WorldWideScience

Sample records for led fluorescence microscopy

  1. Performance of LED fluorescence microscopy for the detection of ...

    African Journals Online (AJOL)

    Introduction: Ziehl-Neelsen (ZN) bright-field microscopy is time-consuming, with poor sensitivity, even under optimal conditions. Introduction of Primo Star iLED fluorescent microscopy (FM) may improve TB case finding at referral hospitals in Rwanda. The study aimed to determine the acceptability and effectiveness of iLED ...

  2. LED fluorescence microscopy: Novel method for malaria diagnosis compared with routine methods.

    Science.gov (United States)

    Hathiwala, Riddhi; Mehta, Preeti R; Nataraj, Gita; Hathiwala, Siddhi

    Rapid and accurate diagnosis of malaria is the need of hour for effective management and controlling drug resistance. The conventional and gold-standard method, Light microscopy (LM), is time-consuming, requires trained staff and well-maintained equipments. The newly developed, rapid diagnostic tests (RDT) are fast and reliable, but give only qualitative results, are expensive and have short shelf life. Light Emission Diode fluorescence microscopy (LED FM) may provide a reliable alternative which can be used for routine diagnosis. In order to assess the effectiveness of LED fluorescence microscopy in malaria diagnosis, a cross-sectional study was conducted at a tertiary care teaching hospital in Mumbai. 2-3ml of blood of 300 patients, who were clinically suspected of having malaria but were not on anti-malarial treatment, was collected in EDTA vials. These specimens were processed to diagnose malaria by three methods, namely-Peripheral smear examination with LM, Peripheral smear examination with LED FM and RDT. The results of all the 3 tests were compared, taking Light Microscopy as the gold standard method. Of the 300 specimens, LM, LED FM and RDT reported 111 (37%), 86 (28.67%) and 107 (35.67%), respectively, as positive. The sensitivity and specificity were respectively 71.2% and 96.3% for LED FM and 91% and 96.8% for RDT. Of the LM positive cases, 53 (47.75%) had parasitic index (PI) LED FM was found to be only moderately sensitive but highly specific in comparison to Light microscopy. In order to improve the performance of this technique, more precise training in fluorescence staining and reading of the slides, will be required. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Implementation of LED fluorescence microscopy for diagnosis of pulmonary and HIV-associated tuberculosis in a hospital setting in Indonesia

    NARCIS (Netherlands)

    Chaidir, L.; Parwati, I.; Annisa, J.; Muhsinin, S.; Meilana, I.; Alisjahbana, B.; Crevel, R. van

    2013-01-01

    BACKGROUND: Fluorescence microscopy (FM) has not been implemented widely in TB endemic settings and little evaluation has been done in HIV-infected patients. We evaluated diagnostic performance, time and costs of FM with light-emitting diodes technology (LED-FM), compared with conventional

  4. LED-FISH: Fluorescence microscopy based on light emitting diodes for the molecular analysis of Her-2/neu oncogene amplification

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-12-01

    Full Text Available Abstract Light emitting diodes (LED, which are available as small monochromatic light sources with characteristic features such as maximum illumination power combined with minimum energy consumption and extremely long lifespan have already proved as a highly potential low-cost alternative for specific diagnostic applications in clinical medicine such as tuberculosis fluorescence microscopy. Likewise, the most reliable evaluation of Her-2/neu (c-erbB2 gene amplification, which has been established in the last few years for routine diagnosis in clinical pathology as determinant towards Herceptin-based treatment of patients with breast cancer, is based on fluorescence in situ hybridization (FISH and corresponding high priced fluorescence equipment. In order to test the possibility to utilize the advantages of low-cost LED technology on FISH analysis of c-erbB2 gene expression for routine diagnostic purposes, the applicability of a standard bright field Carl Zeiss Axiostar Plus microscope equipped with a Fraen AFTER* LED Fluorescence Microscope Kit for the detection of Her-2/neu gene signals was compared to an advanced Nikon Eclipse 80i fluorescence microscope in combination with a conventional 100W mercury vapor lamp. Both microscopes were fitted with the same Quicam FAST CCD digital camera to unequivocally compare the quality of the captured images. C-erbB2 gene expression was analyzed in 30 different human tissue samples of primary invasive breast cancer, following formalin fixation and subsequent paraffin-embedding. The Her2/neu gene signals (green were identifiable in the tumor cells in all cases and images of equal quality were captured under almost identical conditions by 480 nm (blue LED module equipped standard Axiostar microscope as compared to conventional fluorescence microscopy. In this first attempt, these monochromatic LED elements proved in principle to be suitable for the detection of Her-2/neu gene expression by FISH. Thus, our own

  5. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major

  6. [Performance of LED fluorescence microscopy for the detection of acid-fast bacilli from respiratory samples in peripheral laboratories in Argentina].

    Science.gov (United States)

    Imaz, María; Allassia, Sonia; Aranibar, Mónica; Gunia, Alba; Poggi, Susana; Togneri, Ana; Wolff, Lidia; Of Fluorescence, Group Of Implementation

    2017-06-01

    Light-emitting diode fluorescence microscopy (LED-FM) has been endorsed by the World Health Organization (WHO) for tuberculosis diagnosis, but its accuracy in HIV-infected patients remains controversial, and only some few studies have explored procedural factors that may affect its performance. To evaluate the performance of LED-FM for tuberculosis diagnosis in patients with and without HIV infection using a newer, less expensive LED lamp. We compared the performance of LED-FM and Ziehl-Neelsen (ZN) microscopy on respiratory specimen smears from tuberculosis (TB) suspects and patients on treatment examined by different technicians blinded for HIV-status and for the result of the comparative test. We analyzed the effect of concentrating specimens prior to microscopy using different examination schemes and user-appraisal of the LED device. Of the 6,968 diagnostic specimens collected, 869 (12.5%) had positive Mycobacterium tuberculosis cultures. LED-FM was 11.4% more sensitive than ZN (p;0.01). Among HIV-positive TB patients, sensitivity differences between LED-FM and ZN (20.6%) doubled the figure obtained in HIVnegative patients or in those with unknown HIV status (9.3%). After stratifying by direct and concentrated slides, the superiority of LED-FM remained. High specificity values were obtained both with LED-FM(99.9%) and ZN (99.9%).The second reading of a sample of slides showed a significantly higher positive detection yield using 200x magnification (49.4 %) than 400x magnification (33.8%) (p;0.05). The LEDdevice had a very good acceptance among the technicians. LED-FM better performance compared with ZN in HIV-infected patients and user-appraisal support the rapid roll-out of LED-FM. Screening at 200x magnification was essential to achieve LEDFM increased sensitivity.

  7. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence spectrosc......Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...... spectroscopy approaches provide very valuable structurally and dynamically related information on membranes, they generally produce mean parameters from data collected on bulk solutions of many vesicles and lack direct information on the spatial organization at the level of single membranes, a quality that can...... be provided by microscopy-related techniques. In this chapter, I will attempt to summarize representative examples concerning how microscopy (which provides information on membrane lateral organization by direct visualization) and spectroscopy techniques (which provides information about molecular interaction...

  8. Evaluation of LED therapy at 945nm on bone repair by micro x-ray fluorescence spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Diamantino, Alexandre G.; Nicolau, Renata A.; de Oliveira, Marco A.; Santo, Ana Maria E.

    2011-07-01

    Phototherapy is able to modulate cellular metabolism of bone tissue and consequently accelerate the repair. The aim of this study was to evaluate the effect of this therapy in repair of bone monocortical defects in femurs of thirty male Wistar rats. The animals were divided into six groups (five animals for group), including three controls and three irradiated groups with different experimental times (14, 21, and 28 days after surgery). LED was used for the irradiation, emitting non-coherent light in the spectral range of 945+/-20 nm and output power of 48 mW, on one point of irradiation for four minutes. Seven treatment sessions were performed with 48 hours between sessions. For analysis on the bone repair, qualitative and quantitative assessments of Ca and P contents were done by micro x-ray fluorescence spectroscopy (μXRF) and the morphological structure was carried out using Scanning Electron Microscopy (SEM). The results showed the efficiency of infrared LED therapy, because the amount of mineral components analyzed by μXRF and the morphological features of cortical and trabecular bones, demonstrated by the SEM images, showed enhanced bone repair in the irradiated groups when compared to their corresponding control groups at all stages.

  9. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  10. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan

    2017-05-12

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  11. Performance of LED fluorescence microscopy for the detection of acid-fast bacilli from respiratory samples in peripheral laboratories in Argentina

    Directory of Open Access Journals (Sweden)

    María Imaz

    2017-06-01

    Conclusion: LED-FM better performance compared with ZN in HIV-infected patients and user-appraisal support the rapid roll-out of LED-FM. Screening at 200x magnification was essential to achieve LEDFM increased sensitivity.

  12. Light Sheet Fluorescence Microscopy (LSFM).

    Science.gov (United States)

    Adams, Michael W; Loftus, Andrew F; Dunn, Sarah E; Joens, Matthew S; Fitzpatrick, James A J

    2015-01-05

    The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light sheet fluorescent microscopy (LSFM), a century-old idea made possible with modern developments in both excitation and detection optics, provides sub-cellular resolution and optical sectioning capabilities without compromising speed or excitation efficiency. Over the past decade, several variations of LSFM have been implemented each with its own benefits and deficiencies. Here we discuss LSFM fundamentals and outline the basic principles of several major light-sheet-based imaging modalities (SPIM, inverted SPIM, multi-view SPIM, Bessel beam SPIM, and stimulated emission depletion SPIM) while considering their biological relevance in terms of intrusiveness, temporal resolution, and sample requirements. Copyright © 2015 John Wiley & Sons, Inc.

  13. Agreement between direct fluorescent microscopy and Ziehl ...

    African Journals Online (AJOL)

    Background: The sensitivity of smear microscopy for diagnosis of tuberculosis might be improved through treatment of sputum with sodium hypochlorite and application of fluorescent microscopy. This study aimed to determine the agreement between direct Fluorescent Microscopy and Ziehl-Neelsen concentration technique ...

  14. Sustainable LED Fluorescent Light Replacement Technology

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life: Environmental Impact Review – Designs are comparable

  15. Image calibration in fluorescence microscopy.

    NARCIS (Netherlands)

    Zwier, J.M.; van Rooij, G.J.; Hofstraat, J.W.; Brakenhoff, G.J.

    2004-01-01

    A fluorescence image calibration method is presented based on the use of standardized uniformly fluorescing reference layers. It is demonstrated to be effective for the correction of non-uniform imaging characteristics across the image (shading correction) as well as for relating fluorescence

  16. Concepts for nanoscale resolution in fluorescence microscopy.

    Science.gov (United States)

    Hell, Stefan W; Dyba, Marcus; Jakobs, Stefan

    2004-10-01

    Spatio-temporal visualization of cellular structures by fluorescence microscopy has become indispensable in biology. However, the resolution of conventional fluorescence microscopy is limited by diffraction to about 180 nm in the focal plane and to about 500 nm along the optic axis. Recently, concepts have emerged that overcome the diffraction resolution barrier fundamentally. Formed on the basis of reversible saturable optical transitions, these concepts might eventually allow us to investigate hitherto inaccessible details within live cells.

  17. Solid-State Camera System for Fluorescence Lifetime Microscopy

    NARCIS (Netherlands)

    Zhao, Q.

    2014-01-01

    Fluorescence microscopy is a well-established platform for biology and biomedical research (Chapter 2). Based on this platform, fluorescence lifetime imaging microscopy (FLIM) has been developed to measure fluorescence lifetimes, which are independent of fluorophore concentration and excitation

  18. Use of astronomy filters in fluorescence microscopy.

    Science.gov (United States)

    Piper, Jörg

    2012-02-01

    Monochrome astronomy filters are well suited for use as excitation or suppression filters in fluorescence microscopy. Because of their particular optical design, such filters can be combined with standard halogen light sources for excitation in many fluorescent probes. In this "low energy excitation," photobleaching (fading) or other irritations of native specimens are avoided. Photomicrographs can be taken from living motile fluorescent specimens also with a flash so that fluorescence images can be created free from indistinctness caused by movement. Special filter cubes or dichroic mirrors are not needed for our method. By use of suitable astronomy filters, fluorescence microscopy can be carried out with standard laboratory microscopes equipped with condensers for bright-field (BF) and dark-field (DF) illumination in transmitted light. In BF excitation, the background brightness can be modulated in tiny steps up to dark or black. Moreover, standard industry microscopes fitted with a vertical illuminator for examinations of opaque probes in DF or BF illumination based on incident light (wafer inspections, for instance) can also be used for excitation in epi-illumination when adequate astronomy filters are inserted as excitatory and suppression filters in the illuminating and imaging light path. In all variants, transmission bands can be modulated by transmission shift.

  19. Photobleaching correction in fluorescence microscopy images

    International Nuclear Information System (INIS)

    Vicente, Nathalie B; Diaz Zamboni, Javier E; Adur, Javier F; Paravani, Enrique V; Casco, Victor H

    2007-01-01

    Fluorophores are used to detect molecular expression by highly specific antigen-antibody reactions in fluorescence microscopy techniques. A portion of the fluorophore emits fluorescence when irradiated with electromagnetic waves of particular wavelengths, enabling its detection. Photobleaching irreversibly destroys fluorophores stimulated by radiation within the excitation spectrum, thus eliminating potentially useful information. Since this process may not be completely prevented, techniques have been developed to slow it down or to correct resulting alterations (mainly, the decrease in fluorescent signal). In the present work, the correction by photobleaching curve was studied using E-cadherin (a cell-cell adhesion molecule) expression in Bufo arenarum embryos. Significant improvements were observed when applying this simple, inexpensive and fast technique

  20. Performance evaluation of spot detection algorithms in fluorescence microscopy images

    CSIR Research Space (South Africa)

    Mabaso, M

    2012-10-01

    Full Text Available Detection of messenger Ribonucleic Acid (mRNA) spots in fluorescence microscopy images is of great importance for biologists seeking better understanding of cell functionality. Fluorescence microscopy and specific staining methods make biological...

  1. LED arrays as cost effective and efficient light sources for widefield microscopy.

    Directory of Open Access Journals (Sweden)

    Dinu F Albeanu

    Full Text Available New developments in fluorophores as well as in detection methods have fueled the rapid growth of optical imaging in the life sciences. Commercial widefield microscopes generally use arc lamps, excitation/emission filters and shutters for fluorescence imaging. These components can be expensive, difficult to maintain and preclude stable illumination. Here, we describe methods to construct inexpensive and easy-to-use light sources for optical microscopy using light-emitting diodes (LEDs. We also provide examples of its applicability to biological fluorescence imaging.

  2. Detection of oxidative hair treatment using fluorescence microscopy.

    Science.gov (United States)

    Witt, Silvana; Wunder, Cora; Paulke, Alexander; Verhoff, Marcel A; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2016-08-01

    In assessing abstinence from drug or alcohol abuse, hair analysis plays an important role. Cosmetic hair treatment influences the content of deposited drugs which is not always detectable during analysis. Since oxidation of melanin leads to an increase in fluorescence, a microscopic method was developed to distinguish natural from cosmetically treated hair. For validation, natural hair samples were treated with different types of cosmetics and inspected by fluorescence microscopy. Hair samples from 20 volunteers with documented cosmetic treatment and as a proof of concept 100 hair samples from forensic cases were analyzed by this method. Apart from autofluorescence with excitation at 365 nm, no obvious fluorescence was observed in untreated hair samples. Tinting and a natural plant product had no influence on fluorescence, but dyeing procedures including oxidation led to a marked increase in fluorescence. Proof of cosmetic treatment was achieved in hair samples from the 20 volunteers. In 100 forensic cases, 13 samples were characterized as oxidatively treated, which was in accordance with the respective disclosure except for one case where treatment was not admitted. This fluorescence microscopic procedure proved to be fast, easy, and reliable to identify oxidatively treated hair samples, which must be considered especially in evaluating cases of negative drug results. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. DMD-based LED-illumination Super-resolution and optical sectioning microscopy

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens. PMID:23346373

  4. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    Science.gov (United States)

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  5. Fluorescent SiC as a new material for white LEDs

    DEFF Research Database (Denmark)

    Syväjärvi, M.; Müller, J.; Sun, J. W.

    2012-01-01

    Current III–V-based white light-emitting diodes (LEDs) are available. However, their yellow phosphor converter is not efficient at high currents and includes rare-earth metals, which are becoming scarce. In this paper, we present the growth of a fluorescent silicon carbide material that is obtained...... and boron concentrations. For an LED device, the growth needs to apply low-off-axis substrates. We show by ultra-high-resolution analytical transmission electron microscopy using aberration-corrected electrons that the growth mechanism can be stable and that there is a perfect epitaxial relation from...

  6. Body temperature changes of newborns under fluorescent versus LED phototherapy.

    Science.gov (United States)

    Aydemir, Ozge; Soysaldı, Emel; Kale, Yusuf; Kavurt, Sumru; Bas, Ahmet Yagmur; Demirel, Nihal

    2014-08-01

    To determine changes in body temperature (BT) of hyperbilirubinemic newborns under conventional phototherapy with fluorescent lamps and light emitting diodes (LED) at different irradiances. Otherwise healthy newborn infants >34 wk gestational age (GA) hospitalized for indirect hyperbilirubinemia, requiring phototherapy in the first 10 d of life were enrolled. Infants who received conventional phototherapy with fluorescent lamps (10-15 μW/cm(2)/nm irradiance) were defined as group 1, LED phototherapy of 26-60 μW/cm(2)/nm irradiance as group 2, and LED phototherapy of 60-120 μW/cm(2)/nm irradiance as group 3. Primary outcome measure was mean BT which was defined as arithmetical mean of axillary BT measured at 2 h intervals during the first day of phototherapy. Thirty patients were enroled in each group. Mean birth weight and GA of the total cohort was 2800 ± 530 g and 36.6 ± 2 wk, respectively. Baseline demographic variables and serum total bilirubin levels were similar among groups. Mean BT was 36.7 ± 0.1 °C in group 1, 36.6 ± 0.2 °C in group 2, 37.7 ± 0.2 °C in group 3. Mean BT was higher in group 3 compared to group 1 (p phototherapy all the patients in group 3 had at least one BT measurement ≥ 37.5 °C and 77 % had BT ≥ 38 °C. Only one patient in group 2 had BT ≥ 37.5 °C which was also ≥ 38 °C. During phototherapy all BT measurements were LED phototherapy of ≥ 60 μW/cm(2)/nm intensity significantly increases BT in hyperbilirubinemic newborns.

  7. Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macháň, Radek; Kapusta, Peter; Hof, Martin

    Roč. 406 , č. 20 (2014), s. 4797-4813 ISSN 1618-2642 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : Filtered fluorescence correlation spectroscopy * Fluorescence lifetime correlation spectroscopy * Fluorescence spectral correlation spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.436, year: 2014

  8. Single-molecule fluorescence microscopy in living Caenorhabditis elegans

    NARCIS (Netherlands)

    van Krugten, Jaap; Peterman, Erwin J.G.

    2018-01-01

    Transportation of organelles and biomolecules is vital for many cellular processes. Single-molecule (SM) fluorescence microscopy can expose molecular aspects of the dynamics that remain unresolved in ensemble experiments. For example, trajectories of individual, moving biomolecules can reveal

  9. A framework for creating realistic synthetic fluorescence microscopy image sequences

    CSIR Research Space (South Africa)

    Mabaso, M

    2016-02-01

    Full Text Available Fluorescence microscopy imaging is an important tool in modern biological research, allowing insights into the processes of biological systems. Automated image analysis algorithms help in extracting information from these images. Validation...

  10. Saturated virtual fluorescence emission difference microscopy based on detector array

    Science.gov (United States)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  11. Studying membrane properties using Fluorescence Lifetime Imaging Microscopy (FLIM)

    NARCIS (Netherlands)

    Stöckl, M.T.; Bizzarri, R.; Subramaniam, Vinod; Mely, Y.; Duportail, G.

    2012-01-01

    Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to investigate the structure and composition of biological membranes. A wide variety of fluorescent probes suitable for FLIM experiments have been described. These compounds differ strongly in the details of their incorporation into

  12. Image processing for drift compensation in fluorescence microscopy

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Thiagarajan, Viruthachalam; Coutinho, Isabel

    2013-01-01

    Fluorescence microscopy is characterized by low background noise, thus a fluorescent object appears as an area of high signal/noise. Thermal gradients may result in apparent motion of the object, leading to a blurred image. Here, we have developed an image processing methodology that may remove...

  13. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  14. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    Abstract. Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director ...

  15. Fluorescent SiC as a new material for white LEDs

    International Nuclear Information System (INIS)

    Syväjärvi, M; Sun, JW; Jokubavicius, V; Hens, P; Ariyawong, K; Hens, P; Liljedahl, R; Müller, J; Spiecker, E; Grivickas, V; Gulbinas, K; Ou, Y; Ou, H; Kaisr, M; Wellmann, P; Linnarsson, M K; Kamiyama, S

    2012-01-01

    Current III-V-based white light-emitting diodes (LEDs) are available. However, their yellow phosphor converter is not efficient at high currents and includes rare-earth metals, which are becoming scarce. In this paper, we present the growth of a fluorescent silicon carbide material that is obtained by nitrogen and boron doping and that acts as a converter using a semiconductor. The luminescence is obtained at room temperature, and shows a broad luminescence band characteristic of donor-to-acceptor pair recombination. Photoluminescence intensities and carrier lifetimes reflect a sensitivity to nitrogen and boron concentrations. For an LED device, the growth needs to apply low-off-axis substrates. We show by ultra-high-resolution analytical transmission electron microscopy using aberration-corrected electrons that the growth mechanism can be stable and that there is a perfect epitaxial relation from the low-off-axis substrate and the doped layer even when there is step-bunching.

  16. Fundamentals of fluorescence microscopy exploring life with light

    CERN Document Server

    Mondal, Partha Pratim

    2014-01-01

    This book starts at an introductory level and leads reader to the most advanced developments in fluorescence imaging and super-resolution techniques that have enabled the emergence of new disciplines such as nanobioimaging, multiphoton microscopy, photodynamic therapy, nanometrology and nanosensors. The interdisciplinary subject of fluorescence microscopy and imaging requires complete knowledge of imaging optics and molecular physics. So, this book approaches the subject by introducing optical imaging concepts before going deep into the advanced imaging systems and their applications. Molecular orbital theory forms the basis for understanding fluorescent molecules and thereby facilitates complete explanation of light-matter interaction at the geometrical focus. The two disciplines have some overlap since light controls the states of molecules and conversely, molecular states control the emitted light. These two mechanisms together determine essential fluorescence  factors and phenomena such as, molecular cro...

  17. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission

    OpenAIRE

    Klar, Thomas A.; Jakobs, Stefan; Dyba, Marcus; Egner, Alexander; Hell, Stefan W.

    2000-01-01

    The diffraction barrier responsible for a finite focal spot size and limited resolution in far-field fluorescence microscopy has been fundamentally broken. This is accomplished by quenching excited organic molecules at the rim of the focal spot through stimulated emission. Along the optic axis, the spot size was reduced by up to 6 times beyond the diffraction barrier. The simultaneous 2-fold improvement in the radial direction rendered a nearly spherical fluorescence spot with a diameter of 9...

  18. Waveguide evanescent field fluorescence microscopy & its application in cell biology

    Science.gov (United States)

    Hassanzadeh, Abdollah

    There are many powerful microscopy technologies available for the investigation of bulk materials as well as for thin film samples. Nevertheless, for imaging an interface, especially live cells on a substrate and ultra thin-films, only Total Internal Reflection Fluorescence (TIRF) microscopy is available. This TIRF microscopy allows imaging without interference of the bulk. Various approaches are employed in fluorescence microscopy applications to restrict the excitation and detection of fluorophores to a thin region of the specimen. Elimination of background fluorescence from outside the focal plane can dramatically improve the signal-to-noise ratio, and consequently, the spatial resolution of the features or events of interest. TIRF microscopy is an evanescent field based microscopy. In this method, fluorescent dyes are only excited within an evanescent field: roughly within 100 nm above a glass coverslip. This will allow imaging surface and interfacial issues of the glass coverslip and an adjacent material. Waveguide evanescent field fluorescence (WEFF) microscopy is a new development for imaging cell-substrate interactions in real time and in vitro. It is an alternative to TIRF microscopy. In this method the light is coupled into a waveguide via an optical grating. The coupled light propagates as a waveguide mode and exhibits an evanescent field on top of the waveguide. This can be used as a surface-bound illumination source to excite fluorophores. This evanescent field serves as an extremely powerful tool for quality control of thin films, to study cell-substrate contacts, and investigating the effect of external agents and drugs on the cell-substrate interaction in real time and in vitro. This new method has been established and optimized to minimize non-uniformity, scattering and photo bleaching issues. Visualizing and quantifying of the cell-substrates and solid thin films have been carried out by WEFF microscopy. The images of the cell-substrate interface

  19. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    International Nuclear Information System (INIS)

    Miranda, Adelaide; De Beule, Pieter A. A.; Martins, Marco

    2015-01-01

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate

  20. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH

  1. Breaking the diffraction barrier in fluorescence microscopy by optical shelving.

    Science.gov (United States)

    Bretschneider, Stefan; Eggeling, Christian; Hell, Stefan W

    2007-05-25

    We report the breaking of the diffraction resolution barrier in far-field fluorescence microscopy by transiently shelving the fluorophore in a metastable dark state. Using a relatively modest light intensity of several kW/cm(2) in a focal distribution featuring a local zero, we confine the fluorescence emission to a spot whose diameter is a fraction of the wavelength of light. Nanoscale far-field optical resolution down to 50 nm is demonstrated by imaging microtubules in a mammalian cell and proteins on the plasma membrane of a neuron. The presence of dark states in virtually any fluorescent molecule opens up a new venue for far-field microscopy with resolution that is no longer limited by diffraction.

  2. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    Science.gov (United States)

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  3. Boundary segmentation for fluorescence microscopy using steerable filters

    Science.gov (United States)

    Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2017-02-01

    Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.

  4. Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    Full Text Available Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries.

  5. Spatial covariance reconstructive (SCORE super-resolution fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Yi Deng

    Full Text Available Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM and photoactivation localization microscopy (PALM are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF. In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work.

  6. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  7. Fluorescent microscopy approaches of quantitative soil microbial analysis

    Science.gov (United States)

    Ivanov, Konstantin; Polyanskaya, Lubov

    2015-04-01

    Classical fluorescent microscopy method was used during the last decades in various microbiological studies of terrestrial ecosystems. The method provides representative results and simple application which is allow to use it both as routine part of amplitudinous research and in small-scaled laboratories. Furthermore, depending on research targets a lot of modifications of fluorescent microscopy method were established. Combination and comparison of several approaches is an opportunity of quantitative estimation of microbial community in soil. The first analytical part of the study was dedicated to soil bacterial density estimation by fluorescent microscopy in dynamic of several 30-days experiments. The purpose of research was estimation of changes in soil bacterial community on the different soil horizons under aerobic and anaerobic conditions with adding nutrients in two experimental sets: cellulose and chitin. Was modified the nalidixic acid method for inhibition of DNA division of gram-negative bacteria, and the method provides the quantification of this bacterial group by fluorescent microscopy. Established approach allowed to estimate 3-4 times more cells of gram-negative bacteria in soil. The functions of actinomyces in soil polymer destruction are traditionally considered as dominant in comparison to gram-negative bacterial group. However, quantification of gram-negative bacteria in chernozem and peatland provides underestimation of classical notion for this bacterial group. Chitin introduction had no positive effect to gram-negative bacterial population density changes in chernozem but concurrently this nutrient provided the fast growing dynamics at the first 3 days of experiment both under aerobic and anaerobic conditions. This is confirming chitinolytic activity of gram-negative bacteria in soil organic matter decomposition. At the next part of research modified method for soil gram-negative bacteria quantification was compared to fluorescent in situ

  8. Discrimination of Dendrobium officinale and Its Common Adulterants by Combination of Normal Light and Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Chu Chu

    2014-03-01

    Full Text Available The stems of Dendrobium officinale Kimura et Migo, named Tie-pi-shi-hu, is one of the most endangered and precious species in China. Because of its various pharmacodynamic effects, D. officinale is widely recognized as a high-quality health food in China and other countries in south and south-east Asia. With the rising interest of D. officinale, its products have a high price due to a limited supply. This high price has led to the proliferation of adulterants in the market. To ensure the safe use of D. officinale, a fast and convenient method combining normal and fluorescence microscopy was applied in the present study to distinguish D. officinale from three commonly used adulterants including Zi-pi-shi-hu (D. devonianum, Shui-cao-shi-hu (D. aphyllum, Guang-jie-shi-hu (D. gratiosissimum. The result demonstrated that D. officinale could be identified by the characteristic “two hat-shaped” vascular bundle sheath observed under the fluorescence microscopy and the distribution of raphides under normal light microscopy. The other three adulterants could be discriminated by the vascular bundle differences and the distribution of raphides under normal light microscopy. This work indicated that combination of normal light and fluorescence microscopy is a fast and efficient technique to scientifically distinguish D. officinale from the commonly confused species.

  9. Fluorescent silicon carbide materials for white LEDs and photovoltaics

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Ou, Haiyan; Wellmann, Peter

    the luminescence appears in the infrared region in a broad range from 700 to 1100 nm. This potentially can be used to develop an infrared LED for de-icing in wind power and airplanes, or medical applications. Further on, a very efficient solar cell material can be investigated by studying the impurity effect...

  10. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission.

    Science.gov (United States)

    Klar, T A; Jakobs, S; Dyba, M; Egner, A; Hell, S W

    2000-07-18

    The diffraction barrier responsible for a finite focal spot size and limited resolution in far-field fluorescence microscopy has been fundamentally broken. This is accomplished by quenching excited organic molecules at the rim of the focal spot through stimulated emission. Along the optic axis, the spot size was reduced by up to 6 times beyond the diffraction barrier. The simultaneous 2-fold improvement in the radial direction rendered a nearly spherical fluorescence spot with a diameter of 90-110 nm. The spot volume of down to 0.67 attoliters is 18 times smaller than that of confocal microscopy, thus making our results also relevant to three-dimensional photochemistry and single molecule spectroscopy. Images of live cells reveal greater details.

  11. Image processing for drift compensation in fluorescence microscopy

    DEFF Research Database (Denmark)

    Petersen, Steffen; Thiagarajan, Viruthachalam; Coutinho, Isabel

    2013-01-01

    Fluorescence microscopy is characterized by low background noise, thus a fluorescent object appears as an area of high signal/noise. Thermal gradients may result in apparent motion of the object, leading to a blurred image. Here, we have developed an image processing methodology that may remove....../reduce blur significantly for any type of microscopy. A total of ~100 images were acquired with a pixel size of 30 nm. The acquisition time for each image was approximately 1second. We can quantity the drift in X and Y using the sub pixel accuracy computed centroid location of an image object in each frame....... We can measure drifts down to approximately 10 nm in size and a drift-compensated image can therefore be reconstructed on a grid of the same size using the “Shift and Add” approach leading to an image of identical size asthe individual image. We have also reconstructed the image using a 3 fold larger...

  12. Seeing phenomena in flatland: studies of monolayers by fluorescence microscopy.

    Science.gov (United States)

    Knobler, C M

    1990-08-24

    Monolayers formed at the interface between air and water can be seen with fluorescence microscopy. This allows the phase behavior of these monolayers to be determined by direct observation and opens up the possibility of following the kinetics of phase transformations in two-dimensional systems. Some unexpected morphologies have been discovered that provide information about the nature of monolayer phases and have connections to pattern formation in other systems.

  13. Macromolecular-scale resolution in biological fluorescence microscopy.

    Science.gov (United States)

    Donnert, Gerald; Keller, Jan; Medda, Rebecca; Andrei, M Alexandra; Rizzoli, Silvio O; Lührmann, Reinhard; Jahn, Reinhard; Eggeling, Christian; Hell, Stefan W

    2006-08-01

    We demonstrate far-field fluorescence microscopy with a focal-plane resolution of 15-20 nm in biological samples. The 10- to 12-fold multilateral increase in resolution below the diffraction barrier has been enabled by the elimination of molecular triplet state excitation as a major source of photobleaching of a number of dyes in stimulated emission depletion microscopy. Allowing for relaxation of the triplet state between subsequent excitation-depletion cycles yields an up to 30-fold increase in total fluorescence signal as compared with reported stimulated emission depletion illumination schemes. Moreover, it enables the reduction of the effective focal spot area by up to approximately 140-fold below that given by diffraction. Triplet-state relaxation can be realized either by reducing the repetition rate of pulsed lasers or by increasing the scanning speed such that the build-up of the triplet state is effectively prevented. This resolution in immunofluorescence imaging is evidenced by revealing nanoscale protein patterns on endosomes, the punctuated structures of intermediate filaments in neurons, and nuclear protein speckles in mammalian cells with conventional optics. The reported performance of diffraction-unlimited fluorescence microscopy opens up a pathway for addressing fundamental problems in the life sciences.

  14. Raman microscopy of bladder cancer cells expressing green fluorescent protein

    Science.gov (United States)

    Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.

    2016-11-01

    Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.

  15. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging.

    NARCIS (Netherlands)

    Hoebe, R.A.; van Oven, C.H.; Gadella, Th.W.J.; Dhonukshe, P.B.; van Noorden, C.J.F.; Manders, E.M.M.

    2007-01-01

    Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy

  16. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging

    NARCIS (Netherlands)

    Hoebe, R. A.; van Oven, C. H.; Gadella, T. W. J.; Dhonukshe, P. B.; van Noorden, C. J. F.; Manders, E. M. M.

    2007-01-01

    Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (

  17. Alignment and calibration of total internal reflection fluorescence microscopy systems.

    Science.gov (United States)

    Toomre, Derek

    2012-04-01

    Live cell fluorescent microscopy is important in elucidating dynamic cellular processes such as cell signaling, membrane trafficking, and cytoskeleton remodeling. Often, transient intermediate states are revealed only when imaged and quantitated at the single-molecule, vesicle, or organelle level. Such insight depends on the spatiotemporal resolution and sensitivity of a given microscopy method. Confocal microscopes optically section the cell and improve image contrast and axial resolution (>600 nm) compared with conventional epifluorescence microscopes. Another approach, which can selectively excite fluorophores in an even thinner optical plane (microscopy (TIRFM). The key principle of TIRFM is that a thin, exponentially decaying, evanescent field of excitation can be generated at the interface of two mediums of different refractive index (RI) (e.g., the glass coverslip and the biological specimen); as such, TIRFM is ill-suited to deep imaging of cells or tissue. However, for processes near the lower cell cortex, the sensitivity of TIRFM is exquisite. The recent availability of a very high numerical-aperture (NA) objective lens (>1.45) and turnkey TIRFM systems by all the major microscopy manufacturers has made TIRFM increasingly accessible and attractive to biologists, especially when performed in a quantitative manner and complemented with orthogonal genetic and molecular manipulations. This protocol describes the procedure for alignment and calibration of TIRFM systems using standard cellular samples. The goal is to correctly collimate and align the TIRF illuminator vis-à-vis the downstream optics. For illustration, a 488-nm laser and green fluorescent protein (GFP) filter cube are used.

  18. Sample drift correction in 3D fluorescence photoactivation localization microscopy.

    Science.gov (United States)

    Mlodzianoski, Michael J; Schreiner, John M; Callahan, Steven P; Smolková, Katarina; Dlasková, Andrea; Santorová, Jitka; Ježek, Petr; Bewersdorf, Joerg

    2011-08-01

    The recent development of diffraction-unlimited far-field fluorescence microscopy has overcome the classical resolution limit of ~250 nm of conventional light microscopy by about a factor of ten. The improved resolution, however, reveals not only biological structures at an unprecedented resolution, but is also susceptible to sample drift on a much finer scale than previously relevant. Without correction, sample drift leads to smeared images with decreased resolution, and in the worst case to misinterpretation of the imaged structures. This poses a problem especially for techniques such as Fluorescence Photoactivation Localization Microscopy (FPALM/PALM) or Stochastic Optical Reconstruction Microscopy (STORM), which often require minutes recording time. Here we discuss an approach that corrects for three-dimensional (3D) drift in images of fixed samples without the requirement for fiduciary markers or instrument modifications. Drift is determined by calculating the spatial cross-correlation function between subsets of localized particles imaged at different times. Correction down to ~5 nm precision is achieved despite the fact that different molecules are imaged in each frame. We demonstrate the performance of our drift correction algorithm with different simulated structures and analyze its dependence on particle density and localization precision. By imaging mitochondria with Biplane FPALM we show our algorithm's feasibility in a practical application.

  19. Silicon nitride waveguide platform for fluorescence microscopy of living cells.

    Science.gov (United States)

    Tinguely, Jean-Claude; Helle, Øystein Ivar; Ahluwalia, Balpreet Singh

    2017-10-30

    Waveguide chip-based microscopy reduces the complexity of total internal reflection fluorescence (TIRF) microscopy, and adds features like large field of view illumination, decoupling of illumination and collection path and easy multimodal imaging. However, for the technique to become widespread there is a need of low-loss and affordable waveguides made of high-refractive index material. Here, we develop and report a low-loss silicon nitride (Si 3 N 4 ) waveguide platform for multi-color TIRF microscopy. Single mode conditions at visible wavelengths (488-660 nm) were achieved using shallow rib geometry. To generate uniform excitation over appropriate dimensions waveguide bends were used to filter-out higher modes followed by adiabatic tapering. Si 3 N 4 material is finally shown to be biocompatible for growing and imaging living cells.

  20. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.

    Directory of Open Access Journals (Sweden)

    Sean C Warren

    Full Text Available Fluorescence lifetime imaging (FLIM is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset. This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis

  1. Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning

    NARCIS (Netherlands)

    de Groot, M.; Evans, C.L.; de Boer, J.F.

    2012-01-01

    We present a new method for high-resolution, three-dimensional fluorescence imaging. In contrast to beam-scanning confocal microscopy, where the laser focus must be scanned both laterally and axially to collect a volume, we obtain depth information without the necessity of depth scanning. In this

  2. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    Science.gov (United States)

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  3. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    International Nuclear Information System (INIS)

    Schorb, Martin; Briggs, John A.G.

    2014-01-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision

  4. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schorb, Martin [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Briggs, John A.G., E-mail: john.briggs@embl.de [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany)

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision.

  5. Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer

    International Nuclear Information System (INIS)

    Iwanaga, Hiroki; Amano, Akio; Aiga, Fumihiko; Harada, Kohichi; Oguchi, Masayuki

    2006-01-01

    Relations between molecular structures of europium complexes and their luminescent properties were investigated. Europium complex with β-diketones and two different phosphine oxides 8 was highly soluble in fluorinated medium, and realized largest fluorescence intensities. The luminous intensity of ultraviolet light emitting diodes devices (LEDs) whose fluorescence layer consists of fluorinated polymer and 8 was over 200 mcd (20 mA). Fluorescence compounds of this type are promising for application in next-generation white LEDs. Moreover, we proposed a novel molecular design of europium complex with asymmetric diphosphine dioxide

  6. Scanless multitarget-matching multiphoton excitation fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Junpeng Qiu

    2018-03-01

    Full Text Available Using the combination of a reflective blazed grating and a reflective phase-only diffractive spatial light modulator (SLM, scanless multitarget-matching multiphoton excitation fluorescence microscopy (SMTM-MPM was achieved. The SLM shaped an incoming mode-locked, near-infrared Ti:sapphire laser beam into an excitation pattern with addressable shapes and sizes that matched the samples of interest in the field of view. Temporal and spatial focusing were simultaneously realized by combining an objective lens and a blazed grating. The fluorescence signal from illuminated areas was recorded by a two-dimensional sCMOS camera. Compared with a conventional temporal focusing multiphoton microscope, our microscope achieved effective use of the laser power and decreased photodamage with higher axial resolution.

  7. Fluorescence microscopy imaging of electroperturbation in mammalian cells.

    Science.gov (United States)

    Sun, Yinghua; Vernier, P Thomas; Behrend, Matthew; Wang, Jingjing; Thu, Mya Mya; Gundersen, Martin; Marcu, Laura

    2006-01-01

    We report the design, integration, and validation of a fluorescence microscopy system for imaging of electroperturbation--the effects of nanosecond, megavolt-per-meter pulsed electric fields on biological cells and tissues. Such effects have potential applications in cancer therapy, gene regulation, and biophysical research by noninvasively disrupting intracellular compartments and inducing apoptosis in malignant cells. As the primary observing platform, an epifluorescence microscope integrating a nanosecond high-voltage pulser and a micrometer electrode chamber enable in situ imaging of the intracellular processes triggered by high electric fields. Using specific fluorescence molecular probes, the dynamic biological responses of Jurkat T lymphocytes to nanosecond electric pulses (nanoelectropulses) are studied with this system, including calcium bursts, the polarized translocation of phosphatidylserine (PS), and nuclear enlargement and chromatin/DNA structural changes.

  8. Analyzing LED-induced haemal fluorescent spectra on laboratory small albino rat

    Science.gov (United States)

    Gao, Shumei; Luo, Xiaosen; Lan, Xiufeng; Jiao, Fangxiang; Lu, Jian; Ni, Xiaowu; Xu, Jiaying; Lu, Shiyue; Shen, Jian; Liu, Jiangang

    2002-04-01

    Native fluorescence spectral characteristics of red blood cells were studied in the visible region in this paper. Blood samples were collected from normal small albino rats. Native fluorescence spectra of the erythrocyte were induced using Light Emitting Diode (LED) at yellow wavelength about 570+/- 16 nm ((Delta) (lambda) 0.5approximately equals 32nm). As the rat's erythrocyte content of in physiological water is increasing, the fluorescent primary emission peak is red shifted from 588 nm to above 615 nm. Furthermore, the fluorescence intensity at about 600 nm was found to be maximal while the rat's erythrocyte consistence is 1%. Moreover, it is shown in large numbers of experiments that LED-induced fluorescence spectra of the erythrocyte are similar with the whole blood. It may make sense for low- intensity light therapy.

  9. Perspectives in Super-resolved Fluorescence Microscopy: What comes next?

    Directory of Open Access Journals (Sweden)

    Christoph eCremer

    2016-04-01

    Full Text Available The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light, which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.

  10. Super-resolved linear fluorescence localization microscopy using photostable fluorophores: A virtual microscopy study

    Science.gov (United States)

    Birk, Udo; Szczurek, Aleksander; Cremer, Christoph

    2017-12-01

    Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.

  11. Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy

    Science.gov (United States)

    Ahmed, Syeed Ehsan

    Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.

  12. Toward quantitative fluorescence microscopy with DNA origami nanorulers.

    Science.gov (United States)

    Beater, Susanne; Raab, Mario; Tinnefeld, Philip

    2014-01-01

    The dynamic development of fluorescence microscopy has created a large number of new techniques, many of which are able to overcome the diffraction limit. This chapter describes the use of DNA origami nanostructures as scaffold for quantifying microscope properties such as sensitivity and resolution. The DNA origami technique enables placing of a defined number of fluorescent dyes in programmed geometries. We present a variety of DNA origami nanorulers that include nanorulers with defined labeling density and defined distances between marks. The chapter summarizes the advantages such as practically free choice of dyes and labeling density and presents examples of nanorulers in use. New triangular DNA origami nanorulers that do not require photoinduced switching by imaging transient binding to DNA nanostructures are also reported. Finally, we simulate fluorescence images of DNA origami nanorulers and reveal that the optimal DNA nanoruler for a specific application has an intermark distance that is roughly 1.3-fold the expected optical resolution. © 2014 Elsevier Inc. All rights reserved.

  13. Correlative super-resolution fluorescence and electron microscopy using conventional fluorescent proteins in vacuo.

    Science.gov (United States)

    Peddie, Christopher J; Domart, Marie-Charlotte; Snetkov, Xenia; O'Toole, Peter; Larijani, Banafshe; Way, Michael; Cox, Susan; Collinson, Lucy M

    2017-08-01

    Super-resolution light microscopy, correlative light and electron microscopy, and volume electron microscopy are revolutionising the way in which biological samples are examined and understood. Here, we combine these approaches to deliver super-accurate correlation of fluorescent proteins to cellular structures. We show that YFP and GFP have enhanced blinking properties when embedded in acrylic resin and imaged under partial vacuum, enabling in vacuo single molecule localisation microscopy. In conventional section-based correlative microscopy experiments, the specimen must be moved between imaging systems and/or further manipulated for optimal viewing. These steps can introduce undesirable alterations in the specimen, and complicate correlation between imaging modalities. We avoided these issues by using a scanning electron microscope with integrated optical microscope to acquire both localisation and electron microscopy images, which could then be precisely correlated. Collecting data from ultrathin sections also improved the axial resolution and signal-to-noise ratio of the raw localisation microscopy data. Expanding data collection across an array of sections will allow 3-dimensional correlation over unprecedented volumes. The performance of this technique is demonstrated on vaccinia virus (with YFP) and diacylglycerol in cellular membranes (with GFP). Copyright © 2017. Published by Elsevier Inc.

  14. Comparison of milk oxidation by exposure to LED and fluorescent light.

    Science.gov (United States)

    Brothersen, C; McMahon, D J; Legako, J; Martini, S

    2016-04-01

    Light-induced oxidation of milk has been well studied. Exposure of milk to UV light facilitates the oxidation of fats to aldehydes, and the degradation of sulfur-containing amino acids, both of which contribute to off-flavors. In addition, vitamin A and riboflavin are easily degraded by UV light. These reactions occur rapidly and are exacerbated by bright fluorescent lights in retail dairy cases. The invention of white light-emitting diodes (LED) may provide a solution to this oxidation problem. In this study, fresh milk containing 1% fat and fortified with vitamin A and riboflavin was exposed to LED at 4,000 lx, or fluorescent light at 2,200 lx for 24 h. Milk samples exposed to LED or fluorescent light, as well as milk protected from light, were analyzed by a consumer acceptance panel, and a trained flavor panel. In addition, vitamin A, riboflavin, and the production of volatile compounds were quantified. Exposure to light resulted in a reduction of cooked/sweet, milkfat, and sweet flavors and increased the intensity of butterscotch, cardboard, and astringency. In general, exposure to fluorescent light resulted in greater changes in the milk than exposure to LED even though the LED was at higher intensity. Consumers were able detect off-flavors in milk exposed to fluorescent light after 12 h and LED after 24 h of exposure. The riboflavin and vitamin A content was reduced by exposure to fluorescent light, whereas there was no significant reduction caused by LED compared with the non-light-exposed control. Production of hexanal, heptanal, 2-heptanal, octanal, 2-octanal nonanal, dimethyl sulfide, and caproic acid vinyl ester from the light-induced degradation of fats was significantly higher with fluorescent than LED. Production of these compounds was significantly higher with both light treatments than in the control milk. This study indicates that LED is less destructive to milk than fluorescent light. Copyright © 2016 American Dairy Science Association. Published

  15. Fluorescent Brighteners as Visible LED-Light Sensitive Photoinitiators for Free Radical Photopolymerizations.

    Science.gov (United States)

    Zuo, Xiaoling; Morlet-Savary, Fabrice; Graff, Bernadette; Blanchard, Nicolas; Goddard, Jean-Philippe; Lalevée, Jacques

    2016-05-01

    The photochemical and electrochemical investigations of commercially available, safe, and cheap fluorescent brighteners, namely, triazinylstilbene (commercial name: fluorescent brightener 28) and 2,5-bis(5-tert-butyl-benzoxazol-2-yl)thiophene, as well as their original use as photoinitiators of polymerization upon light emitting diode (LED) irradiation are reported. Remarkably, their excellent near-UV-visible absorption properties combined with outstanding fluorescent properties allow them to act as high-performance photoinitiators when used in combination with diaryliodonium salt. These two-component photoinitiating systems can be employed for free radical polymerizations of acrylate. In addition, this brightener-initiated photopolymerization is able to overcome oxygen inhibition even upon irradiation with low LED light intensity. The underlying photochemical mechanisms are investigated by electron-spin resonance-spin trapping, fluorescence, cyclic voltammetry, and steady-state photolysis techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation of Nematode Diversity using Scanning Electron Microscopy and Fluorescent Microscopy

    Science.gov (United States)

    Seacor, Taylor; Howell, Carina

    2013-03-01

    Nematode worms account for the vast majority of the animals in the biosphere. They are colossally important to global public health as parasites, and to agriculture both as pests and as beneficial inhabitants of healthy soil. Amphid neurons are the anterior chemosensory neurons in nematodes, mediating critical behaviors including chemotaxis and mating. We are examining the cellular morphology and external anatomy of amphid neurons, using fluorescence microscopy and scanning electron microscopy, respectively, of a wide range of soil nematodes isolated in the wild. We use both classical systematics (e.g. diagnostic keys) and molecular markers (e.g. ribosomal RNA) to classify these wild isolates. Our ultimate aim is to build a detailed anatomical database in order to dissect genetic pathways of neuronal development and function across phylogeny and ecology. Research supported by NSF grants 092304, 0806660, 1058829 and Lock Haven University FPDC grants

  17. Investigation of Yeast Mitophagy with Fluorescence Microscopy and Western Blotting.

    Science.gov (United States)

    Nagumo, Sachiyo; Okamoto, Koji

    2017-03-24

    Selective clearance of superfluous or dysfunctional mitochondria is a fundamental process that depends on the autophagic membrane trafficking pathways found in many cell types. This catabolic event, called mitophagy, is conserved from yeast to humans and serves to control mitochondrial quality and quantity. In budding yeast, degradation of mitochondria occurs under various physiological conditions, such as respiration at stationary phase, or starvation in a prolonged period. During these events, the transmembrane protein Atg32 localizes to the mitochondrial surface and plays a specific and essential role in yeast mitophagy. In this chapter, we describe methods to observe transport of mitochondria to the vacuole, a lytic compartment in yeast, using fluorescence microscopy, and semi-quantify the progression of Atg32-mediated mitophagy by Western blotting.

  18. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    Science.gov (United States)

    Garcia-Sucerquia, J.

    2015-04-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.

  19. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Molly McQuilken

    2017-05-01

    Full Text Available Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis.

  20. Dynamic Fluorescence Microscopy of Cellular Uptake of Intercalating Model Drugs by Ultrasound-Activated Microbubbles

    NARCIS (Netherlands)

    Lammertink, B.H.A.; Deckers, R.; Derieppe, M.; De Cock, I.; Lentacker, I.; Storm, G.; Moonen, C. T.W.; Bos, C.

    2017-01-01

    Purpose: The combination of ultrasound and microbubbles can facilitate cellular uptake of (model) drugs via transient permeabilization of the cell membrane. By using fluorescent molecules, this process can be studied conveniently with confocal fluorescence microscopy. This study aimed to investigate

  1. Preparation of tissue samples for X-ray fluorescence microscopy

    International Nuclear Information System (INIS)

    Chwiej, Joanna; Szczerbowska-Boruchowska, Magdalena; Lankosz, Marek; Wojcik, Slawomir; Falkenberg, Gerald; Stegowski, Zdzislaw; Setkowicz, Zuzanna

    2005-01-01

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain

  2. Field portable mobile phone based fluorescence microscopy for detection of Giardia lamblia cysts in water samples

    Science.gov (United States)

    Ceylan Koydemir, Hatice; Gorocs, Zoltan; McLeod, Euan; Tseng, Derek; Ozcan, Aydogan

    2015-03-01

    Giardia lamblia is a waterborne parasite that causes an intestinal infection, known as giardiasis, and it is found not only in countries with inadequate sanitation and unsafe water but also streams and lakes of developed countries. Simple, sensitive, and rapid detection of this pathogen is important for monitoring of drinking water. Here we present a cost-effective and field portable mobile-phone based fluorescence microscopy platform designed for automated detection of Giardia lamblia cysts in large volume water samples (i.e., 10 ml) to be used in low-resource field settings. This fluorescence microscope is integrated with a disposable water-sampling cassette, which is based on a flow-through porous polycarbonate membrane and provides a wide surface area for fluorescence imaging and enumeration of the captured Giardia cysts on the membrane. Water sample of interest, containing fluorescently labeled Giardia cysts, is introduced into the absorbent pads that are in contact with the membrane in the cassette by capillary action, which eliminates the need for electrically driven flow for sample processing. Our fluorescence microscope weighs ~170 grams in total and has all the components of a regular microscope, capable of detecting individual fluorescently labeled cysts under light-emitting-diode (LED) based excitation. Including all the sample preparation, labeling and imaging steps, the entire measurement takes less than one hour for a sample volume of 10 ml. This mobile phone based compact and cost-effective fluorescent imaging platform together with its machine learning based cyst counting interface is easy to use and can even work in resource limited and field settings for spatio-temporal monitoring of water quality.

  3. Neural imaging in songbirds using fiber optic fluorescence microscopy

    Science.gov (United States)

    Nooshabadi, Fatemeh; Hearn, Gentry; Lints, Thierry; Maitland, Kristen C.

    2012-02-01

    The song control system of juvenile songbirds is an important model for studying the developmental acquisition and generation of complex learned vocal motor sequences, two processes that are fundamental to human speech and language. To understand the neural mechanisms underlying song production, it is critical to characterize the activity of identified neurons in the song control system when the bird is singing. Neural imaging in unrestrained singing birds, although technically challenging, will advance our understanding of neural ensemble coding mechanisms in this system. We are exploring the use of a fiber optic microscope for functional imaging in the brain of behaving and singing birds in order to better understand the contribution of a key brain nucleus (high vocal center nucleus; HVC) to temporal aspects of song motor control. We have constructed a fluorescence microscope with LED illumination, a fiber bundle for transmission of fluorescence excitation and emission light, a ~2x GRIN lens, and a CCD for image acquisition. The system has 2 μm resolution, 375 μm field of view, 200 μm working distance, and 1 mm outer diameter. As an initial characterization of this setup, neurons in HVC were imaged using the fiber optic microscope after injection of quantum dots or fluorescent retrograde tracers into different song nuclei. A Lucid Vivascope confocal microscope was used to confirm the imaging results. Long-term imaging of the activity of these neurons in juvenile birds during singing may lead us to a better understanding of the central motor codes for song and the central mechanism by which auditory experience modifies song motor commands to enable vocal learning and imitation.

  4. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity.

    Science.gov (United States)

    Schorb, Martin; Briggs, John A G

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. © 2013 Published by Elsevier B.V.

  5. LED-Induced fluorescence and image analysis to detect stink bug damage in cotton bolls.

    Science.gov (United States)

    Mustafic, Adnan; Roberts, Erin E; Toews, Michael D; Haidekker, Mark A

    2013-02-20

    Stink bugs represent a major agricultural pest complex attacking more than 200 wild and cultivated plants, including cotton in the southeastern US. Stink bug feeding on developing cotton bolls will cause boll abortion or lint staining and thus reduced yield and lint value. Current methods for stink bug detection involve manual harvesting and cracking open of a sizable number of immature cotton bolls for visual inspection. This process is cumbersome, time consuming, and requires a moderate level of experience to obtain accurate estimates. To improve detection of stink bug feeding, we present here a method based on fluorescent imaging and subsequent image analyses to determine the likelihood of stink bug damage in cotton bolls. Damage to different structures of cotton bolls including lint and carpal wall can be observed under blue LED-induced fluorescence. Generally speaking, damaged regions fluoresce green, whereas non-damaged regions with chlorophyll fluoresce red. However, similar fluorescence emission is also observable on cotton bolls that have not been fed upon by stink bugs. Criteria based on fluorescent intensity and the size of the fluorescent spot allow to differentiate between true positives (fluorescent regions associated with stink bug feeding) and false positives (fluorescent regions due to other causes). We found a detection rates with two combined criteria of 87% for true-positive marks and of 8% for false-positive marks. The imaging technique presented herein gives rise to a possible detection apparatus where a cotton boll is imaged in the field and images processed by software. The unique fluorescent signature left by stink bugs can be used to determine with high probability if a cotton boll has been punctured by a stink bug. We believe this technique, when integrated in a suitable device, could be used for more accurate detection in the field and allow for more optimized application of pest control.

  6. LED-Induced fluorescence and image analysis to detect stink bug damage in cotton bolls

    Science.gov (United States)

    2013-01-01

    Background Stink bugs represent a major agricultural pest complex attacking more than 200 wild and cultivated plants, including cotton in the southeastern US. Stink bug feeding on developing cotton bolls will cause boll abortion or lint staining and thus reduced yield and lint value. Current methods for stink bug detection involve manual harvesting and cracking open of a sizable number of immature cotton bolls for visual inspection. This process is cumbersome, time consuming, and requires a moderate level of experience to obtain accurate estimates. To improve detection of stink bug feeding, we present here a method based on fluorescent imaging and subsequent image analyses to determine the likelihood of stink bug damage in cotton bolls. Results Damage to different structures of cotton bolls including lint and carpal wall can be observed under blue LED-induced fluorescence. Generally speaking, damaged regions fluoresce green, whereas non-damaged regions with chlorophyll fluoresce red. However, similar fluorescence emission is also observable on cotton bolls that have not been fed upon by stink bugs. Criteria based on fluorescent intensity and the size of the fluorescent spot allow to differentiate between true positives (fluorescent regions associated with stink bug feeding) and false positives (fluorescent regions due to other causes). We found a detection rates with two combined criteria of 87% for true-positive marks and of 8% for false-positive marks. Conclusions The imaging technique presented herein gives rise to a possible detection apparatus where a cotton boll is imaged in the field and images processed by software. The unique fluorescent signature left by stink bugs can be used to determine with high probability if a cotton boll has been punctured by a stink bug. We believe this technique, when integrated in a suitable device, could be used for more accurate detection in the field and allow for more optimized application of pest control. PMID:23421982

  7. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    International Nuclear Information System (INIS)

    Tong Yongpeng; Li Changming; Liang Feng; Chen Jianmin; Zhang Hong; Liu Guoqing; Sun Huibin; Luong, John H.T.

    2008-01-01

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al 2 O 3 and TiO 2 ) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl 2 ) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al 2 O 3 and TiO 2 nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe 2 O 3 nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  8. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  9. Comparative Phenotypical and Molecular Analyses of Arabidopsis Grown under Fluorescent and LED Light.

    Science.gov (United States)

    Seiler, Franka; Soll, Jürgen; Bölter, Bettina

    2017-06-13

    Comparative analyses of phenotypic and molecular traits of Arabidopsis thaliana grown under standardised conditions is still a challenge using climatic devices supplied with common light sources. These are in most cases fluorescent lights, which have several disadvantages such as heat production at higher light intensities, an invariable spectral output, and relatively rapid "ageing". This results in non-desired variations of growth conditions and lowers the comparability of data acquired over extended time periods. In this study, we investigated the growth behaviour of Arabidopsis Col0 under different light conditions, applying fluorescent compared to LED lamps, and we conducted physiological as well as gene expression analyses. By changing the spectral composition and/or light intensity of LEDs we can clearly influence the growth behaviour of Arabidopsis and thereby study phenotypic attributes under very specific light conditions that are stable and reproducible, which is not necessarily given for fluorescent lamps. By using LED lights, we can also roughly mimic the sun light emission spectrum, enabling us to study plant growth in a more natural-like light set-up. We observed distinct growth behaviour under the different light regimes which was reflected by physiological properties of the plants. In conclusion, LEDs provide variable emission spectra for studying plant growth under defined, stable light conditions.

  10. Comparative Phenotypical and Molecular Analyses of Arabidopsis Grown under Fluorescent and LED Light

    Directory of Open Access Journals (Sweden)

    Franka Seiler

    2017-06-01

    Full Text Available Comparative analyses of phenotypic and molecular traits of Arabidopsis thaliana grown under standardised conditions is still a challenge using climatic devices supplied with common light sources. These are in most cases fluorescent lights, which have several disadvantages such as heat production at higher light intensities, an invariable spectral output, and relatively rapid “ageing”. This results in non-desired variations of growth conditions and lowers the comparability of data acquired over extended time periods. In this study, we investigated the growth behaviour of Arabidopsis Col0 under different light conditions, applying fluorescent compared to LED lamps, and we conducted physiological as well as gene expression analyses. By changing the spectral composition and/or light intensity of LEDs we can clearly influence the growth behaviour of Arabidopsis and thereby study phenotypic attributes under very specific light conditions that are stable and reproducible, which is not necessarily given for fluorescent lamps. By using LED lights, we can also roughly mimic the sun light emission spectrum, enabling us to study plant growth in a more natural-like light set-up. We observed distinct growth behaviour under the different light regimes which was reflected by physiological properties of the plants. In conclusion, LEDs provide variable emission spectra for studying plant growth under defined, stable light conditions.

  11. An evaluation of the performance and acceptability of three LED fluorescent microscopes in Zambia: lessons learnt for scale-up.

    Science.gov (United States)

    Turnbull, Eleanor R; Kaunda, Kaunda; Harris, Jennifer B; Kapata, Nathan; Muvwimi, Mweemba W; Kruuner, Annika; Henostroza, German; Reid, Stewart E

    2011-01-01

    The World Health Organization recommends the roll-out of light-emitting diode (LED) fluorescent microscopes (FM) as an alternative to light microscopes in resource-limited settings. We evaluated the acceptability and performance of three LED FMs after a short orientation among laboratory technicians from government health centers in Zambia. Sixteen technicians with varied light microscopy experience were oriented to FMs and divided into groups; each group read a different set of 40 slides on each LED FM (Primo Star iLED™, Lumin™, FluoLED™) and on a reference mercury-vapor FM (Olympus BX41TF). Slide reading times were recorded. An experienced FM technician examined each slide on the Olympus BX41TF. Sensitivity and specificity compared to TB culture were calculated. Misclassification compared to the experienced technician and inter-rater reliability between trainees was assessed. Trainees rated microscopes on technical aspects. Primo Star iLED™, FluoLED™ and Olympus BX41TF had comparable sensitivities (67%, 65% and 65% respectively), with the Lumin™ significantly worse (56%; pmicroscopes (75.9%) compared to the experienced technician on Olympus BX41TF (100%). Primo Star iLED™ had significantly less misclassification (21.1% pmicroscopes suggesting that a brief orientation was insufficient in this setting. These results provide important data for resource-limited settings to consider as they scale-up LED FMs.

  12. Investigation of depilatory mechanism by use of multiphoton fluorescent microscopy

    Science.gov (United States)

    Lin, Chiao-Ying; Lee, Gie-ne; Jee, Shiou-Hwa; Dong, Chen-Yuan; Lin, Sung-Jan

    2007-07-01

    Transdermal drug delivery provides a non-invasive route of drug administration, and can be a alternative method to oral delivery and injection. The stratum corneum (SC) of skin acts as the main barrier to transdermal drug delivery. Studies suggest that depilatory enhances permeability of drug through the epidermis. However, transdermal delivery pathway and mechanism are not completely understood. Previous studies have found that depilatory changes the keratinocytes of epidermis, and cause the protein in combination with lipid extraction of SC to become disordered. Nevertheless, those studies did not provide images of those processes. The aim of this study is to characterize the penetration enhancing effect of depilatory agent and the associated structural alterations of stratum corneum. Fresh human foreskin is treated by a depilatory agent for 10 minutes and then subjected to the treatment of fluorescent model drugs of hydrophilic rhodamine and hydrophobic rhodamine-RE. The penetration of model drugs is imaged and quantified by multiphoton microscopy. Our results showed that the penetration of both hydrophilic and hydrophobic agents can be enhanced and multifocal detachment of surface corneocytes is revealed. Nile red staining revealed, instead of a regular motar distribution of lipid around the brick of corneocytes, a disorganized and homogenized pattern of lipid distribution. We concluded that depilatory agents enhance drug penetration by disrupting both the cellular integrity of corneocytes and the regular packing of intercellular lipid of stratum corneum.

  13. Structural Configuration of Myelin Figures Using Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Lobat Tayebi

    2012-01-01

    Full Text Available Using epifluorescence microscopy, the configuration of myelin figures that are formed upon hydration of lipid stack was studied qualitatively. Little knowledge is currently available for conditions that determine the diameter of myelin figures and their degree of multilamellarity. Examining more than 300 samples, we realized that there are distinct populations of myelin figures protruding from discrete regions of lipid stack. Each population contains myelin figures with similar diameters. This indicates a direct relationship between local characteristics of parent lipid stack and the diameter of myelin figures. Evidenced by fluorescent images, we classified all the observed myelin figures into three major groups of (1 solid tubes, (2 thin tethers, and (3 hollow tubes. Solid tubes are the most common structure of myelin figures which appeared as dense shiny cylinders. Thin tethers, with long hair-shaped structure, were observed protruding from part of lipid plaque which is likely to be under tension. Hollow tubes were protruded from the parts that are unpinned from the substrate and possibly under low or no tension. The abrupt change in the configuration of myelin figures from solid tubes to hollow ones was described in a reproducible experiment where the pinned region of the parent stack became unpinned. Our observations can indicate a relation between the membrane tension of the source material and the diameter of the myelin figures.

  14. Carrier Lifetimes in Fluorescent 6H-SiC for LEDs Application

    DEFF Research Database (Denmark)

    Grivickas, Vytautas; Gulbinas, Karolis; Jokubavičius, Valdas

    to acceptor pair recombination [1,2]. This combination can achieve higher electric-light conversion efficiency and high color rendering in comparison with today’s used blue GaN LED based and phosphors. The devices are promising candidates for general lightning applications and may obtain stability......Recently it was shown a new approach based on all-semiconductor material technology which is composed with a near ultra-violet GaN LED excitation source and fluorescent silicon carbide (f-6H-SiC) substrate which generates a visible broad spectral light by N and B dopants and an efficient donor...

  15. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins

    OpenAIRE

    Hofmann, M.; Eggeling, C.; Jakobs, S.; Hell, S.

    2005-01-01

    Fluorescence microscopy is indispensable in many areas of science, but until recently, diffraction has limited the resolution of its lens-based variant. The diffraction barrier has been broken by a saturated depletion of the marker's fluorescent state by stimulated emission, but this approach requires picosecond laser pulses of GW/cm2 intensity. Here, we demonstrate the surpassing of the diffraction barrier in fluorescence microscopy with illumination intensities that are eight orders of magn...

  16. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy

    OpenAIRE

    NEAUPORT, Jérôme; Cormont, P; Legros, P; Ambard, C; Destribats, J

    2009-01-01

    International audience; We report an experimental investigation of fluorescence confocal microscopy as a tool to measure subsurface damage on grinded fused silica optics. Confocal fluorescence microscopy was performed with an excitation at the wavelength of 405 nm on fixed abrasive diamond grinded fused silica samples. We detail the measured fluorescence spectrums and compare them to those of oil based coolants and grinding slurries. We evidence that oil based coolant used in diamond grinding...

  17. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  18. Monitor RNA synthesis in live cell nuclei by using two-photon excited fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Peng, Xiao; Lin, Danying; Wang, Yan; Qi, Jing; Yan, Wei; Qu, Junle

    2015-03-01

    Probing of local molecular environment in cells is of significant value in creating a fundamental understanding of cellular processes and molecular profiles of diseases, as well as studying drug cell interactions. In order to investigate the dynamically changing in subcellular environment during RNA synthesis, we applied two-photon excited fluorescence lifetime imaging microscopy (FLIM) method to monitor the green fluorescent protein (GFP) fused nuclear protein ASF/SF2. The fluorescence lifetime of fluorophore is known to be in inverse correlation with a local refractive index, and thus fluorescence lifetimes of GFP fusions provide real-time information of the molecular environment of ASF/SF2- GFP. The FLIM results showed continuous and significant fluctuations of fluorescence lifetimes of the fluorescent protein fusions in live HeLa cells under physiological conditions. The fluctuations of fluorescence lifetime values indicated the variations of activities of RNA polymerases. Moreover, treatment with pharmacological drugs inhibiting RNA polymerase activities led to irreversible decreases of fluorescence lifetime values. In summary, our study of FLIM imaging of GFP fusion proteins has provided a sensitive and real-time method to investigate RNA synthesis in live cell nuclei.

  19. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy

    NARCIS (Netherlands)

    Faas, F.G.A.; Bárcena, M.A.; Agronskaia, A.V.; Gerritsen, H.C.; Moscicka, K.B.; Diebolder, C.A.; Driel, L.F.; Limpens, R.W.A.L.; Bos, E.; Ravelli, R.B.G.; Koning, R.I.; Koster, A.J.

    2013-01-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain

  20. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, Pascale [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Kaufmann, Rainer [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Siebert, C. Alistair; Hagen, Christoph [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wodrich, Harald [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux SEGALEN, 146 rue Leo Seignat, 33076 Bordeaux (France); Grünewald, Kay, E-mail: kay@strubi.ox.ac.uk [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm.

  1. B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Shilpa Dilipkumar

    2015-03-01

    Full Text Available An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy. A comparative study of the proposed technique with the state-of-art maximum likelihood (ML and maximum-a-posteriori (MAP with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED.

  2. Fluorescent labeling of Acanthamoeba assessed in situ from corneal sectioned microscopy.

    Science.gov (United States)

    Marcos, Susana; Requejo-Isidro, Jose; Merayo-Lloves, Jesus; Acuña, A Ulises; Hornillos, Valentin; Carrillo, Eugenia; Pérez-Merino, Pablo; Del Olmo-Aguado, Susana; Del Aguila, Carmen; Amat-Guerri, Francisco; Rivas, Luis

    2012-10-01

    Acanthamoeba keratitis is a serious pathogenic corneal disease, with challenging diagnosis. Standard diagnostic methods include corneal biopsy (involving cell culture) and in vivo reflection corneal microscopy (in which the visualization of the pathogen is challenged by the presence of multiple reflectance corneal structures). We present a new imaging method based on fluorescence sectioned microscopy for visualization of Acanthamoeba. A fluorescent marker (MT-11-BDP), composed by a fluorescent group (BODIPY) inserted in miltefosine (a therapeutic agent against Acanthamoeba), was developed. A custom-developed fluorescent structured illumination sectioned corneal microscope (excitation wavelength: 488 nm; axial/lateral resolution: 2.6 μm/0.4-0.6 μm) was used to image intact enucleated rabbit eyes, injected with a solution of stained Acanthamoeba in the stroma. Fluorescent sectioned microscopic images of intact enucleated rabbit eyes revealed stained Acanthamoeba trophozoites within the stroma, easily identified by the contrasted fluorescent emission, size and shape. Control experiments show that the fluorescent maker is not internalized by corneal cells, making the developed marker specific to the pathogen. Fluorescent sectioned microscopy shows potential for specific diagnosis of Acanthamoeba keratitis. Corneal confocal microscopy, provided with a fluorescent channel, could be largely improved in specificity and sensitivity in combination with specific fluorescent marking.

  3. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    Science.gov (United States)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  4. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy.

    Science.gov (United States)

    Neauport, J; Cormont, P; Legros, P; Ambard, C; Destribats, J

    2009-03-02

    We report an experimental investigation of fluorescence confocal microscopy as a tool to measure subsurface damage on grinded fused silica optics. Confocal fluorescence microscopy was performed with an excitation at the wavelength of 405 nm on fixed abrasive diamond grinded fused silica samples. We detail the measured fluorescence spectrums and compare them to those of oil based coolants and grinding slurries. We evidence that oil based coolant used in diamond grinding induces a fluorescence that marks the subsurface damages and eases its observation. Such residual traces might also be involved in the laser damage process.

  5. Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging

    Science.gov (United States)

    Peter, Sébastien; Elgass, Kirstin; Sackrow, Marcus; Caesar, Katharina; Born, Anne-Kathrin; Maniura, Katharina; Harter, Klaus; Meixner, Alfred J.; Schleifenbaum, Frank

    2010-02-01

    Fluorescence microscopy became an invaluable tool in cell biology in the past 20 years. However, the information that lies in these studies is often corrupted by a cellular fluorescence background known as autofluorescence. Since the unspecific background often overlaps with most commonly used labels in terms of fluorescence spectra and fluorescence lifetime, the use of spectral filters in the emission beampath or timegating in fluorescence lifetime imaging (FLIM) is often no appropriate means for distinction between signal and background. Despite the prevalence of fluorescence techniques only little progress has been reported in techniques that specifically suppress autofluorescence or that clearly discriminate autofluorescence from label fluorescence. Fluorescence intensity decay shape analysis microscopy (FIDSAM) is a novel technique which is based on the image acquisition protocol of FLIM. Whereas FLIM spatially resolved maps the average fluorescence lifetime distribution in a heterogeneous sample such as a cell, FIDSAM enhances the dynamic image contrast by determination of the autofluorescence contribution by comparing the fluorescence decay shape to a reference function. The technique therefore makes use of the key difference between label and autofluorescence, i.e. that for label fluorescence only one emitting species contributes to fluorescence intensity decay curves whereas many different species of minor intensity contribute to autofluorescence. That way, we were able to suppress autofluorescence contributions from chloroplasts in Arabidopsis stoma cells and from cell walls in Arabidopsis hypocotyl cells to background level. Furthermore, we could extend the method to more challenging labels such as the cyan fluorescent protein CFP in human fibroblasts.

  6. Raman and fluorescence microscopy to study the internalization and dissolution of photosensitizer nanoparticles into living cells

    Science.gov (United States)

    Scalfi-Happ, Claudia; Steiner, Rudolf; Wittig, Rainer; Graefe, Susanna; Ryabova, Anastasia; Loschenov, Victor

    2015-07-01

    In this present study we applied Raman and fluorescence microscopy to investigate the internalisation, cellular distribution and effects on cell metabolism of photosensitizer nanoparticles for photodynamic therapy in fibroblasts and macrophages.

  7. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy

    Science.gov (United States)

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  8. Calibration of a DG–model for fluorescence microscopy

    DEFF Research Database (Denmark)

    Hansen, Christian Valdemar

    It is well known that diseases like Alzheimer, Parkinson, Corea Huntington and Arteriosclerosis are caused by a jam in intracellular membrane traffic [2]. Hence to improve treatment, a quantitative analysis of intracellular transport is essential. Fluorescence loss in photobleaching (FLIP...

  9. phiFLIM: a new method to avoid aliasing in frequency domain fluorescence lifetime imaging microscopy.

    NARCIS (Netherlands)

    van Munster, E.B.; Gadella, Th.W.J.

    2004-01-01

    In conventional wide-field frequency-domain fluorescence lifetime imaging microscopy (FLIM), excitation light is intensity-modulated at megahertz frequencies. Emitted fluorescence is recorded by a CCD camera through an image intensifier, which is modulated at the same frequency. From images recorded

  10. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  11. A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector.

    Directory of Open Access Journals (Sweden)

    Jacob Lamb

    Full Text Available The fluorescence emission spectrum of photosynthetic microorganisms at liquid nitrogen temperature (77 K provides important insights into the organization of the photosynthetic machinery of bacteria and eukaryotes, which cannot be observed at room temperature. Conventionally, to obtain such spectra, a large and costly table-top fluorometer is required. Recently portable, reliable, and largely maintenance-free instruments have become available that can be utilized to accomplish a wide variety of spectroscopy-based measurements in photosynthesis research. In this report, we show how to build such an instrument in order to record 77K fluorescence spectra. This instrument consists of a low power monochromatic light-emitting diode (LED, and a portable CCD array based spectrometer. The optical components are coupled together using a fiber optic cable, and a custom made housing that also supports a dewar flask. We demonstrate that this instrument facilitates the reliable determination of chlorophyll fluorescence emission spectra for the cyanobacterium Synechocystis sp. PCC 6803, and the green alga Chlamydomonas reinhardtii.

  12. Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo.

    Science.gov (United States)

    Miura, Yoko

    2018-01-01

    Retinal pigment epithelium (RPE), a monolayer of epithelial cells located between the neural retina and the choroid, plays a significant role in the maintenance of retinal function. Its in vivo imaging is still technically challenging in human eye. With the mouse eye, there is a possibility to look into the RPE through the sclera using two-photon microscopy (TPM). TPM is a two photon-excited nonlinear fluorescence microscopy that enables the observation of deep tissues up to several hundred micrometers. Since the simultaneous absorption of two photons occurs only at the focal plane, spatial resolution of the TPM is quite high, such that pinhole as used in a confocal microscope is not necessary. TPM enables observation of autofluorescence at the cellular level, and thus may provide new insights into the fluorescent molecules in/around RPE cells.The combination of TPM with fluorescence lifetime imaging microscopy (FLIM) may expand the breadth of information about cells and tissues. Fluorescence lifetime is a fluorophore-specific property, which is independent of fluorescence intensity and changes with the alteration of molecular environment. FLIM may have therefore the potentials to distinguish different fluorophores and to indicate the change in the environment of a fluorophore. Some energy metabolisms-related intracellular fluorophores, such as NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), show characteristic fluorescence lifetimes that shift under different molecular environments, and thus their fluorescence lifetime have been used to indicate cell energy metabolic states. These nonlabeling imaging methods offer us the opportunity to engage in the study of the RPE in vivo as well as in vitro both in morphological as well as metabolic aspects.

  13. Faster and less phototoxic 3D fluorescence microscopy using a versatile compressed sensing scheme.

    Science.gov (United States)

    Woringer, Maxime; Darzacq, Xavier; Zimmer, Christophe; Mir, Mustafa

    2017-06-12

    Three-dimensional fluorescence microscopy based on Nyquist sampling of focal planes faces harsh trade-offs between acquisition time, light exposure, and signal-to-noise. We propose a 3D compressed sensing approach that uses temporal modulation of the excitation intensity during axial stage sweeping and can be adapted to fluorescence microscopes without hardware modification. We describe implementations on a lattice light sheet microscope and an epifluorescence microscope, and show that images of beads and biological samples can be reconstructed with a 5-10 fold reduction of light exposure and acquisition time. Our scheme opens a new door towards faster and less damaging 3D fluorescence microscopy.

  14. CALiPER Benchmark Report: Performance of T12 and T8 Fluorescent Lamps and Troffers and LED Linear Replacement Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Myer, M. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paget, M. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lingard, R. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-01-01

    This report examines standard fluorescent lamps, the recessed troffers they are commonly used in, and available LED replacements for T12 and T8 fluorescent lamps and their application in fluorescent troffers.

  15. Comparative Study of Lettuce and Radish Grown Under Red and Blue LEDs and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.; Massa, Gioia; Newsham, Gerard; Wheeler, Raymond; Birmele, Michele

    2016-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.

  16. Towards correlative super-resolution fluorescence and electron cryo-microscopy

    OpenAIRE

    Wolff, Georg; Hagen, Christoph; Gr?newald, Kay; Kaufmann, Rainer

    2016-01-01

    Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo-CLEM, the combination of fluorescence cryo-microscopy (cryo-FM) permitting for non-invasive specific multi-colour labelling, with electron cryo-microscopy (cryo-EM) providing the undisturbed structural context at a resolution down to the ?ngstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside...

  17. On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips

    Science.gov (United States)

    Takehara, Hiroaki; Kazutaka, Osawa; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2017-09-01

    Although fluorescence microscopy is the gold standard tool for biomedical research and clinical applications, their use beyond well-established laboratory infrastructures remains limited. The present study investigated a novel on-chip cell analysis platform based on contact fluorescence microscopy and microfluidics. Combined use of a contact fluorescence imager based on complementary metal-oxide semiconductor technology and an ultra-thin glass bottom microfluidic chip enabled both to observe living cells with minimal image distortion and to ease controlling and handling of biological samples (e.g. cells and biological molecules) in the imaged area. A proof-of-concept experiment of on-chip detection of cellular response to endothelial growth factor demonstrated promising use for the recently developed on-chip cell analysis platform. Contact fluorescence microscopy has numerous desirable features including compatibility with plastic microfluidic chips and compatibility with the electrical control system, and thus will fulfill the requirements of a fully automated cell analysis system.

  18. Effect of LED photobiomodulation on fluorescent light induced changes in cellular ATPases and Cytochrome c oxidase activity in Wistar rat.

    Science.gov (United States)

    A, Ahamed Basha; C, Mathangi D; R, Shyamala

    2016-12-01

    Fluorescent light exposure at night alters cellular enzyme activities resulting in health defects. Studies have demonstrated that light emitting diode photobiomodulation enhances cellular enzyme activities. The objectives of this study are to evaluate the effects of fluorescent light induced changes in cellular enzymes and to assess the protective role of pre exposure to 670 nm LED in rat model. Male Wistar albino rats were divided into 10 groups of 6 animals each based on duration of exposure (1, 15, and 30 days) and exposure regimen (cage control, exposure to fluorescent light [1800 lx], LED preexposure followed by fluorescent light exposure and only LED exposure). Na + -K + ATPase, Ca 2+ ATPase, and cytochrome c oxidase of the brain, heart, kidney, liver, and skeletal muscle were assayed. Animals of the fluorescent light exposure group showed a significant reduction in Na + -K + ATPase and Ca 2+ ATPase activities in 1 and 15 days and their increase in animals of 30-day group in most of the regions studied. Cytochrome c oxidase showed increase in their level at all the time points assessed in most of the tissues. LED light preexposure showed a significant enhancement in the degree of increase in the enzyme activities in almost all the tissues and at all the time points assessed. This study demonstrates the protective effect of 670 nm LED pre exposure on cellular enzymes against fluorescent light induced change.

  19. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching.

    Science.gov (United States)

    Schwentker, Miriam A; Bock, Hannes; Hofmann, Michael; Jakobs, Stefan; Bewersdorf, Jörg; Eggeling, Christian; Hell, Stefan W

    2007-03-01

    Subdiffraction fluorescence imaging is presented in a parallelized wide-field arrangement exploiting the principle of reversible saturable/switchable optical transitions (RESOLFT). The diffraction barrier is overcome by photoswitching ensembles of the label protein asFP595 between a nonfluorescent off- and a fluorescent on-state. Relying on ultralow continuous-wave intensities, reversible protein switching facilitates parallelized fast image acquisition. The RESOLFT principle is implemented by illuminating with intensity distributions featuring zero intensity lines that are further apart than the conventional Abbe resolution limit. The subdiffraction resolution is verified by recording live Escherichia coli bacteria labeled with asFP595. The obtained resolution of 50 nm ( approximately lambda/12) is limited only by the spectroscopic properties of the proteins and the imperfections of the optical implementation, but not on principle grounds. (c) 2007 Wiley-Liss, Inc.

  20. Calibration of a DG–model for fluorescence microscopy

    DEFF Research Database (Denmark)

    Hansen, Christian Valdemar

    ) is an impor- tant and widely used microscopy method for visualization of molecular transport processes in living cells. Thus, the motivation for making an automated reliable analysis of the image data is high. In this contribution, we present and comment on the calibration of a Discontinuous...

  1. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    Science.gov (United States)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  2. An evaluation of the performance and acceptability of three LED fluorescent microscopes in Zambia: lessons learnt for scale-up.

    Directory of Open Access Journals (Sweden)

    Eleanor R Turnbull

    Full Text Available The World Health Organization recommends the roll-out of light-emitting diode (LED fluorescent microscopes (FM as an alternative to light microscopes in resource-limited settings. We evaluated the acceptability and performance of three LED FMs after a short orientation among laboratory technicians from government health centers in Zambia. Sixteen technicians with varied light microscopy experience were oriented to FMs and divided into groups; each group read a different set of 40 slides on each LED FM (Primo Star iLED™, Lumin™, FluoLED™ and on a reference mercury-vapor FM (Olympus BX41TF. Slide reading times were recorded. An experienced FM technician examined each slide on the Olympus BX41TF. Sensitivity and specificity compared to TB culture were calculated. Misclassification compared to the experienced technician and inter-rater reliability between trainees was assessed. Trainees rated microscopes on technical aspects. Primo Star iLED™, FluoLED™ and Olympus BX41TF had comparable sensitivities (67%, 65% and 65% respectively, with the Lumin™ significantly worse (56%; p<0.05. Specificity was low for trainees on all microscopes (75.9% compared to the experienced technician on Olympus BX41TF (100%. Primo Star iLED™ had significantly less misclassification (21.1% p<0.05 than FluoLED™ (26.5% and Lumin™ (26.8% and significantly higher inter-rater reliability (0.611; p<0.05, compared to FluoLED™ (0.523 and Lumin™ (0.492. Slide reading times for LED FMs were slower than the reference, but not significantly different from each other. Primo Star iLED™ rated highest in acceptability measures, followed by FluoLED™ then Lumin™. Primo Star iLED™ was consistently better than FluoLED™ and Lumin™, and performed comparably to the Olympus BX41TF in all analyses, except reading times. The Lumin™ compared least favorably and was thought unacceptable for use. Specificity and inter-rater reliability were low for all microscopes

  3. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Duman, M; Pfleger, M; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Ebner, A; Schuetz, G J; Hinterdorfer, P [Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Zhu, R; Mayer, B [Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Rankl, C; Moertelmaier, M; Kada, G; Kienberger, F [Agilent Technologies Austria GmbH, Aubrunnerweg 11, A-4040 Linz (Austria); Salio, M; Shepherd, D; Polzella, P; Cerundolo, V [Cancer Research UK Tumor Immunology Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS (United Kingdom); Dieudonne, M, E-mail: ferry_kienberger@agilent.com [Agilent Technologies Belgium, Wingepark 51, Rotselaar, AN B-3110 (Belgium)

    2010-03-19

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on {alpha}-galactosylceramide ({alpha}GalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from {approx} 25 to {approx} 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  4. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Sample drift correction in 3D fluorescence photoactivation localization microscopy

    Czech Academy of Sciences Publication Activity Database

    Mlodzianoski, M. J.; Schreiner, J. M.; Callahan, S. P.; Smolková, Katarína; Dlasková, Andrea; Šantorová, Jitka; Ježek, Petr; Bewersdorf, J.

    2011-01-01

    Roč. 19, č. 16 (2011), s. 15009-15019 ISSN 1094-4087 R&D Projects: GA ČR GAP302/10/0346; GA MŠk(CZ) ME09029; GA AV ČR(CZ) KJB500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : Biplane FPALM microscopy * mitochondria * sample drift correction Subject RIV: ED - Physiology Impact factor: 3.587, year: 2011

  6. The health risks associated with energy efficient fluorescent, LEDs, and artificial lighting

    Science.gov (United States)

    Panahi, Allen

    2014-09-01

    With the phasing out of incandescent lamps in many countries, the introduction of new LED based light sources and luminaries sometimes raise the question of whether the spectral characteristics of the LED and other energy savings Fluorescent lights including the popular CFLs are suitable to replace the traditional incandescent lamps. These concerns are sometimes raised particularly for radiation emissions in the UV and Blue parts of the spectrum. This paper aims to address such concerns for the common `white light' sources typically used in household and other general lighting used in the work place. Recent studies have shown that women working the night shift have an increased probability of developing breast cancer. We like to report on the findings of many studies done by medical professionals, in particular the recent announcement of AMA in the US and many studies conducted in the UK, as well as the European community to increase public awareness on the long term health risks of the optical and opto-biological effects on the human health caused by artificial lighting.

  7. Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not.

    Science.gov (United States)

    Romeo, Stefania; Vitale, Flora; Viaggi, Cristina; di Marco, Stefano; Aloisi, Gabriella; Fasciani, Irene; Pardini, Carla; Pietrantoni, Ilaria; Di Paolo, Mattia; Riccitelli, Serena; Maccarone, Rita; Mattei, Claudia; Capannolo, Marta; Rossi, Mario; Capozzo, Annamaria; Corsini, Giovanni U; Scarnati, Eugenio; Lozzi, Luca; Vaglini, Francesca; Maggio, Roberto

    2017-05-01

    We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∼710nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [ 3 H]DA uptake, did not change. Finally, we observed that 710nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An LED light source and novel fluorophore combinations improve fluorescence laparoscopic detection of metastatic pancreatic cancer in orthotopic mouse models.

    Science.gov (United States)

    Metildi, Cristina A; Kaushal, Sharmeela; Lee, Claudia; Hardamon, Chanae R; Snyder, Cynthia S; Luiken, George A; Talamini, Mark A; Hoffman, Robert M; Bouvet, Michael

    2012-06-01

    The aim of this study was to improve fluorescence laparoscopy of pancreatic cancer in an orthotopic mouse model with the use of a light-emitting diode (LED) light source and optimal fluorophore combinations. Human pancreatic cancer models were established with fluorescent FG-RFP, MiaPaca2-GFP, BxPC-3-RFP, and BxPC-3 cancer cells implanted in 6-week-old female athymic mice. Two weeks postimplantation, diagnostic laparoscopy was performed with a Stryker L9000 LED light source or a Stryker X8000 xenon light source 24 hours after tail-vein injection of CEA antibodies conjugated with Alexa 488 or Alexa 555. Cancer lesions were detected and localized under each light mode. Intravital images were also obtained with the OV-100 Olympus and Maestro CRI Small Animal Imaging Systems, serving as a positive control. Tumors were collected for histologic analysis. Fluorescence laparoscopy with a 495-nm emission filter and an LED light source enabled real-time visualization of the fluorescence-labeled tumor deposits in the peritoneal cavity. The simultaneous use of different fluorophores (Alexa 488 and Alexa 555), conjugated to antibodies, brightened the fluorescence signal, enhancing detection of submillimeter lesions without compromising background illumination. Adjustments to the LED light source permitted simultaneous detection of tumor lesions of different fluorescent colors and surrounding structures with minimal autofluorescence. Using an LED light source with adjustments to the red, blue, and green wavelengths, it is possible to simultaneously identify tumor metastases expressing fluorescent proteins of different wavelengths, which greatly enhanced the signal without compromising background illumination. Development of this fluorescence laparoscopy technology for clinical use can improve staging and resection of pancreatic cancer. Copyright © 2012 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling

    International Nuclear Information System (INIS)

    Jiang Dafeng; Liu Chunxia; Wang Lei; Jiang Wei

    2010-01-01

    A single-molecule counting approach for quantifying the antibody affixed to a surface using quantum dots and epi-fluorescence microscopy is presented. Modifying the glass substrates with carboxyl groups provides a hydrophilic surface that reacts with amine groups of an antibody to allow covalent immobilization of the antibody. Nonspecific adsorption of single molecules on the modified surfaces was first investigated. Then, quantum dots were employed to form complexes with surface-immobilized antibody molecules and used as fluorescent probes for single-molecule imaging. Epi-fluorescence microscopy was chosen as the tool for single-molecule fluorescence detection here. The generated fluorescence signals were taken by an electron multiplying charge-coupled device and were found to be proportional to the sample concentrations. Under optimal conditions, a linear response range of 5.0 x 10 -14 -3.0 x 10 -12 mol L -1 was obtained between the number of single molecules and sample concentration via a single-molecule counting approach.

  10. Expression-Enhanced Fluorescent Proteins Based on Enhanced Green Fluorescent Protein for Super-resolution Microscopy.

    Science.gov (United States)

    Duwé, Sam; De Zitter, Elke; Gielen, Vincent; Moeyaert, Benjamien; Vandenberg, Wim; Grotjohann, Tim; Clays, Koen; Jakobs, Stefan; Van Meervelt, Luc; Dedecker, Peter

    2015-10-27

    "Smart fluorophores", such as reversibly switchable fluorescent proteins, are crucial for advanced fluorescence imaging. However, only a limited number of such labels is available, and many display reduced biological performance compared to more classical variants. We present the development of robustly photoswitchable variants of enhanced green fluorescent protein (EGFP), named rsGreens, that display up to 30-fold higher fluorescence in E. coli colonies grown at 37 °C and more than 4-fold higher fluorescence when expressed in HEK293T cells compared to their ancestor protein rsEGFP. This enhancement is not due to an intrinsic increase in the fluorescence brightness of the probes, but rather due to enhanced expression levels that allow many more probe molecules to be functional at any given time. We developed rsGreens displaying a range of photoswitching kinetics and show how these can be used for multimodal diffraction-unlimited fluorescence imaging such as pcSOFI and RESOLFT, achieving a spatial resolution of ∼70 nm. By determining the first ever crystal structures of a negative reversibly switchable FP derived from Aequorea victoria in both the "on"- and "off"-conformation we were able to confirm the presence of a cis-trans isomerization and provide further insights into the mechanisms underlying the photochromism. Our work demonstrates that genetically encoded "smart fluorophores" can be readily optimized for biological performance and provides a practical strategy for developing maturation- and stability-enhanced photochromic fluorescent proteins.

  11. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  12. Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection

    OpenAIRE

    Jalocha, A.; Jalocha, A.; van Hulst, N.F.

    1995-01-01

    Dielectric fluorescent samples are imaged by scanning near- field optical microscopy in reflection. A non-metallized tapered fibre tip is used both as an emitter and a detector. Shear force feedback controls the distance between the tip and the sample and gives simultaneously a topographic image of the surface. A direct correlation with the optical image is obtained. We demonstrate that this reflection setup is suitable for dielectric samples. Images in fluorescence have been obtained o­n Lan...

  13. Extending the spatiotemporal resolution of super-resolution microscopies using photomodulatable fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Mingshu Zhang

    2016-05-01

    Full Text Available In the past two decades, various super-resolution (SR microscopy techniques have been developed to break the diffraction limit using subdiffraction excitation to spatially modulate the fluorescence emission. Photomodulatable fluorescent proteins (FPs can be activated by light of specific wavelengths to produce either stochastic or patterned subdiffraction excitation, resulting in improved optical resolution. In this review, we focus on the recently developed photomodulatable FPs or commonly used SR microscopies and discuss the concepts and strategies for optimizing and selecting the biochemical and photophysical properties of PMFPs to improve the spatiotemporal resolution of SR techniques, especially time-lapse live-cell SR techniques.

  14. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins.

    Science.gov (United States)

    Hofmann, Michael; Eggeling, Christian; Jakobs, Stefan; Hell, Stefan W

    2005-12-06

    Fluorescence microscopy is indispensable in many areas of science, but until recently, diffraction has limited the resolution of its lens-based variant. The diffraction barrier has been broken by a saturated depletion of the marker's fluorescent state by stimulated emission, but this approach requires picosecond laser pulses of GW/cm2 intensity. Here, we demonstrate the surpassing of the diffraction barrier in fluorescence microscopy with illumination intensities that are eight orders of magnitude smaller. The subdiffraction resolution results from reversible photoswitching of a marker protein between a fluorescence-activated and a nonactivated state, whereby one of the transitions is accomplished by means of a spatial intensity distribution featuring a zero. After characterizing the switching kinetics of the used marker protein asFP595, we demonstrate the current capability of this RESOLFT (reversible saturable optical fluorescence transitions) type of concept to resolve 50-100 nm in the focal plane. The observed resolution is limited only by the photokinetics of the protein and the perfection of the zero. Our results underscore the potential to finally achieve molecular resolution in fluorescence microscopy by technical optimization.

  15. A New Cytotoxicity Assay for Brevetoxins Using Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Jennifer R. McCall

    2014-09-01

    Full Text Available Brevetoxins are a family of ladder-framed polyether toxins produced during blooms of the marine dinoflagellate, Karenia brevis. Consumption of shellfish or finfish exposed to brevetoxins can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are believed to be due to the activation of voltage-sensitive sodium channels in cell membranes. The traditional cytotoxicity assay for detection of brevetoxins uses the Neuro-2A cell line, which must first be treated with the neurotoxins, ouabain and veratridine, in order to become sensitive to brevetoxins. In this study, we demonstrate several drawbacks of the Neuro-2A assay, which include variability for the EC50 values for brevetoxin and non-linear triphasic dose response curves. Ouabain/ veratridine-treated Neuro-2A cells do not show a typical sigmoidal dose response curve in response to brevetoxin, but rather, have a polynomial shaped curve, which makes calculating EC50 values highly variable. We describe a new fluorescence live cell imaging model, which allows for accurate calculation of cytotoxicity via nuclear staining and additional measurement of other viability parameters depending on which aspect of the cell is stained. In addition, the SJCRH30 cell line shows promise as an alternative to Neuro-2A cells for testing brevetoxins without the need for ouabain and veratridine.

  16. A new cytotoxicity assay for brevetoxins using fluorescence microscopy.

    Science.gov (United States)

    McCall, Jennifer R; Elliott, Elizabeth A; Bourdelais, Andrea J

    2014-09-23

    Brevetoxins are a family of ladder-framed polyether toxins produced during blooms of the marine dinoflagellate, Karenia brevis. Consumption of shellfish or finfish exposed to brevetoxins can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are believed to be due to the activation of voltage-sensitive sodium channels in cell membranes. The traditional cytotoxicity assay for detection of brevetoxins uses the Neuro-2A cell line, which must first be treated with the neurotoxins, ouabain and veratridine, in order to become sensitive to brevetoxins. In this study, we demonstrate several drawbacks of the Neuro-2A assay, which include variability for the EC50 values for brevetoxin and non-linear triphasic dose response curves. Ouabain/ veratridine-treated Neuro-2A cells do not show a typical sigmoidal dose response curve in response to brevetoxin, but rather, have a polynomial shaped curve, which makes calculating EC50 values highly variable. We describe a new fluorescence live cell imaging model, which allows for accurate calculation of cytotoxicity via nuclear staining and additional measurement of other viability parameters depending on which aspect of the cell is stained. In addition, the SJCRH30 cell line shows promise as an alternative to Neuro-2A cells for testing brevetoxins without the need for ouabain and veratridine.

  17. Resonance fluorescence microscopy via three-dimensional atom localization

    Science.gov (United States)

    Panchadhyayee, Pradipta; Dutta, Bibhas Kumar; Das, Nityananda; Mahapatra, Prasanta Kumar

    2018-02-01

    A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman-Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.

  18. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  19. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine.

    Science.gov (United States)

    Boreham, Alexander; Brodwolf, Robert; Walker, Karolina; Haag, Rainer; Alexiev, Ulrike

    2016-12-24

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  20. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    Science.gov (United States)

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  1. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    DEFF Research Database (Denmark)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter

    2017-01-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum......, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based...... on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved...

  2. Towards single molecule biosensors using super-resolution fluorescence microscopy.

    Science.gov (United States)

    Lu, Xun; Nicovich, Philip R; Gaus, Katharina; Gooding, J Justin

    2017-07-15

    Conventional immunosensors require many binding events to give a single transducer output which represents the concentration of the analyte in the sample. Because of the requirements to selectively detect species in complex samples, immunosensing interfaces must allow immobilisation of antibodies while repelling nonspecific adsorption of other species. These requirements lead to quite sophisticated interfacial design, often with molecular level control, but we have no tools to characterise how well these interfaces work at the molecular level. The work reported herein is an initial feasibility study to show that antibody-antigen binding events can be monitored at the single molecule level using single molecule localisation microscopy (SMLM). The steps to achieve this first requires showing that indium tin oxide surfaces can be used for SMLM, then that these surfaces can be modified with self-assembled monolayers using organophosphonic acid derivatives, that the amount of antigens and antibodies on the surface can be controlled and monitored at the single molecule level and finally antibody binding to antigen modified surfaces can be monitored. The results show the amount of antibody that binds to an antigen modified surface is dependent on both the concentration of antigen on the surface and the concentration of antibody in solution. This study demonstrates the potential of SMLM for characterising biosensing interfaces and as the transducer in a massively parallel, wide field, single molecule detection scheme for quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Diverse Protocols for Correlative Super-Resolution Fluorescence Imaging and Electron Microscopy of Cells and Tissue

    Science.gov (United States)

    2016-05-25

    super - resolution fluorescence imaging and electron microscopy of cells and tissue Benjamin G. Kopek1, Maria G...have recently developed related approaches for super - resolution imaging within endogenous cellular environments using correlative light and electron...low as ~10 nm under ideal conditions), collectively dubbed “ super - resolution imaging ”5-10. A major super - resolution imaging modality is

  4. Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota)

    Czech Academy of Sciences Publication Activity Database

    Gachon, C. M. M.; Küpper, H.; Kupper, F. C.; Šetlík, Ivan

    2006-01-01

    Roč. 41, č. 4 (2006), s. 395-403 ISSN 0967-0262 Institutional research plan: CEZ:AV0Z50200510 Keywords : photosystem II * fluorescence kinetic microscopy * pylaiella littoralis Subject RIV: EE - Microbiology, Virology Impact factor: 1.293, year: 2006

  5. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    Science.gov (United States)

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  6. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy.

    Science.gov (United States)

    Chen, Tao; Lu, Feng; Streets, Aaron M; Fei, Peng; Quan, Junmin; Huang, Yanyi

    2013-06-07

    We directly observe non-fluorescent nanodiamonds in living cells using transient absorption microscopy. This label-free technology provides a novel modality to study the dynamic behavior of nanodiamonds inside the cells with intrinsic three-dimensional imaging capability. We apply this method to capture the cellular uptake of nanodiamonds under various conditions, confirming the endocytosis mechanism.

  7. Characterization of tissue autofluorescence in Barrett's esophagus by confocal fluorescence microscopy

    NARCIS (Netherlands)

    Kara, M. A.; DaCosta, R. S.; Streutker, C. J.; Marcon, N. E.; Bergman, J. J. G. H. M.; Wilson, B. C.

    2007-01-01

    High grade dysplasia and early cancer in Barrett's esophagus can be distinguished in vivo by endoscopic autofluorescence point spectroscopy and imaging from non-dysplastic Barrett's mucosa. We used confocal fluorescence microscopy for ex vivo comparison of autofluorescence in non-dysplastic and

  8. Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection

    NARCIS (Netherlands)

    Jalocha, A.; Jalocha, A.; van Hulst, N.F.

    1995-01-01

    Dielectric fluorescent samples are imaged by scanning near- field optical microscopy in reflection. A non-metallized tapered fibre tip is used both as an emitter and a detector. Shear force feedback controls the distance between the tip and the sample and gives simultaneously a topographic image of

  9. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    Science.gov (United States)

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Miotke, Laura; Maity, Arindam; Ji, Hanlee

    2015-01-01

    BACKGROUND: Rapid reliable diagnostics of DNA mutations are highly desirable in research and clinical assays. Current development in this field goes simultaneously in two directions: 1) high-throughput methods, and 2) portable assays. Non-enzymatic approaches are attractive for both types......) and finally, detection by fluorescence microscopy. The LNA containing probes display high binding affinity and specificity to DNA containing mutations, which allows for the detection of mutation abundance with an intercalating EvaGreen dye. We used a second probe, which increases the overall number of base...... pairs in order to produce a higher fluorescence signal by incorporating more dye molecules. Indeed we show here that using EvaGreen dye and LNA probes, genomic DNA containing BRAF V600E mutation could be detected by fluorescence microscopy at low femtomolar concentrations. Notably, this was at least...

  11. Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples.

    Science.gov (United States)

    Chowdhury, Shwetadwip; Dhalla, Al-Hafeez; Izatt, Joseph

    2012-08-01

    Many biological structures of interest are beyond the diffraction limit of conventional microscopes and their visualization requires application of super-resolution techniques. Such techniques have found remarkable success in surpassing the diffraction limit to achieve sub-diffraction limited resolution; however, they are predominantly limited to fluorescent samples. Here, we introduce a non-fluorescent analogue to structured illumination microscopy, termed structured oblique illumination microscopy (SOIM), where we use simultaneous oblique illuminations of the sample to multiplex high spatial-frequency content into the frequency support of the system. We introduce a theoretical framework describing how to demodulate this multiplexed information to reconstruct an image with a spatial-frequency support exceeding that of the system's classical diffraction limit. This approach allows enhanced-resolution imaging of non-fluorescent samples. Experimental confirmation of the approach is obtained in a reflection test target with moderate numerical aperture.

  12. Combination of widefield fluorescence imaging and nonlinear optical microscopy of oral epithelial neoplasia

    Science.gov (United States)

    Pal, Rahul; Edward, Kert; Brown, Tyra; Ma, Liang; Yang, Jinping; McCammon, Susan; Motamedi, Massoud; Vargas, Gracie

    2013-03-01

    Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) have shown the potential for noninvasive assessment of oral precancers and cancers. We have explored a combination of these nonlinear optical microscopic imaging techniques with widefield fluorescence imaging to assess morphometry similar to that of pathologic evaluation as well as information from endogenous fluorophores, which are altered with neoplastic transformation. Widefield fluorescence revealed areas of interest corresponding to sites with precancers or early tumors, generally resulting in a decrease in green emission or increase in red emission. Subsequent microscopy revealed significant differences in morphology between normal, dysplastic/neoplastic mucosa for all layers. Combination of a widefield and a microscopic technique provides a novel approach for tissue morphometric analysis along with large area assessment of tissue autofluorescence properties.

  13. 340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays

    DEFF Research Database (Denmark)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter

    2016-01-01

    We report on the design, development and investigation of an optical system based on UV light emitting diode (LED) excitation at 340 nm for time-resolved fluorescence detection of immunoassays. The system was tested to measure cardiac marker Troponin I with a concentration of 200 ng....../L in immunoassay. The signal-to-noise ratio was comparable to state-of-the-art Xenon flash lamp based unit with equal excitation energy and without overdriving the LED. We performed a comparative study of the flash lamp and the LED based system and discussed temporal, spatial, and spectral features of the LED...... excitation for time-resolved fluorimetry. Optimization of the suggested key parameters of the LED promises significant increase of the signal-to-noise ratio and hence of the sensitivity of immunoassay systems....

  14. Smartphone Cortex Controlled Real-Time Image Processing and Reprocessing for Concentration Independent LED Induced Fluorescence Detection in Capillary Electrophoresis.

    Science.gov (United States)

    Szarka, Mate; Guttman, Andras

    2017-10-17

    We present the application of a smartphone anatomy based technology in the field of liquid phase bioseparations, particularly in capillary electrophoresis. A simple capillary electrophoresis system was built with LED induced fluorescence detection and a credit card sized minicomputer to prove the concept of real time fluorescent imaging (zone adjustable time-lapse fluorescence image processor) and separation controller. The system was evaluated by analyzing under- and overloaded aminopyrenetrisulfonate (APTS)-labeled oligosaccharide samples. The open source software based image processing tool allowed undistorted signal modulation (reprocessing) if the signal was inappropriate for the actual detection system settings (too low or too high). The novel smart detection tool for fluorescently labeled biomolecules greatly expands dynamic range and enables retrospective correction for injections with unsuitable signal levels without the necessity to repeat the analysis.

  15. Fluorescence microscopy gets faster and clearer: roles of photochemistry and selective illumination.

    Science.gov (United States)

    Wolenski, Joseph S; Julich, Doerthe

    2014-03-01

    Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy.

  16. Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images.

    Directory of Open Access Journals (Sweden)

    Jyrki Selinummi

    2009-10-01

    Full Text Available Fluorescence microscopy is the standard tool for detection and analysis of cellular phenomena. This technique, however, has a number of drawbacks such as the limited number of available fluorescent channels in microscopes, overlapping excitation and emission spectra of the stains, and phototoxicity.We here present and validate a method to automatically detect cell population outlines directly from bright field images. By imaging samples with several focus levels forming a bright field -stack, and by measuring the intensity variations of this stack over the -dimension, we construct a new two dimensional projection image of increased contrast. With additional information for locations of each cell, such as stained nuclei, this bright field projection image can be used instead of whole cell fluorescence to locate borders of individual cells, separating touching cells, and enabling single cell analysis. Using the popular CellProfiler freeware cell image analysis software mainly targeted for fluorescence microscopy, we validate our method by automatically segmenting low contrast and rather complex shaped murine macrophage cells.The proposed approach frees up a fluorescence channel, which can be used for subcellular studies. It also facilitates cell shape measurement in experiments where whole cell fluorescent staining is either not available, or is dependent on a particular experimental condition. We show that whole cell area detection results using our projected bright field images match closely to the standard approach where cell areas are localized using fluorescence, and conclude that the high contrast bright field projection image can directly replace one fluorescent channel in whole cell quantification. Matlab code for calculating the projections can be downloaded from the supplementary site: http://sites.google.com/site/brightfieldorstaining.

  17. On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips

    Directory of Open Access Journals (Sweden)

    Hiroaki Takehara

    2017-09-01

    Full Text Available Although fluorescence microscopy is the gold standard tool for biomedical research and clinical applications, their use beyond well-established laboratory infrastructures remains limited. The present study investigated a novel on-chip cell analysis platform based on contact fluorescence microscopy and microfluidics. Combined use of a contact fluorescence imager based on complementary metal-oxide semiconductor technology and an ultra-thin glass bottom microfluidic chip enabled both to observe living cells with minimal image distortion and to ease controlling and handling of biological samples (e.g. cells and biological molecules in the imaged area. A proof-of-concept experiment of on-chip detection of cellular response to endothelial growth factor demonstrated promising use for the recently developed on-chip cell analysis platform. Contact fluorescence microscopy has numerous desirable features including compatibility with plastic microfluidic chips and compatibility with the electrical control system, and thus will fulfill the requirements of a fully automated cell analysis system.

  18. Detection of polycyclic aromatic hydrocarbons (PAHs) in Medicago sativa L. by fluorescence microscopy.

    Science.gov (United States)

    Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R

    2017-04-01

    Green technologies, such as phytoremediation, are effective for removing organic pollutants derived from oil and oil products, including polycyclic aromatic hydrocarbons (PAHs). Given the increasing popularity of these sustainable remediation techniques, methods based on fluorescence microscopy and multiphoton microscopy for the environmental monitoring of such pollutants have emerged in recent decades as effective tools for phytoremediation studies aimed at understanding the fate of these contaminants in plants. However, little is known about the cellular and molecular mechanisms involved in PAH uptake, responses and degradation by plants. Thus, the present study aimed to detect the location of pyrene, anthracene and phenanthrene using fluorescence microscopy techniques in shoots and roots of Medicago sativa L. (alfalfa) plants grown in artificially contaminated soil (150ppm PAHs) for 40days. Leaflet and root samples were then collected and observed under a fluorescence microscope to detect the presence of PAHs in various tissues. One important finding of the present study was intense fluorescence in the glandular secreting trichomes (GSTs) of plants grown in contaminated soil. These trichomes, with a previously unknown function, may be sites of PAH conjugation and degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Homogeneous fluorescent thin films as long-term stable microscopy reference layers

    Science.gov (United States)

    Brülisauer, Martina; ćaǧin, Emine; Bertsch, Dietmar; Lüthi, Stefan; Dietrich, Klaus; Heeb, Peter; Stärker, Ulrich; Bernard, André

    2017-05-01

    Calibration and validation of fluorescence microscopy devices and components require a high level of stability and repeatability in their fluorescent properties, both spatially and temporally. In order to establish a dependable reference point, from which all variations within the microscope and peripheral devices can be tested, an exceedingly homogeneous fluorescence response must be provided through a calibration tool. We present material system optimization and microfabrication process development, as well as long-term stability considerations for such a calibration tool. Stringent specifications for film thickness (spatial resolutions demands use of high quality lenses that typically show low field curvatures and good chromatic corrections. Therefore, the focal plane is flat and well defined in the z-plane. Fluorescent, ligand capped core-shell quantum dots (SMQDs) were embedded in diluted PMMA at low concentrations. The formulations were spin-coated on silicon and glass wafers to obtain films with thicknesses under 1 μm and low variations on a 100 mm wafer. Fluorescence properties of the SMQD were preserved in the matrix material, and agglomerations were not detectable in the fluorescence response nor in SEM images. Gradual degradation of the fluorescence response due to film aging was managed through robust packaging solutions.

  20. A fluorescent microscopy study of biopsied muscles from infantile neuromuscular disorders.

    Science.gov (United States)

    Miike, T; Tamari, H; Ohtani, Y; Nakamura, H; Matsuda, I; Miyoshino, S

    1983-01-01

    The Acridine Orange (AO) stain for muscle biopsies is particularly useful to identify regenerating and ongoing hypertrophic muscle fibers under fluorescent microscopy. This method was applied to muscle biopsies from 65 patients who suffered from various childhood neuromuscular disorders. While normal fibers showed dull green cytoplasm with small green-yellow nuclei, striking fluorescent fibers were observed in eight cases of congenital muscular dystrophy (CMD) and 12 cases of Duchenne muscular dystrophy (DMD); these fibers were characterized as follows: (1) small fibers with big oval or spherical nuclei which fluoresced strongly with a bright orange color; (2) fibers of various sizes and different degrees of orange fluorescence; and (3) opaque fibers with bright yellow cytoplasm. The small diameter fibers in Werdnig-Hoffmann (WH) disease, nemaline myopathy, and congenital fiber type disproportion failed to show apparent AO-RNA fluorescence. Although all the atrophic fibers in Kugelberg-Welander (KW) disease showed a vague orange fluorescent color, this was obviously different from that of regenerating fibers seen in CMD and DMD. In addition to these findings, the hypertrophic fibers in a case of unclassified myopathy also showed moderate orange fluorescence around the entire periphery of the cytoplasm.

  1. Thermal maturity of Tasmanites microfossils from confocal laser scanning fluorescence microscopy

    Science.gov (United States)

    Hackley, Paul C.; Kus, Jolanta

    2015-01-01

    We report here, for the first time, spectral properties of Tasmanites microfossils determined by confocal laser scanning fluorescence microscopy (CLSM, using Ar 458 nm excitation). The Tasmanites occur in a well-characterized natural maturation sequence (Ro 0.48–0.74%) of Devonian shale (n = 3 samples) from the Appalachian Basin. Spectral property λmax shows excellent agreement (r2 = 0.99) with extant spectra from interlaboratory studies which used conventional fluorescence microscopy techniques. This result suggests spectral measurements from CLSM can be used to infer thermal maturity of fluorescent organic materials in geologic samples. Spectra of regions with high fluorescence intensity at fold apices and flanks in individual Tasmanites are blue-shifted relative to less-deformed areas in the same body that have lower fluorescence intensity. This is interpreted to result from decreased quenching moiety concentration at these locations, and indicates caution is needed in the selection of measurement regions in conventional fluorescence microscopy, where it is common practice to select high intensity regions for improved signal intensity and better signal to noise ratios. This study also documents application of CLSM to microstructural characterization of Tasmanites microfossils. Finally, based on an extant empirical relation between conventional λmax values and bitumen reflectance, λmax values from CLSM of Tasmanites microfossils can be used to calculate a bitumen reflectance equivalent value. The results presented herein can be used as a basis to broaden the future application of CLSM in the geological sciences into hydrocarbon prospecting and basin analysis.

  2. Fast and accurate three-dimensional point spread function computation for fluorescence microscopy.

    Science.gov (United States)

    Li, Jizhou; Xue, Feng; Blu, Thierry

    2017-06-01

    The point spread function (PSF) plays a fundamental role in fluorescence microscopy. A realistic and accurately calculated PSF model can significantly improve the performance in 3D deconvolution microscopy and also the localization accuracy in single-molecule microscopy. In this work, we propose a fast and accurate approximation of the Gibson-Lanni model, which has been shown to represent the PSF suitably under a variety of imaging conditions. We express the Kirchhoff's integral in this model as a linear combination of rescaled Bessel functions, thus providing an integral-free way for the calculation. The explicit approximation error in terms of parameters is given numerically. Experiments demonstrate that the proposed approach results in a significantly smaller computational time compared with current state-of-the-art techniques to achieve the same accuracy. This approach can also be extended to other microscopy PSF models.

  3. Effects of LEDs on chlorophyll fluorescence and secondary metabolites in Phalaenopsis

    DEFF Research Database (Denmark)

    Ouzounis, T.; Fretté, X.; Rosenqvist, Eva

    2015-01-01

    of the experiment. Chlorophyll fluorescence was also recorded with PAM-2001. Leaf area and total fresh weight were highest in the 40%B/60%R for Phalaenopsis 'Vivien', while 100%R demonstrated the highest leaf area and fresh weight for Phalaenopsis 'Purple star'. Chlorophyll fluorescence for the same treatments...

  4. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    Science.gov (United States)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  5. Simplified sample preparation using frame spotting method for direct counting of total bacteria by fluorescence microscopy.

    Science.gov (United States)

    Maruyama, Fumito; Yamaguchi, Nobuyasu; Kenzaka, Takehiko; Tani, Katsuji; Nasu, Masao

    2004-12-01

    A new preparation method for direct counting of bacteria in liquid samples with fluorescence microscope was developed using a glass slide coated with 3-aminopropyltriethoxy silane and ring-shaped polyester seal as a retainer. The experimental steps of this method were spotting samples onto the coated slides with the seal, drying under vacuum, staining with SYBR Green II, drying and covering with immersion oil and coverslip to allow counting. This simplified method provided consistent results when compared with the conventional filtration method for fluorescence microscopy, and is rapid, inexpensive and reproducible.

  6. Combination of Small Molecule Microarray and Confocal Microscopy Techniques for Live Cell Staining Fluorescent Dye Discovery

    Directory of Open Access Journals (Sweden)

    Attila Bokros

    2013-08-01

    Full Text Available Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS methods. In the present study a combination of small molecule microarray (SMM prescreening and confocal laser scanning microscopy (CLSM was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment-specific, cell-permeable (or plasma membrane-targeted fluorochromes were identified. Their cytotoxicity was tested and found that between 1–10 micromolar range, they were non-toxic even during long-term incubations.

  7. Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Moghimi, Seyed Moien

    2012-01-01

    fluorescence (TIRF) microscopy allows for real-time monitoring of nanoparticle-membrane interaction events, which can provide vital information in relation to design and surface engineering of therapeutic nanoparticles for cell-specific targeting. In contrast to other microscopy techniques, the bleaching...... effect by lasers in TIRF microscopy is considerably less when using fluorescent nanoparticles and it reduces photo-induced cytotoxicity during visualization of live-cell events since it only illuminates the specific area near or at the plasma membrane....

  8. Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: A review.

    OpenAIRE

    Sednev, M.; Belov, V.; Hell, S.

    2015-01-01

    The review deals with commercially available organic dyes possessing large Stokes shifts and their applications as fluorescent labels in optical microscopy based on stimulated emission depletion (STED). STED microscopy breaks Abbe’s diffraction barrier and provides optical resolution beyond the diffraction limit. STED microscopy is non-invasive and requires photostable fluorescent markers attached to biomolecules or other objects of interest. Up to now, in most biology-related STED experiment...

  9. Compact Stokes shift and fluorescence spectroscopic diagnostics LED ratiometer unit with no moving parts for cancer detection

    Science.gov (United States)

    Sordillo, Laura A.; Pu, Yang; Budansky, Yury; Alfano, R. R.

    2012-01-01

    A compact Stokes shift and fluorescence spectroscopy (S3) LED device with no moving parts is presented. This device can be used diagnostically for the identification of the native biomolecules within cancerous tissue samples. This S3-LED ratiometer unit measures both the emission and absorption spectra of key native organic biomolecules within a tissue sample by using multiple wavelength LEDs (light emitting diodes) coupled to an optical fiber. Thus, an optical fingerprint of the sample can be obtained. This technique could be used to distinguish benign and malignant tissues, and to check for residual or recurrent carcinoma after treatment, thus reducing the necessity of second biopsies. The S3-LED ratiometer unit was tested in vitro on human breast malignant and normal paired tissue samples.

  10. Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.

    Science.gov (United States)

    Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C

    2017-04-03

    The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. Three-dimensional super-resolution imaging for fluorescence emission difference microscopy

    Directory of Open Access Journals (Sweden)

    Shangting You

    2015-08-01

    Full Text Available We propose a method theoretically to break the diffraction limit and to improve the resolution in all three dimensions for fluorescence emission difference microscopy. We produce two kinds of hollow focal spot by phase modulation. By incoherent superposition, these two kinds of focal spot yield a 3D hollow focal spot. The optimal proportion of these two kinds of spot is given in the paper. By employing 3D hollow focal spot, super-resolution image can be yielded by means of fluorescence emission difference microscopy, with resolution enhanced both laterally and axially. According to computation result, size of point spread function of three-dimensional super-resolution imaging is reduced by about 40% in all three spatial directions with respect to confocal imaging.

  12. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  13. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C.; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E.

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1±2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6±8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  14. Single-Cell Resolution of Uncultured Magnetotactic Bacteria via Fluorescence-Coupled Electron Microscopy.

    Science.gov (United States)

    Li, Jinhua; Zhang, Heng; Menguy, Nicolas; Benzerara, Karim; Wang, Fuxian; Lin, Xiaoting; Chen, Zhibao; Pan, Yongxin

    2017-06-15

    Magnetotactic bacteria (MTB) form intracellular chain-assembled nanocrystals of magnetite or greigite termed magnetosomes. The characterization of magnetosome crystals requires electron microscopy due to their nanoscopic sizes. However, electron microscopy does not provide phylogenetic information for MTB. We have developed a strategy for the simultaneous and rapid phylogenetic and biomineralogical characterization of uncultured MTB at the single-cell level. It consists of four steps: (i) enrichment of MTB cells from an environmental sample, (ii) 16S rRNA gene sequencing of MTB, and (iii) fluorescence in situ hybridization analyses coordinated with (iv) transmission or scanning electron microscopy of the probe-hybridized cells. The application of this strategy identified a magnetotactic Gammaproteobacteria strain, SHHR-1, from brackish sediments collected from the Shihe River estuary in Qinhuangdao City, China. SHHR-1 magnetosomes are elongated prismatic magnetites which can be idealized as hexagonal prisms. Taxonomic groups of uncultured MTB were also identified in freshwater sediments from Lake Miyun in northern Beijing via this novel coordinated fluorescence and scanning electron microscopy method based on four group-specific rRNA-targeted probes. Our analyses revealed that major magnetotactic taxonomic groups can be accurately determined only with coordinated scanning electron microscopy observations on fluorescently labeled single cells due to limited group coverage and specificity for existing group-specific MTB fluorescence in situ hybridization (FISH) probes. Our reported strategy is simple and efficient, offers great promise toward investigating the diversity and biomineralization of MTB, and may also be applied to other functional groups of microorganisms. IMPORTANCE Magnetotactic bacteria (MTB) are phylogenetically diverse and biomineralize morphologically diverse magnetic nanocrystals of magnetite or greigite in intracellular structures termed

  15. Photo-induced processes in collagen-hypericin system revealed by fluorescence spectroscopy and multiphoton microscopy

    OpenAIRE

    Hovhannisyan, V.; Guo, H. W.; Hovhannisyan, A.; Ghukasyan, V.; Buryakina, T.; Chen, Y. F.; Dong, C. Y.

    2014-01-01

    Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the ...

  16. Contrast Induced by a Static Magnetic Field for Improved Detection in Nanodiamond Fluorescence Microscopy

    Science.gov (United States)

    Singam, Shashi K. R.; Motylewski, Jaroslaw; Monaco, Antonina; Gjorgievska, Elena; Bourgeois, Emilie; Nesládek, Milos; Giugliano, Michele; Goovaerts, Etienne

    2016-12-01

    Diamond nanoparticles with negatively charged nitrogen-vacancy (NV) centers are highly efficient nonblinking emitters that exhibit spin-dependent intensity. An attractive application of these emitters is background-free fluorescence microscopy exploiting the fluorescence quenching induced either by resonant microwaves (RMWs) or by an applied static magnetic field (SMF). Here, we compare RMW- and SMF-induced contrast measurements over a wide range of optical excitation rates for fluorescent nanodiamonds (FNDs) and for NV centers shallowly buried under the (100)-oriented surface of a diamond single crystal (SC). Contrast levels are found to be systematically lower in the FNDs than in the SC. At low excitation rates, the RMW contrast initially rises to a maximum (up to 7% in FNDs and 13% in the SC) but then decreases steadily at higher intensities. Conversely, the SMF contrast increases from approximately 12% at low excitation rates to high values of 20% and 38% for the FNDs and SC, respectively. These observations are well described in a rate-equations model for the charged NV defect using parameters in good agreement with the literature. The SMF approach yields higher induced contrast in image collection under commonly applied optical excitation. Unlike the RMW method, there is no thermal load exerted on the aqueous media in biological samples in the SMF approach. We demonstrate imaging by SMF-induced contrast in neuronal cultures incorporating FNDs (i) in a setup for patch-clamp experiments in parallel with differential-interference-contrast microscopy, (ii) after a commonly used staining procedure as an illustration of the high selectivity against background fluorescence, and (iii) in a confocal fluorescence microscope in combination with bright-field microscopy.

  17. Nuclear uptake of ultrasmall gold-doxorubicin conjugates imaged by fluorescence lifetime imaging microscopy (FLIM) and electron microscopy

    Science.gov (United States)

    Zhang, Xuan; Shastry, Sathvik; Bradforth, Stephen E.; Nadeau, Jay L.

    2014-11-01

    Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in Dox-resistant cancers.Fluorescence lifetime imaging microscopy (FLIM) has been used to image free and encapsulated doxorubicin (Dox) uptake into cells, since interaction of Dox with DNA leads to a characteristic lifetime change. However, none of the reported Dox conjugates were able to enter cell nuclei. In this work, we use FLIM to show nuclear uptake of 2.7 nm mean diameter Au nanoparticles conjugated to Dox. The pattern of labelling differed substantially from what was seen with free Dox, with slower nuclear entry and stronger cytoplasmic labelling at all time points. As the cells died, the pattern of labelling changed further as intracellular structures disintegrated, consistent with association of Au-Dox to membranes. The patterns of Au distribution and intracellular structure changes were confirmed using electron microscopy, and indicate different mechanisms of cytotoxicity with stable Au-Dox conjugates compared to Dox alone. Such conjugates are promising tools for overcoming resistance in

  18. Comparison of Fluorescence Microscopy and Different Growth Media Culture Methods for Acanthamoeba Keratitis Diagnosis.

    Science.gov (United States)

    Peretz, Avi; Geffen, Yuval; Socea, Soergiu D; Pastukh, Nina; Graffi, Shmuel

    2015-08-01

    Acanthamoeba keratitis (AK), a potentially blinding infection of the cornea, is caused by a free-living protozoan. Culture and microscopic examination of corneal scraping tissue material is the conventional method for identifying Acanthamoeba. In this article, we compared several methods for AK diagnosis of 32 patients: microscopic examination using fluorescent dye, specific culture on growth media-non-nutrient agar (NNA), culture on liquid growth media-peptone yeast glucose (PYG), and TYI-S-33. AK was found in 14 patients. Thirteen of the specimens were found AK positive by fluorescence microscopic examination, 11 specimens were found AK positive on PYG growth media, and 9 specimens were found AK positive on TYI-S-33 growth media. Only five specimens were found AK positive on NNA growth media. Therefore, we recommend using fluorescence microscopy technique and culture method, especially PYG liquid media. © The American Society of Tropical Medicine and Hygiene.

  19. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  20. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  1. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.

    Science.gov (United States)

    Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek

    2015-10-01

    Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.

  2. Fluorescence confocal laser scanning microscopy for in vivo imaging of epidermal reactions to two experimental irritants

    DEFF Research Database (Denmark)

    Suihko, C.; Serup, J.

    2008-01-01

    Background: Fibre-optic fluorescence confocal laser scanning microscopy (CLSM) is a novel non-invasive technique for in vivo imaging of skin. The cellular structure of the epidermis can be studied. A fluorophore, e.g. fluorescein sodium, is introduced by an intradermal injection or applied...... to the skin surface before scanning. Images are horizontal optical sections parallel to the skin surface. Fluorescence CLSM has hitherto not been applied to experimental contact dermatitis. Objective: The aim was to study the applicability of fluorescence CLSM for in situ imaging of irritant contact......, modified the physico-chemical properties of the skin surface and both disturbed epicutaneous labelling with the flurophore and immersion oil coupling between the skin surface and the optical system. Thus, SLS was technically more difficult to study by CLSM than PA. Conclusions: This preliminary study...

  3. A Nanodiamond-peptide Bioconjugate for Fluorescence and ODMR Microscopy of a Single Actin Filament.

    Science.gov (United States)

    Genjo, Takuya; Sotoma, Shingo; Tanabe, Ryotaro; Igarashi, Ryuji; Shirakawa, Masahiro

    2016-01-01

    Recently, the importance of conformational changes in actin filaments induced by mechanical stimulation of a cell has been increasingly recognized, especially in terms of mechanobiology. Despite its fundamental importance, however, long-term observation of a single actin filament by fluorescent microscopy has been difficult because of the low photostability of traditional fluorescent molecules. This paper reports a novel molecular labeling system for actin filaments using fluorescent nanodiamond (ND) particles harboring nitrogen-vacancy centers; ND has flexible chemical modifiability, extremely high photostability and biocompatibility, and provides a variety of physical information quantitatively via optically detected magnetic resonance (ODMR) measurements. We performed the chemical surface modification of an ND with the actin filament-specific binding peptide Lifeact and observed colocalization of pure Lifeact-modified ND and actin filaments by the ODMR selective imaging protocol, suggesting the capability of long-term observation and quantitative analysis of a single molecule by using an ND particle.

  4. Harmonic optical microscopy and fluorescence lifetime imaging platform for multimodal imaging.

    Science.gov (United States)

    Pelegati, Vitor B; Adur, Javier; De Thomaz, André A; Almeida, Diogo B; Baratti, Mariana O; Andrade, Liliana A L A; Bottcher-Luiz, Fátima; Cesar, Carlos L

    2012-10-01

    In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two-photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy-to-operate platform capable to perform two-photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples. Copyright © 2012 Wiley Periodicals, Inc.

  5. Quantifying the Assembly of Multicomponent Molecular Machines by Single-Molecule Total Internal Reflection Fluorescence Microscopy.

    Science.gov (United States)

    Boehm, E M; Subramanyam, S; Ghoneim, M; Washington, M Todd; Spies, M

    2016-01-01

    Large, dynamic macromolecular complexes play essential roles in many cellular processes. Knowing how the components of these complexes associate with one another and undergo structural rearrangements is critical to understanding how they function. Single-molecule total internal reflection fluorescence (TIRF) microscopy is a powerful approach for addressing these fundamental issues. In this article, we first discuss single-molecule TIRF microscopes and strategies to immobilize and fluorescently label macromolecules. We then review the use of single-molecule TIRF microscopy to study the formation of binary macromolecular complexes using one-color imaging and inhibitors. We conclude with a discussion of the use of TIRF microscopy to examine the formation of higher-order (i.e., ternary) complexes using multicolor setups. The focus throughout this article is on experimental design, controls, data acquisition, and data analysis. We hope that single-molecule TIRF microscopy, which has largely been the province of specialists, will soon become as common in the tool box of biophysicists and biochemists as structural approaches have become today. © 2016 Elsevier Inc. All rights reserved.

  6. Improved localization accuracy in stochastic super-resolution fluorescence microscopy by K-factor image deshadowing.

    Science.gov (United States)

    Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G; Menon, Rajesh; Gerton, Jordan M; Jorgensen, Erik M; Zalevsky, Zeev

    2013-12-16

    Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution.

  7. Towards correlative super-resolution fluorescence and electron cryo-microscopy.

    Science.gov (United States)

    Wolff, Georg; Hagen, Christoph; Grünewald, Kay; Kaufmann, Rainer

    2016-09-01

    Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo-CLEM, the combination of fluorescence cryo-microscopy (cryo-FM) permitting for non-invasive specific multi-colour labelling, with electron cryo-microscopy (cryo-EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence-based information for guiding cryo-EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo-CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano-environment. However, a major obstacle of cryo-CLEM currently hindering many biological applications is the large resolution gap between cryo-FM (typically in the range of ∼400 nm) and cryo-EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super-resolution cryo-FM imaging and the correlation with cryo-EM. This opened the door towards super-resolution cryo-CLEM, and thus towards direct correlation of structural details from both imaging modalities. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  8. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells.

    Science.gov (United States)

    Hampton, Cheri M; Strauss, Joshua D; Ke, Zunlong; Dillard, Rebecca S; Hammonds, Jason E; Alonas, Eric; Desai, Tanay M; Marin, Mariana; Storms, Rachel E; Leon, Fredrick; Melikyan, Gregory B; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2017-01-01

    Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5-15 d for an individual experienced in cryo-EM.

  9. Mapping absolute tissue endogenous fluorophore concentrations with chemometric wide-field fluorescence microscopy

    Science.gov (United States)

    Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min

    2017-06-01

    We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.

  10. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy

    KAUST Repository

    Göröcs, Zoltán

    2016-09-13

    Compact and cost-effective systems for in vivo fluorescence and near-infrared imaging in combination with activatable reporters embedded inside the skin to sample interstitial fluid or blood can enable a variety of biomedical applications. However, the strong autofluorescence of human skin creates an obstacle for fluorescence-based sensing. Here we introduce a method for quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media. For this, we created a compact and cost-effective fluorescence microscope weighing <40 g and used it to measure various concentrations of a fluorescent dye embedded inside a tissue phantom, which was designed to mimic the optical characteristics of human skin. We used an elliptical Gaussian beam excitation to digitally separate tissue autofluorescence from target fluorescence, although they severely overlap in both space and optical spectrum. Using ∼10-fold less excitation intensity than the safety limit for skin radiation exposure, we successfully quantified the density of the embedded fluorophores by imaging the skin phantom surface and achieved a detection limit of ∼5 × 105 and ∼2.5 × 107 fluorophores within ∼0.01 μL sample volume that is positioned 0.5 and 2 mm below the phantom surface, corresponding to a concentration of 105.9 pg/mL and 5.3 ng/mL, respectively. We also confirmed that this approach can track the spatial misalignments of the mobile microscope with respect to the embedded target fluorescent volume. This wearable microscopy platform might be useful for designing implantable biochemical sensors with the capability of spatial multiplexing to continuously monitor a panel of biomarkers and chronic conditions even at patients’ home.

  11. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.

    Science.gov (United States)

    Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G

    2017-02-01

    Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Automatic measurement of compression wood cell attributes in fluorescence microscopy images.

    Science.gov (United States)

    Selig, B; Luengo Hendriks, C L; Bardage, S; Daniel, G; Borgefors, G

    2012-06-01

    This paper presents a new automated method for analyzing compression wood fibers in fluorescence microscopy. Abnormal wood known as compression wood is present in almost every softwood tree harvested. Compression wood fibers show a different cell wall morphology and chemistry compared to normal wood fibers, and their mechanical and physical characteristics are considered detrimental for both construction wood and pulp and paper purposes. Currently there is the need for improved methodologies for characterization of lignin distribution in wood cell walls, such as from compression wood fibers, that will allow for a better understanding of fiber mechanical properties. Traditionally, analysis of fluorescence microscopy images of fiber cross-sections has been done manually, which is time consuming and subjective. Here, we present an automatic method, using digital image analysis, that detects and delineates softwood fibers in fluorescence microscopy images, dividing them into cell lumen, normal and highly lignified areas. It also quantifies the different areas, as well as measures cell wall thickness. The method is evaluated by comparing the automatic with a manual delineation. While the boundaries between the various fiber wall regions are detected using the automatic method with precision similar to inter and intra expert variability, the position of the boundary between lumen and the cell wall has a systematic shift that can be corrected. Our method allows for transverse structural characterization of compression wood fibers, which may allow for improved understanding of the micro-mechanical modeling of wood and pulp fibers. © 2012 The Authors Journal of Microscopy © 2012 Wadsworth Center, New York State Department of Health.

  13. Nanoscale imaging of the Candida-macrophage interaction using correlated fluorescence-atomic force microscopy.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Dufrêne, Yves F

    2012-12-21

    Knowledge of the molecular bases underlying the interaction of fungal pathogens with immune cells is critical to our understanding of fungal infections and offers exciting perspectives for controlling immune responses for therapy. Although fluorescence microscopy is a valuable tool to visualize pathogen-host interactions, the spatial resolution is low, meaning the fine structural details of the interacting cells cannot be observed. Here, we demonstrate the ability of correlated fluorescence-atomic force microscopy (AFM) to image the various steps of the interaction between fungal pathogens and macrophages with nanoscale resolution. We focus on Candida albicans, known to grow as two morphological forms (yeast cells, filamentous hyphae) that play important roles in modulating the interaction with macrophages. We observe the main steps of macrophage infection, including initial intercellular contact, phagocytosis by internalization of yeast cells, intracellular hyphal growth leading to mechanical stretching, and piercing of the macrophage membrane resulting in pathogen escape. While fluorescence imaging clearly distinguishes fungal cells from macrophages during the various steps of the process, AFM captures nanoscale structural features of the macrophage surface that are of high biological relevance, including ruffles, lamellipodia, filopodia, membrane remnants, and phagocytic cups. As fungal pathogenesis is mainly controlled by the ability of fungi to escape from immune cells, the nanoimaging platform established here has great potential in nanomedicine for understanding and controlling fungal infections.

  14. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    Science.gov (United States)

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. HIV taken by STORM: Super-resolution fluorescence microscopy of a viral infection

    Directory of Open Access Journals (Sweden)

    Pereira Cândida F

    2012-05-01

    Full Text Available Abstract Background The visualization of viral proteins has been hindered by the resolution limit of conventional fluorescent microscopes, as the dimension of any single fluorescent signal is often greater than most virion particles. Super-resolution microscopy has the potential to unveil the distribution of proteins at the resolution approaching electron microscopy without relying on morphological features of existing characteristics of the biological specimen that are needed in EM. Results Using direct stochastic optical reconstruction microscopy (dSTORM to achieve a lateral resolution of 15–20 nm, we quantified the 2-D molecular distribution of the major structural proteins of the infectious human immunodeficiency virus type 1 (HIV-1 before and after infection of lymphoid cells. We determined that the HIV-1 matrix and capsid proteins undergo restructuring soon after HIV-1 infection. Conclusions This study provides the proof-of-concept for the use of dSTORM to visualize the changes in the molecular distribution of viral proteins during an infection.

  16. Effects of LEDs on chlorophyll fluorescence and secondary metabolites in Phalaenopsis

    DEFF Research Database (Denmark)

    Ouzounis, T.; Fretté, X.; Rosenqvist, Eva

    2015-01-01

    h per day. The temperature in the greenhouse compartments was set to 24/18°C day/night, respectively. The three light treatments were (1) 40% Blue 60% Red, (2) 100% Red, and (3) 100% White (Control). The plants were harvested before flowering and plant growth was recorded at the end......Light emitting diodes (LEDs) are solid-state semiconductor devices that have been integrated in current greenhouse systems the last decades as they provide the opportunity to control light spectrum. Commercial production of potted orchids under LEDs has increased throughout the world the past...... decades with Phalaenopsis being one of the most valuable potted crops. The experiment took place from January to April 2013 using plantlets of Phalaenopsis 'Vivien' and 'Purple star'. Plants were grown under a purpose-built LED array from Philips yielding approximately 200 μmol/m2s at plant height for 16...

  17. Comparative Phenotypical and Molecular Analyses of Arabidopsis Grown under Fluorescent and LED Light

    OpenAIRE

    Seiler, Franka; Soll, J?rgen; B?lter, Bettina

    2017-01-01

    Comparative analyses of phenotypic and molecular traits of Arabidopsis thaliana grown under standardised conditions is still a challenge using climatic devices supplied with common light sources. These are in most cases fluorescent lights, which have several disadvantages such as heat production at higher light intensities, an invariable spectral output, and relatively rapid “ageing”. This results in non-desired variations of growth conditions and lowers the comparability of data acquired ove...

  18. Synthesis of Quantum Dot-ZnS Nanosheet Inorganic Assembly with Low Thermal Fluorescent Quenching for LED Application

    Directory of Open Access Journals (Sweden)

    Yangyang Xie

    2017-10-01

    Full Text Available In this report, to tackle the thermal fluorescent quenching issue of II-VI semiconductor quantum dots (QDs, which hinders their on-chip packaging application to light-emitting diodes (LEDs, a QD-ZnS nanosheet inorganic assembly monolith (QD-ZnS NIAM is developed through chemisorption of QDs on the surface of two-dimensional (2D ZnS nanosheets and subsequent assembly of the nanosheets into a compact inorganic monolith. The QD-ZnS NIAM could reduce the thermal fluorescent quenching of QDs effectively, possibly due to fewer thermally induced permanent trap states and decreased Förster resonance energy transfer (FRET among QDs when compared with those in a reference QD composite thin film. We have demonstrated that the QD-ZnS NIAM enables QDs to be directly packaged on-chip in LEDs with over 90% of their initial luminance being retained at above 85 °C, showing advantage in LED application in comparison with conventional QD composite film.

  19. Fluorescence and confocal microscopy studies of the ice surface - antifreeze protein interactions.

    Science.gov (United States)

    Pertaya, N.; Thomson, E.; Davies, P. L.; Braslavsky, I.

    2005-03-01

    Biomineralization is a phenomenon in which biological material influences mineral growth on the molecular level. A compelling example involves antifreeze proteins (AFPs) known to prevent fish and insects from freezing. AFPs have many potential applications in agriculture, biomedical science, and can be used as a model platform to understand biomineralization processes for future nanotechnology applications. Here we describe a new approach to study the interaction between AFPs and ice using fluorescence and confocal microscopy combined with a unique ice growth cell. After conjugating green fluorescent protein (GFP) to Type III AFP, we imaged the fluorescence signal around and inside of the ice crystals that emerged from the cooled AFP-GFP solution, and have observed an enhanced fluorescence signal at the edge of the ice crystal. In a second cell we observed a dramatic change in the ice growth morphology when AFPs were introduced into an initially pure system. Further developments of these methods will permit the direct imaging of the location and concentration of the AFPs on ice surfaces and enable a better understanding of their operation. Supported by CIHR, the Bosack and Kruger Foundation, Ohio and Yale Universities.

  20. Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods.

    Science.gov (United States)

    Bloksgaard, Maria; Brewer, Jonathan; Bagatolli, Luis A

    2013-12-18

    This mini-review reports on applications of particular multiphoton excitation microscopy-based methodologies employed in our laboratory to study skin. These approaches allow in-depth optical sectioning of the tissue, providing spatially resolved information on specific fluorescence probes' parameters. Specifically, by applying these methods, spatially resolved maps of water dipolar relaxation (generalized polarization function using the 6-lauroyl-2-(N,N-dimethylamino)naphthale probe), activity of protons (fluorescence lifetime imaging using a proton sensitive fluorescence probe--2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) and diffusion coefficients of distinct fluorescence probes (raster imaging correlation spectroscopy) can be obtained from different regions of the tissue. Comparative studies of different tissue strata, but also between equivalent regions of normal and abnormal excised skin, including applications of fluctuation correlation spectroscopy on transdermal penetration of liposomes are presented and discussed. The data from the different studies reported reveal the intrinsic heterogeneity of skin and also prove these strategies to be powerful noninvasive tools to explore structural and dynamical aspects of the tissue. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Exploring the Dynamics of Cell Processes through Simulations of Fluorescence Microscopy Experiments

    Science.gov (United States)

    Angiolini, Juan; Plachta, Nicolas; Mocskos, Esteban; Levi, Valeria

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organization of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET (Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reactions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the output of fluorescence microscopy experiments. PMID:26039162

  2. Fluorescent nanoscale detection of biotin-streptavidin interaction using near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Park, Hyun Kyu; Chung, Bong Hyun; Gokarna, Anisha; Hulme, John P; Park, Hyun Gyu

    2008-01-01

    We describe a nanoscale strategy for detecting biotin-streptavidin binding using near-field scanning optical microscopy (NSOM) that exploits the fluorescence properties of single polydiacetylene (PDA) liposomes. NSOM is more useful to observe nanomaterials having optical properties with the help of topological information. We synthesized amine-terminated 10,12-pentacosadiynoic acid (PCDA) monomer (PCDA-NH 2 ) and used this derivatized monomer to prepare PCDA liposomes. PCDA-NH 2 liposomes were immobilized on an aldehyde-functionalized glass surface followed by photopolymerization by using a 254 nm light source. To measure the biotin-streptavidin binding, we conjugated photoactivatable biotin to immobilized PCDA-NH 2 liposomes by UV irradiation (365 nm) and subsequently allowed them to interact with streptavidin. We analyzed the fluorescence using a fluorescence scanner and observed single liposomes using NSOM. The average height and NSOM signal observed in a single liposome after binding were ∼31.3 to 8.5 ± 0.5 nm and 0.37 to 0.16 ± 0.6 kHz, respectively. This approach, which has the advantage of not requiring a fluorescent label, could prove highly beneficial for single molecule detection technology

  3. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae.

    Science.gov (United States)

    Deng, Junjing; Vine, David J; Chen, Si; Nashed, Youssef S G; Jin, Qiaoling; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris J

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolution beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ∼90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.

  4. Real-time detection of an airborne microorganism using inertial impaction and mini-fluorescent microscopy.

    Science.gov (United States)

    Kang, Joon Sang; Lee, Kang Soo; Kim, Sang Soo; Bae, Gwi-Nam; Jung, Jae Hee

    2014-01-07

    To achieve successful real-time detection of airborne pathogenic microorganisms, the problem must be considered in terms of their physical size and biological characteristics. We developed an airborne microorganism detection chip to realize the detection of microorganisms, ensuring compactness, sensitivity, cost-efficiency, and portability, using three key components: an inertial impaction system, a cartridge-type impaction plate, and a mini-fluorescent microscope. The inertial impaction system was used to separate microorganisms in terms of their aerodynamic particle size, and was fabricated with three impaction stages. Numerical analysis was performed to design the system; the calculated cutoff diameter at each impaction stage was 2.02 (first stage), 0.88 (second stage), and 0.54 μm (third stage). The measured cutoff diameters were 2.24, 0.91, and 0.49 μm, respectively. A cartridge-type impaction plate was used, composed of molded polydimethylsiloxane (PDMS) and an actual impaction region made of a SYBR green I dye-stained agar plate. A mini-fluorescent microscope was used to distinguish microbes from non-biological particles. Images of the microorganisms deposited at the impaction zone were obtained via mini-fluorescent microscopy, and fluorescent intensities of the images were calculated using in-house image-processing software. The results showed that the developed system successfully identified aerosolized biological particles from non-biological particles in real time.

  5. In vivo fluorescence correlation microscopy (FCM) reveals accumulation and immobilization of Nod factors in root hair cell walls

    NARCIS (Netherlands)

    Goedhart, J.; Hink, M.A.; Visser, A.J.W.G.; Bisseling, T.; Gadella, T.W.J.

    2000-01-01

    Fluorescence correlation microscopy (FCM) is a new single-molecule detection technique based on the confocal principle to quantify molecular diffusion and concentration of fluorescent molecules (particles) with sub-micron resolution. In this study, FCM is applied to examine the diffusional behaviour

  6. The use of fluorescence microscopy to visualise homotypic interactions of tomato spotted wilt virus nucleocapsid protein in living cells

    NARCIS (Netherlands)

    Snippe, M.; Borst, J.W.; Goldbach, R.W.; Kormelink, R.J.M.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) were employed to study homotypic protein¿protein interactions in living cells. To this end, the nucleocapsid (N) protein of tomato spotted wilt virus (TSWV) was expressed as a fusion protein with either

  7. Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle

    NARCIS (Netherlands)

    Hendriks, Frank|info:eu-repo/dai/nl/412642697; Meirer, Florian; Kubarev, Alexey V.; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Roeffaers, Maarten B J; Vogt, Eelco T. C.|info:eu-repo/dai/nl/073717398; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2017-01-01

    We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their movement through the

  8. Quantitative image correction and calibration for confocal fluorescence microscopy using thin reference layers and SIPchart-based calibration procedures

    NARCIS (Netherlands)

    Zwier, J.M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G.J.

    2008-01-01

    The fluorescence intensity image of an axially integrated through-focus series of a thin standardized uniform fluorescent layer can be used for image intensity correction and calibration in sectioning microscopy. This intensity image is in fact available from the earlier introduced Sectioned Imaging

  9. 3D fluorescence emission difference microscopy based on spatial light modulator

    Directory of Open Access Journals (Sweden)

    Guangyuan Zhao

    2016-05-01

    Full Text Available We report three-dimensional fluorescence emission difference (3D-FED microscopy using a spatial light modulator (SLM. Zero phase, 0–2π vortex phase and binary 0-pi phase are loaded on the SLM to generate the corresponding solid, doughnut and z-axis hollow excitation spot, respectively. Our technique achieves super-resolved image by subtracting three differently acquired images with proper subtractive factors. Detailed theoretical analysis and simulation tests are proceeded to testify the performance of 3D-FED. Also, the improvement of lateral and axial resolution is demonstrated by imaging 100nm fluorescent beads. The experiment yields lateral resolution of 140nm and axial resolution of approximate 380nm.

  10. The Identification of Aluminum in Human Brain Tissue Using Lumogallion and Fluorescence Microscopy

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2016-01-01

    Aluminum in human brain tissue is implicated in the etiologies of neurodegenerative diseases including Alzheimer’s disease. While methods for the accurate and precise measurement of aluminum in human brain tissue are widely acknowledged, the same cannot be said for the visualization of aluminum. Herein we have used transversely-heated graphite furnace atomic absorption spectrometry to measure aluminum in the brain of a donor with Alzheimer’s disease, and we have developed and validated fluorescence microscopy and the fluor lumogallion to show the presence of aluminum in the same tissue. Aluminum is observed as characteristic orange fluorescence that is neither reproduced by other metals nor explained by autofluorescence. This new and relatively simple method to visualize aluminum in human brain tissue should enable more rigorous testing of the aluminum hypothesis of Alzheimer’s disease (and other neurological conditions) in the future. PMID:27472886

  11. Fluorescence confocal laser scanning microscopy for in vivo imaging of epidermal reactions to two experimental irritants

    DEFF Research Database (Denmark)

    Suihko, C.; Serup, J.

    2008-01-01

    Background: Fibre-optic fluorescence confocal laser scanning microscopy (CLSM) is a novel non-invasive technique for in vivo imaging of skin. The cellular structure of the epidermis can be studied. A fluorophore, e.g. fluorescein sodium, is introduced by an intradermal injection or applied...... dermatitis reactions caused by established model irritants, e.g. sodium lauryl sulphate (SLS) and pelargonic acid (PA). Methods: Twelve healthy individuals volunteered. The flexor aspect of the right and the left forearm was exposed to SLS in water and PA in isopropanol and occluded under Finn Chambers...... for 24 h. The reactions were rated clinically and, following epicutaneous and intra-dermal application of fluorescein sodium, studied by fluorescence CLSM, magnification x 1000. Results: Both irritants disturbed the epidermal intercellular borders, which became blurred, thickened and variably altered...

  12. Investigation of alveolar tissue deformations using OCT combined with fluorescence microscopy

    Science.gov (United States)

    Gaertner, Maria; Cimalla, Peter; Knels, Lilla; Meissner, Sven; Schnabel, Christian; Kuebler, Wolfgang M.; Koch, Edmund

    2011-06-01

    In critical care medicine, artificial ventilation is a life saving tool providing sufficient blood oxygenation to patients suffering from respiratory failure. Essential for their survival is the use of protective ventilation strategies to prevent further lung damage due to ventilator induced lung injury (VILI). Since there is only little known about implications of lung tissue overdistension on the alveolar level, especially in the case of diseased lungs, this research deals with the investigation of lung tissue deformation on a microscale. A combined setup utilizing optical coherence tomography (OCT) and confocal fluorescence microscopy, is used to study the elastic behavior of the alveolar tissue. Three-dimensional geometrical information with voxel sizes of 6 μm × 6 μm × 11 μm (in air) is provided by OCT, structural information about localization of elastin fibers is elucidated via confocal fluorescence microscopy with a lateral resolution of around 1 μm. Imaging depths of 90 μm for OCT and 20 μm for confocal fluorescence microscopy were obtained. Dynamic studies of subpleural tissue were carried out on the basis of an in vivo mouse model post mortem, mimicking the physiological environment of an intact thorax and facilitating a window for the application of optical methods. Morphological changes were recorded by applying constant positive airway pressures of different values. With this, alveolar volume changes could clearly be recognized and quantified to form a compliance value of 3.5 • 10-6(see manuscript). The distribution of elastin fibers was detected and will be subject to further elasticity analysis.

  13. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy

    Czech Academy of Sciences Publication Activity Database

    Mravec, F.; Obruča, S.; Krzyžánek, Vladislav; Sedláček, P.; Hrubanová, Kamila; Samek, Ota; Kučera, D.; Benešová, P.; Nebesářová, Jana

    2016-01-01

    Roč. 363, č. 10 (2016), fnw094:1-7 ISSN 0378-1097 R&D Projects: GA ČR(CZ) GA15-20645S Grant - others:GA MŠk(CZ) LO1211 Institutional support: RVO:68081731 ; RVO:60077344 Keywords : polyhydroxyalkanoates * intracellular granules * confocal fluorescence microscopy * bacterial cell diameters Subject RIV: BH - Optics, Masers, Lasers; BH - Optics, Masers, Lasers (BC-A) Impact factor: 1.765, year: 2016 http://femsle.oxfordjournals.org/content/363/10/fnw094

  14. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    Science.gov (United States)

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-12-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

  15. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes.

    Science.gov (United States)

    Klar, T A; Engel, E; Hell, S W

    2001-12-01

    We report on the generation of various hole-centered beams in the focal region of a lens and investigate their effectiveness to break the diffraction barrier in fluorescence microscopy by stimulated emission. Patterning of the phase of the stimulating beam across the entrance pupil of the objective lens produces point-spread-functions with twofold, fourfold, and circular symmetry, which narrow down the focal spot to 65-100 nm. Comparison with high-resolution confocal images exhibits a resolution much beyond the diffraction barrier. Particles that are only 65-nm apart are resolved with focused light.

  16. Characterizing concentrated, multiply scattering, and actively driven fluorescent systems with confocal differential dynamic microscopy.

    Science.gov (United States)

    Lu, Peter J; Giavazzi, Fabio; Angelini, Thomas E; Zaccarelli, Emanuela; Jargstorff, Frank; Schofield, Andrew B; Wilking, James N; Romanowsky, Mark B; Weitz, David A; Cerbino, Roberto

    2012-05-25

    We introduce confocal differential dynamic microscopy (ConDDM), a new technique yielding information comparable to that given by light scattering but in dense, opaque, fluorescent samples of micron-sized objects that cannot be probed easily with other existing techniques. We measure the correct wave vector q-dependent structure and hydrodynamic factors of concentrated hard-sphere-like colloids. We characterize concentrated swimming bacteria, observing ballistic motion in the bulk and a new compressed-exponential scaling of dynamics, and determine the velocity distribution; by contrast, near the coverslip, dynamics scale differently, suggesting that bacterial motion near surfaces fundamentally differs from that of freely swimming organisms.

  17. Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Marcelina Cardoso Dos Santos

    2017-06-01

    Full Text Available We propose a new strategy to evaluate adhesion strength at the single cell level. This approach involves variable-angle total internal reflection fluorescence microscopy to monitor in real time the topography of cell membranes, i.e. a map of the membrane/substrate separation distance. According to the Boltzmann distribution, both potential energy profile and dissociation energy related to the interactions between the cell membrane and the substrate were determined from the membrane topography. We have highlighted on glass substrates coated with poly-L-lysine and fibronectin, that the dissociation energy is a reliable parameter to quantify the adhesion strength of MDA-MB-231 motile cells.

  18. Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells

    International Nuclear Information System (INIS)

    Kim, Kyujung; Cho, Eun-Jin; Suh, Jin-Suck; Huh, Yong-Min; Kim, Donghyun; Kim, Dong Jun

    2009-01-01

    We investigated evanescent field enhancement based on subwavelength nanogratings for improved sensitivity in total internal reflection microscopy of live cells. The field enhancement is associated with subwavelength-grating-coupled plasmon excitation. An optimum sample employed a silver grating on a silver film and an SF10 glass substrate. Field intensity was enhanced by approximately 90% when measured by fluorescent excitation of microbeads relative to that on a bare prism as a control, which is in good agreement with numerical results. The subwavelength-grating-mediated field enhancement was also applied to live cell imaging of quantum dots, which confirmed the sensitivity enhancement qualitatively.

  19. Correlative Fluorescence Super-Resolution Localization Microscopy and Platinum Replica EM on Unroofed Cells.

    Science.gov (United States)

    Sochacki, Kem A; Taraska, Justin W

    2017-01-01

    Platinum replicas of unroofed mammalian cells can be imaged with a transmission electron microscope (TEM) to produce high contrast, high resolution images of the structure of the cytoplasmic side of a plasma membrane. A complementary approach, super-resolution fluorescence localization microscopy, can be used to localize labeled molecules with better than 20 nm precision in cells. Here, we describe a correlative method that couples these two techniques and produces images where localization microscopy data can be used to highlight specific proteins of interest within the structural context of the platinum replica TEM image. This combined method is uniquely suited to investigate the nanometer-scale structural organization of the plasma membrane and its associated organelles and proteins.

  20. Integrated Transmission Electron and Single‐Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    OpenAIRE

    Hendriks, Frank C.; Mohammadian, Sajjad; Ristanović, Zoran; Kalirai, Sam; Meirer, Florian; Vogt, Eelco T. C.; Bruijnincx, Pieter C. A.; Gerritsen, Hans C.; Weckhuysen, Bert M.

    2017-01-01

    Abstract Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single‐molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed secti...

  1. Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    OpenAIRE

    Hendriks, Frank C.; Mohammadian, Sajjad; Ristanovic, Zoran; Kalirai, Samanbir; Meirer, Florian; Vogt, Eelco T. C.; Bruijnincx, Pieter C. A.; Gerritsen, Hans; Weckhuysen, Bert M.

    2018-01-01

    Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single-molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed sections of a ...

  2. Wide-field imaging through scattering media by scattered light fluorescence microscopy

    Science.gov (United States)

    Zhou, Yulan; Li, Xun

    2017-08-01

    To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.

  3. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  4. Performance of T12 and T8 Fluorescent Lamps and Troffers and LED Linear Replacement Lamps CALiPER Benchmark Report

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Michael; Paget, Maria L.; Lingard, Robert D.

    2009-01-16

    The Department of Energy (DOE) Commercially Available LED Product Evaluation and Reporting (CALiPER) Program was established in 2006 to investigate the performance of light-emitting diode (LED) based luminaires and replacement lamps. To help users better compare LED products with conventional lighting technologies, CALiPER has also performed benchmark research and testing of traditional (i.e., non-LED) lamps and fixtures. This benchmark report addresses standard 4-foot fluorescent lamps (i.e., T12 and T8) and the 2-foot by 4-foot recessed troffers in which they are commonly used. This report also examines available LED replacements for T12 and T8 fluorescent lamps, and their application in fluorescent troffers. The construction and operation of linear fluorescent lamps and troffers are discussed, as well as fluorescent lamp and fixture performance, based on manufacturer data and CALiPER benchmark testing. In addition, the report describes LED replacements for linear fluorescent lamps, and compares their bare lamp and in situ performance with fluorescent benchmarks on a range of standard lighting measures, including power usage, light output and distribution, efficacy, correlated color temperature, and the color rendering index. Potential performance and application issues indicated by CALiPER testing results are also examined.

  5. Comparison of Light Emitting Diodes (LED) and Fluorescent Light on Suppression of Pineal Melatonin in the Rat

    Science.gov (United States)

    Winget, Charles M.; Heeke, D. S.; Holley, D. C.; Mele, G.; Brainard, G. C.; Hanifin, J. P.; Rollag, M. D.; Savage, Paul D. (Technical Monitor)

    1997-01-01

    To validate a novel LED array for use in animal habitat lighting by comparing its effectiveness to cool-white fluorescent (CWF) lighting in suppressing pineal gland melatonin. Male Sprague-Dawley rats, 175-200 g, were maintained under control conditions for 2 weeks (food and water ad lib, 12L: 12D CWF, 18 uW/square cm). Dark adapted animals (animals before lights on) were exposed to 5 min of LED or CWF light of similar spectral power distribution. Two groups of rats (LED vs. CWF) were compared at 5 light intensities (100, 40, 1, 1.0, and 0. 1 lux). A control group was placed into the exposure apparatus but not exposed to light. After exposure, pineal glands were rapidly removed and assayed for melatonin by RIA. Results. The dark-exposed control groups matched with the 5 intensity groups (100, 40, 10, 1.0, and 0.1 lux) showed mean + SEM pineal melatonin values of 1167 +/- 136, 1569 +/- 126, 353 +/- 34, 650 +/- 124, and 464 +/- 85, pg/ml respectively. The corresponding CWF exposure data were 393 1 41, 365 +34, 257 +/- 13, 218 +/- 42, and 239 +/- 71 pg/ml, respectively. Corresponding LED exposure data were 439 +/- 25, 462 +/- 50, 231 +/- 6, 164 +/- 12, and 158 +/- 12 pg/ml, respectively. Rats exposed to both experimental light conditions at all illuminances studied showed significant melatonin suppression (p less than 0.01, ANOVA). In no case was the melatonin suppression induced by LED illuminance significantly different from the melatonin suppression elicited by the same intensity of CWF light. The results show that a novel LED light source can suppress pineal melatonin equal to that of a conventional CWF light source.

  6. Tracking multiple particles in fluorescence time-lapse microscopy images via probabilistic data association.

    Science.gov (United States)

    Godinez, William J; Rohr, Karl

    2015-02-01

    Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.

  7. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    Science.gov (United States)

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Real-Time Live Confocal Fluorescence Microscopy as a New Tool for Assessing Platelet Vitality.

    Science.gov (United States)

    Hermann, Martin; Nussbaumer, Oliver; Knöfler, Ralf; Hengster, Paul; Nussbaumer, Walter; Streif, Werner

    2010-01-01

    BACKGROUND: Assessment of platelet vitality is important for patients presenting with inherited or acquired disorders of platelet function and for quality assessment of platelet concentrates. METHODS: Herein we combined live stains with intra-vital confocal fluorescence microscopy in order to obtain an imaging method that allows fast and accurate assessment of platelet vitality. Three fluorescent dyes, FITC-coupled wheat germ agglutinin (WGA), tetramethylrhodamine methyl ester perchlorate (TMRM) and acetoxymethylester (Rhod-2), were used to assess platelet morphology, mitochondrial activity and intra-platelet calcium levels. Microscopy was performed with a microlens-enhanced Nipkow spinning disk-based system allowing live confocal imaging. RESULTS: Comparison of ten samples of donor platelets collected before apheresis and platelets collected on days 5 and 7 of storage showed an increase in the percentage of Rhod-2-positive platelets from 3.6 to 47 and finally to 71%. Mitochondrial potential was demonstrated in 95.4% of donor platelets and in 92.5% of platelets stored for 7 days. CONCLUSION: Such fast and accurate visualization of known key parameters of platelet function could be of relevance for studies addressing the quality of platelets after storage and additional manipulation, such as pathogen inactivation, as well as for the analysis of inherited platelet function disorders.

  9. Monitoring biosensor activity in living cells with fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Hum, Julia M; Siegel, Amanda P; Pavalko, Fredrick M; Day, Richard N

    2012-11-07

    Live-cell microscopy is now routinely used to monitor the activities of the genetically encoded biosensor proteins that are designed to directly measure specific cell signaling events inside cells, tissues, or organisms. Most fluorescent biosensor proteins rely on Förster resonance energy transfer (FRET) to report conformational changes in the protein that occur in response to signaling events, and this is commonly measured with intensity-based ratiometric imaging methods. An alternative method for monitoring the activities of the FRET-based biosensor proteins is fluorescence lifetime imaging microscopy (FLIM). FLIM measurements are made in the time domain, and are not affected by factors that commonly limit intensity measurements. In this review, we describe the use of the digital frequency domain (FD) FLIM method for the analysis of FRET signals. We illustrate the methods necessary for the calibration of the FD FLIM system, and demonstrate the analysis of data obtained from cells expressing "FRET standard" fusion proteins. We then use the FLIM-FRET approach to monitor the changes in activities of two different biosensor proteins in specific regions of single living cells. Importantly, the factors required for the accurate determination and reproducibility of lifetime measurements are described in detail.

  10. Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy

    Science.gov (United States)

    2013-01-01

    Background Delignification pretreatments of biomass and methods to assess their efficacy are crucial for biomass-to-biofuels research and technology. Here, we applied confocal and fluorescence lifetime imaging microscopy (FLIM) using one- and two-photon excitation to map the lignin distribution within bagasse fibers pretreated with acid and alkali. The evaluated spectra and decay times are correlated with previously calculated lignin fractions. We have also investigated the influence of the pretreatment on the lignin distribution in the cell wall by analyzing the changes in the fluorescence characteristics using two-photon excitation. Eucalyptus fibers were also analyzed for comparison. Results Fluorescence spectra and variations of the decay time correlate well with the delignification yield and the lignin distribution. The decay dependences are considered two-exponential, one with a rapid (τ1) and the other with a slow (τ2) decay time. The fastest decay is associated to concentrated lignin in the bagasse and has a low sensitivity to the treatment. The fluorescence decay time became longer with the increase of the alkali concentration used in the treatment, which corresponds to lignin emission in a less concentrated environment. In addition, the two-photon fluorescence spectrum is very sensitive to lignin content and accumulation in the cell wall, broadening with the acid pretreatment and narrowing with the alkali one. Heterogeneity of the pretreated cell wall was observed. Conclusions Our results reveal lignin domains with different concentration levels. The acid pretreatment caused a disorder in the arrangement of lignin and its accumulation in the external border of the cell wall. The alkali pretreatment efficiently removed lignin from the middle of the bagasse fibers, but was less effective in its removal from their surfaces. Our results evidenced a strong correlation between the decay times of the lignin fluorescence and its distribution within the cell

  11. Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy

    Directory of Open Access Journals (Sweden)

    Mengyan Wang

    2017-12-01

    Full Text Available A method of rapidly differentiating lung tumor from healthy tissue is extraordinarily needed for both the diagnosis and the intraoperative margin assessment. We assessed the ability of fluorescence lifetime imaging microscopy (FLIM for differentiating human lung cancer and normal tissues with the autofluorescence, and also elucidated the mechanism in tissue studies and cell studies. A 15-patient testing group was used to compare FLIM results with traditional histopathology diagnosis. Based on the endogenous fluorescence lifetimes of the testing group, a criterion line was proposed to distinguish normal and cancerous tissues. Then by blinded examined 41 sections from the validation group of other 16 patients, the sensitivity and specificity of FLIM were determined. The cellular metabolism was studied with specific perturbations of oxidative phosphorylation and glycolysis in cell studies. The fluorescence lifetime of cancerous lung tissues is consistently lower than normal tissues, and this is due to the both decrease of reduced nicotinamide adenine dinucleotide (NADH and flavin adenine dinucleotide (FAD lifetimes. A criterion line of lifetime at 1920 ps can be given for differentiating human lung cancer and normal tissues.The sensitivity and specificity of FLIM for lung cancer diagnosis were determined as 92.9% and 92.3%. These findings suggest that NADH and FAD can be used to rapidly diagnose lung cancer. FLIM is a rapid, accurate and highly sensitive technique in the judgment during lung cancer surgery and it can be potential in earlier cancer detection.

  12. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    Science.gov (United States)

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  13. Toward Fourier interferometry fluorescence excitation/emission imaging of malignant cells combined with photoacoustic microscopy

    Science.gov (United States)

    Kohen, Elli; Hirschberg, Joseph G.; Berry, John P.; Ozkutuk, Nuri; Ornek, Ceren; Monti, Marco; Leblanc, Roger M.; Schachtschabel, Dietrich O.; Haroon, Sumaira

    2003-10-01

    Dual excitation fluorescence imaging has been used as a first step towards multi-wavelength excitation/emission fluorescence spectral imaging. Target cells are transformed keratinocytes, and other osteosarcoma, human breast and color cancer cells. Mitochondrial membrane potential probes, e.g. TMRM (tetramethylrhodamine methyl ester), Mitotracker Green (Molecular Probes, Inc., Eugene OR,USA; a recently synthesized mitochondrial oxygen probe, [PRE,P1"- pyrene butyl)-2-rhodamine ester] allow dual excitation in the UV plus in teh blue-green spectral regions. Also, using the natural endogenous probe NAD(P)H, preliminary results indicate mitochondrial responses to metabolic challenges (e.g. glucose addition), plus changes in mitochonrial distribution and morphology. In terms of application to biomedicine (for diagnostiscs, prognostsics and drug trials) three parameters have been selected in addition to the natural probe NAD(P)H, i.e. vital fluorescence probing of mitochondria, lysosomes and Golgi apparatus. It is hoped that such a multiparameter approach will allow malignant cell characterization and grading. A new area being introduced is the use of similar methodology for biotechnical applications such as the study of the hydrogen-producing alga Chlamydomonas Reinhardtii, and possible agricultural applications, such as Saccharomyces yeast for oenology. Complementation by Photoacoustic Microscopy is also contemplated, to study the internal conversion component which follows the excitation by photons.

  14. Transparent Electrode Materials for Simultaneous Amperometric Detection of Exocytosis and Fluorescence Microscopy.

    Science.gov (United States)

    Kisler, Kassandra; Kim, Brian N; Liu, Xin; Berberian, Khajak; Fang, Qinghua; Mathai, Cherian J; Gangopadhyay, Shubhra; Gillis, Kevin D; Lindau, Manfred

    2012-01-01

    We have developed and tested transparent microelectrode arrays capable of simultaneous amperometric measurement of oxidizable molecules and fluorescence imaging through the electrodes. Surface patterned microelectrodes were fabricated from three different conducting materials: Indium-tin-oxide (ITO), nitrogen-doped diamond-like carbon (DLC) deposited on top of ITO, or very thin (12-17 nm) gold films on glass substrates. Chromaffin cells loaded with lysotracker green or acridine orange dye were placed atop the electrodes and vesicle fluorescence imaged with total internal reflection fluorescence (TIRF) microscopy while catecholamine release from single vesicles was measured as amperometric spikes with the surface patterned electrodes. Electrodes fabricated from all three materials were capable of detecting amperometric signals with high resolution. Unexpectedly, amperometric spikes recorded with ITO electrodes had only about half the amplitude and about half as much charge as those detected with DLC or gold electrodes, indicating that the ITO electrodes are not as sensitive as gold or DLC electrodes for measurement of quantal catecholamine release. The lower sensitivity of ITO electrodes was confirmed by chronoamperometry measurements comparing the currents in the presence of different analytes with the different electrode materials.

  15. Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Víctor M Campa

    Full Text Available The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method -the Q-Endosomes algorithm- that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution.

  16. In-focal-plane characterization of excitation distribution for quantitative fluorescence microscopy applications

    Science.gov (United States)

    Dietrich, Klaus; Brülisauer, Martina; ćaǧin, Emine; Bertsch, Dietmar; Lüthi, Stefan; Heeb, Peter; Stärker, Ulrich; Bernard, André

    2017-06-01

    The applications of fluorescence microscopy span medical diagnostics, bioengineering and biomaterial analytics. Full exploitation of fluorescent microscopy is hampered by imperfections in illumination, detection and filtering. Mainly, errors stem from deviations induced by real-world components inducing spatial or angular variations of propagation properties along the optical path, and they can be addressed through consistent and accurate calibration. For many applications, uniform signal to noise ratio (SNR) over the imaging area is required. Homogeneous SNR can be achieved by quantifying and compensating for the signal bias. We present a method to quantitatively characterize novel reference materials as a calibration reference for biomaterials analytics. The reference materials under investigation comprise thin layers of fluorophores embedded in polymer matrices. These layers are highly homogeneous in their fluorescence response, where cumulative variations do not exceed 1% over the field of view (1.5 x 1.1 mm). An automated and reproducible measurement methodology, enabling sufficient correction for measurement artefacts, is reported. The measurement setup is equipped with an autofocus system, ensuring that the measured film quality is not artificially increased by out-of-focus reduction of the system modulation transfer function. The quantitative characterization method is suitable for analysis of modified bio-materials, especially through patterned protein decoration. The imaging method presented here can be used to statistically analyze protein patterns, thereby increasing both precision and throughput. Further, the method can be developed to include a reference emitter and detector pair on the image surface of the reference object, in order to provide traceable measurements.

  17. Heterogeneous amylin fibril growth mechanisms imaged by total internal reflection fluorescence microscopy.

    Science.gov (United States)

    Patil, Sharadrao M; Mehta, Andrew; Jha, Suman; Alexandrescu, Andrei T

    2011-04-12

    Total internal reflection fluorescence microscopy has been used to visualize the fibrillization of amylin, a hormone which in aggregated forms plays a role in type 2 diabetes pathology. Data were obtained at acidic pH where fibrillization is hindered by the charging of histidine 18 and at slightly basic pH where the loss of charge on the histidine promotes aggregation. The experiments show three types of aggregate growth processes. In the earliest steps globular seeds are formed with some expanding radially during the course of the reaction. The dimensions of the globular seeds as well as their staining with the amyloid-specific dye thioflavin T indicate that they are plaques of short fibrils. The next species observed are fibrils that invariably grow from large globular seeds or smaller punctate granules. Fibril elongation appears to be unidirectional, although in some cases multiple fibrils radiate from a single seed or granule. After fibrils are formed, some show an increase in fluorescence intensity that we attribute to the growth of new fibrils alongside those previously formed. All three aggregation processes are suggestive of secondary (heterogeneous) nucleation mechanisms in which nucleation occurs on preformed fibrils. Consistently, electron micrographs show changes in fibril morphology well after fibrils are first formed, and the growth processes observed by fluorescence microscopy occur after the corresponding solution reactions have reached an initial apparent plateau. Taken together, the results highlight the importance of secondary nucleation in the fibrillization of amylin, as this could provide a pathway to continue fibril growth once an initial population of fibrils is established.

  18. Multi-channel LED light source for fluorescent agent aided minimally invasive surgery.

    Science.gov (United States)

    Ren, Jiacheng; Venugopalan, Janani; Xu, Jian; Kairdolf, Brad; Durfee, Robert; Wang, May D

    2014-01-01

    Cancer is one of the most common and deadly diseases around the world. Amongst all the different treatments of cancer such as surgery, chemotherapy and radiation therapy, surgical resection is the most effective. Successful surgeries greatly rely on the detection of the accurate tumor size and location, which can be enhanced by contrast agents. Commercial endoscope light sources, however, offer only white light illumination. In this paper, we present the development of a LED endoscope light source that provides 2 light channels plus white light to help surgeons to detect a clear tumor margin during minimally invasive surgeries. By exciting indocyanine green (ICG) and 5-Aminolaevulinic acid (ALA)-induced protoporphyrin IX (PPIX), the light source is intended to give the user a visible image of the tumor margin. This light source is also portable, easy to use and costs less than $300 to build.

  19. X-ray optics for scanning fluorescence microscopy and other applications

    International Nuclear Information System (INIS)

    Ryon, R.W.; Warburton, W.K.

    1992-05-01

    Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 μm, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu Kα. At higher energies such as Ag Kα, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection

  20. Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence.

    Science.gov (United States)

    Ingaramo, Maria; York, Andrew G; Andrade, Eric J; Rainey, Kristin; Patterson, George H

    2015-09-03

    We describe two-step fluorescence microscopy, a new approach to non-linear imaging based on positive reversible photoswitchable fluorescent probes. The protein Padron approximates ideal two-step fluorescent behaviour: it equilibrates to an inactive state, converts to an active state under blue light, and blue light also excites this active state to fluoresce. Both activation and excitation are linear processes, but the total fluorescent signal is quadratic, proportional to the square of the illumination dose. Here, we use Padron's quadratic non-linearity to demonstrate the principle of two-step microscopy, similar in principle to two-photon microscopy but with orders-of-magnitude better cross-section. As with two-photon, quadratic non-linearity from two-step fluorescence improves resolution and reduces unwanted out-of-focus excitation, and is compatible with structured illumination microscopy. We also show two-step and two-photon imaging can be combined to give quartic non-linearity, further improving imaging in challenging samples. With further improvements, two-step fluorophores could replace conventional fluorophores for many imaging applications.

  1. Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’

    DEFF Research Database (Denmark)

    Ouzounis, Theoharis; Fretté, Xavier; Ottosen, Carl-Otto

    2015-01-01

    , which increased the light absorption in the green/yellow part of the spectrum. The permanent downregulation of PSII moved a substantial part of the thermal dissipation from the light regulated NPQ to non-regulated energy losses estimated by ΦNPQ and ΦNO and the difference found in the balance between......We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200μmolm-2s-1 at plant height for 14h per day and 24/18°Cday....../night temperature, respectively, from January to April 2013. The light treatments were (1) 40% blue in 60% red (40% B/R), (2) 0% blue in 100% red (0% B/R) and (3) white LEDs with 32% blue in white (32% B/W, control), with background daylight under shade screens. The plants were harvested twice for leaf growth...

  2. Context based mixture model for cell phase identification in automated fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Zhou Xiaobo

    2007-01-01

    Full Text Available Abstract Background Automated identification of cell cycle phases of individual live cells in a large population captured via automated fluorescence microscopy technique is important for cancer drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an important method to study the cell cycle process under different conditions of perturbation. Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not feasible. This paper presents statistical data analysis and statistical pattern recognition to perform this task. Results The data is generated from Hela H2B GFP cells imaged during a 2-day period with images acquired 15 minutes apart using an automated time-lapse fluorescence microscopy. The patterns are described with four kinds of features, including twelve general features, Haralick texture features, Zernike moment features, and wavelet features. To generate a new set of features with more discriminate power, the commonly used feature reduction techniques are used, which include Principle Component Analysis (PCA, Linear Discriminant Analysis (LDA, Maximum Margin Criterion (MMC, Stepwise Discriminate Analysis based Feature Selection (SDAFS, and Genetic Algorithm based Feature Selection (GAFS. Then, we propose a Context Based Mixture Model (CBMM for dealing with the time-series cell sequence information and compare it to other traditional classifiers: Support Vector Machine (SVM, Neural Network (NN, and K-Nearest Neighbor (KNN. Being a standard practice in machine learning, we systematically compare the performance of a number of common feature reduction techniques and classifiers to select an optimal combination of a feature reduction technique and a classifier. A cellular database containing 100 manually labelled subsequence is built for evaluating the performance of the classifiers. The generalization error is estimated using the cross validation technique. The

  3. Improving accuracy and precision in biological applications of fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Chang, Ching-Wei

    The quantitative understanding of cellular and molecular responses in living cells is important for many reasons, including identifying potential molecular targets for treatments of diseases like cancer. Fluorescence lifetime imaging microscopy (FLIM) can quantitatively measure these responses in living cells by producing spatially resolved images of fluorophore lifetime, and has advantages over intensity-based measurements. However, in live-cell microscopy applications using high-intensity light sources such as lasers, maintaining biological viability remains critical. Although high-speed, time-gated FLIM significantly reduces light delivered to live cells, making measurements at low light levels remains a challenge affecting quantitative FLIM results. We can significantly improve both accuracy and precision in gated FLIM applications. We use fluorescence resonance energy transfer (FRET) with fluorescent proteins to detect molecular interactions in living cells: the use of FLIM, better fluorophores, and temperature/CO2 controls can improve live-cell FRET results with higher consistency, better statistics, and less non-specific FRET (for negative control comparisons, p-value = 0.93 (physiological) vs. 9.43E-05 (non-physiological)). Several lifetime determination methods are investigated to optimize gating schemes. We demonstrate a reduction in relative standard deviation (RSD) from 52.57% to 18.93% with optimized gating in an example under typical experimental conditions. We develop two novel total variation (TV) image denoising algorithms, FWTV ( f-weighted TV) and UWTV (u-weighted TV), that can achieve significant improvements for real imaging systems. With live-cell images, they improve the precision of local lifetime determination without significantly altering the global mean lifetime values (high-light cases (RSD = 12.76% at total photon counts (TC) = 100 vs. RSD = 23.03% at TC = 400). Therefore, high-intensity excitation of living cells can be avoided

  4. Motion Analysis of Live Objects by Super-Resolution Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Chunyan Yao

    2012-01-01

    Full Text Available Motion analysis plays an important role in studing activities or behaviors of live objects in medicine, biotechnology, chemistry, physics, spectroscopy, nanotechnology, enzymology, and biological engineering. This paper briefly reviews the developments in this area mostly in the recent three years, especially for cellular analysis in fluorescence microscopy. The topic has received much attention with the increasing demands in biomedical applications. The tasks of motion analysis include detection and tracking of objects, as well as analysis of motion behavior, living activity, events, motion statistics, and so forth. In the last decades, hundreds of papers have been published in this research topic. They cover a wide area, such as investigation of cell, cancer, virus, sperm, microbe, karyogram, and so forth. These contributions are summarized in this review. Developed methods and practical examples are also introduced. The review is useful to people in the related field for easy referral of the state of the art.

  5. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    Science.gov (United States)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  6. Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification

    Science.gov (United States)

    Borgmann, Daniela M.; Mayr, Sandra; Polin, Helene; Schaller, Susanne; Dorfer, Viktoria; Obritzberger, Lisa; Endmayr, Tanja; Gabriel, Christian; Winkler, Stephan M.; Jacak, Jaroslaw

    2016-09-01

    In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D-), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes.

  7. Discriminating red spray paints by optical microscopy, Fourier transform infrared spectroscopy and X-ray fluorescence.

    Science.gov (United States)

    Govaert, Filip; Bernard, Magali

    2004-02-10

    Red spray paints from different European suppliers were characterised to determine the discriminating power of a sequence of analysing techniques. A total of 51 red spray paints were analysed with the help of three techniques: (1) optical microscopy, (2) Fourier transform infrared spectrometry and (3) X-ray fluorescence. Infrared spectra were classified according to binder type, filler and pigment composition and a searchable spectral library was created. Due to the difference in the elemental composition of spray paints, a further discrimination was possible. The microscopic analysis was not taken into consideration for classification purposes. The structure of the substrate under a paint coating strongly affects the surface characteristics of this spray paint. Together with the spectral library, a database of information of spray paints was build.

  8. Infection Counter: Automated Quantification of in Vitro Virus Replication by Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Siân Culley

    2016-07-01

    Full Text Available The ability to accurately and reliably quantify viral infection is essential to basic and translational virology research. Here, we describe a simple and robust automated method for using fluorescence microscopy to estimate the proportion of virally infected cells in a monolayer. We provide details of the automated analysis workflow along with a freely available open-source ImageJ plugin, Infection Counter, for performing image quantification. Using hepatitis C virus (HCV as an example, we have experimentally verified our method, demonstrating that it is equivalent, if not better, than the established focus-forming assay. Finally, we used Infection Counter to assess the anti-HCV activity of SMBz-CsA, a non-immunosuppressive cyclosporine analogue.

  9. Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions

    Science.gov (United States)

    Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis

    2017-12-01

    We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.

  10. Widefield fluorescence microscopy with sensor-based conjugate adaptive optics using oblique back illumination.

    Science.gov (United States)

    Li, Jiang; Bifano, Thomas G; Mertz, Jerome

    2016-12-01

    We describe a wavefront sensor strategy for the implementation of adaptive optics (AO) in microscope applications involving thick, scattering media. The strategy is based on the exploitation of multiple scattering to provide oblique back illumination of the wavefront-sensor focal plane, enabling a simple and direct measurement of the flux-density tilt angles caused by aberrations at this plane. Advantages of the sensor are that it provides a large measurement field of view (FOV) while requiring no guide star, making it particularly adapted to a type of AO called conjugate AO, which provides a large correction FOV in cases when sample-induced aberrations arise from a single dominant plane (e.g., the sample surface). We apply conjugate AO here to widefield (i.e., nonscanning) fluorescence microscopy for the first time and demonstrate dynamic wavefront correction in a closed-loop implementation.

  11. Active Appearance Segmentation for Intensity Inhomogeneity in Light Sheet Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Jensen, Casper Bo; Lyksborg, Mark; Hecksher-Sørensen, J.

    2016-01-01

    Active Appearance Models (AAM) are used for annotating or segmenting shapes in biomedical images. Performance relies heavily on the image data used to train the AAM. In this paper we improve the generalization properties of the model by making it robust to slowly varying spatial intensity...... inhomogeneities which are often seen in Light Sheet Fluorescence Microscopy (LSFM) images. This robustness is achieved by modelling the appearance of an image as a regularized Normalized Gradient Field (rNGF). We perform two experiments to challenge the model. First it is tested using a repeated leave......-one-out approach on images with minimal imperfections where the left out images are corrupted by a simulated bias field and segmented using the AAM. Secondly we test the model on LSFM images with common acquisition problems. In both experiments the proposed approach outperforms the often used AAM implementation...

  12. Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy.

    Science.gov (United States)

    Paës, Gabriel; Habrant, Anouck; Terryn, Christine

    2018-02-06

    Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in the architecture of plant cell walls is therefore important to understand and optimize transformation processes. For the first time, super-resolution imaging of poplar wood samples has been performed using the Stimulated Emission Depletion (STED) technique. In comparison to standard confocal images, STED reveals new details in cell wall structure, allowing the identification of secondary walls and middle lamella with fine details, while keeping open the possibility to perform topochemistry by the use of relevant fluorescent nano-probes. In particular, the deconvolution of STED images increases the signal-to-noise ratio so that images become very well defined. The obtained results show that the STED super-resolution technique can be easily implemented by using cheap commercial fluorescent rhodamine-PEG nano-probes which outline the architecture of plant cell walls due to their interaction with lignin. Moreover, the sample preparation only requires easily-prepared plant sections of a few tens of micrometers, in addition to an easily-implemented post-treatment of images. Overall, the STED super-resolution technique in combination with a variety of nano-probes can provide a new vision of plant cell wall imaging by filling in the gap between classical photon microscopy and electron microscopy.

  13. Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy

    Directory of Open Access Journals (Sweden)

    Gabriel Paës

    2018-02-01

    Full Text Available Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in the architecture of plant cell walls is therefore important to understand and optimize transformation processes. For the first time, super-resolution imaging of poplar wood samples has been performed using the Stimulated Emission Depletion (STED technique. In comparison to standard confocal images, STED reveals new details in cell wall structure, allowing the identification of secondary walls and middle lamella with fine details, while keeping open the possibility to perform topochemistry by the use of relevant fluorescent nano-probes. In particular, the deconvolution of STED images increases the signal-to-noise ratio so that images become very well defined. The obtained results show that the STED super-resolution technique can be easily implemented by using cheap commercial fluorescent rhodamine-PEG nano-probes which outline the architecture of plant cell walls due to their interaction with lignin. Moreover, the sample preparation only requires easily-prepared plant sections of a few tens of micrometers, in addition to an easily-implemented post-treatment of images. Overall, the STED super-resolution technique in combination with a variety of nano-probes can provide a new vision of plant cell wall imaging by filling in the gap between classical photon microscopy and electron microscopy.

  14. Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs.

    Science.gov (United States)

    Lim, Seong-Rin; Kang, Daniel; Ogunseitan, Oladele A; Schoenung, Julie M

    2013-01-15

    Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. Although CFLs and LEDs are more energy-efficient than incandescent bulbs, they require more metal-containing components. There is uncertainty about the potential environmental impacts of these components and whether special provisions must be made for their disposal at the end of useful life. Therefore, the objective of this study is to analyze the resource depletion and toxicity potentials from the metals in incandescent, CFL, and LED bulbs to complement the development of sustainable energy policy. We assessed the potentials by examining whether the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state regulations and by applying life cycle impact-based and hazard-based assessment methods (note that "life cycle impact-based method" does not mean a general life cycle assessment (LCA) but rather the elements in LCA used to quantify toxicity potentials). We discovered that both CFL and LED bulbs are categorized as hazardous, due to excessive levels of lead (Pb) leachability (132 and 44 mg/L, respectively; regulatory limit: 5) and the high contents of copper (111,000 and 31,600 mg/kg, respectively; limit: 2500), lead (3860 mg/kg for the CFL bulb; limit: 1000), and zinc (34,500 mg/kg for the CFL bulb; limit: 5000), while the incandescent bulb is not hazardous (note that the results for CFL bulbs excluded mercury vapor not captured during sample preparation). The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. Comparing the bulbs on an equivalent quantity basis with respect to the expected lifetimes of

  15. Enhanced simulator software for image validation and interpretation for multimodal localization super-resolution fluorescence microscopy

    Science.gov (United States)

    Erdélyi, Miklós; Sinkó, József; Gajdos, Tamás.; Novák, Tibor

    2017-02-01

    Optical super-resolution techniques such as single molecule localization have become one of the most dynamically developed areas in optical microscopy. These techniques routinely provide images of fixed cells or tissues with sub-diffraction spatial resolution, and can even be applied for live cell imaging under appropriate circumstances. Localization techniques are based on the precise fitting of the point spread functions (PSF) to the measured images of stochastically excited, identical fluorescent molecules. These techniques require controlling the rate between the on, off and the bleached states, keeping the number of active fluorescent molecules at an optimum value, so their diffraction limited images can be detected separately both spatially and temporally. Because of the numerous (and sometimes unknown) parameters, the imaging system can only be handled stochastically. For example, the rotation of the dye molecules obscures the polarization dependent PSF shape, and only an averaged distribution - typically estimated by a Gaussian function - is observed. TestSTORM software was developed to generate image stacks for traditional localization microscopes, where localization meant the precise determination of the spatial position of the molecules. However, additional optical properties (polarization, spectra, etc.) of the emitted photons can be used for further monitoring the chemical and physical properties (viscosity, pH, etc.) of the local environment. The image stack generating program was upgraded by several new features, such as: multicolour, polarization dependent PSF, built-in 3D visualization, structured background. These features make the program an ideal tool for optimizing the imaging and sample preparation conditions.

  16. Investigation on strain relaxation distribution in GaN-based μLEDs by Kelvin probe force microscopy and micro-photoluminescence.

    Science.gov (United States)

    Zhan, Jinglin; Chen, Zhizhong; Jiao, Qianqian; Feng, Yulong; Li, Chengcheng; Chen, Yifan; Chen, Yiyong; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Wang, Qi; Yu, Tongjun; Zhang, Guoyi; Shen, Bo

    2018-03-05

    GaN/InGaN multi-quantum-wells (MQWs) micron light emitting diodes (µLEDs) with the size ranging from 10 to 300 µm are fabricated. Effects of strain relaxation on the performance of µLEDs have been investigated both experimentally and numerically. Kelvin probe force microscopy (KPFM) and micro-photoluminescence (µPL) are used to characterize the strained area on micron pillars. Strain relaxation and reducing polarization field in MQWs almost affects the whole mesa for 10 µm LEDs and about 4% area around the lateral for 300 µm LEDs. It makes a great contribution to high performance for smaller size µLEDs. Moreover, an indirect nanoscale strain measurement for µLEDs are provided.

  17. Clustered localization of STAT3 during the cell cycle detected by super-resolution fluorescence microscopy

    Science.gov (United States)

    Gao, Jing; Chen, Junling; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tong, Ti; Wang, Hongda

    2017-06-01

    Signal transducer and activator of transcription 3 (STAT3) plays a key role in various cellular processes such as cell proliferation, differentiation, apoptosis and immune responses. In particular, STAT3 has emerged as a potential molecular target for cancer therapy. The functional role and standard activation mechanism of STAT3 have been well studied, however, the spatial distribution of STAT3 during the cell cycle is poorly known. Therefore, it is indispensable to study STAT3 spatial arrangement and nuclear-cytoplasimic localization at the different phase of cell cycle in cancer cells. By direct stochastic optical reconstruction microscopy imaging, we find that STAT3 forms various number and size of clusters at the different cell-cycle stage, which could not be clearly observed by conventional fluorescent microscopy. STAT3 clusters get more and larger gradually from G1 to G2 phase, during which time transcription and other related activities goes on consistently. The results suggest that there is an intimate relationship between the clustered characteristic of STAT3 and the cell-cycle behavior. Meanwhile, clustering would facilitate STAT3 rapid response to activating signals due to short distances between molecules. Our data might open a new door to develop an antitumor drug for inhibiting STAT3 signaling pathway by destroying its clusters.

  18. High Refractive Index Silicone Gels for Simultaneous Total Internal Reflection Fluorescence and Traction Force Microscopy of Adherent Cells

    Science.gov (United States)

    Besser, Achim; Sundd, Prithu; Ley, Klaus; Danuser, Gaudenz; Ginsberg, Mark H.; Groisman, Alex

    2011-01-01

    Substrate rigidity profoundly impacts cellular behaviors such as migration, gene expression, and cell fate. Total Internal Reflection Fluorescence (TIRF) microscopy enables selective visualization of the dynamics of substrate adhesions, vesicle trafficking, and biochemical signaling at the cell-substrate interface. Here we apply high-refractive-index silicone gels to perform TIRF microscopy on substrates with a wide range of physiological elastic moduli and simultaneously measure traction forces exerted by cells on the substrate. PMID:21961031

  19. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  20. Local Delivery of Fluorescent Dye For Fiber-Optics Confocal Microscopy of the Living Heart

    Directory of Open Access Journals (Sweden)

    Chao eHuang

    2014-09-01

    Full Text Available Fiber-optics confocal microscopy (FCM is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release versus foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  1. Multimodal microscopy and the stepwise multi-photon activation fluorescence of melanin

    Science.gov (United States)

    Lai, Zhenhua

    The author's work is divided into three aspects: multimodal microscopy, stepwise multi-photon activation fluorescence (SMPAF) of melanin, and customized-profile lenses (CPL) for on-axis laser scanners, which will be introduced respectively. A multimodal microscope provides the ability to image samples with multiple modalities on the same stage, which incorporates the benefits of all modalities. The multimodal microscopes developed in this dissertation are the Keck 3D fusion multimodal microscope 2.0 (3DFM 2.0), upgraded from the old 3DFM with improved performance and flexibility, and the multimodal microscope for targeting small particles (the "Target" system). The control systems developed for both microscopes are low-cost and easy-to-build, with all components off-the-shelf. The control system have not only significantly decreased the complexity and size of the microscope, but also increased the pixel resolution and flexibility. The SMPAF of melanin, activated by a continuous-wave (CW) mode near-infrared (NIR) laser, has potential applications for a low-cost and reliable method of detecting melanin. The photophysics of melanin SMPAF has been studied by theoretical analysis of the excitation process and investigation of the spectra, activation threshold, and photon number absorption of melanin SMPAF. SMPAF images of melanin in mouse hair and skin, mouse melanoma, and human black and white hairs are compared with images taken by conventional multi-photon fluorescence microscopy (MPFM) and confocal reflectance microscopy (CRM). SMPAF images significantly increase specificity and demonstrate the potential to increase sensitivity for melanin detection compared to MPFM images and CRM images. Employing melanin SMPAF imaging to detect melanin inside human skin in vivo has been demonstrated, which proves the effectiveness of melanin detection using SMPAF for medical purposes. Selective melanin ablation with micrometer resolution has been presented using the Target system

  2. Determination of lead in clay enameled by X-ray fluorescence technique in Total reflection and by Scanning Electron Microscopy

    International Nuclear Information System (INIS)

    Zarazua O, G.; Carapia M, L.

    2000-01-01

    This work has the objective of determining lead free in the glazed commercial stewing pans using the X-ray fluorescence technique in Total reflection (FRX) and the observation and semiquantitative determination of lead by Analytical Scanning Electron Microscopy (ASEM). (Author)

  3. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: Application to model antifouling coatings

    NARCIS (Netherlands)

    Goodes, L.R.; Dennington, S.P.; Schuppe, H.; Wharton, J.A.; Bakker, M.; Klijnstra, J.W.; Stokes, K.R.

    2012-01-01

    A test matrix of antifouling (AF) coatings including pMMA, an erodible binder and a novel trityl copolymer incorporating Cu 2O and a furan derivative (FD) natural product, were subjected to pontoon immersion and accelerated rotor tests. Fluorescence and optical microscopy techniques were applied to

  4. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.

    Science.gov (United States)

    Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno

    2010-08-01

    In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent

  5. Application of fluorescent microscopy and cascade filtration methods for analysis of soil microbial community

    Science.gov (United States)

    Ivanov, Konstantin; Pinchuk, Irina; Gorodnichev, Roman; Polyanskaya, Lubov

    2016-04-01

    Methods establishment of soil microbial cells size estimation called from the importance of current needs of research in microbial ecology. Some of the methods need to be improved for more detailed view of changes happen in microbiome of terrestrial ecosystems. The combination of traditional microscopy methods, fluorescence and filtration in addition to cutting-edge DNA analysis gives a wide range of the approaches for soil microbial ecologists in their research questions. In the most of the cases the bacterial cells size is limited of the natural conditions such as lack of nutrients or stress factors due to heterogeneity of soil system. In the samples of soils, lakes and rivers sediments, snow and rain water the bacterial cells were detected minimally of 0.2 microns. We established the combination of the cascade filtration and fluorescent microscopy for complex analysis of different terrestrial ecosystems and various soil types. Our modification based on the use of successively filtered soil suspension for collection of microbes by the membrane pores decrease. Combination with fluorescence microscopy and DNA analysis via FISH method gave the presentation of microbial interactions and review of ecological strategies of soil microorganisms. Humus horizons of primitive arctic soil were the most favorable for bacterial growth. Quantified biomass of soil bacteria depends on the dominance of cells with specific dimensions caused of stress factors. The average bacterial size of different soil varied from 0.23 to 0.38 microns, however in humus horizons of arctic soil we detected the contrast dominance of the bigger bacterial cells sized of 1.85 microns. Fungi in this case contributed to increase the availability of organic matter for bacteria because the fungal mycelium forms the appreciable part of microbial biomass of primitive arctic soil. The dominant content of bigger bacterial cells in forest and fallow soil as well as the opposite situation in arable soils caused

  6. Revisiting the Cornea and Trabecular Meshwork Junction With 2-Photon Excitation Fluorescence Microscopy.

    Science.gov (United States)

    Marando, Catherine M; Park, Choul Yong; Liao, Jason A; Lee, Jimmy K; Chuck, Roy S

    2017-06-01

    To investigate the collagen and elastin architecture at the junction of the human cornea and trabecular meshwork (TM). The cornea, TM, and ciliary body (CB) tendons of unfixed human corneal buttons were imaged with an inverted 2-photon excited fluorescence microscope (FluoView FV-1000; Olympus, Central Valley, PA). The laser (Ti:sapphire) was tuned to 850 nm for 2-photon excitation. Backscatter signals of second harmonic generation and autofluorescence were collected through a 425/30-nm emission filter and a 525/45-nm emission filter, respectively. The second harmonic generation signal corresponds to collagen fibers, and the autofluorescence signal corresponds to elastin-containing tissue. Tissue structure representations were obtained through software-generated reconstructions of consecutive and overlapping (z-stack) images through a relevant sample depth. Collagen-rich CB tendons insert into the cornea between Descemet membrane (DM) and posterior stroma along with elastin fibers originating from the TM. The CB tendons directly abut DM, and their insertion narrows as they course centrally in the cornea, giving a wedge appearance to these parallel collagen fibers. Approximately 260 μm centrally from the edge of DM, the CB tendons fan out and merge with pre-DM collagen. As the CB tendons enter the cornea, they form a dense collagenous comb-like structure orthogonal to the edge of DM and supported by a delicate elastin network of interwoven fibers originating from the TM. Two-photon excited fluorescence microscopy has improved our understanding of the peripheral corneal architecture. CB tendon insertions in this region may contribute to the radial tears encountered when preparing DM endothelial keratoplasty grafts.

  7. Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review.

    Science.gov (United States)

    Sednev, Maksim V; Belov, Vladimir N; Hell, Stefan W

    2015-10-22

    The review deals with commercially available organic dyes possessing large Stokes shifts and their applications as fluorescent labels in optical microscopy based on stimulated emission depletion (STED). STED microscopy breaks Abbe's diffraction barrier and provides optical resolution beyond the diffraction limit. STED microscopy is non-invasive and requires photostable fluorescent markers attached to biomolecules or other objects of interest. Up to now, in most biology-related STED experiments, bright and photoresistant dyes with small Stokes shifts of 20-40 nm were used. The rapid progress in STED microscopy showed that organic fluorophores possessing large Stokes shifts are indispensable in multi-color super-resolution techniques. The ultimate result of the imaging relies on the optimal combination of a dye, the bio-conjugation procedure and the performance of the optical microscope. Modern bioconjugation methods, basics of STED microscopy, as well as structures and spectral properties of the presently available fluorescent markers are reviewed and discussed. In particular, the spectral properties of the commercial dyes are tabulated and correlated with the available depletion wavelengths found in STED microscopes produced by LEICA Microsytems, Abberior Instruments and Picoquant GmbH.

  8. Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review

    International Nuclear Information System (INIS)

    Sednev, Maksim V; Belov, Vladimir N; Hell, Stefan W

    2015-01-01

    The review deals with commercially available organic dyes possessing large Stokes shifts and their applications as fluorescent labels in optical microscopy based on stimulated emission depletion (STED). STED microscopy breaks Abbe’s diffraction barrier and provides optical resolution beyond the diffraction limit. STED microscopy is non-invasive and requires photostable fluorescent markers attached to biomolecules or other objects of interest. Up to now, in most biology-related STED experiments, bright and photoresistant dyes with small Stokes shifts of 20–40 nm were used. The rapid progress in STED microscopy showed that organic fluorophores possessing large Stokes shifts are indispensable in multi-color super-resolution techniques. The ultimate result of the imaging relies on the optimal combination of a dye, the bio-conjugation procedure and the performance of the optical microscope. Modern bioconjugation methods, basics of STED microscopy, as well as structures and spectral properties of the presently available fluorescent markers are reviewed and discussed. In particular, the spectral properties of the commercial dyes are tabulated and correlated with the available depletion wavelengths found in STED microscopes produced by LEICA Microsytems, Abberior Instruments and Picoquant GmbH. (topical review)

  9. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    KAUST Repository

    Ceylan Koydemir, Hatice

    2017-06-14

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved

  10. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Ceylan Koydemir Hatice

    2017-06-01

    Full Text Available Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond

  11. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    Science.gov (United States)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-06-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of 0.8 cm2 and weighs only 180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a

  12. Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes.

    Science.gov (United States)

    Laurent, Camille; Guérin, Maxime; Frenois, François-Xavier; Thuries, Valérie; Jalabert, Laurence; Brousset, Pierre; Valmary-Degano, Séverine

    2013-08-01

    Fluorescence in situ hybridization is an indispensable technique used in routine pathology and for theranostic purposes. Because fluorescence in situ hybridization techniques require sophisticated microscopic workstations and long procedures of image acquisition with sometimes subjective and poorly reproducible results, we decided to test a whole-slide imaging system as an alternative approach. In this study, we used the latest generation of Pannoramic 250 Flash digital microscopes (P250 Flash digital microscopes; 3DHISTECH, Budapest, Hungary) to digitize fluorescence in situ hybridization slides of diffuse large B cells lymphoma cases for detecting MYC rearrangement. The P250 Flash digital microscope was found to be precise with better definition of split signals in cells containing MYC rearrangement with fewer truncated signals as compared to traditional fluorescence microscopy. This digital technique is easier thanks to the preview function, which allows almost immediate identification of the tumor area, and the panning and zooming functionalities as well as a shorter acquisition time. Moreover, fluorescence in situ hybridization analyses using the digital technique appeared to be more reproducible between pathologists. Finally, the digital technique also allowed prolonged conservation of photos. In conclusion, whole-slide imaging technologies represent rapid, robust, and highly sensitive methods for interpreting fluorescence in situ hybridization slides with break-apart probes. In addition, these techniques offer an easier way to interpret the signals and allow definitive storage of the images for pathology expert networks or e-learning databases. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2010-02-01

    Full Text Available Synaptic dynamics and reorganization are fundamental features of synaptic plasticity both during synaptic circuit development and in the mature CNS underlying learning, memory, and experience-dependent circuit rearrangements. Combining in vivo time-lapse fluorescence imaging and retrospective electron microscopic analysis provides a powerful technique to decipher the rules governing dynamics of neuronal structure and synaptic connections. Here we have generated a membrane-targeted horseradish peroxidase that allows identification of transfected cells without obscuring the intracellular ultrastructure or organelles and in particular allows identification of synaptic sites using electron microscopy. The expression of mHRP does not affect dendritic arbor growth or dynamics of transfected neurons. Co-expression of EGFP and mHRP was used to study neuronal morphology at both the light and electron microscopic levels. mHRP expression greatly facilitates 3D reconstruction based on serial EM sections. We expect this reagent will be valuable for studying the mechanisms that guide construction of neuronal networks.

  14. Development of an automated asbestos counting software based on fluorescence microscopy.

    Science.gov (United States)

    Alexandrov, Maxym; Ichida, Etsuko; Nishimura, Tomoki; Aoki, Kousuke; Ishida, Takenori; Hirota, Ryuichi; Ikeda, Takeshi; Kawasaki, Tetsuo; Kuroda, Akio

    2015-01-01

    An emerging alternative to the commonly used analytical methods for asbestos analysis is fluorescence microscopy (FM), which relies on highly specific asbestos-binding probes to distinguish asbestos from interfering non-asbestos fibers. However, all types of microscopic asbestos analysis require laborious examination of large number of fields of view and are prone to subjective errors and large variability between asbestos counts by different analysts and laboratories. A possible solution to these problems is automated counting of asbestos fibers by image analysis software, which would lower the cost and increase the reliability of asbestos testing. This study seeks to develop a fiber recognition and counting software for FM-based asbestos analysis. We discuss the main features of the developed software and the results of its testing. Software testing showed good correlation between automated and manual counts for the samples with medium and high fiber concentrations. At low fiber concentrations, the automated counts were less accurate, leading us to implement correction mode for automated counts. While the full automation of asbestos analysis would require further improvements in accuracy of fiber identification, the developed software could already assist professional asbestos analysts and record detailed fiber dimensions for the use in epidemiological research.

  15. Single-cell analysis of uncultured magnetotactic bacteria via fluorescence-coupled electron microscopy approach

    Science.gov (United States)

    LI, J.; Zhang, H.; Liu, P.; Menguy, N.; Pan, Y.

    2017-12-01

    Magnetotactic bacteria (MTB) are phylogenetically diverse and can biomineralize magnetic nanocrystals of magnetite or greigite in intracellular structures termed magnetosomes. Their remains within sediments or sedimentary rocks, i.e. magnetofossils, have been used to retrieve paleomagnetic and paleoenvironmental information of deposition time, as well as to trace the origin and evolution of life on Earth and even perhaps Mars. A precise identification of magnetofossils heavily depends on our knowledge of phylogenetic diversity and magnetosomal biomineralization within natural MTB. In this paper, we will present a novel method which can rapidly characterize both the phylogenetic and biomineralogical properties of uncultured MTB at the single-cell level by coupling fluorescence and electron microscopy. Using this method, we have successfully identified several uncultured MTB strains from natural environments in China. These MTB are phylogenetically affiliated with the Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria and Nitrospirae phylum, and form octahedral, cuboctahedral, prismatic, tooth-like and bullet-shaped magnetite magnetosomes. A corresponding analysis of magnetosome morphology and bacterial phylogenetics on each MTB strain has shown a species/strain-specific magnetosome biomineralization. The new method is not only promising for better understanding the correlation between magnetosome mineral habits and MTB phylogenies, but also crucial for unambiguously identifying magnetofossils.

  16. Tilting and Wobble of Myosin V by High-Speed Single-Molecule Polarized Fluorescence Microscopy

    Science.gov (United States)

    Beausang, John F.; Shroder, Deborah Y.; Nelson, Philip C.; Goldman, Yale E.

    2013-01-01

    Myosin V is biomolecular motor with two actin-binding domains (heads) that take multiple steps along actin by a hand-over-hand mechanism. We used high-speed polarized total internal reflection fluorescence (polTIRF) microscopy to study the structural dynamics of single myosin V molecules that had been labeled with bifunctional rhodamine linked to one of the calmodulins along the lever arm. With the use of time-correlated single-photon counting technology, the temporal resolution of the polTIRF microscope was improved ∼50-fold relative to earlier studies, and a maximum-likelihood, multitrace change-point algorithm was used to objectively determine the times when structural changes occurred. Short-lived substeps that displayed an abrupt increase in rotational mobility were detected during stepping, likely corresponding to random thermal fluctuations of the stepping head while it searched for its next actin-binding site. Thus, myosin V harnesses its fluctuating environment to extend its reach. Additional, less frequent angle changes, probably not directly associated with steps, were detected in both leading and trailing heads. The high-speed polTIRF method and change-point analysis may be applicable to single-molecule studies of other biological systems. PMID:23528086

  17. A flow bioreactor system compatible with real-time two-photon fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Shen, Nian; Riedl, Julia A; Carvajal Berrio, Daniel A; Davis, Zachary; Monaghan, Michael G; Layland, Shannon L; Hinderer, Svenja; Schenke-Layland, Katja

    2018-02-02

    Bioreactors are essential cell and tissue culture tools that allow the introduction of biophysical signals into in vitro cultures. One major limitation is the need to interrupt experiments and sacrifice samples at certain time points for analyses. To address this issue, we designed a bioreactor that combines high-resolution contact-free imaging and continuous flow in a closed system that is compatible with various types of microscopes. The high throughput fluid flow bioreactor was combined with two-photon fluorescence lifetime imaging microscopy (2P-FLIM) and validated. The hydrodynamics of the bioreactor chamber were characterized using COMSOL. The simulation of shear stress indicated that the bioreactor system provides homogeneous and reproducible flow conditions. The designed bioreactor was used to investigate the effects of low shear stress on human umbilical vein endothelial cells (HUVECs). In a scratch assay, we observed decreased migration of HUVECs under shear stress conditions. Furthermore, metabolic activity shifts from glycolysis to oxidative phosphorylation-dependent mechanisms in HUVECs cultured under low shear stress conditions were detected using 2P-FLIM. Future applications for this bioreactor range from observing cell fate development in real-time to monitoring the environmental effects on cells or metabolic changes due to drug applications.

  18. A system architecture for online data interpretation and reduction in fluorescence microscopy

    Science.gov (United States)

    Röder, Thorsten; Geisbauer, Matthias; Chen, Yang; Knoll, Alois; Uhl, Rainer

    2010-01-01

    In this paper we present a high-throughput sample screening system that enables real-time data analysis and reduction for live cell analysis using fluorescence microscopy. We propose a novel system architecture capable of analyzing a large amount of samples during the experiment and thus greatly minimizing the post-analysis phase that is the common practice today. By utilizing data reduction algorithms, relevant information of the target cells is extracted from the online collected data stream, and then used to adjust the experiment parameters in real-time, allowing the system to dynamically react on changing sample properties and to control the microscope setup accordingly. The proposed system consists of an integrated DSP-FPGA hybrid solution to ensure the required real-time constraints, to execute efficiently the underlying computer vision algorithms and to close the perception-action loop. We demonstrate our approach by addressing the selective imaging of cells with a particular combination of markers. With this novel closed-loop system the amount of superfluous collected data is minimized, while at the same time the information entropy increases.

  19. Examining self-compatibility in plum (Prunus domestica L. by fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Nikolić Dragan

    2010-01-01

    Full Text Available Self-compatibility in 18 European plum cultivars was examined using the method of fluorescence microscopy. According to selfcompatibility, cultivars were divided into two groups: self-compatible and self-incompatible. In self-compatible cultivars the number of pistils, where pollen tubes reached the base of the style varied from 32.00% (Anna Späth to 91.18% (Wangenheims Frühzwetsche. Mean number of pollen tubes at the base of style in these cultivars ranged from 0.52 to 3.97. Cultivars were considered self-incompatible if pollen tubes stopped their growth in the style along with forming characteristic swellings at their tips. Of the studied cultivars, 13 were found to be self-compatible: Wangenheims Frühzwetsche, Cacanska Lepotica, Valjevka, California Blue, Cacanska Rodna, Italian Prune, Stanley, Požegaca, Herman, Bluefre, Jelica, Ruth Gerstetter and Anna Späth, while 5 were found to be self-incompatible: Cacanska Rana, Zimmers Frühzwetsche, Cacanska Najbolja, Pacific and President.

  20. Comparison of fluorescence microscopy and solid-phase cytometry methods for counting bacteria in water

    Science.gov (United States)

    Lisle, John T.; Hamilton, Martin A.; Willse, Alan R.; McFeters, Gordon A.

    2004-01-01

    Total direct counts of bacterial abundance are central in assessing the biomass and bacteriological quality of water in ecological and industrial applications. Several factors have been identified that contribute to the variability in bacterial abundance counts when using fluorescent microscopy, the most significant of which is retaining an adequate number of cells per filter to ensure an acceptable level of statistical confidence in the resulting data. Previous studies that have assessed the components of total-direct-count methods that contribute to this variance have attempted to maintain a bacterial cell abundance value per filter of approximately 106 cells filter-1. In this study we have established the lower limit for the number of bacterial cells per filter at which the statistical reliability of the abundance estimate is no longer acceptable. Our results indicate that when the numbers of bacterial cells per filter were progressively reduced below 105, the microscopic methods increasingly overestimated the true bacterial abundance (range, 15.0 to 99.3%). The solid-phase cytometer only slightly overestimated the true bacterial abundances and was more consistent over the same range of bacterial abundances per filter (range, 8.9 to 12.5%). The solid-phase cytometer method for conducting total direct counts of bacteria was less biased and performed significantly better than any of the microscope methods. It was also found that microscopic count data from counting 5 fields on three separate filters were statistically equivalent to data from counting 20 fields on a single filter.

  1. Dimensionality reduction, segmentation, and quantification of multidimensional images: application to fluorescence microscopy

    Science.gov (United States)

    Bonnet, Noel; Raby, Beatrice; Zahm, Jean-Marie

    2000-03-01

    Fluorescence microscopy is rapidly becoming a multi- dimensional technique. Many applications generate similar data analysis problems. Whatever the non-spatial dimension (time, energy), users have to make the choice between local analysis and global analysis. For local analysis, the evolution of pixels (or regions of interest) is modeled as a function of the external parameter. Results are displayed as parametric images. For global analysis, multivariate statistical analysis can be used to extract and interpret the significant information (in the presence of redundancy and noise) in the form of eigenimages and eigenfactors. Automatic classification methods start to play a role for the co-location problem, in which pixels are classified into regions corresponding to positive, null or negative correlation. With two or three images, the scatterplot (an estimation of the joint probability density function), can be built. Interactive and automatic correlation partitioning (ICP, ACP) can then be performed. The method we have developed (Parzen estimate of the probability density function followed by the watersheds mathematical morphology approach) does not make assumptions about the shape of clusters. With more than three images, dimensionality reduction must be applied, for visualization purposes and for simplifying classification. This can be done by linear or non-linear methods such as Multi-Dimensional Scaling, Auto-Associative Neural Networks or Self-Organizing Mapping.

  2. Detection of genetically altered copper levels in Drosophila tissues by synchrotron x-ray fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Jessica C Lye

    Full Text Available Tissue-specific manipulation of known copper transport genes in Drosophila tissues results in phenotypes that are presumably due to an alteration in copper levels in the targeted cells. However direct confirmation of this has to date been technically challenging. Measures of cellular copper content such as expression levels of copper-responsive genes or cuproenzyme activity levels, while useful, are indirect. First-generation copper-sensitive fluorophores show promise but currently lack the sensitivity required to detect subtle changes in copper levels. Moreover such techniques do not provide information regarding other relevant biometals such as zinc or iron. Traditional techniques for measuring elemental composition such as inductively coupled plasma mass spectroscopy are not sensitive enough for use with the small tissue amounts available in Drosophila research. Here we present synchrotron x-ray fluorescence microscopy analysis of two different Drosophila tissues, the larval wing imaginal disc, and sectioned adult fly heads and show that this technique can be used to detect changes in tissue copper levels caused by targeted manipulation of known copper homeostasis genes.

  3. Incremental detection of pulmonary tuberculosis among presumptive patients by GeneXpert MTB/RIF® over fluorescent microscopy in Mwanza, Tanzania: an operational study

    Directory of Open Access Journals (Sweden)

    Jeremiah Seni

    2015-06-01

    Full Text Available Laboratory confirmation among presumptive tuberculosis (PTB patients is pivotal in ensuring prompt management. Limited information exists in Tanzania regarding the performance of GeneXpert MTB/RIF® in comparison with conventional methods. An operational study was conducted involving 806 PTB patients at Sekou Toure Hospital in Mwanza, Tanzania from June to November 2013. Patients’ information was obtained and their respective sputum samples analyzed by lightemitting diode fluorescent microscopy (LED FM and GeneXpert MTB/RIF®. The mean age of study participants was 39.6±16.0 years, with males accounting for 50.5%. The majority of patients (97.5% were new cases. The proportions of PTB patients confirmed by LED FM and GeneXpert MTB/RIF® were 14.1% (114/806 and 23.7% (191/806 respectively, resulting into a 9.6% incremental detection rate by GeneXpert MTB/RIF® over LED FM. The detection rate among HIV positive individuals was also higher [23.6% (63/267 vs 14.2% (38/267, respectively], with an incremental detection of 9.4%. The incremental detection of PTB by GeneXpert MTB/RIF® over LED FM calls for expansion of its use to increase detection of smear negative PTB among people living with HIV.

  4. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  5. Integrated thin film Si fluorescence sensor coupled with a GaN microLED for microfluidic point-of-care testing

    Science.gov (United States)

    Robbins, Hannah; Sumitomo, Keiko; Tsujimura, Noriyuki; Kamei, Toshihiro

    2018-02-01

    An integrated fluorescence sensor consisting of a SiO2/Ta2O5 multilayer optical interference filter and hydrogenated amorphous silicon (a-Si:H) pin photodiode was coupled with a GaN microLED to construct a compact fluorescence detection module for point-of-care microfluidic biochemical analysis. The combination of the small size of the GaN microLED and asymmetric microlens resulted in a focal spot diameter of the excitation light of approximately 200 µm. The limit of detection of the sensor was as high as 36 nM for fluorescein solution flowing in a 100 µm deep microfluidic channel because of the lack of directionality of the LED light. Nevertheless, we used the GaN microLED coupled with the a-Si:H fluorescence sensor to successfully detect fluorescence from a streptavidin R-phycoerythrin conjugate that bound to biotinylated antibody-coated microbeads trapped by the barrier in the microfluidic channel.

  6. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    NARCIS (Netherlands)

    van Graft, M.; van Graft, Marja; Oosterhuis, B.; Oosterhuis, Bernard; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical

  7. Measuring tubulin content in Toxoplasma gondii: A comparison of laser-scanning confocal and wide-field fluorescence microscopy

    Science.gov (United States)

    Swedlow, Jason R.; Hu, Ke; Andrews, Paul D.; Roos, David S.; Murray, John M.

    2002-01-01

    Toxoplasma gondii is an intracellular parasite that proliferates within most nucleated cells, an important human pathogen, and a model for the study of human and veterinary parasitic infections. We used a stable yellow fluorescent protein-α-tubulin transgenic line to determine the structure of the microtubule cytoskeleton in T. gondii. Imaging of living yellow fluorescent protein-α-tubulin parasites by laser-scanning confocal microscopy (LSCM) failed to resolve the 22 subpellicular microtubules characteristic of the parasite cytoskeleton. To understand this result, we analyzed sources of noise in the LSCM and identified illumination fluctuations on time scales from microseconds to hours that introduce significant amounts of noise. We confirmed that weakly fluorescent structures could not be imaged in LSCM by using fluorescent bead standards. By contrast, wide-field microscopy (WFM) did visualize weak fluorescent standards and the individual microtubules of the parasite cytoskeleton. We therefore measured the fluorescence per unit length of microtubule by using WFM and used this information to estimate the tubulin content of the conoid (a structure important for T. gondii infection) and in the mitotic spindle pole. The conoid contains sufficient tubulin for ≈10 microtubule segments of 0.5-μm length, indicating that tubulin forms the structural core of the organelle. We also show that the T. gondii mitotic spindle contains ≈1 microtubule per chromosome. This analysis expands the understanding of structures used for invasion and intracellular proliferation by an important human pathogen and shows the advantage of WFM combined with image deconvolution over LSCM for quantitative studies of weakly fluorescent structures in moderately thin living cells. PMID:11830634

  8. Fertility potential in a man with ankylosing spondylitis as revealed by semen analysis by light, electron and fluorescence microscopy.

    Science.gov (United States)

    Chatzimeletiou, Katerina; Galanis, Nikiforos; Karagiannidis, Alexandros; Sioga, Antonia; Pados, George; Goulis, Dimitrios; Kalpatsanidis, Antonis; Tarlatzis, Basil C

    2018-01-01

    Ankylosing spondylitis affects 0.1%-0.5% of the adult population. The aim was to investigate the possible effects of both the disease and its treatment on semen quality by performing a highly detailed analysis in a man with ankylosing spondylitis, presenting for infertility. Sperm characteristics were evaluated by light microscopy, morphology by electron microscopy (transmission electron microscopy), DNA fragmentation by terminal deoxynucleotidyl transferase dUTP nick end labeling using fluorescence microscopy and chromosomal abnormalities by fluorescence in situ hybridisation using probes for chromosomes 13,15,16,18,21,22,X and Y. There was no evidence for an effect of either ankylosing spondylitis or its treatment with celecoxib and sulphasalazine on sperm quality as all parameters including concentration, motility, DNA fragmentation and aneuploidy incidence were within normal limits. Transmission electron microscopy, however, revealed a high incidence of head, neck and tail abnormalities, as well as the presence of immature sperm and phagocytes. Hysteroscopic removal of an endometrial polyp enabled the achievement of a spontaneous pregnancy and the delivery of a healthy boy.

  9. Segmentation and Quantitative Analysis of Apoptosis of Chinese Hamster Ovary Cells from Fluorescence Microscopy Images.

    Science.gov (United States)

    Du, Yuncheng; Budman, Hector M; Duever, Thomas A

    2017-06-01

    Accurate and fast quantitative analysis of living cells from fluorescence microscopy images is useful for evaluating experimental outcomes and cell culture protocols. An algorithm is developed in this work to automatically segment and distinguish apoptotic cells from normal cells. The algorithm involves three steps consisting of two segmentation steps and a classification step. The segmentation steps are: (i) a coarse segmentation, combining a range filter with a marching square method, is used as a prefiltering step to provide the approximate positions of cells within a two-dimensional matrix used to store cells' images and the count of the number of cells for a given image; and (ii) a fine segmentation step using the Active Contours Without Edges method is applied to the boundaries of cells identified in the coarse segmentation step. Although this basic two-step approach provides accurate edges when the cells in a given image are sparsely distributed, the occurrence of clusters of cells in high cell density samples requires further processing. Hence, a novel algorithm for clusters is developed to identify the edges of cells within clusters and to approximate their morphological features. Based on the segmentation results, a support vector machine classifier that uses three morphological features: the mean value of pixel intensities in the cellular regions, the variance of pixel intensities in the vicinity of cell boundaries, and the lengths of the boundaries, is developed for distinguishing apoptotic cells from normal cells. The algorithm is shown to be efficient in terms of computational time, quantitative analysis, and differentiation accuracy, as compared with the use of the active contours method without the proposed preliminary coarse segmentation step.

  10. Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy.

    Directory of Open Access Journals (Sweden)

    Sangeeta Nath

    Full Text Available INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii retention and spatial localization of chemical compounds vary within and between each cell line; and (iii the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.

  11. Fluorescence microscopy is superior to polarized microscopy for detecting amyloid deposits in Congo red-stained trephine bone marrow biopsy specimens.

    Science.gov (United States)

    Marcus, Alan; Sadimin, Evita; Richardson, Maurice; Goodell, Lauri; Fyfe, Billie

    2012-10-01

    The classic gold standard for detecting amyloid deposits is Congo red-stained bright field and polarized microscopy (CRPM). A prior study showed that Congo red fluorescence (CRF) microscopy had increased sensitivity compared with traditional CRPM when analyzing fat pad specimens. The purpose of the current study was to determine the sensitivity of CRF for evaluating Congo red-stained bone marrow biopsy specimens, and to compare these results with those of CRPM. We compared the CRPM and the CRF analyses of 33 trephine bone marrow biopsy specimens with clinical or morphologic suspicion of amyloid deposits. These results were verified against immunohistochemical staining with anti-amyloid P antibody. CRF achieved 100% sensitivity, and CRPM achieved 75% sensitivity. Both groups showed 100% specificity compared with amyloid P immunohistochemical staining. The results show that CRF is a sensitive method to analyze trephine bone marrow biopsy specimens for amyloid deposits.

  12. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  13. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    Science.gov (United States)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent

  14. Direct visualization of secretion from single bovine adrenal chromaffin cells by laser-induced native fluorescence imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong, W.; Yeung, E.S. [Ames Laboratory---USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1998-03-01

    Direct visualization of the secretion process of individual bovine adrenal chromaffin cells was achieved with laser-induced native fluorescence imaging microscopy. By monitoring the native fluorescence of catecholamines excited by the 275 nm laser line with an intensified charge-coupled-device (CCD) camera, we obtained good temporal and spatial resolution simultaneously without using additional fluorescent probes. Large variations were found among individual cells in terms of the amounts of catecholamines secreted and the rates of secretion. Different regions of a cell also behave differently during the secretion process. However, the degree of this local heterogeneity is smaller than in neurons and neuralgia. The influence of deep-ultraviolet (UV) laser excitation on cells is also discussed. This quantitative imaging technique provides a useful noninvasive approach for the study of dynamic cellular changes and the understanding of the molecular mechanisms of secretory processes. {copyright} {ital 1998} {ital Society for Applied Spectroscopy}

  15. Fluorescence Lifetime Imaging Microscopy (FLIM) as a Tool to Investigate Hypoxia-Induced Protein-Protein Interaction in Living Cells.

    Science.gov (United States)

    Schützhold, Vera; Fandrey, Joachim; Prost-Fingerle, Katrin

    2018-01-01

    Fluorescence resonance energy transfer (FRET) is widely used as a method to investigate protein-protein interactions in living cells. A FRET pair donor fluorophore in close proximity to an appropriate acceptor fluorophore transfers emission energy to the acceptor, resulting in a shorter lifetime of the donor fluorescence. When the respective FRET donor and acceptor are fused with two proteins of interest, a reduction in donor lifetime, as detected by fluorescence lifetime imaging microscopy (FLIM), can be taken as proof of close proximity between the fluorophores and therefore interaction between the proteins of interest. Here, we describe the usage of time-domain FLIM-FRET in hypoxia-related research when we record the interaction of the hypoxia-inducible factor-1 (HIF-1) subunits HIF-1α and HIF-1β in living cells in a temperature- and CO 2 -controlled environment under the microscope.

  16. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Rufeng Li

    2017-11-01

    Full Text Available This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1 Gaussian filtering to remove the noise of overall fluorescent targets, (2 a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3 an red maximizing inter-class variance thresholding method (OTSU to segment the enhanced image for getting the binary map of the overall micro-droplets, (4 a circular Hough transform (CHT method to detect overall micro-droplets and (5 an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  17. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy.

    Science.gov (United States)

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-11-21

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  18. Combined nonlinear laser imaging (two-photon excitation fluorescence, second and third-harmonic generation, and fluorescence lifetime imaging microscopies) in ovarian tumors

    Science.gov (United States)

    Adur, J.; Pelegati, V. B.; de Thomaz, A. A.; Bottcher-Luiz, F.; Andrade, L. A. L. A.; Almeida, D. B.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    We applied Two-photon Excited Fluorescence (TPEF), Second/Third Harmonic Generation (SHG and THG) and Fluorescence Lifetime Imaging (FLIM) Non Linear Optics (NLO) Laser-Scanning Microscopy within the same imaging platform to evaluate their use as a diagnostic tool in ovarian tumors. We assess of applicability of this multimodal approach to perform a pathological evaluation of serous and mucinous tumors in human samples. The combination of TPEF-SHG-THG imaging provided complementary information about the interface epithelium/stromal, such as the transformation of epithelium surface (THG) and the overall fibrillar tissue architecture (SHG). The fact that H&E staining is the standard method used in clinical pathology and that the stored samples are usually fixed makes it important a re-evaluation of these samples with NLO microscopy to compare new results with a library of already existing samples. FLIM, however, depends on the chemical environment around the fluorophors that was completely changed after fixation; therefore it only makes sense in unstained samples. Our FLIM results in unstained samples demonstrate that it is possible to discriminate healthy epithelia from serous or mucinous epithelia. Qualitative and quantitative analysis of the different imaging modalities used showed that multimodal nonlinear microscopy has the potential to differentiate between cancerous and healthy ovarian tissue.

  19. Intracellular concentration map of magnesium in whole cells by combined use of X-ray fluorescence microscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, Stefano, E-mail: stefano.lagomarsino@cnr.it [IPCF-CNR -UOS Roma c/o Dip Fisica Universita' ' Sapienza' , P.le A. Moro, 2 Rome (Italy); Physics Department, Universita' Sapienza, P.le A. Moro, 2 Rome (Italy); Iotti, Stefano [Dipartimento di Medicina Interna, dell' Invecchiamento e Malattie Nefrologiche Universita di Bologna, Via Massarenti, 9 40138 Bologna (Italy); Istituto Nazionale Biostrutture e Biosistemi - Rome (Italy); Farruggia, Giovanna [Dipartimento di Biochimica ' G. Moruzzi' Universita di Bologna, Via Irnerio, 48 40126 Bologna (Italy); Cedola, Alessia [IFN-CNR - V. Cineto Romano, 42 00156 Rome (Italy); Trapani, Valentina [Istituto di Patologia Generale - Universita Cattolica del Sacro Cuore - Facolta di Medicina ' A. Gemelli' L.go F. Vito, 1 00168 Rome (Italy); Fratini, Michela [IFN-CNR - V. Cineto Romano, 42 00156 Rome (Italy); Bukreeva, Inna [IFN-CNR - V. Cineto Romano, 42 00156 Rome (Italy); Shubnikov Institute of Crystallography, Leninskii prospekt 59, Moscow, 119333 (Russian Federation); Notargiacomo, Andrea [IFN-CNR - V. Cineto Romano, 42 00156 Rome (Italy); Mastrototaro, Lucia [Istituto di Patologia Generale - Universita Cattolica del Sacro Cuore - Facolta di Medicina ' A. Gemelli' L.go F. Vito, 1 00168 Rome (Italy); Marraccini, Chiara [Dipartimento di Medicina Interna, dell' Invecchiamento e Malattie Nefrologiche Universita di Bologna, Via Massarenti, 9 40138 Bologna (Italy); and others

    2011-11-15

    We report a novel experimental approach to derive quantitative concentration map of light elements in whole cells by combining two complementary nano-probe methods: X-ray fluorescence microscopy (XRFM) and atomic force microscopy (AFM). The concentration is derived by normalizing point-by-point the elemental (here Mg) spatial distribution obtained by XRFM, by the thickness measured using AFM. The considerable difference between the elemental distribution and the concentration maps indicates that this procedure is essential to obtain reliable information on the role and function of elements in whole cells. - Highlights: Black-Right-Pointing-Pointer X-ray fluorescence and AFM have been measured on the same de-hydrated whole cells. Black-Right-Pointing-Pointer The element distribution has been normalized point-by-point by the cell thickness. Black-Right-Pointing-Pointer The element (Mg) concentration map has been obtained on a whole cell. Black-Right-Pointing-Pointer The element concentration map is quite different from the distribution map. Black-Right-Pointing-Pointer Higher Mg concentration is found in the cell periphery.

  20. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    Science.gov (United States)

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  1. Polarization contrast in fluorescence scanning near-field optical microscopy in reflection

    NARCIS (Netherlands)

    Jalocha, A.; Jalocha, A.; van Hulst, N.F.

    1995-01-01

    Polarization contrast is presented in fluorescence images of a Langmuir-Blodgett monolayer obtained with a scanning near-field optical microscope operated in reflection. A tapered optical fiber is used both to excite and to collect the fluorescence. The lateral resolution in the reflection

  2. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.

    Directory of Open Access Journals (Sweden)

    Baoshan Guo

    Full Text Available The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate high-throughput, high-accuracy, single-cell screening of E. gracilis with fluorescence-assisted optofluidic time-stretch microscopy-a method that combines the strengths of microfluidic cell focusing, optical time-stretch microscopy, and fluorescence detection used in conventional flow cytometry. Specifically, our fluorescence-assisted optofluidic time-stretch microscope consists of an optical time-stretch microscope and a fluorescence analyzer on top of a hydrodynamically focusing microfluidic device and can detect fluorescence from every E. gracilis cell in a population and simultaneously obtain its image with a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary and nitrogen-deficient (lipid-accumulated E. gracilis cells with a low false positive rate of 1.0%. This method holds promise for evaluating cultivation techniques and selective breeding for microalgae-based biofuel production.

  3. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Jiang, Yiyue; Ozeki, Yasuyuki; Goda, Keisuke

    2016-01-01

    The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel) within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate high-throughput, high-accuracy, single-cell screening of E. gracilis with fluorescence-assisted optofluidic time-stretch microscopy-a method that combines the strengths of microfluidic cell focusing, optical time-stretch microscopy, and fluorescence detection used in conventional flow cytometry. Specifically, our fluorescence-assisted optofluidic time-stretch microscope consists of an optical time-stretch microscope and a fluorescence analyzer on top of a hydrodynamically focusing microfluidic device and can detect fluorescence from every E. gracilis cell in a population and simultaneously obtain its image with a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary) and nitrogen-deficient (lipid-accumulated) E. gracilis cells with a low false positive rate of 1.0%. This method holds promise for evaluating cultivation techniques and selective breeding for microalgae-based biofuel production.

  4. Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Brewer, Jonathan R.; Bagatolli, Luis

    2013-01-01

    -carboxyethyl)-5-(and-6)-carboxyfluorescein) and diffusion coefficients of distinct fluorescence probes (raster imaging correlation spectroscopy) can be obtained from different regions of the tissue. Comparative studies of different tissue strata, but also between equivalent regions of normal and abnormal......' parameters. Specifically, by applying these methods, spatially resolved maps of water dipolar relaxation (generalized polarization function using the 6-lauroyl-2-(N,N-dimethylamino)naphthale probe), activity of protons (fluorescence lifetime imaging using a proton sensitive fluorescence probe--2,7-bis-(2...

  5. Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation

    Science.gov (United States)

    Field, Jeffrey J.; Carriles, Ramón; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Tillo, Shane E.; Hughes, Thom E.; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.

    2014-01-01

    A challenge for nonlinear imaging in living tissue is to maximize the total fluorescent yield from each fluorophore. We investigated the emission rates of three fluorophores – rhodamine B, a red fluorescent protein, and CdSe quantum dots – while manipulating the phase of the laser excitation pulse at the focus. In all cases a transform-limited pulse maximized the total yield to insure the highest signal-to-noise ratio. Further, we find evidence of fluorescence anti-bleaching in quantum dot samples. PMID:20588500

  6. Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars.

    Science.gov (United States)

    Tao, Xiaodong; Azucena, Oscar; Fu, Min; Zuo, Yi; Chen, Diana C; Kubby, Joel

    2011-09-01

    We introduce a direct wavefront sensing method using structures labeled with fluorescent proteins in tissues as guide stars. An adaptive optics confocal microscope using this method is demonstrated for imaging of mouse brain tissue. A dendrite and a cell body of a neuron labeled with yellow fluorescent protein are tested as guide stars without injection of other fluorescent labels. Photobleaching effects are also analyzed. The results shows increased image contrast and 3× improvement in the signal intensity for fixed mouse tissues at depths of 70 μm.

  7. 3D restoration microscopy improves quantification of enzyme-labeled fluorescence-based single-cell phosphatase activity in plankton. Cytometry Part A, 85A: 841–853

    Czech Academy of Sciences Publication Activity Database

    Diaz-de-Quijano, D.; Palacios, P.; Horňák, Karel; Felip, M.

    85A, č. 10 (2014), s. 841-853 ISSN 1552-4922 Institutional support: RVO:60077344 Keywords : 3D fluorescence microscopy * deconvolution * ELF phosphate * phosphatase activity * phytoplankton Subject RIV: EE - Microbiology, Virology Impact factor: 2.928, year: 2014

  8. [Fluorescence microscopy and HPLC assay for rapid detection of distribution and content of resveratrol in Polygonum cuspidatum].

    Science.gov (United States)

    Bu, Xiao-Ying; Dong, Ai-Wen; Guan, Qiong-Yu; Wu, Feng

    2012-12-01

    To establish fluorescence microscopy combined with HPLC method for rapid detection the distribution and content of resveratrol tissues in different growth stages of Polygonum cuspidatum. Used sequential experiment to design conditions of frozen and observe of the section by fluorescence microscopy; Resveratrol was extracted by ultrasonic-assisted extraction and its content was detected by HPLC. The results showed that frozen condition for concentration of gum Arabic was from 20% (dipping time was 5 - 6 h) to 40% (2 - 5 min), the freezer temperature was -5 degrees C, and the thickness was 15 microm. Resveratrol in polygonum cuspidatum was mainly accumulated in the organs, tissues and cells of fiber and cellulose, its content in rhizomes declined as the following sequence: spinal cord > xylem > phloem > periderm; Its content declined in organ as the following sequence: buds > rhizomes > ground stem > leaves; The content of resveratrol in root increased with age. The results of fluorescence microscopic observation is in accordance with the HPLC results, indicating that the method is simple, fast and reliable, and provides a fast and reliable detection method for the determination of optimum harvesting period of Polygonum cuspidatum and acquisition of quality.

  9. A novel fluorescence microscopy approach to estimate quality loss of stored fruit fillings as a result of browning.

    Science.gov (United States)

    Cropotova, Janna; Tylewicz, Urszula; Cocci, Emiliano; Romani, Santina; Dalla Rosa, Marco

    2016-03-01

    The aim of the present study was to estimate the quality deterioration of apple fillings during storage. Moreover, a potentiality of novel time-saving and non-invasive method based on fluorescence microscopy for prompt ascertainment of non-enzymatic browning initiation in fruit fillings was investigated. Apple filling samples were obtained by mixing different quantities of fruit and stabilizing agents (inulin, pectin and gellan gum), thermally processed and stored for 6-month. The preservation of antioxidant capacity (determined by DPPH method) in apple fillings was indirectly correlated with decrease in total polyphenols content that varied from 34±22 to 56±17% and concomitant accumulation of 5-hydroxymethylfurfural (HMF), ranging from 3.4±0.1 to 8±1mg/kg in comparison to initial apple puree values. The mean intensity of the fluorescence emission spectra of apple filling samples and initial apple puree was highly correlated (R(2)>0.95) with the HMF content, showing a good potentiality of fluorescence microscopy method to estimate non-enzymatic browning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Fluorescence (FISH) and chromogenic (CISH) in situ hybridisation in prostate carcinoma cell lines: comparison and use of virtual microscopy.

    Science.gov (United States)

    Elliott, K; Hamilton, P W; Maxwell, P

    2008-01-01

    Chromogenic in situ hybridisation (CISH) has become an attractive alternative to fluorescence in situ hybridisation (FISH) due to its permanent stain which is more familiar to pathologists and because it can be viewed using light microscopy. The aim of the present study is to examine reproducibility in the assessment of abnormal chromosome number by CISH in comparison to FISH. Using three prostate cell lines--PNT1A (derived from normal epithelium), LNCAP and DU145 (derived from prostatic carcinoma), chromosomes 7 and 8 were counted in 40 nuclei in FISH preparations (x100 oil immersion) and 100 nuclei in CISH preparations (x40) by two independent observers. The CISH slides were examined using standard light microscopy and virtual microscopy. Reproducibility was examined using paired Student's t-test (PCISH. No significant differences in chromosome count were seen between the techniques. Chromosomes 7 and 8 showed disomic status for each cell line except LNCAP, which proved to be heterogeneous (disomic/aneusomic), particularly for chromosome 8. Virtual microscopy proved to be easy to use and gave no significant differences from standard light microscopy. These results support the hypothesis that there is no significant difference between FISH and CISH techniques.

  11. Fluorescent layers for characterization of sectioning microscopy with coverslipuncorrected and water immersion objectives

    KAUST Repository

    Antonini, Andrea

    2014-01-01

    We describe a new method to generate thin (thickness > 200 nm) and ultrathin (thickness < 200 nm) fluorescent layers to be used for microscope optical characterization. These layers are obtained by ultramicrotomy sectioning of fluorescent acrylic slides. This technique generates sub-resolution sheets with high fluorescence emission and uniform thickness, permitting to determine the z-response of different optical sectioning systems. Compared to the state of the art, the here proposed technique allows shorter and easier manufacturing procedure. Moreover, these fluorescent layers can be employed without protective coverslips, allowing the use of the Sectioned Imaging Property (SIP)-chart characterization method with coverslip-uncorrected objectives, water immersion objectives and micro-endoscopes. © 2014 Optical Society of America.

  12. Single-Molecule Fluorescence Studies of Membrane Transporters Using Total Internal Reflection Microscopy.

    Science.gov (United States)

    Goudsmits, Joris M H; van Oijen, Antoine M; Slotboom, Dirk J

    2017-01-01

    Cells are delineated by a lipid bilayer that physically separates the inside from the outer environment. Most polar, charged, or large molecules require proteins to reduce the energetic barrier for passage across the membrane and to achieve transport rates that are relevant for life. Here, we describe techniques to visualize the functioning of membrane transport proteins with fluorescent probes at the single-molecule level. First, we explain how to produce membrane-reconstituted transporters with fluorescent labels. Next, we detail the construction of a microfluidic flow cell to image immobilized proteoliposomes on a total internal reflection fluorescence microscope. We conclude by describing the methods that are needed to analyze fluorescence movies and obtain useful single-molecule data. © 2017 Elsevier Inc. All rights reserved.

  13. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins.

    Science.gov (United States)

    Wegner, Waja; Ilgen, Peter; Gregor, Carola; van Dort, Joris; Mott, Alexander C; Steffens, Heinz; Willig, Katrin I

    2017-09-18

    The study of proteins in dendritic processes within the living brain is mainly hampered by the diffraction limit of light. STED microscopy is so far the only far-field light microscopy technique to overcome the diffraction limit and resolve dendritic spine plasticity at superresolution (nanoscopy) in the living mouse. After having tested several far-red fluorescent proteins in cell culture we report here STED microscopy of the far-red fluorescent protein mNeptune2, which showed best results for our application to superresolve actin filaments at a resolution of ~80 nm, and to observe morphological changes of actin in the cortex of a living mouse. We illustrate in vivo far-red neuronal actin imaging in the living mouse brain with superresolution for time periods of up to one hour. Actin was visualized by fusing mNeptune2 to the actin labels Lifeact or Actin-Chromobody. We evaluated the concentration dependent influence of both actin labels on the appearance of dendritic spines; spine number was significantly reduced at high expression levels whereas spine morphology was normal at low expression.

  14. Combined use of X-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    Science.gov (United States)

    Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.

    2017-06-01

    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.

  15. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm.

    Science.gov (United States)

    Chang, Bo-Jui; Perez Meza, Victor Didier; Stelzer, Ernst H K

    2017-05-09

    Light-sheet-based fluorescence microscopy (LSFM) features optical sectioning in the excitation process. It minimizes fluorophore bleaching as well as phototoxic effects and provides a true axial resolution. The detection path resembles properties of conventional fluorescence microscopy. Structured illumination microscopy (SIM) is attractive for superresolution because of its moderate excitation intensity, high acquisition speed, and compatibility with all fluorophores. We introduce SIM to LSFM because the combination pushes the lateral resolution to the physical limit of linear SIM. The instrument requires three objective lenses and relies on methods to control two counterpropagating coherent light sheets that generate excitation patterns in the focal plane of the detection lens. SIM patterns with the finest line spacing in the far field become available along multiple orientations. Flexible control of rotation, frequency, and phase shift of the perfectly modulated light sheet are demonstrated. Images of beads prove a near-isotropic lateral resolution of sub-100 nm. Images of yeast endoplasmic reticulum show that coherent structured illumination (csi) LSFM performs with physiologically relevant specimens.

  16. Direct visualization of the reaction transformation and signal amplification in a DNA molecular machine with total internal reflection fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Rui eRen

    2013-10-01

    Full Text Available In this study, as a proof of concept, the signal amplification in an artificial DNA molecular machine was directly visualized via total internal reflection fluorescence microscopy (TIRFM. The molecular machine brought about obvious morphology change in DNA nanostructures as well as signal amplifications. On one hand, through a triggered and autonomically repeated RCA, a DNA nano-complex featuring a locked circular DNA template (serving as raw feed was converted into a long periodically repeated strand, i.e. the RCA products. Furthermore, this RCA was repeated in three controllable reaction phases, bring about progressive signal amplification. It was testified that the RCA products (presented as long thread-like fluorescent objects can be easily distinguished from the inputted DNA probes (presented as fluorescent dots, thus the transformation in reaction can be visualized. Also, by quantitive counting of the aforementioned fluorescence objects, the progress of the reaction through the phases, along with time, and over the lysozyme concentration can be demonstrated through TIRFM visualization. Overall, it was demonstrated that TIRFM is an efficient approach to quantitively visualize the biochemical processes at single-molecule level.

  17. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    Science.gov (United States)

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  18. Noninvasive two-photon fluorescence microscopy imaging of mouse retina and RPE through the pupil of the eye

    Science.gov (United States)

    Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Hunter, Jennifer J.; Williams, David R.; Alexander, Nathan S.; Palczewski, Krzysztof

    2014-01-01

    Two-photon excitation microscopy (TPM) can image retinal molecular processes in vivo. Intrinsically fluorescent retinyl esters in sub-cellular structures called retinosomes are an integral part of the visual chromophore regeneration pathway. Fluorescent condensation products of all–trans–retinal accumulate in the eye with age and are also associated with age-related macular degeneration (AMD). Here we report repetitive, dynamic imaging of these compounds in live mice, through the pupil of the eye. Leveraging advanced adaptive optics we developed a data acquisition algorithm that permitted the identification of retinosomes and condensation products in the retinal pigment epithelium (RPE) by their characteristic localization, spectral properties, and absence in genetically modified or drug-treated mice. This imaging approach has the potential to detect early molecular changes in retinoid metabolism that trigger light and AMD-induced retinal defects and to assess the effectiveness of treatments for these conditions. PMID:24952647

  19. Evaluation of enamel by scanning electron microscopy green LED associated to hydrogen peroxide 35% for dental bleaching

    Science.gov (United States)

    Monteiro, Juliana S. C.; de Oliveira, Susana C. P. S.; Zanin, Fátima A. A.; Santos, Gustavo M. P.; Sampaio, Fernando J. P.; Gomes Júnior, Rafael Araújo; Gesteira, Maria F. M.; Vannier-Santos, Marcos A.; Pinheiro, Antônio Luiz B.

    2014-02-01

    Dental bleaching is a frequently requested procedure in clinical dental practice. The literature is contradictory regarding the effects of bleaching agents on both morphology and demineralization of enamel after bleaching. The aim of this study was to analyze by SEM the effect of 35% neutral hydrogen peroxide cured by green LED. Buccal surfaces of 15 pre-molars were sectioned and marked with a central groove to allow experimental and control groups on the same specimen. For SEM, 75 electron micrographs were evaluated by tree observers at 43X, 220X and 1000X. Quantitative analysis for the determination of the surface elemental composition of the samples through X-ray microanalysis by SEM was also performed. The protocol tested neither showed significant changes in mineral composition of the samples nor to dental enamel structure when compared to controls. SEM analysis allowed inferring that there were marked morphological differences between the enamel samples highlighting the need for the use of the same tooth in comparative morphological studies. The tested protocol did not cause morphological damage the enamel surface when compared to their respective controls.

  20. Scanning electron microscopy and fluorescent in situ hybridization of experimental Brachyspira (Serpulina) pilosicoli infection in growing pigs

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Møller, Kristian; Boye, Mette

    2000-01-01

    Two groups of six 8-week-old pigs were challenged with 1X10(9) cfu Brachyspira (Serpulina) pilosicoli or Serpulina intermedia daily for 3 consecutive days to study the pathology of porcine colonic spirochetosis by scanning electron microscopy (SEM) and fluorescent in situ hybridization (FISH......) with oligonucleotide probes targeting ribosomal RNA specific for B. pilosicoli and the genus Brachyspira/Serpulina. Six pigs served as noninoculated controls. The animals were euthanatized successively between postinoculation days 14 and 24. B. pilosicoli was reisolated in feces from all of the inoculated pigs...

  1. Uptake and localization of fluorescent labelled gold nanoparticles in living zebrafish (Danio rerio) using Light Sheet Microscopy

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Asmonaite, G.; Jolk, R.

    2015-01-01

    Despite nanoparticles being used in many different products and applications, the effects and fate in the environment are still not well understood. Uptake of nanoparticles into cells has been shown in vitro and in vivo. However, it is challenging to find suitable methods to identify uptake...... and determine localization on a whole organism level. Furthermore, methods used to identify nanoparticle uptake have been associated with artefacts induced by sample preparation including staining methods for electron microscopy.  This study used Fluorescent Light Sheet Microscopy (FLSM) to determine uptake...... to the particles through the diet or the water phase in a series of separate experiments. In the dietary exposure experiments Artemia salina were exposed to 1 mg Au/L for 24h before being fed to D. rerio. For exposure through the water phase 1 mg Au/L was added directly to aquaria holding the fish and non...

  2. Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings.

    Science.gov (United States)

    Burgio, Lucia; Clark, Robin J H; Hark, Richard R

    2010-03-30

    Italian medieval and Renaissance manuscript cuttings and miniatures from the Victoria and Albert Museum were analyzed by Raman microscopy to compile a database of pigments used in different periods and different Italian regions. The palette identified in most manuscripts and cuttings was found to include lead white, gypsum, azurite, lazurite, indigo, malachite, vermilion, red lead, lead tin yellow (I), goethite, carbon, and iron gall ink. A few of the miniatures, such as the historiated capital "M" painted by Gerolamo da Cremona and the Petrarca manuscript by Bartolomeo Sanvito, are of exceptional quality and were analyzed extensively; some contained unusual materials. The widespread usage of iron oxides such as goethite and hematite as minor components of mixtures with azurite is particularly notable. The use of a needle-shaped form of iron gall ink as a pigment rather than a writing material was established by both Raman microscopy and x-ray fluorescence spectroscopy for the Madonna and Child by Franco de' Russi.

  3. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence.

    Science.gov (United States)

    Sinefeld, David; Paudel, Hari P; Ouzounov, Dimitre G; Bifano, Thomas G; Xu, Chris

    2015-11-30

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity.

  4. Combining in-cell NMR and X-ray fluorescence microscopy to reveal the intracellular maturation states of human superoxide dismutase 1.

    Science.gov (United States)

    Luchinat, E; Gianoncelli, A; Mello, T; Galli, A; Banci, L

    2015-01-11

    An integrated approach which combines in-cell NMR spectroscopy with optical and X-ray fluorescence microscopy was developed to describe the intracellular maturation state of human Cu,Zn-SOD1. Microscopy data show a correlation between the intracellular levels of SOD1 and the content of zinc, corresponding to zinc binding to SOD1 observed by in-cell NMR.

  5. Localization of protein-protein interactions among three fluorescent proteins in a single living cell: three-color FRET microscopy

    Science.gov (United States)

    Sun, Yuansheng; Booker, Cynthia F.; Day, Richard N.; Periasamy, Ammasi

    2009-02-01

    Förster resonance energy transfer (FRET) methodology has been used for over 30 years to localize protein-protein interactions in living specimens. The cloning and modification of various visible fluorescent proteins (FPs) has generated a variety of new probes that can be used as FRET pairs to investigate the protein associations in living cells. However, the spectral cross-talk between FRET donor and acceptor channels has been a major limitation to FRET microscopy. Many investigators have developed different ways to eliminate the bleedthrough signals in the FRET channel for one donor and one acceptor. We developed a novel FRET microscopy method for studying interactions among three chromophores: three-color FRET microscopy. We generated a genetic construct that directly links the three FPs - monomeric teal FP (mTFP), Venus and tandem dimer Tomato (tdTomato), and demonstrated the occurrence of mutually dependent energy transfers among the three FPs. When expressed in cells and excited with the 458 nm laser line, the mTFP-Venus-tdTomato fusion proteins yielded parallel (mTFP to Venus and mTFP to tdTomato) and sequential (mTFP to Venus and then to tdTomato) energy transfer signals. To quantify the FRET signals in the three-FP system in a single living cell, we developed an algorithm to remove all the spectral cross-talk components and also to separate different FRET signals at a same emission channel using the laser scanning spectral imaging and linear unmixing techniques on the Zeiss510 META system. Our results were confirmed with fluorescence lifetime measurements and using acceptor photobleaching FRET microscopy.

  6. An assessment of the importance ofexposure routes to the uptake and internal localisation of fluorescent nanoparticles in zebrafish (Danio rerio), using light sheet microscopy

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Ašmonaitė, G; Jølck, Rasmus Irming

    2017-01-01

    A major challenge in nanoecotoxicology is finding suitable methods to determine the uptake and localisation of nanoparticles on a whole-organism level. Some uptake methods have been associated with artefacts induced by sample preparation, including staining for electron microscopy. This study used...... light sheet microscopy (LSM) to define the uptake and localisation of fluorescently labelled nanoparticles in living organisms with minimal sample preparation. Zebrafish (Danio rerio) were exposed to fluorescent gold nanoparticles (Au NPs) and fluorescent polystyrene NPs via aqueous or dietary exposure...

  7. Embryonic lineage analysis using three-dimensional, time-lapse in-vivo fluorescent microscopy

    Science.gov (United States)

    Minden, Jonathan; Kam, Zvi; Agard, David A.; Sedat, John W.; Alberts, Bruce

    1990-08-01

    Drosophila melanogaster has become one of the most extensively studied organisms because of its amenability to genetic analysis. Unfortunately, the biochemistry and cell biology ofDrosophila has lagged behind. To this end we have been microinjecting fluorescently labelled proteins into the living embryo and observing the behavior of these proteins to determine their role in the cell cycle and development. Imaging of these fluorescent probes is an extremely important element to this form of analysis. We have taken advantage of the sensitivity and well behaved characteristics of the charge coupled device (CCD) camera in conjunction with digital image enhancement schemes to produce highly accurate images of these fluorescent probes in vivo. One of our major goals is to produce a detailed map of cell fate so that we can understand how fate is determined and maintained. In order produce such a detailed map, protocols for following the movements and mitotic behavior of a large number of cells in three dimensions over relatively long periods of time were developed. We will present our results using fluorescently labelled histone proteins as a marker for nuclear location1. In addition, we will also present our initial results using a photoactivatable analog of fluorescein to mark single cells so that their long range fate can be unambiguously determined.

  8. Investigation of Membrane Receptors' Oligomers Using Fluorescence Resonance Energy Transfer and Multiphoton Microscopy in Living Cells

    Science.gov (United States)

    Mishra, Ashish K.

    Investigating quaternary structure (oligomerization) of macromolecules (such as proteins and nucleic acids) in living systems (in vivo) has been a great challenge in biophysics, due to molecular diffusion, fluctuations in several biochemical parameters such as pH, quenching of fluorescence by oxygen (when fluorescence methods are used), etc. We studied oligomerization of membrane receptors in living cells by means of Fluorescence (Forster) Resonance Energy Transfer (FRET) using fluorescent markers and two photon excitation fluorescence micro-spectroscopy. Using suitable FRET models, we determined the stoichiometry and quaternary structure of various macromolecular complexes. The proteins of interest for this work are : (1) sigma-1 receptor and (2) rhodopsin, are described as below. (1) Sigma-1 receptors are molecular chaperone proteins, which also regulate ion channels. S1R seems to be involved in substance abuse, as well as several diseases such as Alzheimer's. We studied S1R in the presence and absence of its ligands haloperidol (an antagonist) and pentazocine +/- (an agonist), and found that at low concentration they reside as a mixture of monomers and dimers and that they may form higher order oligomers at higher concentrations. (2) Rhodopsin is a prototypical G protein coupled receptor (GPCR) and is directly involved in vision. GPCRs form a large family of receptors that participate in cell signaling by responding to external stimuli such as drugs, thus being a major drug target (more than 40% drugs target GPCRs). Their oligomerization has been largely controversial. Understanding this may help to understand the functional role of GPCRs oligomerization, and may lead to the discovery of more drugs targeting GPCR oligomers. It may also contribute toward finding a cure for Retinitis Pigmentosa, which is caused by a mutation (G188R) in rhodopsin, a disease which causes blindness and has no cure so far. Comparing healthy rhodopsin's oligomeric structure with that

  9. Intracellular distribution and stability of a luminescent rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wedding, Jason L.; Harris, Hugh H.; Bader, Christie A.; Plush, Sally E.; Mak, Rachel

    2016-01-01

    Optical fluorescence microscopy was used in conjunction with X-ray fluorescence microscopy to monitor the stability and intracellular distribution of the luminescent rhenium(I) complex fac-[Re(CO) 3 (phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex, in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence techniques. Furthermore, X-ray fluorescence also showed that the Re-I complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.

  10. Referencing techniques for high-speed confocal fluorescence lifetime imaging microscopy (FLIM) based on analog mean-delay (AMD) method

    Science.gov (United States)

    Kim, Byungyeon; Lee, Minsuk; Park, Byungjun; Lee, Seungrag; Won, Youngjae

    2017-02-01

    Analog mean-delay (AMD) method is a new powerful alternative method in determining the lifetime of a fluorescence molecule for high-speed confocal fluorescence lifetime imaging microscopy (FLIM). Even though the photon economy and the lifetime precision of the AMD method are proven to be as good as the state-of-the-art time-correlated single photon counting (TC-SPC) method, there have been some speculations and concerns about the accuracy of this method. In the AMD method, the temporal waveform of an emitted fluorescence signal is directly recorded with a slow digitizer whose bandwidth is much lower than the temporal resolution of lifetime to be measured. We found that the drifts and the fluctuations of the absolute zero position in a measured temporal waveform are the major problems in the AMD method. As a referencing technique, we already proposed dual-channel waveform measurement scheme that may suppress these errors. In this study, we have demonstrated real-time confocal AMD-FLIM system with dual-channel waveform measurement technique.

  11. Microscopie de fluorescence de protéines autofluorescentes uniques pour la biologie cellulaire

    Science.gov (United States)

    Cognet, Laurent; Coussen, Françoise; Choquet, Daniel; Lounis, Brahim

    In this paper we review the applicability of autofluorescent proteins for single-molecule imaging in biology. The photophysical characteristics of several mutants of the Green Fluorescent Protein (GFP) and those of DsRed are compared and critically discussed for their use in cellular biology. The alternative use of two-photon excitation at the single-molecule level or Fluorescence Correlation Spectroscopy is envisaged for the study of individual autofluorescent proteins. Single-molecule experiments performed in live cells using eGFP and preferably eYFP fusion proteins are reviewed. Finally, the first use at the single-molecule level of citrine, a more photostable variant of the eYFP is reported when fused to a receptor for neurotransmitter in live cells. To cite this article: L. Cognet et al., C. R. Physique 3 (2002) 645-656.

  12. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT.

    Science.gov (United States)

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J; Hell, Stefan W; Hufnagel, Lars

    2016-03-29

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs.

  13. Statistical model of intensity noise in con focal fluorescence microscopy images

    International Nuclear Information System (INIS)

    Montereali, R.M.; Almaviva, S.; Franzini, I.; Somma, F.

    2008-01-01

    The visible photoluminescence of aggregate F2 and F3+ color centers in Lithium Fluoride (LiF) thin layers, grown by thermal evaporation on various substrates (either crystalline or not) with different thicknesses, can be efficiently observed by using an optical con focal fluorescence microscope and a laser pump with emission wavelength tuned at about 450 nm. Starting from con focal fluorescence images of uniformly colored LiF samples, an automatic routine for the estimation of photoluminescence intensity noise has been developed at the Solid State Laser Laboratory and Spectroscopy of the ENEA Research Center in Frascati. We reported experimental results about application of that routine to the photoluminescence of LiF thin films, uniformly irradiated with an X-ray tube with energy spectrum centered on the Cu K? emission line (8,03 keV), at the CNR-IFN in Rome, that allow to identify a suitable statistical model for his description [it

  14. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy

    Science.gov (United States)

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

    2013-01-01

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  15. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo.

    Science.gov (United States)

    Yaseen, Mohammad A; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Uhlirova, Hana; Devor, Anna; Boas, David A; Sakadžić, Sava

    2017-05-01

    Evaluating cerebral energy metabolism at microscopic resolution is important for comprehensively understanding healthy brain function and its pathological alterations. Here, we resolve specific alterations in cerebral metabolism in vivo in Sprague Dawley rats utilizing minimally-invasive 2-photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence. Time-resolved fluorescence lifetime measurements enable distinction of different components contributing to NADH autofluorescence. Ostensibly, these components indicate different enzyme-bound formulations of NADH. We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in glycolytic and oxidative metabolism. Classification models were developed with the experimental data and used to predict the metabolic impairments induced during separate experiments involving bicuculline-induced seizures. The models consistently predicted that prolonged focal seizure activity results in impaired activity in the electron transport chain, likely the consequence of inadequate oxygen supply. 2P-FLIM observations of cerebral NADH will help advance our understanding of cerebral energetics at a microscopic scale. Such knowledge will aid in our evaluation of healthy and diseased cerebral physiology and guide diagnostic and therapeutic strategies that target cerebral energetics.

  16. Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores.

    Science.gov (United States)

    Ferrand, Patrick; Gasecka, Paulina; Kress, Alla; Wang, Xiao; Bioud, Fatma-Zohra; Duboisset, Julien; Brasselet, Sophie

    2014-06-03

    The orientational distribution of fluorophores is an important reporter of the structure and function of their molecular environment. Although this distribution affects the fluorescence signal under polarized-light excitation, its retrieval is limited to a small number of parameters. Because of this limitation, the need for a geometrical model (cone, Gaussian, etc.) to effect such retrieval is often invoked. In this work, using a symmetry decomposition of the distribution function of the fluorescent molecules, we show that polarized two-photon fluorescence based on tunable linear dichroism allows for the retrieval of this distribution with reasonable fidelity and without invoking either an a priori knowledge of the system to be investigated or a geometrical model. We establish the optimal level of detail to which any distribution can be retrieved using this technique. As applied to artificial lipid vesicles and cell membranes, the ability of this method to identify and quantify specific structural properties that complement the more traditional molecular-order information is demonstrated. In particular, we analyze situations that give access to the sharpness of the angular constraint, and to the evidence of an isotropic population of fluorophores within the focal volume encompassing the membrane. Moreover, this technique has the potential to address complex situations such as the distribution of a tethered membrane protein label in an ordered environment. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Widefield in vivo spectral and fluorescence imaging microscopy of microvessel blood supply and oxygenation

    Science.gov (United States)

    Lee, Jennifer; Kozikowski, Raymond; Wankhede, Mamta; Sorg, Brian S.

    2011-02-01

    Abnormal microvascular function and angiogenesis are key components of various diseases that can contribute to the perpetuation of the disease. Several skin diseases and ophthalmic pathologies are characterized by hypervascularity, and in cancer the microvasculature of tumors is structurally and functionally abnormal. Thus, the microvasculature can be an important target for treatment of diseases characterized by abnormal microvasculature. Motivated largely by cancer research, significant effort has been devoted to research on drugs that target the microvasculature. Several vascular targeting drugs for cancer therapy are in clinical trials and approved for clinical use, and several off-label uses of these drugs have been reported for non-cancer diseases. The ability to image and measure parameters related to microvessel function preclinically in laboratory animals can be useful for development and comparison of vascular targeting drugs. For example, blood supply time measurements give information related to microvessel morphology and can be measured with first-pass fluorescence imaging. Hemoglobin saturation measurements give an indication of microvessel oxygen transport and can be measured with spectral imaging. While each measurement individually gives some information regarding microvessel function, the measurements together may yield even more information since theoretically microvessel morphology can influence microvessel oxygenation, especially in metabolically active tissue like tumors. However, these measurements have not yet been combined. In this study, we report the combination of blood supply time imaging and hemoglobin saturation imaging of microvessel networks in tumors using widefield fluorescence and spectral imaging, respectively. The correlation between the measurements in a mouse mammary tumor is analyzed.

  18. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Tabarin, Thibault [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Garvey, Megan; Pade, Corinna [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Rossy, Jérémie [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Monaghan, Paul; Hyatt, Alex [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Böcking, Till [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Leis, Andrew [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Gaus, Katharina, E-mail: k.gaus@unsw.edu.au [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Mak, Johnson, E-mail: j.mak@deakin.edu.au [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia)

    2015-12-15

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  19. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    International Nuclear Information System (INIS)

    Pham, Son; Tabarin, Thibault; Garvey, Megan; Pade, Corinna; Rossy, Jérémie; Monaghan, Paul; Hyatt, Alex; Böcking, Till; Leis, Andrew; Gaus, Katharina; Mak, Johnson

    2015-01-01

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  20. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    Science.gov (United States)

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  1. Total internal reflection fluorescence anisotropy imaging microscopy: setup, calibration, and data processing for protein polymerization measurements in living cells

    Science.gov (United States)

    Ströhl, Florian; Wong, Hovy H. W.; Holt, Christine E.; Kaminski, Clemens F.

    2018-01-01

    Fluorescence anisotropy imaging microscopy (FAIM) measures the depolarization properties of fluorophores to deduce molecular changes in their environment. For successful FAIM, several design principles have to be considered and a thorough system-specific calibration protocol is paramount. One important calibration parameter is the G factor, which describes the system-induced errors for different polarization states of light. The determination and calibration of the G factor is discussed in detail in this article. We present a novel measurement strategy, which is particularly suitable for FAIM with high numerical aperture objectives operating in TIRF illumination mode. The method makes use of evanescent fields that excite the sample with a polarization direction perpendicular to the image plane. Furthermore, we have developed an ImageJ/Fiji plugin, AniCalc, for FAIM data processing. We demonstrate the capabilities of our TIRF-FAIM system by measuring β -actin polymerization in human embryonic kidney cells and in retinal neurons.

  2. Efficiency investigation of an offshore deoiling hydrocyclone using real-time fluorescence- and microscopy-based monitors

    DEFF Research Database (Denmark)

    Hansen, Dennis S.; Bram, Mads Valentin; Yang, Zhenyu

    2017-01-01

    Offshore oil & gas production is facing an increasing challenge as the water fraction from the production wells rises over time. It is not uncommon that the extracted mixture contains a water-cut of more than 90%. The current North Sea discharge legislation states that the dispersed oil...... concentration in water must be less than 30 parts per million (ppm). Consequently, the discharge ports are sampled two times per day and analyzed using the OSPAR recommended GC-FID method. However, the variations of Oil-in-Water (OiW) concentration between sampling time points are unknown and could exceed...... products. The obtained results indicate that the instrument based on fluorescence technology can provide reasonably fast, reliable, and accurate OiW concentration measurement, while the instrument based on microscopy technology can provide fast and reasonable measurement of the oil droplet's size...

  3. Characterization of pigments applied on archaeological material from Chincha's Culture by x-rays fluorescence and transmission electronic microscopy

    International Nuclear Information System (INIS)

    Lopez M, Alcides; Olivera, Paula

    2007-01-01

    The elementary characterization of some pigments applied in the decoration of recipients used by our ancestors of the Chincha Culture by Energy dispersive X-ray fluorescence (EDXRF)method was allowed. Additionally, the morphological and crystalline characterization by Transmission Electronic Microscopy (TEM) method has been possible. The results have allowed identifying the presence of mercury sulphur (HgS) (cinnabar) in the red pigment on the 'mate'; the black and white pigments are constituted by materials of organic aspect; in the case the dark brown one they are constituted by organic matter and ferric oxide. This work also demonstrates that a portable EDXRF spectrometer is the most suitable for the study of pieces of our cultural patrimony, mainly of those that are difficult to transport from an archaeological place or museum to an analytic laboratory by reason of its dimensions and conservation conditions. (author)

  4. A topical fluorescent analogue for virtual hematoxylin and eosin histology in point-of-care ex vivo microscopy

    Science.gov (United States)

    Elfer, Katherine; Sholl, Andrew; Miller, Christopher; Brown, J. Quincy

    2015-07-01

    Histological assessment of freshly removed tissue specimens requires accurate and fast analysis in clinical procedures such as diagnostic biopsy and surgical tumor resection. Current histological assessment methods are either time-consuming or damage the tissue beyond the ability to re-analyze post-procedure. We demonstrate a novel dual-stain fluorescent analogue to brightfield Hematoxylin and Eosin for in-procedure histopathology that is both time-efficient and preserves the analyzed tissue for later analysis. H&E-like images are created from the combination of DRAQ5 and Eosin applied to human prostate tissue and animal muscle tissue under confocal microscopy. D&E images are pseduocolored to match H&E coloring, showing near-identical features to brightfield H&E of the same tissue. The histological accuracy, short staining time, and tissue preservation aspects of this dual-stain technique demonstrates its potential to be adopted for use in point-of-care pathology.

  5. Identification of malaria parasites by fluorescence microscopy and acridine orange staining

    Science.gov (United States)

    Shute, G. T.; Sodeman, T. M.

    1973-01-01

    The need for a technique that is more sensitive than the use of Romanowsky-stained thick blood films for detecting malaria parasites at low concentration in the blood is well recognized. One of the more promising methods appeared to be fluorochrome staining with acridine orange. However, reports on the efficacy of the technique were contradictory and it was not clear to what extent blood films taken under survey conditions would contain fluorescing artefacts that might confuse diagnosis. An investigation indicated that, provided reasonable care was taken, blood films made under survey conditions contained few confusing artefacts. However, it was found that, while acridine orange staining might have a slight advantage when large malaria parasites were present, it was inferior to routine Romanowsky staining for the detection of young trophozoites, the inferiority becoming more pronounced as the parasite concentration decreased. PMID:4130021

  6. Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics.

    Science.gov (United States)

    Bortoletto, Favio; Bonoli, Carlotta; Panizzolo, Paolo; Ciubotaru, Catalin D; Mammano, Fabio

    2011-01-01

    Graded Index (GRIN) rod microlenses are increasingly employed in the assembly of optical probes for microendoscopy applications. Confocal, two-photon and optical coherence tomography (OCT) based on GRIN optical probes permit in-vivo imaging with penetration depths into tissue up to the centimeter range. However, insertion of the probe can be complicated by the need of several alignment and focusing mechanisms along the optical path. Furthermore, resolution values are generally not limited by diffraction, but rather by optical aberrations within the endoscope probe and feeding optics. Here we describe a multiphoton confocal fluorescence imaging system equipped with a compact objective that incorporates a GRIN probe and requires no adjustment mechanisms. We minimized the effects of aberrations with optical compensation provided by a low-order electrostatic membrane mirror (EMM) inserted in the optical path of the confocal architecture, resulting in greatly enhanced image quality.

  7. Comparing in vivo pump–probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions

    Science.gov (United States)

    Wilson, Jesse W.; Degan, Simone; Gainey, Christina S.; Mitropoulos, Tanya; Simpson, Mary Jane; Zhang, Jennifer Y.; Warren, Warren S.

    2014-01-01

    Abstract. We demonstrate a multimodal approach that combines a pump–probe with confocal reflectance and multiphoton autofluorescence microscopy. Pump–probe microscopy has been proven to be of great value in analyzing thin tissue sections of pigmented lesions, as it produces molecular contrast which is inaccessible by other means. However, the higher optical intensity required to overcome scattering in thick tissue leads to higher-order nonlinearities in the optical response of melanin (e.g., two-photon pump and one-photon probe) that present additional challenges for interpreting the data. We show that analysis of pigment composition in vivo must carefully account for signal terms that are nonlinear with respect to the pump and probe intensities. We find that pump–probe imaging gives useful contrast for pigmented structures over a large range of spatial scales (100  μm to 1 cm), making it a potentially useful tool for tracking the progression of pigmented lesions without the need to introduce exogenous contrast agents. PMID:25415567

  8. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  9. Developing a New Biophysical Tool to Combine Magneto-Optical Tweezers with Super-Resolution Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Zhaokun Zhou

    2015-06-01

    Full Text Available We present a novel experimental setup in which magnetic and optical tweezers are combined for torque and force transduction onto single filamentous molecules in a transverse configuration to allow simultaneous mechanical measurement and manipulation. Previously we have developed a super-resolution imaging module which, in conjunction with advanced imaging techniques such as Blinking assisted Localisation Microscopy (BaLM, achieves localisation precision of single fluorescent dye molecules bound to DNA of ~30 nm along the contour of the molecule; our work here describes developments in producing a system which combines tweezing and super-resolution fluorescence imaging. The instrument also features an acousto-optic deflector that temporally divides the laser beam to form multiple traps for high throughput statistics collection. Our motivation for developing the new tool is to enable direct observation of detailed molecular topological transformation and protein binding event localisation in a stretching/twisting mechanical assay that previously could hitherto only be deduced indirectly from the end-to-end length variation of DNA. Our approach is simple and robust enough for reproduction in the lab without the requirement of precise hardware engineering, yet is capable of unveiling the elastic and dynamic properties of filamentous molecules that have been hidden using traditional tools.

  10. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, Daniel J.; Buranda, T. (University of New Mexico, Albuquerque, NM); Burns, Alan Richard

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.

  11. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2010-09-01

    The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.

  12. Application of scanning electron microscopy and ultraviolet fluorescence to a study of Chattanooga Shale

    International Nuclear Information System (INIS)

    Harris, L.A.; Kopp, O.C.; Crouse, R.S.

    1982-01-01

    Microanalytical techniques such as scanning electron microscopy, energy-dispersive x-ray analysis, and electron-beam microprobe analysis have been shown to be ideal for determining the host phases of the minor and trace elements in the Chattanooga shale. Positive correlations were found between pyrite and organic constituents. However, these observations provided no evidence that microorganisms acted as hosts for pyrite framboids. Interestingly, appreciable organic sulfur is still present, suggesting that the sulfur used for the formation of pyrite must have been derived mostly from other sources. It may be that the sulfate-reducing bacteria had an affinity for organic matter and that the organic fragments acted as substrates for pyrite growth

  13. Mapping molecular assemblies with fluorescence microscopy and object-based spatial statistics.

    Science.gov (United States)

    Lagache, Thibault; Grassart, Alexandre; Dallongeville, Stéphane; Faklaris, Orestis; Sauvonnet, Nathalie; Dufour, Alexandre; Danglot, Lydia; Olivo-Marin, Jean-Christophe

    2018-02-15

    Elucidating protein functions and molecular organisation requires to localise precisely single or aggregated molecules and analyse their spatial distributions. We develop a statistical method SODA (Statistical Object Distance Analysis) that uses either micro- or nanoscopy to significantly improve on standard co-localisation techniques. Our method considers cellular geometry and densities of molecules to provide statistical maps of isolated and associated (coupled) molecules. We use SODA with three-colour structured-illumination microscopy (SIM) images of hippocampal neurons, and statistically characterise spatial organisation of thousands of synapses. We show that presynaptic synapsin is arranged in asymmetric triangle with the 2 postsynaptic markers homer and PSD95, indicating a deeper localisation of homer. We then determine stoichiometry and distance between localisations of two synaptic vesicle proteins with 3D-STORM. These findings give insights into the protein organisation at the synapse, and prove the efficiency of SODA to quantitatively assess the geometry of molecular assemblies.

  14. Experimental setup combining digital holographic microscopy (DHM) and fluorescence imaging to study gold nanoparticle mediated laser manipulation

    Science.gov (United States)

    Antonopoulos, Georgios C.; Rakoski, Mirko S.; Steltner, Benjamin; Kalies, Stefan; Ripken, Tammo; Meyer, Heiko

    2015-03-01

    Our research combines Digital Holographic Microscopy (DHM) and ˛uorescence microscopy to study the basic mechanisms of gold nanoparticle mediated laser manipulation. Herein we describe the technical aspects of the setup and holographic image reconstruction. Furthermore, results pertaining to cell volume change and calcium response of cells in laser manipulation will be presented and discussed. For the reconstruction of phase images from fringe image data, a phase unwrapping algorithm is presented that shows great potential to cope with the vast amount of data that was captured. This algorithm is a hybrid between a tile unwrapping technique and a path following unwrapper. It combines the robustness of a path following algorithm and a parallelizable tile unwrapping preprocessing step. The experimental setup enables simultaneous acquisition of ˛uorescence and phase images. For cell manipulation, a picosecond laser was coupled into the setup and weakly focused on cells incubated with gold nanoparticles. To study the cell volume change in the ˝rst minute, phase images were captured with a frame rate of 33 fps. Fluorescence images yielded the calcium signal of the cells as well as the dynamics of the F-actin cytoskeleton after irradiation. The setup is suitable to study fast changes in biophysical and morphological para

  15. Molecular shape, architecture, and size of P2X4 receptors determined using fluorescence resonance energy transfer and electron microscopy.

    Science.gov (United States)

    Young, Mark T; Fisher, James A; Fountain, Samuel J; Ford, Robert C; North, R Alan; Khakh, Baljit S

    2008-09-19

    P2X receptors are ATP-gated nonselective cation channels with important physiological roles. However, their structures are poorly understood. Here, we analyzed the architecture of P2X receptors using fluorescence resonance energy transfer (FRET) microscopy and direct structure determination using electron microscopy. FRET efficiency measurements indicated that the distance between the C-terminal tails of P2X(4) receptors was 5.6 nm. Single particle analysis of purified P2X(4) receptors was used to determine the three-dimensional structure at a resolution of 21A; the orientation of the particle with respect to the membrane was assigned by labeling the intracellular C termini with 1.8-nm gold particles and the carbohydrate-rich ectodomain with lectin. We found that human P2X(4) is a globular torpedo-like molecule with an approximate volume of 270 nm(3) and a compact propeller-shaped ectodomain. In this structure, the distance between the centers of the gold particles was 6.1 nm, which closely matches FRET data. Thus, our data provide the first views of the architecture, shape, and size of single P2X receptors, furthering our understanding of this important family of ligand-gated ion channels.

  16. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    Science.gov (United States)

    Zhang, Xianzeng; Geng, Yang; Ye, Qing; Zhan, Zhenlin; Xie, Shusen

    2013-11-01

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy.

  17. Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy.

    Science.gov (United States)

    Schliehe, Christopher; Schliehe, Constanze; Thiry, Marc; Tromsdorf, Ulrich I; Hentschel, Joachim; Weller, Horst; Groettrup, Marcus

    2011-05-10

    Biodegradable poly-(D,L-lactide-co-glycolide) microspheres (PLGA-MS) are approved as a drug delivery system in humans and represent a promising antigen delivery device for immunotherapy against cancer. Immune responses following PLGA-MS vaccination require cross-presentation of encapsulated antigen by professional antigen presenting cells (APCs). While the potential of PLGA-MS as vaccine formulations is well established, the intracellular pathway of cross-presentation following phagocytosis of PLGA-MS is still under debate. A part of the controversy stems from the difficulty in unambiguously identifying PLGA-MS within cells. Here we show a novel strategy for the efficient encapsulation of inorganic nanocrystals (NCs) into PLGA-MS as a tool to study their intracellular localization. We microencapsulated NCs as an electron dense marker to study the intracellular localization of PLGA-MS by transmission electron microscopy (TEM) and as fluorescent labels for confocal laser scanning microscopy. Using this method, we found PLGA-MS to be rapidly taken up by dendritic cells and macrophages. Co-localization with the lysosomal marker LAMP1 showed a lysosomal storage of PLGA-MS for over two days after uptake, long after the initiation of cross-presentation had occurred. Our data argue against an escape of PLGA-MS from the endosome as has previously been suggested as a mechanism to facilitate cross-presentation of PLGA-MS encapsulated antigen. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Volumetric label-free imaging and 3D reconstruction of mammalian cochlea based on two-photon excitation fluorescence microscopy

    International Nuclear Information System (INIS)

    Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen; Geng, Yang; Ye, Qing

    2013-01-01

    The visualization of the delicate structure and spatial relationship of intracochlear sensory cells has relied on the laborious procedures of tissue excision, fixation, sectioning and staining for light and electron microscopy. Confocal microscopy is advantageous for its high resolution and deep penetration depth, yet disadvantageous due to the necessity of exogenous labeling. In this study, we present the volumetric imaging of rat cochlea without exogenous dyes using a near-infrared femtosecond laser as the excitation mechanism and endogenous two-photon excitation fluorescence (TPEF) as the contrast mechanism. We find that TPEF exhibits strong contrast, allowing cellular and even subcellular resolution imaging of the cochlea, differentiating cell types, visualizing delicate structures and the radial nerve fiber. Our results further demonstrate that 3D reconstruction rendered with z-stacks of optical sections enables better revealment of fine structures and spatial relationships, and easily performed morphometric analysis. The TPEF-based optical biopsy technique provides great potential for new and sensitive diagnostic tools for hearing loss or hearing disorders, especially when combined with fiber-based microendoscopy. (paper)

  19. Effect of light-emitting diode (LED) vs. fluorescent (FL) lighting on laying hens in aviary hen houses: Part 2 - Egg quality, shelf-life and lipid composition.

    Science.gov (United States)

    Long, H; Zhao, Y; Xin, H; Hansen, H; Ning, Z; Wang, T

    2016-01-01

    In this 60-wk study, egg quality, egg shelf-life, egg cholesterol content, total yolk lipids, and yolk fatty acid composition of eggs produced by Dekalb white laying hens in commercial aviary houses with either light-emitting diode (LED) or fluorescent (FL) lighting were compared. All parameters were measured at 27, 40, and 60 wk of age, except for egg shelf-life, which was compared at 50 wk of age. The results showed that, compared to the FL regimen, the LED regimen resulted in higher egg weight, albumen height, and albumen weight at 27 wk of age, thicker shells at 40 wk of age, but lower egg weight at 60 wk of age. Egg quality change was similar between the lighting regimens during the 62-d egg storage study, indicating that LED lighting did not influence egg shelf-life. Eggs from both lighting regimens had similar cholesterol content. However, cholesterol concentration of the yolk (15.9 to 21.0 mg cholesterol/g wet weight yolk) observed in this study was higher than that of United States Department of Agriculture (USDA) database (10.85 mg/g). No significant differences in total lipids or fatty acid composition of the yolks were detected between the two lighting regimens. © 2015 Poultry Science Association Inc.

  20. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data.

    Science.gov (United States)

    Amat, Fernando; Lemon, William; Mossing, Daniel P; McDole, Katie; Wan, Yinan; Branson, Kristin; Myers, Eugene W; Keller, Philipp J

    2014-09-01

    The comprehensive reconstruction of cell lineages in complex multicellular organisms is a central goal of developmental biology. We present an open-source computational framework for the segmentation and tracking of cell nuclei with high accuracy and speed. We demonstrate its (i) generality by reconstructing cell lineages in four-dimensional, terabyte-sized image data sets of fruit fly, zebrafish and mouse embryos acquired with three types of fluorescence microscopes, (ii) scalability by analyzing advanced stages of development with up to 20,000 cells per time point at 26,000 cells min(-1) on a single computer workstation and (iii) ease of use by adjusting only two parameters across all data sets and providing visualization and editing tools for efficient data curation. Our approach achieves on average 97.0% linkage accuracy across all species and imaging modalities. Using our system, we performed the first cell lineage reconstruction of early Drosophila melanogaster nervous system development, revealing neuroblast dynamics throughout an entire embryo.

  1. Diagnosis of malaria by acridine orange fluorescent microscopy in an endemic area of Venezuela

    Directory of Open Access Journals (Sweden)

    Irene Bosch

    1996-02-01

    Full Text Available Fluorescent (acridine orange microscopical examination of capillary centrifuged blood (quantitative buffy coat [QBC®] analysis and Giemsa stained thick blood smears (GTS were compared for diagnosis of malaria in blood specimens from adults living in malaria transmission areas of the States of Bolivar and Amazonas in southeastern and south Venezuela, respectively. Of a total of 198 GTS examined, 95 subjects (48% showed parasitaemia. Among the 95 blood films with a positive GTS, 94 were judged positive by the QBC. However, positive QBC tubes were found in 29 out of 103 blood specimens with a negative GTS. Thus, relative to a GTS standard, the sensitivity and specificity of the QBC-test was 99.2% and 72%, respectively. Young trophozoites of Plasmodium vivax and P. falciparum could not be distinguished with certainty. It is confirmed that the QBC offers many advantages compared with the standard diagnosis of malaria parasites, specifically in the speed of staining and ease of interpretation. However, in places where P. falciparum and P. vivax occur, species and stage differentiation should be confirmed with the GTS.

  2. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    McCall, Brian; Olsen, Randall J; Nelles, Nicole J; Williams, Dawn L; Jackson, Kevin; Richards-Kortum, Rebecca; Graviss, Edward A; Tkaczyk, Tomasz S

    2014-03-01

    A prototype miniature objective that was designed for a point-of-care diagnostic array microscope for detection of Mycobacterium tuberculosis and previously fabricated and presented in a proof of concept is evaluated for its effectiveness in detecting acid-fast bacteria. To evaluate the ability of the microscope to resolve submicron features and details in the image of acid-fast microorganisms stained with a fluorescent dye, and to evaluate the accuracy of clinical diagnoses made with digital images acquired with the objective. The lens prescription data for the microscope design are presented. A test platform is built by combining parts of a standard microscope, a prototype objective, and a digital single-lens reflex camera. Counts of acid-fast bacteria made with the prototype objective are compared to counts obtained with a standard microscope over matched fields of view. Two sets of 20 smears, positive and negative, are diagnosed by 2 pathologists as sputum smear positive or sputum smear negative, using both a standard clinical microscope and the prototype objective under evaluation. The results are compared to a reference diagnosis of the same sample. More bacteria are counted in matched fields of view in digital images taken with the prototype objective than with the standard clinical microscope. All diagnostic results are found to be highly concordant. An array microscope built with this miniature lens design will be able to detect M tuberculosis with high sensitivity and specificity.

  3. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons.

    Science.gov (United States)

    Bosse, Jens B; Tanneti, Nikhila S; Hogue, Ian B; Enquist, Lynn W

    2015-01-01

    Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution.

  4. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons

    Science.gov (United States)

    Bosse, Jens B.; Tanneti, Nikhila S.; Hogue, Ian B.; Enquist, Lynn W.

    2015-01-01

    Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution. PMID:26600461

  5. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons.

    Directory of Open Access Journals (Sweden)

    Jens B Bosse

    Full Text Available Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs, however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution.

  6. A new light on Alkaptonuria: A Fourier-transform infrared microscopy (FTIRM) and low energy X-ray fluorescence (LEXRF) microscopy correlative study on a rare disease.

    Science.gov (United States)

    Mitri, Elisa; Millucci, Lia; Merolle, Lucia; Bernardini, Giulia; Vaccari, Lisa; Gianoncelli, Alessandra; Santucci, Annalisa

    2017-05-01

    Alkaptonuria (AKU) is an ultra-rare disease associated to the lack of an enzyme involved in tyrosine catabolism. This deficiency results in the accumulation of homogentisic acid (HGA) in the form of ochronotic pigment in joint cartilage, leading to a severe arthropathy. Secondary amyloidosis has been also unequivocally assessed as a comorbidity of AKU arthropathy. Composition of ochronotic pigment and how it is structurally related to amyloid is still unknown. We exploited Synchrotron Radiation Infrared and X-Ray Fluorescence microscopies in combination with conventional bio-assays and analytical tools to characterize chemical composition and morphology of AKU cartilage. We evinced that AKU cartilage is characterized by proteoglycans depletion, increased Sodium levels, accumulation of lipids in the peri-lacunar regions and amyloid formation. We also highlighted an increase of aromatic compounds and oxygen-containing species, depletion in overall Magnesium content (although localized in the peri-lacunar region) and the presence of calcium carbonate fragments in proximity of cartilage lacunae. We highlighted common features between AKU and arthropathy, but also specific signatures of the disease, like presence of amyloids and peculiar calcifications. Our analyses provide a unified picture of AKU cartilage, shedding a new light on the disease and opening new perspectives. Ochronotic pigment is a hallmark of AKU and responsible of tissue degeneration. Conventional bio-assays have not yet clarified its composition and its structural relationship with amyloids. The present work proposes new strategies for filling the aforementioned gap that encompass the integration of new analytical approaches with standardized analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Rapid and easy identification of Illicium verum Hook. f. and its adulterant Illicium anisatum Linn. by fluorescent microscopy and gas chromatography.

    Science.gov (United States)

    Joshi, Vaishali C; Srinivas, Pullela V; Khan, Ikhlas A

    2005-01-01

    Illicium verum Hook. f. is used as an herbal tea to treat colic pain in infants. Reports suggest that Star anise herbal tea may be adulterated with Illicium anisatum Linn. A short and rapid method using microscopy and gas chromatography (GC) was developed to detect I. anisatum Linn., an adulterant in the powdered mixture of I. verum. Anatomical differences in the epicarp cells of I. verum and I. anisatum fruits were clearly defined as examined under fluorescent microscopy and scanning electron microscopy. A GC method was developed for quick identification of possible I. anisatum adulteration with I. verum.

  8. Morphological study of lipid vesicles in presence of amphotericin B via modification of the microfluidic CellASIC platform and LED illumination microscopy

    Science.gov (United States)

    Genova, J.; Decheva-Zarkova, M.; Pavlič, J. I.

    2016-02-01

    Giant lipid vesicles (liposomes) are the simplest model of the biological cell and can be easily formed from natural or synthetic lipid species with controlled composition and properties. This is the reason why they are the preferred objects for various scientific investigations. Amphotericin B (AmB) is a membrane active drug, used for treatment of systemic fungal infections. In this work we studied the morphological behavior of giant SOPC vesicles in asymmetrical presence of amphotericin B antibiotic in the vicinity of the lipid membrane. The visualization of the vesicles was carried out via inverted phase contrast microscopy. The illumination source was modified in a way that tungsten light bulb was replaced by 10 W white LED chip. All the experiments were performed using CellASIC ONIX Microfluidic Platform. The setup has been modified thus opening new opportunities for a variety of experimental realizations. The performed morphological studies showed strong and irreversible effect on the vesicle shape at the presence of amphotericin B in concentration 10-5 g/l in the outer for the liposome's membrane solution. At concentration 10-3 g/l AmB the effect was less visible and in 15-20 minutes the vesicles regained its initial spherical shape.

  9. A comprehensive comparison of Ziehl-Neelsen and fluorescence microscopy for the diagnosis of tuberculosis in a resource-poor urban setting

    NARCIS (Netherlands)

    Kivihya-Ndugga, L. E. A.; van Cleeff, M. R. A.; Githui, W. A.; Nganga, L. W.; Kibuga, D. K.; Odhiambo, J. A.; Klatser, Paul R.

    2003-01-01

    Nairobi City Council Chest Clinic, Kenya. To establish the efficiency, costs and cost-effectiveness of six diagnostic strategies using Ziehl-Neelsen (ZN) and fluorescence microscopy (FM). A cross-sectional study of 1398 TB suspects attending a specialised chest clinic in Nairobi subjected to three

  10. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol–Formaldehyde in Wood Cell Walls

    Science.gov (United States)

    Joseph E. Jakes; Christopher G. Hunt; Daniel J. Yelle; Linda Lorenz; Kolby Hirth; Sophie-Charlotte Gleber; Stefan Vogt; Warren Grigsby; Charles R. Frihart

    2015-01-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol−...

  11. Use of flow cytometry, fluorescence microscopy, and PCR-based techniques to assess intraspecific and interspecific matings of Armillaria species

    Science.gov (United States)

    Mee-Sook Kim; Ned B. Klopfenstein; Geral I. McDonald; Kathiravetpillai Arumuganathan

    2001-01-01

    For assessments of intraspecific mating using flow cytometry and fluorescence microscopy, two compatible basidiospore-derived isolates were selected from each of four parental basidiomata of North American Biological Species (NABS) X. The nuclear status in NABS X varied with basidiospore-derived isolates. Nuclei within basidiospore-derived isolates existed as haploids...

  12. Optical Investigation of the Intergrowth Structure and Accessibility of Brønsted Acid Sites in Etched SSZ-13 Zeolite Crystals by Confocal Fluorescence Microscopy

    NARCIS (Netherlands)

    Sommer, L.; Svelle, S.; Lillerud, K.-P.; Stöcker, M; Weckhuysen, B.M.; Olsbye, U.

    2013-01-01

    Template decomposition followed by confocal fluorescence microscopy reveals a tetragonal-pyramidal intergrowth of subunits in micrometer-sized nearly cubic SSZ-13 zeolite crystals. In order to accentuate intergrowth boundaries and defect-rich areas within the individual large zeolite crystals, a

  13. Origin and characterization of retrograde labeled neurons supplying the rat urethra using fiberoptic confocal fluorescent microscopy in vivo and immunohistochemistry.

    Science.gov (United States)

    Lee, Keon-Cheol; Sharma, Seema; Tuttle, Jeremy B; Steers, William D

    2010-10-01

    Autonomic innervation of urethral smooth muscle may influence urinary continence after prostatectomy. It is unclear whether the cavernous nerves carry fibers that influence continence. Using a retrograde axonal tracer combined with real-time in vivo imaging and ex vivo immunohistochemistry we determined the course and type of neurons supplying urethral smooth muscle distal to the prostate in the rat. We injected the retrograde axonal tracers cholera toxin B fragment-Alexa Fluor 488 and Fast Blue in the distal urethral smooth muscle in 10 rats each. Five days later the cavernous nerves and pelvic ganglion were imaged using fiberoptic confocal fluorescence microscopy (cholera toxin B fragment-Alexa Fluor 488) or harvested for immunohistochemistry (Fast Blue). Dual immunofluorescence of Fast Blue neurons with tyrosine hydroxylase or neuronal nitric oxide synthase was done to characterize neurons as noradrenergic or nitrergic. To ascertain whether the cavernous nerves contain fibers to the urethra that originate in the pelvic ganglia we cut the cavernous nerves with their ancillary branches in 3 rats and imaged them for Fast Blue. Fluorescent neurons and axons were detected in cavernous nerves and the pelvic ganglion. Few neurons were seen in rats with cavernous nerve section. Of urethral neurons 53.1% showed neuronal nitric oxide synthase positivity while 40.6% were immunoreactive for tyrosine hydroxylase. About 6.2% of urethral neurons failed to show tyrosine hydroxylase or neuronal nitric oxide synthase immunoreactivity. Most of the autonomic innervation to the urethra beyond the prostatic apex travels in the cavernous nerves. Many nerves may be parasympathetic based on neuronal nitric oxide synthase immunoreactivity. Nerves supplying the urethra outside the cavernous nerves may course posterior to the prostate. Along with afferent fibers, tyrosine hydroxylase immunoreactivity expressing neuron fibers, ie noradrenergic nerves, traveling in the cavernous nerves may

  14. Spatial filtering nearly eliminates the side-lobes in single- and multi-photon 4pi-type-C super-resolution fluorescence microscopy

    Science.gov (United States)

    Kavya, M.; Regmi, Raju; Mondal, Partha P.

    2013-09-01

    Super-resolution microscopy has tremendously progressed our understanding of cellular biophysics and biochemistry. Specifically, 4pi fluorescence microscopy technique stands out because of its axial super-resolution capability. All types of 4pi-microscopy techniques work well in conjugation with deconvolution techniques to get rid of artifacts due to side-lobes. In this regard, we propose a technique based on spatial filter in a 4pi-type-C confocal setup to get rid of these artifacts. Using a special spatial filter, we have reduced the depth-of-focus. Interference of two similar depth-of-focus beams in a 4π geometry result in substantial reduction of side-lobes. Studies show a reduction of side-lobes by 46% and 76% for single and two photon variant compared to 4pi - type - C confocal system. This is incredible considering the resolving capability of the existing 4pi - type - C confocal microscopy. Moreover, the main lobe is found to be 150 nm for the proposed spatial filtering technique as compared to 690 nm of the state-of-art confocal system. Reconstruction of experimentally obtained 2PE - 4pi data of green fluorescent protein (GFP)-tagged mitocondrial network shows near elimination of artifacts arising out of side-lobes. Proposed technique may find interesting application in fluorescence microscopy, nano-lithography, and cell biology.

  15. Intracellular distribution and stability of a luminescent rhenium(i) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging.

    Science.gov (United States)

    Wedding, J L; Harris, H H; Bader, C A; Plush, S E; Mak, R; Massi, M; Brooks, D A; Lai, B; Vogt, S; Werrett, M V; Simpson, P V; Skelton, B W; Stagni, S

    2017-04-19

    Optical epifluorescence microscopy was used in conjunction with X-ray fluorescence imaging to monitor the stability and intracellular distribution of the luminescent rhenium(i) complex fac-[Re(CO) 3 (phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence imaging techniques. X-ray fluorescence also showed that the rhenium complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.

  16. X-ray fluorescent microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis

    International Nuclear Information System (INIS)

    Finney, L.; Mandava, S.; Ursos, L.; Zhang, W.; Rodi, D.; Vogt, S.; Legnini, D.; Maser, J.; Ikpatt, F.; Olopade, O. I.; Glesne, D.

    2007-01-01

    Although copper has been reported to influence numerous proteins known to be important for angiogenesis, the enhanced sensitivity of this developmental process to copper bioavailability has remained an enigma, because copper metalloproteins are prevalent and essential throughout all cells. Recent developments in x-ray optics at third-generation synchrotron sources have provided a resource for highly sensitive visualization and quantitation of metalloproteins in biological samples. Here, we report the application of x-ray fluorescence microscopy (XFM) to in vitro models of angiogenesis and neurogenesis, revealing a surprisingly dramatic spatial relocalization specific to capillary formation of 80-90% of endogenous cellular copper stores from intracellular compartments to the tips of nascent endothelial cell filopodia and across the cell membrane. Although copper chelation had no effect on process formation, an almost complete ablation of network formation was observed. XFM of highly vascularized ductal carcinomas showed copper clustering in putative neoangiogenic areas. This use of XFM for the study of a dynamic developmental process not only sheds light on the copper requirement for endothelial tube formation but highlights the value of synchrotron-based facilities in biological research

  17. Identifying virus-cell fusion in two-channel fluorescence microscopy image sequences based on a layered probabilistic approach.

    Science.gov (United States)

    Godinez, William J; Lampe, Marko; Koch, Peter; Eils, Roland; Müller, Barbara; Rohr, Karl

    2012-09-01

    The entry process of virus particles into cells is decisive for infection. In this work, we investigate fusion of virus particles with the cell membrane via time-lapse fluorescence microscopy. To automatically identify fusion for single particles based on their intensity over time, we have developed a layered probabilistic approach. The approach decomposes the action of a single particle into three abstractions: the intensity over time, the underlying temporal intensity model, as well as a high level behavior. Each abstraction corresponds to a layer and these layers are represented via stochastic hybrid systems and hidden Markov models. We use a maxbelief strategy to efficiently combine both representations. To compute estimates for the abstractions we use a hybrid particle filter and the Viterbi algorithm. Based on synthetic image sequences, we characterize the performance of the approach as a function of the image noise. We also characterize the performance as a function of the tracking error. We have also successfully applied the approach to real image sequences displaying pseudotyped HIV-1 particles in contact with host cells and compared the experimental results with ground truth obtained by manual analysis.

  18. Unraveling the Wheat Stem Rust Infection Process on Barley Genotypes Through Relative qPCR and Fluorescence Microscopy.

    Science.gov (United States)

    Zurn, J D; Dugyala, S; Borowicz, P; Brueggeman, R; Acevedo, M

    2015-05-01

    The infection process of wheat stem rust (Puccinia graminis f. sp. tritici) on barley (Hordeum vulgare) is often observed as a mesothetic infection type at the seedling stages, and cultivars containing the same major resistance genes often show variation in the level of resistance provided against the same pathogen race or isolate. Thus, robust phenotyping data based on quantification of fungal DNA can improve the ability to elucidate host-pathogen interaction, especially at early time points of infection when disease symptoms are not yet evident. Quantitative real-time polymerase chain reaction (qPCR) was used to determine the amount of fungal DNA relative to host DNA in infected tissue, providing new insights about fungal development and host resistance during the infection process in this pathosystem. The stem rust susceptible 'Steptoe', resistant cultivars containing only Rpg1 ('Beacon', 'Morex', and 'Chevron'), and the resistant line Q21861 containing Rpg1 and the rpg4/Rpg5 complex were evaluated using the traditional 0-to-4 rating scale, fluorescence microscopy, and qPCR. Statistical differences (Pwheat stem rust infection process, indicating potential host genotype contributions related to basal defense during the wheat stem rust infection process.

  19. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca

    2014-03-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  20. Reconstruction of Axial Tomographic High Resolution Data from Confocal Fluorescence Microscopy: A Method for Improving 3D FISH Images

    Directory of Open Access Journals (Sweden)

    R. Heintzmann

    2000-01-01

    Full Text Available Fluorescent confocal laser scanning microscopy allows an improved imaging of microscopic objects in three dimensions. However, the resolution along the axial direction is three times worse than the resolution in lateral directions. A method to overcome this axial limitation is tilting the object under the microscope, in a way that the direction of the optical axis points into different directions relative to the sample. A new technique for a simultaneous reconstruction from a number of such axial tomographic confocal data sets was developed and used for high resolution reconstruction of 3D‐data both from experimental and virtual microscopic data sets. The reconstructed images have a highly improved 3D resolution, which is comparable to the lateral resolution of a single deconvolved data set. Axial tomographic imaging in combination with simultaneous data reconstruction also opens the possibility for a more precise quantification of 3D data. The color images of this publication can be accessed from http://www.esacp.org/acp/2000/20‐1/heintzmann.htm. At this web address an interactive 3D viewer is additionally provided for browsing the 3D data. This java applet displays three orthogonal slices of the data set which are dynamically updated by user mouse clicks or keystrokes.

  1. More Transparency in BioAnalysis of Exocytosis: Coupling of Electrochemistry and Fluorescence Microscopy at ITO Electrodes

    Directory of Open Access Journals (Sweden)

    Liu Xiaoqing

    2016-01-01

    Full Text Available Vesicular exocytosis is an essential biological mechanism used by cellular organisms to release bioactive molecules (hormones, neurotransmitters… in their environment. For instance, this is the pathway by which chromaffin cells deliver catecholamines (adrenaline, nor-adrenaline, dopamine… in blood. During this process, secretory vesicles that initially stored the (biochemical messengers dock to the cell membrane. The subsequent fusion of vesicle and cell membranes induces the formation of a fusion pore that initiates the first exchanges between the intravesicular and extracellular media. Its following expansion thus favours a larger release of the vesicular content into the external medium. Several analytical methods have been developed in order to study exocytosis at the single living cell level in real time. Among those techniques, mostly based on electric or optic measurements, amperometry with a carbon-fiber ultramicroelectrode [1], used in the first part of this report, and total internal reflection fluorescence microscopy (TIRFM appear as the most powerful [2] Practically, physico-chemical properties of ultramicroelectrodes induce a high detection sensitivity and temporal resolution, thus being particularly well adapted to monitor exocytosis of electroactive molecules in real time.

  2. Threshold for ion movements in wood cell walls below fiber saturation observed by X-ray fluorescence microscopy (XFM)

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L.; Gleber, Sophie-Charlotte; Vogt, Stefan; Rodriguez Lopez, Gabriela M.; Jakes, Joseph E.

    2015-05-01

    Diffusion of chemicals and ions through the wood cell wall plays an important role in wood damage mechanisms. In the present work, free diffusion of ions through wood secondary walls and middle lamellae has been investigated as a function of moisture content (MC) and anatomical direction. Various ions (K, Cl, Zn, Cu) were injected into selected regions of 2 mu m thick wood sections with a microinjector and then the ion distribution was mapped by means of X-ray fluorescence microscopy with submicron spatial resolution. The MC of the wood was controlled in situ by means of climatic chamber with controlled relative humidity (RH). For all ions investigated, there was a threshold RH below which the concentration profiles did not change. The threshold RH depended upon ionic species, cell wall layer, and wood anatomical orientation. Above the threshold RH, differences in mobility among ions were observed and the mobility depended upon anatomical direction and cell wall layer. These observations support a recently proposed percolation model of electrical conduction in wood. The results contribute to understanding the mechanisms of fungal decay and fastener corrosion that occur below the fiber saturation point.

  3. Fuzzy-Logic Based Detection and Characterization of Junctions and Terminations in Fluorescence Microscopy Images of Neurons.

    Science.gov (United States)

    Radojević, Miroslav; Smal, Ihor; Meijering, Erik

    2016-04-01

    Digital reconstruction of neuronal cell morphology is an important step toward understanding the functionality of neuronal networks. Neurons are tree-like structures whose description depends critically on the junctions and terminations, collectively called critical points, making the correct localization and identification of these points a crucial task in the reconstruction process. Here we present a fully automatic method for the integrated detection and characterization of both types of critical points in fluorescence microscopy images of neurons. In view of the majority of our current studies, which are based on cultured neurons, we describe and evaluate the method for application to two-dimensional (2D) images. The method relies on directional filtering and angular profile analysis to extract essential features about the main streamlines at any location in an image, and employs fuzzy logic with carefully designed rules to reason about the feature values in order to make well-informed decisions about the presence of a critical point and its type. Experiments on simulated as well as real images of neurons demonstrate the detection performance of our method. A comparison with the output of two existing neuron reconstruction methods reveals that our method achieves substantially higher detection rates and could provide beneficial information to the reconstruction process.

  4. Intracellular antioxidant activity of grape skin polyphenolic extracts in rat superficial colonocytes: in situ detection by confocal fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Mara Elena eGiordano

    2016-05-01

    Full Text Available Colon is exposed to a number of prooxidant conditions and several colon diseases are associated with increased levels of reactive species. Polyphenols are the most abundant antioxidants in the diet, but to date no information is available about their absorption and potential intracellular antioxidant activity on colon epithelial cells. The work was addressed to study the intracellular antioxidant activity of red grape polyphenolic extracts on rat colon epithelium experimentally exposed to prooxidant conditions.The experimental model chosen was represented by freshly isolated colon explants, which closely resemble the functional and morphological characteristics of the epithelium in vivo. The study was carried out by in situ confocal microscopy observation on CM-H2DCFDA charged explants exposed to H2O2 (5, 10 and 15 min. The qualitative and quantitative polyphenolic composition of the extracts as well as their in vitro oxygen radical absorbing capacity (ORAC was determined. The incubation of the explants with the polyphenolic extracts for 1h produced a significant decrease of the H2O2 induced fluorescence. This effect was more pronounced following 15 min H2O2 exposure with respect to 5 min and it was also more evident for extracts obtained from mature grapes, which showed an increased ORAC value and qualitative peculiarities in the polyphenolic composition. The results demonstrated the ability of red grape polyphenols to cross the plasma membrane and exert a direct intracellular antioxidant activity in surface colonocytes, inducing a protection against pro-oxidant conditions. The changes in the polyphenol composition due to ripening process was reflected in a more effective antioxidant protection.

  5. Fluorescence microscopy study on the cytoskeletal displacements during sperm differentiation in the bush-cricket Tylopsis liliifolia (Fabricius) (Orthoptera: Tettigoniidae).

    Science.gov (United States)

    Viscuso, Renata; Federico, Concetta; Saccone, Salvatore; Bonaccorsi, Bianca; Vitale, Danilo G M

    2016-02-01

    A study by fluorescence microscopy has been carried out on male gametes from testicular follicles, seminal vesicles, spermatophores, and seminal receptacles of the bush-cricket Tylopsis liliifolia, focusing the attention on localization and movements of F-actin and α-tubulin during sperm differentiation, since data in this respect are lacking in the Orthoptera. F-actin and α-tubulin positivity was detected in the testicular follicles, in particular at the bridges connecting spermatids of a same clone and around their nucleus, during the first differentiation stages. During the following differentiation stages in the testes, F-actin was found at one of the spermatid poles and then, during nucleus elongation, at the whole acrosomal region. A peculiar F-actin-positivity was found at the flagellum, more markedly immediately posterior to the nucleus, at the basal body region of the gametes from the testicular follicles and from the other examined districts. Other interesting data from our investigations concerns the α-tubulin displacements during the differentiation stages of the spermatid and a constant absence of α-tubulin-positivity where the centrioles are located. No positivity was also found for both α-tubulin and nuclear markers at the anterior region of the gamete, where the acrosomal wings are localized. Our results, compared with what is so far known in literature for the insects, lead us to assert that microfilaments and microtubules undergo gradual displacements, markedly in the testicular follicles, during the morphogenesis of the male gamete of T. liliifolia aimed to its organization and motility and probably also to its interaction with the female gamete. © 2015 Wiley Periodicals, Inc.

  6. In vivo imaging of the airway wall in asthma: fibered confocal fluorescence microscopy in relation to histology and lung function

    Directory of Open Access Journals (Sweden)

    Bel Elisabeth H

    2011-06-01

    Full Text Available Abstract Background Airway remodelling is a feature of asthma including fragmentation of elastic fibres observed in the superficial elastin network of the airway wall. Fibered confocal fluorescence microscopy (FCFM is a new and non-invasive imaging technique performed during bronchoscopy that may visualize elastic fibres, as shown by in vitro spectral analysis of elastin powder. We hypothesized that FCFM images capture in vivo elastic fibre patterns within the airway wall and that such patterns correspond with airway histology. We aimed to establish the concordance between the bronchial elastic fibre pattern in histology and FCFM. Second, we examined whether elastic fibre patterns in histology and FCFM were different between asthmatic subjects and healthy controls. Finally, the association between these patterns and lung function parameters was investigated. Methods In a cross-sectional study comprising 16 subjects (8 atopic asthmatic patients with controlled disease and 8 healthy controls spirometry and bronchoscopy were performed, with recording of FCFM images followed by endobronchial biopsy at the airway main carina. Elastic fibre patterns in histological sections and FCFM images were scored semi-quantitatively. Agreement between histology and FCFM was analysed using linearly weighted kappa κw. Results The patterns observed in histological sections and FCFM images could be divided into 3 distinct groups. There was good agreement between elastic fibre patterns in histology and FCFM patterns (κw 0.744. The semi-quantitative pattern scores were not different between asthmatic patients and controls. Notably, there was a significant difference in post-bronchodilator FEV1 %predicted between the different patterns by histology (p = 0.001 and FCFM (p = 0.048, regardless of asthma or atopy. Conclusion FCFM captures the elastic fibre pattern within the airway wall in humans in vivo. The association between post-bronchodilator FEV1 %predicted and

  7. Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask

    Science.gov (United States)

    Patwary, Nurmohammed; Doblas, Ana; King, Sharon V.; Preza, Chrysanthe

    2014-03-01

    Imaging thick biological samples introduces spherical aberration (SA) due to refractive index (RI) mismatch between specimen and imaging lens immersion medium. SA increases with the increase of either depth or RI mismatch. Therefore, it is difficult to find a static compensator for SA1. Different wavefront coding methods2,3 have been studied to find an optimal way of static wavefront correction to reduce depth-induced SA. Inspired by a recent design of a radially symmetric squared cubic (SQUBIC) phase mask that was tested for scanning confocal microscopy1 we have modified the pupil using the SQUBIC mask to engineer the point spread function (PSF) of a wide field fluorescence microscope. In this study, simulated images of a thick test object were generated using a wavefront encoded engineered PSF (WFEPSF) and were restored using space-invariant (SI) and depth-variant (DV) expectation maximization (EM) algorithms implemented in the COSMOS software4. Quantitative comparisons between restorations obtained with both the conventional and WFE PSFs are presented. Simulations show that, in the presence of SA, the use of the SIEM algorithm and a single SQUBIC encoded WFE-PSF can yield adequate image restoration. In addition, in the presence of a large amount of SA, it is possible to get adequate results using the DVEM with fewer DV-PSFs than would typically be required for processing images acquired with a clear circular aperture (CCA) PSF. This result implies that modification of a widefield system with the SQUBIC mask renders the system less sensitive to depth-induced SA and suitable for imaging samples at larger optical depths.

  8. Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft X-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells

    OpenAIRE

    Hagen, Christoph; Werner, Stephan; Carregal-Romero, Susana; N. Malhas, Ashraf; G. Klupp, Barbara; Guttmann, Peter; Rehbein, Stefan; Henzler, Katja; C. Mettenleiter, Thomas; J. Vaux, David; J. Parak, Wolfgang; Schneider, Gerd; Grünewald, Kay

    2014-01-01

    Correlative fluorescence and soft X-ray cryo-microscopy/tomography on flat sample holders is perfectly suited to study the uncompromised physiological status of adherent cells at its best possible preservation by imaging after fast cryo-immobilization. To understand the mechanism by which herpesviruses induce nucleoplasmic reticulum, i.e. invaginations of the nuclear envelope, during their egress from the host cell nucleus, morphologically similar structures found in laminopathies and after c...

  9. Effect of detergents on the physico-chemical properties of skin stratum corneum: A two-photon excitation fluorescence microscopy study

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Brewer, Jonathan R.; Pashkovski, Eugene

    2014-01-01

    to conventional detergents. The aim of this work is to comparatively characterize the effect of a mild synthetic cleanser mixture (SCM) and sodium dodecyl sulphate (SDS) on the hydration state of the intercellular lipid matrix and on proton activity of excised skin stratum corneum (SC). METHOD: Experiments were...... performed using two-photon excitation fluorescence microscopy. Fluorescent images of fluorescence reporters sensitive to proton activity and hydration of SC were obtained in excised skin and examined in presence and absence of SCM and SDS detergents. RESULTS: Hydration of the intercellular lipid matrix...... to a depth of 10μm into the SC was increased upon treatment with SCM, whereas SDS shows this effect only at the very surface of SC. The proton activity of SC remained unaffected by treatment with either detergent. CONCLUSION: While our study indicates that the SC is very resistant to external stimuli...

  10. Effects of LED Phototherapy on Bone Defects Grafted with MTA in a Rodent Model: A Description of the Bone Repair by Light Microscopy

    Science.gov (United States)

    Soares, Luiz Guilherme Pinheiro; Santos, Nicole Ribeiro Silva; Correia, Neandder A.; dos Santos, Jean Nunes; Pinheiro, Antônio Luiz Barbosa

    2011-08-01

    We carried out a histological analysis on bone defects grafted (MTA) treated or not with LED, BMPs and GBR. Benefits of the isolated or combined use these techniques on bone repair have been suggested, but there is no report on their association with LED light. 36 rats were divided into 4 groups each subdivided into 3. Defects on G II and I were filled with the blood clot. G II was further irradiated with LED. G III-IV were filled with MTA+Collagen gel; G IV was further irradiated. LED was applied over the defect at 48 h intervals and repeated for 15 days. Specimens were processed, cut and stained with H&E and Sirius red and underwent histological analysis. The results showed that MTA, due to its characteristics seemed not being directly affected by the LED light. But, the use of LED positively affect bone repair similarly to what was observed on different studies by our team using other biomaterials and laser. It is concluded that MTA seems not be directed affected by the LED light due to it characteristics. However, the beneficial results reported with its usage might be improved by the use of LED PT.

  11. Theoretical assessment of optical resolution enhancement and background fluorescence reduction by three-dimensional nonlinear structured illumination microscopy using stimulated emission depletion

    Science.gov (United States)

    Dake, Fumihiro

    2016-08-01

    Three-dimensional structured illumination microscopy (SIM) enlarges frequency cutoff laterally and axially by a factor of two, compared with conventional microscopy. However, its optical resolution is still fundamentally limited. It is necessary to introduce nonlinearity to enlarge frequency cutoff further. We propose three-dimensional nonlinear structured illumination microscopy based on stimulated emission depletion (STED) effect, which has a structured excitation pattern and a structured STED pattern, and both three-dimensional illumination patterns have the same lateral pitch and orientation. Theoretical analysis showed that nonlinearity induced by STED effect, which causes harmonics and contributes to enlarging frequency cutoff, depends on the phase difference between two structured illuminations and that the phase difference of π is the most efficient to increase nonlinearity. We also found that undesirable background fluorescence, which degenerates the contrast of structured pattern and limits the ability of SIM, can be reduced by our method. These results revealed that optical resolution improvement and background fluorescence reduction would be compatible. The feasibility study showed that our method will be realized with commercially available laser, having 3.5 times larger frequency cutoff compared with conventional microscopy.

  12. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Osseiran, Sam; Roider, Elisabeth M.; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E.; Evans, Conor L.

    2017-12-01

    Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.

  13. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  14. New dental applications with LEDs

    DEFF Research Database (Denmark)

    Argyraki, A.; Ou, Yiyu; Petersen, Paul Michael

    Visible and ultraviolet LEDs will in the future give rise to new dental applications. Fluorescence imaging, photodynamic therapy and photoactivated disinfection are important future candidates for diagnostics and treatment in dentistry.......Visible and ultraviolet LEDs will in the future give rise to new dental applications. Fluorescence imaging, photodynamic therapy and photoactivated disinfection are important future candidates for diagnostics and treatment in dentistry....

  15. Detailed Study of BSA Adsorption on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films by Time-Resolved Fluorescence Microscopy.

    Science.gov (United States)

    Handschuh-Wang, Stephan; Wang, Tao; Druzhinin, Sergey I; Wesner, Daniel; Jiang, Xin; Schönherr, Holger

    2017-01-24

    The adsorption of bovine serum albumin (BSA) on micro- and nanocrystalline diamond/β-SiC composite films synthesized using the hot filament chemical vapor deposition (HFCVD) technique has been investigated by confocal fluorescence lifetime imaging microscopy. BSA labeled with fluorescein isothiocyanate (FITC) was employed as a probe. The BSA FITC conjugate was found to preferentially adsorb on both O-/OH-terminated microcrystalline and nanocrystalline diamond compared to the OH-terminated β-SiC, resulting in an increasing amount of BSA adsorbed to the gradient surfaces with an increasing diamond/β-SiC ratio. The different strength of adsorption (>30 times for diamond with a grain size of 570 nm) coincides with different surface energy parameters and differing conformational changes upon adsorption. Fluorescence data of the adsorbed BSA FITC on the gradient film with different diamond coverage show a four-exponential decay with decay times of 3.71, 2.54, 0.66, and 0.13 ns for a grain size of 570 nm. The different decay times are attributed to the fluorescence of thiourea fluorescein residuals of linked FITC distributed in BSA with different dye-dye and dye-surface distances. The longest decay time was found to correlate linearly with the diamond grain size. The fluorescence of BSA FITC undergoes external dynamic fluorescence quenching on the diamond surface by H- and/or sp 2 -defects and/or by amorphous carbon or graphite phases. An acceleration of the internal fluorescence concentration quenching in BSA FITC because of structural changes of albumin due to adsorption, is concluded to be a secondary contributor. These results suggest that the micro- and nanocrystalline diamond/β-SiC composite gradient films can be utilized to spatially control protein adsorption and diamond crystallite size, which facilitates systematic studies at these interesting (bio)interfaces.

  16. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ohara-Imaizumi, Mica; Aoyagi, Kyota [Department of Biochemistry, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan); Akimoto, Yoshihiro [Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan); Nakamichi, Yoko; Nishiwaki, Chiyono [Department of Biochemistry, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan); Kawakami, Hayato [Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan); Nagamatsu, Shinya, E-mail: shinya@ks.kyorin-u.ac.jp [Department of Biochemistry, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 (Japan)

    2009-12-04

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  17. Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft X-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells

    International Nuclear Information System (INIS)

    Hagen, Christoph; Werner, Stephan; Carregal-Romero, Susana; Malhas, Ashraf N.; Klupp, Barbara G.; Guttmann, Peter; Rehbein, Stefan; Henzler, Katja; Mettenleiter, Thomas C.

    2014-01-01

    Correlative fluorescence and soft X-ray cryo-microscopy/tomography on flat sample holders is perfectly suited to study the uncompromised physiological status of adherent cells at its best possible preservation by imaging after fast cryo-immobilization. To understand the mechanism by which herpesviruses induce nucleoplasmic reticulum, i.e. invaginations of the nuclear envelope, during their egress from the host cell nucleus, morphologically similar structures found in laminopathies and after chemical induction were investigated as a potentially more easily accessible model system. For example, anti-retroviral protease inhibitors like Saquinavir also induce invaginations of the nuclear membranes. With the help of newly designed multimodal nanoparticles as alignment and correlation markers, and by optimizing fluorescence cryo-microscopy data acquisition, an elaborate three-dimensional network of nucleoplasmic reticulum was demonstrated in nuclei of Saquinavir-treated rabbit kidney cells expressing a fluorescently labeled inner nuclear membrane protein. In part of the protease inhibitor-treated samples, nuclei exhibited dramatic ultrastructural changes indicative of programmed cell death/apoptosis. This unexpected observation highlights another unique feature of soft X-ray microscopy, i.e. high absorption contrast information not relying on labeled cellular components, at a 3D resolution of approximately 40 nm (half-pitch) and through a sample thickness of several micrometers. These properties make it a valuable part of the cell biology imaging toolbox to visualize the cellular ultrastructure in its completeness. - Highlights: • Nucleoplasmic reticulum was demonstrated in nuclei of Saquinavir-treated cells. • New polyelectrolyte-Qdot ® 605 coated gold beads were employed as fiducials. • Saquinavir can induce a strong apoptotic phenotype in the nucleus. • CryoXT is an auspicious imaging technique in apoptosis research

  18. Pleomorphism and Viability of the Lyme Disease Pathogen Borrelia burgdorferi Exposed to Physiological Stress Conditions: A Correlative Cryo-Fluorescence and Cryo-Scanning Electron Microscopy Study

    Czech Academy of Sciences Publication Activity Database

    Vancová, Marie; Rudenko, Natalia; Vaněček, Jiří; Golovchenko, Maryna; Strnad, Martin; Rego, Ryan O. M.; Tichá, Lucie; Grubhoffer, Libor; Nebesářová, Jana

    2017-01-01

    Roč. 8, 11 April (2017), č. článku 596. ISSN 1664-302X R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LM2015062 EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : cryo-fluorescence * cryo-scanning electron microscopy * Borrelia burgdorferi * Lyme disease * round body * pleomorphism * viability staining Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: 2.11 Other engineering and technologies Impact factor: 4.076, year: 2016

  19. Efecto sobre los circuitos de distribución secundarios debido al uso intensivo de bombillas fluorescentes compactas y LEDs (Light Emitting Diodes) / Effects of high penetration of compact fluorescent lamps and LEDs (Light Emitting Diodes) on the distribution networks

    OpenAIRE

    Blanco Castañeda, Ana María

    2010-01-01

    Las BFCs y los LEDs son tecnologías de alta eficacia que se caracterizan por contener un dispositivo electrónico para su funcionamiento. Estos dispositivos son cargas no lineales que inyectan armónicos a la red. La sustitución masiva de bombillas incandescentes por BFCs y LEDs puede provocar graves alteraciones en los índices de calidad de la potencia y provocar efectos indeseados en las redes de distribución. En esta tesis de maestría se estudia el efecto sobre los circuitos de distribución ...

  20. Direct methods for dynamic monitoring of secretions from single cells by capillary electrophoresis and microscopy with laser-induced native fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wei [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Microscale separation and detection methods for real-time monitoring of dynamic cellular processes (e.g., secretion) by capillary electrophoresis (CE) and microscopic imaging were developed. Ultraviolet laser-induced native fluorescence (LINF) provides simple, sensitive and direct detection of neurotransmitters and proteins without any derivatization. An on-column CE-LINF protocol for quantification of the release from single cell was demonstrated. Quantitative measurements of both the amount of insulin released from and the amount remaining in the cell (βTC3) were achieved simultaneously. Secretion of catecholamines (norepinephrine (NE) and epinephrine (E)) from individual bovine adrenal chromaffin cells was determined using the on-column CE-LINF. Direct visualization of the secretion process of individual bovine adrenal chromaffin cells was achieved by LINF imaging microscopy with high temporal and spatial resolution. The secretion of serotonin from individual leech Retzius neurons was directly characterized by LINF microscopy with high spatial resolution.

  1. Microarray analyzer based on wide field fluorescent microscopy with laser illumination and a device for speckle suppression

    Science.gov (United States)

    Lysov, Yuri; Barsky, Victor; Urasov, Dmitriy; Urasov, Roman; Cherepanov, Alecksey; Mamaev, Dmitryi; Yegorov, Yegor; Chudinov, Alexander; Surzhikov, Sergey; Rubina, Alla; Smoldovskaya, Olga; Zasedatelev, Alexander

    2017-01-01

    A microarray analyzer was developed to obtain images and measure the fluorescence intensity of microarrays at three wavelengths from 380 nm to 850 nm. The analyzer contains lasers to excite fluorescence, barrier filters, optics to project images on an image detector, and a device for suppressing laser speckles on the microarray support. The speckle suppression device contains a fibre-optic bundle and a rotating mirror positioned in a way to change the distance between the bundle butt and mirror surface during each mirror revolution. The analyzer provides for measurements with accuracy within ± 5%. Obtaining images at several exposure times allowed a significant expansion in the range of measured fluorescence intensities. The analyzer is useful for high throughput analysis of the same type of microarrays. PMID:29188082

  2. Potential controlled adsorption and lateral mobility of DOPC on polycrystalline gold - an EQCM and in situ fluorescence microscopy study

    Czech Academy of Sciences Publication Activity Database

    Hoffmannová, Hana; Hof, Martin; Krtil, Petr

    2006-01-01

    Roč. 588, č. 2 (2006), s. 296-302 ISSN 0022-0728 R&D Projects: GA AV ČR KJB4040305; GA ČR GA203/05/2308 Institutional research plan: CEZ:AV0Z40400503 Keywords : phospholipid adsorption * EQCM * in situ fluorescence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.339, year: 2006

  3. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  4. Interaction of toremifene with dipalmitoyl-phosphatidyl-glycerol in monolayers at the air–water interface followed by fluorescence microscopy in Langmuir–Blodgett films

    International Nuclear Information System (INIS)

    Romão, Rute I.S.; Maçôas, Ermelinda; Martinho, José M.G.; Gonçalves da Silva, Amélia M.P.S.

    2013-01-01

    Langmuir monolayers of dipalmitoyl-phosphatidyl-glycerol (DPPG) containing toremifene (TOR), an antiestrogen drug derivative of tamoxifen, were prepared in order to study the interaction of the drug with the cell membrane. TOR is not surface active but it remains at the interface in DPPG rich monolayers anchored by electrostatic interaction with the anionic DPPG up to the equimolar composition. The fluidity of mixed monolayers increases up to the TOR mole fraction X TOR = 0.3, remaining practically invariant for higher compositions. Brewster angle microscopy shows that the TOR disturbs the DPPG organization and the liquid condensed (LC) domains of DPPG become undetectable for X TOR ≥ 0.4. Laser scanning confocal fluorescence microscopy images of the LB films doped with rhodamine B-piperazine amide dye confirm the progressive reduction in size of LC domains, from which TOR and rhodamine are excluded. The incorporation of TOR in DPPG monolayers up to the equimolar composition supports the formation of a TOR:DPPG complex (1:1) due to electrostatic interactions between the negatively charged polar groups of DPPG and protonated TOR. - Highlights: • Toremifene (TOR) in dipalmitoyl-phosphatidyl-glycerol (DPPG) monolayers • Electrostatic interactions between DPPG and TOR form a 1:1 complex. • TOR increases the fluidity of DPPG monolayers. • Incorporation of TOR in the fluid phase of DPPG followed by fluorescence imaging

  5. Third-harmonic generation and multi-photon excitation fluorescence imaging microscopy techniques for online art conservation diagnosis.

    Science.gov (United States)

    Gualda, Emilio J; Filippidis, George; Melessanaki, Kristalia; Fotakis, Costas

    2009-03-01

    We present an appropriate methodology and results for using third-harmonic generation (THG) modality for nondestructive high resolution imaging measurements of varnished structures in model painted artifacts. Detection takes place in the reflection mode, demonstrating the ability of the technique to be applied to the evaluation of original artworks. Furthermore, multi-photon excitation fluorescence images were obtained, providing complementary information related to the identification of the chemical composition of the artifacts.

  6. Live-cell Microscopy and Fluorescence-based Measurement of Luminal pH in Intracellular Organelles

    Directory of Open Access Journals (Sweden)

    Li Ma

    2017-08-01

    Full Text Available Luminal pH is an important functional feature of intracellular organelles. Acidification of the lumen of organelles such as endosomes, lysosomes, and the Golgi apparatus plays a critical role in fundamental cellular processes. As such, measurement of the luminal pH of these organelles has relevance to both basic research and translational research. At the same time, accurate measurement of intraorganellar pH in living cells can be challenging and may be a limiting hurdle for research in some areas. Here, we describe three powerful methods to measure rigorously the luminal pH of different intracellular organelles, focusing on endosomes, lysosomes, and the Golgi apparatus. The described methods are based on live imaging of pH-sensitive fluorescent probes and include: (1 A protocol based on quantitative, ratiometric measurement of endocytosis of pH-sensitive and pH-insensitive fluorescent conjugates of transferrin; (2 A protocol for the use of proteins tagged with a ratiometric variant of the pH-sensitive intrinsically fluorescent protein pHluorin; and (3 A protocol using the fluorescent dye LysoSensor™. We describe necessary reagents, key procedures, and methods and equipment for data acquisition and analysis. Examples of implementation of the protocols are provided for cultured cells derived from a cancer cell line and for primary cultures of mouse hippocampal neurons. In addition, we present strengths and weaknesses of the different described intraorganellar pH measurement methods. These protocols are likely to be of benefit to many researchers, from basic scientists to those conducting translational research with a focus on diseases in patient-derived cells.

  7. Myofibrillogenesis in live neonatal cardiomyocytes observed with hybrid two-photon excitation fluorescence-second harmonic generation microscopy

    Science.gov (United States)

    Liu, Honghai; Qin, Wan; Shao, Yonghong; Ma, Zhen; Ye, Tong; Borg, Tom; Gao, Bruce Z.

    2011-12-01

    We developed a hybrid two-photon excitation fluorescence-second harmonic generation (TPEF-SHG) imaging system with an on-stage incubator for long-term live-cell imaging. Using the imaging system, we observed the addition of new sarcomeres during myofibrillogenesis while a cardiomyocyte was spreading on the substrate. The results suggest that the TPEF-SHG imaging system with an on-stage incubator is an effective tool for investigation of dynamic myofibrillogenesis.

  8. Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein Dreiklang.

    Science.gov (United States)

    Jensen, Nickels A; Danzl, Johann G; Willig, Katrin I; Lavoie-Cardinal, Flavie; Brakemann, Tanja; Hell, Stefan W; Jakobs, Stefan

    2014-03-17

    Diffraction-unlimited far-field super-resolution fluorescence (nanoscopy) methods typically rely on transiently transferring fluorophores between two states, whereby this transfer is usually laid out as a switch. However, depending on whether this is induced in a spatially controlled manner using a pattern of light (coordinate-targeted) or stochastically on a single-molecule basis, specific requirements on the fluorophores are imposed. Therefore, the fluorophores are usually utilized just for one class of methods only. In this study we demonstrate that the reversibly switchable fluorescent protein Dreiklang enables live-cell recordings in both spatially controlled and stochastic modes. We show that the Dreiklang chromophore entails three different light-induced switching mechanisms, namely a reversible photochemical one, off-switching by stimulated emission, and a reversible transfer to a long-lived dark state from the S1 state, all of which can be utilized to overcome the diffraction barrier. We also find that for the single-molecule-based stochastic GSDIM approach (ground-state depletion followed by individual molecule return), Dreiklang provides a larger number of on-off localization events as compared to its progenitor Citrine. Altogether, Dreiklang is a versatile probe for essentially all popular forms of live-cell fluorescence nanoscopy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Core-shell silica nanoparticles synthesized for quantitative study of DNA cleavage by laser-induced fluorescence microscopy.

    Science.gov (United States)

    Ko, Jungaa; Lim, H B

    2011-02-01

    Dye-doped silica nanoparticles (C dots) were synthesized in reverse microemulsions and used to quantitatively examine DNA cleavage in the presence of transition metal ions. The cores were synthesized as fluorescein isothiocyanate (FITC)-doped silica nanoparticles and the shells' surfaces were modified with single-stranded DNA oligomers tagged with Cy5 fluorophores. DNA cleavage induced by heavy metal ions was estimated by comparing the fluorescence of Cy5 before and after reaction with metal ions. For this, a lab-built laser-induced fluorescence microscope equipped with a charge coupled device (CCD) camera, for imaging, and photomultiplier tube, for photon counting, was used. FITC fluorescence from the core was measured as an internal standard to compensate for possible loss of the beads during the treatment. The cleavage of DNA in air in the presence of Pb(2+), Cd(2+), and Hg(2+) at 1 ng/mL was found to be 14%, 6%, and 20%, respectively, and was significantly reduced to below 9% under N(2) gas, indicating that the main cleavage source was oxygen in air. The most significant DNA cleavage was observed with the addition of hydrogen peroxide. This analytical method using dye-doped C dots provided convenient handling and quantification of the estimation of metal-DNA interaction with a detection limit of 34.9 pmol/mL.

  10. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure.

    Science.gov (United States)

    Krufczik, Matthias; Sievers, Aaron; Hausmann, Annkathrin; Lee, Jin-Ho; Hildenbrand, Georg; Schaufler, Wladimir; Hausmann, Michael

    2017-05-07

    Immunostaining and fluorescence in situ hybridization (FISH) are well established methods for specific labelling of chromatin in the cell nucleus. COMBO-FISH (combinatorial oligonucleotide fluorescence in situ hybridization) is a FISH method using computer designed oligonucleotide probes specifically co-localizing at given target sites. In combination with super resolution microscopy which achieves spatial resolution far beyond the Abbe Limit, it allows new insights into the nano-scaled structure and organization of the chromatin of the nucleus. To avoid nano-structural changes of the chromatin, the COMBO-FISH labelling protocol was optimized omitting heat treatment for denaturation of the target. As an example, this protocol was applied to ALU elements-dispersed short stretches of DNA which appear in different kinds in large numbers in primate genomes. These ALU elements seem to be involved in gene regulation, genomic diversity, disease induction, DNA repair, etc. By computer search, we developed a unique COMBO-FISH probe which specifically binds to ALU consensus elements and combined this DNA-DNA labelling procedure with heterochromatin immunostainings in formaldehyde-fixed cell specimens. By localization microscopy, the chromatin network-like arrangements of ALU oligonucleotide repeats and heterochromatin antibody labelling sites were simultaneously visualized and quantified. This novel approach which simultaneously combines COMBO-FISH and immunostaining was applied to chromatin analysis on the nanoscale after low-linear-energy-transfer (LET) radiation exposure at different doses. Dose-correlated curves were obtained from the amount of ALU representing signals, and the chromatin re-arrangements during DNA repair after irradiation were quantitatively studied on the nano-scale. Beyond applications in radiation research, the labelling strategy of immunostaining and COMBO-FISH with localization microscopy will also offer new potentials for analyses of subcellular

  11. Interaction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Jeshtadi, Ananya; Burgos, Pierre; Stubbs, Christopher D; Parker, Anthony W; King, Linda A; Skinner, Michael A; Botchway, Stanley W

    2010-12-01

    Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.

  12. Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings

    OpenAIRE

    Burgio, Lucia; Clark, Robin J. H.; Hark, Richard R.

    2010-01-01

    Italian medieval and Renaissance manuscript cuttings and miniatures from the Victoria and Albert Museum were analyzed by Raman microscopy to compile a database of pigments used in different periods and different Italian regions. The palette identified in most manuscripts and cuttings was found to include lead white, gypsum, azurite, lazurite, indigo, malachite, vermilion, red lead, lead tin yellow (I), goethite, carbon, and iron gall ink. A few of the miniatures, such as the historiated capit...

  13. Optical coherence tomography and confocal fluorescence microscopy as a combined method for studying morphological changes in lung dynamics

    Science.gov (United States)

    Gaertner, Maria; Cimalla, Peter; Knels, Lilla; Meissner, Sven; Schnabel, Christian; Kuebler, Wolfgang M.; Koch, Edmund

    2011-03-01

    Acute lung injury (ALI) is a severe pulmonary disease leading to hypoxemia accompanied by a reduced compliance and partial edema of the lung. Most of the patients have to be ventilated to compensate for the lack of oxygen. The treatment is strongly connected with ventilator induced lung injury (VILI), which is believed to introduce further stress to the lung and changes in its elastic performance. A thorough understanding of the organs micro-structure is crucial to gain more insight into the course of the disease. Due to backscattering of near-infrared light, detailed description of lung morphology can be obtained using optical coherence tomography (OCT), a non-invasive, non-contact, high resolution and fast three-dimensional imaging technique. One of its drawbacks lies in the non-specificity of light distribution in relation to defined substances, like elastic biomolecules. Using fluorescence detection, these chemical components can be visualized by introducing specifically binding fluorophores. This study presents a combined setup for studying alveolar compliance depending on volume changes and elastic fiber distributions. Simultaneously acquired OCT and confocal fluorescence images allow an entire view into morphological rearrangements during ventilation for an ex vivo mouse model using continuous pulmonary airway pressure at different values.

  14. Assessing Collagen and Elastin Pressure-Dependent Microarchitectures in Live, Human Resistance Arteries by Label-Free Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Thorsted, Bjarne; Brewer, Jonathan R.

    2017-01-01

    are performed on live, perfused arteries, however, an alternative approach using standard video-microscopy pressure myography in combination with post-fixation imaging of re-pressurized vessels is discussed. This alternative method provides users with different options for analysis approaches. The inclusion....... In this work, we describe an ex vivo method for passive mechanical testing and simultaneous label-free three-dimensional imaging of the microarchitecture of elastin and collagen in the arterial wall of isolated human resistance arteries. The imaging protocol can be applied to resistance arteries of any species...

  15. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Elisabeth Brama

    2016-12-01

    Full Text Available In-resin fluorescence (IRF protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables ‘smart collection’ of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables ‘smart tracking’ of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  16. Direct evaluation of thyroid [sup 127]I and iodine overload: in vivo study by X-ray fluorescence and in vitro by SIMS microscopy. Evaluation directe de l'[sup 127]I thyroidien en situation de surcharge iodee: etude in vivo par fluorescence X et in vitro par microscopie ionique analytique

    Energy Technology Data Exchange (ETDEWEB)

    Briancon, C.; Jeusset, J.; Halpern, S.; Fragu, P. (Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France))

    1992-01-01

    This review describes the two methods which allow direct estimation of stable iodine ([sup 127] I) within thyroid gland either in vivo by X-ray fluorescence or in vitro by secondary ion mass spectrometry (SIMS) microscopy on tissue section. Although the measurement of thyroid iodine content (TIC) by X-ray fluorescence has little relevance for routine explorations of thyroid function, this is a valuable method for understanding complex pathophysiological conditions such as the thyroid adaptation to iodine overload. On the other hand, SIMS microscopy which is able to characterize the functional activity of thyroid tissue by measuring [sup 127] I concentration within the thyroid follicles, can be used to determine the extent to which exogeneous iodine affects the regulation of iodine within the thyroid follicles. Both methods were used to evaluate the quantitative changes in thyroid [sup 127] I induced by amiodarone iodine overload. TIC measurements shows that hyperthyroidism occured only in patients who increased their iodine stores, while the patients who developed hypothyroidism has low iodine stores. The SIMS microscopy data obtained in mice demonstrated that the thyroid response to amiodarone is related to dietary iodine intake leading to an increase in local iodine concentration in iodine deficient mice and to a decrease in iodine supplemented mice. This response is specific and different from that induced by an iodine overload. These results could explain that hyperthyroidism with high thyroid iodine content occured in areas with low thyroid iodine content in areas with a supplemented iodine diet.

  17.   In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Dige, Irene; Kilian, Mogens; Nilsson, Holger

    2007-01-01

    Confocal laser scanning microscopy (CLSM) has been employed as a method for studying intact natural biofilm. When combined with fluorescence in situ hybridization (FISH) it is possible to analyze spatial relationships and changes of specific members of microbial populations over time. The aim...... of this study was to perform a systematic description of the pattern of initial dental biofilm formation by applying 16S rRNA- targeted oligonucleotide probes to the identification of streptococci and other bacteria, and to evaluate the usefulness of the combination of CLSM and FISH for structural studies...... of bacterial populations in dental biofilm. Biofilms were collected on stan- dardized glass slabs mounted in intra-oral appliances and worn by 10 individuals for 6, 12, 24 or 48 h. After intra-oral exposure the biofilms were labelled with probes against either streptococci (STR405) or all bacteria (EUB338...

  18. Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry

    Science.gov (United States)

    Mascuch, Samantha J.; Moree, Wilna J.; Cheng-Chih Hsu, Cheng-Chih; Turner, Gregory G.; Cheng, Tina L.; Blehert, David S.; Kilpatrick, A. Marm; Frick, Winifred F.; Meehan, Michael J.; Dorrestein, Pieter C.; Gerwick, Lena

    2015-01-01

    White-nose syndrome (WNS) caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection.

  19. The kinetics of colour change in textiles and fibres treated with detergent solutions. Part I-Colour perception and fluorescence microscopy analysis.

    Science.gov (United States)

    Was-Gubala, Jolanta

    2009-09-01

    The aim of this study was to assess colour changes that occur in several types of commonly available textiles as a result of the long-term effects of various popularly used laundry detergents. A 14 day experiment was conducted using blue, red and grey/black cotton, wool, acrylic and polyester textiles. Colour changes were evaluated through the visual comparison of the colour of the textile samples against that of the untreated (control) material. The kinetics of the changes in the colour of the fibres were monitored using fluorescence microscopy (UV excitation filter). The conclusions include an assessment of the observed changes from a fibre analysis expert's point of view, as well as that of an average user/consumer of the products involved.

  20. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  1. Implementation of X-ray fluorescence microscopy for investigation of elemental abnormalities in central nervous system tissue

    International Nuclear Information System (INIS)

    Chwiej, J.; Szczerbowska-Boruchowska, M.; Wojcik, S.; Lankosz, M.; Chlebda, M.; Adamek, D.; Tomik, B.; Setkowicz, Z.; Falkenberg, G.; Stegowski, Z.; Szczudlik, A.

    2005-01-01

    The microbeam synchrotron radiation X-ray fluorescence technique (micro-SRXRF) was applied to topographic and quantitative elemental analysis of human spinal cord tissue sections. The feasibility of this technique for the determination of elemental abnormalities caused by neurodegenerative disorder, i.e. amyotrophic lateral sclerosis (ALS), was verified. The applied measurement conditions allowed detecting: P, S, Cl, K, Ca, Fe, Cu, Zn and Br in thin tissue slices. Two-dimensional maps of the elemental distribution were recorded. Quantitative differences in elemental concentration between gray matter, nerve cells and white matter were observed for all analyzed cases. For the motor neuron bodies higher accumulation of S, Cl, K, Fe, Zn and Br was noticed. The results showed significant differences of elemental accumulation between the analyzed ALS cases. Moreover, the feasibility of using tissue sections fixed and embedded in paraffin for micro-SRXRF analysis was tested. These studies were performed on the samples of rat brain

  2. Visualisation of intracellular production bottlenecks in suspension-adapted CHO cells producing complex biopharmaceuticals using fluorescence microscopy.

    Science.gov (United States)

    Mathias, Sven; Fischer, Simon; Handrick, René; Fieder, Jürgen; Schulz, Patrick; Bradl, Harald; Gorr, Ingo; Gamer, Martin; Otte, Kerstin

    2018-03-01

    With the advance of complex biological formats such as bispecific antibodies or fusion proteins, mammalian expression systems often show low performance. Described determining factors may be accumulation or haltering of heterologous proteins within the different cellular compartments disturbing transport or secretion. In case of the investigated bispecific antibody (bsAb)-producing Chinese hamster ovary (CHO) cell line neither impaired transcription nor decreased translation processes were identified and thus satisfactorily explained its low production capacity. Hence, we established a streamlined confocal microscopy-based methodology for CHO production cells investigating the distribution of the recombinant protein within the respective organelles of the secretory pathway and visualised the structure of the endoplasmic reticulum (ER) to be affected pinpointing towards an intra-ER bottleneck putatively hampering or limiting efficient secretion. The ER displayed not only a heavily altered morphology in comparison to a high immunoglobulin G (IgG)-producing cell line with a possibly inflated or overloaded structure, but the recombinant protein was also completely absent in the Golgi apparatus. Notably, the results obtained using an automated microscopy approach suggest the possible application of this methodology in cell line development and engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Confocal fluorescence microscopy: An ultra-sensitive tool used to evaluate intracellular antiretroviral nano-drug delivery in HeLa cells

    Science.gov (United States)

    Mandal, Subhra; Zhou, You; Shibata, Annemarie; Destache, Christopher J.

    2015-08-01

    In the last decade, confocal fluorescence microscopy has emerged as an ultra-sensitive tool for real-time study of nanoparticles (NPs) fate at the cellular-level. According to WHO 2007 report, Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) is still one of the world's major health threats by claiming approximately 7,000 new infections daily worldwide. Although combination antiretroviral drugs (cARV) therapy has improved the life-expectancy of HIV-infected patients, routine use of high doses of cARV has serious health consequences and requires complete adherence to the regimen for success. Thus, our research goal is to fabricate long-acting novel cARV loaded poly(lactide-co-glycolic acid) (PLGA) nanoparticles (cARV-NPs) as drug delivery system. However, important aspects of cARV-NPs that require special emphasis are their cellular-uptake, potency, and sustained drug release efficiency over-time. In this article, ultra-sensitive confocal microscopy is been used to evaluate the uptake and sustained drug release kinetics of cARV-NPs in HeLa cells. To evaluate with the above goal, instead of cARV-drug, Rhodamine6G dye (fluorescent dye) loaded NPs (Rho6G NPs) have been formulated. To correlate the Rhodamin6G release kinetics with the ARV release from NPs, a parallel HPLC study was also performed. The results obtained indicate that Rho6G NPs were efficiently taken up at low concentration (treatment. Therefore, high drug assimilation and sustained release properties of PLGA-NPs make them an attractive vehicle for cARV nano-drug delivery with the potential to reduce drug dosage as well as the number of drug administrations per month.

  4. The origin of bimodal luminescence of β-SiAlON:Eu{sup 2+} phosphors as revealed by fluorescence microscopy and cathodoluminescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lin [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Mao, Zhi-Yong [University of Chinese Academy of Sciences, Beijing 100049 (China); Inorganic Coating Materials Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zeng, Xiong-Hui [Electron Microscope Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zhang, Yu-Qiang [The Research Center of Structural Ceramic Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhao, Yang [University of Chinese Academy of Sciences, Beijing 100049 (China); Inorganic Coating Materials Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Fang-Fang, E-mail: ffxu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Ying-Chun [Inorganic Coating Materials Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Liu, Xue-Jian [Electron Microscope Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2014-03-01

    Graphical abstract: - Highlights: • Bimodal emission is originated from β-SiAlON grains with z ≥ 2. • Coexistence of two kinds of emission centers in the β-SiAlON phase is definite. • Fluorescence microscopy shows influence of the z value on emission of β-SiAlON. - Abstract: Eu{sup 2+}-doped SiAlON phosphors with the composition of Eu{sub x}Si{sub 6−z}Al{sub z}O{sub z}N{sub 8−z} (0.5 ≤ z ≤ 3) at a fixed x = 0.01 were synthesized by the gas pressure sintering method. Dependence of luminescence properties on the phase compositions in β-SiAlON:Eu{sup 2+} phosphors has been examined via fluorescence microscope and scanning electron microscope equipped with a cathodoluminescence spectrometer and an energy dispersive spectrometer. Bimodal emission (green and violet) from β-SiAlON phase is observed in the samples with z ≥ 2, indicating co-existence of two different kinds of coordination for Eu{sup 2+} ions in the host lattice.

  5. Application of Single Molecule Fluorescence Microscopy to Characterize the Penetration of a Large Amphiphilic Molecule in the Stratum Corneum of Human Skin

    Directory of Open Access Journals (Sweden)

    Pierre Volz

    2015-03-01

    Full Text Available We report here on the application of laser-based single molecule total internal reflection fluorescence microscopy (TIRFM to study the penetration of molecules through the skin. Penetration of topically applied drug molecules is often observed to be limited by the size of the respective drug. However, the molecular mechanisms which govern the penetration of molecules through the outermost layer of the skin are still largely unknown. As a model compound we have chosen a larger amphiphilic molecule (fluorescent dye ATTO-Oxa12 with a molecular weight >700 Da that was applied to excised human skin. ATTO-Oxa12 penetrated through the stratum corneum (SC into the viable epidermis as revealed by TIRFM of cryosections. Single particle tracking of ATTO-Oxa12 within SC sheets obtained by tape stripping allowed us to gain information on the localization as well as the lateral diffusion dynamics of these molecules. ATTO-Oxa12 appeared to be highly confined in the SC lipid region between (intercellular space or close to the envelope of the corneocytes. Three main distinct confinement sizes of 52 ± 6, 118 ± 4, and 205 ± 5 nm were determined. We conclude that for this amphiphilic model compound several pathways through the skin exist.

  6. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM).

    Science.gov (United States)

    Duke, Elizabeth M H; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A; Collinson, Lucy M

    2014-08-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from 'hotspots' on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)☆

    Science.gov (United States)

    Duke, Elizabeth M.H.; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A.; Collinson, Lucy M.

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. PMID:24238600

  8. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Chad M.; Wolf, Jeffrey C.; Elbekai, Reem H.; Paranjpe, Madhav G.; Seiter, Jennifer M.; Chappell, Mark A.; Tappero, Ryan V.; Suh, Mina; Proctor, Deborah M.; Bichteler, Anne; Haws, Laurie C.; Harris, Mark A.

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50 mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia.

  9. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Elizabeth M.H. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Razi, Minoo [Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Weston, Anne [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Soft Matter and Functional Materials, 12489 Berlin (Germany); Tooze, Sharon A. [Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Collinson, Lucy M., E-mail: lucy.collinson@cancer.org.uk [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom)

    2014-08-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. - Highlights: • We image whole, unstained mammalian cells using cryo-soft X-ray tomography. • Endosomes are identified using a gold marker for the transferrin receptor. • A new workflow for correlative cryo-fluorescence and cryo-SXT is used to locate early autophagosomes. • Interactions between endosomes, endoplasmic reticulum and forming autophagosomes are mapped in 3D. • Multiple omegasomes are shown to form at ‘hotspots’ on the endoplasmic reticulum.

  10. Noise analysis of a white-light supercontinuum light source for multiple wavelength confocal laser scanning fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Gail [Centre for Biophotonics, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR (United Kingdom)

    2005-08-07

    Intensity correlations of a Ti : sapphire, Kr/Ar and a white-light supercontinuum were performed to quantify the typical signal amplitude fluctuations and hence ascertain the comparative output stability of the white-light supercontinuum source for confocal laser scanning microscopy (CLSM). Intensity correlations across a two-pixel sample (n = 1000) of up to 98%, 95% and 94% were measured for the Ti : sapphire, Kr/Ar and white-light supercontinuum source, respectively. The white-light supercontinuum noise level is therefore acceptable for CLSM, with the added advantage of wider wavelength flexibility over traditional CLSM excitation sources. The relatively low-noise white-light supercontinuum was then used to perform multiple wavelength sequential CLSM of guinea pig detrusor to confirm the reliability of the system and to demonstrate system flexibility.

  11. Traceable Quantitative Raman Microscopy and X-ray Fluorescence Analysis as Nondestructive Methods for the Characterization of Cu(In,Ga)Se2 Absorber Films.

    Science.gov (United States)

    Zakel, Sabine; Pollakowski, Beatrix; Streeck, Cornelia; Wundrack, Stefan; Weber, Alfons; Brunken, Stefan; Mainz, Roland; Beckhoff, Burckhardt; Stosch, Rainer

    2016-02-01

    The traceability of measured quantities is an essential condition when linking process control parameters to guaranteed physical properties of a product. Using Raman spectroscopy as an analytical tool for monitoring the production of Cu(In1-xGax)Se2 thin-film solar cells, proper calibration with regard to chemical composition and lateral dimensions is a key prerequisite. This study shows how the multiple requirements of calibration in Raman microscopy might be addressed. The surface elemental composition as well as the integral elemental composition of the samples is traced back by reference-free X-ray fluorescence analysis. Reference Raman spectra are then generated for the relevant Cu(In1-xGax)Se2 related compounds. The lateral dimensions are calibrated with the help of a novel dimensional standard whose regular structures have been traced back to the International System of Units by metrological scanning force microscopy. On this basis, an approach for the quantitative determination of surface coverage values from lateral Raman mappings is developed together with a complete uncertainty budget. Raman and X-ray spectrometry have here been proven as complementary nondestructive methods combining surface sensitivity and in-depth information on elemental and species distribution for the reliable quality control of Cu(In1-xGax)Se2 absorbers and Cu(In1-xGax)3Se5 surface layer formation. © The Author(s) 2016.

  12. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity.

    Science.gov (United States)

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-10-23

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  13. Evaluation of single-cell force spectroscopy and fluorescence microscopy to determine cell interactions with femtosecond-laser microstructured titanium surfaces.

    Science.gov (United States)

    Aliuos, Pooyan; Fadeeva, Elena; Badar, Muhammad; Winkel, Andreas; Mueller, Peter P; Warnecke, Athanasia; Chichkov, Boris; Lenarz, Thomas; Reich, Uta; Reuter, Guenter

    2013-04-01

    One goal in biomaterials research is to limit the formation of connective tissue around the implant. Antiwetting surfaces are known to reduce ability of cells to adhere. Such surfaces can be achieved by special surface structures (lotus effect). Aim of the study was to investigate the feasibility for creating antiwetting surface structures on titanium and to characterize their effect on initial cell adhesion and proliferation. Titanium microstructures were generated using femtosecond- (fs-) laser pulses. Murine fibroblasts served as a model for connective tissue cells. Quantitative investigation of initial cell adhesion was performed using atomic force microscopy. Fluorescence microscopy was used for the characterization of cell-adhesion pattern, cell morphology, and proliferation. Water contact angle (WCA) measurements evinced antiwetting properties of laser-structured surfaces. However, the WCA was decreased in serum-containing medium. Initial cell adhesion to microstructured titanium was significantly promoted when compared with polished titanium. Microstructures did not influence cell proliferation on titanium surfaces. However, on titanium microstructures, cells showed a flattened morphology, and the cell orientation was biased according to the surface topography. In conclusion, antiwetting properties of surfaces were absent in the presence of serum and did not hinder adhesion and proliferation of NIH 3T3 fibroblasts. Copyright © 2012 Wiley Periodicals, Inc.

  14. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo In; George, Graham N.; Lawrence, John R.; Kaminskyj, Susan G. W.; Dynes, James J.; Lai, Barry; Pickering, Ingrid J.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  15. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta

    2017-10-17

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  16. Two-Photon Fluorescence Microscopy for Determination of the Riboflavin Concentration in the Anterior Corneal Stroma When Using the Dresden Protocol.

    Science.gov (United States)

    Seiler, Theo G; Ehmke, Tobias; Fischinger, Isaak; Zapp, Daniel; Stachs, Oliver; Seiler, Theo; Heisterkamp, Alexander

    2015-10-01

    To determine the riboflavin concentration gradient in the anterior corneal stroma when using the Dresden protocol with different dextran solutions. Three different groups of porcine corneas, five each, were compared regarding the riboflavin concentration in the anterior stroma. Before all experiments, stable hydration conditions were established for the corresponding solution. All groups were treated with 0.1% riboflavin in different dextran solutions (15%, 16%, 20%). After imbibition, two-photon microscopy was used to determine fluorescence intensity. For signal attenuation and concentration determination corneas were saturated and measured a second time by two-photon microscopy. Additionally, the distribution was calculated mathematically and compared to the empiric results. Riboflavin concentration is decreasing with depth for all dextran solutions. A nearly constant concentration could be determined over the first 75 μm. Analysis of the fit functions leads to diffusion coefficients of D = 2.97 × 10-7 cm2/s for the 15% dextran solution, D = 2.34 × 10-7 cm2/s for the 16% dextran solution, and D = 1.28 × 10-7 cm2/s for the 20% dextran solution. The riboflavin gradients of the 20% dextran group were statistically significantly different from 15% dextran starting at a depth of 220 μm and deeper (P = 0.047). The 16% dextran group differed statistically at a depth of 250 μm and deeper (P = 0.047). These results show a significant difference to those published previously. With correct settings two-photon microscopy is a precise way to determine the concentration of riboflavin in cornea. The measured gradient is excellently fit by a Gaussian distribution, which comes out as a solution of Fick's second law.

  17. Correlative Fluorescence and Scanning Electron Microscopy of Labelled Core Fucosylated Glycans Using Cryosections Mounted on Carbon-Patterned Glass Slides.

    Science.gov (United States)

    Vancová, Marie; Nebesářová, Jana

    2015-01-01

    The aim of the study is co-localization of N-glycans with fucose attached to N-acetylglucosamine in α1,3 linkage, that belong to immunogenic carbohydrate epitopes in humans, and N-glycans with α1,6-core fucose typical for mammalian type of N-linked glycosylation. Both glycan epitopes were labelled in cryosections of salivary glands isolated from the tick Ixodes ricinus. Salivary glands secrete during feeding many bioactive molecules and influence both successful feeding and transmission of tick-borne pathogens. For accurate and reliable localization of labelled glycans in both fluorescence and scanning electron microscopes, we used carbon imprints of finder or indexed EM grids on glass slides. We discuss if the topographical images can provide information about labelled structures, the working setting of the field-emission scanning electron microscope and the influence of the detector selection (a below-the-lens Autrata improved YAG detector of back-scattered electrons; in-lens and conventional Everhart-Thornley detectors of secondary electrons) on the imaging of gold nanoparticles, quantum dots and osmium-stained membranes.

  18. Kinetics of CrPV and HCV IRES-mediated eukaryotic translation using single-molecule fluorescence microscopy.

    Science.gov (United States)

    Bugaud, Olivier; Barbier, Nathalie; Chommy, Hélène; Fiszman, Nicolas; Le Gall, Antoine; Dulin, David; Saguy, Matthieu; Westbrook, Nathalie; Perronet, Karen; Namy, Olivier

    2017-11-01

    Protein synthesis is a complex multistep process involving many factors that need to interact in a coordinated manner to properly translate the messenger RNA. As translating ribosomes cannot be synchronized over many elongation cycles, single-molecule studies have been introduced to bring a deeper understanding of prokaryotic translation dynamics. Extending this approach to eukaryotic translation is very appealing, but initiation and specific labeling of the ribosomes are much more complicated. Here, we use a noncanonical translation initiation based on internal ribosome entry sites (IRES), and we monitor the passage of individual, unmodified mammalian ribosomes at specific fluorescent milestones along mRNA. We explore initiation by two types of IRES, the intergenic IRES of cricket paralysis virus (CrPV) and the hepatitis C (HCV) IRES, and show that they both strongly limit the rate of the first elongation steps compared to the following ones, suggesting that those first elongation cycles do not correspond to a canonical elongation. This new system opens the possibility of studying both IRES-mediated initiation and elongation kinetics of eukaryotic translation and will undoubtedly be a valuable tool to investigate the role of translation machinery modifications in human diseases. © 2017 Bugaud et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. The translated conceptual survey of physics / stablization of the focal plane in two photon excitation fluorescence microscopy

    Science.gov (United States)

    Wada, Asma

    As a reflection of my career to be an effective college physics teacher, my thesis is in two parts. The first is in education research, the focus of this part is to have a tool to evaluate pedagogies I have learned at the school and plan to apply in my classrooms back home. Consequently, this resulted in the development of the translated conceptual survey of physics ( TCSP). (TCSP) was designed by combining some questions from the Force Conceptual Inventory (FCI), and the Conceptual Survey of Electricity and Magnetism (CSEM) to assess student's understanding of basic concepts of Newtonian mechanics and electricity and magnetism in introductory physics. The idea of developing this questionnaire is to use it in classrooms back home as a part of a long term objective to implement what has been realized in the area of education research to improve the quality of teaching physics there. The survey was initially written in English, validated with interviews with native English speakers, translated into Arabic, and then validated via an interview with a native Arabic speaker. We then administered the survey to two different English-speaking intro physics courses and analyzed the results for consistency. The objective of the second part in my thesis is to expand my knowledge in an area of physics that I have interest in, and getting involved in a scientific research to develop skills I need as a teacher. My research is in optical physics, in particular, I am working on one of the challenges in implementing two photon excitation luorescence (TPEF) microscopy in imaging living systems. (TPEF) microscopy has been shown to be an invaluable tool for investigating biological structure and function in living organisms. The utility of (TPEF) imaging for this application arises from several important factors including it's ability to image deep within tissue, and to do so without harming the organism. Both of these advantages arise from the fact that (TPEF) imaging is done with

  20. LED lamp

    Science.gov (United States)

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  1. Microscopy and Image Analysis.

    Science.gov (United States)

    McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R

    2017-07-11

    This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  2. Wide-field time-domain fluorescence lifetime imaging microscopy (FLIM): Molecular snapshots of metabolic function in biological systems

    Science.gov (United States)

    Sud, Dhruv

    2008-12-01

    Steady-state fluorescence imaging is routinely employed to obtain physiological information but is susceptible to artifacts such as absorption and photobleaching. FLIM provides an additional source of contrast oblivious to these but is affected by factors such as pH, gases, and temperature. Here we focused on developing a resolution-enhanced FLIM system for quantitative oxygen sensing. Oxygen is one of the most critical components of metabolic machinery and affects growth, differentiation, and death. FLIM-based oxygen sensing provides a valuable tool for biologists without the need of alternate technologies. We also developed novel computational approaches to improve spatial resolution of FLIM images, extending its potential for thick tissue studies. We designed a wide-field time-domain UV-vis-NIR FLIM system with high temporal resolution (50 ps), large temporal dynamic range (750 ps -- 1 mus), short data acquisition/processing times (15 s) and noise-removal capability. Lifetime calibration of an oxygen-sensitive, ruthenium dye (RTDP) enabled in vivo oxygen level measurements (resolution = 8 muM, range = 1 -- 300 muM). Combining oxygen sensing with endogenous imaging allowed for the study of two key molecules (NADH and oxygen) consumed at the termini of the oxidative phosphorylation pathway in Barrett's adenocarcinoma columnar (SEG-1) cells and Esophageal normal squamous cells (HET-1). Starkly higher intracellular oxygen and NADH levels in living SEG-1 vs. HET-1 cells were detected by FLIM and attributed to altered metabolic pathways in malignant cells. We performed FLIM studies in microfluidic bioreactors seeded with mouse myoblasts. For these systems, oxygen concentrations play an important role in cell behavior and gene expression. Oxygen levels decreased with increasing cell densities and were consistent with simulated model outcomes. In single bioreactor loops, FLIM detected spatial heterogeneity in oxygen levels as high as 20%. We validated our calibration

  3. Determination of lead in clay enameled by X-ray fluorescence technique in Total reflection and by Scanning Electron Microscopy; Determinacion de plomo en esmaltado de barro por Fluorescencia de rayos X en reflexion total y Microscopia Electronica de Barrido

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua O, G.; Carapia M, L. [Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Estado de Mexico (Mexico)

    2000-07-01

    This work has the objective of determining lead free in the glazed commercial stewing pans using the X-ray fluorescence technique in Total reflection (FRX) and the observation and semiquantitative determination of lead by Analytical Scanning Electron Microscopy (ASEM). (Author)

  4. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events.

    Science.gov (United States)

    Majzoub, Ramsey N; Chan, Chia-Ling; Ewert, Kai K; Silva, Bruno F B; Liang, Keng S; Safinya, Cyrus R

    2015-06-01

    Endosomal entrapment is known to be a major bottleneck to successful cytoplasmic delivery of nucleic acids (NAs) using cationic liposome-NA nanoparticles (NPs). Quantitative measurements of distributions of NPs within early endosomes (EEs) have proven difficult due to the sub-resolution size and short lifetime of wildtype EEs. In this study we used Rab5-GFP, a member of the large family of GTPases which cycles between the plasma membrane and early endosomes, to fluorescently label early endosomes. Using fluorescence microscopy and quantitative image analysis of cells expressing Rab5-GFP, we found that at early time points (t<1h), only a fraction (≈35%) of RGD-tagged NPs (which target cell surface integrins) colocalize with wildtype EEs, independent of the NP's membrane charge density. In comparison, a GTP-hydrolysis deficient mutant, Rab5-Q79L, which extends the size and lifetime of EEs yielding giant early endosomes (GEEs), enabled us to resolve and localize individual NPs found within the GEE lumen. Remarkably, nearly all intracellular NPs are found to be trapped within GEEs implying little or no escape at early time points. The observed small degree of colocalization of NPs and wildtype Rab5 is consistent with recycling of Rab5-GDP to the plasma membrane and not indicative of NP escape from EEs. Taken together, our results show that endosomal escape of PEGylated nanoparticles occurs downstream of EEs i.e., from late endosomes/lysosomes. Our studies also suggest that Rab5-Q79L could be used in a robust imaging assay which allows for direct visualization of NP interactions with the luminal membrane of early endosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fickian-Based Empirical Approach for Diffusivity Determination in Hollow Alginate-Based Microfibers Using 2D Fluorescence Microscopy and Comparison with Theoretical Predictions

    Directory of Open Access Journals (Sweden)

    Maryam Mobed-Miremadi

    2014-12-01

    Full Text Available Hollow alginate microfibers (od = 1.3 mm, id = 0.9 mm, th = 400 µm, L = 3.5 cm comprised of 2% (w/v medium molecular weight alginate cross-linked with 0.9 M CaCl2 were fabricated to model outward diffusion capture by 2D fluorescent microscopy. A two-fold comparison of diffusivity determination based on real-time diffusion of Fluorescein isothiocyanate molecular weight (FITC MW markers was conducted using a proposed Fickian-based approach in conjunction with a previously established numerical model developed based on spectrophotometric data. Computed empirical/numerical (Dempiricial/Dnumerical diffusivities characterized by small standard deviations for the 4-, 70- and 500-kDa markers expressed in m2/s are (1.06 × 10−9 ± 1.96 × 10−10/(2.03 × 10−11, (5.89 × 10−11 ± 2.83 × 10−12/(4.6 × 10−12 and (4.89 × 10−12 ± 3.94 × 10−13/(1.27 × 10−12, respectively, with the discrimination between the computation techniques narrowing down as a function of MW. The use of the numerical approach is recommended for fluorescence-based measurements as the standard computational method for effective diffusivity determination until capture rates (minimum 12 fps for the 4-kDa marker and the use of linear instead of polynomial interpolating functions to model temporal intensity gradients have been proven to minimize the extent of systematic errors associated with the proposed empirical method.

  6. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    Science.gov (United States)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  7. Methods for counting residual leukocytes in leukocyte-depleted plasma-a comparison between a routine hematology instrument, the Nageotte chamber, flow cytometry, and a fluorescent microscopy analyzer.

    Science.gov (United States)

    Petersson, Annika; Ekblom, Kim

    2017-05-01

    Counting very low levels of leukocytes is technically challenging but mandatory for quality control of leukocyte-depleted plasma. Established assays, such as flow cytometry and counting in the Nageotte chamber, are laborious and expensive. The aim of this study was to test two alternative assays, the cerebrospinal fluid program in the routine hematology analyzer ADVIA 2120 and a fluorescence microscopy analyzer, the ADAM-rWBC. Linearity, accuracy, and precision were established for the ADVIA 2120, the ADAM-rWBC analyzer and the Nageotte chamber with flow cytometry as the reference method. Two hundred consecutive leukocyte-depleted donor plasma samples were also tested. The ADAM-rWBC analyzer and the Nageotte chamber fulfilled all quality requirements. Flow cytometry fulfilled the requirements for linearity and precision. The ADVIA 2120 analyzer did not fully reach the quality criteria, and flow cytometry did not reach quality criteria on accuracy. No false-positive results on donor plasma samples were recorded. The ADAM-rWBC is suitable for the purpose of quality control of residual leukocytes in leukocyte-depleted plasma. For the ADVIA 2120, further improvements and studies are needed to reach the quality requirements stated in this study. © 2017 AABB.

  8. Three-dimensional particle tracking in concave structures made by ultraviolet nanoimprint via total internal reflection fluorescence microscopy and refractive-index-matching method

    Science.gov (United States)

    Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi

    2018-03-01

    Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x-y-z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.

  9. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study

    Science.gov (United States)

    Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Soares, Luís Eduardo Silva; Santo, Ana Maria do Espírito; Martin, Airton Abraha~o.; Puppin-Rontani, Regina Maria

    2012-07-01

    We examine the morphological and chemical changes in the pulp chamber dentin after using endodontic agents by scanning electron microscopy (SEM), Fourier transform Raman spectroscopy (FT-Raman), and micro energy-dispersive x-ray fluorescence spectrometry (μEDXRF). Thirty teeth were sectioned exposing the pulp chamber and divided by six groups (n=5): NT-no treatment; CHX-2% chlorhexidine; CHXE-2% chlorhexidine+17% EDTA E-17% EDTA; SH5-5.25% NaOCl; SH5E-5.25% NaOCl+17% EDTA. The inorganic and organic content was analyzed by FT-Raman. μEDXRF examined calcium (Ca) and phosphorus (P) content as well as Ca/P ratio. Impressions of specimens were evaluated by SEM. Data were submitted to Kruskal-Wallis and Dunn tests (pNT=SH5E>CHX>E>CHXE). CHXE and E presented the highest Ca/P ratio values compared to the other groups (p<0.05). The SEM images in the EDTA-treated groups had the highest number of open tubules. Erosion in the tubules was observed in CHX and SH5E groups. Endodontic agents change the inorganic and organic content of pulp chamber dentin. NaOCl used alone, or in association with EDTA, was the most effective agent considering chemical and morphological approaches.

  10. Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy

    International Nuclear Information System (INIS)

    Prachayasittikul, Virapong; Na Ayudhya, Chartchalerm Isarankura; Hilterhaus, Lutz; Hinz, Andreas; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-01-01

    Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N- (5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn 2+ , was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device

  11. Effect of the gastrointestinal environment on pH homeostasis of Lactobacillus plantarum and Lactobacillus brevis cells as measured by real-time fluorescence ratio-imaging microscopy

    DEFF Research Database (Denmark)

    Ramos, Cíntia Lacerda; Thorsen, Line; Ryssel, Mia

    2014-01-01

    In the present work, an in vitro model of the gastrointestinal tract (GIT) was developed to obtain real-time observations of the pH homeostasis of single cells of probiotic Lactobacillus spp. strains as a measure of their physiological state. Changes in the intracellular pH (pHi) were determined...... using fluorescence ratio imaging microscopy (FRIM) for potential probiotic strains of Lactobacillus plantarum UFLA CH3 and Lactobacillus brevis UFLA FFC199. Heterogeneous populations were observed, with pHi values ranging from 6.5 to 7.5, 3.5 to 5.6 and 6.5 to 8.0 or higher during passage of saliva (p...... is the first to produce an in vitro GIT model enabling real-time monitoring of pH homeostasis of single cells in response to the wide range of pHex of the GIT. Furthermore, it was possible to observe the heterogeneous response of single cells. The technique can be used to determine the survival...

  12. Fluorescence microscopy of Streptomyces conjugation suggests DNA-transfer at the lateral walls and reveals the spreading of the plasmid in the recipient mycelium.

    Science.gov (United States)

    Thoma, Lina; Vollmer, Bernd; Muth, Günther

    2016-02-01

    Conjugative DNA-transfer in mycelial streptomycetes is a unique process, manifested on agar plates by the formation of circular growth retardation zones called pocks. Because pock size correlates with the extent of the transconjugant zone, it was suggested that pocks reflect the spreading of the transferred plasmid in the recipient mycelium. However, this concept has not been experimentally proven yet. The use of an eGFP-encoding derivative of the conjugative pIJ303 plasmid and Streptomyces lividans T7-mCherry as recipient enabled us to differentiate donor, recipient and transconjugant hyphae in mating experiments by fluorescence microscopy. Microscopic observation of the conjugation process suggested DNA-transfer via the lateral walls. At the contact sites mCherry was never observed in the donor, indicating that the conjugative DNA-transfer does not involve interfusion of cytoplasms of donor and recipient. The spreading of the transferred plasmid to the older parts of the recipient mycelium was demonstrated. This spreading was impaired when plasmid-encoded spd genes were inactivated. Deletion of the FtsK-like DNA-translocase encoding tra gene from the plasmid and mating experiments with strains containing chromosomal copies of tra either in the donor and/or in the recipient revealed that Tra had an essential role in intramycelial plasmid spreading. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Multiphase flow towards coupled solid-liquid interactions in 2D heterogeneous porous micromodels: a fluorescent microscopy and micro-PIV measurement at pore scale

    Science.gov (United States)

    Li, Yaofa; Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth; Kenneth Christensen, Notre Dame Team

    2017-11-01

    Multiphase flow in porous media is relevant to a range of applications in the energy and environmental sectors. Recently, the interest has been renewed by geological storage of CO2 within saline aquifers. Central to this goal is predicting the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local pressure buildup may cause micro-seismic events, which could prove disastrous, and possibly compromise seal integrity. Evidence shows that the large-scale events are coupled with pore-scale phenomena, necessitating the understanding of pore-scale stress, strain, and flow processes and their representation in large-scale modeling. To this end, the pore-scale flow of water and supercritical CO2 is investigated under reservoir-relevant conditions over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions. This work was supported as part of the GSCO2, an EFRC funded by the US DOE, Office of Science, and partially supported by WPI-I2CNER.

  14. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Andre Maia Chagas

    2017-07-01

    Full Text Available Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis elegans have become key model organisms in modern neuroscience. In addition to their low maintenance costs and easy sharing of strains across labs, one key appeal is the possibility to monitor single or groups of animals in a behavioural arena while controlling the activity of select neurons using optogenetic or thermogenetic tools. However, the purchase of a commercial solution for these types of experiments, including an appropriate camera system as well as a controlled behavioural arena, can be costly. Here, we present a low-cost and modular open-source alternative called 'FlyPi'. Our design is based on a 3D-printed mainframe, a Raspberry Pi computer, and high-definition camera system as well as Arduino-based optical and thermal control circuits. Depending on the configuration, FlyPi can be assembled for well under €100 and features optional modules for light-emitting diode (LED-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature stimulator for thermogenetics. The complete version with all modules costs approximately €200 or substantially less if the user is prepared to 'shop around'. All functions of FlyPi can be controlled through a custom-written graphical user interface. To demonstrate FlyPi's capabilities, we present its use in a series of state-of-the-art neurogenetics experiments. In addition, we demonstrate FlyPi's utility as a medical diagnostic tool as well as a teaching aid at Neurogenetics courses held at several African universities. Taken together, the low cost and modular nature as well as fully open design of FlyPi make it a highly versatile tool in a range of applications, including the classroom, diagnostic centres, and research labs.

  15. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans.

    Science.gov (United States)

    Maia Chagas, Andre; Prieto-Godino, Lucia L; Arrenberg, Aristides B; Baden, Tom

    2017-07-01

    Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis elegans have become key model organisms in modern neuroscience. In addition to their low maintenance costs and easy sharing of strains across labs, one key appeal is the possibility to monitor single or groups of animals in a behavioural arena while controlling the activity of select neurons using optogenetic or thermogenetic tools. However, the purchase of a commercial solution for these types of experiments, including an appropriate camera system as well as a controlled behavioural arena, can be costly. Here, we present a low-cost and modular open-source alternative called 'FlyPi'. Our design is based on a 3D-printed mainframe, a Raspberry Pi computer, and high-definition camera system as well as Arduino-based optical and thermal control circuits. Depending on the configuration, FlyPi can be assembled for well under €100 and features optional modules for light-emitting diode (LED)-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature stimulator for thermogenetics. The complete version with all modules costs approximately €200 or substantially less if the user is prepared to 'shop around'. All functions of FlyPi can be controlled through a custom-written graphical user interface. To demonstrate FlyPi's capabilities, we present its use in a series of state-of-the-art neurogenetics experiments. In addition, we demonstrate FlyPi's utility as a medical diagnostic tool as well as a teaching aid at Neurogenetics courses held at several African universities. Taken together, the low cost and modular nature as well as fully open design of FlyPi make it a highly versatile tool in a range of applications, including the classroom, diagnostic centres, and research labs.

  16. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  17. Off-axis self-interference incoherent digital holographic microscopy

    Science.gov (United States)

    Jeon, Philjun; Lee, Heejung; So, Byunghwy; Hwang, Wonsang; Bae, Yoonsung; Kim, Dugyoung

    2017-03-01

    3D imaging is demanding technology required in fluorescence microscopy. Even though holography is a powerful technique, it could not be used easily in fluorescence microscopy because of low coherence of fluorescence light. Lately, several incoherent holographic methods such as scanning holography, Fresnel in coherent correlation holography (FINCH), and self-interference incoherent digital holography (SIDH) have been proposed. However, these methods have many problems to be overcome for practical applications. For example, DC term removal, twin image ambiguity, and phase unwrapping problems need to be resolved. Off-axis holography is a straightforward solution which can solve most of these problems. We built an off-axis SIDH system for fluorescence imaging, and investigated various conditions and requirements for practical holographic fluorescence microscopy. Our system is based on a modified Michelson interferometer with a flat mirror at one arm and a curved mirror at the other arm of the interferometer. We made a phantom 3D fluorescence object made of 2 single-mode fibers coupled to a single red LED source to mimic 2 fluorescence point sources distributed by a few tens of micrometers apart. A cooled EM-CCD was used to take holograms of these fiber ends which emit only around 180 nW power.

  18. Cellular Fates of Manganese(II) Pentaazamacrocyclic Superoxide Dismutase (SOD) Mimetics: Fluorescently Labeled MnSOD Mimetics, X-ray Absorption Spectroscopy, and X-ray Fluorescence Microscopy Studies.

    Science.gov (United States)

    Weekley, Claire M; Kenkel, Isabell; Lippert, Rainer; Wei, Shengwei; Lieb, Dominik; Cranwell, Tiffanny; Wedding, Jason L; Zillmann, Annika S; Rohr, Robin; Filipovic, Milos R; Ivanović-Burmazović, Ivana; Harris, Hugh H

    2017-06-05

    Manganese(II) pentaazamacrocyclic complexes (MnPAMs) can act as small-molecule mimics of manganese superoxide dismutase (MnSOD) with potential therapeutic application in conditions linked to oxidative stress. Previously, the in vitro mechanism of action has been determined, their activity has been demonstrated in cells, and some representatives of this class of MnSOD mimetics have entered clinical trials. However, MnPAM uptake, distribution, and metabolism in cells are largely unknown. Therefore, we have used X-ray fluorescence microscopy (XFM) and X-ray absorption spectroscopy (XAS) to study the cellular fate of a number of MnPAMs. We have also synthesized and characterized fluorescently labeled (pyrene and rhodamine) manganese(II) pyane [manganese(II) trans-2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene] derivatives and investigated their utility for cellular imaging of MnPAMs. Their SOD activity was determined via a direct stopped-flow technique. XFM experiments show that treatment with amine-based manganese(II) pyane type pentaazamacrocycles leads to a 10-100-fold increase in the overall cellular manganese levels compared to the physiological levels of manganese in control cells. In treated cells in general, manganese was distributed throughout the cell body, with a couple of notable exceptions. The lipophilicity of the MnPAMs, examined by partitioning in octanol-buffer system, was a good predictor of the relative cellular manganese levels. Analysis of the XAS data of treated cells revealed that some fraction of amine-based MnPAMs taken up by the cells remained intact, with the rest transformed into SOD-active manganese(II) phosphate. Higher phosphate binding constants, determined from the effect of the phosphate concentration on in vitro SOD activity, were associated with more extensive metabolism of the amine-based MnPAMs to manganese(II) phosphate. In contrast, the imine-based manganese(II) pydiene complex that is prone to

  19. Enhanced Emission from Single Isolated Gold Quantum Dots Investigated Using Two-Photon-Excited Fluorescence Near-Field Scanning Optical Microscopy.

    Science.gov (United States)

    Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore

    2016-12-21

    New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au 25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.

  20. Primary cumulus platinum minerals in the Monts de Cristal Complex, Gabon: magmatic microenvironments inferred from high-definition X-ray fluorescence microscopy

    Science.gov (United States)

    Barnes, Stephen J.; Fisher, Louise A.; Godel, Bélinda; Pearce, Mark A.; Maier, Wolfgang D.; Paterson, David; Howard, Daryl L.; Ryan, Christopher G.; Laird, Jamie S.

    2016-03-01

    An unusual occurrence of Pt-enriched pyroxenites in the Monts de Cristal igneous complex is characterized by unusually high ratios of Pt to other platinum-group elements (PGEs) and very low Cu and sulfide contents. Synchrotron X-ray fluorescence microscopy was used to identify over a hundred discrete grains of platinum minerals and relate their occurrence to textural associations in the host heteradcumulate orthopyroxenites. Element associations, backed up by FIB-SEM and PIXE probe observations, indicate that most of the Pt is associated with either As- or trace Cu-Ni-rich sulfides, or both. Some of the Pt-As grains can be identified as sperrylite, and most are likely to be Pt-Fe alloy. The relative abundances and volumes of Pt minerals to sulfide minerals are very large compared with typical magmatic sulfides. Almost all of the grains observed lie at or within a few tens of μm of cumulus orthopyroxene grain boundaries, and there is no significant difference between the populations of grains located inside or outside plagioclase oikocrysts. These oikocrysts are inferred to have crystallized either at the cumulus stage or very shortly thereafter, on the basis of their relationship to Ti enrichment in the margins of pyroxene grains not enclosed in oikocrysts. This relationship precludes a significant role of trapped intercumulus liquid in Pt deposition or mobilization and also allows a confident inference that Pt-rich and Pt-As-enriched phases precipitated directly from the magma at the cumulus stage. These observations lead to the conclusion that fractionation of Pt from other PGEs in this magmatic system is a consequence of a solubility limit for solid Pt metal and/or Pt arsenide.

  1. Effect of the gastrointestinal environment on pH homeostasis of Lactobacillus plantarum and Lactobacillus brevis cells as measured by real-time fluorescence ratio-imaging microscopy.

    Science.gov (United States)

    Ramos, Cíntia Lacerda; Thorsen, Line; Ryssel, Mia; Nielsen, Dennis S; Siegumfeldt, Henrik; Schwan, Rosane Freitas; Jespersen, Lene

    2014-04-01

    In the present work, an in vitro model of the gastrointestinal tract (GIT) was developed to obtain real-time observations of the pH homeostasis of single cells of probiotic Lactobacillus spp. strains as a measure of their physiological state. Changes in the intracellular pH (pHi) were determined using fluorescence ratio imaging microscopy (FRIM) for potential probiotic strains of Lactobacillus plantarum UFLA CH3 and Lactobacillus brevis UFLA FFC199. Heterogeneous populations were observed, with pHi values ranging from 6.5 to 7.5, 3.5 to 5.6 and 6.5 to 8.0 or higher during passage of saliva (pH 6.4), gastric (pH 3.5) and intestinal juices (pH 6.4), respectively. When nutrients were added to gastric juice, the isolate L. brevis significantly decreased its pH(i) closer to the extracellular pH (pH(ex)) than in gastric juice without nutrients. This was not the case for L. plantarum. This study is the first to produce an in vitro GIT model enabling real-time monitoring of pH homeostasis of single cells in response to the wide range of pH(ex) of the GIT. Furthermore, it was possible to observe the heterogeneous response of single cells. The technique can be used to determine the survival and physiological conditions of potential probiotics and other microorganisms during passage through the GIT. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Use of αv Integrin Linked to Green Fluorescent Protein in Osteosarcoma Cells and Confocal Microscopy to Image Molecular Dynamics During Lung Metastasis in Nude Mice.

    Science.gov (United States)

    Tome, Yasunori; Yano, Shuya; Sugimoto, Naotoshi; Mii, Sumiyuki; Uehara, Fuminari; Miwa, Shinji; Bouvet, Michael; Tsuchiya, Hiroyuki; Kanaya, Fuminori; Hoffman, Robert M

    2016-08-01

    We report here imaging of the behavior of αv integrin linked to green fluorescent protein (GFP) in human osteosarcoma cells colonizing the lung of nude mice. 143B osteosarcoma cells expressing αv integrin-GFP were generated by transfection of an αv integrin-GFP fusion-gene vector pCMV-AC- ITGAV-GFP. In order to generate experimental lung metastases, 143B osteosarcoma cells (1×10(6)), stably expressing αv integrin-GFP, were injected intravenously via the tail vein. The osteosarcoma cells were transplanted orthotopically in the tibia of nude mice in order to generate spontaneous metastases. Lungs were harvested and imaged by confocal microscopy within 1 hour. In the experimental lung-metastasis model, extravasating and deformed osteosarcoma cells expressing αv integrin-GFP were observed. Pseudopodia of the osteosarcoma cells contained small puncta of αv integrin-GFP. In early-stage spontaneous lung metastasis, tumor emboli were observed in pulmonary vessels. At high magnification, small αv integrin-GFP puncta were observed in the tumor embolus. In late-stage spontaneous metastasis, tumor emboli were also observed in pulmonary vessels. Invading cancer cells with strong expression of αv integrin-GFP were observed at the margin of the tumor emboli. The results of this study demonstrate that molecular dynamics of αv integrin-GFP can be imaged in lung metastasis, which will allow further understanding of the role of αv integrin in this process. The results also suggest a general concept for imaging molecular behavior in vivo. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Mapping of single-copy DNA sequences on human chromosomes by in situ hybridization with biotinylated probes: Enhancement of detection sensitivity by intensified-fluorescence digital-imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Viegas-Pequignot, E.; Dutrillaux, B.; Magdelenat, H. (Institut Curie, Paris (France)); Coppey-Moisan, M. (Institut Curie, Paris (France) Institut National de la Sante et de la Recherche Medicale, Orsay (France))

    1989-01-01

    Two single-copy DNA segments of 6 kilobases (kb) and 2.3 kb were labeled with biotin-labeled dUTP (Bio-11-dUTP) and hybridized to human chromosomes. These probes were detected by immunofluorescence and directly mapped on chromosomes by using classical fluorescence microscopy and a microchannel-plate-intensified video camera. By a subsequent R-banding, the 6-kb and 2.3-kb fragments were precisely localized to the 18p11.3 band and to the 22q11.2 band, respectively, in agreement with previous results obtained with radioactive probes. The adaptation of fluorescence intensification and digital image processing (frame integration to enhance signal-to-noise ratio and linear contrast stretching) to microscopy makes it possible to detect very weak fluorescent spots on chromosomes. This system allows a high spatial resolution, even at very low fluorescence levels. The efficiency and the specificity of the hybridization and detection methodology give a direct and precise localization of the short single-copy sequences on human chromosomes.

  4. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  5. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues.

    Science.gov (United States)

    Pascolo, Lorella; Gianoncelli, Alessandra; Kaulich, Burkhard; Rizzardi, Clara; Schneider, Manuela; Bottin, Cristina; Polentarutti, Maurizio; Kiskinova, Maya; Longoni, Antonio; Melato, Mauro

    2011-02-07

    Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins) around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF) microscopy, which reveals new features in the elemental lateral distribution. The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the presence of asbestos fibres. The new results obtained by

  6. Endoscopic Microscopy

    Directory of Open Access Journals (Sweden)

    Konstantin Sokolov

    2002-01-01

    Full Text Available In vivo endoscopic optical microscopy provides a tool to assess tissue architecture and morphology with contrast and resolution similar to that provided by standard histopathology – without need for physical tissue removal. In this article, we focus on optical imaging technologies that have the potential to dramatically improve the detection, prevention, and therapy of epithelial cancers. Epithelial pre-cancers and cancers are associated with a variety of morphologic, architectural, and molecular changes, which currently can be assessed only through invasive, painful biopsy. Optical imaging is ideally suited to detecting cancer-related alterations because it can detect biochemical and morphologic alterations with sub-cellular resolution throughout the entire epithelial thickness. Optical techniques can be implemented non-invasively, in real time, and at low cost to survey the tissue surface at risk. Our manuscript focuses primarily on modalities that currently are the most developed: reflectance confocal microscopy (RCM and optical coherence tomography (OCT. However, recent advances in fluorescence-based endoscopic microscopy also are reviewed briefly. We discuss the basic principles of these emerging technologies and their current and potential applications in early cancer detection. We also present research activities focused on development of exogenous contrast agents that can enhance the morphological features important for cancer detection and that have the potential to allow vital molecular imaging of cancer-related biomarkers. In conclusion, we discuss future improvements to the technology needed to develop robust clinical devices.

  7. Nobel Prize for blue LEDs

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2015-01-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations. (paper)

  8. Nobel Prize for blue LEDs

    Science.gov (United States)

    Kraftmakher, Yaakov

    2015-05-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations.

  9. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy

    Czech Academy of Sciences Publication Activity Database

    Dziuba, Dmytro; Jurkiewicz, Piotr; Cebecauer, Marek; Hof, Martin; Hocek, Michal

    2016-01-01

    Roč. 55, č. 1 (2016), s. 174-178 ISSN 1433-7851 R&D Projects: GA ČR GBP206/12/G151; GA ČR(CZ) GC14-03141J Institutional support: RVO:61388963 ; RVO:61388955 Keywords : DNA * fluorescence spectroscopy * fluorescent probes * nucleosides * time-resolved spectroscopy Subject RIV: CC - Organic Chemistry; BO - Biophysics (UFCH-W) Impact factor: 11.994, year: 2016

  10. Europium Uptake and Partitioning in Oat (Avena sativa) Roots as studied By Laser-Induced Fluorescence Spectroscopy and Confocal Microscopy Profiling Technique

    International Nuclear Information System (INIS)

    Fellows, Robert J.; Wang, Zheming; Ainsworth, Calvin C.

    2003-01-01

    The uptake of Eu3+ by elongating oat plant roots was studied by fluorescence spectroscopy, fluorescence lifetime measurement, as well as laser excitation time-resolved confocal fluorescence profiling technique. The results of this work indicated that the initial uptake of Eu(III) by oat root was most evident within the apical meristem of the root just proximal to the root cap. Distribution of assimilated Eu(III) within the roots differentiation and elongation zone was non-uniform. Higher concentrations were observed within the vascular cylinder, specifically in the phloem and developing xylem parenchyma. Elevated levels of the metal were also observed in the root hairs of the mature root. The concentration of assimilated Eu3+ dropped sharply from the apical meristem to the differentiation and elongation zone and then gradually decreased as the distance from the root cap increased. Fluorescence spectroscopic characteristics of the assimilated Eu3+ suggested that the Eu3+ exists a s inner-sphere mononuclear complexes inside the root. This work has also demonstrated the effectiveness of a time-resolved Eu3+ fluorescence spectroscopy and confocal fluorescence profiling techniques for the in vivo, real-time study of metal[Eu3+] accumulation by a functioning intact plant root. This approach can prove valuable for basic and applied studies in plant nutrition and environmental uptake of actinide radionuclides

  11. Fluorescence live cell imaging.

    Science.gov (United States)

    Ettinger, Andreas; Wittmann, Torsten

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein (FP) tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate FP constructs by spinning disk confocal microscopy. © 2014 Elsevier Inc. All rights reserved.

  12. Laboratory Evaluation of LED T8 Replacement Lamp Products

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.; Kinzey, Bruce R.; Miller, Naomi J.

    2011-05-23

    A report on a lab setting analysis involving LED lamps intended to directly replace T8 fluorescent lamps (4') showing light output, power, and economic comparisons with other fluorescent options.

  13. Provenance study of Gothic paintings from North-East Slovakia by handheld x-ray fluorescence, microscopy and x-ray microdiffraction

    Czech Academy of Sciences Publication Activity Database

    Hradil, David; Hradilová, J.; Bezdička, Petr; Švarcová, Silvie

    2008-01-01

    Roč. 37, č. 4 (2008), s. 376-382 ISSN 0049-8246 R&D Projects: GA ČR(CZ) GA203/07/1324 Institutional research plan: CEZ:AV0Z40320502 Keywords : Gothic paintings * X-ray fluorescence * X-ray microdiffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 1.390, year: 2008

  14. SPONTANEOUS AND MNNG-INDUCED REVERSION OF AN EGFP CONSTRUCT IN HELA CELLS: AN ASSAY FOR OBSERVING MUTATIONS IN LIVING CELLS BY FLUORESCENT MICROSCOPY

    Science.gov (United States)

    A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...

  15. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins, and guided bone regeneration in a rodent model: a description of the bone repair by light microscopy

    Science.gov (United States)

    Pinheiro, Antonio Luiz B.; Aciole, Gilberth T. S.; Soares, Luiz G. P.; Correia, Neandder A.; N. dos Santos, Jean

    2011-03-01

    We carried out a histological analysis on surgical bone defects grafted or not with MTA, treated or not with LED, BMPs and GBR. We have used several models to assess the effects of laser on bone. Benefits of the isolated or combined use them on bone healing has been suggested. There is no previous report on their association with LED light. 90 rats were divided into 10 groups. On Groups II and I the defect were filled with the clot. On Group II, were further irradiated. On groups III-VI, defect was filled with MTA + Collagen gel (III); animals of group IV were further irradiated. On groups V and VI, the defects filled with the MTA were covered with a membrane. Animals of Group VI were further irradiated. On Groups VII and VIII a pool of BMPs was added to the MTA and was further irradiated. On groups IX and X, the MTA + BMP graft was covered with a membrane. On group X, the defect was further irradiated. LED (λ850 +/- 10nm, 150mW, A= 0.5cm2, 54s, 0.3W/cm2, 16 J/cm2) was applied at 48 h intervals during 15 days. Specimens were taken, processed, cut and stained with H&E and Sirius red and underwent histological analysis. The results showed that MTA seemed not being affected by LED light. However, its use positively affected healing around the graft. It is concluded that MTA is not affected by the LED light due to it characteristics, but beneficial results with LED usage was found.

  16. LEDs for general and horticultural lighting

    OpenAIRE

    Girón González, Emilio

    2012-01-01

    The work begins with an introductory part about Light Emitting Diode (or LEDs) and how these devices work. This report also shows an overview of different artificial light sources such as incandescent lamps, fluorescents tube and high-intensity discharge (HID) lamps. The LED lighting is more energy-efficient than other artificial lighting, since they require less energy to operate. The following part of the work reports LEDs for General Lighting that describes some basic concepts such as spec...

  17. Non-linear imaging and characterization of atherosclerotic arterial tissue using combined two photon fluorescence, second-harmonic generation and CARS microscopy

    Science.gov (United States)

    Cicchi, Riccardo; Matthäus, Christian; Meyer, Tobias; Lattermann, Annika; Dietzek, Benjamin; Brehm, Bernhard R.; Popp, Jürgen; Pavone, Francesco S.

    2014-02-01

    Atherosclerosis is among the most widespread cardiovascular diseases and one of the leading cause of death in the Western World. Characterization of arterial tissue in atherosclerotic condition is extremely interesting from the diagnostic point of view. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires a morpho-functional approach. Multimodal non-linear microscopy has the potential to bridge this gap by providing morpho-functional information on the examined tissues in a label-free way. Here we employed multiple non-linear microscopy techniques, including CARS, TPF, and SHG to provide intrinsic optical contrast from various tissue components in both arterial wall and atherosclerotic plaques. CARS and TPF microscopy were used to respectively image lipid depositions within plaques and elastin in the arterial wall. Cholesterol deposition in the lumen and collagen in the arterial wall were selectively imaged by SHG microscopy and distinguished by forward-backward SHG ratio. Image pattern analysis allowed characterizing collagen organization in different tissue regions. Different values of fiber mean size, distribution and anisotropy are calculated for lumen and media prospectively allowing for automated classification of atherosclerotic lesions. The presented method represents a promising diagnostic tool for evaluating atherosclerotic tissue and has the potential to find a stable place in clinical setting as well as to be applied in vivo in the near future.

  18. Fast methods for analysis of neurotransmitters from single cell and monitoring their releases in central nervous system by capillary electrophoresis, fluorescence microscopy and luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang [Iowa State Univ., Ames, IA (United States)

    1999-12-10

    Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based on monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10-8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.

  19. Localization microscopy of DNA in situ using Vybrant{sup ®} DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution

    Energy Technology Data Exchange (ETDEWEB)

    Żurek-Biesiada, Dominika [Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków (Poland); Szczurek, Aleksander T. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Prakash, Kirti [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Mohana, Giriram K. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Lee, Hyun-Keun [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany); Roignant, Jean-Yves [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Birk, Udo J. [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany); Dobrucki, Jurek W., E-mail: jerzy.dobrucki@uj.edu.pl [Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków (Poland); Cremer, Christoph, E-mail: c.cremer@imb-mainz.de [Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz (Germany); Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz (Germany)

    2016-05-01

    Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.

  20. Validation of a quantitative real-time PCR assay and comparison with fluorescence microscopy and selective agar plate counting for species-specific quantification of an in vitro subgingival biofilm model.

    Science.gov (United States)

    Ammann, T W; Bostanci, N; Belibasakis, G N; Thurnheer, T

    2013-08-01

    Subgingival biofilms are the prime etiological factor of periodontal disease. Owing to their complex polymicrobial nature, quantification of individual bacterial species within the biofilm for research and diagnostic purposes can be methodologically challenging. The aims of this study were to establish a quantitative real-time PCR (qPCR) assay to quantify the bacteria used in our 10-species in vitro 'subgingival' biofilm model and to compare the quantitative outcome with fluorescence microscopy and colony-forming unit (CFU) counts on selective agar plates. The 10 species included in the in vitro biofilm were Streptococcus oralis, Streptococcus anginosus, Veillonella dispar, Fusobacterium nucleatum, Treponema denticola, Tannerella forsythia, Actinomyces oris, Campylobacter rectus, Porphyromonas gingivalis and Prevotella intermedia. The numbers of each species were quantified at two time points using qPCR, microscopy counting following fluorescence in-situ hybridization (FISH) or immunofluorescence staining, and counting of CFUs after growth on selective agar plates. All 10 species were successfully quantified using qPCR and FISH or immunofluorescence, and the eight species culturable on selective agar plates were also quantified by counting the numbers of CFUs after growth on selective agar. In early biofilm cultures, all methods showed a significant correlation, although the absolute numbers differed between methods. In late biofilm cultures, measurements obtained using qPCR and FISH or immunofluorescence, but not by CFU counts, maintained significant correlation. CFU counts yielded lower values than did measurements made using the other two methods. Quantitative PCR and epifluorescence microscopy can be easily combined with each other to determine species-specific bacterial numbers within biofilms. However, conventional bacterial cultures cannot be as efficiently combined using these molecular detection methods. This may be crucial in designing and selecting

  1. Fluorescence Correlation Spectroscopy Using Octadecylrhodamine B as a Specific Micelle-Binding Fluorescent Tag, Light Scattering and Tapping Mode Atomic Force Microscopy Studies of Amphiphilic Water-Soluble Block Copolymer Micelles

    Czech Academy of Sciences Publication Activity Database

    Humpolíčková, J.; Procházka, K.; Hof, Martin; Tuzar, Zdeněk; Špírková, Milena

    2003-01-01

    Roč. 19, - (2003), s. 4111-4119 ISSN 0743-7463 R&D Projects: GA MŠk LN00A032; GA ČR GA203/01/0536; GA ČR GA203/01/0735 Institutional research plan: CEZ:AV0Z4050913; CEZ:AV0Z4040901 Keywords : fluorescence * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.098, year: 2003

  2. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    Science.gov (United States)

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    penetration by nanoradiators. In conclusion, the combined use of a synchrotron X-ray microbeam-irradiated three-dimensional ROS gel and confocal laser scanning fluorescence microscopy provides a simple dosimetry method for track analysis of X-ray photoelectric nanoradiator radiation, suggesting extensive cellular damage with dose-enhancement beyond a single cell containing IONs.

  3. Performance of light-emitting diode fluorescence microscope for diagnosis of tuberculosis.

    Science.gov (United States)

    Bhalla, Manpreet; Sidiq, Zeeshan; Sharma, P P; Singhal, Ritu; Myneedu, V P; Sarin, Rohit

    2013-09-01

    Fluorescence microscopy (FM) over the years has shown the potential for increasing the performance of microscopy. The present study was aimed to access the performance of the LED microscope for the detection of acid fast bacilli in a tuberculosis (TB) endemic country. The study was conducted at a National Reference Laboratory (NRL) in New Delhi, India. Sputum samples were collected from suspected TB patients. Each sample was processed with Auramine O and ZN methods. Auramine O stained smears were evaluated using two different excitatory light sources (MVP and LED); and ZN stained smears were examined under light microscope. The mean time required to read the smears with different modalities was recorded. Bacterial cultures provided the reference standard. A total of 200 patients were included in this study. Sensitivity and specificity for the LED assessment, MVP assessment and light microscopy were 83.1% and 82.4%, 78.5% and 87.5% and 81.6% and 83.5%, respectively. Mean reading time was approximately three times faster than ZN microscopy. The mean time to read a negative smear was 2min with fluorescence microscopy and 5min with light microscopy with time savings of 60%. Although the use of LED-FM only marginally increased sensitivity, the considerable time saving ability combined with very good acceptance and ease of use makes it a reliable alternative to other conventional methods available. Copyright © 2013 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  4. Morphing hydrogel patterns by thermo-reversible fluorescence switching.

    Science.gov (United States)

    Bat, Erhan; Lin, En-Wei; Saxer, Sina; Maynard, Heather D

    2014-07-01

    Stimuli responsive surfaces that show reversible fluorescence switching behavior in response to temperature changes were fabricated. Oligo(ethylene glycol) methacrylate thermoresponsive polymers with amine end-groups were prepared by atom transfer radical polymerization (ATRP). The polymers were patterned on silicon surfaces by electron beam (e-beam) lithography, followed by conjugation of self-quenching fluorophores. Fluorophore conjugated hydrogel thin films were bright when the gels were swollen; upon temperature-induced collapse of the gels, self-quenching of the fluorophores led to significant attenuation of fluorescence. Importantly, the fluorescence was regained when the temperature was cooled. The fluorescence switching behavior of the hydrogels for up to ten cycles was investigated and the swelling-collapse was verified by atomic force microscopy. Morphing surfaces that change shape several times upon increase in temperature were obtained by patterning multiple stimuli responsive polymers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cell and nuclear enlargement of SW480 cells induced by a plant lignan, arctigenin: evaluation of cellular DNA content using fluorescence microscopy and flow cytometry.

    Science.gov (United States)

    Kang, Kyungsu; Lee, Hee Ju; Yoo, Ji-Hye; Jho, Eun Hye; Kim, Chul Young; Kim, Minkyun; Nho, Chu Won

    2011-08-01

    Arctigenin is a natural plant lignan previously shown to induce G(2)/M arrest in SW480 human colon cancer cells as well as AGS human gastric cancer cells, suggesting its use as a possible cancer chemopreventive agent. Changes in cell and nuclear size often correlate with the functionality of cancer-treating agents. Here, we report that arctigenin induces cell and nuclear enlargement of SW480 cells. Arctigenin clearly induced the formation of giant nuclear shapes in SW480, as demonstrated by fluorescence microscopic observation and quantitative determination of nuclear size. Cell and nuclear size were further assessed by flow cytometric analysis of light scattering and fluorescence pulse width after propidium iodide staining. FSC-H and FL2-W values (parameters referring to cell and nuclear size, respectively) significantly increased after arctigenin treatment; the mean values of FSC-H and FL2-W in arctigenin-treated SW480 cells were 572.6 and 275.1, respectively, whereas those of control cells were 482.0 and 220.7, respectively. Our approach may provide insights into the mechanism behind phytochemical-induced cell and nuclear enlargement as well as functional studies on cancer-treating agents.

  6. Design of LED lamps | Ashryatov | Journal of Fundamental and ...

    African Journals Online (AJOL)

    The variant of the lighting system energy efficiency increase with luminaires and linear fluorescent lamps is considered. In the proposed variant, the fluorescent lamps and start regulating devices are replaced with linear LED modules. In order to reduce the glossiness of a luminaire, the LED modules must be covered with ...

  7. Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231.

    Science.gov (United States)

    Abramczyk, Halina; Surmacki, Jakub; Kopeć, Monika; Olejnik, Alicja Klaudia; Kaufman-Szymczyk, Agnieszka; Fabianowska-Majewska, Krystyna

    2016-10-07

    This paper examines epigenetic changes in breast cancer by Raman imaging, fluorescence imaging, AFM and SNOM and discusses how they contribute to different aspects of tumourigenesis in malignant human breast epithelial cell lines MCF7 and MDA-MB-231 compared with non-malignant MCF10A cell lines. The paper focuses on information that can be extracted from Raman microscopy and Raman imaging for the biological material of nucleoli contained within the cell nucleus and lipid droplets within the cell cytoplasm. The biochemical composition of the nuclei and lipid droplets in the non-malignant and malignant human breast epithelial cell lines has been monitored. The potential of Raman microspectroscopy to monitor acetylation processes and a prognostic value of Raman biomarkers in breast cancer have been discussed.

  8. Pleomorphism and Viability of the Lyme Disease PathogenBorrelia burgdorferiExposed to Physiological Stress Conditions: A Correlative Cryo-Fluorescence and Cryo-Scanning Electron Microscopy Study.

    Science.gov (United States)

    Vancová, Marie; Rudenko, Nataliia; Vaněček, Jiří; Golovchenko, Maryna; Strnad, Martin; Rego, Ryan O M; Tichá, Lucie; Grubhoffer, Libor; Nebesářová, Jana

    2017-01-01

    To understand the response of the Lyme disease spirochete Borrelia burgdorferi exposed to stress conditions and assess the viability of this spirochete, we used a correlative cryo-fluorescence and cryo-scanning microscopy approach. This approach enables simple exposition of bacteria to various experimental conditions that can be stopped at certain time intervals by cryo-immobilization, examination of cell viability without necessity to maintain suitable culture conditions during viability assays, and visualization of structures in their native state at high magnification. We focused on rare and transient events e.g., the formation of round bodies and the presence of membranous blebs in spirochetes exposed to culture medium, host sera either without or with the bacteriolytic effect and water. We described all crucial steps of the workflow, particularly the influence of freeze-etching and accelerating voltage on the visualization of topography. With the help of newly designed cryo-transport device, we achieved greater reproducibility.

  9. SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons.

    Directory of Open Access Journals (Sweden)

    Eric Danielson

    Full Text Available Continuous modification of the protein composition at synapses is a driving force for the plastic changes of synaptic strength, and provides the fundamental molecular mechanism of synaptic plasticity and information storage in the brain. Studying synaptic protein turnover is not only important for understanding learning and memory, but also has direct implication for understanding pathological conditions like aging, neurodegenerative diseases, and psychiatric disorders. Proteins involved in synaptic transmission and synaptic plasticity are typically concentrated at synapses of neurons and thus appear as puncta (clusters in immunofluorescence microscopy images. Quantitative measurement of the changes in puncta density, intensity, and sizes of specific proteins provide valuable information on their function in synaptic transmission, circuit development, synaptic plasticity, and synaptopathy. Unfortunately, puncta quantification is very labor intensive and time consuming. In this article, we describe a software tool designed for the rapid semi-automatic detection and quantification of synaptic protein puncta from 2D immunofluorescence images generated by confocal laser scanning microscopy. The software, dubbed as SynPAnal (for Synaptic Puncta Analysis, streamlines data quantification for puncta density and average intensity, thereby increases data analysis throughput compared to a manual method. SynPAnal is stand-alone software written using the JAVA programming language, and thus is portable and platform-free.

  10. High intensity solid-state UV source for time-gated luminescence microscopy.

    Science.gov (United States)

    Connally, Russell; Jin, Dayong; Piper, James

    2006-09-01

    The unique discriminative ability of immunofluorescent probes can be severely compromised when probe emission competes against naturally occurring, intrinsically fluorescent substances (autofluorophores). Luminescence microscopes that operate in the time-domain can selectively resolve probes with long fluorescence lifetimes (tau > 100 micros) against short-lived fluorescence to deliver greatly improved signal-to-noise ratio (SNR). A novel time-gated luminescence microscope design is reported that employs an ultraviolet (UV) light emitting diode (LED) to excite fluorescence from a europium chelate immunoconjugate with a long fluorescence lifetime. A commercial Zeiss epifluorescence microscope was adapted for TGL operation by fitting with a time-gated image-intensified CCD camera and a high-power (100 mW) UV LED. Capture of the luminescence was delayed for a precise interval following excitation so that autofluorescence was suppressed. Giardia cysts were labeled in situ with antibody conjugated to a europium chelate (BHHST) with a fluorescence lifetime >500 micros. BHHST-labeled Giardia cysts emit at 617 nm when excited in the UV and were difficult to locate within the matrix of fluorescent algae using conventional fluorescence microscopy, and the SNR of probe to autofluorescent background was 0.51:1. However in time-gated luminescence mode with a gate-delay of 5 mus, the SNR was improved to 12.8:1, a 25-fold improvement. In comparison to xenon flashlamps, UV LEDs are inexpensive, easily powered, and extinguish quickly. Furthermore, the spiked emission of the LED enabled removal of spectral filters from the microscope to significantly improve efficiency of fluorescence excitation and capture. (c) 2006 International Society for Analytical Cytology.

  11. Canine Distemper Virus Antigen Detection in External Epithelia of Recently Vaccinated, Sick Dogs by Fluorescence Microscopy Is a Valuable Prognostic Indicator

    Science.gov (United States)

    Neel, Tina

    2014-01-01

    Currently, there are no reliable predictors of the clinical outcomes of domesticated dogs that have been recently vaccinated against canine distemper virus (CDV) and develop respiratory disease. In this study, vaccinated dogs from Oklahoma City that were showing clinical signs of respiratory disease were evaluated for CDV antigen using a direct fluorescent antibody test (FAT). Clinical outcomes after standard symptomatic therapy for respiratory disease were recorded, and a statistical analysis of the results was performed. We present our study showing that CDV FAT results were predictive of clinical recovery (prognostic indicator, prospects of clinical recovery) among vaccinated dogs showing clinical signs of respiratory disease. Negative CDV FAT results equated to 80% chances of recovery after symptomatic therapy, compared to 55% chances of recovery when the CDV FAT results were positive. Based on the results of this study, we show that veterinarians can make better informed decisions about the clinical outcomes of suspected CDV cases, with 2-h turnaround times, by using the CDV FAT. Thus, antemortem examination with the CDV FAT on external epithelia of recently vaccinated, sick dogs is a clinically useful diagnostic test and valuable prognostic indicator for veterinarians. Application of the CDV FAT to these samples avoids unnecessary euthanasia of dogs with suspected CDV. PMID:25428156

  12. Fluorescence spectroscopy of dental calculus

    International Nuclear Information System (INIS)

    Bakhmutov, D; Gonchukov, S; Sukhinina, A

    2010-01-01

    The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined

  13. Preliminary studies on LED-activated pyropheophorbide-α methyl ester killing cisplatin-resistant ovarian carcinoma cells

    Science.gov (United States)

    Tan, Yong; Xu, Chuan Shan; Xia, Xin Shu; Yu, He Ping; Bai, Ding Qun; He, Yong; Xu, Jing; Wang, Ping; Wang, Xin Na; Leung, Albert Wing Nang

    2009-05-01

    In the present study, a novel LED source was applied for activating pyropheophorbids-a methyl ester (MPPa) in cisplatin-resistant ovarian cell line COC1/DDP cells. MPPa concentration was 2 μM and light energy from 0.125-8 J/cm2. Cytotoxicity was investigated 24 h using MTT reduction assay and light microscopy after treatment. Cellular ultrastructure was observed using transmission electron microscopy (TEM) and nuclear chromatin by fluorescent microscope with Hoechst33258 staining. MTT reduction assay showed that the cytotoxicity of LED-activated MPPa in the COC1/DDP cells increased along with the light dose of LED source and LED-activated MPPa resulted in light-dependent cytotoxicity. The observations from light microscopy reinforced the above results. TEM showed that necrotic cells with the disruption of karyotheca, karyorrhexis, and karyolysis of nucleus and apoptotic cells, especially the apoptotic body, can be seen post LED-activated MPPa. Hoechst33258 staining showed that condensation of chromatin and nuclear fragmentations could be found in many treated cells and some of them formed the structure of apoptotic bodies when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. The findings demonstrated that the novel LED source could efficiently activated MPPa and LED-activated MPPa could significantly kill cisplatin-resistant ovarian cell line COC1/DDP cells through two major pathways including necrosis and apoptosis, suggesting that LED is a novel and efficient light source and LED-activated MPPa might be potential therapeutic modality for treating cisplatin-resistant ovarian carcinoma.

  14. Exploring protein-DNA interactions in 3D using in situ construction, manipulation, and visualization of individual DNA-dumbbells with optical traps, microfluidics, and fluorescence microscopy

    Science.gov (United States)

    Forget, Anthony L.; Dombrowski, Christopher C.; Amitani, Ichiro; Kowalczykowski, Stephen C.

    2015-01-01

    In this Protocol, we describe a procedure to generate ‘DNA-dumbbells’ — single molecules of DNA with a microscopic bead attached at each end — and techniques for manipulating individual DNA-dumbbells. We also detail the design and fabrication of a microfluidic device (flow cell) used in conjunction with dual optical trapping to manipulate DNA-dumbbells and to visualize individual protein–DNA complexes by single-molecule epifluorescence microscopy. Our design of the flow cell enables the rapid movement of trapped molecules between laminar flow channels and a flow-free ‘reservoir’. The reservoir provides the means to examine formation of DNA–protein complexes in solution in the absence of external flow forces, while still maintaining a predetermined end-to-end extension of the DNA. These features facilitate examination of the role of three-dimensional DNA conformation and dynamics in protein–DNA interactions. Preparation of flow cells and reagents requires two days each; in situ DNA-dumbbell assembly and imaging of single protein–DNA complexes requires another day. PMID:23411634

  15. Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy.

    Science.gov (United States)

    Forget, Anthony L; Dombrowski, Christopher C; Amitani, Ichiro; Kowalczykowski, Stephen C

    2013-03-01

    In this protocol, we describe a procedure to generate 'DNA dumbbells'-single molecules of DNA with a microscopic bead attached at each end-and techniques for manipulating individual DNA dumbbells. We also detail the design and fabrication of a microfluidic device (flow cell) used in conjunction with dual optical trapping to manipulate DNA dumbbells and to visualize individual protein-DNA complexes by single-molecule epifluorescence microscopy. Our design of the flow cell enables the rapid movement of trapped molecules between laminar flow channels and a flow-free reservoir. The reservoir provides the means to examine the formation of protein-DNA complexes in solution in the absence of external flow forces while maintaining a predetermined end-to-end extension of the DNA. These features facilitate the examination of the role of 3D DNA conformation and dynamics in protein-DNA interactions. Preparation of flow cells and reagents requires 2 days each; in situ DNA dumbbell assembly and imaging of single protein-DNA complexes require another day.

  16. Multiplexed evaluation of a cell-based assay for the detection of antidrug neutralizing antibodies to panitumumab in human serum using automated fluorescent microscopy.

    Science.gov (United States)

    Pennucci, Jason; Swanson, Steve; Kaliyaperumal, Arunan; Gupta, Shalini

    2010-07-01

    The method described here employs a high-content cell-based assay format for the detection of neutrali