of a chemical in vivo and to optimise the delivery of fluorophores in vivo. Recent clinical applications with fluorescein and other intravital fluorescent stains have occurred in neurosurgery, dermatology [including photodynamic therapy (PDT] and endomicroscopy. Potential uses have been identified in periodontal disease, skin graft and cancer surgery. Animal studies have demonstrated that diseased tissue can be specifically stained with fluorophore conjugates. This review focuses on the fluorescein derived fluorophores in common clinical use and provides examples of novel applications from studies in tissue samples.

  6. Fluorescence optical imaging in anticancer drug delivery

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Lucas, H.; Janoušková, Olga; Chytil, Petr; Mueller, T.; Mäder, K.

    2016-01-01

    Roč. 226, 28 March (2016), s. 168-181 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : fluorescence imaging * drug delivery * theranostics Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.786, year: 2016

  7. Optimization of microsatellite DNA Gelred fluorescence imaging ...

    African Journals Online (AJOL)

    The results show that agarose gel electrophoresis (AGE) fluorescence imaging technology can use the first method (PG) and the concentration of Gelred was 1X, because of the best banding and easy operation. The polyacrylamide gel electrophoresis (PAGE) can use the third method (IG), for the advantages of clear and ...

  8. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and sub-cellular details could be readily visualised in vivo at high resolution. In

  9. Developing an imaging bi-spectrometer for fluorescent materials

    Science.gov (United States)

    Mohammadi, Mahnaz

    Fluorescent effects have been observed for thousands of years. Stokes, in 1852, began the science of fluorescence culminating in his law of fluorescence, which explained that fluorescence emission occurs at longer wavelengths than the excitation wavelength. This phenomenon is observed extensively in the art world. Daylight fluorescent colors known as Day-GloRTM have become an artistic medium since the 1960s. Modern artists exploit these saturated and brilliant colors to glitter their painting. Multipsectral imaging as a noninvasive technique has been used for archiving by museums and cultural-heritage institutions for about a decade. The complex fluorescence phenomenon has been often ignored in the multispectral projects. The ignored fluorescence results in errors in digital imaging of artwork containing fluorescent colors. The illuminant-dependency of the fluorescence radiance makes the fluorescence colorimetry and consequently spectral imaging more complex. In this dissertation an abridged imaging bi-spectrometer for artwork containing both fluorescent and non-fluorescent colors was developed. The method developed included two stages of reconstruction of the spectral reflected radiance factor and prediction of the fluorescent radiance factor. The estimation of the reflected radiance factor as a light source independent component was achieved by imaging with a series of short-wavelength cutoff filters placed in the illumination path. The fluorescent radiance factor, a light source dependent component, was estimated based on a proposed model, the abridged two-monochromator method. The abridged two-monochromator method was developed for reconstructing the bi-spectral matrix of a fluorescent color based on a calibrated UV-fluorescence imaging. In this way, one could predict the fluorescence radiance factor under any desired illuminant and consequently a better color evaluation and rendering could be obtained. Furthermore, this method easily fitted in a general system

  10. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    Science.gov (United States)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  11. Image Restoration for Fluorescence Planar Imaging with Diffusion Model

    Directory of Open Access Journals (Sweden)

    Xuanxuan Zhang

    2017-01-01

    Full Text Available Fluorescence planar imaging (FPI is failure to capture high resolution images of deep fluorochromes due to photon diffusion. This paper presents an image restoration method to deal with this kind of blurring. The scheme of this method is conceived based on a reconstruction method in fluorescence molecular tomography (FMT with diffusion model. A new unknown parameter is defined through introducing the first mean value theorem for definite integrals. System matrix converting this unknown parameter to the blurry image is constructed with the elements of depth conversion matrices related to a chosen plane named focal plane. Results of phantom and mouse experiments show that the proposed method is capable of reducing the blurring of FPI image caused by photon diffusion when the depth of focal plane is chosen within a proper interval around the true depth of fluorochrome. This method will be helpful to the estimation of the size of deep fluorochrome.

  12. Fluorescence based molecular in vivo imaging

    International Nuclear Information System (INIS)

    Ebert, Bernd

    2008-01-01

    Molecular imaging represents a modern research area that allows the in vivo study of molecular biological process kinetics using appropriate probes and visualization methods. This methodology may be defined- apart from the contrast media injection - as non-abrasive. In order to reach an in vivo molecular process imaging as accurate as possible the effects of the used probes on the biological should not be too large. The contrast media as important part of the molecular imaging can significantly contribute to the understanding of molecular processes and to the development of tailored diagnostics and therapy. Since more than 15 years PTB is developing optic imaging systems that may be used for fluorescence based visualization of tissue phantoms, small animal models and the localization of tumors and their predecessors, and for the early recognition of inflammatory processes in clinical trials. Cellular changes occur during many diseases, thus the molecular imaging might be of importance for the early diagnosis of chronic inflammatory diseases. Fluorescent dyes can be used as unspecific or also as specific contrast media, which allow enhanced detection sensitivity

  13. Rotating wall vessel system designed for fluorescent imaging

    Science.gov (United States)

    Tayag, Tristan J.; Dimitrijevich, S. Dan; Del Gallego, Lauren C.; Kumar, Pankaj

    2011-03-01

    Fluorescent imaging of cells and tissues cultured within a rotating wall vessel bioreactor offers quantitative assessment of the 3-dimensional aggregation of cells into tissue constructs. We present the design of a rotating wall vessel system optimized for real-time fluorescent analysis. The modulation transfer function of our system is found to be superior to the commercially-available vessel used in previous fluorescence imaging studies. We demonstrate dynamic fluorescent imaging of DAPI-stained porcine pancreatic islets.

  14. Coherent Control in Multiphoton Fluorescence Imaging.

    Science.gov (United States)

    De, Arijit Kumar; Goswami, Debabrata

    2009-02-25

    In multiphoton fluorescence laser-scanning microscopy ultrafast laser pulses, i.e. light pulses having pulse-width ≤ 1picosecond (1 p s = 10 -12 s ), are commonly used to circumvent the low multiphoton absorption cross-sections of common fluorophores. Starting with a discussion on how amplitude modulation of ultrashort pulse-train enhances the two-photon fluorescence providing deep insight into laser-induced photo-thermal damage, the effect of controlling time lag between phase-locked laser pulses on imaging is described. In addition, the prospects of laser pulse-shaping in signal enhancement (by temporal pulse-compression at the sample) and selective excitation of fluorophores (by manipulating the phase and/or amplitude of different frequency components within the pulse) are discussed with promising future applications lying ahead.

  15. Performance evaluation of spot detection algorithms in fluorescence microscopy images

    CSIR Research Space (South Africa)

    Mabaso, M

    2012-10-01

    Full Text Available Detection of messenger Ribonucleic Acid (mRNA) spots in fluorescence microscopy images is of great importance for biologists seeking better understanding of cell functionality. Fluorescence microscopy and specific staining methods make biological...

  16. Creating Panoramic Images for Bladder Fluorescence Endoscopy

    Directory of Open Access Journals (Sweden)

    A. Behrens

    2008-01-01

    Full Text Available The medical diagnostic analysis and therapy of urinary bladder cancer based on endoscopes are state of the art in urological medicine. Due to the limited field of view of endoscopes, the physician can examine only a small part of the whole operating field at once. This constraint makes visual control and navigation difficult, especially in hollow organs. A panoramic image, covering a larger field of view, can overcome this difficulty. Directly motivated by a physician we developed an image mosaicing algorithm for endoscopic bladder fluorescence video sequences. In this paper, we present an approach which is capable of stitching single endoscopic video images to a combined panoramic image. Based on SIFT features we estimate a 2-D homography for each image pair, using an affine model and an iterative model-fitting algorithm. We then apply the stitching process and perform a mutual linear interpolation. Our panoramic image results show a correct stitching and lead to a better overview and understanding of the operation field. 

  17. Laser induced fluorescence imaging system for localization of nasopharyngeal carcinoma

    Science.gov (United States)

    Liu, Lina; Xie, Shusen

    2007-11-01

    A laser induced fluorescence imaging system for localization of Nasopharyngeal Carcinoma is developed. In this fluorescence imaging system, the fluorescence intensity with information of detected objection is gained by an image intensifier, which makes color information of the fluorescence image eliminated and the result is a monochrome image of the fluorescence with thermally induced noise. The monochrome fluorescence image is sent to a CCD and captured by an image board, which is controlled by a computer. Image processing is carried out to improve the image quality and therefore improve the system's ability to differentiate carcinomas from normal tissue. Gaussian smoothing is implemented in order to reduce the noise. Image binarizing process is realized to obtain an optimal threshold of the image. Image pixels with grey value below this threshold are assigned as diseased and those above are normal. A pseudo color processing is then accomplished to get better visual perception and understanding of the image, greatly increasing the detail resolution of the grey image. The processed image is then displayed on the screen of the computer in real time. The real time laser induced fluorescence imaging system with the image processing methods developed is efficient for localization of the nasopharyngeal carcinoma.

  18. A framework for creating realistic synthetic fluorescence microscopy image sequences

    CSIR Research Space (South Africa)

    Mabaso, M

    2016-02-01

    Full Text Available Fluorescence microscopy imaging is an important tool in modern biological research, allowing insights into the processes of biological systems. Automated image analysis algorithms help in extracting information from these images. Validation...

  19. Patterned Fluorescence Images with Indigo Precursors in Polymer Film

    International Nuclear Information System (INIS)

    Yoon, Bora; Oh, Eun Hae; Lee, Chan Woo; Kim, Jongman

    2013-01-01

    We have developed a new strategy for the generation of patterned fluorescence images in polymer film. A fluorescent acetyl protected indole 6 was transformed to a nonfluorescent indigo dye 7 by UV irradiation. In addition, a t-Boc protected fluorescent indigo molecule 8 was also converted to a nonfluorescent indigo derivative 7 under a chemical amplification condition. Photomasked UV irradiation of the precursor molecules allowed efficient generation of patterned fluorescence images in polymer film. The strategy described in current investigation is believed to be an important addition to the fluorescent patterning technology

  20. Patterned Fluorescence Images with Indigo Precursors in Polymer Film

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Bora; Oh, Eun Hae; Lee, Chan Woo; Kim, Jongman [Hanyang Univ., Seoul (Korea, Republic of)

    2013-04-15

    We have developed a new strategy for the generation of patterned fluorescence images in polymer film. A fluorescent acetyl protected indole 6 was transformed to a nonfluorescent indigo dye 7 by UV irradiation. In addition, a t-Boc protected fluorescent indigo molecule 8 was also converted to a nonfluorescent indigo derivative 7 under a chemical amplification condition. Photomasked UV irradiation of the precursor molecules allowed efficient generation of patterned fluorescence images in polymer film. The strategy described in current investigation is believed to be an important addition to the fluorescent patterning technology.

  1. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    Science.gov (United States)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  2. Image processing for drift compensation in fluorescence microscopy

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Thiagarajan, Viruthachalam; Coutinho, Isabel

    2013-01-01

    Fluorescence microscopy is characterized by low background noise, thus a fluorescent object appears as an area of high signal/noise. Thermal gradients may result in apparent motion of the object, leading to a blurred image. Here, we have developed an image processing methodology that may remove...

  3. Advances in fluorescence labeling strategies for dynamic cellular imaging.

    Science.gov (United States)

    Dean, Kevin M; Palmer, Amy E

    2014-07-01

    Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein- and bio-orthogonal-based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging.

  4. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging

    OpenAIRE

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude mea...

  5. Fluorescence imaging techniques for studying Drosophila embryo development.

    Science.gov (United States)

    Mavrakis, Manos; Rikhy, Richa; Lilly, Mary; Lippincott-Schwartz, Jennifer

    2008-06-01

    This unit describes fluorescence-based techniques for noninvasive imaging of development in living Drosophila embryos, discussing considerations for fluorescent imaging within living embryos and providing protocols for generation of flies expressing fluorescently tagged proteins and for preparation of embryos for fluorescent imaging. The unit details time-lapse confocal imaging of live embryos and discusses optimizing image acquisition and performing three-dimensional imaging. Finally, the unit provides a variety of specific methods for optical highlighting of specific subsets of fluorescently tagged proteins and organelles in the embryo, including fluorescence recovery after photobleaching (FRAP), fluorescence loss in photobleaching (FLIP), and photoactivation techniques, permitting analysis of specific movements of fluorescently tagged proteins within cells. These protocols, together with the relative ease of generating transgenic animals and the ability to express tagged proteins in specific tissues or at specific developmental times, provide powerful means for examining in vivo behavior of any tagged protein in embryos in myriad mutant backgrounds. Copyright 2008 by John Wiley & Sons, Inc.

  6. Fluorescence imaging preparation methods for tissue scaffolds implanted into a green fluorescent protein porcine model.

    Science.gov (United States)

    Smith, Sarah E; White, Richard A; Grant, David A; Grant, Sheila A

    2015-10-01

    Green fluorescent protein (GFP) animal models have become increasingly popular due to their potential to enhance in vivo imaging and their application to many fields of study. We have developed a technique to observe host tissue integration into scaffolds using GFP expressing swine and fluorescence imaging. Current fluorescence imaging preparation methods cannot be translated to a full GFP animal model due to several challenges and limitations that are investigated here. We have implanted tissue scaffolds into GFP expressing swine and have prepared explanted scaffolds for fluorescence imaging using four different methods including formalin fixation and paraffin embedding, vapor fixation, freshly prepared paraformaldehyde fixation, and fresh frozen tissue. Explanted scaffolds and tissue were imaged using confocal microscopy with spectral separation to evaluate the GFP animal model for visualization of host tissue integration into explanted scaffolds. All methods except fresh frozen tissue induced autofluorescence of the scaffold, preventing visualization of detail between host tissue and scaffold fibers. Fresh frozen tissue preparation allowed for the most reliable visualization of fluorescent host tissue integration into non-fluorescent scaffolds. It was concluded that fresh frozen tissue preparation is the best method for fluorescence imaging preparation when using scaffolds implanted into GFP whole animal models.

  7. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH

  8. Studying membrane properties using Fluorescence Lifetime Imaging Microscopy (FLIM)

    NARCIS (Netherlands)

    Stöckl, M.T.; Bizzarri, R.; Subramaniam, Vinod; Mely, Y.; Duportail, G.

    2012-01-01

    Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to investigate the structure and composition of biological membranes. A wide variety of fluorescent probes suitable for FLIM experiments have been described. These compounds differ strongly in the details of their incorporation into

  9. Detection of rheumatoid arthritis in humans by fluorescence imaging

    Science.gov (United States)

    Ebert, Bernd; Dziekan, Thomas; Weissbach, Carmen; Mahler, Marianne; Schirner, Michael; Berliner, Birgitt; Bauer, Daniel; Voigt, Jan; Berliner, Michael; Bahner, Malte L.; Macdonald, Rainer

    2010-02-01

    The blood pool agent indo-cyanine green (ICG) has been investigated in a prospective clinical study for detection of rheumatoid arthritis using fluorescence imaging. Temporal behavior as well as spatial distribution of fluorescence intensity are suited to differentiate healthy and inflamed finger joints after i.v. injection of an ICG bolus.

  10. FY08 Annual Report for Nuclear Resonance Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Caggiano, Joseph A.

    2009-01-06

    FY08 annual report for project the "Nuclear Resonance Fluorescence Imaging" project. Reviews accomplishments of last 3 years, including U-235 signature search, comparison of different photon sources, and examination of NRF measurements using monochromatic photon source.

  11. Fluorogen-based reporters for fluorescence imaging: a review

    Science.gov (United States)

    Jullien, Ludovic; Gautier, Arnaud

    2015-12-01

    Fluorescence bioimaging has recently jumped into a new area of spatiotemporal resolution and sensitivity thanks to synergistic advances in both optical physics and probe/biosensor design. This review focuses on the recent development of genetically encodable fluorescent reporters that bind endogenously present or exogenously applied fluorogenic chromophores (so-called fluorogens) and activate their fluorescence. We highlight the innovative engineering and design that gave rise to these new natural and synthetic fluorescent reporters, and describe some of the emerging applications in imaging and biosensing.

  12. Image processing for drift compensation in fluorescence microscopy

    DEFF Research Database (Denmark)

    Petersen, Steffen; Thiagarajan, Viruthachalam; Coutinho, Isabel

    2013-01-01

    Fluorescence microscopy is characterized by low background noise, thus a fluorescent object appears as an area of high signal/noise. Thermal gradients may result in apparent motion of the object, leading to a blurred image. Here, we have developed an image processing methodology that may remove....../reduce blur significantly for any type of microscopy. A total of ~100 images were acquired with a pixel size of 30 nm. The acquisition time for each image was approximately 1second. We can quantity the drift in X and Y using the sub pixel accuracy computed centroid location of an image object in each frame....... We can measure drifts down to approximately 10 nm in size and a drift-compensated image can therefore be reconstructed on a grid of the same size using the “Shift and Add” approach leading to an image of identical size asthe individual image. We have also reconstructed the image using a 3 fold larger...

  13. Sensitive detection of fluorescence in western blotting by merging images.

    Science.gov (United States)

    Kondo, Yukari; Higa, Shinichiro; Iwasaki, Takeshi; Matsumoto, Tomoya; Maehara, Kazumitsu; Harada, Akihito; Baba, Yoshihiro; Fujita, Masatoshi; Ohkawa, Yasuyuki

    2018-01-01

    The western blotting technique is widely used to analyze protein expression levels and protein molecular weight. The chemiluminescence method is mainly used for detection due to its high sensitivity and ease of manipulation, but it is unsuitable for detailed analyses because it cannot be used to detect multiple proteins simultaneously. Recently, more attention has been paid to the fluorescence detection method because it is more quantitative and is suitable for the detection of multiple proteins simultaneously. However, fluorescence detection can be limited by poor image resolution and low detection sensitivity. Here, we describe a method to detect fluorescence in western blots using fluorescence microscopy to obtain high-resolution images. In this method, filters and fluorescent dyes are optimized to enhance detection sensitivity to a level similar to that of the chemiluminescence method.

  14. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing

    Directory of Open Access Journals (Sweden)

    Haiyan Cen

    2017-08-01

    Full Text Available Huanglongbing (HLB is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves. Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

  15. Photobleaching correction in fluorescence microscopy images

    International Nuclear Information System (INIS)

    Vicente, Nathalie B; Diaz Zamboni, Javier E; Adur, Javier F; Paravani, Enrique V; Casco, Victor H

    2007-01-01

    Fluorophores are used to detect molecular expression by highly specific antigen-antibody reactions in fluorescence microscopy techniques. A portion of the fluorophore emits fluorescence when irradiated with electromagnetic waves of particular wavelengths, enabling its detection. Photobleaching irreversibly destroys fluorophores stimulated by radiation within the excitation spectrum, thus eliminating potentially useful information. Since this process may not be completely prevented, techniques have been developed to slow it down or to correct resulting alterations (mainly, the decrease in fluorescent signal). In the present work, the correction by photobleaching curve was studied using E-cadherin (a cell-cell adhesion molecule) expression in Bufo arenarum embryos. Significant improvements were observed when applying this simple, inexpensive and fast technique

  16. Coherent Control in Multiphoton Fluorescence Imaging

    OpenAIRE

    De, Arijit Kumar; Goswami, Debabrata

    2009-01-01

    In multiphoton fluorescence laser-scanning microscopy ultrafast laser pulses, i.e. light pulses having pulse-width ≤ 1picosecond (1 ps = 10−12 s), are commonly used to circumvent the low multiphoton absorption cross-sections of common fluorophores. Starting with a discussion on how amplitude modulation of ultrashort pulse-train enhances the two-photon fluorescence providing deep insight into laser-induced photo-thermal damage, the effect of controlling time lag between phase-locked laser p...

  17. Ultraminiature optical design for multispectral fluorescence imaging endoscopes.

    Science.gov (United States)

    Tate, Tyler H; Keenan, Molly; Black, John; Utzinger, Urs; Barton, Jennifer K

    2017-03-01

    A miniature wide-field multispectral endoscopic imaging system was developed enabling reflectance and fluorescence imaging over a broad wavelength range. At 0.8-mm diameter, the endoscope can be utilized for natural orifice imaging in small lumens such as the fallopian tubes. Five lasers from 250 to 642 nm are coupled into a 125 - ? m diameter multimode fiber and transmitted to the endoscope distal tip for illumination. Ultraviolet and blue wavelengths excite endogenous fluorophores, which can provide differential fluorescence emission images for health and disease. Visible wavelengths provide reflectance images that can be combined for pseudo-white-light imaging and navigation. Imaging is performed by a 300 - ? m diameter three-element lens system connected to a 3000-element fiber. The lens system was designed for a 70-deg full field of view, working distance from 3 mm to infinity, and 40% contrast at the Nyquist cutoff of the fiber bundle. Measured performance characteristics are near design goals. The endoscope was utilized to obtain example monochromatic, pseudo-white-light, and composite fluorescence images of phantoms and porcine reproductive tract. This work shows the feasibility of packaging a highly capable multispectral fluorescence imaging system into a miniature endoscopic system that may have applications in early detection of cancer.

  18. Fluorescence multispectral imaging-based diagnostic system for atherosclerosis.

    Science.gov (United States)

    Ho, Cassandra Su Lyn; Horiuchi, Toshikatsu; Taniguchi, Hiroaki; Umetsu, Araya; Hagisawa, Kohsuke; Iwaya, Keiichi; Nakai, Kanji; Azmi, Amalina; Zulaziz, Natasha; Azhim, Azran; Shinomiya, Nariyoshi; Morimoto, Yuji

    2016-08-20

    Composition of atherosclerotic arterial walls is rich in lipids such as cholesterol, unlike normal arterial walls. In this study, we aimed to utilize this difference to diagnose atherosclerosis via multispectral fluorescence imaging, which allows for identification of fluorescence originating from the substance in the arterial wall. The inner surface of extracted arteries (rabbit abdominal aorta, human coronary artery) was illuminated by 405 nm excitation light and multispectral fluorescence images were obtained. Pathological examination of human coronary artery samples were carried out and thickness of arteries were calculated by measuring combined media and intima thickness. The fluorescence spectra in atherosclerotic sites were different from those in normal sites. Multiple regions of interest (ROI) were selected within each sample and a ratio between two fluorescence intensity differences (where each intensity difference is calculated between an identifier wavelength and a base wavelength) from each ROI was determined, allowing for discrimination of atherosclerotic sites. Fluorescence intensity and thickness of artery were found to be significantly correlated. These results indicate that multispectral fluorescence imaging provides qualitative and quantitative evaluations of atherosclerosis and is therefore a viable method of diagnosing the disease.

  19. Fluorescence lifetime imaging of oxygen in dental biofilm

    Science.gov (United States)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  20. In vivo cellular imaging using fluorescent proteins - Methods and Protocols

    Directory of Open Access Journals (Sweden)

    M. Monti

    2012-12-01

    Full Text Available The discovery and genetic engineering of fluorescent proteins has revolutionized cell biology. What was previously invisible to the cell often can be made visible with the use of fluorescent proteins. With this words, Robert M. Hoffman introduces In vivo Cellular Imaging Using Fluorescent proteins, the eighteen chapters book dedicated to the description of how fluorescence proteins have changed the way to analyze cellular processes in vivo. Modern researches aim to study new and less invasive methods able to follow the behavior of different cell types in different biological contexts: for example, how cancer cells migrate or how they respond to different therapies. Also, in vivo systems can help researchers to better understand animal embryonic development so as how fluorescence proteins may be used to monitor different processes in living organisms at the molecular and cellular level.

  1. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging.

    Science.gov (United States)

    Kwon, Sunkuk; Sevick-Muraca, Eva M

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude measurement. NIRFI showed minimal background fluorescence; however, skin pigmentation reduced the amplitude of fluorescent signal changes. Therefore, these effects should be taken into account when imaging mice with different states of skin pigmentation and diet-induced background fluorescence in vivo.

  2. GFP fluorescence imaging with laser confocal scanning microscope

    Science.gov (United States)

    Yu, Yanhua; Xing, Da; Shi, Qiaojuan; Zhou, Junchu

    1999-09-01

    With gene marking technique, green fluorescent protein (GFP) and nodule bacteria gene has been linked together to form a single fusion gene expression vector. Then the vector is transferred into the nodule bacteria and the astragalus sinicus is invaded by the vector. With laser confocal scanning microscope, some important morphological information in plant nitrogen fixation research about the invading of nodule bacteria and the formation process of root nodule has been obtained through the 3D imaging of GFP reporting fluorescence.

  3. Particle Image Velocimetry Applications of Fluorescent Dye-Doped Particles

    OpenAIRE

    Petrosky, Brian Joseph

    2015-01-01

    Laser flare can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in a flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following thesis is formatted in a hybrid manuscript style, including a full paper presenting the applications of fluorescent Kiton R...

  4. Imaging fluorescence fluctuation spectroscopy: new tools for quantitative bioimaging.

    Science.gov (United States)

    Bag, Nirmalya; Wohland, Thorsten

    2014-01-01

    Fluorescence fluctuation spectroscopy (FFS) techniques provide information at the single-molecule level with excellent time resolution. Usually applied at a single spot in a sample, they have been recently extended into imaging formats, referred to as imaging FFS. They provide spatial information at the optical diffraction limit and temporal information in the microsecond to millisecond range. This review provides an overview of the different modalities in which imaging FFS techniques have been implemented and discusses present imaging FFS capabilities and limitations. A combination of imaging FFS and nanoscopy would allow one to record information with the detailed spatial information of nanoscopy, which is ∼20 nm and limited only by fluorophore size and labeling density, and the time resolution of imaging FFS, limited by the fluorescence lifetime. This combination would provide new insights into biological events by providing spatiotemporal resolution at unprecedented levels.

  5. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    Science.gov (United States)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  6. A portable fluorescence microscopic imaging system for cholecystectomy

    Science.gov (United States)

    Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald

    2016-03-01

    In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.

  7. Modulated electron-multiplied fluorescence lifetime imaging microscope : All-solid-state camera for fluorescence lifetime imaging

    NARCIS (Netherlands)

    Zhao, Q.; Schelen, B.; Schouten, R.

    2012-01-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device

  8. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.

    Directory of Open Access Journals (Sweden)

    Sean C Warren

    Full Text Available Fluorescence lifetime imaging (FLIM is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset. This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis

  9. APPLICATION OF MODULATED CHLOROPHYLL FLUORESCENCE AND MODULATED CHLOROPHYLL FLUORESCENCE IMAGING IN STUDYING ENVIRONMENTAL STRESSES EFFECT

    Directory of Open Access Journals (Sweden)

    L. Guidi

    2016-03-01

    Full Text Available Chlorophyll (Chl a fluorescence is a widely used tool to monitor the photosynthetic process in plants subjected to environmental stresses.this review reports the theoretical bases of Chl fluorescence, and the significance of the most important Chl fluorescence parameters. it also reportshow these parameters can be utilised to estimate changes in photosystem ii (PSII photochemistry, linear electron flux and energy dissipationmechanisms. the relation between actual PSII photochemistry and CO2 assimilation is discussed, as is the role of photochemical andnon-photochemical quenching in inducing changes in PSII activity. the application of Chl fluorescence imaging to study heterogeneity on leaflamina is also considered. this review summarises only some of the results obtained by this methodology to study the effects of differentenvironmental stresses, namely water and nutrients availability, pollutants, temperature and salinity.

  10. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    Science.gov (United States)

    Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.

    1995-01-01

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

  11. Fluorescence Imaging of Fast Retrograde Axonal Transport in Living Animals

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2009-11-01

    Full Text Available Our purpose was to enable an in vivo imaging technology that can assess the anatomy and function of peripheral nerve tissue (neurography. To do this, we designed and tested a fluorescently labeled molecular probe based on the nontoxic C fragment of tetanus toxin (TTc. TTc was purified, labeled, and subjected to immunoassays and cell uptake assays. The compound was then injected into C57BL/6 mice (N = 60 for in vivo imaging and histologic studies. Image analysis and immunohistochemistry were performed. We found that TTc could be labeled with fluorescent moieties without loss of immunoreactivity or biologic potency in cell uptake assays. In vivo fluorescent imaging experiments demonstrated uptake and retrograde transport of the compound along the course of the sciatic nerve and in the spinal cord. Ex vivo imaging and immunohistochemical studies confirmed the presence of TTc in the sciatic nerve and spinal cord, whereas control animals injected with human serum albumin did not exhibit these features. We have demonstrated neurography with a fluorescently labeled molecular imaging contrast agent based on the TTc.

  12. Tumor-stem cells interactions by fluorescence imaging

    Science.gov (United States)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  13. Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging

    International Nuclear Information System (INIS)

    Soloviev, Vadim Y.

    2006-01-01

    A novel adaptive mesh technique in the Fourier domain is introduced for problems in fluorescence lifetime imaging. A dynamical adaptation of the three-dimensional scheme based on the finite volume formulation reduces computational time and balances the ill-posed nature of the inverse problem. Light propagation in the medium is modeled by the telegraph equation, while the lifetime reconstruction algorithm is derived from the Fredholm integral equation of the first kind. Stability and computational efficiency of the method are demonstrated by image reconstruction of two spherical fluorescent objects embedded in a tissue phantom

  14. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gartia, Manas Ranjan [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Hsiao, Austin; Logan Liu, G [Department of Bioengineering, University of Illinois, Urbana, IL 61801 (United States); Sivaguru, Mayandi [Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 (United States); Chen Yi, E-mail: loganliu@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-09-07

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  15. Refractive index sensing using Fluorescence Lifetime Imaging (FLIM)

    International Nuclear Information System (INIS)

    Jones, Carolyn; Suhling, Klaus

    2006-01-01

    The fluorescence lifetime is a function of the refractive index of the fluorophore's environment, for example in the case of the biologically important green fluorescent protein (GFP). In order to address the question whether this effect can be exploited to image the local environment of specific proteins in cell biology, we need to determine the distance over which the fluorophore's lifetime is sensitive to the refractive index. To this end, we employ Fluorescence Lifetime Imaging (FLIM) of fluorescein in NaOH buffer at an interface. This approach allows us to map the fluorescence lifetime as a function of distance from a buffer/air and buffer/oil interface. Preliminary data show that the fluorescence lifetime of fluorescein increases near a buffer/air interface and decreases near a buffer/oil interface. The range over which this fluorescence lifetime change occurs is found to be of the order several μm which is consistent with a theoretical model based on the full width at half maximum of the emission spectrum proposed by Toptygin

  16. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    International Nuclear Information System (INIS)

    Gartia, Manas Ranjan; Hsiao, Austin; Logan Liu, G; Sivaguru, Mayandi; Chen Yi

    2011-01-01

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  17. Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning

    NARCIS (Netherlands)

    de Groot, M.; Evans, C.L.; de Boer, J.F.

    2012-01-01

    We present a new method for high-resolution, three-dimensional fluorescence imaging. In contrast to beam-scanning confocal microscopy, where the laser focus must be scanned both laterally and axially to collect a volume, we obtain depth information without the necessity of depth scanning. In this

  18. Optofluidic fluorescent imaging cytometry on a cell phone.

    Science.gov (United States)

    Zhu, Hongying; Mavandadi, Sam; Coskun, Ahmet F; Yaglidere, Oguzhan; Ozcan, Aydogan

    2011-09-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical sciences. Cost-effective translation of these technologies to remote and resource-limited environments could create new opportunities especially for telemedicine applications. Toward this direction, here we demonstrate the integration of imaging cytometry and fluorescent microscopy on a cell phone using a compact, lightweight, and cost-effective optofluidic attachment. In this cell-phone-based optofluidic imaging cytometry platform, fluorescently labeled particles or cells of interest are continuously delivered to our imaging volume through a disposable microfluidic channel that is positioned above the existing camera unit of the cell phone. The same microfluidic device also acts as a multilayered optofluidic waveguide and efficiently guides our excitation light, which is butt-coupled from the side facets of our microfluidic channel using inexpensive light-emitting diodes. Since the excitation of the sample volume occurs through guided waves that propagate perpendicular to the detection path, our cell-phone camera can record fluorescent movies of the specimens as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the target solution of interest. We tested the performance of our cell-phone-based imaging cytometer by measuring the density of white blood cells in human blood samples, which provided a decent match to a commercially available hematology analyzer. We further characterized the imaging quality of the same platform to demonstrate a spatial resolution of ~2 μm. This cell-phone-enabled optofluidic imaging flow cytometer could especially be useful for rapid and sensitive imaging of bodily fluids for conducting various cell counts (e.g., toward monitoring of HIV+ patients) or rare cell analysis as well as for screening of water quality in

  19. Optofluidic Fluorescent Imaging Cytometry on a Cell Phone

    Science.gov (United States)

    Zhu, Hongying; Mavandadi, Sam; Coskun, Ahmet F.; Yaglidere, Oguzhan; Ozcan, Aydogan

    2012-01-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical sciences. Cost-effective translation of these technologies to remote and resource-limited environments could create new opportunities especially for telemedicine applications. Toward this direction, here we demonstrate the integration of imaging cytometry and fluorescent microscopy on a cell phone using a compact, lightweight, and cost-effective optofluidic attachment. In this cell-phone-based optofluidic imaging cytometry platform, fluorescently labeled particles or cells of interest are continuously delivered to our imaging volume through a disposable microfluidic channel that is positioned above the existing camera unit of the cell phone. The same microfluidic device also acts as a multilayered optofluidic waveguide and efficiently guides our excitation light, which is butt-coupled from the side facets of our microfluidic channel using inexpensive light-emitting diodes. Since the excitation of the sample volume occurs through guided waves that propagate perpendicular to the detection path, our cell-phone camera can record fluorescent movies of the specimens as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the target solution of interest. We tested the performance of our cell-phone-based imaging cytometer by measuring the density of white blood cells in human blood samples, which provided a decent match to a commercially available hematology analyzer. We further characterized the imaging quality of the same platform to demonstrate a spatial resolution of ~2 μm. This cell-phone-enabled optofluidic imaging flow cytometer could especially be useful for rapid and sensitive imaging of bodily fluids for conducting various cell counts (e.g., toward monitoring of HIV+ patients) or rare cell analysis as well as for screening of water quality in

  20. Fluorescence imaging of angiogenesis in green fluorescent protein-expressing tumors

    Science.gov (United States)

    Yang, Meng; Baranov, Eugene; Jiang, Ping; Li, Xiao-Ming; Wang, Jin W.; Li, Lingna; Yagi, Shigeo; Moossa, A. R.; Hoffman, Robert M.

    2002-05-01

    The development of therapeutics for the control of tumor angiogenesis requires a simple, reliable in vivo assay for tumor-induced vascularization. For this purpose, we have adapted the orthotopic implantation model of angiogenesis by using human and rodent tumors genetically tagged with Aequorea victoria green fluorescent protein (GFP) for grafting into nude mice. Genetically-fluorescent tumors can be readily imaged in vivo. The non-luminous induced capillaries are clearly visible against the bright tumor fluorescence examined either intravitally or by whole-body luminance in real time. Fluorescence shadowing replaces the laborious histological techniques for determining blood vessel density. High-level GFP-expressing tumor cell lines made it possible to acquire the high-resolution real-time fluorescent optical images of angiogenesis in both primary tumors and their metastatic lesions in various human and rodent tumor models by means of a light-based imaging system. Intravital images of angiogenesis onset and development were acquired and quantified from a GFP- expressing orthotopically-growing human prostate tumor over a 19-day period. Whole-body optical imaging visualized vessel density increasing linearly over a 20-week period in orthotopically-growing, GFP-expressing human breast tumor MDA-MB-435. Vessels in an orthotopically-growing GFP- expressing Lewis lung carcinoma tumor were visualized through the chest wall via a reversible skin flap. These clinically-relevant angiogenesis mouse models can be used for real-time in vivo evaluation of agents inhibiting or promoting tumor angiogenesis in physiological micro- environments.

  1. Fluorescence microscope by using computational ghost imaging

    Directory of Open Access Journals (Sweden)

    Mizutani Yasuhiro

    2015-01-01

    Full Text Available We propose a fluorescence microscope by using the computational Ghost imaging (CGI for observing a living cell for a long duration over an hour. There is a problem for observing a cell about light-induced bleaching fora ling-term observation.Toover come the problem, we focused on an advantageof sensitivityof the CGI as second order colleration for an imaging with weak intensity excitation light. Setting for the CGI, a DMD projector was installed at an eye-piece part of a microscope and fluorescent light was detected using a bucket detectorofa photo-multiplier tube.Asaresults,wehaveshownthe imagingadvantageoftheCGI under weak light intensity, in addition, we have demonstrated to detect fluorescence images of biological samples for one day.

  2. Fluorescent Pluronic nanodots for in vivo two-photon imaging

    International Nuclear Information System (INIS)

    Maurin, Mathieu; Vurth, Laeticia; Vial, Jean-Claude; Baldeck, Patrice; Stephan, Olivier; Marder, Seth R; Sanden, Boudewijn Van der

    2009-01-01

    We report the synthesis of new nanosized fluorescent probes based on bio-compatible polyethylene-polypropylene glycol (Pluronic) materials. In aqueous solution, mini-emulsification of Pluronic with a high fluorescent di-stryl benzene-modified derivative, exhibiting a two-photon absorption cross section as high as 2500 Goeppert-Mayer units at 800 nm, leads to nanoparticles exhibiting a hydrodynamic radius below 100 nm. We have demonstrated that these new probes with luminescence located in the spectral region of interest for bio-imaging (the yellow part of the visible spectrum) allow deep (500 μm) bio-imaging of the mice brain vasculature. The dose injected during our experiments is ten times lower when compared to the classical commercial rhodamine-B isothicyanate-Dextran system but gives similar results to homogeneous blood plasma staining. The mean fluorescent signal intensity stayed constant during more than 1 h.

  3. Plant response to destruxins visualized by imaging of chlorophyll fluorescence

    Czech Academy of Sciences Publication Activity Database

    Soukupová, Julie; Smatanová, Sylvie; Nedbal, Ladislav; Jegorov, A.

    2003-01-01

    Roč. 118, č. 118 (2003), s. 399-405 ISSN 0031-9317 Institutional research plan: CEZ:MSM 123100001; CEZ:AV0Z6087904 Keywords : fungal infection, destruxins * fluorescence imaging Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.767, year: 2003

  4. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    Science.gov (United States)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  5. Fluorescence lifetime to image epidermal ionic concentrations

    Science.gov (United States)

    Behne, Martin J.; Barry, Nicholas P.; Moll, Ingrid; Gratton, Enrico; Mauro, Theodora M.

    2004-09-01

    Measurements of ionic concentrations in skin have traditionally been performed with an array of methods which either did not reveal detailed localization information, or only provided qualitative, not quantitative information. FLIM combines a number of advantages into a method ideally suited to visualize concentrations of ions such as H+ in intact, unperturbed epidermis and stratum corneum (SC). Fluorescence lifetime is dye concentration-independent, the method requires only low light intensities and is therefore not prone to photobleaching or phototoxic artifacts, and because multiphoton lasers of IR wavelength are used, light penetrates deep into intact tissue. The standard method to measure SC pH is the flat pH electrode, which provides reliable information only about surface pH changes, without further vertical or subcellular spatial resolution; i.e., specific microdomains such as the corneocyte interstices are not resolved, and the deeper SC is inaccessible without resorting to inherently disruptive stripping methods. Furthermore, the concept of a gradient of pH through the SC stems from such stripping experiments, but other confirmation for this concept is lacking. Our investigations into the SC pH distribution so far have revealed the crucial role of the Sodium/Hydrogen Antiporter NHE1 in generation of SC acidity, the colocalization of enzymatic lipid processing activity in the SC with acidic domains of the SC, and the timing and localization of emerging acidity in the SC of newborns. Together, these results have led to an improved understanding of the SC pH, its distribution, origin, and regulation. Future uses for this method include measurements of other ions important for epidermal processes, such as Ca2+, and a quantitative approach to topical drug penetration.

  6. Linear and non-linear fluorescence imaging of neuronal activity

    Science.gov (United States)

    Fisher, Jonathan A. N.

    Optical imaging of neuronal activity offers new possibilities for understanding brain physiology. The predominant methods in neuroscience for measuring electrical activity require electrodes inserted into the tissue. Such methods, however, provide limited spatial information and are invasive. Optical methods are less physically invasive and offer the possibility for simultaneously imaging the activity of many neurons. In this thesis one- and two-photon fluorescence microscopy techniques were applied to several in vivo and in vitro mammalian preparations. Using one-photon absorption fluorescence microscopy and gradient index (GRIN) lens optics, cortical electrical activity in response to electric stimulation was resolved in three-dimensions at high-speed in the primary somatosensory cortex of the mouse in vivo using voltage-sensitive dyes. Imaging at depths up to 150 mum below the cortex surface, it was possible to resolve depth-dependent patterns of neuronal activity in response to cortical and thalamic electric stimulation. The patterns of activity were consistent with known cortical cellular architecture. In a qualitatively different set of experiments, one-photon fluorescence microscopy via voltage-sensitive dyes was successfully employed to image an in vitro preparation of the perfused rat brainstem during the process of respiratory rhythmogenesis. Imaging results yielded insights into the spatial organization of the central respiratory rhythm generation region in the ventrolateral medulla. A multifocal two-photon scanning microscope was constructed, and design and operation principles are described. Utilizing the novel device, anatomical and functional two-photon imaging via potentiometric dyes and calcium dyes is described, and the results of in vivo versus in vitro imaging are compared. Anatomical imaging results used either functional probe background fluorescence or green fluorescent protein (GFP) expression. Spectroscopic experiments measuring the two

  7. Modulated electron-multiplied fluorescence lifetime imaging microscope: All-solid-state camera for fluorescence lifetime imaging

    OpenAIRE

    Zhao, Q.; Schelen, B.; Schouten, R.

    2012-01-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sam...

  8. Registering plant dysfunction in artificial biosystems through fluorescence imaging technique

    Science.gov (United States)

    Nikolova, Alexandra; Krumov, Alexandar; Vassilev, Vesselin

    Humanity ambitions in space exploration and long-term men-operated space missions evoke an increasing interest to artificial ecosystem researches. Advanced studies of plant biosystems provoke development of new innovative technologies for plant cultivation in man-made environment. Closed ecosystems of different types and structure are now used for space horticulture, cultivation of genetically modified species, bio-products for pharmacies and industry etc. New technologies are required to monitor and control basic parameters of future bioregenerative life support system, especially of plants photosynthetic activity as the most fundamental biological process. Authors propose a conception for a non-invasive control of plant physiological status in closed biosystem through spatial registration of chlorophyll fluorescence. This approach allows an early detection of stress impact on plants, reveal the dynamic and direction of the negative influence and the level of plant stress. Technical requirements for obtaining plant fluorescence images are examined in close relation with plant illumination conditions. Problems related with optimised plant illumination are discussed. Examples of fluorescence images of healthy and stressed plants demonstrate the sensibility and rapidity of signal changes caused by plant dysfunction. Proposed conception could be used for developing new technical solutions in autocontrolled bio-support systems, based on real time analysis of fluorescence images.

  9. Tissue characterization using dimensionality reduction and fluorescence imaging.

    Science.gov (United States)

    Lekadir, Karim; Elson, Daniel S; Requejo-Isidro, Jose; Dunsby, Christopher; McGinty, James; Galletly, Neil; Stamp, Gordon; French, Paul M W; Yang, Guang-Zhong

    2006-01-01

    Multidimensional fluorescence imaging is a powerful molecular imaging modality that is emerging as an important tool in the study of biological tissues. Due to the large volume of multi-spectral data associated with the technique, it is often difficult to find the best combination of parameters to maximize the contrast between different tissue types. This paper presents a novel framework for the characterization of tissue compositions based on the use of time resolved fluorescence imaging without the explicit modeling of the decays. The composition is characterized through soft clustering based on manifold embedding for reducing the dimensionality of the datasets and obtaining a consistent differentiation scheme for determining intrinsic constituents of the tissue. The proposed technique has the benefit of being fully automatic, which could have significant advantages for automated histopathology and increasing the speed of intraoperative decisions. Validation of the technique is carried out with both phantom data and tissue samples of the human pancreas.

  10. Fast automatic quantitative cell replication with fluorescent live cell imaging

    Directory of Open Access Journals (Sweden)

    Wang Ching-Wei

    2012-01-01

    Full Text Available Abstract Background live cell imaging is a useful tool to monitor cellular activities in living systems. It is often necessary in cancer research or experimental research to quantify the dividing capabilities of cells or the cell proliferation level when investigating manipulations of the cells or their environment. Manual quantification of fluorescence microscopic image is difficult because human is neither sensitive to fine differences in color intensity nor effective to count and average fluorescence level among cells. However, auto-quantification is not a straightforward problem to solve. As the sampling location of the microscopy changes, the amount of cells in individual microscopic images varies, which makes simple measurement methods such as the sum of stain intensity values or the total number of positive stain within each image inapplicable. Thus, automated quantification with robust cell segmentation techniques is required. Results An automated quantification system with robust cell segmentation technique are presented. The experimental results in application to monitor cellular replication activities show that the quantitative score is promising to represent the cell replication level, and scores for images from different cell replication groups are demonstrated to be statistically significantly different using ANOVA, LSD and Tukey HSD tests (p-value Conclusion A robust automated quantification method of live cell imaging is built to measure the cell replication level, providing a robust quantitative analysis system in fluorescent live cell imaging. In addition, the presented unsupervised entropy based cell segmentation for live cell images is demonstrated to be also applicable for nuclear segmentation of IHC tissue images.

  11. In Vivo Fluorescence Imaging in the Second Near-Infrared Window Using Carbon Nanotubes.

    Science.gov (United States)

    Hong, Guosong; Dai, Hongjie

    2016-01-01

    In vivo fluorescence imaging in the second near-infrared window (NIR-II window, 1000-1700 nm) is a powerful imaging technique that emerged in recent years. This imaging tool allows for noninvasive, deep-tissue visualization and interrogation of anatomical features and functions with improved imaging resolution and contrast at greater tissue penetration depths than traditional fluorescence imaging. Here, we present the detailed protocol for conducting NIR-II fluorescence imaging in live animals, including the procedures for preparation of biocompatible and NIR-II fluorescent carbon nanotube solution, live animal administration and NIR-II fluorescence image acquisition.

  12. Clinical results of fluorescence lifetime imaging in ophthalmology

    Science.gov (United States)

    Schweitzer, D.; Quick, S.; Klemm, M.; Hammer, M.; Jentsch, S.; Dawczynski, J.; Becker, W.

    2009-07-01

    A laser scanner ophthalmoscope was developed for in vivo fluorescence lifetime measurements at the human retina. Measurements were performed in 30 degree fundus images. The fundus was excited by pulses of 75 ps (FWHM). The dynamic fluorescence was detected in two spectral channels K1(490-560nm), K2(560-700 nm) by time-correlated single photon counting. The decay of fluorescence was three-exponentially. Local and global alterations in lifetimes were found between healthy subjects and patients suffering from age-related macular degeneration, diabetic retinopathy, and vessel occlusion. The lifetimes T1, T2, and T3 in both channels are changed to longer values in AMD and diabetic retinopathy in comparison with healthy subjects. The lifetime T2 in K1 is most sensitive to metabolic alterations in branch arterial vessel occlusion.

  13. Imaging cellular dynamics in vivo with multicolor fluorescent proteins

    Science.gov (United States)

    Hoffman, Robert M.

    2005-04-01

    The new field of in vivo cell biology is being developed with multi-colored fluorescent proteins. With the use of fluorescent proteins, the behavior of individual cells can be visualized in the living animal. An example of the new cell biology is dual-color fluorescence imaging using red fluorescent protein (RFP)-expressing tumors transplanted in green fluorescent protein (GFP)-expressing transgenic mice. These models show with great clarity the details of the tumor-stroma cell-cell interaction especially tumor-induced angiogenesis, tumor-infiltrating lymphocytes, stromal fibroblasts and macrophages. Another example is the color-coding of cells with RFP or GFP such that both cell types and their interaction can be simultaneously visualized in vivo. Stem cells can also be visualized and tracked in vivo with fluorescent proteins. Mice, in which the regulatory elements of the stem-cell marker nestin drive GFP expression, can be used to visualize hair follicle stem cells including their ability to form hair follicles as well as blood vessels. Dual-color cells expressing GFP in the nucleus and RFP in the cytoplasm enable real-time visualization of nuclear-cytoplasm dynamics including cell cycle events and apoptosis. Dual-color cells also enable the in vivo imaging of cell and nuclear deformation as well as trafficking in capillaries in living animals. Multiple-color labeling of cells will enable multiple events to be simultaneously visualized in vivo including cell-cell interaction, gene expression, ion fluxes, protein and organelle trafficking, chromosome dynamics and numerous other processes currently still studied in vitro.

  14. Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy

    Science.gov (United States)

    Ahmed, Syeed Ehsan

    Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.

  15. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging.

    Science.gov (United States)

    Liu, Yanlan; Ai, Kelong; Yuan, Qinghai; Lu, Lehui

    2011-02-01

    We report here the development of Gd-doped ZnO quantum dots (QDs) as dual modal fluorescence and magnetic resonance imaging nanoprobes. They are fabricated in a simple, versatile and environmentally friendly method, not only decreasing the difficulty and complexity, but also avoiding the increase of particle's size brought about by silica coating procedure in the synthesis of nanoprobes reported previously. These nanoprobes, with exceptionally small size and enhanced fluorescence resulting from the Gd doping, can label successfully the HeLa cells in short time and present no evidence of toxicity or adverse affect on cell growth even at the concentration up to 1 mm. These results show that such nanoprobes have low toxicity, especially in comparison with the traditional PEGylated CdSe/ZnS or CdSe/CdS QDs. In MRI studies, they exert strong positive contrast effect with a large longitudinal relaxivity (r(1)) of water proton of 16 mm(-1) s(-1). Their capability of imaging HeLa cells with MRI implies that they have great potential as MRI contrast agents. Combining the high sensitivity of fluorescence imaging with high spatial resolution of MRI, We expect that the as-prepared Gd-doped Zno QDs can provide a better reliability of the collected data and find promising applications in biological, medical and other fields. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. A portable near-infrared fluorescence image overlay device for surgical navigation (Conference Presentation)

    Science.gov (United States)

    McWade, Melanie A.

    2016-03-01

    A rise in the use of near-infrared (NIR) fluorescent dyes or intrinsic fluorescent markers for surgical guidance and tissue diagnosis has triggered the development of NIR fluorescence imaging systems. Because NIR wavelengths are invisible to the naked eye, instrumentation must allow surgeons to visualize areas of high fluorescence. Current NIR fluorescence imaging systems have limited ease-of-use because they display fluorescent information on remote display monitors that require surgeons to divert attention away from the patient to identify the location of tissue fluorescence. Furthermore, some systems lack simultaneous visible light imaging which provides valuable spatial context to fluorescence images. We have developed a novel, portable NIR fluorescence imaging approach for intraoperative surgical guidance that provides information for surgical navigation within the clinician's line of sight. The system utilizes a NIR CMOS detector to collect excited NIR fluorescence from the surgical field. Tissues with NIR fluorescence are overlaid with visible light to provide information on tissue margins directly on the surgical field. In vitro studies have shown this versatile imaging system can be applied to applications with both extrinsic NIR contrast agents such as indocyanine green and weaker sources of biological fluorescence such as parathyroid gland tissue. This non-invasive, portable NIR fluorescence imaging system overlays an image directly on tissue, potentially allowing surgical decisions to be made quicker and with greater ease-of-use than current NIR fluorescence imaging systems.

  17. Proton-induced x-ray fluorescence CT imaging.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Matsuo, Yuto; Fahrig, Rebecca; Shirato, Hiroki; Umegaki, Kikuo; Xing, Lei

    2015-02-01

    To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%-5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm(2) CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%-5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R(2) > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Proton-induced x-ray fluorescence CT imaging of 3%-5% gold solutions in a small animal sized water phantom has been demonstrated

  18. Fluorescence resonance energy transfer imaging of CFP/YFP labeled NDH in cyanobacterium cell

    International Nuclear Information System (INIS)

    Ji Dongmei; Lv Wei; Huang Zhengxi; Xia Andong; Xu Min; Ma Weimin; Mi Hualing; Ogawa Teruo

    2007-01-01

    The laser confocal scanning microscopy combined with time-correlated single photon counting imaging technique to obtain fluorescence intensity and fluorescence lifetime images for fluorescence resonance energy transfer measurement is reported. Both the fluorescence lifetime imaging microscopy (FLIM) and intensity images show inhomogeneous cyan fluorescent protein and yellow fluorescent protein (CFP /YFP) expression or inhomogeneous energy transfer between CFP and YFP over whole cell. The results presented in this work show that FLIM could be a potential method to reveal the structure-function behavior of NAD(P)H dehydrogenase complexes in living cell

  19. Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors

    Science.gov (United States)

    Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.

    2013-01-01

    Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599

  20. Fluorescence microscopy imaging of electroperturbation in mammalian cells.

    Science.gov (United States)

    Sun, Yinghua; Vernier, P Thomas; Behrend, Matthew; Wang, Jingjing; Thu, Mya Mya; Gundersen, Martin; Marcu, Laura

    2006-01-01

    We report the design, integration, and validation of a fluorescence microscopy system for imaging of electroperturbation--the effects of nanosecond, megavolt-per-meter pulsed electric fields on biological cells and tissues. Such effects have potential applications in cancer therapy, gene regulation, and biophysical research by noninvasively disrupting intracellular compartments and inducing apoptosis in malignant cells. As the primary observing platform, an epifluorescence microscope integrating a nanosecond high-voltage pulser and a micrometer electrode chamber enable in situ imaging of the intracellular processes triggered by high electric fields. Using specific fluorescence molecular probes, the dynamic biological responses of Jurkat T lymphocytes to nanosecond electric pulses (nanoelectropulses) are studied with this system, including calcium bursts, the polarized translocation of phosphatidylserine (PS), and nuclear enlargement and chromatin/DNA structural changes.

  1. Development and integration of Raman imaging capabilities to Sandia National Laboratories hyperspectral fluorescence imaging instrument.

    Energy Technology Data Exchange (ETDEWEB)

    Timlin, Jerilyn Ann; Nieman, Linda T.

    2005-11-01

    Raman spectroscopic imaging is a powerful technique for visualizing chemical differences within a variety of samples based on the interaction of a substance's molecular vibrations with laser light. While Raman imaging can provide a unique view of samples such as residual stress within silicon devices, chemical degradation, material aging, and sample heterogeneity, the Raman scattering process is often weak and thus requires very sensitive collection optics and detectors. Many commercial instruments (including ones owned here at Sandia National Laboratories) generate Raman images by raster scanning a point focused laser beam across a sample--a process which can expose a sample to extreme levels of laser light and requires lengthy acquisition times. Our previous research efforts have led to the development of a state-of-the-art two-dimensional hyperspectral imager for fluorescence imaging applications such as microarray scanning. This report details the design, integration, and characterization of a line-scan Raman imaging module added to this efficient hyperspectral fluorescence microscope. The original hyperspectral fluorescence instrument serves as the framework for excitation and sample manipulation for the Raman imaging system, while a more appropriate axial transmissive Raman imaging spectrometer and detector are utilized for collection of the Raman scatter. The result is a unique and flexible dual-modality fluorescence and Raman imaging system capable of high-speed imaging at high spatial and spectral resolutions. Care was taken throughout the design and integration process not to hinder any of the fluorescence imaging capabilities. For example, an operator can switch between the fluorescence and Raman modalities without need for extensive optical realignment. The instrument performance has been characterized and sample data is presented.

  2. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    Science.gov (United States)

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  3. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging

    Science.gov (United States)

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; de Jong, Jan Geert Sander; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  4. Fluorescent quantum dots: synthesis, biomedical optical imaging, and biosafety assessment.

    Science.gov (United States)

    Ji, Xiaoyuan; Peng, Fei; Zhong, Yiling; Su, Yuanyuan; He, Yao

    2014-12-01

    The marriage of nanomaterials with biology has significantly promoted advancement of biological techniques, profoundly facilitating basic research and practical applications in biological and biomedical fields. Taking advantages of unique optical properties (e.g., strong fluorescence, robust photostability, size-tunable emission wavelengths, etc.), fluorescent quantum dots (QDs), appearing as high-performance biological fluorescent nanoprobes, have been extensively explored for a variety of biomedical optical imaging applications. In this review, we present representative synthetic strategies for preparation of QDs and their applications in biomedical optical imaging, as well as risk assessments in vitro and in vivo. Briefly, we first summarize recent progress in fabrication of QDs via two rudimentary approaches, i.e., organometallic route and aqueous synthesis. Next we present representative achievement in QDs-based in vitro and in vivo biomedical optical imaging applications. We further discuss the toxicity assessment of QDs, ranging from cell studies to animal models. In the final section, we discuss challenges and perspectives for the QDs-relative bioapplications in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Development of a Fluorescence Probe for Live Cell Imaging].

    Science.gov (United States)

    Shibata, Aya

    2017-01-01

     Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  6. Neural imaging in songbirds using fiber optic fluorescence microscopy

    Science.gov (United States)

    Nooshabadi, Fatemeh; Hearn, Gentry; Lints, Thierry; Maitland, Kristen C.

    2012-02-01

    The song control system of juvenile songbirds is an important model for studying the developmental acquisition and generation of complex learned vocal motor sequences, two processes that are fundamental to human speech and language. To understand the neural mechanisms underlying song production, it is critical to characterize the activity of identified neurons in the song control system when the bird is singing. Neural imaging in unrestrained singing birds, although technically challenging, will advance our understanding of neural ensemble coding mechanisms in this system. We are exploring the use of a fiber optic microscope for functional imaging in the brain of behaving and singing birds in order to better understand the contribution of a key brain nucleus (high vocal center nucleus; HVC) to temporal aspects of song motor control. We have constructed a fluorescence microscope with LED illumination, a fiber bundle for transmission of fluorescence excitation and emission light, a ~2x GRIN lens, and a CCD for image acquisition. The system has 2 μm resolution, 375 μm field of view, 200 μm working distance, and 1 mm outer diameter. As an initial characterization of this setup, neurons in HVC were imaged using the fiber optic microscope after injection of quantum dots or fluorescent retrograde tracers into different song nuclei. A Lucid Vivascope confocal microscope was used to confirm the imaging results. Long-term imaging of the activity of these neurons in juvenile birds during singing may lead us to a better understanding of the central motor codes for song and the central mechanism by which auditory experience modifies song motor commands to enable vocal learning and imitation.

  7. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Kado, Masataka; Kishimoto, Maki; Nishikino, Masaharu; Ohba, Toshiyuki; Kaihori, Takeshi; Kawachi, Tetsuya; Tamotsu, Satoshi; Yasuda, Keiko; Mikata, Yuji; Shinohara, Kunio

    2011-01-01

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  8. Picosecond fluorescence lifetime imaging microscope for imaging of living glioma cells

    Science.gov (United States)

    Fang, Qiyin; Wang, Jingjing; Sun, Yinghua; Vernier, Thomas; Papaioannou, Thanassis; Jo, Javier; Thu, Mya M.; Gundersen, Martin A.; Marcu, Laura

    2005-03-01

    In this communication, we report the imaging of living glioma cells using fluorescence lifetime imaging (FLIM) technique. The growing interests in developing novel techniques for diagnosis and minimally invasive therapy of brain tumor have led to microscopic studies of subcellular structures and intracellular processes in glioma cells. Fluorescence microscopy has been used with a number of exogenous molecular probes specific for certain intracellular structures such as mitochondria, peripheral benzodiazepine receptor (PBR), and calcium concentration. When probes with overlapping emission spectra being used, separate samples are required to image each probe individually under conventional fluorescence microscopy. We have developed a wide-field FLIM microscope that uses fluorescence lifetime as an additional contrast for resolving multiple markers in the same essay. The FLIM microscope consists of a violet diode laser and a nitrogen-pumped dye laser to provide tunable sub-nanosecond excitation from UV to NIR. The detection system is based on a time-gated ICCD camera with minimum 80 ps gate width. The performance of the system was evaluated using fluorescence dyes with reported lifetime values. Living rat glioma C6 cells were stained with JC-1 and Rhodamine 123. FLIM images were acquired and their lifetimes in living cells were found in good agreements with values measured in solutions by a time-domain fluorescence spectrometer. These results indicate that imaging of glioma cells using FLIM can resolve multiple spectrally-overlapping probes and provide quantitative functional information about the intracellular environment.

  9. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    Science.gov (United States)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  10. Implantable CMOS imaging device with absorption filters for green fluorescence imaging

    Science.gov (United States)

    Sunaga, Yoshinori; Haruta, Makito; Takehara, Hironari; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2014-03-01

    Green fluorescent materials such as Green Fluorescence Protein (GFP) and fluorescein are often used for observing neural activities. Thus, it is important to observe the fluorescence in a freely moving state in order to understand neural activities corresponding to behaviors. In this work, we developed an implantable CMOS imaging device for in-vivo green fluorescence imaging with efficient excitation light rejection using a combination of absorption filters. An interference filter is usually used for a fluorescence microscope in order to achieve high fluorescence imaging sensitivity. However, in the case of the implantable device, interference filters are not suitable because their transmission spectra depend on incident angle. To solve this problem we used two kinds of absorption filters that do not have angle dependence. An absorption filter consisting of yellow dye (VARYFAST YELLOW 3150) was coated on the pixel array of an image sensor. The rejection ratio of ideal excitation light (490 nm) against green fluorescence (510 nm) was 99.66%. However, the blue LED as an excitation light source has a broad emission spectrum and its intensity at 510 nm is 2.2 x 10-2 times the emission peak intensity. By coating LEDs with the emission absorption filters, the intensity of the unwanted component of the excitation light was reduced to 1.4 x 10-4. Using the combination of absorption filters, we achieved excitation light transmittance of 10-5 onto the image sensor. It is expected that high-sensitivity green fluorescence imaging of neural activities in a freely moving mouse will be possible by using this technology.

  11. Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation

    Directory of Open Access Journals (Sweden)

    Sasano Masahiko

    2016-01-01

    Full Text Available A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.

  12. Pathological diagnosis of bladder cancer by image analysis of hypericin induced fluorescence cystoscopic images

    Science.gov (United States)

    Kah, James C. Y.; Olivo, Malini C.; Lau, Weber K. O.; Sheppard, Colin J. R.

    2005-08-01

    Photodynamic diagnosis of bladder carcinoma based on hypericin fluorescence cystoscopy has shown to have a higher degree of sensitivity for the detection of flat bladder carcinoma compared to white light cystoscopy. The potential of the photosensitizer hypericin-induced fluorescence in performing non-invasive optical biopsy to grade bladder cancer in vivo using fluorescence cystoscopic image analysis without surgical resection for tissue biopsy is investigated in this study. The correlation between tissue fluorescence and histopathology of diseased tissue was explored and a diagnostic algorithm based on fluorescence image analysis was developed to classify the bladder cancer without surgical resection for tissue biopsy. Preliminary results suggest a correlation between tissue fluorescence and bladder cancer grade. By combining both the red-to-blue and red-to-green intensity ratios into a 2D scatter plot yields an average sensitivity and specificity of around 70% and 85% respectively for pathological cancer grading of the three different grades of bladder cancer. Therefore, the diagnostic algorithm based on colorimetric intensity ratio analysis of hypericin fluorescence cystoscopic images developed in this preliminary study shows promising potential to optically diagnose and grade bladder cancer in vivo.

  13. Small portable interchangeable imager of fluorescence for fluorescence guided surgery and research.

    Science.gov (United States)

    Okusanya, Olugbenga T; Madajewski, Brian; Segal, Erin; Judy, Brendan F; Venegas, Ollin G; Judy, Ryan P; Quatromoni, Jon G; Wang, May D; Nie, Shuming; Singhal, Sunil

    2015-04-01

    Fluorescence guided surgery (FGS) is a developing field of surgical and oncologic research. Practically, FGS has shown useful applications in urologic surgery, benign biliary surgery, colorectal cancer liver metastasis resection, and ovarian cancer debulking. Most notably in in cancer surgery, FGS allows for the clear delineation of cancerous tissue from benign tissue. FGS requires the utilization of a fluorescent contrast agent and an intraoperative fluorescence imaging device (IFID). Currently available IFIDs are expensive, unable to work with multiple fluorophores, and can be cumbersome. This study aims to describe the development and utility of a small, cost-efficient, and interchangeable IFID made from commercially available components. Extensive research was done to design and construct a light-weight, portable, and cost-effective IFID. We researched the capabilities, size, and cost of several camera types and eventually decided on a near-infrared (NIR) charged couple device (CCD) camera for its overall profile. The small portable interchangeable imager of fluorescence (SPIIF) is a "scout" IFID system for FGS. The main components of the SPIIF are a NIR CCD camera with an articulating light filter. These components and a LED light source with an attached heat sink are mounted on a small metal platform. The system is connected to a laptop by a USB 2.0 cable. Pixielink © software on the laptop runs the system by controlling exposure time, gain, and image capture. After developing the system, we evaluated its utility as an IFID. The system weighs less than two pounds and can cover a large area. Due to its small size, it is easily made sterile by covering it with any sterile plastic sheet. To determine the system's ability to detect fluorescent signal, we used the SPIIF to detect indocyanine green under ex and in-vivo conditions and fluorescein under ex-vivo conditions. We found the SPIIF was able to detect both ICG and fluorescein under different depths of a

  14. RNA Imaging with Multiplexed Error Robust Fluorescence in situ Hybridization

    Science.gov (United States)

    Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2016-01-01

    Quantitative measurements of both the copy number and spatial distribution of large fractions of the transcriptome in single-cells could revolutionize our understanding of a variety of cellular and tissue behaviors in both healthy and diseased states. Single-molecule Fluorescence In Situ Hybridization (smFISH)—an approach where individual RNAs are labeled with fluorescent probes and imaged in their native cellular and tissue context—provides both the copy number and spatial context of RNAs but has been limited in the number of RNA species that can be measured simultaneously. Here we describe Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH), a massively parallelized form of smFISH that can image and identify hundreds to thousands of different RNA species simultaneously with high accuracy in individual cells in their native spatial context. We provide detailed protocols on all aspects of MERFISH, including probe design, data collection, and data analysis to allow interested laboratories to perform MERFISH measurements themselves. PMID:27241748

  15. Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziqiang Wang; Edward S. Yeung

    2001-08-06

    In recent years, luminescence imaging has been widely employed in neurochemical analysis. It has a number of advantages for the study of neuronal and other biological cells: (1) a particular molecular species or cellular constituent can be selectively visualized in the presence of a large excess of other species in a heterogeneous environment; (2) low concentration detection limits can be achieved because of the inherent sensitivity associated with fluorescence and chemiluminescence; (3) low excitation intensities can be used so that long-term observation can be realized while the viability of the specimen is preserved; and (4) excellent spatial resolution can be obtained with the light microscope so subcellular compartments can be identified. With good sensitivity, temporal and spatial resolution, the flux of ions and molecules and the distribution and dynamics of intracellular species can be measured in real time with specific luminescence probes, substrates, or with native fluorescence. A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with CCD imaging is down to {micro}M levels of glutamate with reasonable response time. They also found that chemiluminescence associated with the ATP-dependent reaction between luciferase and luciferin can be used to image ATP at levels down to 10 nM in the millisecond time scale. Similar imaging experiments should be feasible in a broad spectrum of biological systems.

  16. Brightness calibrates particle size in single particle fluorescence imaging.

    Science.gov (United States)

    Liu, Zhihe; Sun, Zezhou; Di, Weihua; Qin, Weiping; Yuan, Zhen; Wu, Changfeng

    2015-04-01

    This Letter provides a novel approach to quantify the particle sizes of highly bright semiconductor polymer dots (Pdots) for single-particle imaging and photobleaching studies. A quadratic dependence of single-particle brightness on particle size was determined by single-particle fluorescence imaging and intensity statistics. In terms of the same imaging conditions, the particle diameter can be quantified by comparing the individual brightness intensity with associated calibration curve. Based on this sizing method, photobleaching trajectories and overall photon counts emitted by single particles were analyzed. It is found that photobleaching rate constants of different sized Pdots are not strongly dependent on particle diameter except the sparsely occurring fluorescence blinking in certain dim particles and the rapid photobleaching component in some bright particles. The overall photon counts increase with increasing particle diameter. However, those larger than 30 nm deviate away from the increasing tendency. These results reveal the significance of selecting appropriate Pdots (≤30  nm) for single-particle imaging and tracking applications.

  17. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. In situ Analysis of Coral Recruits Using Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Adi Zweifler

    2017-09-01

    Full Text Available Recruitment is a fundamental process that influences coral population dynamics as well as reef community structure. To date, coral recruitment success rates are poorly quantified because survey methods are labor-intensive and require manual interpretation. Thus, they are prone to human errors and have low repeatability—a gap we aim to bridge in this research. Since both corals and their symbiotic algae contain fluorescent pigments (chlorophyll and fluorescent proteins, we used the non-invasive Fluorescence Imaging System (FluorIS and developed a methodology to acquire daytime fluorescent photographs and identify coral recruits in them. We tested our method by monitoring 20 random quadrats at two sites in the Gulf of Aqaba, Israel. The quadrats were surveyed once a month for 8 months in order to track the settlement, mortality and survival rates of new coral recruits. We demonstrate daytime imaging using our method and identification of coral recruits as small as 1 mm in diameter, in a 20 × 20 cm quadrat. Our results show that this photographic method reduces surveyor errors and improves precision. The surveys revealed that on average, there are ~2 new coral recruit settlements (<2 cm for a quadrat (40 cm2 per month and that 83% of them survive the first month. Our study suggests a relative stability in the Gulf of Aqaba coral population during the survey period. The ability to survey recruits during the day using low-cost, easy-to-use photographic equipment has the potential to contribute significantly to the standardization of coral reef monitoring and management tools, at a time when the world's coral reefs are declining due to local and global stressors.

  19. Luminescence and fluorescence of essential oils. Fluorescence imaging in vivo of wild chamomile oil.

    Science.gov (United States)

    Boschi, F; Fontanella, M; Calderan, L; Sbarbati, A

    2011-06-16

    Essential oils are currently of great importance to pharmaceutical companies, cosmetics producers and manufacturers of veterinary products. They are found in perfumes, creams, bath products, and household cleaning substances, and are used for flavouring food and drinks. It is well known that some of them act on the respiratory apparatus. The increasing interest in optical imaging techniques and the development of related technologies have made possible the investigation of the optical properties of several compounds. Luminescent properties of essential oils have not been extensively investigated. We evaluated the luminescent and fluorescent emissions of several essential oils, in order to detect them in living organisms by exploiting their optical properties. Some fluorescent emission data were high enough to be detected in dermal treatments. Consequently, we demonstrated how the fluorescent signal can be monitored for at least three hours on the skin of living mice treated with wild chamomile oil. The results encourage development of this technique to investigate the properties of drugs and cosmetics containing essential oils.

  20. Defining a superlens operating regime for imaging fluorescent molecules.

    Directory of Open Access Journals (Sweden)

    Kareem Elsayad

    Full Text Available It has been shown that thin metal-based films can at certain frequencies act as planar near-field lenses for certain polarization components. A desirable property of such "lenses" is that they can also enhance and focus some large transverse spatial frequency components which contain sub-diffraction limit details. Over the last decade there has been much work in optimizing designs to reduce effects (such as material losses and surface roughness that are detrimental to image reconstruction. One design that can reduce some of these undesirable effects, and which has received a fair amount of attention recently, is the stacked metal-dielectric superlens. Here we theoretically explore the imaging ability of such a design for the specific purpose of imaging a fluorescent dye (the common bio-marker GFP in the vicinity of the superlens surface. Our calculations take into consideration the interaction (damping of an oscillating electric dipole with the metallic layers in the superlens. We also assume a Gaussian frequency distribution spectrum for the dipole. We treat the metallic-alloy and dielectric-alloy layers separately using an appropriate effective medium theory. The transmission properties are evaluated via Transfer matrix (-matrix calculations that were performed in the MatLab and MathCad environments. Our study shows that it is in principle possible to image fluorescent molecules using a simple bilayer planar superlens. We find that optimal parameters for such a superlens occur when the peak dipole emission-frequency is slightly offset from the Surface Plasmon resonance frequency of the metal-dielectric interfaces. The best resolution is obtained when the fluorescent molecules are not too close (>/ approximately 10 nm or too far (>/approximately 30 nm from the superlens surface. The realization and application of a superlens with the specified design is possible using current nanofabrication techniques. When combined with e.g. a sub

  1. Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging

    Science.gov (United States)

    Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.

    1994-12-01

    Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.

  2. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging.

    NARCIS (Netherlands)

    Hoebe, R.A.; van Oven, C.H.; Gadella, Th.W.J.; Dhonukshe, P.B.; van Noorden, C.J.F.; Manders, E.M.M.

    2007-01-01

    Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy

  3. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging

    NARCIS (Netherlands)

    Hoebe, R. A.; van Oven, C. H.; Gadella, T. W. J.; Dhonukshe, P. B.; van Noorden, C. J. F.; Manders, E. M. M.

    2007-01-01

    Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (

  4. Assessment of efficiencies of electroporation and sonoporation methods by using fluorescence RGB imaging method

    Science.gov (United States)

    Jakovels, D.; Lihachev, A.; Spigulis, J.; Satkauskas, S.; Tamosiunas, M.; Lo, C. W.; Chen, W. S.

    2013-11-01

    Simple RGB method for fluorescence in vivo imaging is presented to assess efficiency of electroporation and sonoporation methods by measuring distribution and accumulation of green fluorescence protein (GFP) concentration. 20 laboratory measurements were performed on mice to test the method.

  5. Improved fluorescent X-ray image intensifying screen

    International Nuclear Information System (INIS)

    Landeghem, W.K. van; Suys, A.R.

    1981-01-01

    An X-ray image intensifying screen is described, which includes at least one fluorescent layer comprising phosphor particles dispersed in a binder and on top of such layer a protective layer containing a crosslinked polymer mass obtained by an acid-catalyzed reaction of a polymer or mixture of polymers containing reactive hydrogen atoms and a cross-linking agent, the cross-linking agent being an organic compound containing a plurality of etherified N-methylol groups. Examples are given of appropriate polymers and cross-linking agents. (author)

  6. Techniques to Improve Ultrasound-Switchable Fluorescence Imaging

    Science.gov (United States)

    Kandukuri, Jayanth

    Novel approaches to the improvement of ultrasound-switchable fluorescence (USF) imaging--a relatively new imaging modality that combines ultrasound and optical imaging techniques--have been proposed for early cancer detection. In USF, a high-intensity focused ultrasound (HIFU) beam is used to induce temperature rise within its acoustic focal region due to which a thermo-sensitive USF contrast agent undergoes a switch in its state by increasing the output of fluorescence photons. By using an increase in fluorescence, one can isolate and quantify the fluorescence properties within the ultrasonic focal area. Therefore, USF is able to provide fluorescence contrast while maintaining ultrasound resolution in tissue. The major challenge of the conventional USF technique is its low axial resolution and its sensitivity (i.e. its signal-to-noise ratio (SNR)). This work focuses on investigating and developing a novel USF system design that can improve the resolution and SNR of USF imaging for biological applications. This work can be divided into two major parts: characterizing the performance of a high-intensity focused ultrasound transducer; and improving the axial resolution and sensitivity of the USF technique. Preliminary investigation was conducted by using an IR camera setup to detect temperature variation and thereby study the performance of the high-intensity focused ultrasound transducer to quantify different parameters of ultrasound-induced temperature focal size (UTFS). Investigations are conducted for the purpose of high-resolution imaging with an emphasis on HIFU-induced thermal focus size, short duration of HIFU-induced temperature increase (to avoid thermal diffusion or conduction), and control of HIFU-induced temperature increase within a few degrees Celsius. Next, the focus was shifted to improving the sensitivity of the ultrasound-switchable fluorescence-imaging technique. In this study, the USF signal is encoded with the modulation frequency of the

  7. Objective identification of dental abnormalities with multispectral fluorescence imaging.

    Science.gov (United States)

    Singh, Surya Pratap; Fält, Pauli; Barman, Ishan; Koistinen, Arto; Dasari, Ramachandra Rao; Kullaa, Arja M

    2017-10-01

    Sensitive methods that can enable early detection of dental diseases (caries and calculus) are desirable in clinical practice. Optical spectroscopic approaches have emerged as promising alternatives owing to their wealth of molecular information and lack of sample preparation requirements. In the present study, using multispectral fluorescence imaging, we have demonstrated that dental caries and calculus can be objectively identified on extracted tooth. Spectral differences among control, carious and calculus conditions were attributed to the porphyrin pigment content, which is a byproduct of bacterial metabolism. Spectral maps generated using different porphyrin bands offer important clues to the spread of bacterial infection. Statistically significant differences utilizing fluorescence intensity ratios were observed among three groups. In contrast to laser induced fluorescence, these methods can provide information about exact spread of the infection and may aid in long term dental monitoring. Successful adoption of this approach for routine clinical usage can assist dentists in implementing timely remedial measures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

    Science.gov (United States)

    Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.

    2012-01-01

    Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.

  9. Fluorescence lifetime images of different green fluorescent proteins in fly brain

    Science.gov (United States)

    Lai, Sih-Yu; Lin, Y. Y.; Chiang, A. S.; Huang, Y. C.

    2009-02-01

    The mechanisms of learning and memory are the most important functions in an animal brain. Investigating neuron circuits and network maps in a brain is the first step toward understanding memory and learning behavior. Since Drosophila brain is the major model for understanding brain functions, we measure the florescence lifetimes of different GFP-based reporters expressed in a fly brain. In this work, two Gal4 drivers, OK 107 and MZ 19 were used. Intracellular calcium ([Ca2+]) concentration is an importation indicator of neuronal activity. Therefore, several groups have developed GFP-based calcium sensors, among which G-CaMP is the most popular and reliable. The fluorescence intensity of G-CaMP will increase when it binds to calcium ion; however, individual variation from different animals prevents quantitative research. In this work, we found that the florescence lifetime of G-CaMP will shrink from 1.8 ns to 1.0 ns when binding to Ca2+. This finding can potentially help us to understand the neuron circuits by fluorescence lifetime imaging microscopy (FLIM). Channelrhodopsin-2 (ChR2) is a light-activated ion-channel protein on a neuron cell membrane. In this work, we express ChR2 and G-CaMP in a fly brain. Using a pulsed 470-nm laser to activate the neurons, we can also record the fluorescence lifetime changes in the structure. Hence, we can trace and manipulate a specific circuit in this animal. This method provides more flexibility in brain research.

  10. phiFLIM: a new method to avoid aliasing in frequency domain fluorescence lifetime imaging microscopy.

    NARCIS (Netherlands)

    van Munster, E.B.; Gadella, Th.W.J.

    2004-01-01

    In conventional wide-field frequency-domain fluorescence lifetime imaging microscopy (FLIM), excitation light is intensity-modulated at megahertz frequencies. Emitted fluorescence is recorded by a CCD camera through an image intensifier, which is modulated at the same frequency. From images recorded

  11. Analysis of receptor clustering on cell surfaces by imaging fluorescent particles

    OpenAIRE

    Morrison, I.E.; Anderson, C.M.; Georgiou, G.N.; Stevenson, G.V.; Cherry, R.J.

    1994-01-01

    Fluorescently labeled low density lipoproteins (LDL) and influenza virus particles were bound to the surface of human fibroblasts and imaged with a cooled slow-scan CCD camera attached to a fluorescence microscope. Particles were also imaged after attachment to polylysine-coated microscope slides. The digital images were analyzed by fitting data points in the region of fluorescent spots by a two-dimensional Gaussian function, thus obtaining a measure of spot intensity with correction for loca...

  12. Intraoperative near-infrared fluorescent imaging during robotic operations.

    Science.gov (United States)

    Macedo, Antonio Luiz de Vasconcellos; Schraibman, Vladimir

    2016-01-01

    The intraoperative identification of certain anatomical structures because they are small or visually occult may be challenging. The development of minimally invasive surgery brought additional difficulties to identify these structures due to the lack of complete tactile sensitivity. A number of different forms of intraoperative mapping have been tried. Recently, the near-infrared fluorescence imaging technology with indocyanine green has been added to robotic platforms. In addition, this technology has been tested in several types of operations, and has advantages such as safety, low cost and good results. Disadvantages are linked to contrast distribution in certain clinical scenarios. The intraoperative near-infrared fluorescent imaging is new and promising addition to robotic surgery. Several reports show the utility of this technology in several different procedures. The ideal dose, time and site for dye injection are not well defined. No high quality evidence-based comparative studies and long-term follow-up outcomes have been published so far. Initial results, however, are good and safe. RESUMO A identificação intraoperatória de certas estruturas anatômicas, por seu tamanho ou por elas serem ocultas à visão, pode ser desafiadora. O desenvolvimento da cirurgia minimamente invasiva trouxe dificuldades adicionais, pela falta da sensibilidade tátil completa. Diversas formas de detecção intraoperatória destas estruturas têm sido tentadas. Recentemente, a tecnologia de fluorescência infravermelha com verde de indocianina foi associada às plataformas robóticas. Além disso, essa tecnologia tem sido testada em uma variedade de cirurgias, e suas vantagens parecem estar ligadas a baixo custo, segurança e bons resultados. As desvantagens estão associadas à má distribuição do contraste em determinados cenários. A imagem intraoperatória por fluorescência infravermelha é uma nova e promissora adição à cirurgia robótica. Diversas séries mostram

  13. Motion corrected photoacoustic difference imaging of fluorescent contrast agents

    Science.gov (United States)

    Märk, Julia; Wagener, Asja; Pönick, Sarah; Grötzinger, Carsten; Zhang, Edward; Laufer, Jan

    2016-03-01

    In fluorophores, such as exogenous dyes and genetically expressed proteins, the excited state lifetime can be modulated using pump-probe excitation at wavelengths corresponding to the absorption and fluorescence spectra. Simultaneous pump-probe pulses induce stimulated emission (SE) which, in turn, modulates the thermalized energy, and hence the photoacoustic (PA) signal amplitude. For time-delayed pulses, by contrast, SE is suppressed. Since this is not observed in endogenous chromophores, the location of the fluorophore can be determined by subtracting images acquired using simultaneous and time-delayed pump-probe excitation. This simple experimental approach exploits a fluorophorespecific contrast mechanism, and has the potential to enable deep-tissue molecular imaging at fluences below the MPE. In this study, some of the challenges to its in vivo implementation are addressed. First, the PA signal amplitude generated in fluorophores in vivo is often much smaller than that in blood. Second, tissue motion can give rise to artifacts that correspond to endogenous chromophores in the difference image. This would not allow the unambiguous detection of fluorophores. A method to suppress motion artifacts based on fast switching between simultaneous and time-delayed pump-probe excitation was developed. This enables the acquisition of PA signals using the two excitation modes with minimal time delay (20 ms), thus minimizing the effects of tissue motion. The feasibility of this method is demonstrated by visualizing a fluorophore (Atto680) in tissue phantoms, which were moved during the image acquisition to mimic tissue motion.

  14. Fluorescence Imaging of the Cytoskeleton in Plant Roots.

    Science.gov (United States)

    Dyachok, Julia; Paez-Garcia, Ana; Yoo, Cheol-Min; Palanichelvam, Karuppaiah; Blancaflor, Elison B

    2016-01-01

    During the past two decades the use of live cytoskeletal probes has increased dramatically due to the introduction of the green fluorescent protein. However, to make full use of these live cell reporters it is necessary to implement simple methods to maintain plant specimens in optimal growing conditions during imaging. To image the cytoskeleton in living Arabidopsis roots, we rely on a system involving coverslips coated with nutrient supplemented agar where the seeds are directly germinated. This coverslip system can be conveniently transferred to the stage of a confocal microscope with minimal disturbance to the growth of the seedling. For roots with a larger diameter such as Medicago truncatula, seeds are first germinated in moist paper, grown vertically in between plastic trays, and roots mounted on glass slides for confocal imaging. Parallel with our live cell imaging approaches, we routinely process fixed plant material via indirect immunofluorescence. For these methods we typically use non-embedded vibratome-sectioned and whole mount permeabilized root tissue. The clearly defined developmental regions of the root provide us with an elegant system to further understand the cytoskeletal basis of plant development.

  15. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice.

    Science.gov (United States)

    Feeks, James A; Hunter, Jennifer J

    2017-05-01

    In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina.

  16. FLEX: an imaging spectrometer for measurement of vegetation fluorescence

    Science.gov (United States)

    Smorenburg, Kees; Visser, Huib; Court, Andrew; Stoll, Marc Ph.

    2017-11-01

    Detection of vegetation fluorescence gives information about plant functioning, stress and vitality. During the past decades several ground based laser fluorosensors have been developed to investigate these processes and to demonstrate the value of this technique. FLEX (= FLuorescense EXplorer) is a space mission to measure the fluorescence of vegetation on earth over large areas from space. Such a mission would greatly improve the understanding and enhance the capability to quantify e.g. the role of terrestrial vegetation in global carbon sequestration. Because the fluorescence signal, which is excited by solar irradiation is low with respect to the reflected sunlight the signal from a satellite is proposed to be measured in the solar Fraunhofer lines, where the reflection signal is much reduced. The heart of FLEX is a high resolution imaging spectrometer with 2 channels: channel 1 around the Fraunhofer lines at ‡ = 397 nm, ‡= 423 nm and/or ‡ = 434 nm and channel 2 around the Fraunhofer line at ‡ = 656 nm. The required spectral resolution will depend on the linewidth (0.02-0.3 nm). A first definition of the field of view is 8.4 degrees, leading from an 800 km satellite altitude to a swath of about 120 km. For detection a 1024x1024 pixel frame transfer CCD detector is proposed, with a pixel dimension of 13 x 13 ‡ mm2. The maximum footprint is about 500x500m2. The optical configuration contains a scan mirror for solar calibration, for pointing the FOV in swath direction and for freezing the observed ground scene up to a few seconds to increase the signal to noise performance. At this moment the concept of FLEX is elaborated in a feasibility study. Both the scientific and instrument requirements are updated and the concept is studied in detail. Besides a development plan for FLEX is made. In this paper the idea and the headlines of FLEX are described.

  17. Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging

    Science.gov (United States)

    Peter, Sébastien; Elgass, Kirstin; Sackrow, Marcus; Caesar, Katharina; Born, Anne-Kathrin; Maniura, Katharina; Harter, Klaus; Meixner, Alfred J.; Schleifenbaum, Frank

    2010-02-01

    Fluorescence microscopy became an invaluable tool in cell biology in the past 20 years. However, the information that lies in these studies is often corrupted by a cellular fluorescence background known as autofluorescence. Since the unspecific background often overlaps with most commonly used labels in terms of fluorescence spectra and fluorescence lifetime, the use of spectral filters in the emission beampath or timegating in fluorescence lifetime imaging (FLIM) is often no appropriate means for distinction between signal and background. Despite the prevalence of fluorescence techniques only little progress has been reported in techniques that specifically suppress autofluorescence or that clearly discriminate autofluorescence from label fluorescence. Fluorescence intensity decay shape analysis microscopy (FIDSAM) is a novel technique which is based on the image acquisition protocol of FLIM. Whereas FLIM spatially resolved maps the average fluorescence lifetime distribution in a heterogeneous sample such as a cell, FIDSAM enhances the dynamic image contrast by determination of the autofluorescence contribution by comparing the fluorescence decay shape to a reference function. The technique therefore makes use of the key difference between label and autofluorescence, i.e. that for label fluorescence only one emitting species contributes to fluorescence intensity decay curves whereas many different species of minor intensity contribute to autofluorescence. That way, we were able to suppress autofluorescence contributions from chloroplasts in Arabidopsis stoma cells and from cell walls in Arabidopsis hypocotyl cells to background level. Furthermore, we could extend the method to more challenging labels such as the cyan fluorescent protein CFP in human fibroblasts.

  18. Fluorescent imaging of protein myristoylation during cellular differentiation and development.

    Science.gov (United States)

    Witten, Andrew J; Ejendal, Karin F K; Gengelbach, Lindsey M; Traore, Meghan A; Wang, Xu; Umulis, David M; Calve, Sarah; Kinzer-Ursem, Tamara L

    2017-10-01

    Protein post-translational modifications (PTMs) serve to give proteins new cellular functions and can influence spatial distribution and enzymatic activity, greatly enriching the complexity of the proteome. Lipidation is a PTM that regulates protein stability, function, and subcellular localization. To complement advances in proteomic identification of lipidated proteins, we have developed a method to image the spatial distribution of proteins that have been co- and post-translationally modified via the addition of myristic acid (Myr) to the N terminus. In this work, we use a Myr analog, 12-azidododecanoic acid (12-ADA), to facilitate fluorescent detection of myristoylated proteins in vitro and in vivo. The azide moiety of 12-ADA does not react to natural biological chemistries, but is selectively reactive with alkyne functionalized fluorescent dyes. We find that the spatial distribution of myristoylated proteins varies dramatically between undifferentiated and differentiated muscle cells in vitro. Further, we demonstrate that our methodology can visualize the distribution of myristoylated proteins in zebrafish muscle in vivo. Selective protein labeling with noncanonical fatty acids, such as 12-ADA, can be used to determine the biological function of myristoylation and other lipid-based PTMs and can be extended to study deregulated protein lipidation in disease states. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image

    Science.gov (United States)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.

    2010-04-01

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.

  20. Tumor Endothelial Marker Imaging in Melanomas Using Dual-Tracer Fluorescence Molecular Imaging

    Science.gov (United States)

    Tichauer, Kenneth M.; Deharvengt, Sophie J.; Samkoe, Kimberley S.; Gunn, Jason R.; Bosenberg, Marcus W.; Turk, Mary-Jo; Hasan, Tayyaba; Stan, Radu V.; Pogue, Brian W.

    2014-01-01

    Purpose Cancer-specific endothelial markers available for intravascular binding are promising targets for new molecular therapies. In this study, a molecular imaging approach of quantifying endothelial marker concentrations (EMCI) is developed and tested in highly light-absorbing melanomas. The approach involves injection of targeted imaging tracer in conjunction with an untargeted tracer, which is used to account for nonspecific uptake and tissue optical property effects on measured targeted tracer concentrations. Procedures Theoretical simulations and a mouse melanoma model experiment were used to test out the EMCI approach. The tracers used in the melanoma experiments were fluorescently labeled anti-Plvap/PV1 antibody (plasmalemma vesicle associated protein Plvap/PV1 is a transmembrane protein marker exposed on the luminal surface of endothelial cells in tumor vasculature) and a fluorescent isotype control antibody, the uptakes of which were measured on a planar fluorescence imaging system. Results The EMCI model was found to be robust to experimental noise under reversible and irreversible binding conditions and was capable of predicting expected overexpression of PV1 in melanomas compared to healthy skin despite a 5-time higher measured fluorescence in healthy skin compared to melanoma: attributable to substantial light attenuation from melanin in the tumors. Conclusions This study demonstrates the potential of EMCI to quantify endothelial marker concentrations in vivo, an accomplishment that is currently unavailable through any other methods, either in vivo or ex vivo. PMID:24217944

  1. A widefield fluorescence microscope with a linear image sensor for image cytometry of biospecimens: Considerations for image quality optimization

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, Joshua A.; Majid, Aneeka A.; Powless, Amy J.; Muldoon, Timothy J., E-mail: tmuldoon@uark.edu [Department of Biomedical Engineering, University of Arkansas, 120 Engineering Hall, Fayetteville, Arkansas 72701 (United States)

    2015-09-15

    Linear image sensors have been widely used in numerous research and industry applications to provide continuous imaging of moving objects. Here, we present a widefield fluorescence microscope with a linear image sensor used to image translating objects for image cytometry. First, a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric pump rates. Image data were also acquired using 15 μm fluorescent polystyrene spheres on a slide with a motorized translation stage in order to match linear translation speed with line exposure periods to preserve the image aspect ratio. Aspect ratios were then calculated after imaging to ensure quality control of image data. Fluorescent beads were imaged in suspension flowing through the microfluidics chamber being pumped by a mechanical syringe pump at 16 μl min{sup −1} with a line exposure period of 150 μs. The line period was selected to acquire images of fluorescent beads with a 40 dB signal-to-background ratio. A motorized translation stage was then used to transport conventional glass slides of stained cellular biospecimens. Whole blood collected from healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight leukocyte morphology with a 1.56 mm × 1.28 mm field of view (1540 ms total acquisition time). Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to cytoplasmic ratio of 0.03 (n = 75), with a resolution of 0.31 μm pixels{sup −1}.

  2. Harmonic optical microscopy and fluorescence lifetime imaging platform for multimodal imaging.

    Science.gov (United States)

    Pelegati, Vitor B; Adur, Javier; De Thomaz, André A; Almeida, Diogo B; Baratti, Mariana O; Andrade, Liliana A L A; Bottcher-Luiz, Fátima; Cesar, Carlos L

    2012-10-01

    In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two-photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy-to-operate platform capable to perform two-photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples. Copyright © 2012 Wiley Periodicals, Inc.

  3. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  4. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography.

    Science.gov (United States)

    Swy, Eric R; Schwartz-Duval, Aaron S; Shuboni, Dorela D; Latourette, Matthew T; Mallet, Christiane L; Parys, Maciej; Cormode, David P; Shapiro, Erik M

    2014-11-07

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.

  5. Performance comparison of different compact NIR fluorescent imaging systems with goggle display for intraoperative image-guidance

    Science.gov (United States)

    Gao, Shengkui; Mondal, Suman; Zhu, Nan; Liang, Rongguang; Achilefu, Samuel; Gruev, Viktor

    2015-03-01

    Near-infrared (NIR) fluorescent imaging system has been widely used for intraoperative image-guided application. In this paper, we present performance comparison from three compact NIR fluorescence imaging system prototypes with goggle display that we developed for intraoperative guidance: threshold detection based two camera system, feature matching based three cameras system and miniature beam-splitter single camera system. Their performance is evaluated according to sensitivity regarding different ICG concentrations, accuracy of image overlay between NIR-visible channels, compactness and practicability in intraoperative use. The comparison results show great potentials of using these NIR fluorescence imaging systems to improve user experience and surgical outcomes in intraoperative use.

  6. Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system

    OpenAIRE

    Higgins, Christopher; Steward, Annette; Ahringer, Julie; Kuhn, Jeffrey; Goldstein, Bob; Heppert, Jennifer; Dickinson, Daniel; Pani, Ariel

    2016-01-01

    Fluorescent protein tags are fundamental tools used to visualize gene products and analyze their dynamics in vivo . Recent advances in genome editing have enabled precise insertion of fluorescent protein tags into the genomes of diverse organisms. These advances expand the potential of in vivo imaging experiments, and they facilitate experimentation with new, bright, photostable fluorescent proteins. Most quantitative comparisons of the brightness and photostability of different fluorescent p...

  7. Model for the brightness uniformity of fluorescence screen of image intensifier

    Science.gov (United States)

    Qiu, YaFeng; Chang, BenKang; Qian, YunSheng; Fu, RongGuo; Gao, Youtang; Si, Tian

    2007-01-01

    The three elements of photoelectrical cathode, microchannel plate and fluorescence screen are important parts to imaging quality of low light and ultraviolet Image intensifier. To do research and analysis work on the Fluorescence screen parameter testing have practical significance to the understanding of the performance of fluorescence screen and then can help to know where improvement should be made and then achieve a best performance entire tube, This article mainly introduce the testing theory of the brightness uniformity of fluorescence screen of Image Intensifier and how to build a mathematic model.

  8. Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects.

    Science.gov (United States)

    Dysli, Chantal; Quellec, Gwénolé; Abegg, Mathias; Menke, Marcel N; Wolf-Schnurrbusch, Ute; Kowal, Jens; Blatz, Johannes; La Schiazza, Olivier; Leichtle, Alexander B; Wolf, Sebastian; Zinkernagel, Martin S

    2014-04-03

    Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.

  9. Laser-induced fluorescence imaging of plants using a liquid crystal tunable filter and charge coupled device imaging camera

    Science.gov (United States)

    Saito, Yasunori; Matsubara, Tomohiro; Koga, Tomoya; Kobayashi, Fumitoshi; Kawahara, Takuya D.; Nomura, Akio

    2005-10-01

    We developed a laser-induced fluorescence imaging system for plant monitoring use, with which it was possible to make an image at any wavelength between 430 and 750nm. The excitation source for the fluorescence was a cw ultraviolet laser diode with 398nm, and the detector was an image-intensified charge coupled device. A liquid crystal tunable filter was used as the fluorescence wavelength selection device. All of the system performance including the wavelength tuning was electrically controlled, so that it could be operated with no mechanical vibration noise. The fluorescence images of a coffee tree leaf obtained at 440, 530, 685, and 740nm clearly showed a distribution pattern of the fluorescence intensity over the leaf. The pattern reflected the different physiological statuses of the plant. Advantages of the imaging system were experimentally discussed on a point of detection of inhomogeneous physiological activities over a plant leaf.

  10. Imaging Multimodalities for Dissecting Alzheimer's Disease: Advanced Technologies of Positron Emission Tomography and Fluorescence Imaging.

    Science.gov (United States)

    Shimojo, Masafumi; Higuchi, Makoto; Suhara, Tetsuya; Sahara, Naruhiko

    2015-01-01

    The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer's disease (AD), and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations.

  11. Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection

    OpenAIRE

    Jalocha, A.; Jalocha, A.; van Hulst, N.F.

    1995-01-01

    Dielectric fluorescent samples are imaged by scanning near- field optical microscopy in reflection. A non-metallized tapered fibre tip is used both as an emitter and a detector. Shear force feedback controls the distance between the tip and the sample and gives simultaneously a topographic image of the surface. A direct correlation with the optical image is obtained. We demonstrate that this reflection setup is suitable for dielectric samples. Images in fluorescence have been obtained o­n Lan...

  12. X-ray Fluorescence Method for Trace Analysis and Imaging

    OpenAIRE

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as a conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide trace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and...

  13. Improved in Vivo Whole-Animal Detection Limits of Green Fluorescent Protein–Expressing Tumor Lines by Spectral Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Jenny M. Tam

    2007-07-01

    Full Text Available Green fluorescent protein (GFP has been used for cell tracking and imaging gene expression in superficial or surgically exposed structures. However, in vivo murine imaging is often limited by several factors, including scatter and attenuation with depth and overlapping autofluorescence. The autofluorescence signals have spectral profiles that are markedly different from the GFP emission spectral profile. The use of spectral imaging allows separation and quantitation of these contributions to the total fluorescence signal seen in vivo by weighting known pure component profiles. Separation of relative GFP and autofluorescence signals is not readily possible using epifluorescent continuous-wave single excitation and emission bandpass imaging (EFI. To evaluate detection thresholds using these two methods, nude mice were subcutaneously injected with a series of GFP-expressing cells. For EFI, optimized excitation and emission bandpass filters were used. Owing to the ability to separate autofluorescence contributions from the emission signal using spectral imaging compared with the mixed contributions of GFP and autofluorescence in the emission signal recorded by the EFI system, we achieved a 300-fold improvement in the cellular detection limit. The detection limit was 3 × 103 cells for spectral imaging versus 1 × 106 cells for EFI. Despite contributions to image stacks from autofluorescence, a 100-fold dynamic range of cell number in the same image was readily visualized. Finally, spectral imaging was able to separate signal interference of red fluorescent protein from GFP images and vice versa. These findings demonstrate the utility of the approach in detecting low levels of multiple fluorescent markers for whole-animal in vivo applications.

  14. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Science.gov (United States)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  15. Multimodality Imaging Probe for Positron Emission Tomography and Fluorescence Imaging Studies

    Directory of Open Access Journals (Sweden)

    Suresh K. Pandey

    2014-05-01

    Full Text Available Our goal is to develop multimodality imaging agents for use in cell tracking studies by positron emission tomography (PET and optical imaging (OI. For this purpose, bovine serum albumin (BSA was complexed with biotin (histologic studies, 5(6- carboxyfluorescein, succinimidyl ester (FAM SE (OI studies, and diethylenetriamine pentaacetic acid (DTPA for chelating gallium 68 (PET studies. For synthesis of BSA-biotin-FAM-DTPA, BSA was coupled to (+-biotin N-hydroxysuccinimide ester (biotin-NHSI. BSA- biotin was treated with DTPA-anhydride and biotin-BSA-DTPA was reacted with FAM. The biotin-BSA-DTPA-FAM was reacted with gallium chloride 3 to 5 mCi eluted from the generator using 0.1 N HCl and was passed through basic resin (AG 11 A8 and 150 mCi (100 μL, pH 7–8 was incubated with 0.1 mg of FAM conjugate (100 μL at room temperature for 15 minutes to give 66Ga-BSA-biotin-DTPA-FAM. A shaved C57 black mouse was injected with FAM conjugate (50 μL at one flank and FAM-68Ga (50 μL, 30 mCi at the other. Immediately after injection, the mouse was placed in a fluorescence imaging system (Kodak In-Vivo F, Bruker Biospin Co., Woodbridge, CT and imaged (Λex: 465 nm, Λem: 535 nm, time: 8 seconds, Xenon Light Source, Kodak. The same mouse was then placed under an Inveon microPET scanner (Siemens Medical Solutions, Knoxville, TN injected (intravenously with 25 μCi of 18F and after a half-hour (to allow sufficient bone uptake was imaged for 30 minutes. Molecular weight determined using matrix-associated laser desorption ionization (MALDI for the BSA sample was 66,485 Da and for biotin-BSA was 67,116 Da, indicating two biotin moieties per BSA molecule; for biotin-BSA-DTPA was 81,584 Da, indicating an average of 30 DTPA moieties per BSA molecule; and for FAM conjugate was 82,383 Da, indicating an average of 1.7 fluorescent moieties per BSA molecule. Fluorescence imaging clearly showed localization of FAM conjugate and FAM-68Ga at respective flanks of the mouse

  16. Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor

    Science.gov (United States)

    Chen, Yanping; Xiong, Tao; Chu, Jun; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    Issue of tumor has been a hotspot of current medicine. It is important for tumor research to detect tumors bearing in animal models easily, fast, repetitively and noninvasivly. Many researchers have paid their increasing interests on the detecting. Some contrast agents, such as green fluorescent protein (GFP) and Discosoma red fluorescent protein (Dsred) were applied to enhance image quality. Three main kinds of imaging scheme were adopted to visualize fluorescent protein expressing tumors in vivo. These schemes based on fluorescence stereo microscope, cooled charge-coupled-device (CCD) or camera as imaging set, and laser or mercury lamp as excitation light source. Fluorescence stereo microscope, laser and cooled CCD are expensive to many institutes. The authors set up an inexpensive compact whole-body fluorescent imaging tool, which consisted of a Kodak digital camera (model DC290), fluorescence filters(B and G2;HB Optical, Shenyang, Liaoning, P.R. China) and a mercury 50-W lamp power supply (U-LH50HG;Olympus Optical, Japan) as excitation light source. The EGFP was excited directly by mercury lamp with D455/70 nm band-pass filter and fluorescence was recorded by digital camera with 520nm long-pass filter. By this easy operation tool, the authors imaged, in real time, fluorescent tumors growing in live mice. The imaging system is external and noninvasive. For half a year our experiments suggested the imaging scheme was feasible. Whole-body fluorescence optical imaging for fluorescent expressing tumors in nude mouse is an ideal tool for antitumor, antimetastatic, and antiangiogenesis drug screening.

  17. Cryo-imaging of fluorescently labeled single cells in a mouse

    Science.gov (United States)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  18. Preparation and Characterization of Highly Fluorescent, Glutathione-coated Near Infrared Quantum Dots for in Vivo Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Yoshichika Yoshioka

    2008-10-01

    Full Text Available Fluorescent probes that emit in the near-infrared (NIR, 700-1,300 nm region are suitable as optical contrast agents for in vivo fluorescence imaging because of low scattering and absorption of the NIR light in tissues. Recently, NIR quantum dots (QDs have become a new class of fluorescent materials that can be used for in vivo imaging. Compared with traditional organic fluorescent dyes, QDs have several unique advantages such as size- and composition-tunable emission, high brightness, narrow emission bands, large Stokes shifts, and high resistance to photobleaching. In this paper, we report a facile method for the preparation of highly fluorescent, water-soluble glutathione (GSH-coated NIR QDs for in vivo imaging. GSH-coated NIR QDs (GSH-QDs were prepared by surface modification of hydrophobic CdSeTe/CdS (core/shell QDs. The hydrophobic surface of the CdSeTe/CdS QDs was exchanged with GSH in tetrahydrofuran-water. The resulting GSH-QDs were monodisperse particles and stable in PBS (phosphate buffered saline, pH = 7.4. The GSH-QDs (800 nm emission were highly fluorescent in aqueous solutions (quantum yield = 22% in PBS buffer, and their hydrodynamic diameter was less than 10 nm, which is comparable to the size of proteins. The cellular uptake and viability for the GSH-QDs were examined using HeLa and HEK 293 cells. When the cells were incubated with aqueous solutions of the GSH-QDs (10 nM, the QDs were taken into the cells and distributed in the perinuclear region of both cells. After 12 hrs incubation of 4 nM of GSH-QDs, the viabilities of HeLa and HEK 293 cells were ca. 80 and 50%, respectively. As a biomedical utility of the GSH-QDs, in vivo NIRfluorescence imaging of a lymph node in a mouse is presented.

  19. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    Science.gov (United States)

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  20. Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes.

    Science.gov (United States)

    Laurent, Camille; Guérin, Maxime; Frenois, François-Xavier; Thuries, Valérie; Jalabert, Laurence; Brousset, Pierre; Valmary-Degano, Séverine

    2013-08-01

    Fluorescence in situ hybridization is an indispensable technique used in routine pathology and for theranostic purposes. Because fluorescence in situ hybridization techniques require sophisticated microscopic workstations and long procedures of image acquisition with sometimes subjective and poorly reproducible results, we decided to test a whole-slide imaging system as an alternative approach. In this study, we used the latest generation of Pannoramic 250 Flash digital microscopes (P250 Flash digital microscopes; 3DHISTECH, Budapest, Hungary) to digitize fluorescence in situ hybridization slides of diffuse large B cells lymphoma cases for detecting MYC rearrangement. The P250 Flash digital microscope was found to be precise with better definition of split signals in cells containing MYC rearrangement with fewer truncated signals as compared to traditional fluorescence microscopy. This digital technique is easier thanks to the preview function, which allows almost immediate identification of the tumor area, and the panning and zooming functionalities as well as a shorter acquisition time. Moreover, fluorescence in situ hybridization analyses using the digital technique appeared to be more reproducible between pathologists. Finally, the digital technique also allowed prolonged conservation of photos. In conclusion, whole-slide imaging technologies represent rapid, robust, and highly sensitive methods for interpreting fluorescence in situ hybridization slides with break-apart probes. In addition, these techniques offer an easier way to interpret the signals and allow definitive storage of the images for pathology expert networks or e-learning databases. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Noninvasive imaging in vivo with fluorescent proteins from centimeters to micrometers

    Science.gov (United States)

    Yang, Meng; Jiang, Ping; Al-Zaid, Manal; Hoffman, Robert M.

    2008-02-01

    Whole-body imaging with fluorescent proteins has been shown to be a powerful technology with many applications in small animals. Our laboratory pioneered in vivo imaging with fluorescent proteins (1) including noninvasive whole-body imaging (2). Whole-body imaging with fluorescent proteins depends in large part on the brightness of the protein. Brighter, red-shifted proteins can make whole-body imaging more sensitive due to reduced absorption by tissues and less scatter. Non-invasive imaging with fluorescent proteins has been shown to be able to quantitatively track tumor growth and metastasis, gene expression, angiogenesis, and bacterial infection (3) even at subcellular resolution depending on the position of the cells in the animal. Interference by skin autofluorescence is kept to a minimum with the use of proper filters. To noninvasively image cancer cell/stromal cell interaction in the tumor microenvironment and drug response at the cellular level in live animals in real time, we developed a new imageable three-color animal model. The model consists of green fluorescent protein (GFP)-expressing mice transplanted with dual-color cancer cells labeled with GFP in the nucleus and red fluorescent protein (RFP) in the cytoplasm. Various in vivo phenomena of tumor-host interaction and cellular dynamics were imaged, including mitotic and apoptotic tumor cells, stromal cells interacting with the tumor cells, tumor vasculature, and tumor blood flow as well as drug response. This imageable technology should lead to many new insights of in vivo cancer cell biology.

  2. Diverse Protocols for Correlative Super-Resolution Fluorescence Imaging and Electron Microscopy of Cells and Tissue

    Science.gov (United States)

    2016-05-25

    super - resolution fluorescence imaging and electron microscopy of cells and tissue Benjamin G. Kopek1, Maria G...have recently developed related approaches for super - resolution imaging within endogenous cellular environments using correlative light and electron...low as ~10 nm under ideal conditions), collectively dubbed “ super - resolution imaging ”5-10. A major super - resolution imaging modality is

  3. Optical imaging of non-fluorescent nanoparticle probes in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Stender, Anthony S.; Sun, Wei; and Fang, Ning

    2009-12-17

    Precise imaging of cellular and subcellular structures and dynamic processes in live cells is crucial for fundamental research in life sciences and in medical applications. Non-fluorescent nanoparticles are an important type of optical probe used in live-cell imaging due to their photostability, large optical cross-sections, and low toxicity. Here, we provide an overview of recent developments in the optical imaging of non-fluorescent nanoparticle probes in live cells.

  4. Fluorescence lifetime imaging study of a single cell: stress-induced environmental change and electric field effects on fluorescence

    Science.gov (United States)

    Ohta, Nobuhiro; Nakabayashi, Takakazu; Nagao, Issei; Kinjo, Masataka; Aoki, Yumiko; Tanaka, Minoru

    2009-02-01

    A dramatic change occurs in the cellular microenvironment during cell stress, but it has been difficult to follow these changes in vivo. Here, fluorescence lifetime imaging (FLIM) microscopy has been used to examine stress-induced changes in the microenvironment in a single cell. It is observed that the fluorescence lifetime of HeLa cells expressing an enhanced green fluorescent protein (EGFP)-tudor fusion protein changes under stress. The change in the fluorescence lifetime appears to be due to an alteration in the local electric field in the protein matrix surrounding the chromophore of EGFP. In fact, the fluorescence lifetime of the GFP chromophore in a polyvinyl alcohol film is found to decrease in the presence of an electric field, based on the measurements of the field-induced change in the fluorescence decay profile. The results indicate that the rate of the non-radiative process of the chromophore of GFP is enhanced by an applied electric field. The FLIM method allows noninvasive determination of the status of the individual cells.

  5. Fluorescence imaging under background light with a self-reset complementary metal–oxide–semiconductor image sensor

    Directory of Open Access Journals (Sweden)

    Takahiro Yamaguchi

    2015-11-01

    Full Text Available The authors propose and demonstrate the fluorescence imaging of green fluorescence protein (GFP expressed in a brain slice with a self-reset complementary metal–oxide–semiconductor image sensor under background light. By using a self-reset function to avoid pixel saturation, the weak fluorescence of GFP was successfully observed, even under background light. The result suggests that the sensor can be applied to in vivo imaging of laboratory animals during light–dark cycles, so that they can observe the different responses to bright and dark environments.

  6. Laser-induced fluorescence imaging for monitoring nitrogen fertilizing treatments of wheat

    Science.gov (United States)

    Heisel, Francine; Sowinska, Malgorzata; Khalili, Elisabeth; Eckert, Caroline; Miehe, Joseph-Albert; Lichtenthaler, Hartmut K.

    1997-07-01

    The laser-induced fluorescence imaging system allows the recording of spectrally selected fluorescence images of the whole leaves or plants which is better and in contrast to the so far applied spot spectrofluorometer measurements. The fluorescence images of leaves of winter wheat (Soissons variety, Alsace) have been recorded at the four characteristic emission bands (440, 520, 690 and 740 nm) with a high resolution imaging device consisting of a frequency triplet or doubled Nd:YAG source for 355 nm or 532 nm excitation and of an intensified and gated CCD digitized camera. The effect of four different nitrogen treatments (0, 100, 140 and 180 kg/ha) on the fluorescence parameters (intensities F440, F520, F690, F740 and ratios F440/F520, F440/F690, F440/F740 and F690/F740) obtained by image processing has been analyzed by statistical treatment, in a randomized blocks experiment. The measurements have been carried out on two leaf storeys weekly gathered during two months (May and June 1996). For 355 nm excitation, a significant decrease of the fluorescence ratios F440/F690 and F440/F740 was observed for increasing nitrogen concentration: the blue and green mean fluorescence intensities remained much the same, while the red and far-red chlorophyll fluorescence emissions were enhanced by the fertilization. The fluorescence results are in excellent correlation with the crop yields.

  7. Gold nanoparticle cluster-plasmon-enhanced fluorescent silica core-shell nanoparticles for X-ray computed tomography-fluorescence dual-mode imaging of tumors.

    Science.gov (United States)

    Hayashi, Koichiro; Nakamura, Michihiro; Miki, Hirokazu; Ozaki, Shuji; Abe, Masahiro; Matsumoto, Toshio; Ishimura, Kazunori

    2013-06-11

    Owing to the surface plasmon resonance-enhanced electromagnetic field, clustered gold nanoparticles-fluorescent silica core-shell nanoparticles became excited within the therapeutic window and fluoresced strongly in this window. The nanoparticles enabled tumor detection using fluorescence imaging and X-ray computed tomography.

  8. Algorithms for differentiating between images of heterogeneous tissue across fluorescence microscopes.

    Science.gov (United States)

    Chitalia, Rhea; Mueller, Jenna; Fu, Henry L; Whitley, Melodi Javid; Kirsch, David G; Brown, J Quincy; Willett, Rebecca; Ramanujam, Nimmi

    2016-09-01

    Fluorescence microscopy can be used to acquire real-time images of tissue morphology and with appropriate algorithms can rapidly quantify features associated with disease. The objective of this study was to assess the ability of various segmentation algorithms to isolate fluorescent positive features (FPFs) in heterogeneous images and identify an approach that can be used across multiple fluorescence microscopes with minimal tuning between systems. Specifically, we show a variety of image segmentation algorithms applied to images of stained tumor and muscle tissue acquired with 3 different fluorescence microscopes. Results indicate that a technique called maximally stable extremal regions followed by thresholding (MSER + Binary) yielded the greatest contrast in FPF density between tumor and muscle images across multiple microscopy systems.

  9. Bladder cancer diagnosis with fluorescence-image-guided optical coherence tomography

    Science.gov (United States)

    Wang, Z. G.; Durand, D. B.; Adler, H.; Pan, Y. T.

    2006-02-01

    A fluorescence-image-guided OCT (FIG-OCT) system is described, and its ability to enhance the sensitivity and specificity is examined in an animal bladder cancer model. Total 97 specimens were examined by fluorescence imaging, OCT and histological microscopy. The sensitivity and specificity of FIG-OCT is 100% and 93% respectively, compared to 79% and 53% for fluorescence imaging, while the OCT examination time has been dramatically decreased by 3~4 times. In combination of endoscopic OCT, FIG-OCT is a promising technique for effective early bladder cancer diagnosis.

  10. Development of a neutral embedding resin for optical imaging of fluorescently labeled biological tissue.

    Science.gov (United States)

    Zhou, Hongfu; Gang, Yadong; Chen, Shenghua; Wang, Yu; Xiong, Yumiao; Li, Longhui; Yin, Fangfang; Liu, Yue; Liu, Xiuli; Zeng, Shaoqun

    2017-10-01

    Plastic embedding is widely applied in light microscopy analyses. Previous studies have shown that embedding agents and related techniques can greatly affect the quality of biological tissue embedding and fluorescent imaging. Specifically, it is difficult to preserve endogenous fluorescence using currently available acidic commercial embedding resins and related embedding techniques directly. Here, we developed a neutral embedding resin that improved the green fluorescent protein (GFP), yellow fluorescent protein (YFP), and DsRed fluorescent intensity without adjusting the pH value of monomers or reactivating fluorescence in lye. The embedding resin had a high degree of polymerization, and its fluorescence preservation ratios for GFP, YFP, and DsRed were 126.5%, 155.8%, and 218.4%, respectively. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Development of a neutral embedding resin for optical imaging of fluorescently labeled biological tissue

    Science.gov (United States)

    Zhou, Hongfu; Gang, Yadong; Chen, Shenghua; Wang, Yu; Xiong, Yumiao; Li, Longhui; Yin, Fangfang; Liu, Yue; Liu, Xiuli; Zeng, Shaoqun

    2017-10-01

    Plastic embedding is widely applied in light microscopy analyses. Previous studies have shown that embedding agents and related techniques can greatly affect the quality of biological tissue embedding and fluorescent imaging. Specifically, it is difficult to preserve endogenous fluorescence using currently available acidic commercial embedding resins and related embedding techniques directly. Here, we developed a neutral embedding resin that improved the green fluorescent protein (GFP), yellow fluorescent protein (YFP), and DsRed fluorescent intensity without adjusting the pH value of monomers or reactivating fluorescence in lye. The embedding resin had a high degree of polymerization, and its fluorescence preservation ratios for GFP, YFP, and DsRed were 126.5%, 155.8%, and 218.4%, respectively.

  12. Imaging of multi-color fluorescence emission from leaf tissues

    Czech Academy of Sciences Publication Activity Database

    Nedbal, Ladislav

    2-3, č. 102 (2009), s. 169-175 ISSN 0166-8595 Institutional research plan: CEZ:AV0Z60870520 Keywords : Chlorophyll fluorescence * Blue-green fluorescence * Pyridine nucleotide Subject RIV: CE - Biochemistry Impact factor: 2.303, year: 2009

  13. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.

    Directory of Open Access Journals (Sweden)

    Yoko Hayashi-Takanaka

    Full Text Available To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph and acetylated H3K9 (H3K9ac. These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green, Cy3 (red, and Cy5 or CF640 (far-red.

  14. Image-guided cancer surgery : the value of near-infrared fluorescence imaging during oncologic and gastrointestinal procedures

    NARCIS (Netherlands)

    Verbeek, Floris Paul Reinier

    2015-01-01

    Intraoperative imaging using near-infrared (NIR) fluorescence is a relatively new technique that can be used to visualize tumor tissue, sentinel nodes and vital anatomical structures. This thesis is divided in three parts. In part one the ability to visualize surgical margins using NIR fluorescence

  15. Use of a Novel Rover-mounted Fluorescence Imager and Fluorescent Probes to Detect Biological Material in the Atacama Desert in Daylight

    Science.gov (United States)

    Weinstein, S.; Pane, D.; Warren-Rhodes, K.; Cockell, C.; Ernst, L. A.; Minkley, E.; Fisher, G.; Emani, S.; Wettergreen, D. S.; Wagner, M.

    2005-01-01

    We have developed an imaging system, the Fluorescence Imager (FI), for detecting fluorescence signals from sparse microorganisms and biofilms during autonomous rover exploration. The fluorescence signals arise both from naturally occurring chromophores, such as chlorophyll of cyanobacteria and lichens, and from fluorescent probes applied to soil and rocks. Daylight imaging has been accomplished by a novel use of a high-powered flashlamp synchronized to a CCD camera. The fluorescent probes are cell permanent stains that have extremely low intrinsic fluorescence (quantum yields less than 0.01) and a large fluorescence enhancement (quantum yields greater than 0.4) when bound to the target. Each probe specifically targets either carbohydrates, proteins, nucleic acids or membrane lipids, the four classes of macromolecules found in terrestrial life. The intent of the probes is to interrogate the environment for surface and endolithic life forms.

  16. Flexible imaging payload for real-time fluorescent biological imaging in parabolic, suborbital and space analog environments

    Science.gov (United States)

    Bamsey, Matthew T.; Paul, Anna-Lisa; Graham, Thomas; Ferl, Robert J.

    2014-10-01

    Fluorescent imaging offers the ability to monitor biological functions, in this case biological responses to space-related environments. For plants, fluorescent imaging can include general health indicators such as chlorophyll fluorescence as well as specific metabolic indicators such as engineered fluorescent reporters. This paper describes the Flex Imager a fluorescent imaging payload designed for Middeck Locker deployment and now tested on multiple flight and flight-related platforms. The Flex Imager and associated payload elements have been developed with a focus on 'flexibility' allowing for multiple imaging modalities and change-out of individual imaging or control components in the field. The imaging platform is contained within the standard Middeck Locker spaceflight form factor, with components affixed to a baseplate that permits easy rearrangement and fine adjustment of components. The Flex Imager utilizes standard software packages to simplify operation, operator training, and evaluation by flight provider flight test engineers, or by researchers processing the raw data. Images are obtained using a commercial cooled CCD image sensor, with light-emitting diodes for excitation and a suite of filters that allow biological samples to be imaged over wavelength bands of interest. Although baselined for the monitoring of green fluorescent protein and chlorophyll fluorescence from Arabidopsis samples, the Flex Imager payload permits imaging of any biological sample contained within a standard 10 cm by 10 cm square Petri plate. A sample holder was developed to secure sample plates under different flight profiles while permitting sample change-out should crewed operations be possible. In addition to crew-directed imaging, autonomous or telemetric operation of the payload is also a viable operational mode. An infrared camera has also been integrated into the Flex Imager payload to allow concurrent fluorescent and thermal imaging of samples. The Flex Imager has been

  17. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  18. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine.

    Science.gov (United States)

    Boreham, Alexander; Brodwolf, Robert; Walker, Karolina; Haag, Rainer; Alexiev, Ulrike

    2016-12-24

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  19. Application of fluorescence spectroscopy and imaging in the detection of a photosensitizer in photodynamic therapy

    Science.gov (United States)

    Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu

    2017-02-01

    Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.

  20. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    Science.gov (United States)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  1. Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging.

    Science.gov (United States)

    Ma, Zhi-Ya; Liu, Yu-Ping; Bai, Ling-Yu; An, Jie; Zhang, Lin; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di

    2015-10-07

    Magnetic fluorescent nanoparticles (NPs) have great potential applications for diagnostics, imaging and therapy. We developed a facile polyol method to synthesize multifunctional Fe3O4@CeF3:Tb@CeF3 NPs with small size (imaging agents for simultaneous in vitro targeted fluorescence imaging and magnetic resonance imaging (MRI) of HeLa cells with overexpressed folate receptors (FR). The results indicated that these NPs had strong luminescence and enhanced T2-weighted MR contrast and would be promising candidates as multimodal probes for both fluorescence and MRI imaging.

  2. Time efficient methods for scanning a fluorescent membrane with a fluorescent microscopic imager for the quality assurance of food

    Science.gov (United States)

    Lerm, Steffen; Holder, Silvio; Schellhorn, Mathias; Brückner, Peter; Linß, Gerhard

    2013-05-01

    An important part of the quality assurance of meat is the estimation of germs in the meat exudes. The kind and the number of the germs in the meat affect the medical risk for the consumer of the meat. State-of-the-art analyses of meat are incubator test procedures. The main disadvantages of such incubator tests are the time consumption, the necessary equipment and the need of special skilled employees. These facts cause in high inspection cost. For this reason a new method for the quality assurance is necessary which combines low detection limits and less time consumption. One approach for such a new method is fluorescence microscopic imaging. The germs in the meat exude are caught in special membranes by body-antibody reactions. The germ typical signature could be enhanced with fluorescent chemical markers instead of reproduction of the germs. Each fluorescent marker connects with a free germ or run off the membrane. An image processing system is used to detect the number of fluorescent particles. Each fluorescent spot should be a marker which is connected with a germ. Caused by the small object sizes of germs, the image processing system needs a high optical magnification of the camera. However, this leads to a small field of view and a small depth of focus. For this reasons the whole area of the membrane has to be scanned in three dimensions. To minimize the time consumption, the optimal path has to be found. This optimization problem is influenced by features of the hardware and is presented in this paper. The traversing range in each direction, the step width, the velocity, the shape of the inspection volume and the field of view have influence on the optimal path to scan the membrane.

  3. B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Shilpa Dilipkumar

    2015-03-01

    Full Text Available An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy. A comparative study of the proposed technique with the state-of-art maximum likelihood (ML and maximum-a-posteriori (MAP with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED.

  4. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  5. Early detection of tumor masses by in vivo hematoporphyrin-mediated fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Autiero, Maddalena [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Via Cinthia, I-80126 Naples (Italy); Celentano, Luigi [Dipartimento di Scienze Biomorfologiche e Funzionali, Universita di Napoli Federico II, Via Pansini 5, I-80126 Naples (Italy); Cozzolino, Rosanna [Dipartimento di Biologia Strutturale e Funzionale, Universita di Napoli Federico II, Via Cinthia, I-80126 Naples (Italy); Laccetti, Paolo [Dipartimento di Biologia Strutturale e Funzionale, Universita di Napoli Federico II, Via Cinthia, I-80126 Naples (Italy); Marotta, Marcello [Dipartimento di Medicina Clinica e Sperimentale, Universita di Napoli Federico II, Via Pansini 5, I-80131 Naples (Italy); Mettivier, Giovanni [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Via Cinthia, I-80126 Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Via Cinthia, I-80126 Naples (Italy); Cristina Montesi, Maria [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Via Cinthia, I-80126 Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Via Cinthia, I-80126 Naples (Italy); Quarto, Maria [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Via Cinthia, I-80126 Naples (Italy); Riccio, Patrizia [Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universita di Napoli Federico II, Via Pansini 5, I-80131 Naples (Italy); Roberti, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Via Cinthia, I-80126 Naples (Italy)]. E-mail: roberti@unina.it; Russo, Paolo [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Via Cinthia, I-80126 Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Via Cinthia, I-80126 Naples (Italy)

    2007-02-01

    We investigated the capability of fluorescence reflectance imaging (FRI) for the early detection of surface tumors in mice. We used a hematoporphyrin (HP) compound (HP dichlorohydrate) as a red fluorescent marker and a low noise, high sensitivity, digital CCD camera for fluorescence imaging. In this preliminary study, highly malignant anaplastic human thyroid carcinoma cells were implanted subcutaneously in one mouse and their growth was monitored daily for 5 days by FRI. The selective HP uptake by the tumor tissues was successfully observed: we observed the fluorescence of tumor only 3 days after cancer cells injection, i.e. when the tumor mass was neither visible (to the naked eye) or palpable. These measurements indicate that FRI is a suitable technique to detect minute subcutaneous tumor masses. This FRI system will be coupled to a radionuclide imaging system based on a CdTe detector for in vivo multimodal imaging in mice.

  6. Early detection of tumor masses by in vivo hematoporphyrin-mediated fluorescence imaging

    International Nuclear Information System (INIS)

    Autiero, Maddalena; Celentano, Luigi; Cozzolino, Rosanna; Laccetti, Paolo; Marotta, Marcello; Mettivier, Giovanni; Cristina Montesi, Maria; Quarto, Maria; Riccio, Patrizia; Roberti, Giuseppe; Russo, Paolo

    2007-01-01

    We investigated the capability of fluorescence reflectance imaging (FRI) for the early detection of surface tumors in mice. We used a hematoporphyrin (HP) compound (HP dichlorohydrate) as a red fluorescent marker and a low noise, high sensitivity, digital CCD camera for fluorescence imaging. In this preliminary study, highly malignant anaplastic human thyroid carcinoma cells were implanted subcutaneously in one mouse and their growth was monitored daily for 5 days by FRI. The selective HP uptake by the tumor tissues was successfully observed: we observed the fluorescence of tumor only 3 days after cancer cells injection, i.e. when the tumor mass was neither visible (to the naked eye) or palpable. These measurements indicate that FRI is a suitable technique to detect minute subcutaneous tumor masses. This FRI system will be coupled to a radionuclide imaging system based on a CdTe detector for in vivo multimodal imaging in mice

  7. Cancer detection using NIR elastic light scattering and tissue fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Staggs, M; Radousky, H B; Gandour-Edwards, R; deVere White, R

    2000-12-04

    Near infrared imaging using elastic light scattering and tissue fluorescence under long-wavelength laser excitation are explored for cancer detection. Various types of normal and malignant human tissue samples were utilized in this investigation.

  8. Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    Full Text Available Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries.

  9. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  10. In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    International Nuclear Information System (INIS)

    Chin, William WL; Thong, Patricia SP; Bhuvaneswari, Ramaswamy; Soo, Khee Chee; Heng, Paul WS; Olivo, Malini

    2009-01-01

    Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient. Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM) and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions. Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient. Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer

  11. Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity.

    Science.gov (United States)

    Liu, Jia-Hui; Yang, Sheng-Tao; Chen, Xin-Xin; Wang, Haifang

    2012-10-01

    The rapid advancement of nanotechnology has brought us some new types of fluorescent probes, which are indispensable for bioimaging in life sciences. Because of their innate biocompatibility, good resistance against photobleaching, long fluorescence lifetime and wide fluorescence spectral region, fluorescent carbon quantum dots (C-Dots) and nanosized diamonds (nanodiamonds, NDs) are gradually evolving into promising reagents for bioimaging. In this review, we summarize the recent achievements in fluorescent C-Dots and NDs with emphases on their preparation, properties, imaging application, pharmacokinetics and toxicity. Perspectives on further investigations and opportunities to develop C-Dots and NDs into the safer and more sensitive imaging probes for both living cells and animal models are discussed.

  12. Wide field fluorescence imaging in narrow passageways using scanning fiber endoscope technology

    Science.gov (United States)

    Lee, Cameron M.; Chandler, John E.; Seibel, Eric J.

    2010-02-01

    An ultrathin scanning fiber endoscope (SFE) has been developed for high resolution imaging of regions in the body that are commonly inaccessible. The SFE produces 500 line color images at 30 Hz frame rate while maintaining a 1.2-1.7 mm outer diameter. The distal tip of the SFE houses a 9 mm rigid scan engine attached to a highly flexible tether (minimum bend radius technologies, the unique characteristics of this system have allowed the SFE to navigate narrow passages without sacrificing image quality. To date, the SFE has been used for in vivo imaging of the bile duct, esophagus and peripheral airways. In this study, the standard SFE operation was tailored to capture wide field fluorescence images and spectra. Green (523 nm) and blue (440 nm) lasers were used as illumination sources, while the white balance gain values were adjusted to accentuate red fluorescence signal. To demonstrate wide field fluorescence imaging of small lumens, the SFE was inserted into a phantom model of a human pancreatobiliary tract and navigated to a custom fluorescent target. Both wide field fluorescence and standard color images of the target were captured to demonstrate multimodal imaging.

  13. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  14. A new indicator in early drought diagnosis of cucumber with chlorophyll fluorescence imaging

    Science.gov (United States)

    Wang, Heng; Li, Haifeng; Xu, Liang; Liu, Xu

    2015-05-01

    Crop population growth information can more fully reflect the state of crop growth, eliminate individual differences, and reduce error in judgment. We have built a suitable plant population growth information online monitoring system with the plant chlorophyll fluorescence and spectral scanning imaging to get the crop growth status. On the basis of the fluorescence image detection, we have studied the early drought diagnosis of cucumber. The typical chlorophyll fluorescence parameters can not reflect the drought degree significantly. We define a new indication parameter (DI). With the drought deepening, DI declines. DI can enlarge the early manifestation of cucumber drought (3-5 days), indicate more significantly in the early drought diagnosis of cucumber.

  15. Fluorescent Bisphosphonate and Carboxyphosphonate Probes: A Versatile Imaging Toolkit for Applications in Bone Biology and Biomedicine.

    Science.gov (United States)

    Sun, Shuting; Błażewska, Katarzyna M; Kadina, Anastasia P; Kashemirov, Boris A; Duan, Xuchen; Triffitt, James T; Dunford, James E; Russell, R Graham G; Ebetino, Frank H; Roelofs, Anke J; Coxon, Fraser P; Lundy, Mark W; McKenna, Charles E

    2016-02-17

    A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.

  16. Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images.

    Directory of Open Access Journals (Sweden)

    Jyrki Selinummi

    2009-10-01

    Full Text Available Fluorescence microscopy is the standard tool for detection and analysis of cellular phenomena. This technique, however, has a number of drawbacks such as the limited number of available fluorescent channels in microscopes, overlapping excitation and emission spectra of the stains, and phototoxicity.We here present and validate a method to automatically detect cell population outlines directly from bright field images. By imaging samples with several focus levels forming a bright field -stack, and by measuring the intensity variations of this stack over the -dimension, we construct a new two dimensional projection image of increased contrast. With additional information for locations of each cell, such as stained nuclei, this bright field projection image can be used instead of whole cell fluorescence to locate borders of individual cells, separating touching cells, and enabling single cell analysis. Using the popular CellProfiler freeware cell image analysis software mainly targeted for fluorescence microscopy, we validate our method by automatically segmenting low contrast and rather complex shaped murine macrophage cells.The proposed approach frees up a fluorescence channel, which can be used for subcellular studies. It also facilitates cell shape measurement in experiments where whole cell fluorescent staining is either not available, or is dependent on a particular experimental condition. We show that whole cell area detection results using our projected bright field images match closely to the standard approach where cell areas are localized using fluorescence, and conclude that the high contrast bright field projection image can directly replace one fluorescent channel in whole cell quantification. Matlab code for calculating the projections can be downloaded from the supplementary site: http://sites.google.com/site/brightfieldorstaining.

  17. Fluorescence laparoscopy imaging of pancreatic tumor progression in an orthotopic mouse model

    Science.gov (United States)

    Tran Cao, Hop S.; Kaushal, Sharmeela; Lee, Claudia; Snyder, Cynthia S.; Thompson, Kari J.; Horgan, Santiago; Talamini, Mark A.; Hoffman, Robert M.

    2010-01-01

    Background The use of fluorescent proteins to label tumors is revolutionizing cancer research, enabling imaging of both primary and metastatic lesions, which is important for diagnosis, staging, and therapy. This report describes the use of fluorescence laparoscopy to image green fluorescent protein (GFP)-expressing tumors in an orthotopic mouse model of human pancreatic cancer. Methods The orthotopic mouse model of human pancreatic cancer was established by injecting GFP-expressing MiaPaCa-2 human pancreatic cancer cells into the pancreas of 6-week-old female athymic mice. On postoperative day 14, diagnostic laparoscopy using both white and fluorescent light was performed. A standard laparoscopic system was modified by placing a 480-nm short-pass excitation filter between the light cable and the laparoscope in addition to using a 2-mm-thick emission filter. A camera was used that allowed variable exposure time and gain setting. For mouse laparoscopy, a 3-mm 0° laparoscope was used. The mouse’s abdomen was gently insufflated to 2 mm Hg via a 22-gauge angiocatheter. After laparoscopy, the animals were sacrificed, and the tumors were collected and processed for histologic review. The experiments were performed in triplicate. Results Fluorescence laparoscopy enabled rapid imaging of the brightly fluorescent tumor in the pancreatic body. Use of the proper filters enabled simultaneous visualization of the tumor and the surrounding structures with minimal autofluorescence. Fluorescence laparoscopy thus allowed exact localization of the tumor, eliminating the need to switch back and forth between white and fluorescence lighting, under which the background usually is so darkened that it is difficult to maintain spatial orientation. Conclusion The use of fluorescence laparoscopy permits the facile, real-time imaging and localization of tumors labeled with fluorescent proteins. The results described in this report should have important clinical potential. PMID:20533064

  18. Quantitative image correction and calibration for confocal fluorescence microscopy using thin reference layers and SIPchart-based calibration procedures

    NARCIS (Netherlands)

    Zwier, J.M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G.J.

    2008-01-01

    The fluorescence intensity image of an axially integrated through-focus series of a thin standardized uniform fluorescent layer can be used for image intensity correction and calibration in sectioning microscopy. This intensity image is in fact available from the earlier introduced Sectioned Imaging

  19. Simple and rapid determination of homozygous transgenic mice via in vivo fluorescence imaging.

    Science.gov (United States)

    Lin, Xiaolin; Jia, Junshuang; Qin, Yujuan; Lin, Xia; Li, Wei; Xiao, Gaofang; Li, Yanqing; Xie, Raoying; Huang, Hailu; Zhong, Lin; Wu, Qinghong; Wang, Wanshan; Huang, Wenhua; Yao, Kaitai; Xiao, Dong; Sun, Yan

    2015-11-17

    Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study.

  20. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Duman, M; Pfleger, M; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Ebner, A; Schuetz, G J; Hinterdorfer, P [Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Zhu, R; Mayer, B [Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Rankl, C; Moertelmaier, M; Kada, G; Kienberger, F [Agilent Technologies Austria GmbH, Aubrunnerweg 11, A-4040 Linz (Austria); Salio, M; Shepherd, D; Polzella, P; Cerundolo, V [Cancer Research UK Tumor Immunology Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS (United Kingdom); Dieudonne, M, E-mail: ferry_kienberger@agilent.com [Agilent Technologies Belgium, Wingepark 51, Rotselaar, AN B-3110 (Belgium)

    2010-03-19

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on {alpha}-galactosylceramide ({alpha}GalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from {approx} 25 to {approx} 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  1. Hyperspectral imaging of endogenous fluorescent metabolic molecules to identify pain states in central nervous system tissue

    Science.gov (United States)

    Staikopoulos, Vasiliki; Gosnell, Martin E.; Anwer, Ayad G.; Mustafa, Sanam; Hutchinson, Mark R.; Goldys, Ewa M.

    2016-12-01

    Fluorescence-based bio-imaging methods have been extensively used to identify molecular changes occurring in biological samples in various pathological adaptations. Auto-fluorescence generated by endogenous fluorescent molecules within these samples can interfere with signal to background noise making positive antibody based fluorescent staining difficult to resolve. Hyperspectral imaging uses spectral and spatial imaging information for target detection and classification, and can be used to resolve changes in endogenous fluorescent molecules such as flavins, bound and free NADH and retinoids that are involved in cell metabolism. Hyperspectral auto-fluorescence imaging of spinal cord slices was used in this study to detect metabolic differences within pain processing regions of non-pain versus sciatic chronic constriction injury (CCI) animals, an established animal model of peripheral neuropathy. By using an endogenous source of contrast, subtle metabolic variations were detected between tissue samples, making it possible to distinguish between animals from non-injured and injured groups. Tissue maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant tissue regions with compromised mitochondrial function. Taken together, our results demonstrate that hyperspectral imaging provides a new non-invasive method to investigate central changes of peripheral neuropathic injury and other neurodegenerative disease models, and paves the way for novel cellular characterisation in health, disease and during treatment, with proper account of intrinsic cellular heterogeneity.

  2. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  3. Fluorescence imaging in vivo: raster scanned point-source imaging provides more accurate quantification than broad beam geometries.

    Science.gov (United States)

    Pogue, Brian W; Gibbs, Summer L; Chen, Bin; Savellano, Mark

    2004-02-01

    Two fluorescence imaging systems were compared for their ability to quantify mean fluorescence intensity from surface-weighted imaging of tissue. A broad beam CCD camera system was compared to a point sampling system that raster scans to create the image. The effects of absorption and scattering in the background tissue volume were shown to be similar in their effect upon the signal, but the effect of the three-dimensional shape of the tissue was shown to be a significant distortion upon the signal. Spherical phantoms with Intralipid and blood for absorber and scatterer were used with a fixed concentration of aluminum phthalocyanine fluorophore to illustrate that the mean intensity observed with the broad beam system increased with size, while the mean intensity observed with the raster scanned system was not as significantly affected. Similar results were observed in vivo with mice injected with the fluorophore and imaged multiple times to observe the pharmacokinetics of the drug. The fluorescence in the tumor observed with the broad beam system was higher than that observed with the raster scanned system. Based upon the phantom and animal observations in this study, it should be concluded that using broad beam fluorescence imaging systems to quantify fluorescence in vivo may be problematic when comparing tissues with different three dimensional characteristics. In particular, the ratio of fluorescence from tumor to normal tissue can yield inaccurate results when the tumor is large. However, similar measurements with a narrow beam system that is raster scanned to create the images are not as significantly affected by the three dimensional shape of the tissue. Raster scanned imaging appears to provide a more uniform and accurate way to quantify fluorescence signals from distributed tissues in vivo.

  4. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing

    Energy Technology Data Exchange (ETDEWEB)

    Sakhalkar, H S [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Oliver, T [Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 (United States); Cao, Y [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Oldham, M [Department of Radiation Oncology Physics, and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710 (United States)

    2007-04-21

    Optical emission computed tomography (optical-ECT) is a technique for imaging the three-dimensional (3D) distribution of fluorescent probes in biological tissue specimens with high contrast and spatial resolution. In optical-ECT, functional information can be imaged by (i) systemic application of functional labels (e.g. fluorophore labelled proteins) and/or (ii) endogenous expression of fluorescent reporter proteins (e.g. red fluorescent protein (RFP), green fluorescent protein (GFP)) in vivo. An essential prerequisite for optical-ECT is optical clearing, a procedure where tissue specimens are made transparent to light by sequential perfusion with fixing, dehydrating and clearing agents. In this study, we investigate clearing protocols involving a selection of common fixing (4% buffered paraformaldehyde (PFA), methanol and ethanol), dehydrating (methanol and ethanol) and clearing agents (methyl salicylate and benzyl-alcohol-benzyl-benzoate (BABB)) in order to determine a 'fluorescence friendly' clearing procedure. Cell culture experiments were employed to optimize the sequence of chemical treatments that best preserve fluorescence. Texas red (TxRed), fluorescein isothiocyanate (FITC), RFP and GFP were tested as fluorophores and fluorescent reporter proteins of interest. Fluorescent and control cells were imaged on a microscope using a DSred2 and FITC filter set. The most promising clearing protocols of cell culture experiments were applied to whole xenograft tumour specimens, to test their effectiveness in large unsectioned samples. Fluorescence of TxRed/FITC fluorophores was not found to be significantly affected by any of the test clearing protocols. RFP and GFP fluorescence, however, was found to be significantly greater when cell fixation was in ethanol. Fixation in either PFA or methanol resulted in diminished fluorescence. After ethanol fixation, the RFP and GFP fluorescence proved remarkably robust to subsequent exposure to either methyl salicylate

  5. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  6. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  7. Imaging Primary Mouse Sarcomas After Radiation Therapy Using Cathepsin-Activatable Fluorescent Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, Kyle C. [Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Mito, Jeffrey K.; Javid, Melodi P. [Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina (United States); Ferrer, Jorge M. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Kim, Yongbaek [Department of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul (Korea, Republic of); Lee, W. David [The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Bawendi, Moungi G. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Brigman, Brian E. [Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina (United States); Kirsch, David G., E-mail: david.kirsch@duke.edu [Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina (United States)

    2013-05-01

    Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.

  8. A novel approach for phytotoxicity assessment by CCD fluorescence imaging

    Czech Academy of Sciences Publication Activity Database

    Gavel, Alan; Maršálek, Blahoslav

    2004-01-01

    Roč. 19, - (2004), s. 429-432 ISSN 1520-4081 R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : phytotoxicity * chlorophyll fluorescence * algal bioassay Subject RIV: EF - Botanics Impact factor: 1.373, year: 2004

  9. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Near-infrared fluorescence imaging of mammalian cells and xenograft tumors with SNAP-tag.

    Directory of Open Access Journals (Sweden)

    Haibiao Gong

    Full Text Available Fluorescence in the near-infrared (NIR spectral region is suitable for in vivo imaging due to its reduced background and high penetration capability compared to visible fluorescence. SNAP(f is a fast-labeling variant of SNAP-tag that reacts with a fluorescent dye-conjugated benzylguanine (BG substrate, leading to covalent attachment of the fluorescent dye to the SNAP(f. This property makes SNAP(f a valuable tool for fluorescence imaging. The NIR fluorescent substrate BG-800, a conjugate between BG and IRDye 800CW, was synthesized and characterized in this study. HEK293, MDA-MB-231 and SK-OV-3 cells stably expressing SNAP(f-Beta-2 adrenergic receptor (SNAP(f-ADRβ2 fusion protein were created. The ADRβ2 portion of the protein directs the localization of the protein to the cell membrane. The expression of SNAP(f-ADRβ2 in the stable cell lines was confirmed by the reaction between BG-800 substrate and cell lysates. Microscopic examination confirmed that SNAP(f-ADRβ2 was localized on the cell membrane. The signal intensity of the labeled cells was dependent on the BG-800 concentration. In vivo imaging study showed that BG-800 could be used to visualize xenograph tumors expressing SNAP(f-ADRβ2. However, the background signal was relatively high, which may be a reflection of non-specific accumulation of BG-800 in the skin. To address the background issue, quenched substrates that only fluoresce upon reaction with SNAP-tag were synthesized and characterized. Although the fluorescence was successfully quenched, in vivo imaging with the quenched substrate CBG-800-PEG-QC1 failed to visualize the SNAP(f-ADRβ2 expressing tumor, possibly due to the reduced reaction rate. Further improvement is needed to apply this system for in vivo imaging.

  11. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    Science.gov (United States)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  12. Red fluorescence imaging for dental plaque detection and quantification: pilot study

    Science.gov (United States)

    Liu, Zhao; Gomez, Juliana; Khan, Soniya; Peru, Debbie; Ellwood, Roger

    2017-09-01

    The red fluorescence of dental plaque originating from porphyrins in oral bacteria may allow visualization, detection, and scoring of plaque without disclosing agents. Two studies were conducted. The first included 24 healthy participants who abstained from oral hygiene for 24 h. Dental plaque was collected from tooth surfaces, and a 10% solution was prepared. These were scanned by a molecular spectrometer to identify the optimum excitation and emission wavelengths of plaque for developing a red fluorescence imaging system. Fourteen healthy subjects completed the second study. After a washout period (1 week), participants had a prophylaxis at baseline and abstained from oral hygiene during the study. They were monitored using the fluorescence imaging system at baseline, 24 h, and 48 h. A dentist clinically assessed plaque after disclosing and on red fluorescence images. Three descriptors were extracted from images and a RUSBoost classifier derived computer fluorescence scores through cross-validation. Red fluorescence plaque levels increased during the 48-h accumulation. Plaque progression was identified by dentist assessment and computer analysis, presenting significant differences between visits at tooth and subject levels (poral hygiene assessment.

  13. Epi-fluorescence imaging of colloid transport in porous media at decimeter scales.

    Science.gov (United States)

    Zhang, Pengfei; Wang, Yonggang

    2006-10-01

    A noninvasive epi-fluorescence imaging technique was developed for real-time observation of colloid transport in porous media at decimeter scales. Fluorescent latex microspheres and translucent quartz sand were used as a model colloid-porous medium system. Various calibrations were performed for accurate conversion of fluorescence intensities to microsphere concentrations. Fluorescence intensities were found to linearly increase with microsphere concentrations (5 x 10(5)-5 x 10(8) spheres/mL in saturated sand) and with camera exposure time. Fluorescence intensities also increased with sand thickness (saturated with microsphere solution), indicating that the fluorescence signals detected by the imaging system were integrated signals from the entire thickness (10 mm) of the sand. A set of microsphere transport experiments was conducted to demonstrate the versatility of the imaging system. Excellent mass recoveries (93-103%) were achieved in all transport experiments, demonstrating the robustness of the imaging system for quantitative study of colloid transport. The system allowed the change of flow velocity, ionic strength, and flow direction within one transport experiment and the real-time, quantitative monitoring of the movement of microspheres in packed sand, greatly reducing the time and effort needed for similar work with traditional column experiments.

  14. High Spatial Resolution Imaging of Endogenous Hydrogen Peroxide in Living Cells by Solid-State Fluorescence.

    Science.gov (United States)

    Lindberg, Eric; Winssinger, Nicolas

    2016-09-02

    Herein, we describe selective imaging of hydrogen peroxide using a precipitating dye conjugated to a boronic acid-based immolative linker. We achieved visualization of endogenous hydrogen peroxide in phagosomes by solid-state two-photon fluorescence imaging in living cells with exceptionally high spatial resolution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system.

    Science.gov (United States)

    Gao, Shengkui; Mondal, Suman B; Zhu, Nan; Liang, RongGuang; Achilefu, Samuel; Gruev, Viktor

    2015-01-01

    Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use.

  16. Multiphoton excitation fluorescence imaging applied to the study of embryo development

    Science.gov (United States)

    Wokosin, David L.; White, John G.

    1998-07-01

    The use of fluorescent probes is a powerful technique for the study of living specimens. Unfortunately, living tissues are vulnerable to photodamage from the excitation illumination and they make poor optical specimens due to their light-scattering nature. Multiphoton (two or more photon) excitation imaging offers significant advantages compared to laser-scanning confocal fluorescence microscopy for fluorescence microscopy of live specimens: considerable reduction in total sample fluorophore excitation and hence less photodamage, increased depth penetration due to increased tolerance for scattering, and increased detection sensitivity as more signal photons can be used for imaging. These advantages become more significant if 3D or 4D (multifocal plane, time-lapse) imaging is undertaken. In addition, multiphoton excitation imaging allows UV excited probes such as DAPI or INDO I or endogenous fluorophores such as NAD(P)H and serotonin to be imaged without UV excitation. We, and others, have been evaluating the potential of multi-photon excitation imaging for biological microscopy and have found all of the aforementioned advantages particularly significant for laser-scanning fluorescence imaging of developing embryos; a summary of currently pursued developmental biology applications will be presented. The current status of all-solid-state ultrafast lasers as excitation sources will also be reviewed since these lasers offer tremendous potential for affordable, reliable, 'turnkey' multiphoton imaging systems. The combination of demonstrated applications, simple ultrafast laser sources, and affordable commercial systems may promote a revolution in the study of embryogenesis with the light microscope.

  17. Targeted imaging in oncologic surgery : preclinical studies utilizing near-infrared fluorescence and radioactivity

    NARCIS (Netherlands)

    Boonstra, M.C.

    2017-01-01

    Fluorescence-guided surgery (FGS) is an intraoperative imaging technique already introduced and validated in the clinic for sentinel lymph node mapping and biliary imaging. Conjugating a NIR-dye to a specific tumor-targeting vehicle dramatically enhances the specificity of this technique. Hence, a

  18. Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection

    NARCIS (Netherlands)

    Jalocha, A.; Jalocha, A.; van Hulst, N.F.

    1995-01-01

    Dielectric fluorescent samples are imaged by scanning near- field optical microscopy in reflection. A non-metallized tapered fibre tip is used both as an emitter and a detector. Shear force feedback controls the distance between the tip and the sample and gives simultaneously a topographic image of

  19. Multispectral, Fluorescent and Photoplethysmographic Imaging for Remote Skin Assessment.

    Science.gov (United States)

    Spigulis, Janis

    2017-05-19

    Optical tissue imaging has several advantages over the routine clinical imaging methods, including non-invasiveness (it does not change the structure of tissues), remote operation (it avoids infections) and the ability to quantify the tissue condition by means of specific image parameters. Dermatologists and other skin experts need compact (preferably pocket-size), self-sustaining and easy-to-use imaging devices. The operational principles and designs of ten portable in-vivo skin imaging prototypes developed at the Biophotonics Laboratory of Institute of Atomic Physics and Spectroscopy, University of Latvia during the recent five years are presented in this paper. Four groups of imaging devices are considered. Multi-spectral imagers offer possibilities for distant mapping of specific skin parameters, thus facilitating better diagnostics of skin malformations. Autofluorescence intensity and photobleaching rate imagers show a promising potential for skin tumor identification and margin delineation. Photoplethysmography video-imagers ensure remote detection of cutaneous blood pulsations and can provide real-time information on cardiovascular parameters and anesthesia efficiency. Multimodal skin imagers perform several of the abovementioned functions by taking a number of spectral and video images with the same image sensor. Design details of the developed prototypes and results of clinical tests illustrating their functionality are presented and discussed.

  20. A selective colorimetric and fluorescent sensor for Al3+ ion and its application to cellular imaging

    Science.gov (United States)

    Manjunath, Rangasamy; Hrishikesan, Elango; Kannan, Palaninathan

    2015-04-01

    A new rhodamine-based fluorescent turn-on chemosensor (L) for selective detection of Al3+ ion has been developed and characterized. The fluorescent chemosensor L was synthesized by the reaction of intermediate (4) with 2,5-bis (4-phenylacyl chloride)-1,3,4-oxadiazole (3). The chemosensor L displays an excellent selective and sensitive response to Al3+ ion over other metal ions, in which the spirocyclic (non-fluorescent) to ring opened amide (fluorescent) process was utilized and a 1:2 stoichiometry for L-Al3+ complex was formed with an association constant of 2.03 × 103 M-1. Furthermore, chemosensor L can be applied as a fluorescent probe for monitoring Al3+ in living cells by performing cell imaging studies.

  1. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells

    Science.gov (United States)

    Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En

    2011-12-01

    Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr11132

  2. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  3. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Nan Guo

    2014-10-01

    Full Text Available Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art.

  4. Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine

    Science.gov (United States)

    Sevick-Muraca, Eva M.; Rasmussen, John C.

    2010-01-01

    We compare and contrast the development of optical molecular imaging techniques with nuclear medicine with a didactic emphasis for initiating readers into the field of molecular imaging. The nuclear imaging techniques of gamma scintigraphy, single-photon emission computed tomography, and positron emission tomography are first briefly reviewed. The molecular optical imaging techniques of bioluminescence and fluorescence using gene reporter/probes and gene reporters are described prior to introducing the governing factors of autofluorescence and excitation light leakage. The use of dual-labeled, near-infrared excitable and radio-labeled agents are described with comparative measurements between planar fluorescence and nuclear molecular imaging. The concept of time-independent and -dependent measurements is described with emphasis on integrating time-dependent measurements made in the frequency domain for 3-D tomography. Finally, we comment on the challenges and progress for translating near-infrared (NIR) molecular imaging agents for personalized medicine. PMID:19021311

  5. Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer.

    Science.gov (United States)

    Zhou, Fangyuan; Feng, Bing; Yu, Haijun; Wang, Dangge; Wang, Tingting; Liu, Jianping; Meng, Qingshuo; Wang, Siling; Zhang, Pengcheng; Zhang, Zhiwen; Li, Yaping

    2016-01-01

    Theranostic nanomedicine has emerged as a promising modality for cancer diagnosis and treatment. In this study, we report the fabrication of fluorescence gold nanoclusters (GNC) conjugated with a cisplatin prodrug and folic acid (FA) (FA-GNC-Pt) for fluorescence imaging and targeted chemotherapy of breast cancer. The physio-chemical properties of FA-GNC-Pt nanoparticles are thoroughly characterized by fluorescence/UV-Vis spectroscopic measurement, particle size and zeta-potential examination. We find that FA-modification significantly accelerated the cellular uptake and increased the cytotoxicity of GNC-Pt nanoparticles in murine 4T1 breast cancer cells. Fluorescence imaging in vivo using 4T1 tumor bearing nude mouse model shows that FA-GNC-Pt nanoparticles selectively accumulate in the orthotopic 4T1 tumor and generate strong fluorescence signal due to the tumor targeting effect of FA. Moreover, we demonstrate that FA-GNC-Pt nanoparticles significantly inhibit the growth and lung metastasis of the orthotopically implanted 4T1 breast tumors. All these data imply a good potential of the GNC-based theranostic nanoplatform for fluorescence tumor imaging and cancer therapy.

  6. Static Hyperspectral Fluorescence Imaging of Viscous Materials Based on a Linear Variable Filter Spectrometer

    Directory of Open Access Journals (Sweden)

    Alexander W. Koch

    2013-09-01

    Full Text Available This paper presents a low-cost hyperspectral measurement setup in a new application based on fluorescence detection in the visible (Vis wavelength range. The aim of the setup is to take hyperspectral fluorescence images of viscous materials. Based on these images, fluorescent and non-fluorescent impurities in the viscous materials can be detected. For the illumination of the measurement object, a narrow-band high-power light-emitting diode (LED with a center wavelength of 370 nm was used. The low-cost acquisition unit for the imaging consists of a linear variable filter (LVF and a complementary metal oxide semiconductor (CMOS 2D sensor array. The translucent wavelength range of the LVF is from 400 nm to 700 nm. For the confirmation of the concept, static measurements of fluorescent viscous materials with a non-fluorescent impurity have been performed and analyzed. With the presented setup, measurement surfaces in the micrometer range can be provided. The measureable minimum particle size of the impurities is in the nanometer range. The recording rate for the measurements depends on the exposure time of the used CMOS 2D sensor array and has been found to be in the microsecond range.

  7. Fluorescence and confocal imaging of mammalian cells using conjugated oligoelectrolytes with phenylenevinylene core

    Energy Technology Data Exchange (ETDEWEB)

    Milczarek, Justyna; Pawlowska, Roza; Zurawinski, Remigiusz; Lukasik, Beata; Garner, Logan E.; Chworos, Arkadiusz

    2017-05-01

    Over the last few years, considerable efforts are taken, in order to find a molecular fluorescent probe fulfilling their applicability requirements. Due to a good optical properties and affinity to biological structures conjugated oligoelectrolytes (COEs) can be considered as a promising dyes for application in fluorescence-based bioimaging. In this work, we synthetized COEs with phenylenevinylene core (PV-COEs) and applied as fluorescent membranous-specific probes. Cytotoxicity effects of each COE were probed on cancerous and non-cancerous cell types and little to no toxicity effects were observed at the high range of concentrations. The intensity of cell fluorescence following the COE staining was determined by the photoluminescence analysis and fluorescence activated cell sorting method (FACS). Intercalation of tested COEs into mammalian cell membranes was revealed by fluorescent and confocal microscopy colocalization with commercial dyes specific for cellular structures including mitochondria, Golgi apparatus and endoplasmic reticulum. The phenylenevinylene conjugated oligoelectrolytes have been found to be suitable for fluorescent bioimaging of mammalian cells and membrane-rich organelles. Due to their water solubility coupled with spontaneous intercalation into cells, favorable photophysical features, ease of cell staining, low cytotoxicity and selectivity for membranous structures, PV-COEs can be applied as markers for fluorescence imaging of a variety of cell types.

  8. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.

    Science.gov (United States)

    Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  9. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques

    International Nuclear Information System (INIS)

    Wagner, D.; Egelhaaf, S. U.; Hermes, H. E.; Börgardts, M.; Müller, T. J. J.; Grünzweig, C.; Lehmann, E.

    2015-01-01

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied

  10. Fluorescence confocal laser scanning microscopy for in vivo imaging of epidermal reactions to two experimental irritants

    DEFF Research Database (Denmark)

    Suihko, C.; Serup, J.

    2008-01-01

    Background: Fibre-optic fluorescence confocal laser scanning microscopy (CLSM) is a novel non-invasive technique for in vivo imaging of skin. The cellular structure of the epidermis can be studied. A fluorophore, e.g. fluorescein sodium, is introduced by an intradermal injection or applied...... to the skin surface before scanning. Images are horizontal optical sections parallel to the skin surface. Fluorescence CLSM has hitherto not been applied to experimental contact dermatitis. Objective: The aim was to study the applicability of fluorescence CLSM for in situ imaging of irritant contact......, modified the physico-chemical properties of the skin surface and both disturbed epicutaneous labelling with the flurophore and immersion oil coupling between the skin surface and the optical system. Thus, SLS was technically more difficult to study by CLSM than PA. Conclusions: This preliminary study...

  11. Mechanotransduction in Endothelial Cells Studied with Fluorescence Imaging

    International Nuclear Information System (INIS)

    Chien Shu

    2011-01-01

    Mechanotransduction involves the conversion of mechanical stimuli to intracellular signaling to modulate gene and protein expressions and hence cellular functions in endothelial cells, thus playing importance roles in the regulation of homeostasis in health and disease. The aim of this paper is to investigate the dynamics of mechanotransduction in endothelial cells by the use of fluorescent resonance energy transfer (FRET) to study the temporal and spatial activation of Src kinase and focal adhesion kinase, both of which play critical roles in many cellular processes. The results have contributed to the elucidation of the roles of these two important signaling molecules and their interactions in mediating mechanotransduction.

  12. Development of a wide-field fluorescence imaging system for evaluation of wound re-epithelialization

    Science.gov (United States)

    Franco, Walfre; Gutierrez-Herrera, Enoch; Purschke, Martin; Wang, Ying; Tam, Josh; Anderson, R. Rox; Doukas, Apostolos

    2013-03-01

    Normal skin barrier function depends on having a viable epidermis, an epithelial layer formed by keratinocytes. The transparent epidermis, which is less than a 100 mum thick, is nearly impossible to see. Thus, the clinical evaluation of re-epithelialization is difficult, which hinders selecting appropriate therapy for promoting wound healing. An imaging system was developed to evaluate epithelialization by detecting endogenous fluorescence emissions of cellular proliferation over a wide field of view. A custom-made 295 nm ultraviolet (UV) light source was used for excitation. Detection was done by integrating a near-UV camera with sensitivity down to 300 nm, a 12 mm quartz lens with iris and focus lock for the UV regime, and a fluorescence bandpass filter with 340 nm center wavelength. To demonstrate that changes in fluorescence are related to cellular processes, the epithelialization of a skin substitute was monitored in vitro. The skin substitute or construct was made by embedding microscopic live human skin tissue columns, 1 mm in diameter and spaced 1 mm apart, in acellular porcine dermis. Fluorescence emissions clearly delineate the extent of lateral surface migration of keratinocytes and the total surface covered by the new epithelium. The fluorescence image of new epidermis spatially correlates with the corresponding color image. A simple, user-friendly way of imaging the presence of skin epithelium would improve wound care in civilian burns, ulcers and surgeries.

  13. Spectral Behavior of White Pigment Mixtures Using Reflectance, Ultraviolet-Fluorescence Spectroscopy, and Multispectral Imaging.

    Science.gov (United States)

    Pronti, Lucilla; Felici, Anna Candida; Ménager, Matthieu; Vieillescazes, Cathy; Piacentini, Mario

    2017-12-01

    Reflectance spectroscopy, ultraviolet (UV)-fluorescence spectroscopy, and multispectral imaging have been widely employed for pigment identification on paintings. From ancient times to the present, lead white, zinc white, and titanium white have been the most important white pigments used for paintings and they are used as pigment markers for dating a work of art. The spectral behavior of these pigments is reported in several scientific papers and websites, but those of their mixtures are quite unknown. We present a combined nondestructive approach for identifying mixtures of lead white, zinc white, and titanium white as powder and dispersed in two different binder media (egg yolk and linseed oil) by using reflectance spectroscopy, spectrofluorimetry, multispectral reflectance and UV-fluorescence imaging. We propose a novel approach for mapping the presence of white pigments in paintings by false color images obtained from multispectral reflectance and UV-fluorescence images. We found that the presence of lead white mixed with either zinc white or titanium white is highly detectable. Zinc white mixed with lead white or titanium white can be identified due to its UV-fluorescence emission, whereas titanium white in association with lead white or zinc white is distinguishable by its reflectance spectral features. In most cases, the UV-fluorescence analyses also permit the recognition of the binder media in which the pigments are dispersed.

  14. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging

    Directory of Open Access Journals (Sweden)

    Xue S

    2014-05-01

    Full Text Available Sihan Xue,1 Yao Wang,1 Mengxing Wang,2 Lu Zhang,1 Xiaoxia Du,2 Hongchen Gu,1 Chunfu Zhang1,31School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 2Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In this study, a novel magnetic resonance imaging (MRI/computed tomography (CT/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs. Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2 markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/C/fluorescence trimodal imaging.Keywords: multifunctional probe, SPIONs, mesoporous silica

  15. In vivo assessment of wound re-epithelialization by UV fluorescence excitation imaging

    Science.gov (United States)

    Wang, Ying; Ortega-Martinez, Antonio; Padilla-Martinez, Juan Pablo; Williams, Maura; Farinelli, William; Anderson, R. R.; Franco, Walfre

    2017-02-01

    Background and Objectives: We have previously demonstrated the efficacy of a non-invasive, non-contact, fast and simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds in vitro. This system can image highly-proliferating cellular processes (295/340 nm excitation/emission wavelengths) to study epithelialization in a cultured wound model. The objective of the current work is to evaluate the suitability of u-FEI for monitoring wound re-epithelialization in vivo. Study Design: Full-thickness wounds were created in the tail of rats and imaged weekly using u-FEI at 295/340nm excitation/emission wavelengths. Histology was used to investigate the correlation between the spatial distribution and intensity of fluorescence and the extent of wound epithelialization. In addition, the expression of the nuclear protein Ki67 was used to confirm the association between the proliferation of keratinocyte cells and the intensity of fluorescence. Results: Keratinocytes forming neo-epidermis exhibited higher fluorescence intensity than the keratinocytes not involved in re-epithelialization. In full-thickness wounds the fluorescence first appeared at the wound edge where keratinocytes initiated the epithelialization process. Fluorescence intensity increased towards the center as the keratinocytes partially covered the wound. As the wound healed, fluorescence decreased at the edges and was present only at the center as the keratinocytes completely covered the wound at day 21. Histology demonstrated that changes in fluorescence intensity from the 295/340nm band corresponded to newly formed epidermis. Conclusions: u-FEI at 295/340nm allows visualization of proliferating keratinocyte cells during re-epithelialization of wounds in vivo, potentially providing a quantitative, objective and simple method for evaluating wound closure in the clinic.

  16. Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis.

    Science.gov (United States)

    Kawada, Kenji; Hasegawa, Suguru; Wada, Toshiaki; Takahashi, Ryo; Hisamori, Shigeo; Hida, Koya; Sakai, Yoshiharu

    2017-03-01

    Decreased blood perfusion is an important risk factor for postoperative anastomotic leakage (AL). Fluorescence imaging with indocyanine green (ICG) provides a real-time assessment of intestinal perfusion. This study evaluated the utility of ICG fluorescence imaging in determining the transection line of the proximal colon during laparoscopic colorectal surgery with double stapling technique (DST) anastomosis. This was a prospective single-institution study of 68 patients with left-sided colorectal cancers who underwent laparoscopic colorectal surgery between August 2013 and December 2014. After distal transection of the bowel, the specimen was extracted extracorporeally and then the mesentery was divided along the planned transection line determined by the surgeons' judgement under normal q. After ICG was injected intravenously, intestinal perfusion of the proximal colon was assessed in the fluorescent imaging mode. Intestinal perfusion was examined in relation to the patient-, tumor- and surgery-related variables using univariate and multivariate analyses. ICG fluorescence imaging showed that intestinal perfusion was present at 3 mm (median) distal to the initially planned transection line. ICG fluorescence imaging resulted in a proximal change of the transection line by more than 5 mm in 18 patients (26.5 %) and, particularly, by more than 50 mm in 3 patients (4.4 %), compared with the initially planned transection line. Univariate analysis revealed that diabetes mellitus, anticoagulation therapy, preoperative chemotherapy and operative time were significantly associated with poor intestinal perfusion. Multivariate analysis identified anticoagulation therapy (P = 0.021) and preoperative chemotherapy (P = 0.019) as independent risk factors for poor intestinal perfusion. Three patients (4.5 %) with a change of transection line developed AL. ICG fluorescence imaging is useful for determining the transection line in laparoscopic colorectal surgery with DST

  17. Method for Imaging Live-Cell RNA Using an RNA Aptamer and a Fluorescent Probe.

    Science.gov (United States)

    Sato, Shin-Ichi; Yatsuzuka, Kenji; Katsuda, Yousuke; Uesugi, Motonari

    2018-01-01

    Live-cell imaging of mRNA dynamics is increasingly important to understanding spatially restricted gene expression. We recently developed a convenient and versatile method that uses a gene-specific RNA aptamer and a fluorescent probe to enable spatiotemporal imaging of endogenous mRNAs in living cells. The method was validated by live-cell imaging of the endogenous mRNA of β-actin. The new RNA-imaging technology might be useful for live-cell imaging of any RNA molecules.

  18. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    Science.gov (United States)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  19. Highly biocompatible super-resolution fluorescence imaging using the fast photoswitching fluorescent protein Kohinoor and SPoD-ExPAN with Lp-regularized image reconstruction.

    Science.gov (United States)

    Wazawa, Tetsuichi; Arai, Yoshiyuki; Kawahara, Yoshinobu; Takauchi, Hiroki; Washio, Takashi; Nagai, Takeharu

    2018-02-02

    Far-field super-resolution fluorescence microscopy has enabled us to visualize live cells in great detail and with an unprecedented resolution. However, the techniques developed thus far have required high-power illumination (102-106 W/cm2), which leads to considerable phototoxicity to live cells and hampers time-lapse observation of the cells. In this study we show a highly biocompatible super-resolution microscopy technique that requires a very low-power illumination. The present technique combines a fast photoswitchable fluorescent protein, Kohinoor, with SPoD-ExPAN (super-resolution by polarization demodulation/excitation polarization angle narrowing). With this technique, we successfully observed Kohinoor-fusion proteins involving vimentin, paxillin, histone and clathrin expressed in HeLa cells at a spatial resolution of 70-80 nm with illumination power densities as low as ~1 W/cm2 for both excitation and photoswitching. Furthermore, although the previous SPoD-ExPAN technique used L1-regularized maximum-likelihood calculations to reconstruct super-resolved images, we devised an extension to the Lp-regularization to obtain super-resolved images that more accurately describe objects at the specimen plane. Thus, the present technique would significantly extend the applicability of super-resolution fluorescence microscopy for live-cell imaging. © The Author(s) 2018. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. In vivo quantification of fluorescent molecular markers in real-time by ratio Imaging for diagnostic screening and image-guided surgery

    NARCIS (Netherlands)

    Bogaards, A.; Sterenborg, H. J. C. M.; Trachtenberg, J.; Wilson, B. C.; Lilge, L.

    2007-01-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (similar to >= 30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and

  1. Comparison between the indocyanine green fluorescence and blue dye methods for sentinel lymph node biopsy using novel fluorescence image-guided resection equipment in different types of hospitals.

    Science.gov (United States)

    He, Kunshan; Chi, Chongwei; Kou, Deqiang; Huang, Wenhe; Wu, Jundong; Wang, Yabing; He, Lifang; Ye, Jinzuo; Mao, Yamin; Zhang, Guo-Jun; Wang, Jiandong; Tian, Jie

    2016-12-01

    Sentinel lymph node biopsy (SLNB) has become a standard of care to detect axillary lymph metastasis in early-stage breast cancer patients with clinically negative axillary lymph nodes. Current SLNB detection modalities comprising a blue dye, a radioactive tracer, or a combination of both have advantages as well as disadvantages. Thus, near-infrared fluorescence imaging using indocyanine green (ICG) has recently been regarded as a novel method that has generated interest for SLNB around the world. However, the lack of appropriate fluorescence imaging systems has hindered further research and wide application of this method. Therefore, we developed novel fluorescence image-guided resection equipment (FIRE) to detect sentinel lymph nodes (SLNs). Moreover, to compare the ICG fluorescence imaging method with the blue dye method and to explore the universal feasibility of the former, a different type of hospital study was conducted. Ninety-nine eligible patients participated in the study at 3 different types of hospitals. After subcutaneous ICG allergy testing, all the patients were subcutaneously injected with methylene blue and ICG into the subareolar area. Consequently, 276 SLNs (range 1-7) were identified in 98 subjects (detection rate: 99%) by using the ICG fluorescence imaging method. In contrast, the blue dye method only identified 202 SLNs (range 1-7) in 91 subjects (detection rate: 91.92%). Besides, the results of the fluorescence imaging method were similar in the 3 hospitals. Our findings indicate the universal feasibility of the ICG fluorescence imaging method for SLNB using the fluorescence image-guided resection equipment in early breast cancer detection. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy

    Science.gov (United States)

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

    2013-01-01

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  3. External optical imaging of freely moving mice with green fluorescent protein-expressing metastatic tumors

    Science.gov (United States)

    Yang, Meng; Baranov, Eugene; Shimada, Hiroshi; Moossa, A. R.; Hoffman, Robert M.

    2000-04-01

    We report here a new approach to genetically engineering tumors to become fluorescence such that they can be imaged externally in freely-moving animals. We describe here external high-resolution real-time fluorescent optical imaging of metastatic tumors in live mice. Stable high-level green flourescent protein (GFP)-expressing human and rodent cell lines enable tumors and metastasis is formed from them to be externally imaged from freely-moving mice. Real-time tumor and metastatic growth were quantitated from whole-body real-time imaging in GFP-expressing melanoma and colon carcinoma models. This GFP optical imaging system is highly appropriate for high throughput in vivo drug screening.

  4. Imaging of Bacterial and Fungal Cells Using Fluorescent Carbon Dots Prepared from Carica papaya Juice.

    Science.gov (United States)

    Kasibabu, Betha Saineelima B; D'souza, Stephanie L; Jha, Sanjay; Kailasa, Suresh Kumar

    2015-07-01

    In this paper, we have described a simple hydrothermal method for preparation of fluorescent carbon dots (C-dots) using Carica papaya juice as a precursor. The synthesized C-dots show emission peak at 461 nm with a quantum yield of 7.0 %. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on E. coli. The C-dots were used as fluorescent probes for imaging of bacterial (Bacillus subtilis) and fungal (Aspergillus aculeatus) cells and emitted green and red colors under different excitation wavelengths, which indicates that the C-dots can be used as a promising material for cell imaging.

  5. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    Science.gov (United States)

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-06-01

    We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures.

  6. Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms.

    Science.gov (United States)

    Wiesmann, Veit; Bergler, Matthias; Palmisano, Ralf; Prinzen, Martin; Franz, Daniela; Wittenberg, Thomas

    2017-03-18

    Manual assessment and evaluation of fluorescent micrograph cell experiments is time-consuming and tedious. Automated segmentation pipelines can ensure efficient and reproducible evaluation and analysis with constant high quality for all images of an experiment. Such cell segmentation approaches are usually validated and rated in comparison to manually annotated micrographs. Nevertheless, manual annotations are prone to errors and display inter- and intra-observer variability which influence the validation results of automated cell segmentation pipelines. We present a new approach to simulate fluorescent cell micrographs that provides an objective ground truth for the validation of cell segmentation methods. The cell simulation was evaluated twofold: (1) An expert observer study shows that the proposed approach generates realistic fluorescent cell micrograph simulations. (2) An automated segmentation pipeline on the simulated fluorescent cell micrographs reproduces segmentation performances of that pipeline on real fluorescent cell micrographs. The proposed simulation approach produces realistic fluorescent cell micrographs with corresponding ground truth. The simulated data is suited to evaluate image segmentation pipelines more efficiently and reproducibly than it is possible on manually annotated real micrographs.

  7. Colocalization of fluorescence and Raman microscopic images for the identification of subcellular compartments: a validation study.

    Science.gov (United States)

    Krauß, Sascha D; Petersen, Dennis; Niedieker, Daniel; Fricke, Inka; Freier, Erik; El-Mashtoly, Samir F; Gerwert, Klaus; Mosig, Axel

    2015-04-07

    A major promise of Raman microscopy is the label-free detailed recognition of cellular and subcellular structures. To this end, identifying colocalization patterns between Raman spectral images and fluorescence microscopic images is a key step to annotate subcellular components in Raman spectroscopic images. While existing approaches to resolve subcellular structures are based on fluorescence labeling, we propose a combination of a colocalization scheme with subsequent training of a supervised classifier that allows label-free resolution of cellular compartments. Our colocalization scheme unveils statistically significant overlapping regions by identifying correlation between the fluorescence color channels and clusters from unsupervised machine learning methods like hierarchical cluster analysis. The colocalization scheme is used as a pre-selection to gather appropriate spectra as training data. These spectra are used in the second part as training data to establish a supervised random forest classifier to automatically identify lipid droplets and nucleus. We validate our approach by examining Raman spectral images overlaid with fluorescence labelings of different cellular compartments, indicating that specific components may indeed be identified label-free in the spectral image. A Matlab implementation of our colocalization software is available at .

  8. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    Science.gov (United States)

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  9. Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy.

    Science.gov (United States)

    Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J; Liu, Chenhai; Xu, Ronald X

    2018-02-01

    We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging.

    Science.gov (United States)

    de Almeida, Rodrigo F M; Loura, Luís M S; Prieto, Manuel

    2009-02-01

    Membrane microdomains and their involvement in cellular processes are part of the current paradigm of biomembranes. However, a better characterization of domains, namely lipid rafts, is needed. In this review, it is shown how the use of time-resolved fluorescence, with the adequate parameters and probes, helps elucidating the type, number, fraction, composition and size of lipid phases and domains in multicomponent model systems. The determination of phase diagrams for lipid mixtures containing sphingolipids and/or cholesterol is exemplified. The use of fluorescence quenching and Förster resonance energy transfer (FRET) are also illustrated. Strategies for studying protein-induced domains are presented. The advantages of using single point microscopic decays and fluorescence lifetime imaging microscopy (FLIM) in systems with three-phase coexistence are explained. Finally, the introduction of FLIM allows studies in live cell membranes, and the nature of the microdomains observed is readily elucidated due to the information retrieved from fluorescence lifetimes.

  11. Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy

    Science.gov (United States)

    Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J.; Liu, Chenhai; Xu, Ronald X.

    2018-02-01

    We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings.

  12. Time-gated fluorescence imaging of different organs in tumor-bearing mice after porphyrin administration

    Science.gov (United States)

    Cubeddu, Rinaldo; Canti, Gianfranco L.; Musolino, Mario; Pifferi, Antonio; Taroni, Paola; Valentini, Gianluca

    1994-01-01

    A time-gated fluorescence imaging technique was applied on tumor-bearing porphyrin-treated mice to study the sensitizer distribution in different organs and tissue types, and to establish whether false positives in the diagnosis of tumors (based on porphyrin fluorescence) could be generated by this localization in healthy tissues. Mice were administered 25 mg/kg body weight (b.w.) of HpD or 5 mg/kg b.w. of PII, and sacrificed 8 hr later. Time- gated fluorescence images were acquired from tumor, skin, muscle, fat, brain, heart, lung, lymph nodes, liver, bowel, spleen, and bone of both treated and untreated animals. Similar results were obtained with HpD and PII. The presence of porphyrins clearly helps the localization of the neoplastic area, which is characterized by the strongest fluorescence in delayed images. An appreciable long-living emission was observed also in bones. With the exception of the bowel, the fluorescence of other organs was weaker and, in untreated mice, short-living.

  13. Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography

    Science.gov (United States)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-04-01

    Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.

  14. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    Directory of Open Access Journals (Sweden)

    Akinori Miyata

    Full Text Available Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10 under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases, photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical

  15. Fluorescent Nanoparticle Imaging Allows Noninvasive Evaluation of Immune Cell Modulation in Esophageal Dysplasia

    Directory of Open Access Journals (Sweden)

    Peiman Habibollahi

    2014-05-01

    Full Text Available Esophageal tumors provide unique challenges and opportunities for developing and testing surveillance imaging technology for different tumor microenvironment components, including assessment of immune cell modulation, with the ultimate goal of promoting early detection and response evaluation. In this context, accessibility through the lumen using a minimally invasive approach provides a means for repetitive evaluation longitudinally by combining fluorescent endoscopic imaging technology with novel fluorescent nanoparticles that are phagocytized by immune cells in the microenvironment. The agent we developed for imaging is synthesized from Feraheme (ferumoxytol, a Food and Drug Administration-approved monocrystaline dextran-coated iron oxide nanoparticle, which we conjugated to a near-infrared fluorochrome, CyAL5.5. We demonstrate a high level of uptake of the fluorescent nanoparticles by myeloid-derived suppressor cells (MDSCs in the esophagus and spleen of L2Cre;p120ctnflox/flox mice. These mice develop esophageal dysplasia leading to squamous cell carcinoma; we have previously demonstrated that dysplastic and neoplastic esophageal lesions in these mice have an immune cell infiltration that is dominated by MDSCs. In the L2Cre;p120ctnflox/flox mice, evaluation of the spleen reveals that nearly 80% of CD45+ leukocytes that phagocytized the nanoparticle were CD11b+Gr1+ MDSCs. After dexamethasone treatment, we observed concordant decreased fluorescent signal from esophageal lesions during fluorescent endoscopy and decreased CyAL5.5-fluorescent-positive immune cell infiltration in esophageal dysplastic lesions by fluorescence-activated cell sorting analysis. Our observations suggest that this translatable technology may be used for the early detection of dysplastic changes and the serial assessment of immunomodulatory therapy and to visualize changes in MDSCs in the esophageal tumor microenvironment.

  16. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels.

    Science.gov (United States)

    Wang, Kemin; He, Xiaoxiao; Yang, XiaoHai; Shi, Hui

    2013-07-16

    Going in vivo, including living cells and the whole body, is very important for gaining a better understanding of the mystery of life and requires specialized imaging techniques. The diversity, composition, and temporal-spatial variation of life activities from cells to the whole body require the analysis techniques to be fast-response, noninvasive, highly sensitive, and stable, in situ and in real-time. Functionalized nanoparticle-based fluorescence imaging techniques have the potential to meet such needs through real-time and noninvasive visualization of biological events in vivo. Functionalized silica nanoparticles (SiNPs) doped with fluorescent dyes appear to be an ideal and flexible platform for developing fluorescence imaging techniques used in living cells and the whole body. We can select and incorporate different dyes inside the silica matrix either noncovalently or covalently. These form the functionalized hybrid SiNPs, which support multiplex labeling and ratiometric sensing in living systems. Since the silica matrix protects dyes from outside quenching and degrading factors, this enhances the photostability and biocompatibility of the SiNP-based probes. This makes them ideal for real-time and long-time tracking. One nanoparticle can encapsulate large numbers of dye molecules, which amplifies their optical signal and temporal-spatial resolution response. Integrating fluorescent dye-doped SiNPs with targeting ligands using various surface modification techniques can greatly improve selective recognition. Along with the endocytosis, functionalized SiNPs can be efficiently internalized into cells for noninvasive localization, assessment, and monitoring. These unique characteristics of functionalized SiNPs substantially support their applications in fluorescence imaging in vivo. In this Account, we summarize our efforts to develop functionalized dye-doped SiNPs for fluorescence imaging at the cell and small animal levels. We first discuss how to design and

  17. The total antioxidant capacity and fluorescence imaging of selected plant leaves commonly consumed in Brunei Darussalam

    Science.gov (United States)

    Watu, Aswani; Metussin, Nurzaidah; Yasin, Hartini M.; Usman, Anwar

    2018-02-01

    We investigated the total antioxidant capacity and fluorescence imaging of several selected plants, namely Centella asiatica, Aidia borneensis and Anacardium occidentale, which are grown and traditionally consumed in Brunei Darussalam. The total antioxidant capacities of aqueous-methanolic infusions of their leaves were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, and microscopic fluorescence images were measured to identify the fluorescent substances bound in the leaves. We found that the total antioxidant capacity of their infusions is estimated to be 150, 25, 15 folds, respectively, lower compared with that of the standard gallic acid. Accordingly, we demonstrated that the relative antioxidant activity of young and matured leaves agrees with the intensity of red light emission of their fresh leaves upon UV excitation. Thus, this non-invasive spectroscopic method can be potentially utilized to indicate the antioxidants in plant leaves qualitatively.

  18. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu; Gamboa, E. J. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Keiter, P. A.; Fein, J. R.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J.-E.; Wan, W. C.; Drake, R. P. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Biener, M. M.; Fournier, K. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Streit, J. [Schafer Corporation, Livermore, California 94551 (United States)

    2014-11-15

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-α x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

  19. Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples.

    Science.gov (United States)

    Chowdhury, Shwetadwip; Dhalla, Al-Hafeez; Izatt, Joseph

    2012-08-01

    Many biological structures of interest are beyond the diffraction limit of conventional microscopes and their visualization requires application of super-resolution techniques. Such techniques have found remarkable success in surpassing the diffraction limit to achieve sub-diffraction limited resolution; however, they are predominantly limited to fluorescent samples. Here, we introduce a non-fluorescent analogue to structured illumination microscopy, termed structured oblique illumination microscopy (SOIM), where we use simultaneous oblique illuminations of the sample to multiplex high spatial-frequency content into the frequency support of the system. We introduce a theoretical framework describing how to demodulate this multiplexed information to reconstruct an image with a spatial-frequency support exceeding that of the system's classical diffraction limit. This approach allows enhanced-resolution imaging of non-fluorescent samples. Experimental confirmation of the approach is obtained in a reflection test target with moderate numerical aperture.

  20. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery

    Science.gov (United States)

    Li, Shengliang; Hu, Kelei; Cao, Weipeng; Sun, Yun; Sheng, Wang; Li, Feng; Wu, Yan; Liang, Xing-Jie

    2014-10-01

    To address current medical challenges, there is an urgent need to develop drug delivery systems with multiple functions, such as simultaneous stimuli-responsive drug release and real-time imaging. Biocompatible polymers have great potential for constructing smart multifunctional drug-delivery systems through grafting with other functional ligands. More importantly, novel biocompatible polymers with intrinsic fluorescence emission can work as theranostic nanomedicines for real-time imaging and drug delivery. Herein, we developed a highly fluorescent nanoparticle based on a phenylboronic acid-modified poly(lactic acid)-poly(ethyleneimine)(PLA-PEI) copolymer loaded with doxorubicin (Dox) for intracellular imaging and pH-responsive drug delivery. The nanoparticles exhibited superior fluorescence properties, such as fluorescence stability, no blinking and excitation-dependent fluorescence behavior. The Dox-loaded fluorescent nanoparticles showed pH-responsive drug release and were more effective in suppressing the proliferation of MCF-7 cells. In addition, the biocompatible fluorescent nanoparticles could be used as a tool for intracellular imaging and drug delivery, and the process of endosomal escape was traced by real-time imaging. These pH-responsive and biocompatible fluorescent polymer nanoparticles, based on phenylboronic acid, are promising tools for intracellular imaging and drug delivery.To address current medical challenges, there is an urgent need to develop drug delivery systems with multiple functions, such as simultaneous stimuli-responsive drug release and real-time imaging. Biocompatible polymers have great potential for constructing smart multifunctional drug-delivery systems through grafting with other functional ligands. More importantly, novel biocompatible polymers with intrinsic fluorescence emission can work as theranostic nanomedicines for real-time imaging and drug delivery. Herein, we developed a highly fluorescent nanoparticle based on a

  1. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging

    DEFF Research Database (Denmark)

    Trampe, Erik Christian Løvbjerg; Kolbowski, J.; Schreiber, U.

    2011-01-01

    We present a new system for microscopic multicolour variable chlorophyll fluorescence imaging of aquatic phototrophs. The system is compact and portable and enables microscopic imaging of photosynthetic performance of individual cells and chloroplasts using different combinations of blue, green, ...

  2. Combined nonlinear laser imaging (two-photon excitation fluorescence, second and third-harmonic generation, and fluorescence lifetime imaging microscopies) in ovarian tumors

    Science.gov (United States)

    Adur, J.; Pelegati, V. B.; de Thomaz, A. A.; Bottcher-Luiz, F.; Andrade, L. A. L. A.; Almeida, D. B.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    We applied Two-photon Excited Fluorescence (TPEF), Second/Third Harmonic Generation (SHG and THG) and Fluorescence Lifetime Imaging (FLIM) Non Linear Optics (NLO) Laser-Scanning Microscopy within the same imaging platform to evaluate their use as a diagnostic tool in ovarian tumors. We assess of applicability of this multimodal approach to perform a pathological evaluation of serous and mucinous tumors in human samples. The combination of TPEF-SHG-THG imaging provided complementary information about the interface epithelium/stromal, such as the transformation of epithelium surface (THG) and the overall fibrillar tissue architecture (SHG). The fact that H&E staining is the standard method used in clinical pathology and that the stored samples are usually fixed makes it important a re-evaluation of these samples with NLO microscopy to compare new results with a library of already existing samples. FLIM, however, depends on the chemical environment around the fluorophors that was completely changed after fixation; therefore it only makes sense in unstained samples. Our FLIM results in unstained samples demonstrate that it is possible to discriminate healthy epithelia from serous or mucinous epithelia. Qualitative and quantitative analysis of the different imaging modalities used showed that multimodal nonlinear microscopy has the potential to differentiate between cancerous and healthy ovarian tissue.

  3. The potential of L-shell X-ray fluorescence CT (XFCT) for molecular imaging.

    Science.gov (United States)

    Bazalova-Carter, Magdalena

    2015-01-01

    X-ray fluorescence CT (XFCT), a novel modality proposed for high-sensitivity high-resolution molecular imaging of probes labelled with a high atomic-number element, has been performed with high-energy K-shell X-rays. XFCT performed with low-energy L-shell X-rays could, in principle, result in an increase of XFCT imaging sensitivity; however, the significant L-shell X-ray attenuation limits its use for imaging of small objects. This commentary discusses the advantages and drawbacks of L-shell XFCT imaging.

  4. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes

    Science.gov (United States)

    Jeong, Chan Jin; Roy, Arup Kumer; Kim, Sung Han; Lee, Jung-Eun; Jeong, Ji Hoon; Insik; Park, Sung Young

    2014-11-01

    Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04805a

  5. Coherent fiber bundle based integrated photoacoustic, ultrasound and fluorescence imaging (PAUSFI) for endoscopy and diagnostic bio-imaging applications

    International Nuclear Information System (INIS)

    James, Joseph; Murukeshan, V M; Sathiyamoorthy, K; Woh, Lye Sun

    2014-01-01

    Recent research in diagnostic imaging and sensing focuses on deriving complementary information from the diagnosed site. From that perspective it is imperative to devise new imaging platforms where multiple distinct modalities are used either simultaneously or sequentially. Increased efforts have been devoted towards establishing such multi-modal imaging systems, which house and operate more than two imaging modalities within a single instrumentation set-up. In this context, we propose a novel multi-modal imaging platform using non-ionizing radiation that has been successfully conceptualized, established and experimentally demonstrated. This proposed GRIN lensed fiber-optic microscope and linear array transducer based PAUSFI (photoacoustic, ultrasound and fluorescence imaging) system makes use of non-ionizing radiation sources to map optical and acoustic heterogeneities (complementary information) along the depth of the tissue at multi-scale resolution (microscopic to mesoscopic). The fiber-optic assembly enables the system to perform minimally invasive remote light delivery and high resolution fluorescence and photoacoustic imaging of inaccessible areas of intact tissues or intra body cavities. It is expected that the proposed multi-modal imaging system could open up niches in bio-imaging research in the near future. (paper)

  6. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    Science.gov (United States)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  7. Fluorescence hyperspectral imaging technique for the foreign substance detection on fresh-cut lettuce

    Science.gov (United States)

    Nondestructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed in order to detect worms on fresh-cut lettuce. The optimal wavebands for detecting worms on fresh-cut lettuce were investigated using the one-way ANOVA analysis and correlation analysis. The worm detec...

  8. Tracking viral movement in plants by means of chlorophyll fluorescence imaging

    Czech Academy of Sciences Publication Activity Database

    Pineda, M.; Olejníčková, Julie; Cséfalvay, Ladislav; Baron, M.

    2011-01-01

    Roč. 168, č. 17 (2011), s. 2035-2040 ISSN 0176-1617 R&D Projects: GA ČR GA522/09/1565 Institutional research plan: CEZ:AV0Z60870520 Keywords : biotic stress * chlorophyll fluorescence imaging * Nicotiana benthamiana * pepper mild mottle virus * Viral movement Subject RIV: BO - Biophysics Impact factor: 2.791, year: 2011

  9. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy.

    Science.gov (United States)

    Chen, Tao; Lu, Feng; Streets, Aaron M; Fei, Peng; Quan, Junmin; Huang, Yanyi

    2013-06-07

    We directly observe non-fluorescent nanodiamonds in living cells using transient absorption microscopy. This label-free technology provides a novel modality to study the dynamic behavior of nanodiamonds inside the cells with intrinsic three-dimensional imaging capability. We apply this method to capture the cellular uptake of nanodiamonds under various conditions, confirming the endocytosis mechanism.

  10. Polymerized LB Films Imaged with a Combined Atomic Force Microscope-Fluorescence Microscope

    NARCIS (Netherlands)

    Putman, C.A.J.; Putman, Constant A.J.; Hansma, Helen G.; Gaub, Hermann E.; Hansma, Paul K.

    1992-01-01

    The first results obtained with a new stand-alone atomic force microscope (AFM) integrated with a standard Zeiss optical fluorescence microscope are presented. The optical microscope allows location and selection of objects to be imaged with the high-resolution AFM. Furthermore, the combined

  11. Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence

    Science.gov (United States)

    Zeng, Yan; Yan, Bo; Sun, Qiqi; Teh, Seng Khoon; Zhang, Wei; Wen, Zilong; Qu, Jianan Y.

    2013-04-01

    We demonstrate that two-photon excited endogenous fluorescence enables label-free morphological and functional imaging of various human blood cells. Specifically, we achieved distinctive morphological contrast to visualize morphology of important leukocytes, such as polymorphonuclear structure of granulocyte and mononuclear feature of agranulocyte, through the employment of the reduced nicotinamide adenine dinucleotide (NADH) fluorescence signals. In addition, NADH fluorescence images clearly reveal the morphological transformation process of neutrophils during disease-causing bacterial infection. Our findings also show that time-resolved NADH fluorescence can be potentially used for functional imaging of the phagocytosis of pathogens by leukocytes (neutrophils) in vivo. In particular, we found that free-to-bound NADH ratios measured in infected neutrophils increased significantly, which is consistent with a previous study that the energy consumed in the phagocytosis of neutrophils is mainly generated through the glycolysis pathway that leads to the accumulation of free NADH. Future work will focus on further developing and applying label-free imaging technology to investigate leukocyte-related diseases and disorders.

  12. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager.

    Science.gov (United States)

    Pallotta, Olivia J; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  13. Near infrared fluorescence imaging of EGFR expression in vivo using IRDye800CW-nimotuzumab

    Science.gov (United States)

    Bernhard, Wendy; El-Sayed, Ayman; Barreto, Kris; Gonzalez, Carolina; Hill, Wayne; Parada, Angel Casaco; Fonge, Humphrey; Geyer, C. Ronald

    2018-01-01

    Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody that is approved in many countries for the treatment of EGFR-positive cancers. Near infrared (NIR) fluorescent dye-labeled antibodies represent an attractive class of image-guided surgical probes because of their high specificity, tumor uptake, and low dissociation from tumor cells that express the antigen. In this study, we developed a NIR fluorescent dye-labeled nimotuzumab immunoconjugate, IRDye800CW-nimotuzumab, and evaluated in vitro binding with EGFR-positive cells, in vivo tumor uptake by NIR fluorescent imaging, and ex vivo biodistribution. There was no difference in binding between nimotuzumab and IRDye800CW-nimotuzumab to EGFR-positive cells. In mice bearing EGFR-positive xenografts, IRDye800CW-nimotuzumab uptake peaked at 4 days post injection and slowly decreased thereafter with high levels of accumulation still observed at 28 days post injection. In EGFR-positive xenografts, IRDye800CW-nimotuzumab showed more than 2-fold higher uptake in tumors compared to IRDye800CW-cetuximab. In addition, liver uptake of IRDye800CW-nimotuzumab was two-fold lower than cetuximab. The lower liver uptake of IRDye800CW-nimotuzumab could have implications on the selected dose for clinical trials of the immunoconjugate. In summary, this study shows that nimotuzumab is a good candidate for NIR fluorescent imaging and image-guided surgery. PMID:29464066

  14. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager

    Science.gov (United States)

    Pallotta, Olivia J.; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  15. pH within pores in plant fiber cell walls assessed by Fluorescence Ratio Imaging

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Thygesen, Lisbeth Garbrecht; Johansen, Katja Salomon

    2013-01-01

    The pH within cell wall pores of filter paper fibers and hemp fibers was assessed by Fluorescence Ratio Imaging (FRIM). It was found that the Donnan effect affected the pH measured within the fibers. When the conductivity of the added liquid was low (0. 7 mS), pH values were lower within the cell...

  16. Airborne laser induced fluorescence imaging. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    Laser-Induced Fluorescence (LIF) was demonstration as part of the Fernald Environmental Management Project (FEMP) Plant 1 Large Scale Demonstration and Deployment Project (LSDDP) sponsored by the US Department of Energy (DOE) Office of Science and Technology, Deactivation and Decommissioning Focus Area located at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The demonstration took place on November 19, 1996. In order to allow the contaminated buildings undergoing deactivation and decommissioning (D and D) to be opened to the atmosphere, radiological surveys of floors, walls and ceilings must take place. After successful completion of the radiological clearance survey, demolition of the building can continue. Currently, this process is performed by collecting and analyzing swipe samples for radiological analysis. Two methods are used to analyze the swipe samples: hand-held frisker and laboratory analysis. For the purpose of this demonstration, the least expensive method, swipe samples analyzed by hand-held frisker, is the baseline technology. The objective of the technology demonstration was to determine if the baseline technology could be replaced using LIF

  17. A new self-made digital slide scanner and microscope for imaging and quantification of fluorescent microspheres

    DEFF Research Database (Denmark)

    Henning, William; Bjerglund Andersen, Julie; Højgaard, Liselotte

    2015-01-01

    Objective: A low-cost microscope slide scanner was constructed for the purpose of digital imaging of newborn piglet brain tissue and to quantify fluorescent microspheres in tissue. Methods: Using a standard digital single-lens reflex (DSLR) camera, fluorescent imaging of newborn piglet brain tiss...

  18. Characterization of E coli biofim formations on baby spinach leaf surfaces using hyperspectral fluorescence imaging

    Science.gov (United States)

    Cho, Hyunjeong; Baek, Insuck; Oh, Mirae; Kim, Sungyoun; Lee, Hoonsoo; Kim, Moon S.

    2017-05-01

    Bacterial biofilm formed by pathogens on fresh produce surfaces is a food safety concern because the complex extracellular matrix in the biofilm structure reduces the reduction and removal efficacies of washing and sanitizing processes such as chemical or irradiation treatments. Therefore, a rapid and nondestructive method to identify pathogenic biofilm on produce surfaces is needed to ensure safe consumption of fresh, raw produce. This research aimed to evaluate the feasibility of hyperspectral fluorescence imaging for detecting Escherichia.coli (ATCC 25922) biofilms on baby spinach leaf surfaces. Samples of baby spinach leaves were immersed and inoculated with five different levels (from 2.6x104 to 2.6x108 CFU/mL) of E.coli and stored at 4°C for 24 h and 48 h to induce biofilm formation. Following the two treatment days, individual leaves were gently washed to remove excess liquid inoculums from the leaf surfaces and imaged with a hyperspectral fluorescence imaging system equipped with UV-A (365 nm) and violet (405 nm) excitation sources to evaluate a spectral-image-based method for biofilm detection. The imaging results with the UV-A excitation showed that leaves even at early stages of biofilm formations could be differentiated from the control leaf surfaces. This preliminary investigation demonstrated the potential of fluorescence imaging techniques for detection of biofilms on leafy green surfaces.

  19. Water Soluble Fluorescent Carbon Nanodots from Biosource for Cells Imaging

    Directory of Open Access Journals (Sweden)

    Kumud Malika Tripathi

    2017-01-01

    Full Text Available Carbon nanodots (CNDs derived from a green precursor, kidney beans, was synthesized with high yield via a facile pyrolysis technique. The CND material was easily modified through simple oxidative treatment with nitric acid, leading to a high density “self-passivated” water soluble form (wsCNDs. The synthesized wsCNDs have been extensively characterized by using various microscopic and spectroscopic techniques and were crystalline in nature. The highly carboxylated wsCNDs possessed tunable-photoluminescence emission behavior throughout the visible region of the spectrum, demonstrating their application for multicolor cellular imaging of HeLa cells. The tunable-photoluminescence properties of “self-passivated” wsCNDs make them a promising candidate as a probe in biological cell-imaging applications.

  20. Exploiting multimode waveguides for pure fibre based fluorescence imaging

    Science.gov (United States)

    Čižmár, TomáÅ.¡; Dholakia, Kishan

    2013-03-01

    There has been an immense drive in modern microscopy towards miniaturisation and _bre based technology. This has been necessitated by the need to access hostile or difficult environments particulalrly in-situ and in-vivo. Strategies to date have included the use of specialist fibres and miniaturised scanning systems accompanied by ingenious microfabricated lenses. In parallel recent studies of randomized light fields and their holographic control opened up new ways for imaging. We present a novel approach for this field by utilising disordered light within a standard multimode optical fibre for minimally invasive lenseless microscopy and optical mode conversion. We demonstrate scanning uorescence microscopy at acquisition rates allowing observation of dynamic processes such as Brownian motion of mesoscopic particles. As the sample plane can be defined at any distance from the fibre facet, we eliminate the need for complex or elaborate focusing optics (e.g. miniaturized objectives, GRIN lenses) and instead reconfigure the system dynamically to image different axial planes. Furthermore, we show how such control can realise a new form of mode converter and generate various types of advanced light fields such as propagation-invariant beams and optical vortices. These may be useful for future fibre based implementations of super-resolution or light sheet microscopy. To the best of our knowledge, this technology represents the narrowest possible image guiding system based on light propagation.

  1. Contraction of gut smooth muscle cells assessed by fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Yohei Tokita

    2015-03-01

    Full Text Available Here we discuss the development of a novel cell imaging system for the evaluation of smooth muscle cell (SMC contraction. SMCs were isolated from the circular and longitudinal muscular layers of mouse small intestine by enzymatic digestion. SMCs were stimulated by test agents, thereafter fixed in acrolein. Actin in fixed SMCs was stained with phalloidin and cell length was determined by measuring diameter at the large end of phalloidin-stained strings within the cells. The contractile response was taken as the decrease in the average length of a population of stimulated-SMCs. Various mediators and chemically identified compounds of daikenchuto (DKT, pharmaceutical-grade traditional Japanese prokinetics, were examined. Verification of the integrity of SMC morphology by phalloidin and DAPI staining and semi-automatic measurement of cell length using an imaging analyzer was a reliable method by which to quantify the contractile response. Serotonin, substance P, prostaglandin E2 and histamine induced SMC contraction in concentration-dependent manner. Two components of DKT, hydroxy-α-sanshool and hydroxy-β-sanshool, induced contraction of SMCs. We established a novel cell imaging technique to evaluate SMC contractility. This method may facilitate investigation into SMC activity and its role in gastrointestinal motility, and may assist in the discovery of new prokinetic agents.

  2. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging.

    Science.gov (United States)

    Petryayeva, Eleonora; Algar, W Russ; Medintz, Igor L

    2013-03-01

    Semiconductor quantum dots (QDs) are brightly luminescent nanoparticles that have found numerous applications in bioanalysis and bioimaging. In this review, we highlight recent developments in these areas in the context of specific methods for fluorescence spectroscopy and imaging. Following a primer on the structure, properties, and biofunctionalization of QDs, we describe select examples of how QDs have been used in combination with steady-state or time-resolved spectroscopic techniques to develop a variety of assays, bioprobes, and biosensors that function via changes in QD photoluminescence intensity, polarization, or lifetime. Some special attention is paid to the use of Förster resonance energy transfer-type methods in bioanalysis, including those based on bioluminescence and chemiluminescence. Direct chemiluminescence, electrochemiluminescence, and charge transfer quenching are similarly discussed. We further describe the combination of QDs and flow cytometry, including traditional cellular analyses and spectrally encoded barcode-based assay technologies, before turning our attention to enhanced fluorescence techniques based on photonic crystals or plasmon coupling. Finally, we survey the use of QDs across different platforms for biological fluorescence imaging, including epifluorescence, confocal, and two-photon excitation microscopy; single particle tracking and fluorescence correlation spectroscopy; super-resolution imaging; near-field scanning optical microscopy; and fluorescence lifetime imaging microscopy. In each of the above-mentioned platforms, QDs provide the brightness needed for highly sensitive detection, the photostability needed for tracking dynamic processes, or the multiplexing capacity needed to elucidate complex systems. There is a clear synergy between advances in QD materials and spectroscopy and imaging techniques, as both must be applied in concert to achieve their full potential.

  3. Monosodium glutamate derived tricolor fluorescent carbon nanoparticles for cell-imaging application.

    Science.gov (United States)

    Zheng, Nannan; Ding, Sha; Zhou, Xingping

    2016-06-01

    Fluorescent carbon nanoparticle (FCN) is a new type of carbon-based materials. Because of its wide raw material sources, excellent optical properties and good biocompatibility, FCN is getting more and more attentions. However, its synthesis from resources at low cost under mild conditions is still a challenge. Here we report a novel and simple method derived from monosodium glutamate carbonization to make tricolor fluorescent carbon nanoparticles with an average size below 10nm, a high yield up to 35.2% based on the carbon content in the resource, a long life-time of 3.71ns, and a high fluorescence quantum yield up to 51.5% by using quinine sulfate as the standard substance. We discovered that the fluorescent stability of the FCNs was very excellent under UV irradiation for hours in aqueous solutions of pH ranged from 2.0 to 9.0. The cell viability tested under a pretty high concentration of FCNs indicated their safety for biological applications. Based on their high fluorescence quantum efficiency and the advantages mentioned above, these FCNs were then used for cell imaging and exhibited a perfect performance under 3 kinds of excitation bands (UV, blue, and green lights). Thus, they can be practically applied to immune labeling and imaging in vivo in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. CVD grown 2D MoS2 layers: A photoluminescence and fluorescence lifetime imaging study

    International Nuclear Information System (INIS)

    Oezden, Ayberk; Madenoglu, Buesra; Sar, Hueseyin; Ay, Feridun; Perkgoez, Nihan Kosku; Yeltik, Aydan; Sevik, Cem

    2016-01-01

    In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS 2 . μ-Raman, μ-photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS 2 films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain-boundaries. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Demonstration of plant fluorescence by imaging technique and Intelligent FluoroSensor

    Science.gov (United States)

    Lenk, Sándor; Gádoros, Patrik; Kocsányi, László; Barócsi, Attila

    2015-10-01

    Photosynthesis is a process that converts carbon-dioxide into organic compounds, especially into sugars, using the energy of sunlight. The absorbed light energy is used mainly for photosynthesis initiated at the reaction centers of chlorophyll-protein complexes, but part of it is lost as heat and chlorophyll fluorescence. Therefore, the measurement of the latter can be used to estimate the photosynthetic activity. The basic method, when illuminating intact leaves with strong light after a dark adaptation of at least 20 minutes resulting in a transient change of fluorescence emission of the fluorophore chlorophyll-a called `Kautsky effect', is demonstrated by an imaging setup. The experimental kit includes a high radiant blue LED and a CCD camera (or a human eye) equipped with a red transmittance filter to detect the changing fluorescence radiation. However, for the measurement of several fluorescence parameters, describing the plant physiological processes in detail, the variation of several excitation light sources and an adequate detection method are needed. Several fluorescence induction protocols (e.g. traditional Kautsky, pulse amplitude modulated and excitation kinetic), are realized in the Intelligent FluoroSensor instrument. Using it, students are able to measure different plant fluorescence induction curves, quantitatively determine characteristic parameters and qualitatively interpret the measured signals.

  6. A visible-light-excited fluorescence method for imaging protein crystals without added dyes

    Science.gov (United States)

    Lukk, Tiit; Gillilan, Richard E.; Szebenyi, Doletha M. E.; Zipfel, Warren R.

    2016-01-01

    Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experiments where crystals are cooled to 100 K with a cryostream. In addition to the non-damaging excitation wavelength and low laser power required for imaging, the method can also serve a useful role for differentiating protein crystals from salt crystals in screening trays. PMID:26937240

  7. Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    Mély Yves

    2008-09-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Results Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization. Conclusion We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.

  8. Combined phase and X-Ray fluorescence imaging at the sub-cellular level

    International Nuclear Information System (INIS)

    Kosior, Ewelina

    2013-01-01

    This work presents some recent developments in the field of hard X-ray imaging applied to biomedical research. As the discipline is evolving quickly, new questions appear and the list of needs becomes bigger. Some of them are dealt with in this manuscript. It has been shown that the ID22NI beamline of the ESRF can serve as a proper experimental setup to investigate diverse aspects of cellular research. Together with its high spatial resolution, high flux and high energy range the experimental setup provides bigger field of view, is less sensitive to radiation damages (while taking phase contrast images) and suits well chemical analysis with emphasis on endogenous metals (Zn, Fe, Mn) but also with a possibility for exogenous one's like these found in nanoparticles (Au, Pt, Ag) study. Two synchrotron-based imaging techniques, fluorescence and phase contrast imaging were used in this research project. They were correlated with each other on a number of biological cases, from bacteria E.coli to various cells (HEK 293, PC12, MRC5VA, red blood cells). The explorations made in the chapter 5 allowed preparation of more established and detailed analysis, described in the next chapter where both techniques, X-ray fluorescence and phase contrast imaging, were exploited in order to access absolute metal projected mass fraction in a whole cell. The final image presents for the first time true quantitative information at the sub-cellular level, not biased by the cell thickness. Thus for the first time a fluorescence map serves as a complete quantitative image of a cell without any risk of misinterpretation. Once both maps are divided by each other pixel by pixel (fluorescence map divided by the phase map) they present a complete and final result of the metal (Zn in this work) projected mass fraction in ppm of dry weight. For the purpose of this calculation the analysis was extended to calibration (non-biological) samples. Polystyrene spheres of a known diameter and known

  9. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    Science.gov (United States)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  10. Leaf Gas Exchange and Chlorophyll a Fluorescence Imaging of Rice Leaves Infected with Monographella albescens.

    Science.gov (United States)

    Tatagiba, Sandro Dan; DaMatta, Fábio Murilo; Rodrigues, Fabrício Ávila

    2015-02-01

    This study was intended to analyze the photosynthetic performance of rice leaf blades infected with Monographella albescens by combining chlorophyll (Chl) a fluorescence images with gas exchange and photosynthetic pigment pools. The net CO2 assimilation rate, stomatal conductance, transpiration rate, total Chl and carotenoid pools, and Chl a/b ratio all decreased but the internal CO2 concentration increased in the inoculated plants compared with their noninoculated counterparts. The first detectable changes in the images of Chl a fluorescence from the leaves of inoculated plants were already evident at 24 h after inoculation (hai) and increased dramatically as the leaf scald lesions expanded. However, these changes were negligible for the photosystem II photochemical efficiency (Fv/Fm) at 24 hai, in contrast to other Chl fluorescence traits such as the photochemical quenching coefficient, yield of photochemistry, and yield for dissipation by downregulation; which, therefore, were much more sensitive than the Fv/Fm ratio in assessing the early stages of fungal infection. It was also demonstrated that M. albescens was able to impair the photosynthetic process in both symptomatic and asymptomatic leaf areas. Overall, it was proven that Chl a fluorescence imaging is an excellent tool to describe the loss of functionality of the photosynthetic apparatus occurring in rice leaves upon infection by M. albescens.

  11. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters

    Science.gov (United States)

    Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei

    2013-01-01

    Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.

  12. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging.

    Science.gov (United States)

    Vinegoni, Claudio; Fumene Feruglio, Paolo; Brand, Christian; Lee, Sungon; Nibbs, Antoinette E; Stapleton, Shawn; Shah, Sunil; Gryczynski, Ignacy; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2017-07-01

    The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.

  13. Ambient light effect on the uniformity of image intensifier fluorescence screen brightness

    Science.gov (United States)

    Qiu, YaFeng; Chang, BenKang; Sun, LianJun; Zhang, JunJu; Gao, YouTang; Fu, RongGuo

    2008-02-01

    When testing the uniformity of Image intensifier fluorescence screen brightness, the million scale CCD brightness meter is used. Due to the distance between the meter and fluorescence screen, the effect of ambient light on the testing result is essential to the design of testing system. Test with super second generation tube, input a constant voltage to insure the fluorescence screen brightness to be constant. Collect the brightness of the same fluorescence screen in different ambient luminance environment of 1×102Lx, 1×101Lx, 1Lx, 1×10-1Lx, 1×10-2Lx, 1×10-3Lx. Study the results with software MATLAB. It is concluded as: In ambient luminance environment of 1×10-1Lx the CCD has the best result. The testing result in ambient luminance environment of above 1×103Lx show untrue image. The testing result in ambient luminance environment of below 1×10-3Lx shows its own noise image and is unbelievable either.

  14. Improved optical sub-systems for intraoperative near-infrared fluorescence imaging

    Science.gov (United States)

    Gioux, Sylvain; Degrand, Alec M.; Lee, Deborah S.; Yazdanfar, Siavash; Idoine, John D.; Lomnes, Stephen J.; Frangioni, John V.

    2005-11-01

    Near-infrared light propagation through living tissue provides promising opportunities for the development of non-invasive imaging techniques for human care. We have developed a Fluorescence-Assisted Resection and Exploration (FLARE) imaging system for surgery. The FLARE system uses invisible near-infrared light to help the surgeon visualize critical structures intraoperatively and in real-time. We present here the continued optimization of our imaging system from a research prototype to an efficient and ergonomic tool to be used during human surgery. New, hands-free operation enables the surgeon to zoom, focus, recall and save images through a footswitch. A LabVIEW curve-fitting algorithm, in combination with stepper motor control, provides auto-focus capability. Cardiac and/or respiratory gating minimizes motion artifacts of moving objects in the surgical field, and permits in-focus imaging during long fluorescence integration times. Automated subtraction of the near-infrared fluorescence signal from background reflections minimizes the effect of ambient illumination and improves the contrast to noise ratio with only moderate effects on intensity precision. Taken together, this study improves several optical components of the FLARE system, and helps ready it for human clinical testing.

  15. Hyperbranched conjugated polyelectrolyte for dual-modality fluorescence and magnetic resonance cancer imaging.

    Science.gov (United States)

    Ding, Dan; Wang, Guan; Liu, Jianzhao; Li, Kai; Pu, Kan-Yi; Hu, Yong; Ng, Jason C Y; Tang, Ben Zhong; Liu, Bin

    2012-11-19

    Herein is reported the synthesis of gadolinium ion (Gd(III))-chelated hyperbranched conjugated polyelectrolyte (HCPE-Gd) and its application in fluorescence and magnetic resonance (MR) dual imaging in live animals. The synthesized HCPE-Gd forms nanospheres with an average diameter of ∼42 nm measured by laser light scattering and a quantum yield of 10% in aqueous solution. The absorption spectrum of HCPE-Gd has two maxima at 318 and 417 nm, and its photoluminescence maximum centers at 591 nm. Confocal laser scanning microscopy studies indicate that the HCPE-Gd is internalized in MCF-7 cancer cell cytoplasm with good photostability and low cytotoxicity. Further fluorescence and MR imaging studies on hepatoma H22 tumor-bearing mouse model reveal that HCPE-Gd can serve as an efficient optical/MR dual-modal imaging nanoprobe for in vivo cancer diagnosis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Three-dimensional super-resolution imaging for fluorescence emission difference microscopy

    Directory of Open Access Journals (Sweden)

    Shangting You

    2015-08-01

    Full Text Available We propose a method theoretically to break the diffraction limit and to improve the resolution in all three dimensions for fluorescence emission difference microscopy. We produce two kinds of hollow focal spot by phase modulation. By incoherent superposition, these two kinds of focal spot yield a 3D hollow focal spot. The optimal proportion of these two kinds of spot is given in the paper. By employing 3D hollow focal spot, super-resolution image can be yielded by means of fluorescence emission difference microscopy, with resolution enhanced both laterally and axially. According to computation result, size of point spread function of three-dimensional super-resolution imaging is reduced by about 40% in all three spatial directions with respect to confocal imaging.

  17. Diffraction enhanced imaging and x-ray fluorescence microtomography for analyzing biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, H.S.; Pereira, G.R.; Lopes, R.T. [Laboratorio de Instrumentacao Nuclear-COPPE/UFRJ-RJ (Brazil); Anjos, M.J. [Instituto de Fisica-UERJ-RJ (Brazil); Faria, P. [Instituto Nacional do Cancer-INCa-RJ (Brazil); Kellermann, G.; Perez, C.A. [Laboratorio Nacional de Luz Sincrotron-Campinas-SP (Brazil); Tirao, G. [Faculdad de Mat. Astronomia y Fisica (FAMAF), UNC. Cordoba (Argentina); Mazzaro, I. [Laboratorio de Optica de Raios X e Instrumentacao-UFPR-Curitiba-PR (Brazil); Giles, C. [Laboratorio de Cristalografia Aplicada e Raios X-UNICAMP-Campinas-SP (Brazil)

    2007-07-15

    In this work, breast tissue samples were investigated in order to verify the distribution of certain elements by x-ray fluorescence computed tomography (XRFCT) correlated with the characteristics and pathology of each tissue observed by diffraction enhanced imaging (DEI). The DEI system can show details in low attenuation tissues. It is based on the contrast imaging obtained by extinction, diffraction and refraction characteristics and can improve reduction in false positive and false negative diagnoses. XRFCT allows mapping of all elements within the sample, since even a minute fluorescence signal can be detected. DEI imaging techniques revealed the complex structure of the disease, confirmed by the histological section, and showed microstructures in all planes of the sample. The XRFCT showed the distribution of Zn, Cu and Fe at higher concentration. (authors)

  18. Synthesis and cell imaging applications of fluorescent mono/di/tri-heterocyclyl-2,6-dicyanoanilines.

    Science.gov (United States)

    Pisal, Mahesh M; Annadate, Ritesh A; Athalye, Meghana C; Kumar, Deepak; Chavan, Subhash P; Sarkar, Dhiman; Borate, Hanumant B

    2017-02-15

    Synthesis of 3,4,5-triheterocyclyl-2,6-dicyanoanilines, starting from heterocyclic aldehydes and 1,2-diheterocycle-substituted ethanones, is described. 2,6-Dicyanoanilines with one or two heterocyclic substituents have also been synthesized. It was found that some of these molecules have selective cell-staining properties useful for cell imaging applications. The compounds 1g, 10f and 11 were found to stain cytoplasm of the cells in contact but not the nucleus while the compound 12 showed affinity to apoptotic cells resulting in blue fluorescence. The cell imaging results with compound 12 were similar to Annexin V-FITC, a known reagent containing recombinant Annexin V conjugated to green-fluorescent FITC dye, used for detection of apoptotic cells. These compounds were found to be non-cytotoxic and have potential application as cell imaging agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    Energy Technology Data Exchange (ETDEWEB)

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

    2007-02-01

    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  20. Enhanced simulator software for image validation and interpretation for multimodal localization super-resolution fluorescence microscopy

    Science.gov (United States)

    Erdélyi, Miklós; Sinkó, József; Gajdos, Tamás.; Novák, Tibor

    2017-02-01

    Optical super-resolution techniques such as single molecule localization have become one of the most dynamically developed areas in optical microscopy. These techniques routinely provide images of fixed cells or tissues with sub-diffraction spatial resolution, and can even be applied for live cell imaging under appropriate circumstances. Localization techniques are based on the precise fitting of the point spread functions (PSF) to the measured images of stochastically excited, identical fluorescent molecules. These techniques require controlling the rate between the on, off and the bleached states, keeping the number of active fluorescent molecules at an optimum value, so their diffraction limited images can be detected separately both spatially and temporally. Because of the numerous (and sometimes unknown) parameters, the imaging system can only be handled stochastically. For example, the rotation of the dye molecules obscures the polarization dependent PSF shape, and only an averaged distribution - typically estimated by a Gaussian function - is observed. TestSTORM software was developed to generate image stacks for traditional localization microscopes, where localization meant the precise determination of the spatial position of the molecules. However, additional optical properties (polarization, spectra, etc.) of the emitted photons can be used for further monitoring the chemical and physical properties (viscosity, pH, etc.) of the local environment. The image stack generating program was upgraded by several new features, such as: multicolour, polarization dependent PSF, built-in 3D visualization, structured background. These features make the program an ideal tool for optimizing the imaging and sample preparation conditions.

  1. Multi-scale fluorescence imaging of bacterial infections in animal models

    Science.gov (United States)

    Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2013-03-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), currently affects roughly one-third of the world's population. Drug resistant strains of Mtb decrease the effectiveness of current therapeutics and demand the development of new antimicrobial therapies. In addition, the current vaccine, Bacille Calmette Guérin (BCG), has variable efficacy for disease prevention in different populations. Animal studies are often limited by the need to sacrifice at discrete time points for pathology and tissue homogenization, which greatly reduces spatial and temporal resolution. Optical imaging offers the potential for a minimally-invasive solution to imaging on a macroscopic and microscopic scale, allowing for high resolution study of infection. We have integrated a fluorescence microendoscope into a whole-animal optical imaging system, allowing for simultaneous microscopic and macroscopic imaging of tdTomato expressing BCG in vivo. A 535 nm LED was collimated and launched into a 10,000 element fiber bundle with an outer diameter of 0.66 mm. The fiber bundle can be inserted through an intra-tracheal catheter into the lung of a mouse. Fluorescence emission can either be (1) collected by the bundle and imaged onto the surface of a CCD camera for localized detection or (2) the fluorescence can be imaged by the whole animal imaging system providing macroscopic information. Results from internal localized excitation and external whole body detection indicate the potential for imaging bacterial infections down to 100 colony forming units. This novel imaging technique has the potential to allow for functional studies, enhancing the ability to assess new therapeutic agents.

  2. Potential Application of Fluorescence Imaging for Assessing Fecal Contamination of Soil and Compost Maturity

    Directory of Open Access Journals (Sweden)

    Hyunjeong Cho

    2016-08-01

    Full Text Available Pathogenic microorganisms can lead to serious outbreaks of foodborne illnesses, particularly if fresh produce becomes contaminated and then happens to be inappropriately handled in a manner that can incubate pathogens. Pathogenic microbial contamination of produce can occur through a variety of pathways, such as from the excrement of domesticated and wild animals, biological soil amendment, agricultural water, worker health and hygiene, and field tools used during growth and harvest. The use of mature manure compost and preventative control of fecal contamination from wildlife and livestock are subject to safety standards to minimize the risk of foodborne illness associated with produce. However, in a field production environment, neither traces of animal feces nor the degree of maturity of manure compost can be identified by the naked eye. In this study, we investigated hyperspectral fluorescence imaging techniques to characterize fecal samples from bovine, swine, poultry, and sheep species, and to determine feasibilities for both detecting the presence of animal feces as well as identifying the species origin of the feces in mixtures of soil and feces. In addition, the imaging techniques were evaluated for assessing the maturity of manure compost. The animal feces exhibited dynamic and unique fluorescence emission features that allowed for the detection of the presence of feces and showed that identification of the species origin of fecal matter present in soil-feces mixtures is feasible. Furthermore, the results indicate that using simple single-band fluorescence imaging at the fluorescence emission maximum for animal feces, simpler than full-spectrum hyperspectral fluorescence imaging, can be used to assess the maturity of manure compost.

  3. Video Object Tracking in Neural Axons with Fluorescence Microscopy Images

    Directory of Open Access Journals (Sweden)

    Liang Yuan

    2014-01-01

    tracking. In this paper, we describe two automated tracking methods for analyzing neurofilament movement based on two different techniques: constrained particle filtering and tracking-by-detection. First, we introduce the constrained particle filtering approach. In this approach, the orientation and position of a particle are constrained by the axon’s shape such that fewer particles are necessary for tracking neurofilament movement than object tracking techniques based on generic particle filtering. Secondly, a tracking-by-detection approach to neurofilament tracking is presented. For this approach, the axon is decomposed into blocks, and the blocks encompassing the moving neurofilaments are detected by graph labeling using Markov random field. Finally, we compare two tracking methods by performing tracking experiments on real time-lapse image sequences of neurofilament movement, and the experimental results show that both methods demonstrate good performance in comparison with the existing approaches, and the tracking accuracy of the tracing-by-detection approach is slightly better between the two.

  4. PARPi-FL - a Fluorescent PARP1 Inhibitor for Glioblastoma Imaging

    Directory of Open Access Journals (Sweden)

    Christopher P. Irwin

    2014-05-01

    Full Text Available New intravital optical imaging technologies have revolutionized our understanding of mammalian biology and continue to evolve rapidly. However, there are only a limited number of imaging probes available to date. In this study, we investigated in mouse models of glioblastoma whether a fluorescent small molecule inhibitor of the DNA repair enzyme PARP1, PARPi-FL, can be used as an imaging agent to detect glioblastomas in vivo. We demonstrated that PARPi-FL has appropriate biophysical properties, low toxicity at concentrations used for imaging, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression. Importantly, subcutaneous and orthotopic glioblastoma xenografts were imaged with high contrast clearly defining tumor tissue from normal surrounding tissue. This research represents a step toward exploring and developing PARPi-FL as an optical intraoperative imaging agent for PARP1 in the clinic.

  5. Imaging multimodalities for dissecting Alzheimer’s disease: advanced technologies of positron emission tomography and fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Masafumi eShimojo

    2015-12-01

    Full Text Available The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer’s disease (AD, and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations.

  6. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.

    Science.gov (United States)

    Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.

  7. Multispectral Fluorescence Imaging During Robot-assisted Laparoscopic Sentinel Node Biopsy: A First Step Towards a Fluorescence-based Anatomic Roadmap.

    Science.gov (United States)

    van den Berg, Nynke S; Buckle, Tessa; KleinJan, Gijs H; van der Poel, Henk G; van Leeuwen, Fijs W B

    2017-07-01

    During (robot-assisted) sentinel node (SN) biopsy procedures, intraoperative fluorescence imaging can be used to enhance radioguided SN excision. For this combined pre- and intraoperative SN identification was realized using the hybrid SN tracer, indocyanine green- 99m Tc-nanocolloid. Combining this dedicated SN tracer with a lymphangiographic tracer such as fluorescein may further enhance the accuracy of SN biopsy. Clinical evaluation of a multispectral fluorescence guided surgery approach using the dedicated SN tracer ICG- 99m Tc-nanocolloid, the lymphangiographic tracer fluorescein, and a commercially available fluorescence laparoscope. Pilot study in ten patients with prostate cancer. Following ICG- 99m Tc-nanocolloid administration and preoperative lymphoscintigraphy and single-photon emission computed tomograpy imaging, the number and location of SNs were determined. Fluorescein was injected intraprostatically immediately after the patient was anesthetized. A multispectral fluorescence laparoscope was used intraoperatively to identify both fluorescent signatures. Multispectral fluorescence imaging during robot-assisted radical prostatectomy with extended pelvic lymph node dissection and SN biopsy. (1) Number and location of preoperatively identified SNs. (2) Number and location of SNs intraoperatively identified via ICG- 99m Tc-nanocolloid imaging. (3) Rate of intraoperative lymphatic duct identification via fluorescein imaging. (4) Tumor status of excised (sentinel) lymph node(s). (5) Postoperative complications and follow-up. Near-infrared fluorescence imaging of ICG- 99m Tc-nanocolloid visualized 85.3% of the SNs. In 8/10 patients, fluorescein imaging allowed bright and accurate identification of lymphatic ducts, although higher background staining and tracer washout were observed. The main limitation is the small patient population. Our findings indicate that a lymphangiographic tracer can provide additional information during SN biopsy based on ICG- 99m

  8. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    Science.gov (United States)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  9. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    Science.gov (United States)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  10. Tracking multiple particles in fluorescence time-lapse microscopy images via probabilistic data association.

    Science.gov (United States)

    Godinez, William J; Rohr, Karl

    2015-02-01

    Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.

  11. Time-resolved imaging of fluorescent inclusions in optically turbid medium — phantom study

    Science.gov (United States)

    Kacprzak, M.; Liebert, A.; Sawosz, P.; Żołek, N.; Milej, D.; Maniewski, R.

    2010-03-01

    We present results of application of a time-resolved optical system for imaging of fluorescence excited in an inclusion containing indocyanine green (ICG), and located in optically turbid medium. The developed imaging system enabled simultaneous acquisition of fluorescence and diffusive reflectance. Eight independent time-resolved measurement channels based on time-correlated single photon counting technique were applied. In four of these channels, used for the fluorescence detection, sets of filters were applied in order to block the excitation light. Fast optomechanical switches allowed us to illuminate sequentially nine different spots on the surface of the studied object and finally 4×4 pixels maps at excitation and emission wavelengths were obtained. A liquid phantom used in this study consists of the fish tank filed with a solution ofmilk and water with black ink added to obtain optical properties in the range of the optical properties typical for the living tissue. A gel ball of a diameter of 5 mm with precisely controlled concentration of ICG was immersed in the liquid. The measurements were performed for inclusion located at different depths and for various ICG concentrations in the gel ball and in the surrounding liquid. The recorded distributions of times of arrival (DTA) of fluorescence photons and times of flight (DTOF) of diffusely reflected photons were analyzed by calculation of their statistical moments. We observed specific changes in moments of the measured DTAs as a function of depth of immersion of the fluorescent inclusion in the medium. We noted also that the changes of moments depend significantly on concentration of the dye in the fluorescence inclusion as well as in the surrounding liquid.

  12. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    Science.gov (United States)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  13. Automated Cart with VIS/NIR Hyperspectral Reflectance and Fluorescence Imaging Capabilities

    Directory of Open Access Journals (Sweden)

    Alan M. Lefcourt

    2016-12-01

    Full Text Available A system to take high-resolution Visible/Near Infra-Red (VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm, respectively, for illumination purposes was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified camera, a spectral adapter, a frequency-triple Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet laser, and optics to convert the Gaussian laser beam into a line-illumination source. The front wheels of the cart are independently powered by stepper motors that support stepping or continuous motion. When stepping, a spreadsheet is used to program parameters of image sets to be acquired at each step. For example, the spreadsheet can be used to set delays before the start of image acquisitions, acquisition times, and laser attenuation. One possible use of this functionality would be to establish acquisition parameters to facilitate the measurement of fluorescence decay-curve characteristics. The laser and camera are mounted on an aluminum plate that allows the optics to be calibrated in a laboratory setting and then moved to the cart. The system was validated by acquiring images of fluorescence responses of spinach leaves and dairy manure.

  14. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    Science.gov (United States)

    Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.

    2016-05-01

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.

  15. [Nondestructive imaging of elements distribution in biomedical samples by X-ray fluorescence computed tomography].

    Science.gov (United States)

    Yang, Qun; Deng, Biao; Lü, Wei-Wei; Du, Guo-Hao; Yan, Fu-Hua; Xiao, Ti-Qiao; Xu, Hong-Jie

    2011-10-01

    X-ray fluorescence computed tomography is a stimulated emission tomography that allows nondestructive reconstruction of the elements distribution in the sample, which is important for biomedical investigations. Owing to the high flux density and easy energy tunability of highly collimated synchrotron X-rays, it is possible to apply X-ray fluorescence CT to biomedical samples. Reported in the present paper, an X-ray fluorescence CT system was established at Shanghai Synchrotron Radiation Facility for the investigations of trace elements distribution inside biomedical samples. By optimizing the experiment setup, the spatial resolution was improved and the data acquisition process was obviously speeded up. The maximum-likelihood expectation-maximization algorithm was introduced for the image reconstruction, which remarkably improved the imaging accuracy of element distributions. The developed system was verified by the test sample and medical sample respectively. The results showed that the distribution of interested elements could be imaged correctly, and the spatial resolution of 150 m was achieved. In conclusion, the developed system could be applied to the research on large-size biomedical samples, concerning imaging accuracy, spatial resolution and data collection time.

  16. Compact 3D printed module for fluorescence and label-free imaging using evanescent excitation

    Science.gov (United States)

    Pandey, Vikas; Gupta, Shalini; Elangovan, Ravikrishnan

    2018-01-01

    Total internal reflection fluorescence (TIRF) microscopy is widely used for selective excitation and high-resolution imaging of fluorophores, and more recently label-free nanosized objects, with high vertical confinement near a liquid–solid interface. Traditionally, high numerical aperture objectives (>1.4) are used to simultaneously generate evanescent waves and collect fluorescence emission signals which limits their use to small area imaging (3D module called cTIRF that can generate evanescent waves in microscope glass slides via a planar waveguide illumination. The module can be attached as a fixture to any existing optical microscope, converting it into a TIRF and enabling high signal-to-noise ratio (SNR) fluorescence imaging using any magnification objective. As the incidence optics is perpendicular to the detector, label-free evanescent scattering-based imaging of submicron objects can also be performed without using emission filters. SNR is significantly enhanced in this case as compared to cTIRF alone, as seen through our model experiments performed on latex beads and mammalian cells. Extreme flexibility and the low cost of our approach makes it scalable for limited resource settings.

  17. Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model.

    Science.gov (United States)

    Wang, Sibo; Yang, Tao; Zhang, Xuyong; Xia, Jie; Guo, Jun; Wang, Xiaoyi; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-06-01

    Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.

  18. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  19. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy.

    Science.gov (United States)

    Gao, Shi; Wang, Guohao; Qin, Zainen; Wang, Xiangyu; Zhao, Guoqing; Ma, Qingjie; Zhu, Lei

    2017-01-01

    Photodynamic therapy (PDT) is a promising tumor treatment modality that can convert oxygen into cytotoxic singlet oxygen (SO) via photosensitizer to ablate tumor growth. However, the uncontrolled cancer cell proliferation during tumor development and the oxygen consumption during PDT always result in an insufficient oxygen level in tumors, which can adversely affect the PDT efficiency in turn. We designed an oxygen-generating PDT nanocomplex by encapsulating a manganese dioxide nanoparticle (MnO 2 NP) in an indocyanine green (ICG) modified hyaluronic acid nanoparticle (HANP) to overcome this limitation. Because of the excellent fluorescent and photoacoustic properties, the tumor accumulation of the ICG-HANP/MnO 2 (IHM) nanocomplex was monitored by fluorescent imaging and photoacoustic imaging after intravenous administration into the SCC7 tumor-bearing mouse model. Both high fluorescent and photoacoustic signals were detected and found peak at 6 h post-injection (tumor-muscle ratio: 4.03 ± 0.36 for fluorescent imaging and 2.93 ± 0.13 for photoacoustic imaging). In addition, due to the high reactivity of MnO 2 NP to H 2 O 2 , an unfavorable tumor cell metabolic, the oxygen content in the tumor is elevated 2.25 ± 0.07 times compared to that without IHM treatment as ultrasound imaging confirmed. After laser irradiation, significant tumor growth inhibition was observed in the IHM-treated group compared to the ICG-HANP-treated group, attributed to the beneficial oxygen-generating property of IHM for PDT. It is expected that the design of IHM will provide an alternative way of improving clinical PDT efficacy and will be widely applied in cancer theranostics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. First Experience on Laparoscopic Near-Infrared Fluorescence Imaging of Hepatic Uveal Melanoma Metastases using Indocyanine Green

    Science.gov (United States)

    Tummers, Quirijn R.J.G.; Verbeek, Floris P.R.; Prevoo, Hendrica A.J.M.; Braat, Andries E.; Baeten, Coen I.M.; Frangioni, John V.; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.

    2014-01-01

    Background Uveal melanoma is the most common primary intraocular tumor in adults and up to 50% of patients will develop liver metastases. Complete surgical resection of these metastases can improve 5-year survival, but only a few patients are eligible for radical surgical treatment. The aim of this study was to introduce a near-infrared (NIR) fluorescence laparoscope during minimally-invasive surgery for intraoperative identification of uveal melanoma hepatic metastases and to use it to provide guidance during resection. Methods Three patients diagnosed with one solitary liver metastasis from uveal melanoma are presented. Patients received 10 mg indocyanine green (ICG) intravenously 24 h before surgery. A NIR fluorescence laparoscope was used to detect malignant liver lesions. Results In all 3 patients, laparoscopic NIR fluorescence imaging using ICG successfully identified uveal melanoma metastases. In 2 patients, multiple additional lesions were identified by inspection and NIR fluorescence imaging, which were not identified by preoperative conventional imaging. In one patient, one additional lesion, not identified by computed tomography, magnetic resonance imaging, laparoscopic ultrasonography and inspection, was observed with NIR fluorescence imaging only.. Importantly, NIR fluorescence imaging provided guidance during resection of these metastases. Conclusions We describe the successful use of laparoscopic identification and resection of uveal melanoma liver metastases using NIR fluorescence imaging and ICG. This procedure is minimally-invasive, and should be used as complementary to conventional techniques for the detection and resection of liver metastases. PMID:24902685

  1. Fluorescence In Situ Hybridization (FISH Signal Analysis Using Automated Generated Projection Images

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2012-01-01

    Full Text Available Fluorescence in situ hybridization (FISH tests provide promising molecular imaging biomarkers to more accurately and reliably detect and diagnose cancers and genetic disorders. Since current manual FISH signal analysis is low-efficient and inconsistent, which limits its clinical utility, developing automated FISH image scanning systems and computer-aided detection (CAD schemes has been attracting research interests. To acquire high-resolution FISH images in a multi-spectral scanning mode, a huge amount of image data with the stack of the multiple three-dimensional (3-D image slices is generated from a single specimen. Automated preprocessing these scanned images to eliminate the non-useful and redundant data is important to make the automated FISH tests acceptable in clinical applications. In this study, a dual-detector fluorescence image scanning system was applied to scan four specimen slides with FISH-probed chromosome X. A CAD scheme was developed to detect analyzable interphase cells and map the multiple imaging slices recorded FISH-probed signals into the 2-D projection images. CAD scheme was then applied to each projection image to detect analyzable interphase cells using an adaptive multiple-threshold algorithm, identify FISH-probed signals using a top-hat transform, and compute the ratios between the normal and abnormal cells. To assess CAD performance, the FISH-probed signals were also independently visually detected by an observer. The Kappa coefficients for agreement between CAD and observer ranged from 0.69 to 1.0 in detecting/counting FISH signal spots in four testing samples. The study demonstrated the feasibility of automated FISH signal analysis that applying a CAD scheme to the automated generated 2-D projection images.

  2. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yankelevich, Diego R. [Department of Electrical and Computer Engineering, University of California, 3101 Kemper Hall, Davis, California 95616 (United States); Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616 (United States); Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Marcu, Laura, E-mail: lmarcu@ucdavis.edu [Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616 (United States); Elson, Daniel S. [Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2014-03-15

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8–7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence

  3. Identifying fluorescently labeled single molecules in image stacks using machine learning.

    Science.gov (United States)

    Rifkin, Scott A

    2011-01-01

    In the past several years, a host of new technologies have made it possible to visualize single molecules within cells and organisms (Raj et al., Nat Methods 5:877-879, 2008; Paré et al., Curr Biol 19:2037-2042, 2009; Lu and Tsourkas, Nucleic Acids Res 37:e100, 2009; Femino et al., Science 280:585-590, 1998; Rodriguez et al., Semin Cell Dev Biol 18:202-208, 2007; Betzig et al., Science 313:1642-1645, 2006; Rust et al., Nat Methods 3:793-796, 2006; Fusco et al., Curr Biol 13:161-167, 2003). Many of these are based on fluorescence, either fluorescent proteins or fluorescent dyes coupled to a molecule of interest. In many applications, the fluorescent signal is limited to a few pixels, which poses a classic signal processing problem: how can actual signal be distinguished from background noise? In this chapter, I present a MATLAB (MathWorks (2010) MATLAB. Retrieved from http://www.mathworks.com) software suite designed to work with these single-molecule visualization technologies (Rifkin (2010) spotFinding Suite. http://www.biology.ucsd.edu/labs/rifkin/software.html). It takes images or image stacks from a fluorescence microscope as input and outputs locations of the molecules. Although the software was developed for the specific application of identifying single mRNA transcripts in fixed specimens, it is more general than this and can be used and/or customized for other applications that produce localized signals embedded in a potentially noisy background. The analysis pipeline consists of the following steps: (a) create a gold-standard dataset, (b) train a machine-learning algorithm to classify image features as signal or noise depending upon user defined statistics, (c) run the machine-learning algorithm on a new dataset to identify mRNA locations, and (d) visually inspect and correct the results.

  4. Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging.

    Science.gov (United States)

    Shuai, Hongyan; Xu, Yunjian; Yu, Qian; Gylfe, Erik; Tengholm, Anders

    2016-10-01

    The islets of Langerhans contain different types of endocrine cells, which are crucial for glucose homeostasis. β- and α-cells that release insulin and glucagon, respectively, are most abundant, whereas somatostatin-producing δ-cells and particularly pancreatic polypeptide-releasing PP-cells are more scarce. Studies of islet cell function are hampered by difficulties to identify the different cell types, especially in live-cell imaging experiments when immunostaining is unsuitable. The aim of the present study was to create a set of vectors for fluorescent protein expression with cell-type-specific promoters and evaluate their applicability in functional islet imaging. We constructed six adenoviral vectors for expression of red and green fluorescent proteins controlled by the insulin, preproglucagon, somatostatin, or pancreatic polypeptide promoters. After transduction of mouse and human islets or dispersed islet cells, a majority of the fluorescent cells also immunostained for the appropriate hormone. Recordings of the sub-plasma membrane Ca(2+) and cAMP concentrations with a fluorescent indicator and a protein biosensor, respectively, showed that labeled cells respond to glucose and other modulators of secretion and revealed a striking variability in Ca(2+) signaling among α-cells. The measurements allowed comparison of the phase relationship of Ca(2+) oscillations between different types of cells within intact islets. We conclude that the fluorescent protein vectors allow easy identification of specific islet cell types and can be used in live-cell imaging together with organic dyes and genetically encoded biosensors. This approach will facilitate studies of normal islet physiology and help to clarify molecular defects and disturbed cell interactions in diabetic islets.

  5. Development of a Hybrid Nanoprobe for Triple-Modality MR/SPECT/Optical Fluorescence Imaging

    Science.gov (United States)

    Madru, Renata; Svenmarker, Pontus; Ingvar, Christian; Ståhlberg, Freddy; Engels, Stefan-Andersson; Knutsson, Linda; Strand, Sven-Erik

    2014-01-01

    Hybrid clinical imaging is an emerging technology, which improves disease diagnosis by combining already existing technologies. With the combination of high-resolution morphological imaging, i.e., MRI/CT, and high-sensitive molecular detection offered by SPECT/PET/Optical, physicians can detect disease progression at an early stage and design patient-specific treatments. To fully exploit the possibilities of hybrid imaging a hybrid probe compatible with each imaging technology is required. Here, we present a hybrid nanoprobe for triple modality MR/SPECT/Fluorescence imaging. Our imaging agent is comprised of superparamagnetic iron oxide nanoparticles (SPIONs), labeled with 99mTc and an Alexa fluorophore (AF), together forming 99mTc-AF-SPIONs. The agent was stable in human serum, and, after subcutaneous injection in the hind paw of Wistar rats, showed to be highly specific by accumulating in the sentinel lymph node. All three modalities clearly visualized the imaging agent. Our results show that a single imaging agent can be used for hybrid imaging. The use of a single hybrid contrast agent permits simultaneous hybrid imaging and, more conventionally, allow for single modality imaging at different time points. For example, a hybrid contrast agent enables pre-operative planning, intra-operative guidance, and post-operative evaluation with the same contrast agent. PMID:26852675

  6. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    Science.gov (United States)

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  7. Precision scan-imaging for paperboard quality inspection utilizing X-ray fluorescence

    Science.gov (United States)

    Norlin, B.; Reza, S.; Fröjdh, C.; Nordin, T.

    2018-01-01

    Paperboard is typically made up of a core of cellulose fibers [C6H10O5] and a coating layer of [CaCO3]. The uniformity of these layers is a critical parameter for the printing quality. Current quality control methods include chemistry based visual inspection methods as well as X-ray based methods to measure the coating thickness. In this work we combine the X-ray fluorescence signals from the Ca atoms (3.7 keV) in the coating and from a Cu target (8.0 keV) placed behind the paper to simultaneously measure both the coating and the fibers. Cu was selected as the target material since its fluorescence signal is well separated from the Ca signal while its fluorescence's still are absorbed sufficiently in the paper. A laboratory scale setup is built using stepper motors, a silicon drift detector based spectrometer and a collimated X-ray beam. The spectroscopic image is retrieved by scanning the paperboard surface and registering the fluorescence signals from Ca and Cu. The exposure time for this type of setups can be significantly improved by implementing spectroscopic imaging sensors. The material contents in the layers can then be retrieved from the absolute and relative intensities of these two signals.

  8. Intracellular fluorescent light-up bioprobes with different morphology for image-guided photothermal cancer therapy.

    Science.gov (United States)

    Li, Bangbang; Zhang, Peng; Du, Jianwei; Zhao, Xiao; Wang, Youxiang

    2017-06-01

    Multifunctional nanoprobe was drawing increased attention in tumor diagnosis and therapy. The simple and effective establishment of the theranostic nanoplatforms was still under urgent need. Meanwhile, the targeting ability and morphology of nanoprobe were essential for the effective endocytosis, which could further affect the diagnosis. In this work, two morphologies of nanoprobes were fabricated using gold nanorods (AuNRs) and gold nanospheres (AuNSs). Thiolated-hyaluronic acid labeled with nile blue (HS-HA-NB), a near-infrared (NIR) fluorescence dye, was coated on the surface of the gold nanoparticles to form stable nanoprobes (AuNR@HS-HA-NB, AuNS@HS-HA-NB). The fluorescence of NB molecules quenched outside cells due to the fluorescence resonance energy transfer (FRET), and recovered after the HA degradation inside the cells. HA also could enhance cellular uptake in CD44 receptor highly expressed human breast carcinoma cells (MCF-7). In this way, bioprobes realized the MCF-7 cell images through intracellular fluorescent light-up. Comparing with the sphere bioprobe, the rod-shaped bioprobe dramatically promoted endocytosis to achieve a better diagnosis effect in a short time. After NIR light irradiation, severe MCF-7 apoptosis was observed with AuNR@HS-HA-NB existed. Our studies suggested that the AuNR@HS-HA-NB nanoparticles were the excellent candidates of versatile bioprobes to realize rapid, precise image and photothermal therapy to MCF-7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Genetically Encoded Fluorescent Probe for Imaging Apoptosis in Vivo with Spontaneous GFP Complementation.

    Science.gov (United States)

    Nasu, Yusuke; Asaoka, Yoichi; Namae, Misako; Nishina, Hiroshi; Yoshimura, Hideaki; Ozawa, Takeaki

    2016-01-05

    Apoptosis plays a pivotal role in development and tissue homeostasis in multicellular organisms. Dysfunction of apoptosis is involved in many fatal diseases such as cancer. Visualization of apoptosis in living animals is necessary to understand the mechanism of apoptosis-related diseases. Here, we describe a genetically encoded fluorescent probe for imaging apoptosis in living multicellular organisms, based on spontaneous complementation of two fragments of a green fluorescent protein (GFP) variant (GFP OPT). The probe is designed for detection of mitochondria-mediated apoptosis during which a mitochondrial protein of Smac is released into cytosol. The Smac is connected with a carboxy-terminal fragment of GFP OPT (GFP11), whereas the remainder of GFP OPT (GFP(1-10)) is located in the cytosol. Under an apoptotic condition, the Smac is released from mitochondria into cytosol, allowing complementation of the GFP-OPT fragments and the emission of fluorescence. Live-cell imaging demonstrates that the probe enables detection of apoptosis in living cells with a high signal-to-background ratio. We applied the probe to living zebrafish, in which apoptotic cells were visualized with fluorescence. The technique provides a useful tool for the study of apoptosis in living animals, facilitating elucidation of the mechanisms of apoptosis-related diseases.

  10. Live imaging using adaptive optics with fluorescent protein guide-stars.

    Science.gov (United States)

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C; Sullivan, William; Kubby, Joel

    2012-07-02

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy.

  11. Widefield in vivo spectral and fluorescence imaging microscopy of microvessel blood supply and oxygenation

    Science.gov (United States)

    Lee, Jennifer; Kozikowski, Raymond; Wankhede, Mamta; Sorg, Brian S.

    2011-02-01

    Abnormal microvascular function and angiogenesis are key components of various diseases that can contribute to the perpetuation of the disease. Several skin diseases and ophthalmic pathologies are characterized by hypervascularity, and in cancer the microvasculature of tumors is structurally and functionally abnormal. Thus, the microvasculature can be an important target for treatment of diseases characterized by abnormal microvasculature. Motivated largely by cancer research, significant effort has been devoted to research on drugs that target the microvasculature. Several vascular targeting drugs for cancer therapy are in clinical trials and approved for clinical use, and several off-label uses of these drugs have been reported for non-cancer diseases. The ability to image and measure parameters related to microvessel function preclinically in laboratory animals can be useful for development and comparison of vascular targeting drugs. For example, blood supply time measurements give information related to microvessel morphology and can be measured with first-pass fluorescence imaging. Hemoglobin saturation measurements give an indication of microvessel oxygen transport and can be measured with spectral imaging. While each measurement individually gives some information regarding microvessel function, the measurements together may yield even more information since theoretically microvessel morphology can influence microvessel oxygenation, especially in metabolically active tissue like tumors. However, these measurements have not yet been combined. In this study, we report the combination of blood supply time imaging and hemoglobin saturation imaging of microvessel networks in tumors using widefield fluorescence and spectral imaging, respectively. The correlation between the measurements in a mouse mammary tumor is analyzed.

  12. A review of performance of near-infrared fluorescence imaging devices used in clinical studies

    Science.gov (United States)

    Zhu, B

    2015-01-01

    Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new “point-of-care” medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies. PMID:25410320

  13. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field

    Science.gov (United States)

    Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin

    2014-01-01

    Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized. PMID:24648733

  14. Combination of widefield fluorescence imaging and nonlinear optical microscopy of oral epithelial neoplasia

    Science.gov (United States)

    Pal, Rahul; Edward, Kert; Brown, Tyra; Ma, Liang; Yang, Jinping; McCammon, Susan; Motamedi, Massoud; Vargas, Gracie

    2013-03-01

    Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) have shown the potential for noninvasive assessment of oral precancers and cancers. We have explored a combination of these nonlinear optical microscopic imaging techniques with widefield fluorescence imaging to assess morphometry similar to that of pathologic evaluation as well as information from endogenous fluorophores, which are altered with neoplastic transformation. Widefield fluorescence revealed areas of interest corresponding to sites with precancers or early tumors, generally resulting in a decrease in green emission or increase in red emission. Subsequent microscopy revealed significant differences in morphology between normal, dysplastic/neoplastic mucosa for all layers. Combination of a widefield and a microscopic technique provides a novel approach for tissue morphometric analysis along with large area assessment of tissue autofluorescence properties.

  15. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Viviane Devauges

    Full Text Available We present a novel imaging system combining total internal reflection fluorescence (TIRF microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

  16. Uptake of diuron and concomitant loss of photosynthetic activity in leaves as visualized by imaging the red chlorophyll fluorescence.

    Science.gov (United States)

    Lichtenthaler, Hartmut K; Langsdorf, Gabriele; Buschmann, Claus

    2013-10-01

    The principles of the chlorophyll (Chl) fluorescence induction kinetics (known as Kautsky effect) and their change by the photosystem II herbicide diuron are presented together with the Chl fluorescence emission spectra of a normal and diuron-inhibited leaf. By imaging the Chl fluorescence emission of green leaves the successive uptake of diuron and the concomitant loss of photosynthetic quantum conversion from the leaf base to the leaf tip are documented.

  17. Fluorescence/luminescence circadian imaging of complex tissues at single-cell resolution.

    Science.gov (United States)

    Sellix, Michael T; Currie, Jake; Menaker, Michael; Wijnen, Herman

    2010-06-01

    The use of luciferase reporter genes together with luminescence detection has enabled high frequency monitoring of molecular circadian clock function in living tissues. With the help of an intensified CCD camera combined with an inverted epifluorescence microscope, the authors have established a new imaging strategy that makes use of transgenic cell type-specific expression of fluorescent proteins to identify cells of interest for subsequent circadian luminescence recording at single-cell resolution.

  18. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging

    Czech Academy of Sciences Publication Activity Database

    Koziolová, Eva; Goel, S.; Chytil, Petr; Janoušková, Olga; Barnhart, T. E.; Cai, W.; Etrych, Tomáš

    2017-01-01

    Roč. 9, č. 30 (2017), s. 10906-10918 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-02986S; GA MZd(CZ) NV16-28594A; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers * positron emission tomography ( PET ) * fluorescence imaging Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.367, year: 2016

  19. 1-Million droplet array with wide-field fluorescence imaging for digital PCR.

    Science.gov (United States)

    Hatch, Andrew C; Fisher, Jeffrey S; Tovar, Armando R; Hsieh, Albert T; Lin, Robert; Pentoney, Stephen L; Yang, David L; Lee, Abraham P

    2011-11-21

    Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.

  20. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, S.; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-01-01

    Roč. 22, č. 2 (2016), s. 290-299 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GAP305/11/2476; GA ČR(CZ) GPP501/12/P951 Institutional support: RVO:61389030 ; RVO:61388955 Keywords : raster image correlation spectroscopy * fluorescence recovery after photobleaching * auxin influx Subject RIV: EB - Genetics ; Molecular Biology; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.891, year: 2016

  1. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe.

    Science.gov (United States)

    Jiang, Xiqian; Yu, Yong; Chen, Jianwei; Zhao, Mingkun; Chen, Hui; Song, Xianzhou; Matzuk, Alexander J; Carroll, Shaina L; Tan, Xiao; Sizovs, Antons; Cheng, Ninghui; Wang, Meng C; Wang, Jin

    2015-03-20

    Glutathione (GSH) plays an important role in maintaining redox homeostasis inside cells. Currently, there are no methods available to quantitatively assess the GSH concentration in live cells. Live cell fluorescence imaging revolutionized the field of cell biology and has become an indispensable tool in current biological studies. In order to minimize the disturbance to the biological system in live cell imaging, the probe concentration needs to be significantly lower than the analyte concentration. Because of this, any irreversible reaction-based GSH probe can only provide qualitative results within a short reaction time and will exhibit maximum response regardless of the GSH concentration if the reaction is completed. A reversible reaction-based probe with an appropriate equilibrium constant allows measurement of an analyte at much higher concentrations and, thus, is a prerequisite for GSH quantification inside cells. In this contribution, we report the first fluorescent probe-ThiolQuant Green (TQ Green)-for quantitative imaging of GSH in live cells. Due to the reversible nature of the reaction between the probe and GSH, we are able to quantify mM concentrations of GSH with TQ Green concentrations as low as 20 nM. Furthermore, the GSH concentrations measured using TQ Green in 3T3-L1, HeLa, HepG2, PANC-1, and PANC-28 cells are reproducible and well correlated with the values obtained from cell lysates. TQ Green imaging can also resolve the changes in GSH concentration in PANC-1 cells upon diethylmaleate (DEM) treatment. In addition, TQ Green can be conveniently applied in fluorescence activated cell sorting (FACS) to measure GSH level changes. Through this study, we not only demonstrate the importance of reaction reversibility in designing quantitative reaction-based fluorescent probes but also provide a practical tool to facilitate redox biology studies.

  2. Denoising of two-photon fluorescence images with block-matching 3D filtering.

    Science.gov (United States)

    Danielyan, Aram; Wu, Yu-Wei; Shih, Pei-Yu; Dembitskaya, Yulia; Semyanov, Alexey

    2014-07-01

    Two-photon florescence imaging is widely used to perform morphological analysis of subcellular structures such as neuronal dendrites and spines, astrocytic processes etc. This method is also indispensable for functional analysis of cellular activity such as Ca2+ dynamics. Although spatial resolution of laser scanning two-photon system is greater than that of confocal or wide field microscope, it is still diffraction limited. In practice, the resolution of the system is more affected by its signal-to-noise ratio (SNR) than the diffraction limit. Thus, various approaches aiming to increase the SNR in two-photon imaging are desirable and can potentially save on building costly super-resolution imaging system. Here we analyze the statistics of noise in the two-photon florescence images of hippocampal astrocytes expressing genetically encoded Ca2+ sensor GCaMP2 and show that it can be reasonably well approximated using the same models which are used for describing noise in images acquired with digital cameras. This allows to use denoising methods available for wide field imaging on two-photon images. Particularly we demonstrate that the Block-Matching 3D (BM3D) filter can significantly improve the quality of two-photon fluorescence images so small details such as astrocytic processes can be easier identified. Moreover, denoising of the images with BM3D yields less noisy Ca2+ signals in astrocytes when denoising of the images with Gaussian filter. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Fluorescent Nanoprobes Dedicated to in Vivo Imaging: From Preclinical Validations to Clinical Translation

    Directory of Open Access Journals (Sweden)

    Isabelle Texier

    2012-05-01

    Full Text Available With the fast development, in the last ten years, of a large choice of set-ups dedicated to routine in vivo measurements in rodents, fluorescence imaging techniques are becoming essential tools in preclinical studies. Human clinical uses for diagnostic and image-guided surgery are also emerging. In comparison to low-molecular weight organic dyes, the use of fluorescent nanoprobes can improve both the signal sensitivity (better in vivo optical properties and the fluorescence biodistribution (passive “nano” uptake in tumours for instance. A wide range of fluorescent nanoprobes have been designed and tested in preclinical studies for the last few years. They will be reviewed and discussed considering the obstacles that need to be overcome for their potential everyday use in clinics. The conjugation of fluorescence imaging with the benefits of nanotechnology should open the way to new medical applications in the near future.

  4. Multimodal fluorescence molecular imaging for in vivo characterization of skin cancer using endogenous and exogenous fluorophores

    Science.gov (United States)

    Miller, Jessica P.; Habimana-Griffin, LeMoyne; Edwards, Tracy S.; Achilefu, Samuel

    2017-06-01

    Similarity of skin cancer with many benign skin pathologies requires reliable methods to detect and differentiate the different types of these lesions. Previous studies have explored the use of disparate optical techniques to identify and estimate the invasive nature of melanoma and basal cell carcinoma with varying outcomes. Here, we used a concerted approach that provides complementary information for rapid screening and characterization of tumors, focusing on squamous cell carcinoma (SCC) of the skin. Assessment of in vivo autofluorescence lifetime (FLT) imaging of endogenous fluorophores that are excitable at longer wavelengths (480 nm) than conventional NADH and FAD revealed a decrease in the short FLT component for SCC compared to normal skin, with mean values of 0.57±0.026 ns and 0.61±0.021 ns, respectively (p=0.004). Subsequent systemic administration of a near-infrared fluorescent molecular probe in SCC bearing mice, followed by the implementation of image processing methods on data acquired from two-dimensional and three-dimensional fluorescence molecular imaging, allowed us to estimate the tumor volume and depth, as well as quantify the fluorescent probe in the tumor. The result suggests the involvement of lipofuscin-like lipopigments and riboflavin in SCC metabolism and serves as a model for staging SCC.

  5. A combined light sheet fluorescence and differential interference contrast microscope for live imaging of multicellular specimens.

    Science.gov (United States)

    Baker, R P; Taormina, M J; Jemielita, M; Parthasarathy, R

    2015-05-01

    We describe a microscope capable of both light sheet fluorescence microscopy and differential interference contrast microscopy (DICM). The two imaging modes, which to the best of our knowledge have not previously been combined, are complementary: light sheet fluorescence microscopy provides three-dimensional imaging of fluorescently labelled components of multicellular systems with high speed, large fields of view, and low phototoxicity, whereas differential interference contrast microscopy reveals the unlabelled neighbourhood of tissues, organs, and other structures with high contrast and inherent optical sectioning. Use of a single Nomarski prism for differential interference contrast microscopy and a shared detection path for both imaging modes enables simple integration of the two techniques in one custom microscope. We provide several examples of the utility of the resulting instrument, focusing especially on the digestive tract of the larval zebrafish, revealing in this complex and heterogeneous environment anatomical features, the behaviour of commensal microbes, immune cell motions, and more. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Analysis of receptor clustering on cell surfaces by imaging fluorescent particles.

    Science.gov (United States)

    Morrison, I E; Anderson, C M; Georgiou, G N; Stevenson, G V; Cherry, R J

    1994-09-01

    Fluorescently labeled low density lipoproteins (LDL) and influenza virus particles were bound to the surface of human fibroblasts and imaged with a cooled slow-scan CCD camera attached to a fluorescence microscope. Particles were also imaged after attachment to polylysine-coated microscope slides. The digital images were analyzed by fitting data points in the region of fluorescent spots by a two-dimensional Gaussian function, thus obtaining a measure of spot intensity with correction for local background. The intensity distributions for particles bound to polylysine slides were mainly accounted for by particle size distributions as determined by electron microscopy. In the case of LDL, the intensity distributions for particles bound to fibroblasts were considerably broadened, indicative of clustering. The on-cell intensity distributions were deconvolved into 1-particle, 2-particle, 3-particle, etc. components using the data obtained with LDL bound to polylysine-coated slides as an empirical measure of the single particle intensity distribution. This procedure yielded a reasonably accurate measure of the proportion of single particles, but large errors were encountered in the proportions of larger cluster sizes. The possibility of studying the dynamics of clustering was investigated by binding LDL to cells at 4 degrees C and observing changes in the intensity distribution with time after warming to 20 degrees C.

  7. Fluorescence Imaging Assisted Photodynamic Therapy Using Photosensitizer-Linked Gold Quantum Clusters.

    Science.gov (United States)

    Nair, Lakshmi V; Nazeer, Shaiju S; Jayasree, Ramapurath S; Ajayaghosh, Ayyappanpillai

    2015-06-23

    Fluorescence imaging assisted photodynamic therapy (PDT) is a viable two-in-one clinical tool for cancer treatment and follow-up. While the surface plasmon effect of gold nanorods and nanoparticles has been effective for cancer therapy, their emission properties when compared to gold nanoclusters are weak for fluorescence imaging guided PDT. In order to address the above issues, we have synthesized a near-infrared-emitting gold quantum cluster capped with lipoic acid (L-AuC with (Au)18(L)14) based nanoplatform with excellent tumor reduction property by incorporating a tumor-targeting agent (folic acid) and a photosensitizer (protoporphyrin IX), for selective PDT. The synthesized quantum cluster based photosensitizer PFL-AuC showed 80% triplet quantum yield when compared to that of the photosensitizer alone (63%). PFL-AuC having 60 μg (0.136 mM) of protoporphyrin IX was sufficient to kill 50% of the tumor cell population. Effective destruction of tumor cells was evident from the histopathology and fluorescence imaging, which confirm the in vivo PDT efficacy of PFL-AuC.

  8. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    Science.gov (United States)

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  9. Developing a genetically encoded green fluorescent protein mutant for sensitive light-up fluorescent sensing and cellular imaging of Hg(II).

    Science.gov (United States)

    Jiang, Tao; Guo, Daiping; Wang, Qian; Wu, Xin; Li, Zhao; Zheng, Zhenhua; Yin, Boyuan; Xia, Lin; Tang, Jixian; Luo, Wenxin; Xia, Ningshao; Jiang, Yunbao

    2015-05-30

    Hg(II) is well-known for quenching fluorescence in a distance dependent manner. Nevertheless, when we exposed the fluorophore of a green fluorescent protein (GFP) toward Hg(II), through H148C mutation, the GFP fluorescence could be "lighted up" by Hg(II) down to sub-nM level. The detection linear range is 0.5-3.0 nM for protein solutions at 8.0 nM. The GFPH148C protein displayed a promising selectivity toward Hg(II) and also the cellular imaging capacity. Spectra measurements suggested that the ground-state redistribution of protein contributed to the fluorescence enhancement, which was found not limited to Hg(II), and thus presented an opening for building a pool of GFP-based chemosensors toward other heavy metal ions. Copyright © 2015. Published by Elsevier B.V.

  10. An individually coated near-infrared fluorescent protein as a safe and robust nanoprobe for in vivo imaging

    Science.gov (United States)

    Yang, Yu; Xiang, Kun; Yang, Yi-Xin; Wang, Yan-Wen; Zhang, Xin; Cui, Yangdong; Wang, Haifang; Zhu, Qing-Qing; Fan, Liqiang; Liu, Yuanfang; Cao, Aoneng

    2013-10-01

    A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging.A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging. Electronic supplementary information (ESI

  11. Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant

    Czech Academy of Sciences Publication Activity Database

    Rascher, U.; Alonso, A.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.; Hanuš, Jan; Hyvarinen, T.; Jullita, T.; Jussila, J.; Kataja, K.; Kokkalis, P.; Kraft, S.; Kraska, T.; Matveeva, M.; Moreno, J.; Müller, O.; Panigada, C.; Pikl, Miroslav; Pinto, F.; Prey, L.; Pude, F.; Rossini, M.; Schickling, A.; Schurr, E.; Schüttemeyer, D.; Verrlest, J.; Zemek, František

    2015-01-01

    Roč. 21, č. 12 (2015), s. 4673-4684 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : airborne measurements * chlorophyll fluorescence * FLEX * HyPlant * imaging spectroscopy * photosynthesis * remote sensing * sun-induced fluorescence * vegetation monitoring Subject RIV: EH - Ecology, Behaviour Impact factor: 8.444, year: 2015

  12. Drug quantification in turbid media by fluorescence imaging combined with light-absorption correction using white Monte Carlo simulations

    DEFF Research Database (Denmark)

    Xie, Haiyan; Liu, Haichun; Svenmarker, Pontus

    2011-01-01

    in vivo by the fluorescence imaging technique. In this paper we present a novel approach to compensate for the light absorption in homogeneous turbid media both for the excitation and emission light, utilizing time-resolved fluorescence white Monte Carlo simulations combined with the Beer-Lambert law...

  13. Fluorescent and quantitative mitochondrial redox imaging of tumor targeted by Octa-RGD probe

    Directory of Open Access Journals (Sweden)

    Shuang Sha

    2016-07-01

    Full Text Available Integrins, over-expressed in a broad range of cancer diseases, are widely utilized as a tumor biomarker. Metabolism investigation also plays important roles in tumor theranostics. Developing simple integrin-targetting probe and monitoring tumor metabolism will give opportunities to find ways for cancer treatment, however, the investigation of tumor metabolism with integrin receptor based probes has been rarely reported so far. Here, we developed an octavalent fluorescent probe Octa-RGD by convenient genetic method, based on one tetrameric far-red fluorescent protein (fRFP linked with RGD peptides. We validated its intergin targeting by confocal imaging in vitro. Then we screened a variety of tumor cells, and differentiated their binding affinity based on the fluorescence of the probe via flow cytometry. Among these cells, CNE-2 cells had the highest uptake of the probe, while B16 cells had the lowest, corresponding with their intergin expression levels. Next, the fluorescent and metabolic imaging was performed in HT1080 (intergin postive tumor, where nicotinamide adenine dinucleotide hydrogen (NADH, flavoprotein (Fp and fRFP fluorescent signals were collected. The tumor from mice intravenously injected with Octa-RGD probe displayed obviously higher NADH redox ratio NADH/(Fp+NADH and fRFP signal, than those with fRFP protein. It suggested that integrin targeting may have influence on the target cell metabolism, and further demonstrated Octa-RGD probe facilitated its uptake in the targeted tumor in vivo. This paper developed a useful probe, which can bind integrins specifically and efficiently in tumor cells, and together with tumor metabolic information, it may provide new insight for RGD targeting-based cancer therapeutics.

  14. A new screening method to detect proximal dental caries using fluorescence imaging.

    Science.gov (United States)

    Kim, Eun-Soo; Lee, Eun-Song; Kang, Si-Mook; Jung, Eun-Ha; de Josselin de Jong, Elbert; Jung, Hoi-In; Kim, Baek-Il

    2017-12-01

    This study aimed to assess the screening performance of the quantitative light-induced fluorescence (QLF) technology to detect proximal caries using both fluorescence loss and red fluorescence in a clinical situation. Moreover, a new simplified QLF score for the proximal caries (QS-Proximal) is proposed and its validity for detecting proximal caries was evaluated as well. This clinical study included 280 proximal surfaces, which were assessed by visual-tactile and radiographic examinations and scored by each scoring system according to lesion severity. The occlusal QLF images were analysed in two different ways: (1) a quantitative analysis producing fluorescence loss (ΔF) and red fluorescence (ΔR) parameters; and (2) a new QLF scoring index. For both quantitative parameters and QS-Proximal, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were calculated as a function of the radiographic scoring index at the enamel and dentine caries levels. Both ΔF and ΔR showed excellent AUROC values at the dentine caries level (ΔF=0.860, ΔR=0.902) whereas a relatively lower value was observed at the enamel caries level (ΔF=0.655, ΔR=0.686). The QS-Proximal also showed excellent AUROC ranged from 0.826 to 0.864 for detecting proximal caries at the dentine level. The QS-Proximal, which represents fluorescence changes, showed excellent performance in detecting proximal caries using the radiographic score as the gold standard. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Intravital fiber-optic fluorescence imaging for monitoring ovarian carcinoma progression and treatment response

    Science.gov (United States)

    Spring, Bryan Q.; Celli, Jonathan P.; Evans, Conor L.; Zhong, Wei; Rizvi, Imran; Mai, Zhiming; Mertz, Jerome; Yun, Seok H.; Hasan, Tayyaba

    2009-06-01

    Our laboratory has constructed a custom fluorescence microendoscope for detecting and monitoring tumor nodules in a mouse model of metastatic ovarian carcinoma (OVCA). The microendoscope is being applied for tumor recognition and for quantifying tumor burden reduction following photodynamic therapy (PDT). Benzoporphyrin derivative monoacid ring A (BPD-MA), a photosensitizing agent for PDT, is administered to the mice and imaged with the microendoscope prior to PDT. BPD-MA fluorescence is a convenient means for locating tumor sites and quantifying tumor burden (despite the fact that BPD-MA is a non-targeted contrast agent). The miniature, flexible microendoscope probe is delivered via a 14-gauge catheter for imaging metastases along the outer surfaces of the internal organs and the inner walls of the peritoneal cavity. The minimal invasiveness of this approach facilitates frequent imaging of the mice in order to monitor cancer progression and treatment response. We present promising data for intravital imaging of treatment response following PDT and new developments in the microendoscope instrumentation for improved image quality.

  16. Improved localization accuracy in stochastic super-resolution fluorescence microscopy by K-factor image deshadowing.

    Science.gov (United States)

    Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G; Menon, Rajesh; Gerton, Jordan M; Jorgensen, Erik M; Zalevsky, Zeev

    2013-12-16

    Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution.

  17. Correlative imaging of fluorescent proteins in resin-embedded plant material.

    Science.gov (United States)

    Bell, Karen; Mitchell, Steve; Paultre, Danae; Posch, Markus; Oparka, Karl

    2013-04-01

    Fluorescent proteins (FPs) were developed for live-cell imaging and have revolutionized cell biology. However, not all plant tissues are accessible to live imaging using confocal microscopy, necessitating alternative approaches for protein localization. An example is the phloem, a tissue embedded deep within plant organs and sensitive to damage. To facilitate accurate localization of FPs within recalcitrant tissues, we developed a simple method for retaining FPs after resin embedding. This method is based on low-temperature fixation and dehydration, followed by embedding in London Resin White, and avoids the need for cryosections. We show that a palette of FPs can be localized in plant tissues while retaining good structural cell preservation, and that the polymerized block face can be counterstained with cell wall probes. Using this method we have been able to image green fluorescent protein-labeled plasmodesmata to a depth of more than 40 μm beneath the resin surface. Using correlative light and electron microscopy of the phloem, we were able to locate the same FP-labeled sieve elements in semithin and ultrathin sections. Sections were amenable to antibody labeling, and allowed a combination of confocal and superresolution imaging (three-dimensional-structured illumination microscopy) on the same cells. These correlative imaging methods should find several uses in plant cell biology.

  18. A palm-sized high-sensitivity near-infrared fluorescence imager for laparotomy surgery.

    Science.gov (United States)

    Dorval, Paul; Mangeret, Norman; Guillermet, Stephanie; Atallah, Ihab; Righini, Christian; Barabino, Gabriele; Coll, Jean-Luc; Rizo, Philippe; Poulet, Patrick

    2016-01-01

    In laparotomy surgery guided by near-infrared fluorescence imaging, the access to the field of operation is limited by the illumination and/or the imaging field. The side of cavities or organs such as the liver or the heart cannot be examined with the systems available on the market, which are too large and too heavy. In this article, we describe and evaluate a palm sized probe, whose properties, weight, size and sensitivity are adapted for guiding laparotomy surgery. Different experiments have been performed to determine its main characteristics, both on the illumination and imaging sides. The device has been tested for fluorescent molecular probe imaging in preclinical procedures, to prove its ability to be used in cancer nodule detection during surgery. This system is now CE certified for clinical procedures and Indocyanine Green imaging has been performed during clinical investigations: lymphedema and surgical resection of liver metastases of colorectal cancers. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. A hyperspectral fluorescence system for 3D in vivo optical imaging

    International Nuclear Information System (INIS)

    Zavattini, Guido; Vecchi, Stefania; Mitchell, Gregory; Weisser, Ulli; Leahy, Richard M; Pichler, Bernd J; Smith, Desmond J; Cherry, Simon R

    2006-01-01

    In vivo optical instruments designed for small animal imaging generally measure the integrated light intensity across a broad band of wavelengths, or make measurements at a small number of selected wavelengths, and primarily use any spectral information to characterize and remove autofluorescence. We have developed a flexible hyperspectral imaging instrument to explore the use of spectral information to determine the 3D source location for in vivo fluorescence imaging applications. We hypothesize that the spectral distribution of the emitted fluorescence signal can be used to provide additional information to 3D reconstruction algorithms being developed for optical tomography. To test this hypothesis, we have designed and built an in vivo hyperspectral imaging system, which can acquire data from 400 to 1000 nm with 3 nm spectral resolution and which is flexible enough to allow the testing of a wide range of illumination and detection geometries. It also has the capability to generate a surface contour map of the animal for input into the reconstruction process. In this paper, we present the design of the system, demonstrate the depth dependence of the spectral signal in phantoms and show the ability to reconstruct 3D source locations using the spectral data in a simple phantom. We also characterize the basic performance of the imaging system

  20. In Vivo Tumor Angiogenesis Imaging Using Peptide-Based Near-Infrared Fluorescent Probes.

    Science.gov (United States)

    Huang, Rui; Conti, Peter S; Chen, Kai

    2016-01-01

    Near-infrared fluorescence (NIRF) imaging is an emerging imaging technique for studying diseases at the molecular level. Optical imaging with a near-infrared emitting fluorophore for targeting tumor angiogenesis offers a noninvasive method for early tumor detection and efficient monitoring of tumor response to anti-angiogenesis therapy. CD13 receptor, a zinc-dependent membrane-bound ectopeptidase, plays important roles in regulating tumor angiogenesis and the growth of new blood vessels. In this chapter, we use CD13 receptor as an example to demonstrate how to construct CD13-specific NGR-containing peptides via bioorthogonal click chemistry for visualizing and quantifying the CD13 receptor expression in vivo by means of NIRF optical imaging.

  1. Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimer׳s disease.

    Science.gov (United States)

    Tong, Hongjuan; Lou, Kaiyan; Wang, Wei

    2015-01-01

    One of the early pathological hallmarks of Alzheimer׳s disease (AD) is the deposition of amyloid-β (Aβ) plaques in the brain. There has been a tremendous interest in the development of Aβ plaques imaging probes for early diagnosis of AD in the past decades. Optical imaging, particularly near-infrared fluorescence (NIRF) imaging, has emerged as a safe, low cost, real-time, and widely available technique, providing an attractive approach for in vivo detection of Aβ plaques among many different imaging techniques. In this review, we provide a brief overview of the state-of-the-art development of NIRF Aβ probes and their in vitro and in vivo applications with special focus on design strategies and optical, binding, and brain-kinetic properties.

  2. Portable X-ray Fluorescence and Infrared Fluorescence Imaging Studies of Cadmium Yellow Alteration in Paintings by Edward Munch and Henri matisse in Oslo, Copenhagen, and San Francisco

    DEFF Research Database (Denmark)

    Mass, Jennifer; Uffelman, Erich; Buckley, Barbara

    2016-01-01

    The identification of altered cadmium yellow paints in early modernist works is critical to their stabilization and to the long-term preservation of the paintings in which they occur. The identification of incipient photoalteration of these pigments, before there is visual evidence...... of their chemical degradation, is of particular concern. The alteration of these pigments causes chalking, flaking, fading, and darkening of the yellow paints, leading to irreversible changes in the physical and chemical structure of the paint layer and dramatically altering the appearance of the work. Standoff......-induced visible fluorescence, ultraviolet-induced infrared fluorescence, multispectral imaging, and X-ray fluorescence. Questions addressed included the following: Is the imaging method being tested comprehensive? Is it efficient at surveying an entire painting? Does it reveal the state of preservation...

  3. In vivo imaging of alkaline phosphatase in tumor-bearing mouse model by a promising near-infrared fluorescent probe.

    Science.gov (United States)

    Liu, Hong-Wen; Hu, Xiao-Xiao; Zhu, Longmin; Li, Ke; Rong, Qiming; Yuan, Lin; Zhang, Xiao-Bing; Tan, Weihong

    2017-12-01

    Alkaline phosphatase (ALP), one of the important hydrolases, is associated with the progress of many diseases as a well-defined biomarker. Fluorescence imaging of ALP in living organisms is of great importance for biological studies. However, in vivo detection of ALP remains a great challenge because current fluorescent probes show short excitation and emission wavelength, which are not desired for in vivo fluorescence imaging. Herein we reported a near-infrared (NIR) fluorescent probe (NALP) for turn-on trapping of ALP activity in living cancer cells and tumors. NALP was composed of a NIR-emitting fluorophore as a reporter and phosphate as a triggered moiety. Phosphate group was directly tethered to the hydroxyl group of fluorophore, which prohibited the fluorescence. The probe exhibited a high selectivity and remarkable fluorescence turn-on response to ALP in aqueous solutions with a detection limit of 0.28U/L. Benefiting from NIR excitation and emission, high contrast on the imaging signal could be achieved in response to endogenous ALP activity. Impressively, not only we successfully used NALP for imaging of endogenous ALP activity in cancer cells, but also, applied it for fluorescence imaging of ALP in tumor tissues and living tumor xenograft in nude mice for the first time. The probe was expected to be promising tool for practical application in disease diagnosis on the roles of ALP in disease. Copyright © 2017. Published by Elsevier B.V.

  4. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-05-01

    Full Text Available Abstract Background Freezing tolerance is an important factor in the geographical distribution of plants and strongly influences crop yield. Many plants increase their freezing tolerance during exposure to low, nonfreezing temperatures in a process termed cold acclimation. There is considerable natural variation in the cold acclimation capacity of Arabidopsis that has been used to study the molecular basis of this trait. Accurate methods for the quantitation of freezing damage in leaves that include spatial information about the distribution of damage and the possibility to screen large populations of plants are necessary, but currently not available. In addition, currently used standard methods such as electrolyte leakage assays are very laborious and therefore not easily applicable for large-scale screening purposes. Results We have performed freezing experiments with the Arabidopsis accessions C24 and Tenela, which differ strongly in their freezing tolerance, both before and after cold acclimation. Freezing tolerance of detached leaves was investigated using the well established electrolyte leakage assay as a reference. Chlorophyll fluorescence imaging was used as an alternative method that provides spatial resolution of freezing damage over the leaf area. With both methods, LT50 values (i.e. temperature where 50% damage occurred could be derived as quantitative measures of leaf freezing tolerance. Both methods revealed the expected differences between acclimated and nonacclimated plants and between the two accessions and LT50 values were tightly correlated. However, electrolyte leakage assays consistently yielded higher LT50 values than chlorophyll fluorescence imaging. This was to a large part due to the incubation of leaves for electrolyte leakage measurements in distilled water, which apparently led to secondary damage, while this pre-incubation was not necessary for the chlorophyll fluorescence measurements. Conclusion Chlorophyll

  5. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    Science.gov (United States)

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak

  6. Review of free software tools for image analysis of fluorescence cell micrographs.

    Science.gov (United States)

    Wiesmann, V; Franz, D; Held, C; Münzenmayer, C; Palmisano, R; Wittenberg, T

    2015-01-01

    An increasing number of free software tools have been made available for the evaluation of fluorescence cell micrographs. The main users are biologists and related life scientists with no or little knowledge of image processing. In this review, we give an overview of available tools and guidelines about which tools the users should use to segment fluorescence micrographs. We selected 15 free tools and divided them into stand-alone, Matlab-based, ImageJ-based, free demo versions of commercial tools and data sharing tools. The review consists of two parts: First, we developed a criteria catalogue and rated the tools regarding structural requirements, functionality (flexibility, segmentation and image processing filters) and usability (documentation, data management, usability and visualization). Second, we performed an image processing case study with four representative fluorescence micrograph segmentation tasks with figure-ground and cell separation. The tools display a wide range of functionality and usability. In the image processing case study, we were able to perform figure-ground separation in all micrographs using mainly thresholding. Cell separation was not possible with most of the tools, because cell separation methods are provided only by a subset of the tools and are difficult to parametrize and to use. Most important is that the usability matches the functionality of a tool. To be usable, specialized tools with less functionality need to fulfill less usability criteria, whereas multipurpose tools need a well-structured menu and intuitive graphical user interface. © 2014 Fraunhofer-Institute for Integrated Circuits IIS Journal of Microscopy © 2014 Royal Microscopical Society.

  7. Nerve-Highlighting Fluorescent Contrast Agents for Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Summer L. Gibbs-Strauss

    2011-03-01

    Full Text Available Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4‘-[(2-methoxy-1,4-phenylenedi-(1E-2,1-ethenediyl]bis-benzenamine (BMB and a newly synthesized, red-shifted derivative 4-[(1E-2-[4-[(1E-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082 were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. The results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE™ (Fluorescence-Assisted Resection and Exploration imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.

  8. Imaging C. elegans with thiolated tryptophan-based NIR fluorescent gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Apurba Kr. [Indian Institute of Technology Kanpur, Department of Chemistry (India); Chaturbedi, Amaresh; Subramaniam, K. [Indian Institute of Technology Kanpur, Department of Biological Sciences and Bioengineering (India); Verma, Sandeep, E-mail: sverma@iitk.ac.in [Indian Institute of Technology Kanpur, Department of Chemistry (India)

    2013-11-15

    Multidentate, thiolated, tryptophan-containing peptide conjugates were synthesized for the preparation of gold nanoclusters (AuNCs). Precursor Au{sub 11}(PPh{sub 3}){sub 8}Cl{sub 3} was prepared by the reduction of HAuCl{sub 4}, followed by the use of tryptophan-containing peptide conjugates in ligand displacement reactions, to afford near-infrared fluorescent AuNCs. The emission maxima for these newly synthesized AuNCs were ∼715 nm. AuNCs were characterized with the help of UV–Vis, FTIR, fluorescence and MALDI analysis. FTIR spectra showed that the ligands bind to Au atoms through Au–S bonds, while MALDI mass spectra revealed that the clusters consisted of 20–23 Au atoms. Introduction of hydrophilic –COOH groups engendered water solubility to these AuNCs, enabling bioimaging applications. We demonstrate fluorescence imaging of the nematode C. elegans and confirm distribution of these AuNCs in nematode gut with the help of green fluorescent protein co-localization experiments.

  9. Non-invasive detection of aflatoxin-contaminated figs using fluorescence and multispectral imaging.

    Science.gov (United States)

    Kalkan, Habil; Güneş, Ali; Durmuş, Efkan; Kuşçu, Alper

    2014-01-01

    Agricultural products are prone to aflatoxin (AF)-producing moulds (Aspergillus flavus, A. parasiticus) during harvesting, drying, processing and also storage. AF is a mycotoxin that may cause liver cancer when consumed in amounts higher than allowed limits. Figs, like other agricultural products, are mostly affected by AF-producing moulds and these moulds usually produce kojic acid together with AF. Kojic acid is a fluorescent compound and exhibiting bright greenish yellow fluorescence (BGYF) under ultraviolet (UV) light. Using this fluorescence property, fig-processing plants manually select and remove the BGYF+ figs to reduce the AF level of the processed figs. Although manual selection is based on subjective criteria and strongly depends on the expertise level of the workers, it is known as the most effective way of removing AF-contaminated samples. However, during manual selection, workers are exposed to UV radiation and this brings skin health problems. In this study, we individually investigated the figs to measure their fluorescence level, surface mould concentration and AF levels and noted a strong correlation between mould concentration and BGYF and AF, and BGYF and surface. In addition to a pairwise correlation, we proposed a machine-vision and machine-learning approach to detect the AF-contaminated figs using their multispectral images under UV light. The figs were classified in two different approaches considering their surface mould and AF level with error rates of 9.38% and 11.98%, respectively.

  10. Second-Generation Triple Reporter for Bioluminescence, Micro–Positron Emission Tomography, and Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Aparna H. Kesarwala

    2006-10-01

    Full Text Available Bioluminescence, positron emission tomography (PET, and fluorescence modalities are currently available for noninvasive imaging in vivo, each with its own merits. To exploit the combined strengths of each and facilitate multimodality imaging, we engineered a dual-reporter construct in which firefly luciferase (FLuc and a 12–amino acid nonstructural linker were fused in frame to the N-terminus of a mutant herpes simplex virus thymidine kinase (mNLS-SR39TK kinetically enhanced for positron emission tomography (PET. Furthermore, a triple-reporter construct was developed in which monster green fluorescent protein (MGFP, a recently available enhanced fluorescent protein, was introduced into the fusion vector downstream of an internal ribosome entry site (IRES to allow analysis by fluorescence microscopy or flow cytometry without compromising the specific activities of the upstream fusion components. FLuc bioluminescence was measured with a cooled charge-coupled device camera and mNLS-SR39TK activity by 9-[4-[18F]fluoro-3-(hydroxymethyl butyl guanine (18F-FHBG microPET or 3H-penciclovir net accumulation. Importantly, HeLa cells transiently transfected with the FLuc-mNLS-SR39TK-IRES-MGFP triple reporter retained the same specific activities of the FLuc-mNLS-SR39TK heteroenzyme and the individual unfused enzymes with no change in protein half-lives. The presence of the IRES-MGFP modestly decreased upstream heteroprotein expression. In living mice, somatic gene transfer of a ubiquitin promoter-driven FLuc-mNLS-SR39TK-IRES-MGFP plasmid showed a > 1,000-fold increase in liver photon flux and a > 2-fold increase in liver retention of 18F-FHBG by microPET compared with mice treated with control plasmid. Multifocal hepatocellular fluorescence was readily observed by standard confocal microscopy. This second-generation triple reporter incorporating enhanced components enables bioluminescence, PET, and fluorescence imaging of cells and living animals.

  11. Fluorescence imaging of macrophages in atherosclerotic plaques using plasmonic gold nanorose

    Science.gov (United States)

    Wang, Tianyi; Sapozhnikova, Veronika; Mancuso, J. Jacob; Willsey, Brian; Qiu, Jinze; Ma, Li L.; Li, Xiankai; Johnston, Keith P.; Feldman, Marc D.; Milner, Thomas E.

    2011-03-01

    Macrophages are one of the most important cell types involved in the progression of atherosclerosis which can lead to myocardial infarction. To detect macrophages in atherosclerotic plaques, plasmonic gold nanorose is introduced as a nontoxic contrast agent for fluorescence imaging. We report macrophage cell culture and ex vivo tissue studies to visualize macrophages targeted by nanorose using scanning confocal microscopy. Atherosclerotic lesions were created in the aorta of a New Zealand white rabbit model subjected to a high cholesterol diet and double balloon injury. The rabbit was injected with nanoroses coated with dextran. A HeNe laser at 633 nm was used as an excitation light source and a acousto-optical beam splitter was utilized to collect fluorescence emission in 650-760 nm spectral range. Results of scanning confocal microscopy of macrophage cell culture and ex vivo tissue showed that nanoroses produce a strong fluorescence signal. The presence of nanorose in ex vivo tissue was further confirmed by photothermal wave imaging. These results suggest that scanning confocal microscopy can identify the presence and location of nanorose-loaded macrophages in atherosclerotic plaques.

  12. Toward Fourier interferometry fluorescence excitation/emission imaging of malignant cells combined with photoacoustic microscopy

    Science.gov (United States)

    Kohen, Elli; Hirschberg, Joseph G.; Berry, John P.; Ozkutuk, Nuri; Ornek, Ceren; Monti, Marco; Leblanc, Roger M.; Schachtschabel, Dietrich O.; Haroon, Sumaira

    2003-10-01

    Dual excitation fluorescence imaging has been used as a first step towards multi-wavelength excitation/emission fluorescence spectral imaging. Target cells are transformed keratinocytes, and other osteosarcoma, human breast and color cancer cells. Mitochondrial membrane potential probes, e.g. TMRM (tetramethylrhodamine methyl ester), Mitotracker Green (Molecular Probes, Inc., Eugene OR,USA; a recently synthesized mitochondrial oxygen probe, [PRE,P1"- pyrene butyl)-2-rhodamine ester] allow dual excitation in the UV plus in teh blue-green spectral regions. Also, using the natural endogenous probe NAD(P)H, preliminary results indicate mitochondrial responses to metabolic challenges (e.g. glucose addition), plus changes in mitochonrial distribution and morphology. In terms of application to biomedicine (for diagnostiscs, prognostsics and drug trials) three parameters have been selected in addition to the natural probe NAD(P)H, i.e. vital fluorescence probing of mitochondria, lysosomes and Golgi apparatus. It is hoped that such a multiparameter approach will allow malignant cell characterization and grading. A new area being introduced is the use of similar methodology for biotechnical applications such as the study of the hydrogen-producing alga Chlamydomonas Reinhardtii, and possible agricultural applications, such as Saccharomyces yeast for oenology. Complementation by Photoacoustic Microscopy is also contemplated, to study the internal conversion component which follows the excitation by photons.

  13. Photophysics of Fluorescent Probes for Single-Molecule Biophysics and Super-Resolution Imaging

    Science.gov (United States)

    Ha, Taekjip; Tinnefeld, Philip

    2012-05-01

    Single-molecule fluorescence spectroscopy and super-resolution microscopy are important elements of the ongoing technical revolution to reveal biochemical and cellular processes in unprecedented clarity and precision. Demands placed on the photophysical properties of the fluorophores are stringent and drive the choice of appropriate probes. Such fluorophores are not simple light bulbs of a certain color and brightness but instead have their own “personalities” regarding spectroscopic parameters, redox properties, size, water solubility, photostability, and several other factors. Here, we review the photophysics of fluorescent probes, both organic fluorophores and fluorescent proteins, used in applications such as particle tracking, single-molecule FRET, stoichiometry determination, and super-resolution imaging. Of particular interest is the thiol-induced blinking of Cy5, a curse for single-molecule biophysical studies that was later overcome using Trolox through a reducing/oxidizing system but a boon for super-resolution imaging owing to the controllable photoswitching. Understanding photophysics is critical in the design and interpretation of single-molecule experiments.

  14. Nanoscale imaging of the Candida-macrophage interaction using correlated fluorescence-atomic force microscopy.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Dufrêne, Yves F

    2012-12-21

    Knowledge of the molecular bases underlying the interaction of fungal pathogens with immune cells is critical to our understanding of fungal infections and offers exciting perspectives for controlling immune responses for therapy. Although fluorescence microscopy is a valuable tool to visualize pathogen-host interactions, the spatial resolution is low, meaning the fine structural details of the interacting cells cannot be observed. Here, we demonstrate the ability of correlated fluorescence-atomic force microscopy (AFM) to image the various steps of the interaction between fungal pathogens and macrophages with nanoscale resolution. We focus on Candida albicans, known to grow as two morphological forms (yeast cells, filamentous hyphae) that play important roles in modulating the interaction with macrophages. We observe the main steps of macrophage infection, including initial intercellular contact, phagocytosis by internalization of yeast cells, intracellular hyphal growth leading to mechanical stretching, and piercing of the macrophage membrane resulting in pathogen escape. While fluorescence imaging clearly distinguishes fungal cells from macrophages during the various steps of the process, AFM captures nanoscale structural features of the macrophage surface that are of high biological relevance, including ruffles, lamellipodia, filopodia, membrane remnants, and phagocytic cups. As fungal pathogenesis is mainly controlled by the ability of fungi to escape from immune cells, the nanoimaging platform established here has great potential in nanomedicine for understanding and controlling fungal infections.

  15. Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laser-induced fluorescence

    Science.gov (United States)

    Larsson, Kajsa; Hot, Dina; Gao, Jinlong; Kong, Chengdong; Li, Zhongshan; Aldén, Marcus; Bood, Joakim; Ehn, Andreas

    2018-04-01

    Ozone vapor, O3, is here visualized in a gliding arc discharge using photofragmentation laser-induced fluorescence. Ozone is imaged by first photodissociating the O3 molecule into an O radical and a vibrationally hot O2 fragment by a pump photon. Thereafter, the vibrationally excited O2 molecule absorbs a second (probe) photon that further transits the O2-molecule to an excited electronic state, and hence, fluorescence from the deexcitation process in the molecule can be detected. Both the photodissociation and excitation processes are achieved within one 248 nm KrF excimer laser pulse that is formed into a laser sheet and the fluorescence is imaged using an intensified CCD camera. The laser-induced signal in the vicinity of the plasma column formed by the gliding arc is confirmed to stem from O3 rather than plasma produced vibrationally hot O2. While both these products can be produced in plasmas a second laser pulse at 266 nm was utilized to separate the pump- from the probe-processes. Such arrangement allowed lifetime studies of vibrationally hot O2, which under these conditions were several orders of magnitude shorter than the lifetime of plasma-produced ozone.

  16. A miniaturised image based fluorescence detection system for point-of-care-testing of cocaine abuse

    Science.gov (United States)

    Walczak, Rafał; Krüger, Jan; Moynihan, Shane

    2015-08-01

    In this paper, we describe a miniaturised image-based fluorescence detection system and demonstrate its viability as a highly sensitive tool for point-of-care-analysis of drugs of abuse in human sweat with a focus on monitor individuals for drugs of abuse. Investigations of miniaturised and low power optoelectronic configurations and methodologies for real-time image analysis were successfully carried out. The miniaturised fluorescence detection system was validated against a reference detection system under controlled laboratory conditions by analysing spiked sweat samples in dip stick and then strip with sample pad. As a result of the validation studies, a 1 ng mL-1 limit of detection of cocaine in sweat and full agreement of test results with the reference detection system can be reported. Results of the investigations open the way towards a detection system that integrates a hand-held fluorescence reader and a wearable skinpatch, and which can collect and in situ analyse sweat for the presence of cocaine at any point for up to tenths hours.

  17. A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium.

    Science.gov (United States)

    Chernomordik, Victor; Gandjbakhche, Amir H; Hassan, Moinuddin; Pajevic, Sinisa; Weiss, George H

    2010-12-01

    We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the object being to estimate the position and lifetime of the fluorophore. Such information can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.

  18. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    Science.gov (United States)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  19. Intravital imaging of fluorescent markers and FRET probes by DNA tattooing

    Directory of Open Access Journals (Sweden)

    Spencer David M

    2007-01-01

    Full Text Available Abstract Background Advances in fluorescence microscopy and mouse transgenesis have made it possible to image molecular events in living animals. However, the generation of transgenic mice is a lengthy process and intravital imaging requires specialized knowledge and equipment. Here, we report a rapid and undemanding intravital imaging method using generally available equipment. Results By DNA tattooing we transfect keratinocytes of living mice with DNA encoding fluorescent biosensors. Subsequently, the behavior of individual cells expressing these biosensors can be visualized within hours and using conventional microscopy equipment. Using this "instant transgenic" model in combination with a corrected coordinate system, we followed the in vivo behavior of individual cells expressing either FRET- or location-based biosensors for several days. The utility of this approach was demonstrated by assessment of in vivo caspase-3 activation upon induction of apoptosis. Conclusion This "instant skin transgenic" model can be used to follow the in vivo behavior of individual cells expressing either FRET- or location-based probes for several days after tattooing and provides a rapid and inexpensive method for intravital imaging in murine skin.

  20. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    Science.gov (United States)

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  1. Wide-field four-channel fluorescence imager for biological applications

    Science.gov (United States)

    Thakur, Madhuri; Melnik, Dmitry; Barnett, Heather; Daly, Kevin; Moran, Christine H.; Chang, Wei-Shun; Link, Stephan; Bucher, Christopher Theodore; Kittrell, Carter; Curl, Robert

    2010-03-01

    A wide-field four-channel fluorescence imager has been developed. The instrument uses four expanded laser beams to image a large section (6 mm×9 mm). An object can be sequentially illuminated with any combination of 408-, 532-, 658-, and 784-nm lasers for arbitrary (down to 1 ms) exposure times for each laser. Just two notch filters block scattered light from all four lasers. The design approach described here offers great flexibility in treatment of objects, very good sensitivity, and a wide field of view at low cost. There appears to be no commercial instrument capable of simultaneous fluorescence imaging of a wide field of view with four-laser excitation. Some possible applications are following events such as flow and mixing in microchannel systems, the transmission of biological signals across a culture, and following simulations of biological membrane diffusion. It can also be used in DNA sequencing by synthesis to follow the progress of the photolytic removal of dye and terminator. Without utilizing its time resolution, it can be used to obtain four independent images of a single tissue section stained with four targeting agents, with each coupled to a different dye matching one of the lasers.

  2. High Resolution Fluorescence Imaging of Cancers Using Lanthanide Ion-Doped Upconverting Nanocrystals

    Directory of Open Access Journals (Sweden)

    John A. Capobianco

    2012-10-01

    Full Text Available During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR excitation (in the biological window have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs and metal nanoparticles, mostly gold nanorods (GNRs, are already commercially available for this purpose. In this work we review the role which is being played by a relatively new class of nanoparticles, based on lanthanide ion doped nanocrystals, to target and image cancer cells using upconversion fluorescence microscopy. These nanoparticles are insulating nanocrystals that are usually doped with small percentages of two different rare earth (lanthanide ions: The excited donor ions (usually Yb3+ ion that absorb the NIR excitation and the acceptor ions (usually Er3+, Ho3+ or Tm3+, that are responsible for the emitted visible (or also near infrared radiation. The higher conversion efficiency of these nanoparticles in respect to those based on QDs and GNRs, as well as the almost independent excitation/emission properties from the particle size, make them particularly promising for fluorescence imaging. The different approaches of these novel nanoparticles devoted to "in vitro" and "in vivo" cancer imaging, selective targeting and treatment are examined in this review.

  3. High Resolution Fluorescence Imaging of Cancers Using Lanthanide Ion-Doped Upconverting Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Naccache, Rafik; Rodríguez, Emma Martín; Bogdan, Nicoleta [Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6 (Canada); Sanz-Rodríguez, Francisco [Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Cruz, Maria del Carmen Iglesias de la [Departamento de Fisiología. Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029 (Spain); Fuente, Ángeles Juarranz de la [Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Vetrone, Fiorenzo [Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, Varennes J3X 1S2 (Canada); Jaque, Daniel; Solé, José García, E-mail: jose.garcia_sole@uam.es [Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Capobianco, John A., E-mail: jose.garcia_sole@uam.es [Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6 (Canada)

    2012-10-22

    During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR) excitation (in the biological window) have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs) and metal nanoparticles, mostly gold nanorods (GNRs), are already commercially available for this purpose. In this work we review the role which is being played by a relatively new class of nanoparticles, based on lanthanide ion doped nanocrystals, to target and image cancer cells using upconversion fluorescence microscopy. These nanoparticles are insulating nanocrystals that are usually doped with small percentages of two different rare earth (lanthanide) ions: The excited donor ions (usually Yb{sup 3+} ion) that absorb the NIR excitation and the acceptor ions (usually Er{sup 3+}, Ho{sup 3+} or Tm{sup 3+}), that are responsible for the emitted visible (or also near infrared) radiation. The higher conversion efficiency of these nanoparticles in respect to those based on QDs and GNRs, as well as the almost independent excitation/emission properties from the particle size, make them particularly promising for fluorescence imaging. The different approaches of these novel nanoparticles devoted to “in vitro” and “in vivo” cancer imaging, selective targeting and treatment are examined in this review.

  4. Simulation study of two-energy X-ray fluorescence holograms reconstruction algorithm to remove twin images

    International Nuclear Information System (INIS)

    Xie Honglan; Hu Wen; Luo Hongxin; Deng Biao; Du Guohao; Xue Yanling; Chen Rongchang; Shi Shaomeng; Xiao Tiqiao

    2008-01-01

    Unlike traditional outside-source holography, X-ray fluorescence holography is carded out with fluorescent atoms in a sample as source light for holographic imaging. With the method, three-dimensional arrangement of atoms into crystals can be observed obviously. However, just like traditional outside-source holography, X-ray fluorescence holography suffers from the inherent twin-image problem, too. With a 27-Fe-atoms cubic lattice as model, we discuss in this paper influence of the photon energy of incident source in removing twin images in reconstructed atomic images by numerical simulation and reconstruction with two-energy X-ray fluorescence holography. The results indicate that incident X-rays of nearer energies have better effect of removing twin images. In the detector of X-ray holography, minimum difference of the two incident energies depends on energy resolution of the monochromator and detector, and for inside source X-ray holography, minimum difference of the two incident energies depends on difference of two neighboring fluorescent energies emitting from the element and energy resolution of detector. The spatial resolution of atomic images increases with the incident energies. This is important for experiments of X-ray fluorescence holography, which is being developed on Shanghai Synchrotron Radiation Facility. (authors)

  5. Estrogen receptor-targeted optical imaging of breast cancer cells with near-infrared fluorescent dye

    Science.gov (United States)

    Jose, Iven; Deodhar, Kodand; Chiplunkar, Shuba V.; Patkar, Meena

    2010-02-01

    Molecular imaging provides the in vivo characterization of cellular molecular events involved in normal and pathologic processes. With the advent of optical molecular imaging, specific molecules, proteins and genes may be tagged with a luminescent reporter and visualized in small animals. This powerful new tool has pushed in vivo optical imaging to the forefront as it allows for direct determination of drug bio-distribution and uptake kinetics as well as an indicator of biochemical activity and drug efficacy. Although optical imaging encompasses diverse techniques and makes use of various wavelengths of light, a great deal of excitement in molecular research lies in the use of tomographic and fluorescence techniques to image living tissues with near-infrared (NIR) light. Nonionizing, noninvasive near-infrared optical imaging has great potential to become promising alternative for breast cancer detection. Fluorescence spectroscopy studies of human tissue suggest that a variety of lesions show distinct fluorescence spectra compared to those of normal tissue. It has also been shown that exogenous dyes exhibit selective uptake in neoplastic lesions and may offer the best contrast for optical imaging. Use of exogenous agents would provide fluorescent markers, which could serve to detect embedded tumors in the breast. In particular, the ability to monitor the fluorescent yield and lifetime may also enable biochemical specificity if the fluorophore is sensitive to a specific metabolite, such as oxygen. As a first step, we have synthesized and characterized one such NIR fluorescent dye conjugate, which could potentially be used to detect estrogen receptors (ER)[2] . The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of indocyanine green (ICG) cyanine dye, bis-1, 1-(4-sulfobutyl) indotricarbocyanine-5- carboxylic acid, sodium salt. The ester formed was found to have an extra binding ability with the receptor cites as

  6. Non-scanning x-ray fluorescence microscope: application to real time micro-imaging

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.

    2000-01-01

    So far, x-ray fluorescence (XRF) micro-imaging has been performed by a 2D positional scan of a sample against a collimated beam. Obtaining information on specific elements in a nondestructive manner is an attractive prospect for many scientific applications. Furthermore, a synchrotron micro-beam can enhance the spatial resolution down to 0.1 μm. However, the total measuring time becomes quite long (a few hours to a half day), since one needs a number of scanning points in order to obtain a high-quality image. It is possible to obtain an x-ray image with 1 M pixels and with 20 μm resolution in a very short time of 20 sec - 3 min using a non-scanning XRF microscope, which is based on completely different concept. In the present report, we discuss the application of this technique to real time micro-imaging. The experiments were carried out at BL-4A, Photon Factory, Tsukuba, Japan. We employed a grazing-incidence arrangement to make primary x-rays illuminate the whole sample surface. We adopted parallel-beam optics and extremely-close-geometry in order to detect x-ray fluorescence with a CCD camera. The selective-excitation capability of tunable monochromatic synchrotron radiation is a feasible method for distinguishing the elements of interest. One can obtain an image of each element by differentiating the images obtained above and below the absorption edges of interest. The growth of metallic dendrites from a solution dropped on a substrate was studied successfully. Several different growth patterns, corresponding to concentration and other conditions for diffusion, were observed as x-ray images. Since the present technique requires only 40 sec for each shot, it is possible to record a growing process through repeated exposures like a movie. The authors would like to thank Prof. A. Iida (Photon Factory) for his valuable comments. (author)

  7. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  8. Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu; Fang, Chia-Yi; Chang, Huan-Cheng

    2014-03-17

    Multi-color, high spatial resolution imaging of fluorescent nanodiamonds (FNDs) in living HeLa cells has been performed with a direct electron-beam excitation-assisted fluorescence (D-EXA) microscope. In this technique, fluorescent materials are directly excited with a focused electron beam and the resulting cathodoluminescence (CL) is detected with nanoscale resolution. Green- and red-light-emitting FNDs were employed for two-color imaging, which were observed simultaneously in the cells with high spatial resolution. This technique could be applied generally for multi-color immunostaining to reveal various cell functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. X-ray fluorescence holography and multiple-energy x-ray holography: A critical comparison of atomic images

    International Nuclear Information System (INIS)

    Len, P.M.; Gog, T.; Fadley, C.S.; Materlik, G.

    1997-01-01

    We compare x-ray fluorescence holography (XFH) and multiple-energy x-ray holography (MEXH), two techniques that have recently been used to obtain experimental three-dimensional atomic images. For single-energy holograms, these methods are equivalent by virtue of the optical reciprocity theorem. However, XFH can only record holographic information at the characteristic fluorescence energies of the emitting species, while MEXH can record holographic information at any energy above the fluorescent edge of the emitter, thus enabling the suppression of real-twin overlaps and other aberrations and artifacts in atomic images. copyright 1997 The American Physical Society

  10. Indocyanine green fluorescence imaging for evaluation of uterine blood flow in cynomolgus macaque.

    Directory of Open Access Journals (Sweden)

    Iori Kisu

    Full Text Available BACKGROUND: Uterine blood flow is an important factor in uterine viability, but the number of blood vessels required to maintain viability is uncertain. In this study, indocyanine green (ICG fluorescence imaging was used to examine uterine hemodynamics and vessels associated with uterine blood flow in cynomolgus macaque. METHODS: The uterus of a female cynomolgus macaque was cut from the vaginal canal to mimic a situation during trachelectomy or uterine transplantation surgery in which uterine perfusion is maintained only with uterine and ovarian vessels. Intraoperative uterine hemodynamics was observed using ICG fluorescence imaging under conditions in which various nutrient vessels were selected by clamping of blood vessels. A time-intensity curve was plotted using imaging analysis software to measure the T(max of uterine perfusion for selected blood vessel patterns. Open surgery was performed with the uterus receiving nutritional support only from uterine vessels on one side. The size of the uterus after surgery was monitored using transabdominal ultrasonography. RESULTS: The resulting time-intensity curves displayed the average intensity in the regions of the uterine corpus and uterine cervix, and in the entire uterus. Analyses of the uterine hemodynamics in the cynomolgus macaque showed that uterine vessels were significantly related to uterine perfusion (P=0.008, whereas ovarian vessels did not have a significant relationship (P=0.588. When uterine vessels were clamped, ovarian vessels prolonged the time needed to reach perfusion maximum. Postoperative transabdominal ultrasonography showed that the size of the uterus was not changed 2 months after surgery, with recovery of periodic menstruation. The cynomolgus macaque has got pregnant with favorable fetus well-being. CONCLUSION: Uterine vessels may be responsible for uterine blood flow, and even one uterine vessel may be sufficient to maintain uterine viability in cynomolgus macaque. Our

  11. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  12. Multiphoton fluorescence lifetime imaging shows spatial segregation of secondary metabolites in Eucalyptus secretory cavities.

    Science.gov (United States)

    Heskes, A M; Lincoln, C N; Goodger, J Q D; Woodrow, I E; Smith, T A

    2012-07-01

    Multiphoton fluorescence lifetime imaging provides an excellent tool for imaging deep within plant tissues while providing a means to distinguish between fluorophores with high spatial and temporal resolution. Ideal candidates for the application of multiphoton fluorescence lifetime imaging to plants are the embedded secretory cavities found in numerous species because they house complex mixtures of secondary metabolites within extracellular lumina. Previous investigations of this type of structure have been restricted by the use of sectioned material resulting in the loss of lumen contents and often disorganization of the delicate secretory cells; thus it is not known if there is spatial segregation of secondary metabolites within these structures. In this paper, we apply multiphoton fluorescence lifetime imaging to investigate the spatial arrangement of metabolites within intact secretory cavities isolated from Eucalyptus polybractea R.T. Baker leaves. The secretory cavities of this species are abundant (up to 10 000 per leaf), large (up to 6 nL) and importantly house volatile essential oil rich in the monoterpene 1,8-cineole, together with an immiscible, non-volatile component comprised largely of autofluorescent oleuropeic acid glucose esters. We have been able to optically section into the lumina of secretory cavities to a depth of ∼80 μm, revealing a unique spatial organization of cavity metabolites whereby the non-volatile component forms a layer between the secretory cells lining the lumen and the essential oil. This finding could be indicative of a functional role of the non-volatile component in providing a protective region of low diffusivity between the secretory cells and potentially autotoxic essential oil. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  13. Characterization of a fluorescence probe based on gold nanoclusters for cell and animal imaging

    International Nuclear Information System (INIS)

    Chen Haiyan; Zhang Xin; Cheng Zhengqi; Dai Xi; Zhu Rui; Gu Yueqing; Li Bowen; Wang Chuan

    2013-01-01

    A facile approach to synthesize gold nanoclusters (Au NCs) with bluish green fluorescence using histidine as both reductant and capping agent was reported. The UV–visible absorption and photoluminescence spectra measurement was performed to explore its optical properties under different circumstances (preparing condition, temperature, pH, storing time). Then, MPA, a NIR organic dye, was conjugated to Au NCs (Au-MPA) for in vivo fluorescence imaging application. Low cytotoxicity and high affinity to tumor of this nanoprobe was proved at the cellular level, and its bio-distribution in normal nude mice and MCF-7 tumor-bearing mice was also investigated. Consequently, the results demonstrated the promising potential of the green Au NCs conjugated with NIR dye as nanoprobes in bioimaging and related fields. (paper)

  14. Quantitation of CRM197 using imaged capillary isoelectric focusing with fluorescence detection and capillary Western.

    Science.gov (United States)

    Loughney, John W; Ha, Sha; Rustandi, Richard R

    2017-10-01

    Maurice is a new instrument that can perform imaged capillary isoelectric focusing (icIEF). The standard detection for icIEF is UV absorbance at 280 nm, which limits its application to high protein concentration samples and non-complex samples. Here we describe an icIEF instrument with fluorescence detection. We demonstrate the advantage of using either icIEF with fluorescence detection or quantitative Western Blot to measure diphtheria toxin mutant CRM197 protein titer in crude cell lysates and purified samples. These two techniques have great potentials to become standard methods to analyze protein titers in crude cell lysate or other complex samples types. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution

    Science.gov (United States)

    Ding, Yichen; Lee, Juhyun; Ma, Jianguo; Sung, Kevin; Yokota, Tomohiro; Singh, Neha; Dooraghi, Mojdeh; Abiri, Parinaz; Wang, Yibin; Kulkarni, Rajan P.; Nakano, Atsushi; Nguyen, Thao P.; Fei, Peng; Hsiai, Tzung K.

    2017-02-01

    Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the “digital murine heart” to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults.

  16. Statistical model of intensity noise in con focal fluorescence microscopy images

    International Nuclear Information System (INIS)

    Montereali, R.M.; Almaviva, S.; Franzini, I.; Somma, F.

    2008-01-01

    The visible photoluminescence of aggregate F2 and F3+ color centers in Lithium Fluoride (LiF) thin layers, grown by thermal evaporation on various substrates (either crystalline or not) with different thicknesses, can be efficiently observed by using an optical con focal fluorescence microscope and a laser pump with emission wavelength tuned at about 450 nm. Starting from con focal fluorescence images of uniformly colored LiF samples, an automatic routine for the estimation of photoluminescence intensity noise has been developed at the Solid State Laser Laboratory and Spectroscopy of the ENEA Research Center in Frascati. We reported experimental results about application of that routine to the photoluminescence of LiF thin films, uniformly irradiated with an X-ray tube with energy spectrum centered on the Cu K? emission line (8,03 keV), at the CNR-IFN in Rome, that allow to identify a suitable statistical model for his description [it

  17. Fluorescence confocal laser scanning microscopy for in vivo imaging of epidermal reactions to two experimental irritants

    DEFF Research Database (Denmark)

    Suihko, C.; Serup, J.

    2008-01-01

    Background: Fibre-optic fluorescence confocal laser scanning microscopy (CLSM) is a novel non-invasive technique for in vivo imaging of skin. The cellular structure of the epidermis can be studied. A fluorophore, e.g. fluorescein sodium, is introduced by an intradermal injection or applied...... dermatitis reactions caused by established model irritants, e.g. sodium lauryl sulphate (SLS) and pelargonic acid (PA). Methods: Twelve healthy individuals volunteered. The flexor aspect of the right and the left forearm was exposed to SLS in water and PA in isopropanol and occluded under Finn Chambers...... for 24 h. The reactions were rated clinically and, following epicutaneous and intra-dermal application of fluorescein sodium, studied by fluorescence CLSM, magnification x 1000. Results: Both irritants disturbed the epidermal intercellular borders, which became blurred, thickened and variably altered...

  18. In vitro and in vivo imaging of peroxynitrite by a ratiometric boronate-based fluorescent probe.

    Science.gov (United States)

    Palanisamy, Sathyadevi; Wu, Pei-Yu; Wu, Shou-Cheng; Chen, Yu-Jen; Tzou, Shey-Cherng; Wang, Chih-Hong; Chen, Chiao-Yun; Wang, Yun-Ming

    2017-05-15

    Peroxynitrite (ONOO - ) is an important species involved in many physiopathological processes. Progresses have been made in developing novel fluorescent probes to detect peroxynitrite with relatively high sensitivity and specificity. Herein, we report the synthesis, characterization and biological applications of a new boronate-based fluorescent probe, 4-MB. The studies showed that 4-MB exhibits a dual ratiometric and calorimetric response toward peroxynitrite due to ONOO - -triggered oxidative reaction. A possible mechanism of the oxidation reaction was proposed and the reaction product was isolated and characterized using different spectroscopic methods. We have thoroughly demonstrated the utility of 4-MB for intracellular peroxynitrite imaging. Further, we showed that 4-MB can be potentially employed to visualize exogenous and endogenous peroxynitrite in RAW264.7 macrophages, EAhy926 cells, zebrafish and in live tissues from a high-fat diet-induced obese mouse model. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A novel molecular Fluorescent technique for Imaging the Somatostatin Receptor 2 Using a DOTATOC Lanthanide Conjugate

    DEFF Research Database (Denmark)

    Andersen, Rune Wiik; Prakash, Vineet; Stensballe, Allan

    for synaptophysin.                         RESULTS            It is feasible to usefully chelate Samarium and Europium to DOTATOC. There is a distinct higher fluorescent signal arising from the chelation of the two ions than by the DOTA functional group alone. The unparaffinated pancreatic tumor tissues demonstrate.......                       CLINICAL RELEVANCE/APPLICATION            We propose a method for the histopatholgical receptor verification using fluorescent DOTATOC imaging. This potentially permits  ex-vivo developmental platforms for DOTA-conjugated molecules.        ...

  20. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.

    Science.gov (United States)

    Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen

    2016-08-01

    Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Novel applications of near-infrared fluorescence imaging in orthopaedic surgery (Conference Presentation)

    Science.gov (United States)

    Henderson, Eric R.; DSouza, Alisha V.; Paulsen, Keith D.; Pogue, Brian W.

    2017-02-01

    Sarcomas are cancers of the bones, muscles, nerves, and fat that require complete surgical removal for cure. The primary surgical goal therefore is to remove the tumor with a zone of normal, non-cancerous tissue surrounding the tumor, considered a `negative' surgical margin. At present, surgeons rely on radiologic imaging and visual and tactile clues to gauge cancer depth and guide surgical excision. This can result in removal of too much or too little tissue, which can lead to unnecessary removal of vital structures or incomplete cancer removal, respectively. Both results can have negative effects on ultimate patient outcome, with positive margins reported in 23% of sarcoma surgeries. Near-infrared (NIR) fluorescence probes are molecules that when stimulated with specific, known frequencies of near-infrared light will emit light of another distinct frequency. NIR light penetrates human tissue reasonably well and therefore can be used to detect the presence and location of unseen structures labeled with NIR fluorescence probes through several centimeters of tissue. Intra-operative near-infrared (NIR) fluorescence probes have been effective for this purpose in brain tumor surgery and may be applicable to sarcoma surgery. Foundational research is needed to explore the potential of this affibody probe and perfusion probes to estimate margin thickness in sarcoma surgery. In this study we will determine if sarcoma labeling using NIR fluorescence probes is superior with perfusion probes or a novel affibody probe. We will also determine whether NIR fluorescence using perfusion probes or a novel affibody probe can be correlated accurately to margin thickness.

  2. Biochemical characterization and cellular imaging of a novel, membrane permeable fluorescent cAMP analog

    Directory of Open Access Journals (Sweden)

    Zaccolo Manuela

    2008-06-01

    Full Text Available Abstract Background A novel fluorescent cAMP analog (8-[Pharos-575]- adenosine-3', 5'-cyclic monophosphate was characterized with respect to its spectral properties, its ability to bind to and activate three main isoenzymes of the cAMP-dependent protein kinase (PKA-Iα, PKA-IIα, PKA-IIβ in vitro, its stability towards phosphodiesterase and its ability to permeate into cultured eukaryotic cells using resonance energy transfer based indicators, and conventional fluorescence imaging. Results The Pharos fluorophore is characterized by a Stokes shift of 42 nm with an absorption maximum at 575 nm and the emission peaking at 617 nm. The quantum yield is 30%. Incubation of the compound to RIIα and RIIβ subunits increases the amplitude of excitation and absorption maxima significantly; no major change was observed with RIα. In vitro binding of the compound to RIα subunit and activation of the PKA-Iα holoenzyme was essentially equivalent to cAMP; RII subunits bound the fluorescent analog up to ten times less efficiently, resulting in about two times reduced apparent activation constants of the holoenzymes compared to cAMP. The cellular uptake of the fluorescent analog was investigated by cAMP indicators. It was estimated that about 7 μM of the fluorescent cAMP analog is available to the indicator after one hour of incubation and that about 600 μM of the compound had to be added to intact cells to half-maximally dissociate a PKA type IIα sensor. Conclusion The novel analog combines good membrane permeability- comparable to 8-Br-cAMP – with superior spectral properties of a modern, red-shifted fluorophore. GFP-tagged regulatory subunits of PKA and the analog co-localized. Furthermore, it is a potent, PDE-resistant activator of PKA-I and -II, suitable for in vitro applications and spatial distribution evaluations in living cells.

  3. Fluorescence hyper-spectral imaging to detecting faecal contamination on fresh tomatoes

    Directory of Open Access Journals (Sweden)

    Roberto Romaniello

    2016-03-01

    Full Text Available Faecal contamination of fresh fruits represents a severe danger for human health. Thus some techniques based on microbiological testing were developed to individuate faecal contaminants but those tests do not results efficient because their non-applicability on overall vegetable unity. In this work a methodology based on hyper-spectral fluorescence imaging was developed and tested to detecting faecal contamination on fresh tomatoes. Two image-processing methods were performed to maximise the contrast between the faecal contaminant and tomatoes skin: principal component analysis and band image ratio (BRI. The BRI method allows classifying correctly 70% of contaminated area, with no false-positives in all examined cases. Thus, the developed methodology can be employed for a fast and effective detection of faecal contamination on fresh tomatoes.

  4. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel

    2010-01-01

    in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution...... the high-entropy rings separating them, even though their width is of the order of just a single lattice site. Furthermore, we show how a Mott insulator melts with increasing temperature, owing to a proliferation of local defects. The ability to resolve individual lattice sites directly opens up new...... avenues for the manipulation, analysis and applications of strongly interacting quantum gases on a lattice. For example, one could introduce local perturbations or access regions of high entropy, a crucial requirement for the implementation of novel cooling schemes 3 ....

  5. Improving accuracy and precision in biological applications of fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Chang, Ching-Wei

    The quantitative understanding of cellular and molecular responses in living cells is important for many reasons, including identifying potential molecular targets for treatments of diseases like cancer. Fluorescence lifetime imaging microscopy (FLIM) can quantitatively measure these responses in living cells by producing spatially resolved images of fluorophore lifetime, and has advantages over intensity-based measurements. However, in live-cell microscopy applications using high-intensity light sources such as lasers, maintaining biological viability remains critical. Although high-speed, time-gated FLIM significantly reduces light delivered to live cells, making measurements at low light levels remains a challenge affecting quantitative FLIM results. We can significantly improve both accuracy and precision in gated FLIM applications. We use fluorescence resonance energy transfer (FRET) with fluorescent proteins to detect molecular interactions in living cells: the use of FLIM, better fluorophores, and temperature/CO2 controls can improve live-cell FRET results with higher consistency, better statistics, and less non-specific FRET (for negative control comparisons, p-value = 0.93 (physiological) vs. 9.43E-05 (non-physiological)). Several lifetime determination methods are investigated to optimize gating schemes. We demonstrate a reduction in relative standard deviation (RSD) from 52.57% to 18.93% with optimized gating in an example under typical experimental conditions. We develop two novel total variation (TV) image denoising algorithms, FWTV ( f-weighted TV) and UWTV (u-weighted TV), that can achieve significant improvements for real imaging systems. With live-cell images, they improve the precision of local lifetime determination without significantly altering the global mean lifetime values (high-light cases (RSD = 12.76% at total photon counts (TC) = 100 vs. RSD = 23.03% at TC = 400). Therefore, high-intensity excitation of living cells can be avoided

  6. Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy

    Science.gov (United States)

    2013-01-01

    Background Delignification pretreatments of biomass and methods to assess their efficacy are crucial for biomass-to-biofuels research and technology. Here, we applied confocal and fluorescence lifetime imaging microscopy (FLIM) using one- and two-photon excitation to map the lignin distribution within bagasse fibers pretreated with acid and alkali. The evaluated spectra and decay times are correlated with previously calculated lignin fractions. We have also investigated the influence of the pretreatment on the lignin distribution in the cell wall by analyzing the changes in the fluorescence characteristics using two-photon excitation. Eucalyptus fibers were also analyzed for comparison. Results Fluorescence spectra and variations of the decay time correlate well with the delignification yield and the lignin distribution. The decay dependences are considered two-exponential, one with a rapid (τ1) and the other with a slow (τ2) decay time. The fastest decay is associated to concentrated lignin in the bagasse and has a low sensitivity to the treatment. The fluorescence decay time became longer with the increase of the alkali concentration used in the treatment, which corresponds to lignin emission in a less concentrated environment. In addition, the two-photon fluorescence spectrum is very sensitive to lignin content and accumulation in the cell wall, broadening with the acid pretreatment and narrowing with the alkali one. Heterogeneity of the pretreated cell wall was observed. Conclusions Our results reveal lignin domains with different concentration levels. The acid pretreatment caused a disorder in the arrangement of lignin and its accumulation in the external border of the cell wall. The alkali pretreatment efficiently removed lignin from the middle of the bagasse fibers, but was less effective in its removal from their surfaces. Our results evidenced a strong correlation between the decay times of the lignin fluorescence and its distribution within the cell

  7. Facile synthesis of fluorescent porous zinc sulfide nanospheres and their application for potential drug delivery and live cell imaging.

    Science.gov (United States)

    Xing, Ruimin; Liu, Shanhu

    2012-05-21

    Fabrication of intrinsically fluorescent porous nanocarriers that are simultaneously stable in aqueous solutions and photostable is critical for their application in drug delivery and optical imaging but remains a challenge. In this study, fluorescent porous zinc sulfide nanospheres were synthesized by a facile gum arabic-assisted hydrothermal procedure. The morphology, composition and properties of the nanospheres have been characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, N(2) adsorption-desorption analysis, thermal gravimetric analysis, fourier transform infrared spectrograph, optical measurement, dynamic light scattering, and cytotoxicity assay. They exhibit larger surface area, excellent colloidal stability, photostable fluorescent signals, and good biocompatibility, which makes them promising hosts for drug delivery and cellular imaging. The fluorescent dye safranine-T was employed as a drug model and loaded into the porous nanospheres, which were delivered to human cervical cancer HeLa cells in vitro for live cell imaging.

  8. Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy.

    Science.gov (United States)

    Paës, Gabriel; Habrant, Anouck; Terryn, Christine

    2018-02-06

    Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in the architecture of plant cell walls is therefore important to understand and optimize transformation processes. For the first time, super-resolution imaging of poplar wood samples has been performed using the Stimulated Emission Depletion (STED) technique. In comparison to standard confocal images, STED reveals new details in cell wall structure, allowing the identification of secondary walls and middle lamella with fine details, while keeping open the possibility to perform topochemistry by the use of relevant fluorescent nano-probes. In particular, the deconvolution of STED images increases the signal-to-noise ratio so that images become very well defined. The obtained results show that the STED super-resolution technique can be easily implemented by using cheap commercial fluorescent rhodamine-PEG nano-probes which outline the architecture of plant cell walls due to their interaction with lignin. Moreover, the sample preparation only requires easily-prepared plant sections of a few tens of micrometers, in addition to an easily-implemented post-treatment of images. Overall, the STED super-resolution technique in combination with a variety of nano-probes can provide a new vision of plant cell wall imaging by filling in the gap between classical photon microscopy and electron microscopy.

  9. Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy

    Directory of Open Access Journals (Sweden)

    Gabriel Paës

    2018-02-01

    Full Text Available Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in the architecture of plant cell walls is therefore important to understand and optimize transformation processes. For the first time, super-resolution imaging of poplar wood samples has been performed using the Stimulated Emission Depletion (STED technique. In comparison to standard confocal images, STED reveals new details in cell wall structure, allowing the identification of secondary walls and middle lamella with fine details, while keeping open the possibility to perform topochemistry by the use of relevant fluorescent nano-probes. In particular, the deconvolution of STED images increases the signal-to-noise ratio so that images become very well defined. The obtained results show that the STED super-resolution technique can be easily implemented by using cheap commercial fluorescent rhodamine-PEG nano-probes which outline the architecture of plant cell walls due to their interaction with lignin. Moreover, the sample preparation only requires easily-prepared plant sections of a few tens of micrometers, in addition to an easily-implemented post-treatment of images. Overall, the STED super-resolution technique in combination with a variety of nano-probes can provide a new vision of plant cell wall imaging by filling in the gap between classical photon microscopy and electron microscopy.

  10. Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence.

    Science.gov (United States)

    Tao, Zhimin; Dang, Xiangnan; Huang, Xing; Muzumdar, Mandar D; Xu, Eric S; Bardhan, Neelkanth Manoj; Song, Haiqin; Qi, Ruogu; Yu, Yingjie; Li, Ting; Wei, Wei; Wyckoff, Jeffrey; Birrer, Michael J; Belcher, Angela M; Ghoroghchian, P Peter

    2017-07-01

    Cell-intrinsic reporters such as luciferase (LUC) and red fluorescent protein (RFP) have been commonly utilized in preclinical studies to image tumor growth and to monitor therapeutic responses. While extrinsic reporters that emit near infrared I (NIR-I: 650-950 nm) or near-infrared II (NIR-II: 1000-1700 nm) optical signals have enabled minimization of tissue autofluorescence and light scattering, it has remained unclear as to whether their use has afforded more accurate tumor imaging in small animals. Here, we developed a novel optical imaging construct comprised of rare earth lanthanide nanoparticles coated with biodegradable diblock copolymers and doped with organic fluorophores, generating NIR-I and NIR-II emissive bands upon optical excitation. Simultaneous injection of multiple spectrally-unique nanoparticles into mice bearing tumor implants established via intraperitoneal dissemination of LUC + /RFP + OVCAR-8 ovarian cancer cells enabled direct comparisons of imaging with extrinsic vs. intrinsic reporters, NIR-II vs. NIR-I signals, as well as targeted vs. untargeted exogenous contrast agents in the same animal and over time. We discovered that in vivo optical imaging at NIR-II wavelengths facilitates more accurate detection of smaller and earlier tumor deposits, offering enhanced sensitivity, improved spatial contrast, and increased depths of tissue penetration as compared to imaging with visible or NIR-I fluorescent agents. Our work further highlights the hitherto underappreciated enhancements in tumor accumulation that may be achieved with intraperitoneal as opposed to intravenous administration of nanoparticles. Lastly, we found discrepancies in the fidelity of tumor uptake that could be obtained by utilizing small molecules for in vivo as opposed to in vitro targeting of nanoparticles to disseminated tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    Science.gov (United States)

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  12. Fabrication of BSA@AuNC-Based Nanostructures for Cell Fluoresce Imaging and Target Drug Delivery.

    Science.gov (United States)

    Ding, Caifeng; Xu, Yujuan; Zhao, Yanan; Zhong, Hua; Luo, Xiliang

    2018-03-14

    Drug delivery which can offer efficient and localized drug transportation together with imaging capabilities is highly demanded in the development of cancer theranostic approaches. Herein, we report the construction of bovine serum albumin (BSA) gold nanoclusters (BSA@AuNCs) for cell fluoresce imaging and target drug delivery. BSA@AuNCs were modified with cyclic arginine-glycine-aspartate with the product RGD-BSA@AuNCs to enhance cell internalization of the nanoclusters. Furthermore, doxorubicin hydrochloride or doxorubicin (DOX), a widely used chemotherapy drug, was also used to modify RGD-BSA@AuNCs. The final design of the DOX/RGD-BSA@AuNC system was constructed through the disulfide bond. The physical microstructure and biological characterization of the BSA@AuNCs were realized through high-resolution transmission electron microscopy and confocal laser fluorescence microscopy. As the disulfide bonds were cleaved by glutathione in cancer cells, DOX-SH molecules were released from the nanosystem to inhibit the growth of cancer cells. The as-prepared DOX/RGD-BSA@AuNC system can be used not only to deliver drug but also to achieve the antitumor effect by in vivo imaging, demonstrating its promising applications in cancer treatment.

  13. Multiwavelength fluorescence otoscope for video-rate chemical imaging of middle ear pathology.

    Science.gov (United States)

    Valdez, Tulio A; Pandey, Rishikesh; Spegazzini, Nicolas; Longo, Kaitlyn; Roehm, Corrie; Dasari, Ramachandra R; Barman, Ishan

    2014-10-21

    A common motif in otolaryngology is the lack of certainty regarding diagnosis for middle ear conditions, resulting in many patients being overtreated under the worst-case assumption. Although pneumatic otoscopy and adjunctive tests offer additional information, white light otoscopy has been the main tool for diagnosis of external auditory canal and middle ear pathologies for over a century. In middle ear pathologies, the inability to avail high-resolution structural and/or molecular imaging is particularly glaring, leading to a complicated and erratic decision analysis. Here, we propose a novel multiwavelength fluorescence-based video-rate imaging strategy that combines readily available optical elements and software components to create a novel otoscopic device. This modified otoscope enables low-cost, detailed and objective diagnosis of common middle ear pathological conditions. Using the detection of congenital cholesteatoma as a specific example, we demonstrate the feasibility of fluorescence imaging to differentiate this proliferative lesion from uninvolved middle ear tissue based on the characteristic autofluorescence signals. Availability of real-time, wide-field chemical information should enable more complete removal of cholesteatoma, allowing for better hearing preservation and substantially reducing the well-documented risks, costs and psychological effects of repeated surgical procedures.

  14. Real-time fluorescence imaging of the DNA damage repair response during mitosis.

    Science.gov (United States)

    Miwa, Shinji; Yano, Shuya; Yamamoto, Mako; Matsumoto, Yasunori; Uehara, Fuminari; Hiroshima, Yukihiko; Toneri, Makoto; Murakami, Takashi; Kimura, Hiroaki; Hayashi, Katsuhiro; Yamamoto, Norio; Efimova, Elena V; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2015-04-01

    The response to DNA damage during mitosis was visualized using real-time fluorescence imaging of focus formation by the DNA-damage repair (DDR) response protein 53BP1 linked to green fluorescent protein (GFP) (53BP1-GFP) in the MiaPaCa-2(Tet-On) pancreatic cancer cell line. To observe 53BP1-GFP foci during mitosis, MiaPaCa-2(Tet-On) 53BP1-GFP cells were imaged every 30 min by confocal microscopy. Time-lapse imaging demonstrated that 11.4 ± 2.1% of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells had increased focus formation over time. Non-mitotic cells did not have an increase in 53BP1-GFP focus formation over time. Some of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells with focus formation became apoptotic. The results of the present report suggest that DNA strand breaks occur during mitosis and undergo repair, which may cause some of the mitotic cells to enter apoptosis in a phenomenon possibly related to mitotic catastrophe. © 2014 Wiley Periodicals, Inc.

  15. Automatic measurement of compression wood cell attributes in fluorescence microscopy images.

    Science.gov (United States)

    Selig, B; Luengo Hendriks, C L; Bardage, S; Daniel, G; Borgefors, G

    2012-06-01

    This paper presents a new automated method for analyzing compression wood fibers in fluorescence microscopy. Abnormal wood known as compression wood is present in almost every softwood tree harvested. Compression wood fibers show a different cell wall morphology and chemistry compared to normal wood fibers, and their mechanical and physical characteristics are considered detrimental for both construction wood and pulp and paper purposes. Currently there is the need for improved methodologies for characterization of lignin distribution in wood cell walls, such as from compression wood fibers, that will allow for a better understanding of fiber mechanical properties. Traditionally, analysis of fluorescence microscopy images of fiber cross-sections has been done manually, which is time consuming and subjective. Here, we present an automatic method, using digital image analysis, that detects and delineates softwood fibers in fluorescence microscopy images, dividing them into cell lumen, normal and highly lignified areas. It also quantifies the different areas, as well as measures cell wall thickness. The method is evaluated by comparing the automatic with a manual delineation. While the boundaries between the various fiber wall regions are detected using the automatic method with precision similar to inter and intra expert variability, the position of the boundary between lumen and the cell wall has a systematic shift that can be corrected. Our method allows for transverse structural characterization of compression wood fibers, which may allow for improved understanding of the micro-mechanical modeling of wood and pulp fibers. © 2012 The Authors Journal of Microscopy © 2012 Wadsworth Center, New York State Department of Health.

  16. Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice

    Directory of Open Access Journals (Sweden)

    Papaioannou Virginia E

    2004-12-01

    Full Text Available Abstract Background Advances in optical imaging modalities and the continued evolution of genetically-encoded fluorescent proteins are coming together to facilitate the study of cell behavior at high resolution in living organisms. As a result, imaging using autofluorescent protein reporters is gaining popularity in mouse transgenic and targeted mutagenesis applications. Results We have used embryonic stem cell-mediated transgenesis to label cells at sub-cellular resolution in vivo, and to evaluate fusion of a human histone protein to green fluorescent protein for ubiquitous fluorescent labeling of nucleosomes in mice. To this end we have generated embryonic stem cells and a corresponding strain of mice that is viable and fertile and exhibits widespread chromatin-localized reporter expression. High levels of transgene expression are maintained in a constitutive manner. Viability and fertility of homozygous transgenic animals demonstrates that this reporter is developmentally neutral and does not interfere with mitosis or meiosis. Conclusions Using various optical imaging modalities including wide-field, spinning disc confocal, and laser scanning confocal and multiphoton excitation microscopy, we can identify cells in various stages of the cell cycle. We can identify cells in interphase, cells undergoing mitosis or cell death. We demonstrate that this histone fusion reporter allows the direct visualization of active chromatin in situ. Since this reporter segments three-dimensional space, it permits the visualization of individual cells within a population, and so facilitates tracking cell position over time. It is therefore attractive for use in multidimensional studies of in vivo cell behavior and cell fate.

  17. Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips.

    Science.gov (United States)

    Deng, Yi; Asbury, Charles L

    2017-01-01

    Kinetochores are large multiprotein complexes that drive mitotic chromosome movements by mechanically coupling them to the growing and shortening tips of spindle microtubules. Kinetochores are also regulatory hubs, somehow sensing when they are erroneously attached and, in response, releasing their incorrect attachments and generating diffusible wait signals to delay anaphase until proper attachments can form. The remarkable ability of a kinetochore to sense and respond to its attachment status might stem from attachment- or tension-dependent changes in the structural arrangement of its core subcomplexes. However, direct tests of the relationship between attachment, tension, and core kinetochore structure have not previously been possible because of the difficulties of applying well-controlled forces and determining unambiguously the attachment status of individual kinetochores in vivo. The recent purification of native yeast kinetochores has enabled in vitro optical trapping-based assays of kinetochore tip-coupling and, in separate experiments, fluorescence imaging of single kinetochore particles. Here we introduce a dual instrument, combining optical trapping with multicolor total internal reflection fluorescence (TIRF) imaging, to allow kinetochore structure to be monitored directly with nanometer precision while mechanical tension is simultaneously applied. Our instrument incorporates differential interference contrast (DIC) imaging as well, to minimize the photo-bleaching of fluorescent tags during preparative bead and microtubule manipulations. A simple modification also allows the trapping laser to be easily converted into a real-time focus detection and correction system. Using this combined instrument, the distance between specific subcomplexes within a single kinetochore particle can be measured with 2-nm precision after 50 s observation time, or with 11-nm precision at 1 s temporal resolution. While our instrument was constructed specifically for

  18. Monitor RNA synthesis in live cell nuclei by using two-photon excited fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Peng, Xiao; Lin, Danying; Wang, Yan; Qi, Jing; Yan, Wei; Qu, Junle

    2015-03-01

    Probing of local molecular environment in cells is of significant value in creating a fundamental understanding of cellular processes and molecular profiles of diseases, as well as studying drug cell interactions. In order to investigate the dynamically changing in subcellular environment during RNA synthesis, we applied two-photon excited fluorescence lifetime imaging microscopy (FLIM) method to monitor the green fluorescent protein (GFP) fused nuclear protein ASF/SF2. The fluorescence lifetime of fluorophore is known to be in inverse correlation with a local refractive index, and thus fluorescence lifetimes of GFP fusions provide real-time information of the molecular environment of ASF/SF2- GFP. The FLIM results showed continuous and significant fluctuations of fluorescence lifetimes of the fluorescent protein fusions in live HeLa cells under physiological conditions. The fluctuations of fluorescence lifetime values indicated the variations of activities of RNA polymerases. Moreover, treatment with pharmacological drugs inhibiting RNA polymerase activities led to irreversible decreases of fluorescence lifetime values. In summary, our study of FLIM imaging of GFP fusion proteins has provided a sensitive and real-time method to investigate RNA synthesis in live cell nuclei.

  19. Thin-film-based sensitivity enhancement for total internal reflection fluorescence live-cell imaging.

    Science.gov (United States)

    Kim, Kyujung; Cho, Eun-Jin; Huh, Yong-Min; Kim, Donghyun

    2007-11-01

    We investigated experimentally the evanescent field enhancement based on dielectric thin films in total internal reflection microscopy. The sample employed two layers of Al2O3 and SiO2 deposited on an SF10 glass substrate. Field intensity enhancement measured by fluorescent excitation of microbeads relative to that of a control sample without dielectric films was polarization dependent, determined as 4.2 and 2.4 for TE and TM polarizations, respectively, and was in good agreement with numerical results. The thin-film-based field enhancement was also applied to live-cell imaging of quantum dots, which confirmed the sensitivity enhancement qualitatively.

  20. A versatile fluorescence lifetime imaging system for scanning large areas with high time and spatial resolution

    Science.gov (United States)

    Bernardo, César; Belsley, Michael; de Matos Gomes, Etelvina; Gonçalves, Hugo; Isakov, Dmitry; Liebold, Falk; Pereira, Eduardo; Pires, Vladimiro; Samantilleke, Anura; Vasilevskiy, Mikhail; Schellenberg, Peter

    2014-08-01

    We present a flexible fluorescence lifetime imaging device which can be employed to scan large sample areas with a spatial resolution adjustable from many micrometers down to sub-micrometers and a temporal resolution of 20 picoseconds. Several different applications of the system will be presented including protein microarrays analysis, the scanning of historical samples, evaluation of solar cell surfaces and nanocrystalline organic crystals embedded in electrospun polymeric nanofibers. Energy transfer processes within semiconductor quantum dot superstructures as well as between dye probes and graphene layers were also investigated.

  1. Enzymatic studies on planar supported membranes using a widefield fluorescence LAURDAN Generalized Polarization imaging approach

    DEFF Research Database (Denmark)

    Brewer, Jonathan R.; Thoke, Henrik Seir; Stock, Robeto

    2017-01-01

    the temporal resolution previously achieved using laser scanning based microscopes. A dedicated protocol to calibrate LAURDAN GP data obtained with charge-coupled device (CCD) cameras as detectors is also presented, enabling reliable assignment of GP values in the field of view. Using this methodology we...... to a single solid ordered phase at longer time scales. Additionally, we comparatively studied this system using the membrane fluorophore DiIC18. The advantages and limitations of both fluorescent dyes are discussed, emphasizing the adequacy of LAURDAN GP imaging to explore this type of membrane phenomena....

  2. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    Science.gov (United States)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  3. Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    adipocyte differentiation. DHE is targeted to transferrin-positive recycling endosomes in preadipocytes but associates with droplets in mature adipocytes. Only in adipocytes but not in foam cells fluorescent sterol was confined to the droplet-limiting membrane. We developed an approach to visualize...... macrophage foam cells and in adipocytes. We used deconvolution microscopy and developed image segmentation techniques to assess the DHE content of lipid droplets in both cell types in an automated manner. Pulse-chase studies and colocalization analysis were performed to monitor the redistribution of DHE upon...

  4. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ji Hye; Joo, Sang-Woo [Department of Chemistry, Soongsil University, Seoul 156-743 (Korea, Republic of); Cho, Keunchang [Logos Biosystems, Incorporated, Anyang 431-070 (Korea, Republic of); Lee, So Yeong, E-mail: leeso@snu.ac.kr, E-mail: sjoo@ssu.ac.kr [Laboratory of Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2011-06-10

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  5. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    International Nuclear Information System (INIS)

    Seo, Ji Hye; Joo, Sang-Woo; Cho, Keunchang; Lee, So Yeong

    2011-01-01

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  6. Reversible Reaction-Based Fluorescent Probe for Real-Time Imaging of Glutathione Dynamics in Mitochondria.

    Science.gov (United States)

    Chen, Jianwei; Jiang, Xiqian; Zhang, Chengwei; MacKenzie, Kevin R; Stossi, Fabio; Palzkill, Timothy; Wang, Meng C; Wang, Jin

    2017-09-22

    We report a mitochondria-specific glutathione (GSH) probe-designated as Mito-RealThiol (MitoRT)-that can monitor in vivo real-time mitochondrial glutathione dynamics, and apply this probe to follow mitochondrial GSH dynamic changes in living cells for the first time. MitoRT can be utilized in confocal microscopy, super-resolution fluorescence imaging, and flow cytometry systems. Using MitoRT, we demonstrate that cells have a high priority to maintain the GSH level in mitochondria compared to the cytosol not only under normal growing conditions but also upon oxidative stress.

  7. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    Science.gov (United States)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  8. Compression of multispectral fluorescence microscopic images based on a modified set partitioning in hierarchal trees

    Science.gov (United States)

    Mansoor, Awais; Robinson, J. Paul; Rajwa, Bartek

    2009-02-01

    Modern automated microscopic imaging techniques such as high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging are capable of producing hundreds to thousands of images per experiment. For quick retrieval, fast transmission, and storage economy, these images should be saved in a compressed format. A considerable number of techniques based on interband and intraband redundancies of multispectral images have been proposed in the literature for the compression of multispectral and 3D temporal data. However, these works have been carried out mostly in the elds of remote sensing and video processing. Compression for multispectral optical microscopy imaging, with its own set of specialized requirements, has remained under-investigated. Digital photography{oriented 2D compression techniques like JPEG (ISO/IEC IS 10918-1) and JPEG2000 (ISO/IEC 15444-1) are generally adopted for multispectral images which optimize visual quality but do not necessarily preserve the integrity of scientic data, not to mention the suboptimal performance of 2D compression techniques in compressing 3D images. Herein we report our work on a new low bit-rate wavelet-based compression scheme for multispectral fluorescence biological imaging. The sparsity of signicant coefficients in high-frequency subbands of multispectral microscopic images is found to be much greater than in natural images; therefore a quad-tree concept such as Said et al.'s SPIHT1 along with correlation of insignicant wavelet coefficients has been proposed to further exploit redundancy at high-frequency subbands. Our work propose a 3D extension to SPIHT, incorporating a new hierarchal inter- and intra-spectral relationship amongst the coefficients of 3D wavelet-decomposed image. The new relationship, apart from adopting the parent-child relationship of classical SPIHT, also brought forth the conditional "sibling" relationship by relating only the insignicant wavelet coefficients of subbands

  9. Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua

    2017-03-01

    Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.

  10. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    Science.gov (United States)

    Liu, Hao; Li, Ke; Xu, Liang; Wu, Daocheng

    2014-12-01

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5-9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications.

  11. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Ke [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China); Xu, Liang [The University of Kansas, Department of Molecular Biosciences (United States); Wu, Daocheng, E-mail: wudaocheng@mail.xjtu.edu.cn [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China)

    2014-12-15

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications.

  12. Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy

    Directory of Open Access Journals (Sweden)

    Mengyan Wang

    2017-12-01

    Full Text Available A method of rapidly differentiating lung tumor from healthy tissue is extraordinarily needed for both the diagnosis and the intraoperative margin assessment. We assessed the ability of fluorescence lifetime imaging microscopy (FLIM for differentiating human lung cancer and normal tissues with the autofluorescence, and also elucidated the mechanism in tissue studies and cell studies. A 15-patient testing group was used to compare FLIM results with traditional histopathology diagnosis. Based on the endogenous fluorescence lifetimes of the testing group, a criterion line was proposed to distinguish normal and cancerous tissues. Then by blinded examined 41 sections from the validation group of other 16 patients, the sensitivity and specificity of FLIM were determined. The cellular metabolism was studied with specific perturbations of oxidative phosphorylation and glycolysis in cell studies. The fluorescence lifetime of cancerous lung tissues is consistently lower than normal tissues, and this is due to the both decrease of reduced nicotinamide adenine dinucleotide (NADH and flavin adenine dinucleotide (FAD lifetimes. A criterion line of lifetime at 1920 ps can be given for differentiating human lung cancer and normal tissues.The sensitivity and specificity of FLIM for lung cancer diagnosis were determined as 92.9% and 92.3%. These findings suggest that NADH and FAD can be used to rapidly diagnose lung cancer. FLIM is a rapid, accurate and highly sensitive technique in the judgment during lung cancer surgery and it can be potential in earlier cancer detection.

  13. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    International Nuclear Information System (INIS)

    Kale, Anup; Yadav, Prasad; Gholap, Haribhau; Jog, J P; Ogale, Satishchandra; Kale, Sonia; Shastry, Padma; Pasricha, Renu; Lefez, Benoit; Hannoyer, Beatrice

    2011-01-01

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  14. In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters.

    Science.gov (United States)

    Lai, Lanmei; Zhao, Chunqiu; Su, Meina; Li, Xiaoqi; Liu, Xiaoli; Jiang, Hui; Amatore, Christian; Wang, Xuemei

    2016-07-21

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease which is difficult to cure. When Alzheimer's disease occurs, the level of zinc ions in the brain changes, and the relevant amount of zinc ions continue decreasing in the cerebrospinal fluid and plasma of Alzheimer's patients with disease exacerbation. In view of these considerations, we have explored a new strategy for the in vivo rapid fluorescence imaging of Alzheimer's disease through target bio-labeling of zinc oxide nanoclusters which were biosynthesized in vivo in the Alzheimer's brain via intravenous injection of zinc gluconate solution. By using three-month-old and six-month-old Alzheimer's model mice as models, our observations demonstrate that biocompatible zinc ions could pass through the blood-brain barrier of the Alzheimer's disease mice and generate fluorescent zinc oxide nanoclusters (ZnO NCs) through biosynthesis, and then the bio-synthesized ZnO NCs could readily accumulate in situ on the hippocampus specific region for the in vivo fluorescent labeling of the affected sites. This study provides a new way for the rapid diagnosis of Alzheimer's disease and may have promising prospects in the effective diagnosis of Alzheimer's disease.

  15. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes--a review.

    Science.gov (United States)

    Nagl, Andreas; Hemelaar, Simon Robert; Schirhagl, Romana

    2015-10-01

    Diamonds are widely used for jewelry owing to their superior optical properties accounting for their fascinating beauty. Beyond the sparkle, diamond is highly investigated in materials science for its remarkable properties. Recently, fluorescent defects in diamond, particularly the negatively charged nitrogen-vacancy (NV(-)) center, have gained much attention: The NV(-) center emits stable, nonbleaching fluorescence, and thus could be utilized in biolabeling, as a light source, or as a Förster resonance energy transfer donor. Even more remarkable are its spin properties: with the fluorescence intensity of the NV(-) center reacting to the presence of small magnetic fields, it can be utilized as a sensor for magnetic fields as small as the field of a single electron spin. However, a reproducible defect and surface and defect chemistry are crucial to all applications. In this article we review methods for using nanodiamonds for different imaging purposes. The article covers (1) dispersion of particles, (2) surface cleaning, (3) particle size selection and reduction, (4) defect properties, and (5) functionalization and attachment to nanostructures, e.g., scanning probe microscopy tips.

  16. Glucagon-Secreting Alpha Cell Selective Two-Photon Fluorescent Probe TP-α: For Live Pancreatic Islet Imaging.

    Science.gov (United States)

    Agrawalla, Bikram Keshari; Chandran, Yogeswari; Phue, Wut-Hmone; Lee, Sung-Chan; Jeong, Yun-Mi; Wan, Si Yan Diana; Kang, Nam-Young; Chang, Young-Tae

    2015-04-29

    Two-photon (TP) microscopy has an advantage for live tissue imaging which allows a deeper tissue penetration up to 1 mm comparing to one-photon (OP) microscopy. While there are several OP fluorescence probes in use for pancreatic islet imaging, TP imaging of selective cells in live islet still remains a challenge. Herein, we report the discovery of first TP live pancreatic islet imaging probe; TP-α (Two Photon-alpha) which can selectively stain glucagon secreting alpha cells. Through fluorescent image based screening using three pancreatic cell lines, we discovered TP-α from a TP fluorescent dye library TPG (TP-Green). In vitro fluorescence test showed that TP-α have direct interaction and appear glucagon with a significant fluorescence increase, but not with insulin or other hormones/analytes. Finally, TP-α was successfully applied for 3D imaging of live islets by staining alpha cell directly. The newly developed TP-α can be a practical tool to evaluate and identify live alpha cells in terms of localization, distribution and availability in the intact islets.

  17. Improved Debulking of Peritoneal Tumor Implants by Near-Infrared Fluorescent Nanobody Image Guidance in an Experimental Mouse Model.

    Science.gov (United States)

    Debie, Pieterjan; Vanhoeij, Marian; Poortmans, Natalie; Puttemans, Janik; Gillis, Kris; Devoogdt, Nick; Lahoutte, Tony; Hernot, Sophie

    2017-10-31

    Debulking followed by combination chemotherapy is currently regarded as the most effective treatment for advanced ovarian cancer. Prognosis depends drastically on the degree of debulking. Accordingly, near-infrared (NIR) fluorescence imaging has been proposed to revolutionize cancer surgery by acting as a sensitive, specific, and real-time tool enabling visualization of cancer lesions. We have previously developed a NIR-labeled nanobody that allows fast, specific, and high-contrast imaging of HER2-positive tumors. In this study, we applied this tracer during fluorescence-guided surgery in a mouse model and investigated the effect on surgical efficiency. 0.5 × 10 6 SKOV3.IP1-Luc+ cells were inoculated intraperitoneally in athymic mice and were allowed to grow for 30 days. Two nanomoles of IRDye800CW-anti-HER2 nanobody was injected intravenously. After 1h30, mice were killed, randomized in two groups, and subjected to surgery. In the first animal group (n = 7), lesions were removed by a conventional surgical protocol, followed by excision of remaining fluorescent tissue using a NIR camera. The second group of mice (n = 6) underwent directly fluorescence-guided surgery. Bioluminescence imaging was performed before and after surgery. Resected tissue was categorized as visualized during conventional surgery or not, fluorescent or not, and bioluminescent positive or negative. Fluorescence imaging allowed clear visualization of tumor nodules within the abdomen, up to submillimeter-sized lesions. Fluorescence guidance resulted in significantly reduced residual tumor as compared to conventional surgery. Moreover, sensitivity increased from 59.3 to 99.0 %, and the percentage of false positive lesions detected decreased from 19.6 to 7.1 %. This study demonstrates the advantage of intraoperative fluorescence imaging using nanobody-based tracers on the efficiency of debulking surgery.

  18. A fluorescent imaging assay of cast in renal disease based on graphene quantum dots and Fe3O4 nanoparticles.

    Science.gov (United States)

    Jiang, Dongneng; Ni, Danni; Liu, Fei; Zhang, Liqun; Liu, Linlin; Pu, Xiaoyun

    2016-02-15

    Renal disease has become a global public health problem. Cast is a useful disease marker of kidney injury and renal failure. Hence, a cast-targeted fluorescent imaging assay is developed for the laboratory diagnosis of renal disease. Firstly, graphene quantum dots (GQDs) were stripped from graphene oxide sheets and amine-modified. Then, anti-human IgG antibody was conjugated with Fe3O4 nanoparticles to identify the cast in urine. Furthermore, the modified GQDs were linked onto the surface of Fe3O4/anti-IgG nanocomposites. Lastly, this Fe3O4/GQD fluorescent probe was added into the sample to detect the cast through fluorescent imaging. Preliminary application of this probe in clinical detection showed that the common types of casts in urine (including RBC, WBC, fatty and granular casts) could be detected by this fluorescent imaging assay. The method has the advantages of fast speed, high sensitivity (lowest detection limit to 2 casts/ml), good selectivity, and wide linear range (2-2000 casts/ml). Regression analysis also showed that there was a good linear relationship (y=0.9495×+10.974, R(2)=0.9879) between the fluorescent counts and the casts in urine. This cast-targeted fluorescent imaging assay may be a potential method for the laboratory diagnosis of renal disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Single-Step Assembly of Multi-Modal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging

    Science.gov (United States)

    Pinkerton, Nathalie M.; Gindy, Marian E.; Calero-DdelC, Victoria L.; Wolfson, Theodore; Pagels, Robert F.; Adler, Derek; Gao, Dayuan; Li, Shike; Wang, Ruobing; Zevon, Margot; Yao, Nan; Pacheco, Carlos; Therien, Michael J.; Rinaldi, Carlos; Sinko, Patrick J.

    2015-01-01

    MRI and NIR-active, multi-modal Composite NanoCarriers (CNCs) are prepared using a simple, one-step process, Flash NanoPrecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 mM-1s-1 for CNCs formulated with 4 to 16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm3 non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye PZn3 into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents. PMID:25925128

  20. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.

    2013-10-22

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can be visualized with the image resolution better than 80 nm. The method was applied to image 100 nm-wide polymer nanopatterns fabricated by thermal nanoimprinting. The results point to the applicability of the method for evaluating residual polymer thin films and dewetting defect of the polymer resist patterns which are important for the quality control of the fine nanoimprinted patterns. 2013 Author(s).

  1. Intraoperative Multispectral Fluorescence Imaging for the Detection of the Sentinel Lymph Node in Cervical Cancer : A Novel Concept

    NARCIS (Netherlands)

    Crane, Lucia M. A.; Themelis, George; Pleijhuis, Rick G.; Harlaar, Niels J.; Sarantopoulos, Athanasios; Arts, Henriette J. G.; van der Zee, Ate G. J.; Vasilis, Ntziachristos; van Dam, Gooitzen M.

    2011-01-01

    Real-time intraoperative near-infrared fluorescence (NIRF) imaging is a promising technique for lymphatic mapping and sentinel lymph node (SLN) detection. The purpose of this technical feasibility pilot study was to evaluate the applicability of NIRF imaging with indocyanin green (ICG) for the

  2. Effects of temperature and irradiance on a benthic microalgal community: A combined two-dimensional oxygen and fluorescence imaging approach

    DEFF Research Database (Denmark)

    Hancke, Kasper; Sorrell, Brian Keith; Lund-Hansen, Lars Chresten

    2014-01-01

    The effects of temperature and light on both oxygen (O2) production and gross photosynthesis were resolved in a benthic microalgae community by combining two-dimensional (2D) imaging of O2 and variable chlorophyll a (Chl a) fluorescence. Images revealed a photosynthetically active community with ...

  3. Potential applications of near infrared auto-fluorescence spectral polarized imaging for assessment of food quality

    Science.gov (United States)

    Zhou, Kenneth J.; Chen, Jun

    2016-03-01

    The current growing of food industry for low production costs and high efficiency needs for maintenance of high-quality standards and assurance of food safety while avoiding liability issues. Quality and safety of food depend on physical (texture, color, tenderness etc.), chemical (fat content, moisture, protein content, pH, etc.), and biological (total bacterial count etc.) features. There is a need for a rapid (less than a few minutes) and accurate detection system in order to optimize quality and assure safety of food. However, the fluorescence ranges for known fluorophores are limited to ultraviolet emission bands, which are not in the tissue near infrared (NIR) "optical window". Biological tissues excited by far-red or NIR light would exhibit strong emission in spectral range of 650-1,100 nm although no characteristic peaks show the emission from which known fluorophores. The characteristics of the auto-fluorescence emission of different types of tissues were found to be different between different tissue components such as fat, high quality muscle food. In this paper, NIR auto-fluorescence emission from different types of muscle food and fat was measured. The differences of fluorescence intensities of the different types of muscle food and fat emissions were observed. These can be explained by the change of the microscopic structure of physical, chemical, and biological features in meat. The difference of emission intensities of fat and lean meat tissues was applied to monitor food quality and safety using spectral polarized imaging, which can be detect deep depth fat under the muscle food up to several centimeter.

  4. Improved method for efficient imaging of intracellular Cl(-) with Cl-Sensor using conventional fluorescence setup.

    Science.gov (United States)

    Friedel, Perrine; Bregestovski, Piotr; Medina, Igor

    2013-01-01

    Chloride (Cl(-)) homeostasis is known to be fundamental for central nervous system functioning. Alterations in intracellular Cl(-) concentration ([Cl(-)]i) and changes in the efficacy of Cl(-) extrusion are involved in numerous neurological disorders. Therefore, there is a strong need for studies of the dynamics of [Cl(-)]i in different cell types under physiological conditions and during pathology. Several previous works reported having successfully achieved recording of [Cl(-)]i using genetically encoded Cl-Sensor that is composed of the cyan fluorescent protein (CFP) and Cl(-)-sensitive mutant of the yellow fluorescent protein (YFPCl). However, all reported works were performed using specially designed setups with ultra-sensitive CCD cameras. Our multiple attempts to monitor Cl(-)-dependent fluorescence of Cl-Sensor using conventional epifluorescence microscopes did not yield successful results. In the present work, we have analysed the reason of our failures and found that they were caused by a strong inactivation of the YFPCl component of Cl-Sensor during excitation of the CFP with 430 nm light. Based on the obtained results, we reduced 20-fold the intensity of the 430 nm excitation and modified the recording protocol that allows now stable long-lasting ratiometric measurements of Cl-Sensor fluorescence in different cell types including cultured hippocampal neurons and their tiny dendrites and spines. Simultaneous imaging and patch clamp recording revealed that in mature neurons, the novel protocol allows detection of as little as 2 mM changes of [Cl(-)]i from the resting level of 5-10 mM. We demonstrate also a usefulness of the developed [Cl(-)]i measurement procedure for large scale screening of the activity of exogenously expressed potassium-chloride co-transporter KCC2, a major neuronal Cl(-) extruder that is implicated in numerous neurological disorders and is a target for novel therapeutical treatments.

  5. Improved method for efficient imaging of intracellular Cl- with Cl-Sensor using conventional fluorescence setup

    Directory of Open Access Journals (Sweden)

    Perrine eFriedel

    2013-04-01

    Full Text Available Chloride (Cl- homeostasis is known to be fundamental for central nervous system functioning. Alterations in intracellular Cl- concentration ([Cl-]i and changes in the efficacy of Cl- extrusion are involved in numerous neurological disorders. Therefore there is a strong need for studies of the dynamics of [Cl-]i in different cell types under physiological conditions and during pathology. Several previous works reported having successfully achieved recording of [Cl-]i using genetically encoded Cl-Sensor that is composed of the cyan fluorescent protein (CFP and Cl--sensitive mutant of the yellow fluorescent protein (YFPCl. However all reported works were performed using specially designed setups with ultra-sensitive CCD cameras. Our multiple attempts to monitor Cl--dependent fluorescence of Cl-Sensor using conventional epifluorescence microscopes did not yield successful results. In the present work, we have analysed the reason of our failures and found that they were caused by a strong inactivation of the YFPCl component of Cl-Sensor during excitation of the CFP with 430 nm light. Based on the obtained results, we reduced 20-fold the intensity of the 430 nm excitation and modified the recording protocol that allows now stable long-lasting ratiometric measurements of Cl-Sensor fluorescence in different cell types including cultured hippocampal neurons and their tiny dendrites and spines. Simultaneous imaging and patch clamp recording revealed that in mature neurons, the novel protocol allows detection of as little as 2 mM changes of [Cl-]i from the resting level of 5-10 mM. We demonstrate also a usefulness of the developed [Cl-]i measurement procedure for large scale screening of the activity of exogenously expressed potassium-chloride co-transporter KCC2, a major neuronal Cl- extruder, that is implicated in numerous neurological disorders and is a target for novel therapeutical treatments.

  6. Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice

    Science.gov (United States)

    Hoffman, Robert M.

    2006-02-01

    We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.

  7. Radiography imaging of cultural heritage obtained with a modified portable X-Ray Fluorescence System

    International Nuclear Information System (INIS)

    Mendoza Cuevas, Ariadna; Velazquez Maldonado, Luis Ramon

    2011-01-01

    The sufficiency of imaging quality of the radiographies obtained with a modified portable X-ray fluorescence spectrometer was evaluated for the study of cultural heritage. The proposed instrument use an X-ray tube with Pd anode (2 mm) that allows a maximum voltage and current of 50 kV and 1 mA respectively and a collimation system permit to irradiate a square shape region in the analyzed object by the projection of light beam with the same shape on its surface. The spatial resolution of the obtained radiographic image make possible to localize and well define pentimenti in painting, identify filling materials in a painting under restoration process, the radiogrametry of archaeological bone and the identification of a petrified sphere from an archaeological discovery. The radiographic analysis is proposed for study of physical anthropology in Cuba. (author)

  8. Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate-based image segmentation

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Landt Larsen, Ane; Færgeman, Nils J.

    2010-01-01

    to detect DHE selectively, based on its rapid bleaching kinetics compared to cellular autofluorescence. Worms were repeatedly imaged on an ultraviolet-sensitive wide field (UV-WF) microscope, and bleaching kinetics of DHE were fitted on a pixel-basis to mathematical models describing the intensity decay......The nematode Caenorhabditis elegans is a genetically tractable model organism to investigate sterol transport. In vivo imaging of the fluorescent sterol, dehydroergosterol (DHE), is challenged by C. elegans' high autofluorescence in the same spectral region as emission of DHE. We present a method....... Bleach-rate constants were determined for DHE in vivo and confirmed in model membranes. Using this method, we could detect enrichment of DHE in specific tissues like the nerve ring, the spermateca and oocytes. We confirm these results in C. elegans gut-granule-loss (glo) mutants with reduced...

  9. Combined fluorescence and phase contrast imaging at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Hornberger, B.; Feser, M.; Jacobsen, C.; Vogt, S.; Legnini, D.; Paterson, D.; Rehak, P.; DeGeronimo, G.; Palmer, B.M.; Experimental Facilities Division (APS); State Univ. of New York at Stony Brook Univ.; BNL; Univ. of Vermont

    2006-01-01

    X-ray fluorescence microprobes excel at detecting and quantifying trace metals in biological and environmental science samples, but typically do not detect low Z elements such as carbon and nitrogen. Therefore, it is hard to put the trace metals into context with their natural environment. We are implementing phase contrast capabilities with a segmented detector into several microprobes at the Advanced Photon Source (APS) to address this problem. Qualitative differential phase contrast images from a modified soft x-ray detector already provide very useful information for general users. We are also implementing a quantitative method to recover the absolute phase shift by Fourier filtering detector images. New detectors are under development which are optimized for the signal levels present at the APS. In this paper, we concentrate on fundamental signal to noise considerations comparing absorption and differential phase contrast.

  10. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging.

    Science.gov (United States)

    Zheng, Weili; Nichol, Helen; Liu, Saifeng; Cheng, Yu-Chung N; Haacke, E Mark

    2013-09-01

    Measuring iron content in the brain has important implications for a number of neurodegenerative diseases. Quantitative susceptibility mapping (QSM), derived from magnetic resonance images, has been used to measure total iron content in vivo and in post mortem brain. In this paper, we show how magnetic susceptibility from QSM correlates with total iron content measured by X-ray fluorescence (XRF) imaging and by inductively coupled plasma mass spectrometry (ICPMS). The relationship between susceptibility and ferritin iron was estimated at 1.10±0.08 ppb susceptibility per μg iron/g wet tissue, similar to that of iron in fixed (frozen/thawed) cadaveric brain and previously published data from unfixed brains. We conclude that magnetic susceptibility can provide a direct and reliable quantitative measurement of iron content and that it can be used clinically at least in regions with high iron content. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells

    International Nuclear Information System (INIS)

    Liu, Jianbo; Zhang, Pengfei; Yang, Xiaohai; Wang, Kemin; Guo, Qiuping; Huang, Jin; Li, Wei

    2014-01-01

    Protein labeling for dynamic living cell imaging plays a significant role in basic biological research, as well as in clinical diagnostics and therapeutics. We have developed a novel strategy in which the dynamic visualization of proteins within living cells is achieved by using aptamers as mediators for indirect protein labeling of quantum dots (QDs). With this strategy, the target protein angiogenin was successfully labeled with fluorescent QDs in a minor intactness model, which was mediated by the aptamer AL6-B. Subsequent living cell imaging analyses indicated that the QDs nanoprobes were selectively bound to human umbilical vein endothelial cells, gradually internalized into the cytoplasm, and mostly localized in the lysosome organelle, indicating that the labeled protein retained high activity. Compared with traditional direct protein labeling methods, the proposed aptamer-mediated strategy is simple, inexpensive, and provides a highly selective, stable, and intact labeling platform that has shown great promise for future biomedical labeling and intracellular protein dynamic analyses. (paper)

  12. Imaging Fluorescent Combustion Species in Gas Turbine Flame Tubes: On Complexities in Real Systems

    Science.gov (United States)

    Hicks, Y. R.; Locke, R. J.; Anderson, R. C.; Zaller, M.; Schock, H. J.

    1997-01-01

    Planar laser-induced fluorescence (PLIF) is used to visualize the flame structure via OH, NO, and fuel imaging in kerosene- burning gas turbine combustor flame tubes. When compared to simple gaseous hydrocarbon flames and hydrogen flames, flame tube testing complexities include spectral interferences from large fuel fragments, unknown turbulence interactions, high pressure operation, and the concomitant need for windows and remote operation. Complications of these and other factors as they apply to image analysis are considered. Because both OH and gas turbine engine fuels (commercial and military) can be excited and detected using OH transition lines, a narrowband and a broadband detection scheme are compared and the benefits and drawbacks of each method are examined.

  13. Classification of multicolor fluorescence in situ hybridization (M-FISH) images with sparse representation.

    Science.gov (United States)

    Cao, Hongbao; Deng, Hong-Wen; Li, Marilyn; Wang, Yu-Ping

    2012-06-01

    There has been a considerable interest in sparse representation and compressive sensing in applied mathematics and signal processing in recent years but with limited success to medical image processing. In this paper we developed a sparse representation-based classification (SRC) algorithm based on L1-norm minimization for classifying chromosomes from multicolor fluorescence in situ hybridization (M-FISH) images. The algorithm has been tested on a comprehensive M-FISH database that we established, demonstrating improved performance in classification. When compared with other pixel-wise M-FISH image classifiers such as fuzzy c-means (FCM) clustering algorithms and adaptive fuzzy c-means (AFCM) clustering algorithms that we proposed earlier the current method gave the lowest classification error. In order to evaluate the performance of different SRC for M-FISH imaging analysis, three different sparse representation methods, namely, Homotopy method, Orthogonal Matching Pursuit (OMP), and Least Angle Regression (LARS), were tested and compared. Results from our statistical analysis have shown that Homotopy based method is significantly better than the other two methods. Our work indicates that sparse representations based classifiers with proper models can outperform many existing classifiers for M-FISH classification including those that we proposed before, which can significantly improve the multicolor imaging system for chromosome analysis in cancer and genetic disease diagnosis.

  14. Intraoperative near-infrared fluorescence imaging targeting folate receptors identifies lung cancer in a large-animal model.

    Science.gov (United States)

    Keating, Jane J; Runge, Jeffrey J; Singhal, Sunil; Nims, Sarah; Venegas, Ollin; Durham, Amy C; Swain, Gary; Nie, Shuming; Low, Philip S; Holt, David E

    2017-05-15

    Complete tumor resection is the most important predictor of patient survival with non-small cell lung cancer. Methods for intraoperative margin assessment after lung cancer excision are lacking. This study evaluated near-infrared (NIR) intraoperative imaging with a folate-targeted molecular contrast agent (OTL0038) for the localization of primary lung adenocarcinomas, lymph node sampling, and margin assessment. Ten dogs with lung cancer underwent either video-assisted thoracoscopic surgery or open thoracotomy and tumor excision after an intravenous injection of OTL0038. Lungs were imaged with an NIR imaging device both in vivo and ex vivo. The wound bed was re-imaged for retained fluorescence suspicious for positive tumor margins. The tumor signal-to-background ratio (SBR) was measured in all cases. Next, 3 human patients were enrolled in a proof-of-principle study. Tumor fluorescence was measured both in situ and ex vivo. All canine tumors fluoresced in situ (mean Fluoptics SBR, 5.2 [range, 2.7-8.1]; mean Karl Storz SBR 1.9 [range, 1.4-2.6]). In addition, the fluorescence was consistent with tumor margins on pathology. Three positive lymph nodes were discovered with NIR imaging. Also, a positive retained tumor margin was discovered upon NIR imaging of the wound bed. Human pulmonary adenocarcinomas were also fluorescent both in situ and ex vivo (mean SBR, > 2.0). NIR imaging can identify lung cancer in a large-animal model. In addition, NIR imaging can discriminate lymph nodes harboring cancer cells and also bring attention to a positive tumor margin. In humans, pulmonary adenocarcinomas fluoresce after the injection of the targeted contrast agent. Cancer 2017;123:1051-60. © 2016 American Cancer Society. © 2016 American Cancer Society.

  15. Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging

    Directory of Open Access Journals (Sweden)

    Devang R. Amin

    2017-09-01

    Full Text Available As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis and incorporation of (biofunctional groups under mild temperature and pH conditions. However, clear procedures for the convenient and reproducible control of critical NP properties such as particle diameter, surface charge, and loading with functional molecules have yet to be established. In this work, we have synthesized polydopamine-based melanin-mimetic nanoparticles (MMNPs with finely controlled diameters spanning ≈25 to 120 nm and report on the pH-dependence of zeta potential, methodologies for PEGylation, and the incorporation of fluorescent organic molecules. A comprehensive suite of complementary techniques, including dynamic light scattering (DLS, cryogenic transmission electron microscopy (cryo-TEM, X-ray photoelectron spectroscopy (XPS, zeta-potential, ultraviolet–visible (UV–Vis absorption and fluorescence spectroscopy, and confocal microscopy, was used to characterize the MMNPs and their properties. Our PEGylated MMNPs are highly stable in both phosphate-buffered saline (PBS and in cell culture media and exhibit no cytotoxicity up to at least 100 µg mL−1 concentrations. We also show that a post-functionalization methodology for fluorophore loading is especially suitable for producing MMNPs with stable fluorescence and significantly narrower emission profiles than previous reports, suggesting they will be useful for multimodal cell imaging. Our results pave the way towards biomedical imaging and possibly drug delivery applications, as well as fundamental studies of MMNP size and surface chemistry dependent cellular interactions.

  16. An (125)I-labeled octavalent peptide fluorescent nanoprobe for tumor-homing imaging in vivo.

    Science.gov (United States)

    Luo, Haiming; Shi, Jiyun; Jin, Honglin; Fan, Di; Lu, Lisen; Wang, Fan; Zhang, Zhihong

    2012-06-01

    Targeting radiopeptides are promising agents for radio-theranostics. However, in vivo evaluation of their targeting specificity is often obscured by their short biologic half-lives and low binding affinities. Here, we report an approach to efficiently examine targeting radiopeptides with a new class of octavalent peptide fluorescent nanoprobe (Octa-FNP) platform, which is composed of candidate targeting peptides and a tetrameric far-red fluorescent protein (tfRFP) scaffold. To shed light on this process, (125)I-Octa-FNP, (125)I-tfRFP and (125)I-peptide were synthesized, and their targeting functionalities were compared. Both fluorescence imaging and radioactive quantification results confirmed that (125)I-Octa-FNP had a significantly higher cellular binding capability than (125)I-tfRFP. In vivo biodistribution studies show that at 6 h post-injection, (125)I-Octa-FNP had 2-fold and 30-fold higher tumor uptake than that of (125)I-tfRFP and (125)I-peptide, respectively. Moreover, γ-imaging at 24 h post-injection revealed a remarkable accumulation of (125)I-Octa-FNP in the tumor while maintaining an extremely low background contrast, which was further confirmed by immunofluorescence analysis. These data suggested that, as an engineered and multivalent platform, Octa-FNP could enhance the tumor targeting of a designed peptide and provide excellent contrast radioimaging, making it a valuable tool for the evaluation of the targeting ability of specifically designed radiopeptides for cancer theranostics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Micro-beam X-ray fluorescence and absorption imaging techniques at the IAEA Laboratories

    International Nuclear Information System (INIS)

    Wegrzynek, Dariusz; Markowicz, A.; Bamford, S.; Chinea-Cano, E.; Bogovac, M.

    2005-01-01

    X-ray tube based, micro-beam X-ray fluorescence scanning spectrometer has been equipped with two energy dispersive X-ray detectors. The two-detector configuration allows for simultaneous collection of X-ray fluorescence (XRF) and transmitted X-ray beam signals with a spatial resolution in the range of 10-50 μm, depending on the X-ray focussing element in use. The XRF signal is collected with a standard, liquid nitrogen cooled Si(Li) detector. The X-ray beam transmitted through the sample is acquired with a thermoelectrically cooled, silicon drift (SD) detector. The data acquisition is carried out in a fully automatic way under control of the SPECTOR-LOCATOR software. The software controls the scanning procedure and X-ray spectra acquisition during the scan. The energy dispersive X-ray spectra collected at every 'pixel' are stored for off-line processing. For selected regions of interest (ROI's), the element maps are constructed and displayed on-line. The spectrometer has been used for mapping elemental distributions and for performing 2D- and 3D-tomograpic imaging of minute objects in X-ray absorption and in X-ray fluorescence mode. A unique feature of the described system is simultaneous utilization of the two detectors, Si(Li) and SD, which adds new options for quantitative analysis and data interpretation. Examples of elemental mapping and 3D tomographic imaging as well as the advanced features of the SPECTOR-LOCATOR measurement control and data acquisition software are presented in this work

  18. Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection.

    Science.gov (United States)

    Dattner, Yonathan; Yadid-Pecht, Orly

    2010-01-01

    This study presents the fabrication of a low cost poly-acrylic acid (PAA) based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm) was chosen by calculating the desired SNR using Beer-Lambert's law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented.

  19. Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging.

    Science.gov (United States)

    Amin, Devang R; Sugnaux, Caroline; Lau, King Hang Aaron; Messersmith, Phillip B

    2017-09-01

    As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs) are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis and incorporation of (bio)functional groups under mild temperature and pH conditions. However, clear procedures for the convenient and reproducible control of critical NP properties such as particle diameter, surface charge, and loading with functional molecules have yet to be established. In this work, we have synthesized polydopamine-based melanin-mimetic nanoparticles (MMNPs) with finely controlled diameters spanning ≈25 to 120 nm and report on the pH-dependence of zeta potential, methodologies for PEGylation, and the incorporation of fluorescent organic molecules. A comprehensive suite of complementary techniques, including dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), X-ray photoelectron spectroscopy (XPS), zeta-potential, ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy, and confocal microscopy, was used to characterize the MMNPs and their properties. Our PEGylated MMNPs are highly stable in both phosphate-buffered saline (PBS) and in cell culture media and exhibit no cytotoxicity up to at least 100 μg mL -1 concentrations. We also show that a post-functionalization methodology for fluorophore loading is especially suitable for producing MMNPs with stable fluorescence and significantly narrower emission profiles than previous reports, suggesting they will be useful for multimodal cell imaging. Our results pave the way towards biomedical imaging and possibly drug delivery applications, as well as fundamental studies of MMNP size and surface chemistry dependent cellular interactions.

  20. MRI-guided fiber-based fluorescence molecular tomography for preclinical atherosclerosis imaging

    Science.gov (United States)

    Li, Baoqiang; Pouliot, Philippe; Lesage, Frederic

    2014-09-01

    Multi-modal imaging combining fluorescent molecular tomography (FMT) with MRI could provide information in these two modalities as well as optimize the recovery of functional information with MR-guidance. Here, we present a MRI-guided FMT system. An optical probe was designed consisting of a fiber plate on the top and bottom sides of the animal bed, respectively. In experiment, animal was installed between the two plates. Mounting fibers on each plate, transmission measuring could be conducted from both sides of the animal. Moreover, an accurate fluorescence reconstruction was achieved with MRI-derived anatomical guidance. The sensitivity of the FMT system was evaluated with a phantom showing that with long fibers, it was sufficient to detect 10nM Cy5.5 solution with ~28.5 dB in the phantom. The system was eventually used to image MMP activity involved in atherosclerosis with two ATX mice and two control mice. The reconstruction results were in agreement with ex vivo measurement.

  1. Affibody-attached hyperbranched conjugated polyelectrolyte for targeted fluorescence imaging of HER2-positive cancer cell.

    Science.gov (United States)

    Pu, Kan-Yi; Shi, Jianbing; Cai, Liping; Li, Kai; Liu, Bin

    2011-08-08

    A hyperbranched conjugated polyelectrolyte (HCPE) with a core-shell structure is designed and synthesized via alkyne polycyclotrimerization and click chemistry. The HCPE has an emission maximum at 565 nm with a quantum yield of 12% and a large Stokes shift of 143 nm in water. By virtue of its poly(ethylene glycol) shell, this polymer naturally forms spherical nanoparticles that minimize nonspecific interaction with biomolecules in aqueous solution, consequently allowing for efficient bioconjugation with anti-HER2 affibody via carbodiimide-activated coupling reaction. The resulting affibody-attached HCPE can be utilized as a reliable fluorescent probe for targeted cellular imaging of HER2-overexpressed cancer cells such as SKBR-3. Considering its low cytotoxicity and good photostability, the HCPE nanoprobe holds great promise in practical imaging tasks. This study also provides a molecular engineering strategy to overcome the intrinsic limitations of traditional fluorescent polymers (e.g., chromophore-tethered polymers and linear conjugated polyelectrolytes) for bioconjugation and applications.

  2. Development of image analysis for graphite pore-structure determination using fluorescence techniques

    International Nuclear Information System (INIS)

    Stephen, W.J.; Bowden, E.A.T.; Wickham, A.J.

    1983-03-01

    The use of image analysis to assess the pore structure of graphite has been developed to the point at which it may be considered available for routine use. A definitive pore structure in terms of the geometry-independent ''characteristic pore dimension'' is derived from the computer analysis of polished specimens whose open-pore structure has been impregnated with bismuth or a fluorescent epoxy resin, with the very small pores identified separately by mercury porosimetry as in the past. The pore-size distributions obtained from these combined techniques have been used successfully to predict the corrosion rates of nine graphites, of widely differing pore structure, in a variety of gas compositions and, indirectly, to confirm appropriate mean ranges and rate constants for the reaction of the oxidising species in these gas mixtures. The development of the fluorescent-impregnant technique is discussed in detail and its use is justified in preference to ''traditional'' methods. Further possible refinements are discussed, including the eventual aim of obtaining a computer prediction of the future oxidation behaviour of the graphite directly from the image analyser. (author)

  3. ``Green'' functionalization of magnetic nanoparticles via tea polyphenol for magnetic resonance/fluorescent dual-imaging

    Science.gov (United States)

    Jiang, Wen; Lai, Kuilin; Liu, Kexia; Xia, Rui; Gao, Fabao; Wu, Yao; Gu, Zhongwei

    2014-01-01

    Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake.Tea polyphenol serves as an environmentally friendly ligand-exchange molecule to synthesize multifunctional metal-doped superparamagnetic iron oxide nanoparticles via a catechol-metal coordination interaction. The resultant particles not only exhibit excellent hydrophilicity and protein adsorption resistance, but also are applicable as magnetic resonance/fluorescent dual-imaging probes due to their high T2 relaxivity, autofluorescence and large cellular uptake. Electronic supplementary information (ESI) available: Additional information and figures (Fig. S1-S7), including experimental sections, characterization of the products, protein corona analysis, cytotoxicity and cellular uptake quantification. See DOI: 10.1039/c3nr05003c

  4. Monitoring biosensor activity in living cells with fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Hum, Julia M; Siegel, Amanda P; Pavalko, Fredrick M; Day, Richard N

    2012-11-07

    Live-cell microscopy is now routinely used to monitor the activities of the genetically encoded biosensor proteins that are designed to directly measure specific cell signaling events inside cells, tissues, or organisms. Most fluorescent biosensor proteins rely on Förster resonance energy transfer (FRET) to report conformational changes in the protein that occur in response to signaling events, and this is commonly measured with intensity-based ratiometric imaging methods. An alternative method for monitoring the activities of the FRET-based biosensor proteins is fluorescence lifetime imaging microscopy (FLIM). FLIM measurements are made in the time domain, and are not affected by factors that commonly limit intensity measurements. In this review, we describe the use of the digital frequency domain (FD) FLIM method for the analysis of FRET signals. We illustrate the methods necessary for the calibration of the FD FLIM system, and demonstrate the analysis of data obtained from cells expressing "FRET standard" fusion proteins. We then use the FLIM-FRET approach to monitor the changes in activities of two different biosensor proteins in specific regions of single living cells. Importantly, the factors required for the accurate determination and reproducibility of lifetime measurements are described in detail.

  5. Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging.

    Science.gov (United States)

    Dai, Yunpeng; Chen, Xueli; Yin, Jipeng; Wang, Guodong; Wang, Bo; Zhan, Yonghua; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin

    2018-04-01

    Dynamic optical data from a series of sampling intervals can be used for quantitative analysis to obtain meaningful kinetic parameters of probe in vivo . The sampling schemes may affect the quantification results of dynamic fluorescence imaging. Here, we investigate the influence of different sampling schemes on the quantification of binding potential ( BP ) with theoretically simulated and experimentally measured data. Three groups of sampling schemes are investigated including the sampling starting point, sampling sparsity, and sampling uniformity. In the investigation of the influence of the sampling starting point, we further summarize two cases by considering the missing timing sequence between the probe injection and sampling starting time. Results show that the mean value of BP exhibits an obvious growth trend with an increase in the delay of the sampling starting point, and has a strong correlation with the sampling sparsity. The growth trend is much more obvious if throwing the missing timing sequence. The standard deviation of BP is inversely related to the sampling sparsity, and independent of the sampling uniformity and the delay of sampling starting time. Moreover, the mean value of BP obtained by uniform sampling is significantly higher than that by using the non-uniform sampling. Our results collectively suggest that a suitable sampling scheme can help compartmental modeling of dynamic fluorescence imaging provide more accurate results and simpler operations.

  6. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  7. Novel fluorescence nanobubbles for contrast-enhanced ultrasound imaging in rabbit VX2 hepatocellular carcinoma model

    Science.gov (United States)

    Yu, Houqiang; Wang, Wei; He, Xiaoling; Zhou, Qibing; Ding, Mingyue

    2017-03-01

    Ultrasound contrast agents (UCAs) such as SonoVue or Optison have been used widely in clinic for contrast-enhanced vascular imaging. However, microbubbles UCAs display limitations in tumor-targeted imaging due to the large sizes, nanoscaled UCAs has consequently attracted increasing attentions. In this work, we synthesized nanobubbles (NBs) by ultrasonic cavitation method, then a fluorescent marker of Alexa Fluor 680 was conjugated to the shell in order to observe the localization of NBs in tumor tissue. Measurement of fundamental characteristics showed that the NBs had homogeneous distribution of mean diameter of 267.9 +/- 19.2 nm and polydispersity index of 0.410 +/- 0.056. To assess in vivo tumor-selectivity of NBs, we established the rabbits VX2 hepatocellular carcinoma model though surgical implantation method. After the rabbits were intravenous administered of NBs, contrast-enhanced sonograms was observed in the surrounding of VX2 tumor, which showed there are rich capillaries in the tumor periphery. We additionally investigated the toxic of the NBs by hematoxylin-eosin staining. The results indicated that the NBs is a biocompatible non-toxic lipid system. Furthermore, the VX2 tumors and major organs were analyzed using ex vivo fluorescence imaging to confirm the targeted selectivity of NBs, and the results verified that the NBs were capable of targeting VX2 tumor. Confocal laser scanning microscopy examination showed that the NBs can traverse the VX2 tumor capillaries and target to the hepatocellular carcinoma tumor cells. All these results suggested that the newly prepared NBs have a potential application in molecular imaging and tumor-targeting therapy.

  8. Semi-quantitative analysis on the content of berberine hydrochloride in compound berberine tablets with the fluorescence spectral imaging method

    Directory of Open Access Journals (Sweden)

    Lan Liang

    2016-03-01

    Full Text Available The content of berberine hydrochloride (BH in compound berberine tablets (CBTs is subject to strict requirements. Its content is usually measured based on chemical analysis. In this paper, the fluorescence spectral imaging method was used to study the relative content of BH from a physics perspective. By comparing the relative fluorescence intensity of self-made CBTs with different mass percentages of BH, a linear positive relationship was observed between the BH content and the relative fluorescence intensity, and accordingly the quality of CBTs of different brands was evaluated. The results indicate that the fluorescence spectral imaging method can be a simple, fast and nondestructive semi-quantitative analysis method to determine the content of BH in CBTs, and this method has great potential in the quality control of CBTs.

  9. A novel colorimetric and off–on fluorescent sensor for Hg2+ and its application in live cell imaging

    International Nuclear Information System (INIS)

    Li, Man; Jiang, Yuhua; Zhang, Di; Ding, Peigang; Wang, Zhenji; Ye, Yong; Zhao, Yufen

    2014-01-01

    A novel rhodamine-based fluorescent probe L2 with two “S” groups was synthesized and characterized. As expected, L2 exhibited high selectivity and sensitivity for Hg 2+ over other commonly coexistent metal ions. Its selectivity is excellent, and the detection limit was measured to be 1 ppm. The significant changes in the fluorescence color could be used for naked-eye detection. Furthermore, fluorescence imaging experiments of Hg 2+ ion