WorldWideScience

Sample records for learning control architecture

  1. Learning sequential control in a Neural Blackboard Architecture for in situ concept reasoning

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; Besold, Tarek R.; Lamb, Luis; Serafini, Luciano; Tabor, Whitney

    2016-01-01

    Simulations are presented and discussed of learning sequential control in a Neural Blackboard Architecture (NBA) for in situ concept-based reasoning. Sequential control is learned in a reservoir network, consisting of columns with neural circuits. This allows the reservoir to control the dynamics of

  2. Automation and Control Learning Environment with Mixed Reality Remote Experiments Architecture

    Directory of Open Access Journals (Sweden)

    Frederico M. Schaf

    2007-05-01

    Full Text Available This work aims to the use of remotely web-based experiments to improve the learning process of automation and control systems theory courses. An architecture combining virtual learning environments, remote experiments, students guide and experiments analysis is proposed based on a wide state of art study. The validation of the architecture uses state of art technologies and new simple developed programs to implement the case studies presented. All implementations presented use an internet accessible virtual learning environment providing educational resources, guides and learning material to create a distance learning course associated with the remote mixed reality experiment. This work is part of the RExNet consortium, supported by the European Alfa project.

  3. Neural Architectures for Control

    Science.gov (United States)

    Peterson, James K.

    1991-01-01

    The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.

  4. Bio-inspired adaptive feedback error learning architecture for motor control.

    Science.gov (United States)

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  5. Cognitive Architectures for Multimedia Learning

    Science.gov (United States)

    Reed, Stephen K.

    2006-01-01

    This article provides a tutorial overview of cognitive architectures that can form a theoretical foundation for designing multimedia instruction. Cognitive architectures include a description of memory stores, memory codes, and cognitive operations. Architectures that are relevant to multimedia learning include Paivio's dual coding theory,…

  6. Web Service Architecture for e-Learning

    Directory of Open Access Journals (Sweden)

    Xiaohong Qiu

    2005-10-01

    Full Text Available Message-based Web Service architecture provides a unified approach to applications and Web Services that incorporates the flexibility of messaging and distributed components. We propose SMMV and MMMV collaboration as the general architecture of collaboration based on a Web service model, which accommodates both instructor-led learning and participatory learning. This approach derives from our message-based Model-View-Controller (M-MVC architecture of Web applications, comprises an event-driven Publish/Subscribe scheme, and provides effective collaboration with high interactivity of rich Web content for diverse clients over heterogeneous network environments.

  7. E-Learning in Architecture

    DEFF Research Database (Denmark)

    Juvancic, Matevz; Mullins, Michael; Zupancic, Tadeja

    2012-01-01

    the communication abilities of the actors involved, holding their attention, ingraining sustainable principles and getting the messages across the invisible, but perennial expert / non-expert divide. E-learning in and about architecture not only offers opportunities for both sides to learn but also to get to know...

  8. RACE/A : An architectural account of the interactions between learning, task control, and retrieval dynamics

    NARCIS (Netherlands)

    van Maanen, Leendert; van Rijn, Hedderik; Taatgen, Niels

    2012-01-01

    This article discusses how sequential sampling models can be integrated in a cognitive architecture. The new theory Retrieval by Accumulating Evidence in an Architecture (RACE/A) combines the level of detail typically provided by sequential sampling models with the level of task complexity typically

  9. Microgrids architectures and control

    CERN Document Server

    Hatziargyriou, Nikos

    2014-01-01

    Microgrids are the most innovative area in the electric power industry today. Future microgrids could exist as energy-balanced cells within existing power distribution grids or stand-alone power networks within small communities. A definitive presentation on all aspects of microgrids, this text examines the operation of microgrids - their control concepts and advanced architectures including multi-microgrids. It takes a logical approach to overview the purpose and the technical aspects of microgrids, discussing the social, economic and environmental benefits to power system operation. The bo

  10. Control architectures for IT management

    International Nuclear Information System (INIS)

    Wang Ting

    2003-01-01

    This paper summaries the three financial control architectures for IT department in an enterprise or organization, they are unallocated cost center, allocated cost center and profit center, analyses the characteristics of them and in the end gives the detailed suggestions for choosing these control architectures. (authors)

  11. Ensemble Network Architecture for Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Xi-liang Chen

    2018-01-01

    Full Text Available The popular deep Q learning algorithm is known to be instability because of the Q-value’s shake and overestimation action values under certain conditions. These issues tend to adversely affect their performance. In this paper, we develop the ensemble network architecture for deep reinforcement learning which is based on value function approximation. The temporal ensemble stabilizes the training process by reducing the variance of target approximation error and the ensemble of target values reduces the overestimate and makes better performance by estimating more accurate Q-value. Our results show that this architecture leads to statistically significant better value evaluation and more stable and better performance on several classical control tasks at OpenAI Gym environment.

  12. An architecture for an autonomous learning robot

    Science.gov (United States)

    Tillotson, Brian

    1988-01-01

    An autonomous learning device must solve the example bounding problem, i.e., it must divide the continuous universe into discrete examples from which to learn. We describe an architecture which incorporates an example bounder for learning. The architecture is implemented in the GPAL program. An example run with a real mobile robot shows that the program learns and uses new causal, qualitative, and quantitative relationships.

  13. HOW DO ARCHITECTS THINK? LEARNING STYLES AND ARCHITECTURAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Magda Mostafa

    2010-07-01

    Full Text Available Architecture is a complex process involving the divergent resolution of a multitude of factors- social, ecological, technical, economic, functional, ethical and aesthetic. Despite this diversity all architectural problem solving processes share one common factor- they must be resolved spatially. This paper sets out to explore how best to develop these spatial thinking skills in young architects through addressing their learning styles in education. The primary hypothesis tested is twofold. First using the Solomon & Felder (2007 definition of learning styles and their Index of Learning Styles Questionnaire the average profile of a study group from the freshmen and sophomore architectural student body at the Architectural Engineering Program of the American University in Cairo is mapped and compared to that of a control group from the general population of the university from a cross-section of majors. Secondly, using the Spatial Ability test by Newton & Bristoll (2009, the spatial ability of both the control and study groups are measured and compared. The analysis of these results tests the assumption that the majority of architectural students will be visual, rather than verbal; and active, rather than reflective, learners; as well as exhibiting higher spatial abilities, as compared to the control group. The performance of students in these tests are then correlated against their learning styles profile using the following sets- low spatial ability against both reflective and verbal learning; moderate spatial ability against neutral learning styles; and high spatial ability against both active and visual learning. The results show a particular corroboration between high spatial ability and active learning in the entire group of students- both study, and control- as well as a strong corroboration between high spatial ability and visual learning- with a higher correlation in architecture students, reaching 100% in some classes. It is hoped that by

  14. VERNACULAR ARCHITECTURE: AN INTRODUCTORY COURSE TO LEARN ARCHITECTURE IN INDIA

    Directory of Open Access Journals (Sweden)

    Miki Desai

    2010-07-01

    Full Text Available “The object in view of both my predecessors in office and by myself has been rather to bring out the reasoning powers of individual students, so that they may understand the inner meaning of the old forms and their original function and may develop and modernize and gradually produce an architecture, Indian in character, but at the same time as suited to present day India as the old styles were to their own times and environment.” Claude Batley-1940; Lang, Desai, Desai, 1997 (p.143. The article introduces teaching philosophy, content and method of Basic Design I and II for first year students of architecture at the Faculty of Architecture, Centre for Environmental Planning and Technology (CEPT University, Ahmedabad, India. It is framed within the Indian perspective of architectural education from the British colonial times. Commencing with important academic literature and biases of the initial colonial period, it quickly traces architectural education in CEPT, the sixteenth school of post-independent India, set up in 1962, discussing the foundation year teaching imparted. The school was Modernist and avant-garde. The author introduced these two courses against the back drop of the Universalist Modernist credo of architecture and education. In the courses, the primary philosophy behind learning design emerges from heuristic method. The aim of the first course is seen as infusing interest in visual world, development of manual skills and dexterity through the dictum of ‘Look-feel-reason out-evaluate’ and ‘observe-record-interpret-synthesize transform express’. Due to the lack of architectural orientation in Indian schooling; the second course assumes vernacular architecture as a reasonable tool for a novice to understand the triangular relationship of society, architecture and physical context and its impact on design. The students are analytically exposed to the regional variety of architectures logically stemming from the geo

  15. Artificial intelligent e-learning architecture

    Science.gov (United States)

    Alharbi, Mafawez; Jemmali, Mahdi

    2017-03-01

    Many institutions and university has forced to use e learning, due to its ability to provide additional and flexible solutions for students and researchers. E-learning In the last decade have transported about the extreme changes in the distribution of education allowing learners to access multimedia course material at any time, from anywhere to suit their specific needs. In the form of e learning, instructors and learners live in different places and they do not engage in a classroom environment, but within virtual universe. Many researches have defined e learning based on their objectives. Therefore, there are small number of e-learning architecture have proposed in the literature. However, the proposed architecture has lack of embedding intelligent system in the architecture of e learning. This research argues that unexplored potential remains, as there is scope for e learning to be intelligent system. This research proposes e-learning architecture that incorporates intelligent system. There are intelligence components, which built into the architecture.

  16. Architecture and Vector Control

    DEFF Research Database (Denmark)

    von Seidlein, Lorenz; Knols, Bart GJ; Kirby, Matthew

    2012-01-01

    , closing of eaves and insecticide treated bednets. All of these interventions have an effect on the indoor climate. Temperature, humidity and airflow are critical for a comfortable climate. Air-conditioning and fans allow us to control indoor climate, but many people in Africa and Asia who carry the brunt...... of vector-borne diseases have no access to electricity. Many houses in the hot, humid regions of Asia have adapted to the environment, they are built of porous materials and are elevated on stilts features which allow a comfortable climate even in the presence of bednets and screens. In contrast, many...... buildings in Africa and Asia in respect to their indoor climate characteristics and finally, show how state-of-the-art 3D modelling can predict climate characteristics and help to optimize buildings....

  17. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  18. Controlling material reactivity using architecture

    Science.gov (United States)

    Sullivan, Kyle

    2017-06-01

    The reactivity of thermites can be tailored through selection of several parameters, and can range from very slow burns to rapid deflagrations. 3D printing is a rapidly emerging field, and offers the potential to build architected parts. Here we sought to explore whether controlling such features could be a suitable path forward for gaining additional control of the reactivity. This talk discusses several new methods for preparing thermite samples with controlled architectures using 3D printing. Additionally, we demonstrate that the architecture can play a role in the reactivity of an object. Our results suggest that architecture can be used to tailor the convective and/or advective energy transport during a deflagration, thus enhancing or retarding the reaction. The results are promising in that they give researchers an additional way of controlling the energy release rate without defaulting to the conventional approach of changing the formulation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-708525. In collaboration with: Cheng Zhu, Eric Duoss, Matt Durban, Alex Gash, Alexandra Golobic, Michael Grapes, David Kolesky, Joshua Kuntz, Jennifer Lewis, Christopher Spadaccini; LAWRENCE LIVERMORE NATIONAL LAB.

  19. Architecture of conference control functions

    Science.gov (United States)

    Kausar, Nadia; Crowcroft, Jon

    1999-11-01

    Conference control is an integral part in many-to-many communications that is used to manage and co-ordinate multiple users in conferences. There are different types of conferences which require different types of control. Some of the features of conference control may be user invoked while others are for internal management of a conference. In recent years, ITU (International Telecommunication Union) and IETF (Internet Engineering Task Force) have standardized two main models of conferencing, each system providing a set of conference control functionalities that are not easily provided in the other one. This paper analyzes the main activities appropriate for different types of conferences and presents an architecture for conference control called GCCP (Generic Conference Control Protocol). GCCP interworks different types of conferencing and provides a set of conference control functions that can be invoked by users directly. As an example of interworking, interoperation of IETF's SIP and ITU's H.323 call control functions have been examined here. This paper shows that a careful analysis of a conferencing architecture can provide a set of control functions essential for any group communication model that can be extensible if needed.

  20. Learning from neural control.

    Science.gov (United States)

    Wang, Cong; Hill, David J

    2006-01-01

    One of the amazing successes of biological systems is their ability to "learn by doing" and so adapt to their environment. In this paper, first, a deterministic learning mechanism is presented, by which an appropriately designed adaptive neural controller is capable of learning closed-loop system dynamics during tracking control to a periodic reference orbit. Among various neural network (NN) architectures, the localized radial basis function (RBF) network is employed. A property of persistence of excitation (PE) for RBF networks is established, and a partial PE condition of closed-loop signals, i.e., the PE condition of a regression subvector constructed out of the RBFs along a periodic state trajectory, is proven to be satisfied. Accurate NN approximation for closed-loop system dynamics is achieved in a local region along the periodic state trajectory, and a learning ability is implemented during a closed-loop feedback control process. Second, based on the deterministic learning mechanism, a neural learning control scheme is proposed which can effectively recall and reuse the learned knowledge to achieve closed-loop stability and improved control performance. The significance of this paper is that the presented deterministic learning mechanism and the neural learning control scheme provide elementary components toward the development of a biologically-plausible learning and control methodology. Simulation studies are included to demonstrate the effectiveness of the approach.

  1. A Concept Transformation Learning Model for Architectural Design Learning Process

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  2. Bioinspired Architecture Selection for Multitask Learning

    Directory of Open Access Journals (Sweden)

    Andrés Bueno-Crespo

    2017-06-01

    Full Text Available Faced with a new concept to learn, our brain does not work in isolation. It uses all previously learned knowledge. In addition, the brain is able to isolate the knowledge that does not benefit us, and to use what is actually useful. In machine learning, we do not usually benefit from the knowledge of other learned tasks. However, there is a methodology called Multitask Learning (MTL, which is based on the idea that learning a task along with other related tasks produces a transfer of information between them, what can be advantageous for learning the first one. This paper presents a new method to completely design MTL architectures, by including the selection of the most helpful subtasks for the learning of the main task, and the optimal network connections. In this sense, the proposed method realizes a complete design of the MTL schemes. The method is simple and uses the advantages of the Extreme Learning Machine to automatically design a MTL machine, eliminating those factors that hinder, or do not benefit, the learning process of the main task. This architecture is unique and it is obtained without testing/error methodologies that increase the computational complexity. The results obtained over several real problems show the good performances of the designed networks with this method.

  3. Organizational Learning Supported by Reference Architecture Models

    DEFF Research Database (Denmark)

    Nardello, Marco; Møller, Charles; Gøtze, John

    2017-01-01

    of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0) as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory...

  4. An Architecture for Open Learning Management Systems

    NARCIS (Netherlands)

    Avgeriou, Paris; Retalis, Simos; Skordalakis, Manolis

    2003-01-01

    There exists an urgent demand on defining architectures for Learning Management Systems, so that high-level frameworks for understanding these systems can be discovered, and quality attributes like portability, interoperability, reusability and modifiability can be achieved. In this paper we propose

  5. Lifelong Learning in Architectural Design Studio: The Learning Contract Approach

    Science.gov (United States)

    Hassanpour, B.; Che-Ani, A. I.; Usman, I. M. S.; Johar, S.; Tawil, N. M.

    2015-01-01

    Avant-garde educational systems are striving to find lifelong learning methods. Different fields and majors have tested a variety of proposed models and found varying difficulties and strengths. Architecture is one of the most critical areas of education because of its special characteristics, such as learning by doing and complicated evaluation…

  6. Access control and service-oriented architectures

    NARCIS (Netherlands)

    Leune, C.J.

    2007-01-01

    Access Control and Service-Oriented Architectures" investigates in which way logical access control can be achieved effectively, in particular in highly dynamic environments such as service-oriented architectures (SOA's). The author combines state-of-the-art best-practice and projects these onto the

  7. A Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System

    Directory of Open Access Journals (Sweden)

    A. Khoshsaadat

    2014-09-01

    Full Text Available Static Synchronous Series Compensator (SSSC is a series compensating Flexible AC Transmission System (FACTS controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC has been proposed for controlling of the SSSC-based damping system and applied to a Single Machine Infinite Bus (SMIB power system. For implementation of the learning process in this controller, we use of the one approach of the learning ability that named as Forward Signal and Backward Error Back-Propagation (FSBEBP method for improving of the system efficiency. This artificial intelligence-based control model leads to a controller with adaptive structure, improved correctness, high damping ability and dynamic performance. System implementation is easy and it requires 49 fuzzy rules for inference engine of the system. As compared with the other complex neuro-fuzzy systems, this controller has medium number of the fuzzy rules and low number of layers, but it has high accuracy. In order to demonstrate of the proposed controller ability, it is simulated and its output compared with that of classic Lead-Lag-based Controller (LLC and PI controller.

  8. The architecture of LAMOST observatory control system

    International Nuclear Information System (INIS)

    Wang Jian; Jin Ge; Yu Xiaoqi; Wan Changsheng; Hao Likai; Li Xihua

    2005-01-01

    The design of architecture is the one of the most important part in development of Observatory Control System (OCS) for LAMOST. Based on the complexity of LAMOST, long time of development for LAMOST and long life-cycle of OCS system, referring many kinds of architecture pattern, the architecture of OCS is established which is a component-based layered system using many patterns such as the MVC and proxy. (authors)

  9. ADILE: Architecture of a database-supported learning environment

    NARCIS (Netherlands)

    Hiddink, G.W.

    2001-01-01

    This article proposes an architecture for distributed learning environments that use databases to store learning material. As the layout of learning material can inhibit reuse, the ar-chitecture implements the notion of "separation of layout and structure" using XML technology. Also, the

  10. Architectural Considerations for Holonic Shop Floor Control

    DEFF Research Database (Denmark)

    Langer, Gilad; Bilberg, Arne

    1997-01-01

    of the HMS concept, followed by an investigation regard-ing the development of shop floor control architectures. This will include a summary of the ongoing research on HMS, and current results regarding the development of a holonic SFC architecture in a cellular manufacturing perspective. The paper...

  11. An architecture for implementation of multivariable controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    1999-01-01

    Browse > Conferences> American Control Conference, Prev | Back to Results | Next » An architecture for implementation of multivariable controllers 786292 searchabstract Niemann, H. ; Stoustrup, J. ; Dept. of Autom., Tech. Univ., Lyngby This paper appears in: American Control Conference, 1999....... Proceedings of the 1999 Issue Date : 1999 Volume : 6 On page(s): 4029 - 4033 vol.6 Location: San Diego, CA Meeting Date : 02 Jun 1999-04 Jun 1999 Print ISBN: 0-7803-4990-3 References Cited: 7 INSPEC Accession Number: 6403075 Digital Object Identifier : 10.1109/ACC.1999.786292 Date of Current Version : 06...... august 2002 Abstract An architecture for implementation of multivariable controllers is presented in this paper. The architecture is based on the Youla-Jabr-Bongiorno-Kucera parameterization of all stabilizing controllers. By using this architecture for implementation of multivariable controllers...

  12. Organizational Learning Supported by Reference Architecture Models

    DEFF Research Database (Denmark)

    Nardello, Marco; Møller, Charles; Gøtze, John

    2017-01-01

    The wave of the fourth industrial revolution (Industry 4.0) is bringing a new vision of the manufacturing industry. In manufacturing, one of the buzzwords of the moment is “Smart production”. Smart production involves manufacturing equipment with many sensors that can generate and transmit large...... amounts of data. These data and information from manufacturing operations are however not shared in the organization. Therefore the organization is not using them to learn and improve their operations. To address this problem, the authors implemented in an Industry 4.0 laboratory an instance...... of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0) as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory...

  13. Migration of supervisory machine control architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Deursen, van A.; Nord, R.; Medvidovic, N.; Krikhaar, R.; Stafford, J.; Bosch, J.

    2005-01-01

    In this position paper, we discuss a first step towards an approach for the migration of supervisory machine control (SMC) architectures. This approach is based on the identification of SMC concerns and the definition of corresponding transformation rules.

  14. Telerobotic Control Architecture Including Force-Reflection

    National Research Council Canada - National Science Library

    Murphy, Mark

    1998-01-01

    This report describes the implementation of a telerobotic control architecture to manipulate a standard six-degree-of-freedom robot via a unique seven-degree-of-freedom force-reflecting exoskeleton...

  15. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  16. Partially Decentralized Control Architectures for Satellite Formations

    Science.gov (United States)

    Carpenter, J. Russell; Bauer, Frank H.

    2002-01-01

    In a partially decentralized control architecture, more than one but less than all nodes have supervisory capability. This paper describes an approach to choosing the number of supervisors in such au architecture, based on a reliability vs. cost trade. It also considers the implications of these results for the design of navigation systems for satellite formations that could be controlled with a partially decentralized architecture. Using an assumed cost model, analytic and simulation-based results indicate that it may be cheaper to achieve a given overall system reliability with a partially decentralized architecture containing only a few supervisors, than with either fully decentralized or purely centralized architectures. Nominally, the subset of supervisors may act as centralized estimation and control nodes for corresponding subsets of the remaining subordinate nodes, and act as decentralized estimation and control peers with respect to each other. However, in the context of partially decentralized satellite formation control, the absolute positions and velocities of each spacecraft are unique, so that correlations which make estimates using only local information suboptimal only occur through common biases and process noise. Covariance and monte-carlo analysis of a simplified system show that this lack of correlation may allow simplification of the local estimators while preserving the global optimality of the maneuvers commanded by the supervisors.

  17. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...

  18. Architecture Studio Learning: Strategy to Achieve Architects Competence

    Directory of Open Access Journals (Sweden)

    Saifudin Mutaqi Ahmad

    2018-01-01

    Full Text Available In most Schools of Architecture, Architecture Studio is at the core of the architectural learning process. In the process, students are trained to have the skills of architectonic spaces design based on the study of the site, its function, and its aesthetics. Students are also trained to have awareness and understanding about the impact of their design on the surrounding environment, both physically and socially. Also, students are trained to present their designs in various forms such as visual graphics, verbal narratives, and three dimensional model animations. Indonesian Association of School of Architecture (APTARI Asosiasi Perguruan Tinggi Arsitektur Indonesia and Indonesian Institute of Architects (IAI - Ikatan Arsitek Indonesia has formulated an education Standards, Curriculum, and Achievements of Architect Professional Program to be referred by Ministry of Research, Technology, and Higher Education (KEMENRISTEKDIKTI – Kementerian Riset, Teknologi, danPerguruanTinggi as the guidance for the implementation of Architect Professional Program (PPA - Pendidikan Profesi Arsitek in Indonesia. One of the eight recommendations is the PPA Content Standard which contains the learning for the achievement of IAI Architect Competencies through the recommended study materials. However, the recommended study materials did not indicate the activity of the Architecture Studio learning model (Final Report of APTARI Part II and IAI. Will architect’s competence be achieved if the learning process withoutarchitectural studio learning model? The formulation of the curriculum that is developed independently by the IAI recommends the learning of Architectural Studio as Professional Studio. The size of the SKS is large enough to enable someone who follows the lesson to intensively gain experience in designing the building as a real architectural work. This Architecture Studio learning model is interpreted by PPAr organizer universities with various forms

  19. Proposing an Optimal Learning Architecture for the Digital Enterprise.

    Science.gov (United States)

    O'Driscoll, Tony

    2003-01-01

    Discusses the strategic role of learning in information age organizations; analyzes parallels between the application of technology to business and the application of technology to learning; and proposes a learning architecture that aligns with the knowledge-based view of the firm and optimizes the application of technology to achieve proficiency…

  20. On Control Strategies for Responsive Architectural Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Parigi, Dario

    2012-01-01

    The present paper considers control of responsive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability. The general scope of...

  1. MPS beam control software architecture

    International Nuclear Information System (INIS)

    Krauter, K.; Crane, M.

    1993-01-01

    The new Machine Protection System (MPS) now being tested at SLAC has a beam control subsystem resident in processors located close to the beam monitoring devices within the machine. There are two types of beam control micros: Algorithm Processors (AP's) which collect and evaluate data from monitoring devices, and a Supervisor (SUPE) which collects and evaluates data from all the AP's. The SUPE also receives the global machine beamcode indicating beam presence, and passes it on to the AP's. The SUPE receives the beamcode pattern from the Master Pattern Generator (MPG) via a shared-memory communication link. MIL-1553 serial communication is used between the SUPE and the AP's, and between the AP's and the monitoring devices. Multitasking software is used to allow high priority handling of data evaluation and low priority handling of host/user interfacing and event reporting. Pipelining of data between acquisition and evaluation and reporting is used to accommodate the processing capacity, while still supporting full processing at the 36OHz broadcast rate of the beamcode pattern

  2. MPS beam control software architecture

    International Nuclear Information System (INIS)

    Krauter, K.; Crane, M.

    1993-04-01

    The new Machine Protection System (MPS) now being tested at SLAC has a beam control subsystem resident in processors located close to the beam monitoring devices within the machine. There are two types of beam control micros: Algorithm Processors (AP's) which collect and evaluate data from monitoring devices, and a Supervisor (SUPE) which collects and evaluates data from all the AP's. The SUPE also receives the global machine beamcode indicating beam presence, and passes it on to the AP's. The SUPE receives the beamcode pattern from the Master Pattern Generator (MPG) via a shared-memory communication link. MIL-1553 serial communication is used between the SUPE and the AP's, and between the AP's and the monitoring devices. Multitasking software is used to allow high priority handling of data evaluation and low priority handling of host/user interfacing and event reporting. Pipelining of data between acquisition and evaluation and reporting is used to accomodate the processing capacity, while still supporting full processing at the 360Hz broadcast rate of the beamcode pattern

  3. Mosaic model for sensorimotor learning and control.

    Science.gov (United States)

    Haruno, M; Wolpert, D M; Kawato, M

    2001-10-01

    Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain environmental conditions. We previously proposed a new modular architecture, the modular selection and identification for control (MOSAIC) model, for motor learning and control based on multiple pairs of forward (predictor) and inverse (controller) models. The architecture simultaneously learns the multiple inverse models necessary for control as well as how to select the set of inverse models appropriate for a given environment. It combines both feedforward and feedback sensorimotor information so that the controllers can be selected both prior to movement and subsequently during movement. This article extends and evaluates the MOSAIC architecture in the following respects. The learning in the architecture was implemented by both the original gradient-descent method and the expectation-maximization (EM) algorithm. Unlike gradient descent, the newly derived EM algorithm is robust to the initial starting conditions and learning parameters. Second, simulations of an object manipulation task prove that the architecture can learn to manipulate multiple objects and switch between them appropriately. Moreover, after learning, the model shows generalization to novel objects whose dynamics lie within the polyhedra of already learned dynamics. Finally, when each of the dynamics is associated with a particular object shape, the model is able to select the appropriate controller before movement execution. When presented with a novel shape-dynamic pairing, inappropriate activation of modules is observed followed by on-line correction.

  4. A Multi-Agent Control Architecture for a Robotic Wheelchair

    Directory of Open Access Journals (Sweden)

    C. Galindo

    2006-01-01

    Full Text Available Assistant robots like robotic wheelchairs can perform an effective and valuable work in our daily lives. However, they eventually may need external help from humans in the robot environment (particularly, the driver in the case of a wheelchair to accomplish safely and efficiently some tricky tasks for the current technology, i.e. opening a locked door, traversing a crowded area, etc. This article proposes a control architecture for assistant robots designed under a multi-agent perspective that facilitates the participation of humans into the robotic system and improves the overall performance of the robot as well as its dependability. Within our design, agents have their own intentions and beliefs, have different abilities (that include algorithmic behaviours and human skills and also learn autonomously the most convenient method to carry out their actions through reinforcement learning. The proposed architecture is illustrated with a real assistant robot: a robotic wheelchair that provides mobility to impaired or elderly people.

  5. Architecture of Schools: The New Learning Environments.

    Science.gov (United States)

    Dudek, Mark

    This guide focuses on the architecture of the primary and pre-school sector in the United Kingdom and broadly considers the subtle spatial and psychological requirements of growing children up to, and beyond, the age of sixteen. Chapter 1 examines the history, origins, and significant historical developments of school architecture, along with an…

  6. Baseline Architecture of ITER Control System

    Science.gov (United States)

    Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.

    2011-08-01

    The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.

  7. The LHC dipole test control architecture

    International Nuclear Information System (INIS)

    Gorskaya, E.; Samojlov, V.; Raimondo, A.; Rijllart, A.

    2003-01-01

    The next large accelerator project at CERN is the Large Hadron Collider, which is foreseen to be installed in the existing LEP tunnel, and scheduled to be commissioned in 2007. For this project, 1200 15-metre long dipole magnets need to be tested at CERN in warm and cold conditions on dedicated test benches that are under development. The final LHC dipole series test set-up will consist of 12 benches organized in 6 clusters of two benches sharing the largest and most expensive devices. This sharing is made possible by a deliberate de-phasing of the tests among magnets, ensuring an optimum use of resources, such as cryogenics and power equipment, without limiting the total throughput. An offered two-level control architecture includes: 1) the Test 'Master' that drives the test for a cluster; 2) the Resource 'Manager' that allocates common devices and central resources. The implementation of this architecture is done in the LabVIEW environment

  8. Architecture of WEST plasma control system

    International Nuclear Information System (INIS)

    Ravenel, N.; Nouailletas, R.; Barana, O.; Brémond, S.; Moreau, P.; Guillerminet, B.; Balme, S.; Allegretti, L.; Mannori, S.

    2014-01-01

    To operate advanced plasma scenario (long pulse with high stored energy) in present and future tokamak devices under safe operation conditions, the control requirements of the plasma control system (PCS) leads to the development of advanced feedback control and real time handling exceptions. To develop these controllers and these exceptions handling strategies, a project aiming at setting up a flight simulator has started at CEA in 2009. Now, the new WEST (W Environment in Steady-state Tokamak) project deals with modifying Tore Supra into an ITER-like divertor tokamak. This upgrade impacts a lot of systems including Tore Supra PCS and is the opportunity to improve the current PCS architecture to implement the previous works and to fulfill the needs of modern tokamak operation. This paper is dealing with the description of the architecture of WEST PCS. Firstly, the requirements will be presented including the needs of new concepts (segments configuration, alternative (or backup) scenario, …). Then, the conceptual design of the PCS will be described including the main components and their functions. The third part will be dedicated to the proposal RT framework and to the technologies that we have to implement to reach the requirements

  9. The iCub Software Architecture: evolution and lessons learned

    Directory of Open Access Journals (Sweden)

    Lorenzo eNatale

    2016-04-01

    Full Text Available The complexity of humanoid robots is increasing with the availability of new sensors, embedded CPUs and actuators. This wealth of technologies allows researchers to investigate new problems like whole-body force control, multi-modal human-robot interaction and sensory fusion. Under the hood of these robots, the software architecture has an important role: it allows researchers to get access to the robot functionalities focusing primarily on their research problems, it supports code reuse to minimize development and debugging, especially when new hardware becomes available. But more importantly it allows increasing the complexity of the experiments that can be implemented before system integration becomes unmanageable and debugging draws more resources than research itself.In this paper we illustrate the software architecture of the iCub humanoid robot and the software engineering best practices that have emerged driven by the needs of our research community. We describe the latest developments at the level of the middleware supporting interface definition and automatic code generation, logging, ROS compatibility and channel prioritization. We show the robot abstraction layer and how it has been modified to better address the requirements of the users and to support new hardware as it became available. We also describe the testing framework we have recently adopted for developing code using a test driven methodology. We conclude the paper discussing the lessons we have learned during the past eleven years of software development on the iCub humanoid robot.

  10. Future control architecture and emerging observability needs

    DEFF Research Database (Denmark)

    Morch, Andrei Z.; Jakobsen, Sigurd Hofsmo; Visscher, Klaas

    2015-01-01

    The paper presents the first findings from workpackage "Increased Observability" in EU FP7 project ELECTRA. Accommodation of intermittent generation into the network and its reliable operation require a gradual evolution of the network structure and in particular improvement of its monitoring...... or observing. The present practices of observing distribution networks are quite limited and vary from country to country. New network architectures are expected to evolve in the close future, including web-of-cells (concept defined in ELECTRA), which will result in new control schemes, significantly different...

  11. The LHC Collimator Controls Architecture - Design and beam tests

    CERN Document Server

    Redaelli, S; Gander, P; Jonker, M; Lamont, M; Losito, R; Masi, A; Sobczak, M

    2007-01-01

    The LHC collimation system will require simultaneous management by the LHC control system of more than 500 jaw positioning mechanisms in order to ensure the required beam cleaning and machine protection performance in all machine phases, from injection at 450 GeV to collision at 7 TeV. Each jaw positionis a critical parameter for the machine safety. In this paper, the architecture of the LHC collimator controls is presented. The basic design to face the accurate control of the LHC collimators and the interfaces to the other components of LHC Software Application and control infrastructures are described. The full controls system has been tested in a real accelerator environment in the CERN SPS during beam tests with a full scale collimator prototype. The results and the lessons learned are presented.

  12. Control Architecture for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    for assessment of control architecture of electric power systems with a means-ends perspective. Given this purpose-oriented understanding of a power system, the increasingly stochastic nature of this problem shall be addressed and approaches for robust, distributed control will be proposed and analyzed....... The introduction of close-to-real-time markets is envisioned to enable fast distributed resource allocation while guaranteeing system stability. Electric vehicles will be studied as a means of distributed reversible energy storage and a flexible power electronic interface, with application to the case......This project looks at control of future electric power grids with a high proportion of wind power and a large number of decentralized power generation, consumption and storage units participating to form a reliable supply of electrical energy. The first objective is developing a method...

  13. Transferring an Outcome-Oriented Learning Architecture to an IT Learning Game

    NARCIS (Netherlands)

    Schmitz, Birgit; Klemke, Roland; Totschnig, Michael; Czauderna, André; Specht, Marcus

    2011-01-01

    Schmitz, B., Klemke, R., Totschnig, M., Czauderna, A., & Specht, M. (2011, 23 September). Transferring an outcome-oriented learning architecture to an IT learning game. Presented at the 6th European conference on Technology enhanced learning: towards ubiquitous learning (EC-TEL 2011), Palermo,

  14. Controller Architecture Design for MMC-HVDC

    Directory of Open Access Journals (Sweden)

    ZHANG, B.

    2014-05-01

    Full Text Available Compared with high voltage direct current (HVDC, the primary and secondary systems of modular multilevel converter based HVDC (MMC-HVDC are complicated. And the characteristics of the control system determine the properties of the MMC-HVDC system to a certain extent. This paper investigates the design of control architecture. First, the structure and parameters of the 21-level MMC-HVDC are designed. Second, the framework of the control system is studied in details and a complete control system is established. The communication mode and content are built between each layer, and the control system program is developed and debugged. Then The steady state test platform of the sub-module and the relevant control system are designed. Finally, the steady-state tests and the system test of the physical MMC-HVDC simulation system are conducted, which prove that the SMC can control the sub-module (SM efficiently, and the control system could realize efficient start and stop of the physical system. Meanwhile, the capacitor voltage balance between the sub-modules and the basic fault protection and control of the DC voltage and power are verified to be effective.

  15. A Synchronous Collaborative Service Oriented Mobile Learning Architecture SCSOMLA

    Directory of Open Access Journals (Sweden)

    Charles Wamuti

    2015-08-01

    Full Text Available Despite the growth of mobile learning and advantages offered such as portability social interactivity context sensitivity convenience inclusive and non-discriminatory independence data collected showed that there is low use of such mobile learning systems. Investigation on mobile learning sought the participation of users and availability of users the mimicability of the class room and the various implementations in institutions and attempts at synchronous collaboration in existing Mobile Learning based infrastructure. As seen in the research the social aspect of smart mobile phones has not been leveraged to be incorporated in mobile learning infrastructure where a class is seen as a social place. Mobile Learning has not allowed a collaborative part of the social constructivism theory approach to users of these technologies which have focused on technology other than the fundamental of teaching collaborative pedagogy. Options that would enable group collaboration would be necessary to increase the quality of service for those teaching and learning in a mobile environment. With this lack of environmental feel and exposing the services that are offered in the teaching business service oriented architecture a mature technology was applied due to its seamless integration to business processes. Research explored what standards have been proposed regarding Service Oriented Architecture S.O.A. and M-Learning how has time-based collaboration been archived in other m-learning systems and how can time-based collaboration S.O.A. and M-Learning be wrapped around An architecture based on the intersection of time-based collaboration S.O.A. and M-Learning then was designed and evaluated. Results of a user study comparing a mobile learning system integrated social collaborative pedagogical features suggest that an enhanced social presence was achieved where users worked together similar to a conventional classroom.

  16. Evaluating deep learning architectures for Speech Emotion Recognition.

    Science.gov (United States)

    Fayek, Haytham M; Lech, Margaret; Cavedon, Lawrence

    2017-08-01

    Speech Emotion Recognition (SER) can be regarded as a static or dynamic classification problem, which makes SER an excellent test bed for investigating and comparing various deep learning architectures. We describe a frame-based formulation to SER that relies on minimal speech processing and end-to-end deep learning to model intra-utterance dynamics. We use the proposed SER system to empirically explore feed-forward and recurrent neural network architectures and their variants. Experiments conducted illuminate the advantages and limitations of these architectures in paralinguistic speech recognition and emotion recognition in particular. As a result of our exploration, we report state-of-the-art results on the IEMOCAP database for speaker-independent SER and present quantitative and qualitative assessments of the models' performances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The visual simulators for architecture and computer organization learning

    OpenAIRE

    Nikolić Boško; Grbanović Nenad; Đorđević Jovan

    2009-01-01

    The paper proposes a method of an effective distance learning of architecture and computer organization. The proposed method is based on a software system that is possible to be applied in any course in this field. Within this system students are enabled to observe simulation of already created computer systems. The system provides creation and simulation of switch systems, too.

  18. Architectural design with simple shape grammars and learning

    Directory of Open Access Journals (Sweden)

    Eduardo Jiménez-Morales

    2014-12-01

    Full Text Available This work presents a proposal for the automatic generation of architectural design. This scheme is based on the training of simple shape grammars through reinforcement learning technics. Finally, the results of the implemented system by this technic for the generation of dwelling design with certain restrictions are presented and analyzed.

  19. Combining Self-Explaining with Computer Architecture Diagrams to Enhance the Learning of Assembly Language Programming

    Science.gov (United States)

    Hung, Y.-C.

    2012-01-01

    This paper investigates the impact of combining self explaining (SE) with computer architecture diagrams to help novice students learn assembly language programming. Pre- and post-test scores for the experimental and control groups were compared and subjected to covariance (ANCOVA) statistical analysis. Results indicate that the SE-plus-diagram…

  20. Inclusive design in architectural practice: Experiential learning of disability in architectural education.

    Science.gov (United States)

    Mulligan, Kerry; Calder, Allyson; Mulligan, Hilda

    2018-04-01

    The built environment can facilitate or impede an individual's ability to participate in society. This is particularly so for people with disability. Architects are well placed to be advocates for design that enhances societal equality. This qualitative study explored architectural design students' perceptions of inclusive design, their reflections resulting from an experiential learning module and the subsequent influence of these on their design practice. Twenty four architectural design students participated in focus groups or individual interviews. Data were analyzed thematically. Three themes were evident: 1) Inclusive design was perceived as challenging, 2) Appreciation for the opportunity to learn about the perspectives of people with disabilities, and 3) Change of attitude toward inclusive design. Experiential learning had fostered reflection, changes in attitude and the realization that inclusive design, should begin at the start of the design process. For equitable access for all people to become reality, experiential learning, coupled with positive examples of inclusive design should be embedded in architectural education. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-01-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of < 100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipment: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost

  2. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M.; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-03-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of <100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipments: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost. 1 fig

  3. Neural architecture design based on extreme learning machine.

    Science.gov (United States)

    Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis

    2013-12-01

    Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control

    Directory of Open Access Journals (Sweden)

    Simone Baldi

    2013-05-01

    Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.

  5. Nonlinear Motion Tracking by Deep Learning Architecture

    Science.gov (United States)

    Verma, Arnav; Samaiya, Devesh; Gupta, Karunesh K.

    2018-03-01

    In the world of Artificial Intelligence, object motion tracking is one of the major problems. The extensive research is being carried out to track people in crowd. This paper presents a unique technique for nonlinear motion tracking in the absence of prior knowledge of nature of nonlinear path that the object being tracked may follow. We achieve this by first obtaining the centroid of the object and then using the centroid as the current example for a recurrent neural network trained using real-time recurrent learning. We have tweaked the standard algorithm slightly and have accumulated the gradient for few previous iterations instead of using just the current iteration as is the norm. We show that for a single object, such a recurrent neural network is highly capable of approximating the nonlinearity of its path.

  6. Developing a System Architecture for Holonic Shop Floor Control

    DEFF Research Database (Denmark)

    Sørensen, Christian; Langer, Gilad; Alting, Leo

    1998-01-01

    This paper describes the results of research regarding the emerging theory of Holonic Manufacturing Systems. This theory and in particular its corresponding reference architecture serves as the basis for the development of a system-architecture for shop floor control systems in a multi-cellular c......This paper describes the results of research regarding the emerging theory of Holonic Manufacturing Systems. This theory and in particular its corresponding reference architecture serves as the basis for the development of a system-architecture for shop floor control systems in a multi...

  7. Learning, memory, and the role of neural network architecture.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2011-06-01

    Full Text Available The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  8. Architecture for Collaborative Learning Activities in Hybrid Learning Environments

    OpenAIRE

    Ibáñez, María Blanca; Maroto, David; García Rueda, José Jesús; Leony, Derick; Delgado Kloos, Carlos

    2012-01-01

    3D virtual worlds are recognized as collaborative learning environments. However, the underlying technology is not sufficiently mature and the virtual worlds look cartoonish, unlinked to reality. Thus, it is important to enrich them with elements from the real world to enhance student engagement in learning activities. Our approach is to build learning environments where participants can either be in the real world or in its mirror world while sharing the same hybrid space in a collaborative ...

  9. Distributed and decentralized control architectures for converter-interfaced microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Wu, Dan; Shafiee, Qobad

    2017-01-01

    This paper gives a summary on recently available technologies for decentralized and distributed control of microgrids. They can be classified into two general categories: 1) power line communication based architectures and 2) multi-agent based architectures. The essential control methods and info......This paper gives a summary on recently available technologies for decentralized and distributed control of microgrids. They can be classified into two general categories: 1) power line communication based architectures and 2) multi-agent based architectures. The essential control methods...... and information sharing algorithms applied in these architectures are reviewed and examined in a hierarchical manner, in order to point out benefits they will bring to future microgrid applications. The paper is concluded with a summary on existing methods and a discussion on future development trends....

  10. Different micromanipulation applications based on common modular control architecture

    Science.gov (United States)

    Sipola, Risto; Vallius, Tero; Pudas, Marko; Röning, Juha

    2010-01-01

    This paper validates a previously introduced scalable modular control architecture and shows how it can be used to implement research equipment. The validation is conducted by presenting different kinds of micromanipulation applications that use the architecture. Conditions of the micro-world are very different from those of the macro-world. Adhesive forces are significant compared to gravitational forces when micro-scale objects are manipulated. Manipulation is mainly conducted by automatic control relying on haptic feedback provided by force sensors. The validated architecture is a hierarchical layered hybrid architecture, including a reactive layer and a planner layer. The implementation of the architecture is modular, and the architecture has a lot in common with open architectures. Further, the architecture is extensible, scalable, portable and it enables reuse of modules. These are the qualities that we validate in this paper. To demonstrate the claimed features, we present different applications that require special control in micrometer, millimeter and centimeter scales. These applications include a device that measures cell adhesion, a device that examines properties of thin films, a device that measures adhesion of micro fibers and a device that examines properties of submerged gel produced by bacteria. Finally, we analyze how the architecture is used in these applications.

  11. Learning architectures and negotiation of meaning in European trade unions

    Directory of Open Access Journals (Sweden)

    Linda Creanor

    2005-12-01

    Full Text Available As networked learning becomes familiar at all levels and in all sectors of education, cross-fertilisation of innovative methods can usefully inform the lifelong learning agenda. Development of the pedagogical architectures and social processes, which afford learning, is a major challenge for educators as they strive to address the varied needs of a wide range of learners. One area in which this challenge is taken very seriously is that of trade unions, where recent large-scale projects have aimed to address many of these issues at a European level. This paper describes one such project, which targeted not only online courses, but also the wider political potential of virtual communities of practice. By analysing findings in relation to Wenger's learning architecture, the paper investigates further the relationships between communities of practice and communities of learners in the trade union context. The findings suggest that a focus on these relationships rather than on the technologies that support them should inform future developments.

  12. An Overview on SDN Architectures with Multiple Controllers

    Directory of Open Access Journals (Sweden)

    Othmane Blial

    2016-01-01

    Full Text Available Software-defined networking offers several benefits for networking by separating the control plane from the data plane. However, networks’ scalability, reliability, and availability remain as a big issue. Accordingly, multicontroller architectures are important for SDN-enabled networks. This paper gives a comprehensive overview of SDN multicontroller architectures. It presents SDN and its main instantiation OpenFlow. Then, it explains in detail the differences between multiple types of multicontroller architectures, like the distribution method and the communication system. Furthermore, it provides already implemented and under research examples of multicontroller architectures by describing their design, their communication process, and their performance results.

  13. Between architecture and model: Strategies for cognitive control

    NARCIS (Netherlands)

    Taatgen, Niels

    One major limitation of current cognitive architectures is that models are typically constructed in an “empty” architecture, and that the knowledge specifications (typically production rules) are specific to the particular task. This means that general cognitive control strategies have to be

  14. Modelling of control system architecture for next-generation accelerators

    International Nuclear Information System (INIS)

    Liu, Shi-Yao; Kurokawa, Shin-ichi

    1990-01-01

    Functional, hardware and software system architectures define the fundamental structure of control systems. Modelling is a protocol of system architecture used in system design. This paper reviews various modellings adopted in past ten years and suggests a new modelling for next generation accelerators. (author)

  15. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Eriksen, Ole

    2003-01-01

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  16. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  17. Control architecture of power systems: Modeling of purpose and function

    DEFF Research Database (Denmark)

    Heussen, Kai; Saleem, Arshad; Lind, Morten

    2009-01-01

    Many new technologies with novel control capabilities have been developed in the context of “smart grid” research. However, often it is not clear how these capabilities should best be integrated in the overall system operation. New operation paradigms change the traditional control architecture...... of power systems and it is necessary to identify requirements and functions. How does new control architecture fit with the old architecture? How can power system functions be specified independent of technology? What is the purpose of control in power systems? In this paper, a method suitable...... for semantically consistent modeling of control architecture is presented. The method, called Multilevel Flow Modeling (MFM), is applied to the case of system balancing. It was found that MFM is capable of capturing implicit control knowledge, which is otherwise difficult to formalize. The method has possible...

  18. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  19. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    Science.gov (United States)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  20. A software architecture for a transportation control tower

    NARCIS (Netherlands)

    Baumgrass, A.; Dijkman, R.M.; Grefen, P.W.P.J.; Pourmirza, S.; Völzer, H.; Weske, M.H.

    2014-01-01

    A Transportation Control Tower is a software application that facilitates transportation planners with easily monitoring and dispatching transportation resources. This paper presents a software architecture for such an application. It focuses in particular on the novel aspects of the software

  1. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented. OAC overcomes the inflexibility of fixed proprietary automation, ensuring that MRMs provide the reconfigurability and extensibility...

  2. Distributed Control Architectures for Precision Spacecraft Formations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  3. THE ARCHITECTURE OF THE REMOTE CONTROL SYSTEM OF ROBOTICS OBJECTS

    Directory of Open Access Journals (Sweden)

    S.V. Shavetov

    2014-03-01

    Full Text Available The paper deals with the architecture for the universal remote control system of robotics objects over the Internet global network. Control objects are assumed to be located at a considerable distance from a reference device or end-users. An overview of studies on the subject matter of remote control of technical objects is given. A structure chart of the architecture demonstrating the system usage in practice is suggested. Server software is considered that makes it possible to work with technical objects connected to the server as with a serial port and organize a stable tunnel connection between the controlled object and the end-user. The proposed architecture has been successfully tested on mobile robots Parallax Boe-Bot and Lego Mindstorms NXT. Experimental data about values of time delays are given demonstrating the effectiveness of the considered architecture.

  4. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a ''standard model''. The ''standard model'' consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the ''standard model'' to determine if the requirements of ''non-standard'' architectures can be met. Several possible extensions to the ''standard model'' are suggested including software as well as the hardware architectural feature

  5. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a open-quotes standard modelclose quotes. The open-quotes standard modelclose quotes consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the open-quotes standard modelclose quotes to determine if the requirements of open-quotes non-standardclose quotes architectures can be met. Several possible extensions to the open-quotes standard modelclose quotes are suggested including software as well as the hardware architectural features

  6. FPGA implementation of bit controller in double-tick architecture

    Science.gov (United States)

    Kobylecki, Michał; Kania, Dariusz

    2017-11-01

    This paper presents a comparison of the two original architectures of programmable bit controllers built on FPGAs. Programmable Logic Controllers (which include, among other things programmable bit controllers) built on FPGAs provide a efficient alternative to the controllers based on microprocessors which are expensive and often too slow. The presented and compared methods allow for the efficient implementation of any bit control algorithm written in Ladder Diagram language into the programmable logic system in accordance with IEC61131-3. In both cases, we have compared the effect of the applied architecture on the performance of executing the same bit control program in relation to its own size.

  7. Fourier Transform Spectrometer Controller for Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.

    2013-01-01

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Resear......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....

  8. Game-Theoretic Learning in Distributed Control

    KAUST Repository

    Marden, Jason R.

    2018-01-05

    In distributed architecture control problems, there is a collection of interconnected decision-making components that seek to realize desirable collective behaviors through local interactions and by processing local information. Applications range from autonomous vehicles to energy to transportation. One approach to control of such distributed architectures is to view the components as players in a game. In this approach, two design considerations are the components’ incentives and the rules that dictate how components react to the decisions of other components. In game-theoretic language, the incentives are defined through utility functions, and the reaction rules are online learning dynamics. This chapter presents an overview of this approach, covering basic concepts in game theory, special game classes, measures of distributed efficiency, utility design, and online learning rules, all with the interpretation of using game theory as a prescriptive paradigm for distributed control design.

  9. An architecture for agile shop floor control systems

    DEFF Research Database (Denmark)

    Langer, Gilad; Alting, Leo

    2000-01-01

    as shop floor control. This paper presents the Holonic Multi-cell Control System (HoMuCS) architecture that allows for design and development of holonic shop floor control systems. The HoMuCS is a shop floor control system which is sometimes referred to as a manufacturing execution system...

  10. Learning speaker-specific characteristics with a deep neural architecture.

    Science.gov (United States)

    Chen, Ke; Salman, Ahmad

    2011-11-01

    Speech signals convey various yet mixed information ranging from linguistic to speaker-specific information. However, most of acoustic representations characterize all different kinds of information as whole, which could hinder either a speech or a speaker recognition (SR) system from producing a better performance. In this paper, we propose a novel deep neural architecture (DNA) especially for learning speaker-specific characteristics from mel-frequency cepstral coefficients, an acoustic representation commonly used in both speech recognition and SR, which results in a speaker-specific overcomplete representation. In order to learn intrinsic speaker-specific characteristics, we come up with an objective function consisting of contrastive losses in terms of speaker similarity/dissimilarity and data reconstruction losses used as regularization to normalize the interference of non-speaker-related information. Moreover, we employ a hybrid learning strategy for learning parameters of the deep neural networks: i.e., local yet greedy layerwise unsupervised pretraining for initialization and global supervised learning for the ultimate discriminative goal. With four Linguistic Data Consortium (LDC) benchmarks and two non-English corpora, we demonstrate that our overcomplete representation is robust in characterizing various speakers, no matter whether their utterances have been used in training our DNA, and highly insensitive to text and languages spoken. Extensive comparative studies suggest that our approach yields favorite results in speaker verification and segmentation. Finally, we discuss several issues concerning our proposed approach.

  11. The Architecture Improvement Method: cost management and systematic learning about strategic product architectures

    NARCIS (Netherlands)

    de Weerd-Nederhof, Petronella C.; Wouters, Marc; Teuns, Steven J.A.; Hissel, Paul H.

    2007-01-01

    The architecture improvement method (AIM) is a method for multidisciplinary product architecture improvement, addressing uncertainty and complexity and incorporating feedback loops, facilitating trade-off decision making during the architecture creation process. The research reported in this paper

  12. An agent architecture with on-line learning of both procedural and declarative knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.; Peterson, T.; Merrill, E. [Univ. of Alabama, Tuscaloosa, AL (United States)

    1996-12-31

    In order to develop versatile cognitive agents that learn in situated contexts and generalize resulting knowledge to different environments, we explore the possibility of learning both declarative and procedural knowledge in a hybrid connectionist architecture. The architecture is based on the two-level idea proposed earlier by the author. Declarative knowledge is represented symbolically, while procedural knowledge is represented subsymbolically. The architecture integrates reactive procedures, rules, learning, and decision-making in a unified framework, and structures different learning components (including Q-learning and rule induction) in a synergistic way to perform on-line and integrated learning.

  13. Chained learning architectures in a simple closed-loop behavioural context

    DEFF Research Database (Denmark)

    Kulvicius, Tomas; Porr, Bernd; Wörgötter, Florentin

    2007-01-01

    are very simple and consist of single learning unit. The current study is trying to solve this problem focusing on chained learning architectures in a simple closed-loop behavioural context. METHODS: We applied temporal sequence learning (Porr B and Wörgötter F 2006) in a closed-loop behavioural system...... where a driving robot learns to follow a line. Here for the first time we introduced two types of chained learning architectures named linear chain and honeycomb chain. We analyzed such architectures in an open and closed-loop context and compared them to the simple learning unit. CONCLUSIONS...

  14. Learning, composition and placement in the architecture project

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pérgolis

    2016-04-01

    Full Text Available Aprendizaje, composición y emplazamiento en el proyecto de arquitectura [Revisión de libro]ResumenEl texto que se muestra a continuación fue expuesto por el arquitecto Juan Carlos Pérgolis como parte de la presentación del libro Aprendizaje, composición y emplazamiento en el proyecto de arquitectura. Un diálogo entre las aproximaciones analógica y tipológica, que se realizó el 29 de septiembre de 2015 en el auditorio Gabriel Serrano Camargo de la Sociedad Colombiana de Arquitectos en Bogotá-Colombia. Este evento también contó con la participación de Juan Luis Rodríguez y Javier Peinado Pontón como lectores críticos de la obra.Este espacio también es la oportunidad para rendir un homenaje póstumo al arquitecto Germán Darío Correal Pachón, fallecido en octubre de 2015, quien nos dejó un gran legado representado en sus escritos y constantes reflexiones acerca de la pedagogía de la arquitectura, la enseñanza y el aprendizaje, y que con su particular visión de las cosas nos enseñó a ver más allá de las prácticas cotidianas de la docencia en arquitectura, sobre las cuales hay mucho que decir, investigar y escribir.Palabras clave: Diseño arquitectónico; investigación proyectual; pedagogía y didáctica universitaria; proyecto arquitectónico; teoría arquitectónica. Learning, composition and placement in the architecture projectAbstractThe text below was presented by the architect Juan Carlos Pérgolis as part of the presentation of the book Learning, composition and location in the architectural project. A dialogue between analogue and typological approach, which was held on September 29, 2015 in the auditorium Gabriel Serrano Camargo of the Colombian Society of Architects in Bogotá, Colombia. This event also featured the participation of Juan Luis Rodriguez and Javier Peinado Pontón as critical readers of the work.This space is also the opportunity to pay a posthumous tribute to the architect Germán Dar

  15. Architectural frameworks: defining the structures for implementing learning health systems.

    Science.gov (United States)

    Lessard, Lysanne; Michalowski, Wojtek; Fung-Kee-Fung, Michael; Jones, Lori; Grudniewicz, Agnes

    2017-06-23

    The vision of transforming health systems into learning health systems (LHSs) that rapidly and continuously transform knowledge into improved health outcomes at lower cost is generating increased interest in government agencies, health organizations, and health research communities. While existing initiatives demonstrate that different approaches can succeed in making the LHS vision a reality, they are too varied in their goals, focus, and scale to be reproduced without undue effort. Indeed, the structures necessary to effectively design and implement LHSs on a larger scale are lacking. In this paper, we propose the use of architectural frameworks to develop LHSs that adhere to a recognized vision while being adapted to their specific organizational context. Architectural frameworks are high-level descriptions of an organization as a system; they capture the structure of its main components at varied levels, the interrelationships among these components, and the principles that guide their evolution. Because these frameworks support the analysis of LHSs and allow their outcomes to be simulated, they act as pre-implementation decision-support tools that identify potential barriers and enablers of system development. They thus increase the chances of successful LHS deployment. We present an architectural framework for LHSs that incorporates five dimensions-goals, scientific, social, technical, and ethical-commonly found in the LHS literature. The proposed architectural framework is comprised of six decision layers that model these dimensions. The performance layer models goals, the scientific layer models the scientific dimension, the organizational layer models the social dimension, the data layer and information technology layer model the technical dimension, and the ethics and security layer models the ethical dimension. We describe the types of decisions that must be made within each layer and identify methods to support decision-making. In this paper, we outline

  16. A novel approach to locomotion learning: Actor-Critic architecture using central pattern generators and dynamic motor primitives.

    Science.gov (United States)

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2014-01-01

    In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.

  17. A Novel Approach to Locomotion Learning: Actor-Critic Architecture using Central Pattern Generators and Dynamic Motor Primitives

    Directory of Open Access Journals (Sweden)

    Cai eLi

    2014-10-01

    Full Text Available In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modelling objective is split into two: baseline motion modelling and dynamics adaptation. Baseline motion modelling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a ``reshaping function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the the baseline motion and dynamic motor primitives (DMPs, a model with universal ``reshaping functions. In this article, we use this architecture with the actor-critic algorithms for finding a good ``reshaping function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: 1 learning to crawl on a humanoid and, 2 learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.

  18. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  19. Architecture

    OpenAIRE

    Clear, Nic

    2014-01-01

    When discussing science fiction’s relationship with architecture, the usual practice is to look at the architecture “in” science fiction—in particular, the architecture in SF films (see Kuhn 75-143) since the spaces of literary SF present obvious difficulties as they have to be imagined. In this essay, that relationship will be reversed: I will instead discuss science fiction “in” architecture, mapping out a number of architectural movements and projects that can be viewed explicitly as scien...

  20. Nova control system: goals, architecture, and system design

    International Nuclear Information System (INIS)

    Suski, G.J.; Duffy, J.M.; Gritton, D.G.; Holloway, F.W.; Krammen, J.R.; Ozarski, R.G.; Severyn, J.R.; Van Arsdall, P.J.

    1982-01-01

    The control system for the Nova laser must operate reliably in a harsh pulse power environment and satisfy requirements of technical functionality, flexibility, maintainability and operability. It is composed of four fundamental subsystems: Power Conditioning, Alignment, Laser Diagnostics, and Target Diagnostics, together with a fifth, unifying subsystem called Central Controls. The system architecture utilizes a collection of distributed microcomputers, minicomputers, and components interconnected through high speed fiber optic communications systems. The design objectives, development strategy and architecture of the overall control system and each of its four fundamental subsystems are discussed. Specific hardware and software developments in several areas are also covered

  1. PELS: A Noble Architecture and Framework for a Personal E-Learning System (PELS)

    Science.gov (United States)

    Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn

    2014-01-01

    This article presents a personal e-learning system architecture in the context of a social network environment. The main objective of a personal e-learning system is to develop individual skills on a specific subject and share resources with peers. The authors' system architecture defines the organisation and management of a personal learning…

  2. Multimedia And Internetworking Architecture Infrastructure On Interactive E-Learning System

    Science.gov (United States)

    Indah, K. A. T.; Sukarata, G.

    2018-01-01

    Interactive e-learning is a distance learning method that involves information technology, electronic system or computer as one means of learning system used for teaching and learning process that is implemented without having face to face directly between teacher and student. A strong dependence on emerging technologies greatly influences the way in which the architecture is designed to produce a powerful interactive e-learning network. In this paper analyzed an architecture model where learning can be done interactively, involving many participants (N-way synchronized distance learning) using video conferencing technology. Also used broadband internet network as well as multicast techniques as a troubleshooting method for bandwidth usage can be efficient.

  3. Architecture of the modern accelerator control system

    International Nuclear Information System (INIS)

    Samardzic, B.; Drndarevic, V.

    2000-01-01

    Well defined concept of the system and construction plan are the important conditions for the successful realization of the accelerator control system. In this paper the modern concept of accelerator control system as well as guidelines for its efficient development have been presented. Described concept could be applied for the design of control systems for other types of facilities for experimental physics and for industrial process control. (author)

  4. The CEBAF [Continuous Electron Beam Accelerator Facility] control system architecture

    International Nuclear Information System (INIS)

    Bork, R.

    1987-01-01

    The focus of this paper is on CEBAF's computer control system. This control system will utilize computers in a distributed, networked configuration. The architecture, networking and operating system of the computers, and preliminary performance data are presented. We will also discuss the design of the operator consoles and the interfacing between the computers and CEBAF's instrumentation and operating equipment

  5. A Brief Overview of Gesture Control Architectures

    Directory of Open Access Journals (Sweden)

    Gheorghe Gîlcă

    2014-12-01

    Full Text Available This papers deals with a detailed study of the literature about artificial vision systems and the applications where they can be used, such as: gesture interpretation for robot control, telephone control and the video control as well as presenting the structure of two vision systems: one for face recognition and the second to achieve the detection of multiple-touch finger.

  6. A Study of an Architecture Design Learning Process Based on Social Learning, Course Teaching, Interaction, and Analogical Thinking

    Directory of Open Access Journals (Sweden)

    Yun-Wu Wu

    2014-01-01

    Full Text Available The students in the vocational education of architecture design in Taiwan often face many learning obstacles, such as no problem solving ability and lack of creativity. Therefore, this study used a social learning model as a learning strategy in the architecture design learning process to solve related learning difficulties. Firstly, this study used cognitive development teaching activities and a learning process based on analogical thinking and analogical reasoning to build the social learning model. Secondly, the social learning model of this study was implemented in the teaching of a required course of architecture design for 120 freshmen in China University of Technology. The questionnaire survey results were then statically analyzed and compared to measure the differences in the students’ knowledge about architecture designs before and after the teaching in this study. In this study, the social learning model is proven helpful in inspiring the students’ creativity by converting new knowledge of architecture design into schemas and hence retaining the new knowledge for future application. The social learning model can be applied in the teaching of architecture design in other schools, while more research can be conducted in the future to further confirm its feasibility to promote effective learning.

  7. An integrated architecture for the ITER RH control system

    International Nuclear Information System (INIS)

    Hamilton, David Thomas; Tesini, Alessandro

    2012-01-01

    Highlights: ► Control system architecture integrating ITER remote handling equipment systems. ► Standard control system architecture for remote handling equipment systems. ► Research and development activities to validate control system architecture. ► Standardization studies to select standard parts for control system architecture. - Abstract: The ITER remote handling (RH) system has been divided into 7 major equipment system procurements that deliver complete systems (operator interfaces, equipment controllers, and equipment) according to task oriented functional specifications. Each equipment system itself is an assembly of transporters, power manipulators, telemanipulators, vehicular systems, cameras, and tooling with a need for controllers and operator interfaces. From an operational perspective, the ITER RH systems are bound together by common control rooms, operations team, and maintenance team; and will need to achieve, to a varying degree, synchronization of operations, co-operation on tasks, hand-over of components, and sharing of data and resources. The separately procured RH systems must, therefore, be integrated to form a unified RH system for operation from the RH control rooms. The RH system will contain a heterogeneous mix of specially developed RH systems and off-the-shelf RH equipment and parts. The ITER Organization approach is to define a control system architecture that supports interoperable heterogeneous modules, and to specify a standard set of modules for each system to implement within this architecture. Compatibility with standard parts for selected modules is required to limit the complexity for operations and maintenance. A key requirement for integrating the control system modules is interoperability, and no module should have dependencies on the implementation details of other modules. The RH system is one of the ITER Plant systems that are integrated and coordinated through the hierarchical structure of the ITER CODAC system

  8. Progress of the Architectural Competition: Learning Center, the Lausanne Example

    Directory of Open Access Journals (Sweden)

    Mirjana Rittmeyer

    2006-07-01

    Full Text Available Point of entry to the Ecole Polytechnique Fédérale de Lausanne (EPFL, the Learning Center will be a place to learn, to obtain information, and to live. Replacing and improving the old main library, this new building will gradually assimilate all EPFL department libraries collections and services, as they are integrated into a global information system. Conceived as the place for those who are learning, mainly students, who have no personal working area on the campus, it is designed to adapt itself to the ‘seasons’ of academic life throughout the year (flexibility and modularity of rooms, extended opening hours during exam periods. It will take into account group working habits (silence vs. noise, changes in the rhythm of student life (meals, working alone, discussions, etc., and other environmental factors. Of course the needs of EPFL staff and alumni, local industry and citizens have also been carefully considered in the design. By offering a multitude of community functions, such as a bookshop, cafeteria and restaurant services, and rooms for relaxation and discussion, the Learning Center will link the campus to the city. Areas devoted to exhibition and debate will also be included, enforcing its role as an interactive science showcase, in particular for those technologies related to the research and teaching of the EPFL. The presentation described the process and steps towards the actual realisation of such a vital public space: from the programme definition to the collaboration with the bureau of architects (SAANA, Tokyo who won the project competition, the speakers showed what are the challenges and lessons already taken when working on this major piece of architecture, indeed the heart of the transformation of the technical school build in the 1970s into a real 2000s campus.

  9. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  10. APT LLRF control system functionality and architecture

    International Nuclear Information System (INIS)

    Regan, A.H.; Rohlev, A.S.; Ziomek, C.D.

    1996-01-01

    1% amplitude and l degree phase. The feedback control system requires a phase-stable RF reference subsystem signal to correctly phase each cavity. Also, instead of a single klystron RF source for individual accelerating cavities, multiple klystrons will drive a string of resonantly coupled cavities, based on input from a single LLRF feedback control system. To achieve maximum source efficiency, we will be employing single fast feedback controls around individual klystrons such that the gain and phase characteristics of each will be ''identical.'' In addition, resonance control is performed by providing a proper drive signal to structure cooling water valves in order to keep the cavity resonant during operation. To quickly respond to RF shutdowns, and hence rapid accelerating cavity cool- down, due to RF fault conditions, drive frequency agility in the main feedback control subsystem will also be incorporated. Top level block diagrams will be presented and described for each of the aforementioned subsystems as they will first be developed and demonstrated on the Low Energy Demonstrator Accelerator (LEDA) The low-level RF (LLRF) control system for the Accelerator Production of Tritium (APT) will perform various functions. Foremost is the feedback control of the accelerating fields within the cavity in order to maintain field stability within

  11. APT LLRF control system functionality and architecture

    International Nuclear Information System (INIS)

    Regan, A.H.; Rohlev, A.S.; Ziomek, C.D.

    1996-01-01

    The low-level RF (LLRF) control system for the Accelerator Production of Tritium (APT) will perform various functions. Foremost is the feedback control of the accelerating fields within the cavity in order to maintain field stability within ± 1% amplitude and 1 degree phase. The feedback control system requires a phase-stable RF reference subsystem signal to correctly phase each cavity. Also, instead of a single klystron RF source for individual accelerating cavities, multiple klystrons will drive a string of resonantly coupled cavities, based on input from a single LLRF feedback control system. To achieve maximum source efficiency, we will be employing single fast feedback controls around individual klystrons such that the gain and phase characteristics of each will be 'identical'. In addition, the resonance condition of the cavities is monitored and maintained. To quickly respond to RF shutdowns, and hence rapid accelerating cavity cool-down, due to RF fault conditions, drive frequency agility in the main feedback control subsystem will also be incorporated. Top level block diagrams will be presented and described as they will first be developed and demonstrated on the Low Energy Demonstrator Accelerator (LEDA). (author)

  12. A portable modular architecture for robotic manipulator control

    International Nuclear Information System (INIS)

    Butler, P.L.

    1993-01-01

    A control architecture has been developed to provide a framework for robotic manipulator control. This architecture, called the Modular Integrated Control Architecture (MICA), has been successfully applied to two different manipulator systems. MICA is a portable system in two respects. First, it can be used for the control of different types of manipulator systems. Second, the MICA code is portable across several operating environments. This portability allows the sharing of common control code among various systems. A major portion of MICA is the precise control of multiple processors that have to be coordinated to control a manipulator system. By having NUCA control the processor synchronization, the system developer can concentrate on the specific aspects of a new manipulator system. MICA also provides standard functions for trajectory generation that can be used for most manipulators. Custom trajectory generators can be easily added to suit the needs of a particular robotic control system. Another facility that MICA provides is a simulation of the manipulator, allowing the control code to be simulated before trying it on a manipulator system. Using this technique, one can develop code for a manipulator system without risking damage to the arm during development

  13. A flexible architecture for advanced process control solutions

    Science.gov (United States)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  14. Control Architecture Modeling for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    electricity exchange. However, at the same time, it seems that the overall system design cannot keep up by simply adapting in response to changes, but that also new strategies have to be designed in anticipation. Changes to the electricity markets have been suggested to adapt to the limited predictability...... of wind power, and several new control strategies have been proposed, in particular to enable the control of distributed energy resources, including for example, distributed generation or electric vehicles. Market designs addressing the procurement of balancing resources are highly dependent...... on the operation strategies specifying the resource requirements. How should one decide which control strategy and market configuration is best for a future power system? Most research up to this point has addressed single isolated aspects of this design problem. Those of the ideas that fit with current markets...

  15. MPS Vax monitor and control software architecture

    International Nuclear Information System (INIS)

    Allison, S.; Spencer, N.; Underwood, K.; VanOlst, D.; Zelanzy, M.

    1993-04-01

    The new Machine Protection System (MPS) now being tested at the SLAC Linear Collider (SLC) includes monitoring and controlling facilities integrated into the existing VAX control system. The actual machine protection is performed by VME micros which control the beam repetition rate on a pulse-by-pulse basis based on measurements from fault detectors. The VAX is used to control and configure the VME micros, configure custom CAMAC modules providing the fault detector inputs, monitor and report faults and system errors, update the SLC database, and interface with the user. The design goals of the VAX software include a database-driven system to allow configuration changes without code changes, use of a standard TCP/IP-based message service for communication, use of existing SLCNET micros for CAMAC configuration, security and verification features to prevent unauthorized access, error and alarm logging and display updates as quickly as possible, and use of touch panels and X-windows displays for the user interface

  16. Learning Analytics Architecture to Scaffold Learning Experience through Technology-based Methods

    Directory of Open Access Journals (Sweden)

    Jannicke Madeleine Baalsrud Hauge

    2015-02-01

    Full Text Available The challenge of delivering personalized learning experiences is often increased by the size of classrooms and online learning communities. Serious Games (SGs are increasingly recognized for their potential to improve education. However, the issues related to their development and their level of effectiveness can be seriously affected when brought too rapidly into growing online learning communities. Deeper insights into how the students are playing is needed to deliver a comprehensive and intelligent learning framework that facilitates better understanding of learners' knowledge, effective assessment of their progress and continuous evaluation and optimization of the environments in which they learn. This paper discusses current SOTA and aims to explore the potential in the use of games and learning analytics towards scaffolding and supporting teaching and learning experience. The conceptual model (ecosystem and architecture discussed in this paper aims to highlight the key considerations that may advance the current state of learning analytics, adaptive learning and SGs, by leveraging SGs as an suitable medium for gathering data and performing adaptations.

  17. Mosque as a Model of Learning Principles of Sustainable Architecture

    Directory of Open Access Journals (Sweden)

    Swambodo Murdariatmo Adi

    2016-06-01

    Full Text Available The mosque is an integral part of the circuit-worship rituals of Islam. For Muslims in Indonesia, the role of the mosque as a place of worship, examines religion and some other activities occupy a strategic position not only as a religious symbol but more emphasis on the function of the space as a public building. Utilization of space in public buildings as well as space-ritual-social space will have meaning for the people in view of adaptation space used. Awareness of the importance of effective space utilization and management of water resources wisely in support of the ritual apply the principles of sustainable architecture will have a positive impact for the people to give directions as to how the principle of austerity-not wasteful in Islam can be applied. This paper will discuss about the process of continuous learning from the essence of understanding of the mosque as a model in implementing the process of life, taking into account the principles of simplicity, functional and wisdom, especially in the efficiency of utilization of local resources. The method used in this research is qualitative descriptive, which is explained the theory and based on literature and accompanied by case study that have implemented the principles. The output of this application of the principles of sustainable architecture in the planning and use of mosques as a place in the relationship with God and with fellow human relations can be a model for the faithful to deal with wisely challenge natural resource constraints, especially for future generations.

  18. Hierarchical Control Architecture for Demand Response in Smart Grid Scenario

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    , a number of issues, including DR enabling technologies, control strategy, and control architecture, are still under discussion. This paper outlines novel control requirements based on the categorization of existing DR techniques. More specifically, the roles and responsibilities of smart grid actors...... effective tool for optimum asset utilization and to avoid or delay the need for new infrastructure investment. Furthermore, most of the power networks are under the process of reconfiguration to realize the concept of smart grid and are at the transforming stage to support various forms of DR. However...... for every DR category are allotted and their mode of interactions to coordinate individual as well as coordinative goals is described. Next, hierarchical control architecture (HCA) is developed for the overall coordination of control strategies for individual DR categories. The involved issues are discussed...

  19. A Flexible and Configurable Architecture for Automatic Control Remote Laboratories

    Science.gov (United States)

    Kalúz, Martin; García-Zubía, Javier; Fikar, Miroslav; Cirka, Luboš

    2015-01-01

    In this paper, we propose a novel approach in hardware and software architecture design for implementation of remote laboratories for automatic control. In our contribution, we show the solution with flexible connectivity at back-end, providing features of multipurpose usage with different types of experimental devices, and fully configurable…

  20. Architectural conceptual definition of the CAREM-25 reactor's control system

    International Nuclear Information System (INIS)

    Perez, J.C.; Santome, D.; Drexler, J.; Escudero, S.

    1990-01-01

    This work presents the conceptual definition of the CAREM 25 reactor's digital and monitoring control system structure. The requirements of the system are analyzed and different implementation alternatives are studied where possible basic architectures of the system and its topology are considered and evaluated. (Author) [es

  1. Flexible distributed architecture for semiconductor process control and experimentation

    Science.gov (United States)

    Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.

    1997-01-01

    Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.

  2. Control of Macromolecular Architectures for Renewable Polymers: Case Studies

    Science.gov (United States)

    Tang, Chuanbing

    The development of sustainable polymers from nature biomass is growing, but facing fierce competition from existing petrochemical-based counterparts. Controlling macromolecular architectures to maximize the properties of renewable polymers is a desirable approach to gain advantages. Given the complexity of biomass, there needs special consideration other than traditional design. In the presentation, I will talk about a few case studies on how macromolecular architectures could tune the properties of sustainable bioplastics and elastomers from renewable biomass such as resin acids (natural rosin) and plant oils.

  3. TCP-Call Admission Control Interaction in Multiplatform Space Architectures

    Directory of Open Access Journals (Sweden)

    Georgios Theodoridis

    2007-06-01

    Full Text Available The implementation of efficient call admission control (CAC algorithms is useful to prevent congestion and guarantee target quality of service (QoS. When TCP protocol is adopted, some inefficiencies can arise due to the peculiar evolution of the congestion window. The development of cross-layer techniques can greatly help to improve efficiency and flexibility for wireless networks. In this frame, the present paper addresses the introduction of TCP feedback into the CAC procedures in different nonterrestrial wireless architectures. CAC performance improvement is shown for different space-based architectures, including both satellites and high altitude platform (HAP systems.

  4. TCP-Call Admission Control Interaction in Multiplatform Space Architectures

    Directory of Open Access Journals (Sweden)

    Roseti Cesare

    2007-01-01

    Full Text Available The implementation of efficient call admission control (CAC algorithms is useful to prevent congestion and guarantee target quality of service (QoS. When TCP protocol is adopted, some inefficiencies can arise due to the peculiar evolution of the congestion window. The development of cross-layer techniques can greatly help to improve efficiency and flexibility for wireless networks. In this frame, the present paper addresses the introduction of TCP feedback into the CAC procedures in different nonterrestrial wireless architectures. CAC performance improvement is shown for different space-based architectures, including both satellites and high altitude platform (HAP systems.

  5. Intelligent perception control based on a blackboard architecture

    International Nuclear Information System (INIS)

    Taibi, I.; Koenig, A.; Vacherand, F.

    1991-01-01

    In this paper, is described the intelligent perception control system GESPER which is presently equipped with a set of three cameras, a telemeter and a camera associated with a structured strip light. This system is of great interest for all our robotic applications as it is capable of autonomously planning, triggering acquisitions, integrating and interpreting multisensory data. The GESPER architecture, based on the blackboard model, provides a generic development method for indoor and outdoor perception. The modularity and the independence of the knowledge sources make the software evolving easily without breaking down the architecture. New sensors and/or new data processing can be integrated by the addition of new knowledge sources that modelize them. At present, first results are obtained in our testbed hall which simulates the nuclear plant as gives similar experimental conditions. Our ongoing research concerns the improvement of fusion algorithms and the embedding of the whole system (hardware and software) on target robots and distributed architecture

  6. Islanding Control Architecture in future smart grid with both demand and wind turbine control

    DEFF Research Database (Denmark)

    Chen, Yu; Xu, Zhao; Østergaard, Jacob

    2013-01-01

    , which is the focus of this paper, available resources including both DG units and demand should be fully utilized as reserves. The control and coordination among different resources requires an integral architecture to serve the purpose. This paper develops the Islanding Control Architecture (ICA...

  7. Do Architectural Design Decisions Improve the Understanding of Software Architecture? Two Controlled Experiments

    NARCIS (Netherlands)

    Shahin, M.; Liang, P.; Li, Z.

    2014-01-01

    Architectural design decision (ADD) and its design rationale, as a paradigm shift on documenting and enriching architecture design description, is supposed to facilitate the understanding of architecture and the reasoning behind the design rationale, which consequently improves the architecting

  8. Scenario design : adaptive architecture for command and control experiment eight

    OpenAIRE

    Clark, Frankie J.

    2002-01-01

    Approved for public release; distribution is unlimited. The Adaptive Architectures for Command and Control (A2C2) project is an ongoing research effort sponsored by the Office of Naval Research to explore adaptation in joint command and control. The objective of the project's eighth experiment is to study the adjustments that organizations make when they are confronted with a scenario for which their organizational is ill-suited. To accomplish this, teams will each be in one of two fundame...

  9. The Hybrid Studio--Introducing Google+ as a Blended Learning Platform for Architectural Design Studio Teaching

    Science.gov (United States)

    Steinø, Nicolai; Khalid, Md. Saufuddin

    2017-01-01

    Much architecture and design teaching is based on the studio format, where the co-presence in time and space of students, instructors and physical learning artefacts form a triangle from which the learning emerges. Yet with the advent of online communication platforms and learning management systems (LMS), there is reason to study how these…

  10. An Integration Architecture of Virtual Campuses with External e-Learning Tools

    Science.gov (United States)

    Navarro, Antonio; Cigarran, Juan; Huertas, Francisco; Rodriguez-Artacho, Miguel; Cogolludo, Alberto

    2014-01-01

    Technology enhanced learning relies on a variety of software architectures and platforms to provide different kinds of management service and enhanced instructional interaction. As e-learning support has become more complex, there is a need for virtual campuses that combine learning management systems with the services demanded by educational…

  11. An intelligent service-based layered architecture for e learning and assessment

    International Nuclear Information System (INIS)

    Javaid, Q.; Arif, F.

    2017-01-01

    The rapid advancement in ICT (Information and Communication Technology) is causing a paradigm shift in eLearning domain. Traditional eLearning systems suffer from certain shortcomings like tight coupling of system components, lack of personalization, flexibility, and scalability and performance issues. This study aims at addressing these challenges through an MAS (Multi Agent System) based multi-layer architecture supported by web services. The foremost objective of this study is to enhance learning process efficiency by provision of flexibility features for learning and assessment processes. Proposed architecture consists of two sub-system namely eLearning and eAssesssment. This architecture comprises of five distinct layers for each sub-system, with active agents responsible for miscellaneous tasks including content handling, updating, resource optimization, load handling and provision of customized environments for learners and instructors. Our proposed architecture aims at establishment of a facilitation level to learners as well as instructors for convenient acquisition and dissemination of knowledge. Personalization features like customized environments, personalized content retrieval and recommendations, adaptive assessment and reduced response time, are believed to significantly enhance learning and tutoring experience. In essence characteristics like intelligence, personalization, interactivity, usability, laidback accessibility and security, signify aptness of proposed architecture for improving conventional learning and assessment processes. Finally we have evaluated our proposed architecture by means of analytical comparison and survey considering certain quality attributes. (author)

  12. Semantic Web-Driven LMS Architecture towards a Holistic Learning Process Model Focused on Personalization

    Science.gov (United States)

    Kerkiri, Tania

    2010-01-01

    A comprehensive presentation is here made on the modular architecture of an e-learning platform with a distinctive emphasis on content personalization, combining advantages from semantic web technology, collaborative filtering and recommendation systems. Modules of this architecture handle information about both the domain-specific didactic…

  13. A Mobile Service Oriented Multiple Object Tracking Augmented Reality Architecture for Education and Learning Experiences

    Science.gov (United States)

    Rattanarungrot, Sasithorn; White, Martin; Newbury, Paul

    2014-01-01

    This paper describes the design of our service-oriented architecture to support mobile multiple object tracking augmented reality applications applied to education and learning scenarios. The architecture is composed of a mobile multiple object tracking augmented reality client, a web service framework, and dynamic content providers. Tracking of…

  14. Architecture Students' Perceptions of Their Learning Environment and Their Academic Performance

    Science.gov (United States)

    Oluwatayo, Adedapo Adewunmi; Aderonmu, Peter A.; Aduwo, Egidario B.

    2015-01-01

    Scholars have agreed that the way in which students perceive their learning environments influences their academic performance. Empirical studies that focus on architecture students, however, have been very scarce. This is the gap that an attempt is filled in this study. A questionnaire survey of 273 students in a school of architecture in Nigeria…

  15. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Kamesh [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore, these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address

  16. Learning based upon projects of architectural conservation: from university to real life

    OpenAIRE

    Mileto, Camilla; Vegas López-Manzanares, Fernando; Cristini, Valentina; Diodato, Maria

    2011-01-01

    Mileto, C.; Vegas López-Manzanares, F.; Cristini, V.; Diodato, M. (2011). Learning based upon projects of architectural conservation: from university to real life. IATED. 1-8. http://hdl.handle.net/10251/50072 Senia 1 8

  17. An Architecture for Emotional and Context-Aware Associative Learning for Robot Companions

    OpenAIRE

    Rizzi Raymundo, C.; Johnson, C. G.; Vargas, P. A.

    2015-01-01

    This work proposes a theoretical architectural model based on the brain's fear learning system with the purpose of generating artificial fear conditioning at both stimuli and context abstraction levels in robot companions. The proposed architecture is inspired by the different brain regions involved in fear learning, here divided into four modules that work in an integrated and parallel manner: the sensory system, the amygdala system, the hippocampal system and the working memory. Each of the...

  18. Memory intensive functional architecture for distributed computer control systems

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1983-10-01

    A memory-intensive functional architectue for distributed data-acquisition, monitoring, and control systems with large numbers of nodes has been conceptually developed and applied in several large-scale and some smaller systems. This discussion concentrates on: (1) the basic architecture; (2) recent expansions of the architecture which now become feasible in view of the rapidly developing component technologies in microprocessors and functional large-scale integration circuits; and (3) implementation of some key hardware and software structures and one system implementation which is a system for performing control and data acquisition of a neutron spectrometer at the Brookhaven High Flux Beam Reactor. The spectrometer is equipped with a large-area position-sensitive neutron detector

  19. The message architecture of the LEP control system

    International Nuclear Information System (INIS)

    Altaber, J.; van der Stok, P.; Frammery, V.; Gareyte, C.; Rausch, R.

    1985-01-01

    The LEP control system will be constructed as a global communication system where microprocessors will be used everywhere, from the management of the communication mechanisms, the execution of complex control procedures, and the supervision of the equipment. To achieve this, the global control problem has been cut into sizeable functions which will be encapsulated into microprocessor modules containing enough hardware for the function to be mostly self-contained. This leads to a function architecture where messages are exchanged between the functions on miscellaneous media. It is shown how these message exchanges can be organized into a uniform flow of data all through the system

  20. Robotic control architecture development for automated nuclear material handling systems

    International Nuclear Information System (INIS)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies

  1. A new architecture for Fermilab's cryogenic control system

    International Nuclear Information System (INIS)

    Smolucha, J.; Frank, A.; Seino, K.; Lackey, S.

    1992-01-01

    In order to achieve design energy in the Tevatron, the magnet system will be operated at lower temperatures. The increased requirements of operating the Tevatron at lower temperatures necessitated a major upgrade to the both the hardware and software components of the cryogenic control system. The new architecture is based on a distributed topology which couples Fermilab designed I/O subsystems to high performance, 80386 execution processors via a variety of networks including: Arcnet, iPSB, and token ring. (author)

  2. A Topology Optimisation Approach to Learning in Architectural Design

    DEFF Research Database (Denmark)

    Mullins, Michael; Kirkegaard, Poul Henning; Jessen, Rasmus Zederkof

    2005-01-01

    describes an attempt to unify analytic and analogical approaches in an architectural education setting, using topology optimization software. It uses as examples recent student projects where the architectural design process based on a topology optimization approach has been investigated. The paper...

  3. ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-02-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  4. Control system devices : architectures and supply channels overview.

    Energy Technology Data Exchange (ETDEWEB)

    Trent, Jason; Atkins, William Dee; Schwartz, Moses Daniel; Mulder, John C.

    2010-08-01

    This report describes a research project to examine the hardware used in automated control systems like those that control the electric grid. This report provides an overview of the vendors, architectures, and supply channels for a number of control system devices. The research itself represents an attempt to probe more deeply into the area of programmable logic controllers (PLCs) - the specialized digital computers that control individual processes within supervisory control and data acquisition (SCADA) systems. The report (1) provides an overview of control system networks and PLC architecture, (2) furnishes profiles for the top eight vendors in the PLC industry, (3) discusses the communications protocols used in different industries, and (4) analyzes the hardware used in several PLC devices. As part of the project, several PLCs were disassembled to identify constituent components. That information will direct the next step of the research, which will greatly increase our understanding of PLC security in both the hardware and software areas. Such an understanding is vital for discerning the potential national security impact of security flaws in these devices, as well as for developing proactive countermeasures.

  5. Integrated control and diagnostic system architectures for future installations

    International Nuclear Information System (INIS)

    Wood, R.; March-Leuba, J.

    2000-01-01

    Nuclear reactors of the 21st century will employ increasing levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and distributed communications are needed to implement the fully automated plant. It will be equally challenging to integrate developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the US Department of Energy is sponsoring a project to address some of the technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project involves researchers from Oak Ridge National Laboratory, the University of Tennessee, and North Carolina State University. The research tasks under this project focus on some of the first-level breakthroughs in control design, diagnostic techniques, and information system design that will provide a path to enable the design process to be automated in the future. This paper describes the conceptual development of an integrated nuclear plant control and information system architecture, which incorporates automated control system development that can be traced to a set of technical requirements. The expectation is that an integrated plant architecture with optimal control and efficient use of diagnostic information can reduce the potential for operational errors and minimize challenges to the plant safety systems

  6. Architectural concept for the ITER Plasma Control System

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Humphreys, D., E-mail: humphreys@fusion.gat.com [General Atomics, San Diego, CA (United States); Raupp, G., E-mail: Gerhard.Raupp@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Schuster, E., E-mail: schuster@lehigh.edu [Lehigh University, Bethlehem, PA (United States); Snipes, J., E-mail: Joseph.Snipes@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France); De Tommasi, G., E-mail: detommas@unina.it [CREATE/Università di Napoli Federico II, Napoli (Italy); Walker, M., E-mail: walker@fusion.gat.com [General Atomics, San Diego, CA (United States); Winter, A., E-mail: Axel.Winter@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France)

    2014-05-15

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  7. Architectural concept for the ITER Plasma Control System

    International Nuclear Information System (INIS)

    Treutterer, W.; Humphreys, D.; Raupp, G.; Schuster, E.; Snipes, J.; De Tommasi, G.; Walker, M.; Winter, A.

    2014-01-01

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  8. Distributed Control Architecture for Gas Turbine Engine. Chapter 4

    Science.gov (United States)

    Culley, Dennis; Garg, Sanjay

    2009-01-01

    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  9. New control architecture for the SPS accelerator at CERN

    International Nuclear Information System (INIS)

    Kissler, K.H.; Rausch, R.

    1992-01-01

    The Control System for the 450 Gev proton accelerator SPS at CERN was conceived and implemented some 18 years ago. The 16 Bit minicomputers with their proprietary operating system and interconnection with a dedicated network do not permit the use of modern workstations, international communication standards and industrial software packages. The upgrading of the system has therefore become necessary. After a short review of the history and the current state of the SPS control system, the paper describes how CERN's new control architecture, which will be common to all accelerators, will be realized at the SPS. The migration path ensuring a smooth transition to the final system is outlined. Once the SPS upgrade is complete and following some enhancements to the LEP control system, the operator in the SPS/LEP control center will be working in a single uniform control environment. (author)

  10. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  11. A structured architecture for advanced plasma control experiments

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.

    1996-10-01

    Recent new and improved plasma control regimes have evolved from enhancements to the systems responsible for managing the plasma configuration on the DIII-D tokamak. The collection of hardware and software components designed for this purpose is known at DIII-D as the Plasma Control System or PCS. Several new user requirements have contributed to the rapid growth of the PCS. Experiments involving digital control of the plasma vertical position have resulted in the addition of new high performance processors to operate in real-time. Recent studies in plasma disruptions involving the use of neural network based software have resulted in an increase in the number of input diagnostic signals sampled. Better methods for estimating the plasma shape and position have brought about numerous software changes and the addition of several new code modules. Furthermore, requests for performing multivariable control and feedback on the current profile are continuing to add to the demands being placed on the PCS. To support all of these demands has required a structured yet flexible hardware and software architecture for maintaining existing capabilities and easily adding new ones. This architecture along with a general overview of the DIII-D Plasma Control System is described. In addition, the latest improvements to the PCS are presented

  12. Design and Architecture of SST-1 basic plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kirit, E-mail: kpatel@ipr.res.in; Raju, D.; Dhongde, J.; Mahajan, K.; Chudasama, H.; Gulati, H.; Chauhan, A.; Masand, H.; Bhandarkar, M.; Pradhan, S.

    2016-11-15

    Highlights: • Reflective Memory network. • FPAG based Timing system for trigger distribution. • IRIG-B network for GPS time synchronization. • PMC based Digital Signal Processors and VME. • Simultaneous sampling ADC. - Abstract: Primary objective of SST-1 Plasma control system is to achieve Plasma position, shape and current profile control. Architecture of control system for SST-1 is distributed in nature. Fastest control loop time requirement of 100 μs is achieved using VME based simultaneous sampling ADCs, PMC based quad core DSP, Reflective Memory [RFM] based real-time network, VME based real-time trigger distribution network and Ethernet network. All the control loops for shape control, position control and current profile control share common signals from Magnetic diagnostic so it is planned to accommodate all the algorithms on the same PMC based quad core DSP module TS C-43. RFM based real-time data network replicate data from one node to next node in a ring network topology at sustained throughput rate of 13.4 MBps. Real-time Timing System network provides guaranteed trigger distribution in 3.8 μs from one node to all node of the network. Monitoring and configuration of different systems participating in the operation of SST-1 is done by Ethernet network. Magnetic sensors data is acquired using Pentek 6802 simultaneously sampling ADC card at the rate of 10KSPS. All the real-time raw data along with the control data will be archived using RFM network and SCSI HDD for the experiment duration of 1000 s. RFM network is also planned for real-time plotting of key parameter of Plasma during long experiment. After experiment this data is transferred to central storage server for archival purpose. This paper discusses the architecture and hardware implementation of the control system by describing all the involved hardware and software along with future plans for up-gradations.

  13. Integrating Blended and Problem-Based Learning into an Architectural Housing Design Studio: A Case Study

    Science.gov (United States)

    Bregger, Yasemin Alkiser

    2017-01-01

    This paper presents how a blended learning pedagogic model is integrated into an architectural design studio by adapting the problem-based learning process and housing issues in Istanbul Technical University (ITU), during fall 2015 and spring 2016 semesters for fourth and sixth level students. These studios collaborated with the "Introduction…

  14. Architectural Design and the Learning Environment: A Framework for School Design Research

    Science.gov (United States)

    Gislason, Neil

    2010-01-01

    This article develops a theoretical framework for studying how instructional space, teaching and learning are related in practice. It is argued that a school's physical design can contribute to the quality of the learning environment, but several non-architectural factors also determine how well a given facility serves as a setting for teaching…

  15. Establishment of a Digital Knowledge Conversion Architecture Design Learning with High User Acceptance

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Apollo; Weng, Kuo-Hua

    2017-01-01

    The purpose of this study is to design a knowledge conversion and management digital learning system for architecture design learning, helping students to share, extract, use and create their design knowledge through web-based interactive activities based on socialization, internalization, combination and externalization process in addition to…

  16. A "Knowledge Trading Game" for Collaborative Design Learning in an Architectural Design Studio

    Science.gov (United States)

    Wang, Wan-Ling; Shih, Shen-Guan; Chien, Sheng-Fen

    2010-01-01

    Knowledge-sharing and resource exchange are the key to the success of collaborative design learning. In an architectural design studio, design knowledge entails learning efforts that need to accumulate and recombine dispersed and complementary pieces of knowledge. In this research, firstly, "Knowledge Trading Game" is proposed to be a way for…

  17. A SCORM Thin Client Architecture for E-Learning Systems Based on Web Services

    Science.gov (United States)

    Casella, Giovanni; Costagliola, Gennaro; Ferrucci, Filomena; Polese, Giuseppe; Scanniello, Giuseppe

    2007-01-01

    In this paper we propose an architecture of e-learning systems characterized by the use of Web services and a suitable middleware component. These technical infrastructures allow us to extend the system with new services as well as to integrate and reuse heterogeneous software e-learning components. Moreover, they let us better support the…

  18. Evaluating the Instructional Architecture of Web-Based Learning Tools (WBLTs): Direct Instruction vs. Constructivism Revisited

    Science.gov (United States)

    Kay, Robin

    2013-01-01

    Web-based learning tools (WBLTs), also known as learning objects, have been evaluated with a wide range of metrics, but rarely with respect to pedagogical design. The current study evaluated the impact of instructional architecture (direct instruction vs. constructive-based) on middle (n = 333)

  19. Defining a Set of Architectural Requirements for Service-Oriented Mobile Learning Environments

    Science.gov (United States)

    Filho, Nemésio Freitas Duarte; Barbosa, Ellen Francine

    2014-01-01

    Even providing several benefits and facilities with regard to teaching and learning, mobile learning environments present problems and challenges that must be investigated, especially with respect to the definition and standardization of architectural aspects. Most of these environments are still built in isolation, with particular structures and…

  20. An Architecture for Online Laboratory E-Learning System

    Science.gov (United States)

    Duan, Bing; Hosseini, Habib Mir M.; Ling, Keck Voon; Gay, Robert Kheng Leng

    2006-01-01

    Internet-based learning systems, or e-learning, are widely available in institutes, universities, and industrial companies, hosting regular or continuous education programs. The dream of teaching and learning from anywhere and at anytime becomes a reality due to the construction of e-learning infrastructure. Traditional teaching materials and…

  1. An Autonomous Mobile Agent-Based Distributed Learning Architecture-A Proposal and Analytical Analysis

    Directory of Open Access Journals (Sweden)

    I. Ahmed M. J. SADIIG

    2005-10-01

    Full Text Available An Autonomous Mobile Agent-Based Distributed Learning Architecture-A Proposal and Analytical Analysis Dr. I. Ahmed M. J. SADIIG Department of Electrical & Computer EngineeringInternational Islamic University GombakKuala Lumpur-MALAYSIA ABSTRACT The traditional learning paradigm invoving face-to-face interaction with students is shifting to highly data-intensive electronic learning with the advances in Information and Communication Technology. An important component of the e-learning process is the delivery of the learning contents to their intended audience over a network. A distributed learning system is dependent on the network for the efficient delivery of its contents to the user. However, as the demand of information provision and utilization increases on the Internet, the current information service provision and utilization methods are becoming increasingly inefficient. Although new technologies have been employed for efficient learning methodologies within the context of an e-learning environment, the overall efficiency of the learning system is dependent on the mode of distribution and utilization of its learning contents. It is therefore imperative to employ new techniques to meet the service demands of current and future e-learning systems. In this paper, an architecture based on autonomous mobile agents creating a Faded Information Field is proposed. Unlike the centralized information distribution in a conventional e-learning system, the information is decentralized in the proposed architecture resulting in increased efficiency of the overall system for distribution and utilization of system learning contents efficiently and fairly. This architecture holds the potential to address the heterogeneous user requirements as well as the changing conditions of the underlying network.

  2. Distributed sensor architecture for intelligent control that supports quality of control and quality of service.

    Science.gov (United States)

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-02-25

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  3. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    Directory of Open Access Journals (Sweden)

    Jose-Luis Poza-Lujan

    2015-02-01

    Full Text Available This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS parameters and the optimization of control using Quality of Control (QoC parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS communication standard as proposed by the Object Management Group (OMG. As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  4. Extension of an existing control and monitoring system: architecture 7

    International Nuclear Information System (INIS)

    Soulabaille, Y.

    1991-01-01

    Tore Supra Tokamak is controlled by Architecture 7. This system comprises 3 levels: Man-machine system, automatism management and exchanges with the plant. Performing it presents, nevertheless some limitations: time response is only half a second allowing to manage 95% of Tore Supra processes, the remaining 5% requires one millisecond. The first aim is the extension of functionalities by a fast automat giving one microsecond cycle. The fast automat is applied to the poloidal field. Of main concern for fusion experiments it allows the creation of a plasma current. The second aim is the possibility to use softwares found on the computer market [fr

  5. Procedural learning during declarative control.

    Science.gov (United States)

    Crossley, Matthew J; Ashby, F Gregory

    2015-09-01

    There is now abundant evidence that human learning and memory are governed by multiple systems. As a result, research is now turning to the next question of how these putative systems interact. For instance, how is overall control of behavior coordinated, and does learning occur independently within systems regardless of what system is in control? Behavioral, neuroimaging, and neuroscience data are somewhat mixed with respect to these questions. Human neuroimaging and animal lesion studies suggest independent learning and are mostly agnostic with respect to control. Human behavioral studies suggest active inhibition of behavioral output but have little to say regarding learning. The results of two perceptual category-learning experiments are described that strongly suggest that procedural learning does occur while the explicit system is in control of behavior and that this learning might be just as good as if the procedural system was controlling the response. These results are consistent with the idea that declarative memory systems inhibit the ability of the procedural system to access motor output systems but do not prevent procedural learning. (c) 2015 APA, all rights reserved).

  6. Building Quality into Learning Management Systems – An Architecture-Centric Approach

    OpenAIRE

    Avgeriou, P.; Retalis, Simos; Skordalakis, Manolis

    2003-01-01

    The design and development of contemporary Learning Management Systems (LMS), is largely focused on satisfying functional requirements, rather than quality requirements, thus resulting in inefficient systems of poor software and business quality. In order to remedy this problem there is a research trend into specifying and evaluating software architectures for LMS, since quality at-tributes in a system depend profoundly on its architecture. This paper presents a case study of appraising the s...

  7. Model based controls and the AGS booster controls system architecture

    International Nuclear Information System (INIS)

    Casella, R.A.

    1987-01-01

    For the past three years the Accelerator Controls Section has been responsible for the development of the Heavy Ion Transfer Line (HITL) used to inject heavy ions created at the Tandem Van de Graaff into the Alternating Gradient Synchrotron (AGS). This was recognized as an opportunity to test new ideas for control of a beam line, which if successful, could be implemented in an upgrade of the existing control system for the AGS. The in place control system for the AGS consisted of DEC PDP10 computer as the primary computer interface to the accelerator via three control room consoles, and keeper of the device database. For the HITL project it was decided to make the control system a true distributed network putting more computing power down at the device level via intelligent subsystems. A network of Apollo workstations was added at the host level. Apollos run a distributed operating system and are connected to each other by the Domain Token Ring Network. The Apollos were seen as the new primary computers for consoles with each console containing at least one Apollo. These hosts and all other subsystems are connected to each other via an in house developed LAN (RELWAY). The design of the control system developed for HITL was mostly successful. The proposed AGS Booster is designed to be a synchrotron injector for the AGS. With the forthcoming development of the Booster for the AGS an opportunity has again developed to implement new ideas for accelerator control. One weakness of the HITL control system is the limited cpu power and poor debugging facilities of the stations

  8. Model based controls and the AGS booster controls system architecture

    International Nuclear Information System (INIS)

    Casella, R.A.

    1987-01-01

    The Heavy Ion Transfer Line used to inject heavy ions created at the Tandem Van de Graaff into the Alternating Gradient Synchrotron (AGS) is briefly discussed, particularly as regards its control system

  9. Experiencing a Problem-Based Learning Approach for Teaching Reconfigurable Architecture Design

    Directory of Open Access Journals (Sweden)

    Erwan Fabiani

    2009-01-01

    Full Text Available This paper presents the “reconfigurable computing” teaching part of a computer science master course (first year on parallel architectures. The practical work sessions of this course rely on active pedagogy using problem-based learning, focused on designing a reconfigurable architecture for the implementation of an application class of image processing algorithms. We show how the successive steps of this project permit the student to experiment with several fundamental concepts of reconfigurable computing at different levels. Specific experiments include exploitation of architectural parallelism, dataflow and communicating component-based design, and configurability-specificity tradeoffs.

  10. Component Architectures and Web-Based Learning Environments

    Science.gov (United States)

    Ferdig, Richard E.; Mishra, Punya; Zhao, Yong

    2004-01-01

    The Web has caught the attention of many educators as an efficient communication medium and content delivery system. But we feel there is another aspect of the Web that has not been given the attention it deserves. We call this aspect of the Web its "component architecture." Briefly it means that on the Web one can develop very complex…

  11. Learning Outcomes in Affective Domain within Contemporary Architectural Curricula

    Science.gov (United States)

    Savic, Marko; Kashef, Mohamad

    2013-01-01

    Contemporary architectural education has shifted from the traditional focus on providing students with specific knowledge and skill sets or "inputs" to outcome based, student-centred educational approach. Within the outcome based model, students' performance is assessed against measureable objectives that relate acquired knowledge…

  12. The control architecture of the D0 experiment

    International Nuclear Information System (INIS)

    J. Fredrick Bartlett et al.

    2002-01-01

    From a controls viewpoint, contemporary high energy physics collider detectors are comparable in complexity to small to medium size accelerators: however, their controls requirements often differ significantly. D0, one of two collider experiments at Fermilab, has recently started a second, extended running period that will continue for the next five years. EPICS [1], an integrated set of software building blocks for implementing a distributed control system, has been adapted to satisfy the slow controls needs of the D0 detector by (1) extending the support for new device types and an additional field bus, (2) by the addition of a global event reporting system that augments the existing EPICS alarm support, and (3) by the addition of a centralized database with supporting tools for defining the configuration of the control system. This paper discusses the control architecture of the current D0 experiment, how the EPICS system was extended to meet the control requirements of a large, high-energy physics detector, and how a formal control system contributes to the management of detector operations

  13. SCOS 2: A distributed architecture for ground system control

    Science.gov (United States)

    Keyte, Karl P.

    The current generation of spacecraft ground control systems in use at the European Space Agency/European Space Operations Centre (ESA/ESOC) is based on the SCOS 1. Such systems have become difficult to manage in both functional and financial terms. The next generation of spacecraft is demanding more flexibility in the use, configuration and distribution of control facilities as well as functional requirements capable of matching those being planned for future missions. SCOS 2 is more than a successor to SCOS 1. Many of the shortcomings of the existing system have been carefully analyzed by user and technical communities and a complete redesign was made. Different technologies were used in many areas including hardware platform, network architecture, user interfaces and implementation techniques, methodologies and language. As far as possible a flexible design approach has been made using popular industry standards to provide vendor independence in both hardware and software areas. This paper describes many of the new approaches made in the architectural design of the SCOS 2.

  14. Learn How to Control Asthma

    Science.gov (United States)

    ... Guidelines Asthma & Community Health Learn How to Control Asthma Language: English (US) Español (Spanish) Arabic Chinese Français ... Is Asthma Treated? Select a Language What Is Asthma? Asthma is a disease that affects your lungs. ...

  15. Rasch family models in e-learning: analyzing architectural sketching with a digital pen.

    Science.gov (United States)

    Scalise, Kathleen; Cheng, Nancy Yen-Wen; Oskui, Nargas

    2009-01-01

    Since architecture students studying design drawing are usually assessed qualitatively on the basis of their final products, the challenges and stages of their learning have remained masked. To clarify the challenges in design drawing, we have been using the BEAR Assessment System and Rasch family models to measure levels of understanding for individuals and groups, in order to correct pedagogical assumptions and tune teaching materials. This chapter discusses the analysis of 81 drawings created by architectural students to solve a space layout problem, collected and analyzed with digital pen-and-paper technology. The approach allows us to map developmental performance criteria and perceive achievement overlaps in learning domains assumed separate, and then re-conceptualize a three-part framework to represent learning in architectural drawing. Results and measurement evidence from the assessment and Rasch modeling are discussed.

  16. Model based design introduction: modeling game controllers to microprocessor architectures

    Science.gov (United States)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  17. Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning

    NARCIS (Netherlands)

    Villmann, T.; Biehl, M.; Villmann, A.; Saralajew, S.

    2017-01-01

    The advantage of prototype based learning vector quantizers are the intuitive and simple model adaptation as well as the easy interpretability of the prototypes as class representatives for the class distribution to be learned. Although they frequently yield competitive performance and show robust

  18. Learning Vicariously: Tourism, Orientalism and the Making of an Architectural Photography Collection of Egypt

    Directory of Open Access Journals (Sweden)

    Elvan Cobb

    2017-01-01

    Full Text Available Andrew Dickson White, the first president of Cornell University in the United States, referred to architecture as his 'pet extravagance.' Leveraging his influential position as president, White was instrumental in the establishment of the architecture department in 1871. One of his noteworthy contributions to this newly founded department was the initiation of an architectural photography collection that was a direct result of his travels around the world as a diplomat, a scholar and, eventually, as a tourist. This architectural photography collection formed the core of the architectural history education at the school well into the 20th century. At that time, photographs provided one of the only ways for students to learn about the architecture of distant places. White’s selection of architectural subjects, however, was shaped not through deep scholarly inquiry, but rather by the nascent tourist industry. This paper examines White's Egyptian collection, acquired during his voyage to Egypt in 1889. His trip to Egypt, in his own words “marked a new epoch in [his] thinking.” Encountering the 'east' for the first time, White's photography collection both bolstered and challenged the prescribed ways of viewing Egypt and Egyptian architecture, thus having a direct influence on how Cornell students perceived the historic built environment of the ‘east’.

  19. The Experimental Physics and Industrial Control System architecture: Past, present, and future

    International Nuclear Information System (INIS)

    Dalesio, L.R.; Hill, J.O.; Kraimer, M.; Lewis, S.; Murray, D.; Hunt, S.; Claussen, M.; Watson, W.

    1993-01-01

    The Experimental Physics and Industrial Control System (EPICS), has been used at a number of sites for performing data acquisition, supervisory control, closed-loop control, sequential control, and operational optimization. The EPICS architecture was originally developed by a group with diverse backgrounds in physics and industrial control. The current architecture represents one instance of the ''standard model.'' It provides distributed processing and communication from any LAN device to the front end controllers. This paper will present the genealogy, current architecture, performance envelope, current installations, and planned extensions for requirements not met by the current architecture

  20. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  1. Scaffold Architecture Controls Insulinoma Clustering, Viability, and Insulin Production

    Science.gov (United States)

    Blackstone, Britani N.; Palmer, Andre F.; Rilo, Horacio R.

    2014-01-01

    Recently, in vitro diagnostic tools have shifted focus toward personalized medicine by incorporating patient cells into traditional test beds. These cell-based platforms commonly utilize two-dimensional substrates that lack the ability to support three-dimensional cell structures seen in vivo. As monolayer cell cultures have previously been shown to function differently than cells in vivo, the results of such in vitro tests may not accurately reflect cell response in vivo. It is therefore of interest to determine the relationships between substrate architecture, cell structure, and cell function in 3D cell-based platforms. To investigate the effect of substrate architecture on insulinoma organization and function, insulinomas were seeded onto 2D gelatin substrates and 3D fibrous gelatin scaffolds with three distinct fiber diameters and fiber densities. Cell viability and clustering was assessed at culture days 3, 5, and 7 with baseline insulin secretion and glucose-stimulated insulin production measured at day 7. Small, closely spaced gelatin fibers promoted the formation of large, rounded insulinoma clusters, whereas monolayer organization and large fibers prevented cell clustering and reduced glucose-stimulated insulin production. Taken together, these data show that scaffold properties can be used to control the organization and function of insulin-producing cells and may be useful as a 3D test bed for diabetes drug development. PMID:24410263

  2. Development of a modular integrated control architecture for flexible manipulators. Final report

    International Nuclear Information System (INIS)

    Burks, B.L.; Battiston, G.

    1994-01-01

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford

  3. Fluoropolymer materials and architectures prepared by controlled radical polymerizations

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    This review initially summarizes the mechanisms, merits and limitations of the three controlled radical polymerizations: nitroxide mediated polymerization (NMP), atom transfer radical polymerization (ATRP) or metal catalyzed living radical polymerization, and reversible addition–fragmentation chain...... transfer (RAFT) polymerization. This is followed by two parts, one dealing with homo- and copolymerizations of fluorinated methacrylates and acrylates, and a second where fluorinated styrenes, alone or in combination with other monomers, are the main issues. In these parts, initiators (including...... properties and functionalities that can be obtained from these novel fluorinated materials and architectures are especially emphasized. Thus, various amphiphilic, biocompatible or low energy materials, fluorinated nanoparticles and nanoporous films/membranes as well as materials for submicron and nanolevel...

  4. Automation of Data Traffic Control on DSM Architecture

    Science.gov (United States)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2001-01-01

    The design of distributed shared memory (DSM) computers liberates users from the duty to distribute data across processors and allows for the incremental development of parallel programs using, for example, OpenMP or Java threads. DSM architecture greatly simplifies the development of parallel programs having good performance on a few processors. However, to achieve a good program scalability on DSM computers requires that the user understand data flow in the application and use various techniques to avoid data traffic congestions. In this paper we discuss a number of such techniques, including data blocking, data placement, data transposition and page size control and evaluate their efficiency on the NAS (NASA Advanced Supercomputing) Parallel Benchmarks. We also present a tool which automates the detection of constructs causing data congestions in Fortran array oriented codes and advises the user on code transformations for improving data traffic in the application.

  5. Computing Architecture of the ALICE Detector Control System

    CERN Document Server

    Augustinus, A; Moreno, A; Kurepin, A N; De Cataldo, G; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L S

    2011-01-01

    The ALICE Detector Control System (DCS) is based on a commercial SCADA product, running on a large Windows computer cluster. It communicates with about 1200 network attached devices to assure safe and stable operation of the experiment. In the presentation we focus on the design of the ALICE DCS computer systems. We describe the management of data flow, mechanisms for handling the large data amounts and information exchange with external systems. One of the key operational requirements is an intuitive, error proof and robust user interface allowing for simple operation of the experiment. At the same time the typical operator task, like trending or routine checks of the devices, must be decoupled from the automated operation in order to prevent overload of critical parts of the system. All these requirements must be implemented in an environment with strict security requirements. In the presentation we explain how these demands affected the architecture of the ALICE DCS.

  6. Feedback control architecture and the bacterial chemotaxis network.

    Directory of Open Access Journals (Sweden)

    Abdullah Hamadeh

    2011-05-01

    Full Text Available Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance.

  7. Aquaponic Growbed Water Level Control Using Fog Architecture

    Science.gov (United States)

    Asmi Romli, Muhamad; Daud, Shuhaizar; Raof, Rafikha Aliana A.; Awang Ahmad, Zahari; Mahrom, Norfadilla

    2018-05-01

    Integrated Multi-Trophic Aquaculture (IMTA) is an advance method of aquaculture which combines species with different nutritional needs to live together. The combination between aquatic live and crops is called aquaponics. Aquatic waste that normally removed by biofilters in normal aquaculture practice will be absorbed by crops in this practice. Aquaponics have few common components and growbed provide the best filtration function. In growbed a siphon act as mechanical structure to control water fill and flush process. Water to the growbed comes from fish tank with multiple flow speeds based on the pump specification and height. Too low speed and too fast flow rate can result in siphon malfunctionality. Pumps with variable speed do exist but it is costly. Majority of the aquaponic practitioner use single speed pump and try to match the pump speed with siphon operational requirement. In order to remove the matching requirement some control need to be introduced. Preliminarily this research will show the concept of fill-and-flush for multiple pumping speeds. The final aim of this paper is to show how water level management can be done to remove the speed dependency. The siphon tried to be controlled remotely since wireless data transmission quite practical in vast operational area. Fog architecture will be used in order to transmit sensor data and control command. This paper able to show the water able to be retented in the growbed within suggested duration by stopping the flow in once predefined level.

  8. IFMIF LLRF control system architecture based on EPICS

    International Nuclear Information System (INIS)

    Calvo, J.; Ibarra, A.; Miguel Angel Patricio; Rivers, M.

    2012-01-01

    The IFMIF-EVEDA (International Fusion Materials Irradiation Facility - Engineering Validation and Engineering Design Activity) linear accelerator will be a 9 MeV, 125 mA CW (Continuous Wave) deuteron accelerator prototype to validate the technical options of the accelerator design for IFMIF. The primary mission of such facility is to test and verify materials performance when subjected to extensive neutron irradiation of the type encountered in a fusion reactor. The RF (Radio Frequency) power system of IFMIF-EVEDA consists of 18 RF chains working at 175 MHz with three amplification stages each. The LLRF (Low-Level Radio Frequency) controls the amplitude and phase of the signal to be synchronized with the beam and it also controls the resonance frequency of the cavities. The system is based on a commercial cPCI (Compact Peripheral Component Interconnect) FPGA (Field Programmable Gate Array) board provided by Lyrtech and controlled by a Windows Host PC. For this purpose, it is mandatory to communicate the cPCI FPGA Board with an EPICS Channel Access, building an IOC (Input Output Controller). A new software architecture to design a device support, using AsynPortDriver class and CSS as a GUI (Graphical User Interface), is also presented. (authors)

  9. Architecture of SPIDER control and data acquisition system

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Taliercio, C.; Soppelsa, A.; Barbalace, A.; Paolucci, F.; Sartori, F.; Barbato, P.; Breda, M.; Capobianco, R.; Molon, F.; Moressa, M.; Polato, S.; Simionato, P.; Zampiva, E.

    2012-01-01

    The ITER Heating Neutral Beam injectors will be implemented in three steps: development of the ion source prototype, development of the full injector prototype, and, finally, construction of up to three ITER injectors. The first two steps will be carried out in the ITER neutral beam test facility under construction in Italy. The ion source prototype, referred to as SPIDER, which is currently in the development phase, is a complex experiment involving more than 20 plant units and operating with beam-on pulses lasting up to 1 h. As for control and data acquisition it requires fast and slow control (cycle time around 0.1 ms and 10 ms, respectively), synchronization (10 ns resolution), and data acquisition for about 1000 channels (analogue and images) with sampling frequencies up to tens of MS/s, data throughput up to 200 MB/s, and data storage volume of up to tens of TB/year. The paper describes the architecture of the SPIDER control and data acquisition system, discussing the SPIDER requirements and the ITER CODAC interfaces and specifications for plant system instrumentation and control.

  10. RBAC Driven Least Privilege Architecture For Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Julie [Honeywell International Inc., Golden Valley, MN (United States); Markham, Mark [Honeywell International Inc., Golden Valley, MN (United States)

    2014-01-25

    The concept of role based access control (RBAC) within the IT environment has been studied by researchers and was supported by NIST (circa 1992). This earlier work highlighted the benefits of RBAC which include reduced administrative workload and policies which are easier to analyze and apply. The goals of this research were to expand the application of RBAC in the following ways. Apply RBAC to the control systems environment: The typical RBAC model within the IT environment is used to control a user’s access to files. Within the control system environment files are replaced with measurement (e.g., temperature) and control (e.g. valve) points organized as a hierarchy of control assets (e.g. a boiler, compressor, refinery unit). Control points have parameters (e.g., high alarm limit, set point, etc.) associated with them. The RBAC model is extended to support access to points and their parameters based upon roles while at the same time allowing permissions for the points to be defined at the asset level or point level directly. In addition, centralized policy administration with distributed access enforcement mechanisms was developed to support the distributed architecture of distributed control systems and SCADA; Extend the RBAC model to include access control for software and devices: The established RBAC approach is to assign users to roles. This work extends that notion by first breaking the control system down into three layers 1) users, 2) software and 3) devices. An RBAC model is then created for each of these three layers. The result is that RBAC can be used to define machine-to-machine policy enforced via the IP security (IPsec) protocol. This highlights the potential to use RBAC for machine-to-machine connectivity within the internet of things; and Enable dynamic policy based upon the operating mode of the system: The IT environment is generally static with respect to policy. However, large cyber physical systems such as industrial controls have various

  11. A Layered Component-Based Architecture of a Virtual Learning Environment

    NARCIS (Netherlands)

    Avgeriou, Paris; Retalis, Simos; Skordalakis, Manolis; Psaromiligos, Yiannis

    2001-01-01

    There exists an urgent demand on defining architectures for Virtual Learning Environments (VLEs), so that high-level frameworks for understanding these systems can be discovered, portability, interoperability and reusability can be achieved and adaptability over time can be accomplished. In this

  12. Critical Success Factors in Crafting Strategic Architecture for E-Learning at HP University

    Science.gov (United States)

    Sharma, Kunal; Pandit, Pallvi; Pandit, Parul

    2011-01-01

    Purpose: The purpose of this paper is to outline the critical success factors for crafting a strategic architecture for e-learning at HP University. Design/methodology/approach: A descriptive survey type of research design was used. An empirical study was conducted on students enrolled with the International Centre for Distance and Open Learning…

  13. Exploring Architectures for Fast and Easy Development of Immersive Learning Scenarios

    NARCIS (Netherlands)

    Nadolski, Rob; Slootmaker, Aad; Hummel, Hans

    2009-01-01

    Nadolski, R. J., Slootmaker, A., & Hummel, H. G. K. (2009). Exploring Architectures for Fast and Easy Development of Immersive Learning Scenarios. Presentation given at Online Educa. December, 3-4, 2009, Berlin, Germany. [For Powerpoint-version of this presentation. Please

  14. Web-service architecture for tools supporting life-long e-Learning platforms

    NARCIS (Netherlands)

    Dimov, Alexander; Stefanov, Krassen

    2009-01-01

    Dimov, A., & Stefanov, K. (2008). Web-service architecture for tools supporting life-long e-Learning platforms. In R. Koper, K. Stefanov & D. Dicheva (Eds.), Proceedings of the 5th International TENCompetence Open Workshop "Stimulating Personal Development and Knowledge Sharing" (pp. 67-71).

  15. Tunnel Ventilation Control Using Reinforcement Learning Methodology

    Science.gov (United States)

    Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung

    The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  16. Design, Analysis and User Acceptance of Architectural Design Education in Learning System Based on Knowledge Management Theory

    Science.gov (United States)

    Wu, Yun-Wu; Lin, Yu-An; Wen, Ming-Hui; Perng, Yeng-Hong; Hsu, I-Ting

    2016-01-01

    The major purpose of this study is to develop an architectural design knowledge management learning system with corresponding learning activities to help the students have meaningful learning and improve their design capability in their learning process. Firstly, the system can help the students to obtain and share useful knowledge. Secondly,…

  17. Architectural and Functional Design and Evaluation of E-Learning VUIS Based on the Proposed IEEE LTSA Reference Model.

    Science.gov (United States)

    O'Droma, Mairtin S.; Ganchev, Ivan; McDonnell, Fergal

    2003-01-01

    Presents a comparative analysis from the Institute of Electrical and Electronics Engineers (IEEE) Learning Technology Standards Committee's (LTSC) of the architectural and functional design of e-learning delivery platforms and applications, e-learning course authoring tools, and learning management systems (LMSs), with a view of assessing how…

  18. Architecture of high reliable control systems using complex software

    International Nuclear Information System (INIS)

    Tallec, M.

    1990-01-01

    The problems involved by the use of complex softwares in control systems that must insure a very high level of safety are examined. The first part makes a brief description of the prototype of PROSPER system. PROSPER means protection system for nuclear reactor with high performances. It has been installed on a French nuclear power plant at the beginnning of 1987 and has been continually working since that time. This prototype is realized on a multi-processors system. The processors communicate between themselves using interruptions and protected shared memories. On each processor, one or more protection algorithms are implemented. Those algorithms use data coming directly from the plant and, eventually, data computed by the other protection algorithms. Each processor makes its own acquisitions from the process and sends warning messages if some operating anomaly is detected. All algorithms are activated concurrently on an asynchronous way. The results are presented and the safety related problems are detailed. - The second part is about measurements' validation. First, we describe how the sensors' measurements will be used in a protection system. Then, a proposal for a method based on the techniques of artificial intelligence (expert systems and neural networks) is presented. - The last part is about the problems of architectures of systems including hardware and software: the different types of redundancies used till now and a proposition of a multi-processors architecture which uses an operating system that is able to manage several tasks implemented on different processors, which verifies the good operating of each of those tasks and of the related processors and which allows to carry on the operation of the system, even in a degraded manner when a failure has been detected are detailed [fr

  19. Learning from Beirut: From Modernism to Contemporary Architecture

    Directory of Open Access Journals (Sweden)

    Elle G. Haddad

    2012-10-01

    Full Text Available This paper will discuss the developments in architecture in Lebanon in the second half of the Twentieth century. Lebanon presents one of the interesting ‘laboratories’ of the different tendencies and movements of this pastcentury, beginning with Modernism and its gradual assimilation, to Postmodernism and more current trends,in a context that presents a fertile field for experimentation. The questions of meaning, context, relations to place and tradition, have all played a part in the development ofarchitecture in Lebanon, without necessarily achieving their desired goals, especially in the current climate of globalization. The loss of material identity that many regions around the world have experienced is reflected in the case of Lebanon, exacerbated here by political and social conflicts. This paper argues that the attempts to reinject material forms with a measure of ‘communicative’ symbols or forms fails in the end to answer to this perpetual desire for ‘identity’.

  20. Design of a real-time open architecture controller for a reconfigurable machine tool

    CSIR Research Space (South Africa)

    Masekamela, I

    2008-11-01

    Full Text Available The paper presents the design and the development of a real-time, open architecture controller that is used for control of reconfigurable manufacturing tools (RMTs) in reconfigurable manufacturing systems (RMS). The controller that is presented can...

  1. Implementation of Model View Controller (Mvc) Architecture on Building Web-based Information System

    OpenAIRE

    'Uyun, Shofwatul; Ma'arif, Muhammad Rifqi

    2010-01-01

    The purpose of this paper is to introduce the use of MVC architecture in web-based information systemsdevelopment. MVC (Model-View-Controller) architecture is a way to decompose the application into threeparts: model, view and controller. Originally applied to the graphical user interaction model of input,processing and output. Expected to use the MVC architecture, applications can be built maintenance of moremodular, rusable, and easy and migrate. We have developed a management system of sch...

  2. IMPLEMENTATION OF MODEL VIEW CONTROLLER (MVC) ARCHITECTURE ON BUILDING WEB-BASED INFORMATION SYSTEM

    OpenAIRE

    'Uyun, Shofwatul; Ma'arif, Muhammad Rifqi

    2010-01-01

    The purpose of this paper is to introduce the use of MVC architecture in web-based information systemsdevelopment. MVC (Model-View-Controller) architecture is a way to decompose the application into threeparts: model, view and controller. Originally applied to the graphical user interaction model of input,processing and output. Expected to use the MVC architecture, applications can be built maintenance of moremodular, rusable, and easy and migrate. We have developed a management system of sch...

  3. Q&A: Defining Internet Architecture for Learning.

    Science.gov (United States)

    Hernandez-Ramos, Pedro

    1999-01-01

    Presents Pedro Hernandez-Ramos's thoughts on Educom's Instructional Management Systems (IMS), a global coalition of organizations working together to create standards for software development in distributed learning. Focuses on the organization's relevance to community colleges, the benefits of participation, why IMS is a global effort, and how…

  4. A Review of Microgrid Architectures and Control Strategy

    Science.gov (United States)

    Jadav, Krishnarajsinh A.; Karkar, Hitesh M.; Trivedi, I. N.

    2017-12-01

    In this paper microgrid architecture and various converters control strategies are reviewed. Microgrid is defined as interconnected network of distributed energy resources, loads and energy storage systems. This emerging concept realizes the potential of distributed generators. AC microgrid interconnects various AC distributed generators like wind turbine and DC distributed generators like PV, fuel cell using inverter. While in DC microgrid output of an AC distributed generator must be converted to DC using rectifiers and DC distributed generator can be directly interconnected. Hybrid microgrid is the solution to avoid this multiple reverse conversions AC-DC-AC and DC-AC-DC that occur in the individual AC-DC microgrid. In hybrid microgrid all AC distributed generators will be connected in AC microgrid and DC distributed generators will be connected in DC microgrid. Interlinking converter is used for power balance in both microgrids, which transfer power from one microgrid to other if any microgrid is overloaded. At the end, review of interlinking converter control strategies is presented.

  5. Open modular architecture controls at GM Powertrain: technology and implementation

    Science.gov (United States)

    Bailo, Clark P.; Yen, C. J.

    1997-01-01

    General Motors Powertrain Group (GMPTG) has been the leader in implementing open, modular architecture controller (OMAC) technologies in its manufacturing applications since 1986. The interest in OMAC has been greatly expanded for the past two years because of the advancement of personal computer technologies and the publishing of the OMAC whitepaper by the US automotive companies stating the requirements of OMAC technologies in automotive applications. The purpose of this paper is to describe the current OMAC projects and the future direction of implementation at GMPTG. An overview of the OMAC project and the definition of the OMAC concept are described first. The rationale of pursuing open technologies is explained from the perspective of GMPTG in lieu of its agile manufacturing strategy. Examples of existing PC-based control applications are listed to demonstrate the extensive commitment to PC-based technologies that has already been put in place. A migration plan form PC-based to OMAC-based systems with the thorough approach of validation are presented next to convey the direction that GMPTG is taking in implementing OMAC technologies. Leveraged technology development projects are described to illustrate the philosophy and approaches toward the development of OMAC technologies at GMPTG. Finally, certain implementation issues are discussed to emphasize efforts that are still required to have successful implementations of OMAC systems.

  6. A Cognitive Neural Architecture Able to Learn and Communicate through Natural Language.

    Directory of Open Access Journals (Sweden)

    Bruno Golosio

    Full Text Available Communicative interactions involve a kind of procedural knowledge that is used by the human brain for processing verbal and nonverbal inputs and for language production. Although considerable work has been done on modeling human language abilities, it has been difficult to bring them together to a comprehensive tabula rasa system compatible with current knowledge of how verbal information is processed in the brain. This work presents a cognitive system, entirely based on a large-scale neural architecture, which was developed to shed light on the procedural knowledge involved in language elaboration. The main component of this system is the central executive, which is a supervising system that coordinates the other components of the working memory. In our model, the central executive is a neural network that takes as input the neural activation states of the short-term memory and yields as output mental actions, which control the flow of information among the working memory components through neural gating mechanisms. The proposed system is capable of learning to communicate through natural language starting from tabula rasa, without any a priori knowledge of the structure of phrases, meaning of words, role of the different classes of words, only by interacting with a human through a text-based interface, using an open-ended incremental learning process. It is able to learn nouns, verbs, adjectives, pronouns and other word classes, and to use them in expressive language. The model was validated on a corpus of 1587 input sentences, based on literature on early language assessment, at the level of about 4-years old child, and produced 521 output sentences, expressing a broad range of language processing functionalities.

  7. Stability and performance of propulsion control systems with distributed control architectures and failures

    Science.gov (United States)

    Belapurkar, Rohit K.

    Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.

  8. Lessons Learned while Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems

    Science.gov (United States)

    Pilone, D.

    2016-12-01

    As new, high data rate missions begin collecting data, the NASA's Earth Observing System Data and Information System (EOSDIS) archive is projected to grow roughly 20x to over 300PBs by 2025. To prepare for the dramatic increase in data and enable broad scientific inquiry into larger time series and datasets, NASA has been exploring the impact of applying cloud technologies throughout EOSDIS. In this talk we will provide an overview of NASA's prototyping and lessons learned in applying cloud architectures to: Highly scalable and extensible ingest and archive of EOSDIS data Going "all-in" on cloud based application architectures including "serverless" data processing pipelines and evaluating approaches to vendor-lock in Rethinking data distribution and approaches to analysis in a cloud environment Incorporating and enforcing security controls while minimizing the barrier for research efforts to deploy to NASA compliant, operational environments. NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products.

  9. Complexity control in statistical learning

    Indian Academy of Sciences (India)

    Then we describe how the method of regularization is used to control complexity in learning. We discuss two examples of regularization, one in which the function space used is finite dimensional, and another in which it is a reproducing kernel Hilbert space. Our exposition follows the formulation of Cucker and Smale.

  10. Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture.

    Science.gov (United States)

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2013-01-01

    The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value.

  11. A system architecture for holonic manufacturing planning and control (EtoPlan)

    NARCIS (Netherlands)

    Wullink, Gerhard; Giebels, M.M.T.; Kals, H.J.J.

    2002-01-01

    In this paper, we present the system architecture of a flexible manufacturing planning and control system, named EtoPlan. The concept is based on the holonic control approach of building multiple and temporary hierarchies (holarchies). This paper describes the system architecture for flexible

  12. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2006-09-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  13. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2008-11-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  14. Architectural slicing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2013-01-01

    Architectural prototyping is a widely used practice, con- cerned with taking architectural decisions through experiments with light- weight implementations. However, many architectural decisions are only taken when systems are already (partially) implemented. This is prob- lematic in the context...... of architectural prototyping since experiments with full systems are complex and expensive and thus architectural learn- ing is hindered. In this paper, we propose a novel technique for harvest- ing architectural prototypes from existing systems, \\architectural slic- ing", based on dynamic program slicing. Given...... a system and a slicing criterion, architectural slicing produces an architectural prototype that contain the elements in the architecture that are dependent on the ele- ments in the slicing criterion. Furthermore, we present an initial design and implementation of an architectural slicer for Java....

  15. An urban informatics approach to smart city learning in architecture and urban design education

    Directory of Open Access Journals (Sweden)

    Mirko Guaralda

    2013-08-01

    Full Text Available This study aims to redefine spaces of learning to places of learning through the direct engagement of local communities as a way to examine and learn from real world issues in the city. This paper exemplifies Smart City Learning, where the key goal is to promote the generation and exchange of urban design ideas for the future development of South Bank, in Brisbane, Australia, informing the creation of new design policies responding to the needs of local citizens. Specific to this project was the implementation of urban informatics techniques and approaches to promote innovative engagement strategies. Architecture and Urban Design students were encouraged to review and appropriate real-time, ubiquitous technology, social media, and mobile devices that were used by urban residents to augment and mediate the physical and digital layers of urban infrastructures. Our study’s experience found that urban informatics provide an innovative opportunity to enrich students’ place of learning within the city.

  16. Deep learning architectures for multi-label classification of intelligent health risk prediction.

    Science.gov (United States)

    Maxwell, Andrew; Li, Runzhi; Yang, Bei; Weng, Heng; Ou, Aihua; Hong, Huixiao; Zhou, Zhaoxian; Gong, Ping; Zhang, Chaoyang

    2017-12-28

    Multi-label classification of data remains to be a challenging problem. Because of the complexity of the data, it is sometimes difficult to infer information about classes that are not mutually exclusive. For medical data, patients could have symptoms of multiple different diseases at the same time and it is important to develop tools that help to identify problems early. Intelligent health risk prediction models built with deep learning architectures offer a powerful tool for physicians to identify patterns in patient data that indicate risks associated with certain types of chronic diseases. Physical examination records of 110,300 anonymous patients were used to predict diabetes, hypertension, fatty liver, a combination of these three chronic diseases, and the absence of disease (8 classes in total). The dataset was split into training (90%) and testing (10%) sub-datasets. Ten-fold cross validation was used to evaluate prediction accuracy with metrics such as precision, recall, and F-score. Deep Learning (DL) architectures were compared with standard and state-of-the-art multi-label classification methods. Preliminary results suggest that Deep Neural Networks (DNN), a DL architecture, when applied to multi-label classification of chronic diseases, produced accuracy that was comparable to that of common methods such as Support Vector Machines. We have implemented DNNs to handle both problem transformation and algorithm adaption type multi-label methods and compare both to see which is preferable. Deep Learning architectures have the potential of inferring more information about the patterns of physical examination data than common classification methods. The advanced techniques of Deep Learning can be used to identify the significance of different features from physical examination data as well as to learn the contributions of each feature that impact a patient's risk for chronic diseases. However, accurate prediction of chronic disease risks remains a challenging

  17. A Blended Learning Approach to the Teaching of Professional Practice in Architecture

    Directory of Open Access Journals (Sweden)

    Murray Lane

    2015-05-01

    Full Text Available This paper reports on a number of blended learning activities conducted in two subjects of a Master of Architecture degree at a major Australian university. The subjects were related to “professional practice” and as such represent a little researched area of architectural curriculum. The research provides some insight into the student perceptions of learning opportunity and engagement associated with on-line delivery modes. Students from these two subjects were surveyed for their perceptions about the opportunity for learning afforded by the on-line components, and also for their perceived level of engagement. Responses to these perceptions of traditional and on-line modes of delivery are compared and analysed for significant differences. While students were generally positive in response to the learning experiences, analysis of the results shows that students found the traditional modes to assist in their learning significantly more than on-line modes. Students were neutral regarding the opportunity for engagement that on-line modes provided. Analysis of the students’ gender, age and hours of paid work was also conducted to ascertain any relationship with attitudes to the flexibility of on-line delivery; no significant relationship was detected. This study has shown that students were generally resistant to on-line engagement opportunities and their ability to support learning.

  18. Humanoids Learning to Walk: a Natural CPG-Actor-Critic Architecture

    Directory of Open Access Journals (Sweden)

    CAI eLI

    2013-04-01

    Full Text Available The identification of learning mechanisms for locomotion has been the subject of much researchfor some time but many challenges remain. Dynamic systems theory (DST offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system.In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model,a simplified central pattern generator (CPG architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic. In the cpg-actor-critic architecture, least-square-temporal-difference (LSTD based learning converges to the optimal solution quickly by using natural gradient and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified reward it uses a dynamic value function as a stability indicator (SI that adapts to the environment.The results obtained are analyzed and explained by using a novel DST embodied cognition approach. Learning to walk, from this perspective, is a process of integrating sensorimotor levels and value.

  19. Game-Theoretic Learning in Distributed Control

    KAUST Repository

    Marden, Jason R.; Shamma, Jeff S.

    2018-01-01

    from autonomous vehicles to energy to transportation. One approach to control of such distributed architectures is to view the components as players in a game. In this approach, two design considerations are the components’ incentives and the rules

  20. Deep learning architecture for recognition of abnormal activities

    Science.gov (United States)

    Khatrouch, Marwa; Gnouma, Mariem; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    The video surveillance is one of the key areas in computer vision researches. The scientific challenge in this field involves the implementation of automatic systems to obtain detailed information about individuals and groups behaviors. In particular, the detection of abnormal movements of groups or individuals requires a fine analysis of frames in the video stream. In this article, we propose a new method to detect anomalies in crowded scenes. We try to categorize the video in a supervised mode accompanied by unsupervised learning using the principle of the autoencoder. In order to construct an informative concept for the recognition of these behaviors, we use a technique of representation based on the superposition of human silhouettes. The evaluation of the UMN dataset demonstrates the effectiveness of the proposed approach.

  1. Considerations for control system software verification and validation specific to implementations using distributed processor architectures

    International Nuclear Information System (INIS)

    Munro, J.K. Jr.

    1993-01-01

    Until recently, digital control systems have been implemented on centralized processing systems to function in one of several ways: (1) as a single processor control system; (2) as a supervisor at the top of a hierarchical network of multiple processors; or (3) in a client-server mode. Each of these architectures uses a very different set of communication protocols. The latter two architectures also belong to the category of distributed control systems. Distributed control systems can have a central focus, as in the cases just cited, or be quite decentralized in a loosely coupled, shared responsibility arrangement. This last architecture is analogous to autonomous hosts on a local area network. Each of the architectures identified above will have a different set of architecture-associated issues to be addressed in the verification and validation activities during software development. This paper summarizes results of efforts to identify, describe, contrast, and compare these issues

  2. A neural fuzzy controller learning by fuzzy error propagation

    Science.gov (United States)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  3. A Passive Learning Sensor Architecture for Multimodal Image Labeling: An Application for Social Robots

    Directory of Open Access Journals (Sweden)

    Marco A. Gutiérrez

    2017-02-01

    Full Text Available Object detection and classification have countless applications in human–robot interacting systems. It is a necessary skill for autonomous robots that perform tasks in household scenarios. Despite the great advances in deep learning and computer vision, social robots performing non-trivial tasks usually spend most of their time finding and modeling objects. Working in real scenarios means dealing with constant environment changes and relatively low-quality sensor data due to the distance at which objects are often found. Ambient intelligence systems equipped with different sensors can also benefit from the ability to find objects, enabling them to inform humans about their location. For these applications to succeed, systems need to detect the objects that may potentially contain other objects, working with relatively low-resolution sensor data. A passive learning architecture for sensors has been designed in order to take advantage of multimodal information, obtained using an RGB-D camera and trained semantic language models. The main contribution of the architecture lies in the improvement of the performance of the sensor under conditions of low resolution and high light variations using a combination of image labeling and word semantics. The tests performed on each of the stages of the architecture compare this solution with current research labeling techniques for the application of an autonomous social robot working in an apartment. The results obtained demonstrate that the proposed sensor architecture outperforms state-of-the-art approaches.

  4. Unified Deep Learning Architecture for Modeling Biology Sequence.

    Science.gov (United States)

    Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang

    2017-10-09

    Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.

  5. Machine learning and pattern recognition from surface molecular architectures.

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Sumpter, Bobby; Kalinin, Sergei

    The ability to utilize molecular assemblies as data storage devices requires capability to identify individual molecular states on a scale of thousands of molecules. We present a novel method of applying machine learning techniques for extraction of positional and rotational information from ultra-high vacuum scanning tunneling microscopy (STM) images and apply it to self-assembled monolayer of π-bowl sumanene molecules on gold. From density functional theory (DFT) simulations, we assume existence of distinct polar and multiple azimuthal rotational states. We use DFT-generated templates in conjunction with Markov Chain Monte Carlo (MCMC) sampler and noise modeling to create synthetic images representative of our model. We extract positional information of each molecule and use nearest neighbor criteria to construct a graph input to Markov Random Field (MRF) model to identify polar rotational states. We train a convolutional Neural Network (cNN) on a synthetic dataset and combine it with MRF model to classify molecules based on their azimuthal rotational state. We demonstrate effectiveness of such approach compared to other methods. Finally, we apply our approach to experimental images and achieve complete rotational class information extraction. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US DOE.

  6. Using an Analogical Thinking Model as an Instructional Tool to Improve Student Cognitive Ability in Architecture Design Learning Process

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Kuo-Hua

    2013-01-01

    Lack of creativity is a problem often plaguing students from design-related departments. Therefore, this study is intended to incorporate analogical thinking in the education of architecture design to enhance students' learning and their future career performance. First, this study explores the three aspects of architecture design curricula,…

  7. Analysis of the new architecture proposal for the CMM control system

    International Nuclear Information System (INIS)

    Heikkilae, L.; Saarinen, H.; Aha, L.; Viinikainen, M.; Mattila, J.; Hahto, A.; Siuko, M.; Semeraro, L.

    2011-01-01

    While developing divertor remote handling maintenance systems at the Divertor Test Platform 2 facility, some risks and sensitivity points related to the Cassette Multifunctional Mover control system software were discovered and evaluated. The control system architecture has to simultaneously fulfill the demanding ITER remote handling requirements and to face new requirements being uncovered during the trials. Especially evolving non-functional requirements such as reliability and safety have an effect on the control system architecture as it is getting more mature. An evaluation of the implications from architectural decisions is necessary before implementation efforts, as an architecture left to develop without evaluation may lead to a dead end and therefore soaring development costs. After studying existing architecture analysis methods an analysis method was developed to gain confidence to carry out the proposed changes.

  8. Repetitive learning control of continuous chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Shang Yun; Zhou Donghua

    2004-01-01

    Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller

  9. Constellation's Command, Control, Communications and Information (C3I) Architecture

    Science.gov (United States)

    Breidenthal, Julian C.

    2007-01-01

    Operations concepts are highly effective for: 1) Developing consensus; 2) Discovering stakeholder needs, goals, objectives; 3) Defining behavior of system components (especially emergent behaviors). An interoperability standard can provide an excellent lever to define the capabilities needed for system evolution. Two categories of architectures are needed in a program of this size are: 1) Generic - Needed for planning, design and construction standards; 2) Specific - Needed for detailed requirement allocations, interface specs. A wide variety of architectural views are needed to address stakeholder concerns, including: 1) Physical; 2) Information (structure, flow, evolution); 3) Processes (design, manufacturing, operations); 4) Performance; 5) Risk.

  10. Development of Universal Controller Architecture for SiC Based Power Electronic Building Blocks

    Science.gov (United States)

    2017-10-30

    SiC Based Power Electronic Building Blocks Award Number Title of Research 30 October 2017 SUBMITTED BY D R. HERBERT L. G INN, Pl DEPT. OF...Naval Research , Philadelphia PA, Aug. 2017. • Ginn, H.L. Bakos J., "Development of Universal Controller Architecture for SiC Based Power Electronic...Controller Implementation for MMC Converters", Workshop on Control Architectures for Modular Power Conversion Systems, Office of Naval Research , Arlington VA

  11. Implementing the competences-based students-centered learning approach in Architectural Design Education. The case of the T MEDA Pilot Architectural Program at the Hashemite University (Jordan

    Directory of Open Access Journals (Sweden)

    Ahmad A. S. Al Husban

    2016-11-01

    Full Text Available Higher educational systems become increasingly oriented towards the competences-based student-centered learning and outcome approach. Worldwide, these systems are focusing on the students as a whole: focusing on their dimensional, intellectual, professional, psychological, moral, and spiritual. This research was conducted in an attempt to answer the main research question: how can the architectural design courses be designed based on the required competences and how can the teaching, learning activities and assessment methods be structured and aligned in order to allow students to achieve and reach the intended learning outcomes? This research used a case study driven best practice research method to answer the research questions based on the T MEDA pilot architectural program that was implemented at the Hashemite University, Jordan. This research found that it is important for architectural education to adapt the students-centered learning method. Such approach increases the effectiveness of teaching and learning methods, enhances the design studio environment, and focuses on students’ engagement to develop their design process and product. Moreover, this research found that using different assessment methods in architectural design courses help students to develop their learning outcomes; and inform teachers about the effectiveness of their teaching process. Furthermore, the involvement of students in assessment produces effective learning and enhances their design motivation. However, applying competences-based students-centered learning and outcome approach needs more time and staff to apply. Another problem is that some instructors resist changing to the new methods or approaches because they prefer to use their old and traditional systems. The application for this method at the first time needs intensive recourses, more time, and good cooperation between different instructors and course coordinator. However, within the time this method

  12. Meta-Design and the Triple Learning Organization in Architectural Design Process

    Science.gov (United States)

    Barelkowski, Robert

    2017-10-01

    The paper delves into the improvement of Meta-Design methodology being the result of implementation of triple learning organization. Grown from the concept of reflective practice, it offers an opportunity to segregate and hierarchize both criteria and knowledge management and at least twofold application. It induces constant feedback loops recharging the basic level of “design” with second level of “learning from design” and third level of “learning from learning”. While learning from design reflects the absorption of knowledge, structuralization of skills, management of information, learning from learning gives deeper understanding and provides axiological perspective which is necessary when combining cultural, social, and abstract conceptual problems. The second level involves multidisciplinary applications imported from many engineering disciplines, technical sciences, but also psychological background, or social environment. The third level confronts these applications with their respective sciences (wide extra-architectural knowledge) and axiological issues. This distinction may be represented in difference between e.g. purposeful, systemic use of participatory design which again generates experience-by-doing versus use of disciplinary knowledge starting from its theoretical framework, then narrowed down to be relevant to particular design task. The paper discusses the application in two cases: awarded competition proposal of Digital Arts Museum in Madrid and BAIRI university building. Both cases summarize the effects of implementation and expose the impact of triple-loop knowledge circles onto design, teaching the architect or helping them to learn how to manage information flows and how to accommodate paradigm shifts in the architectural design process.

  13. ARCHITECTURES FOR DISTRIBUTED AND COMPLEX M-LEARNING SYSTEMS: Applying Intelligent Technologies.

    Directory of Open Access Journals (Sweden)

    Ozlem OZAN,

    2010-04-01

    Full Text Available Today mobile technologies have become an integral part of the learning activities. With mobile technologies ―Any time, anywhere, any device‖ promise of e-learning is going to become actually applicable and mobile technologies are going to provide opportunities to be ―always on‖ and connected for twenty-first century learners and to get information on demand with ―just enough, just in time, and just for me‖ approach (Yamamoto, Ozan, & Demiray, 2010. Mobile technology includes both hardware and networking applications; hence both of them are necessary for the existence of m-Learning. Today one of the big challenges of mobile learning is technical issues. This book provides case studies and solution about technical applications of mobile learning.The book's broader audience is anyone who is interested in mobile learning systems‘ architecture. Beside this, it gives valuable information for mobile learning designers.The book is edited by The book is edited by Angel Juan , Thanasis Daradoumis, Fatos Xhafa and Santi Caballé. Angel A. Juan is an associate professor of simulation and data analysis in the computer sciences department at the Open University of Catalonia (Spain.Thanasis Daradoumis is an associate professor

  14. ARCHITECTURAL AND TOWN-PLANNING LEARNING OF THE ISLANDS AT THE DNIEPER RIFTS

    Directory of Open Access Journals (Sweden)

    VOROBYOV V. V.

    2016-06-01

    Full Text Available Abstract. Problem Statement. The problem of architectural-town-planning learning of the river Islands in large rivers of the country has a convoluted history, which has radically changed the attitude of people to such areas of land many times. The modern stage of society development and urban development has again raised the issue of the revision the attitude to the Islands in reservoirs, including in the area of the Dnieper rapids, featuring the unique properties of biopositive impact on all the kinds of living organisms. The material embodiment of a new approach involving Islands in the program "Ekopolis "Iriy-Sad" on the Dnieper rapids", architectural and urban aspects of which are being developed since 2008 at the Department of architectural design under the direction of V. V. Vorobyova [ ]. However, articles of various authors on island territories, have not proposed the right approaches yet, which let us look at underrapid island on the Dnieper from the position of the new requirements of the times, which determined by the topicality of this article. The analysis of publications on the environmental aspects of architecture, urban planning and landscape design for the conditions of the river Islands between Dnipropetrovsk and Kiev, showed the absence of theoretical developments and practical recommendations, taking into account their natural and anthropogenic potential in the framework of solving the task of ecologization of the Dnieper valley and the transition to the latest technology organization of space for human life. The purpose of the article is to reveal the potential of the Islands in the area of the Dnieper rapids and the ways of its applying in architecture, urban planning and landscape design. Conclusions. Modern approaches to urban and architectural applying of river Islands do not take into account the fullness of the structural organization of the matrix of the ecosystem (exchange relationships, organized in the form of net

  15. Using a cognitive architecture for general purpose service robot control

    Science.gov (United States)

    Puigbo, Jordi-Ysard; Pumarola, Albert; Angulo, Cecilio; Tellez, Ricardo

    2015-04-01

    A humanoid service robot equipped with a set of simple action skills including navigating, grasping, recognising objects or people, among others, is considered in this paper. By using those skills the robot should complete a voice command expressed in natural language encoding a complex task (defined as the concatenation of a number of those basic skills). As a main feature, no traditional planner has been used to decide skills to be activated, as well as in which sequence. Instead, the SOAR cognitive architecture acts as the reasoner by selecting which action the robot should complete, addressing it towards the goal. Our proposal allows to include new goals for the robot just by adding new skills (without the need to encode new plans). The proposed architecture has been tested on a human-sized humanoid robot, REEM, acting as a general purpose service robot.

  16. Appropriate teaching and learning strategies for the architectural design process in pedagogic design studios

    Directory of Open Access Journals (Sweden)

    Ashraf M. Soliman

    2017-06-01

    Full Text Available The national qualification framework of a country requires a certain level of knowledge and complexity of skills for an academic degree to be recognized. For architectural programs, student workload is heavy on design courses. Therefore, each course must be carefully developed to ensure that students are not overloaded. Teaching and learning strategies have different implications for courses, which occasionally result in overloading the students. This research aims to study the three main pillars of teaching and learning strategies for each design phase in pedagogic design studios. The most appropriate model for each teaching and learning strategy, including a set of the three main pillars, is then identified for each design phase. A practical strategy for managing design studios is also determined. The aforementioned three pillars are as follows: teaching and learning methods, assigned tasks or study aspects, and design communication techniques. Two research methods, namely, a literature review and a survey among design educators, are adopted. The literature review examines aspects that contribute to the design process and its phases, teaching methods, design skills, communication methods, and studio management strategies. On the basis of the literature review, the background of developments and practices in the design education process are used as constructive tools to develop the survey for design educators. Through the survey, the pillars of teaching and learning strategies that are frequently practiced in design studios are evaluated. Results of this study are classified into three ranks using the nature break classification method for numerical values. Subsequently, three priority models that correspond to teaching and learning strategies, as well as to the required skills and capabilities, are established. A group-based strategy with an interdisciplinary approach is also determined to be the most suitable technique for managing the

  17. $H_2$ optimal controllers with observer based architecture for continuous-time systems : separation principle

    NARCIS (Netherlands)

    Saberi, A.; Sannuti, P.; Stoorvogel, A.A.

    1994-01-01

    For a general H2 optimal control problem, at first all Hz optimal measurement feedback controllers are characterized and parameterized, and then attention is focused on controllers with observer based architecture. Both full order as well as reduced order observer based H2 optimal controllers are

  18. The Impact of School Design and Arrangement on Learning Experiences: A Case Study of an Architecturally Significant Elementary School

    Science.gov (United States)

    Churchill, Deirdre Lyne

    2014-01-01

    This qualitative study examined the impact of architectural design and arrangement on the learning experiences of students. Specifically, it examined how school design and arrangement foster interactions and relationships among students and adults relevant to integral learning experiences. This case study was limited to the breadth of knowledge…

  19. A Combination of Machine Learning and Cerebellar Models for the Motor Control and Learning of a Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, forming a Unit Learning Machine. The LWPR optimizes the input space...... and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar circuits including analytical models and spiking models...

  20. An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.

    2018-01-01

    This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.

  1. Adaptive Neuron Model: An architecture for the rapid learning of nonlinear topological transformations

    Science.gov (United States)

    Tawel, Raoul (Inventor)

    1994-01-01

    A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.

  2. Using enterprise architecture to analyse how organisational structure impact motivation and learning

    Science.gov (United States)

    Närman, Pia; Johnson, Pontus; Gingnell, Liv

    2016-06-01

    When technology, environment, or strategies change, organisations need to adjust their structures accordingly. These structural changes do not always enhance the organisational performance as intended partly because organisational developers do not understand the consequences of structural changes in performance. This article presents a model-based analysis framework for quantitative analysis of the effect of organisational structure on organisation performance in terms of employee motivation and learning. The model is based on Mintzberg's work on organisational structure. The quantitative analysis is formalised using the Object Constraint Language (OCL) and the Unified Modelling Language (UML) and implemented in an enterprise architecture tool.

  3. Instrumentation Standard Architectures for Future High Availability Control Systems

    International Nuclear Information System (INIS)

    Larsen, R.S.

    2005-01-01

    Architectures for next-generation modular instrumentation standards should aim to meet a requirement of High Availability, or robustness against system failure. This is particularly important for experiments both large and small mounted on production accelerators and light sources. New standards should be based on architectures that (1) are modular in both hardware and software for ease in repair and upgrade; (2) include inherent redundancy at internal module, module assembly and system levels; (3) include modern high speed serial inter-module communications with robust noise-immune protocols; and (4) include highly intelligent diagnostics and board-management subsystems that can predict impending failure and invoke evasive strategies. The simple design principles lead to fail-soft systems that can be applied to any type of electronics system, from modular instruments to large power supplies to pulsed power modulators to entire accelerator systems. The existing standards in use are briefly reviewed and compared against a new commercial standard which suggests a powerful model for future laboratory standard developments. The past successes of undertaking such projects through inter-laboratory engineering-physics collaborations will be briefly summarized

  4. Biomimetic mineral-organic composite scaffolds with controlled internal architecture.

    Science.gov (United States)

    Manjubala, I; Woesz, Alexander; Pilz, Christine; Rumpler, Monika; Fratzl-Zelman, Nadja; Roschger, Paul; Stampfl, Juergen; Fratzl, Peter

    2005-12-01

    Bone and cartilage generation by three-dimensional scaffolds is one of the promising techniques in tissue engineering. One approach is to generate histologically and functionally normal tissue by delivering healthy cells in biocompatible scaffolds. These scaffolds provide the necessary support for cells to proliferate and maintain their differentiated function, and their architecture defines the ultimate shape. Rapid prototyping (RP) is a technology by which a complex 3-dimensional (3D) structure can be produced indirectly from computer aided design (CAD). The present study aims at developing a 3D organic-inorganic composite scaffold with defined internal architecture by a RP method utilizing a 3D printer to produce wax molds. The composite scaffolds consisting of chitosan and hydroxyapatite were prepared using soluble wax molds. The behaviour and response of MC3T3-E1 pre-osteoblast cells on the scaffolds was studied. During a culture period of two and three weeks, cell proliferation and in-growth were observed by phase contrast light microscopy, histological staining and electron microscopy. The Giemsa and Gömöri staining of the cells cultured on scaffolds showed that the cells proliferated not only on the surface, but also filled the micro pores of the scaffolds and produced extracellular matrix within the pores. The electron micrographs showed that the cells covering the surface of the struts were flattened and grew from the periphery into the middle region of the pores.

  5. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  6. SchNet - A deep learning architecture for molecules and materials

    Science.gov (United States)

    Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R.

    2018-06-01

    Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning, in general, and deep learning, in particular, are ideally suitable for representing quantum-mechanical interactions, enabling us to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for molecules and materials, where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study on the quantum-mechanical properties of C20-fullerene that would have been infeasible with regular ab initio molecular dynamics.

  7. Memory controllers for mixed-time-criticality systems architectures, methodologies and trade-offs

    CERN Document Server

    Goossens, Sven; Akesson, Benny; Goossens, Kees

    2016-01-01

    This book discusses the design and performance analysis of SDRAM controllers that cater to both real-time and best-effort applications, i.e. mixed-time-criticality memory controllers. The authors describe the state of the art, and then focus on an architecture template for reconfigurable memory controllers that addresses effectively the quickly evolving set of SDRAM standards, in terms of worst-case timing and power analysis, as well as implementation. A prototype implementation of the controller in SystemC and synthesizable VHDL for an FPGA development board are used as a proof of concept of the architecture template.

  8. Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

    Science.gov (United States)

    Behbahani, Alireza; Culley, Dennis; Garg, Sanjay; Millar, Richard; Smith, Bert; Wood, Jim; Mahoney, Tim; Quinn, Ronald; Carpenter, Sheldon; Mailander, Bill; hide

    2007-01-01

    A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.

  9. Comparison of Learning Software Architecture by Developing Social Applications versus Games on the Android Platform

    Directory of Open Access Journals (Sweden)

    Bian Wu

    2012-01-01

    Full Text Available This paper describes an empirical study where the focus was on discovering differences and similarities in students working on development of social applications versus students working on development of games using the same Android development platform. In 2010-2011, students attending the software architecture course at the Norwegian University of Science and Technology (NTNU could choose between four types of projects. Independently of the chosen type of project, all students had to go through the same phases, produce the same documents based on the same templates, and follow exactly the same process. This study focuses on one of projects—Android project, to see how much the application domain affects the course project independently of the chosen technology. Our results revealed some positive effects for the students doing game development compared to social application development to learn software architecture, like motivated to work with games, a better focus on quality attributes such as modifiability and testability during the development, production of software architectures of higher complexity, and more productive coding working for the project. However, we did not find significant differences in awarded grade between students choosing the two different domains.

  10. Evaluation of a deep learning architecture for MR imaging prediction of ATRX in glioma patients

    Science.gov (United States)

    Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J.

    2018-02-01

    Predicting mutation/loss of alpha-thalassemia/mental retardation syndrome X-linked (ATRX) gene utilizing MR imaging is of high importance since it is a predictor of response and prognosis in brain tumors. In this study, we compare a deep neural network approach based on a residual deep neural network (ResNet) architecture and one based on a classical machine learning approach and evaluate their ability in predicting ATRX mutation status without the need for a distinct tumor segmentation step. We found that the ResNet50 (50 layers) architecture, pre trained on ImageNet data was the best performing model, achieving an accuracy of 0.91 for the test set (classification of a slice as no tumor, ATRX mutated, or mutated) in terms of f1 score in a test set of 35 cases. The SVM classifier achieved 0.63 for differentiating the Flair signal abnormality regions from the test patients based on their mutation status. We report a method that alleviates the need for extensive preprocessing and acts as a proof of concept that deep neural network architectures can be used to predict molecular biomarkers from routine medical images.

  11. An integrated command and control architecture concept for unmanned systems in the year 2030

    OpenAIRE

    Johnson, Jamarr J.; Buckley, Omari D.; Cunningham, Dustin; Matthews, Adam; Quincy, Keith E.; Fontenot, Dion G.; Moran, Michael G.; Tham, Gabriel; Wong, Jason; Quah, Raymond; Chia, Tommy; Costica, Yionon; Gho, Delvin; Seet, Henry; Ang, Teo Hong

    2010-01-01

    Approved for public release; distribution is unlimited. U.S. Forces require an integrated Command and Control Architecture that enables operations of a dynamic mix of manned and unmanned systems. The level of autonomous behavior correlates to: 1) the amount of trust with the reporting vehicles, and 2) the multi-spectral perspective of the observations. The intent to illuminate the architectural issues for force protection in 2030 was based on a multi-phased analytical model of High Value ...

  12. A Learning Architecture: How School Leaders Can Design for Learning Social Justice

    Science.gov (United States)

    Scanlan, Martin

    2013-01-01

    Purpose: The field of socially just educational leadership focuses on reducing inequities within schools. The purpose of this article is to illustrate how one strand of social learning theory, communities of practice, can serve as a powerful tool for analyzing learning within a school ostensibly pursuing social justice. The author employs a core…

  13. Advanced Control Architectures for Intelligent MicroGrids, Part I

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Chandorkar, Mukul; Lee, Tzung-Lin

    2013-01-01

    This paper presents a review of advanced control techniques for microgrids. The paper covers decentralized, distributed, and hierarchical control of grid connected and islanded microgrids. At first, decentralized control techniques for microgrids are reviewed. Then, the recent developments in the...

  14. Distributed behavior-based control architecture for a wall climbing robot

    International Nuclear Information System (INIS)

    Nadir Ould Khessal; Shamsudin H.M. Amin . nadir.ok@ieee.org

    1999-01-01

    In the past two decades, Behavior-based AI (Artificial Intelligence) has emerged as a new approach in designing mobile robot control architecture. It stresses on the issues of reactivity, concurrency and real-time control. In this paper we propose a new approach in designing robust intelligent controllers for mobile robot platforms. The Behaviour-based paradigm implemented in a multiprocessing firmware architecture will further enhance parallelism present in the subsumption paradigm itself and increased real-timeness. The paper summarises research done to design a four-legged wall climbing robot. The emphasis will be on the control architecture of the robot based on the Behavior -based paradigm. The robot control architecture is made up of two layers, the locomotion layer and the gait controller layer. The two layers are implemented on a Vesta 68332 processor board running the Behaviour-based kernel, The software is developed using the L programming language, introduced by IS Robotics. The Behaviour-based paradigm is outlined and contrasted with the classical Knowledge-based approach. A description of the distributed architecture is presented followed by a presentation of the Behaviour-based agents for the two layers. (author)

  15. Requirements for Scalable Access Control and Security Management Architectures

    National Research Council Canada - National Science Library

    Keromytis, Angelos D; Smith, Jonathan M

    2005-01-01

    Maximizing local autonomy has led to a scalable Internet. Scalability and the capacity for distributed control have unfortunately not extended well to resource access control policies and mechanisms...

  16. Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)

    National Research Council Canada - National Science Library

    Behbahani, Alireza R

    2007-01-01

    .... Distributed control is potentially an enabling technology for advanced intelligent propulsion system concepts and is one of the few control approaches that is able to provide improved component...

  17. An Architecture for Interactive Target-Oriented e/m-Learning Systems

    Directory of Open Access Journals (Sweden)

    Cristina De Castro

    2009-12-01

    Full Text Available In this paper, an architecture is proposed for the development of an e/m-Learning system with the following features: (1 learning paths can be tailored to the user’s aims and, during the learning process, dynamically modified in order to meet his needs; (2 in context of m-Learning facilities, contents can be scaled and adapted to the user’s device and connection technology. As far as learning paths are concerned, each learner is allowed to specify his initial target and, if he decides to deepen some issues, is authorised to redefine such target over time. This process is guided by a “Path Decision Module” based on Petri Nets, which checks the user’s learning level and consequently decides whether further issues can be faced or not. As for access to the system, the following scenarios are considered: UMTS (e.g.: for PDAs, DSL (e.g.: at home, WiFi (e.g.: within study lounges and libraries, wired/fiber (e.g.: within laboratories. In order to satisfy such heterogeneous requirements, contents are dynamically adapted to available technologies by means of on the fly data format conversions. The whole system relies on a hybrid LDAP-SQL database, which benefits from the joint use of directory services and relational databases. LDAP is used for the storage of learning and assessment material, whereas dynamical paths are stored in the SQL system. Analytical calculations are also presented which show the access time in each scenario and, consequently, if a certain activity can be carried out or not efficiently.

  18. Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network

    Science.gov (United States)

    He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang

    2017-03-01

    Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.

  19. Statistical learning methods: Basics, control and performance

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de

    2006-04-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms.

  20. Statistical learning methods: Basics, control and performance

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2006-01-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms

  1. Guidance and Control Architecture Design and Demonstration for Low Ballistic Coefficient Atmospheric Entry

    Science.gov (United States)

    Swei, Sean

    2014-01-01

    We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.

  2. Reinforcement Learning for Ramp Control: An Analysis of Learning Parameters

    Directory of Open Access Journals (Sweden)

    Chao Lu

    2016-08-01

    Full Text Available Reinforcement Learning (RL has been proposed to deal with ramp control problems under dynamic traffic conditions; however, there is a lack of sufficient research on the behaviour and impacts of different learning parameters. This paper describes a ramp control agent based on the RL mechanism and thoroughly analyzed the influence of three learning parameters; namely, learning rate, discount rate and action selection parameter on the algorithm performance. Two indices for the learning speed and convergence stability were used to measure the algorithm performance, based on which a series of simulation-based experiments were designed and conducted by using a macroscopic traffic flow model. Simulation results showed that, compared with the discount rate, the learning rate and action selection parameter made more remarkable impacts on the algorithm performance. Based on the analysis, some suggestionsabout how to select suitable parameter values that can achieve a superior performance were provided.

  3. Distributed hierarchical control architecture for integrating smart grid assets during normal and disrupted operations

    Science.gov (United States)

    Kalsi, Karan; Fuller, Jason C.; Somani, Abhishek; Pratt, Robert G.; Chassin, David P.; Hammerstrom, Donald J.

    2017-09-12

    Disclosed herein are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). Among the disclosed embodiments is a distributed hierarchical control architecture (DHCA) that enables smart grid assets to effectively contribute to grid operations in a controllable manner, while helping to ensure system stability and equitably rewarding their contribution. Embodiments of the disclosed architecture can help unify the dispatch of these resources to provide both market-based and balancing services.

  4. Space Power Program, Instrumentation and Control System Architecture, Preconceptual Design, for Information

    International Nuclear Information System (INIS)

    JM Ross

    2005-01-01

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I and C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1 and C system architecture was considered a key planning document for development of the I and C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I and C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured

  5. Space Power Program, Instrumentation and Control System Architecture, Pre-conceptual Design, for Information

    Energy Technology Data Exchange (ETDEWEB)

    JM Ross

    2005-10-20

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I&C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1&C system architecture was considered a key planning document for development of the I&C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I&C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured.

  6. Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture.

    Science.gov (United States)

    Chen, C L Philip; Liu, Zhulin

    2018-01-01

    Broad Learning System (BLS) that aims to offer an alternative way of learning in deep structure is proposed in this paper. Deep structure and learning suffer from a time-consuming training process because of a large number of connecting parameters in filters and layers. Moreover, it encounters a complete retraining process if the structure is not sufficient to model the system. The BLS is established in the form of a flat network, where the original inputs are transferred and placed as "mapped features" in feature nodes and the structure is expanded in wide sense in the "enhancement nodes." The incremental learning algorithms are developed for fast remodeling in broad expansion without a retraining process if the network deems to be expanded. Two incremental learning algorithms are given for both the increment of the feature nodes (or filters in deep structure) and the increment of the enhancement nodes. The designed model and algorithms are very versatile for selecting a model rapidly. In addition, another incremental learning is developed for a system that has been modeled encounters a new incoming input. Specifically, the system can be remodeled in an incremental way without the entire retraining from the beginning. Satisfactory result for model reduction using singular value decomposition is conducted to simplify the final structure. Compared with existing deep neural networks, experimental results on the Modified National Institute of Standards and Technology database and NYU NORB object recognition dataset benchmark data demonstrate the effectiveness of the proposed BLS.

  7. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  8. Software architecture considerations for ion source control systems

    International Nuclear Information System (INIS)

    Sinclair, J.W.

    1997-09-01

    General characteristics of distributed control system software tools are examined from the perspective of ion source control system requirements. Emphasis is placed on strategies for building extensible, distributed systems in which the ion source element is one component of a larger system. Vsystem, a commercial software tool kit from Vista Control Systems was utilized extensively in the control system upgrade of the Holifield Radioactive Ion Beam Facility. Part of the control system is described and the characteristics of Vsystem are examined and compared with those of EPICS, the Experimental Physics and Industrial Control System

  9. Linear System Control Using Stochastic Learning Automata

    Science.gov (United States)

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  10. Methods for control over learning individual trajectory

    Science.gov (United States)

    Mitsel, A. A.; Cherniaeva, N. V.

    2015-09-01

    The article discusses models, methods and algorithms of determining student's optimal individual educational trajectory. A new method of controlling the learning trajectory has been developed as a dynamic model of learning trajectory control, which uses score assessment to construct a sequence of studied subjects.

  11. A design control structure for architectural firms in a highly complex and uncertain situation

    NARCIS (Netherlands)

    Schijlen, J.T.H.A.M.; Otter, den A.F.H.J.; Pels, H.J.

    2011-01-01

    A large architectural firm in a highly complex and uncertain production situation asked to improve its existing ?production control? system for design projects. To that account a research and design project of nine months at the spot was defined. The production control in the organization was based

  12. Architecture of built-in microcontrollers in the U-70 complex control system

    International Nuclear Information System (INIS)

    Balakin, S.I.; Voevodin, V.P.; Inchagov, A.A.; Komarov, V.V.

    2000-01-01

    The distributed system of built-in microcontrollers (BMS) for functional control of supply sources of magnetooptical elements is created within the frames of works on modernization of the U-70 control complex. The BMS architecture and functional diagram of one of them are presented. The microcontrollers operation algorithm is based on the eventuation principle. The BMS basic parameters are presented [ru

  13. A Control Architecture to Coordinate Distributed Generators and Active Power Filters Coexisting in a Microgrid

    DEFF Research Database (Denmark)

    Hashempour, Mohammad M.; Firoozabadi, Mehdi Savaghebi; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper proposes a control architecture of distributed generators (DGs) inverters and shunt active power filters (APFs) in microgrids to compensate voltage harmonics in a coordinated way. For this, a hierarchical control structure is proposed that includes two control levels. The primary (local......) control consists of power controllers, selective virtual impedance loops and proportional-resonant (PR) voltage/current controllers. The secondary (central) control manages the compensation level of voltage harmonic distortion of sensitive load bus (SLB). Compensation of SLB harmonics by control of DGs...... excessive harmonics or overloading of interface inverters. Effectiveness of the proposed control scheme is demonstrated through simulation studies....

  14. A control architecture to coordinate distributed generators and active power filters coexisting in a microgrid

    DEFF Research Database (Denmark)

    Hashempour, Mohammad M.; Savaghebi, Mehdi; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper proposes a control architecture of distributed generators (DGs) inverters and shunt active power filters (APFs) in microgrids to compensate voltage harmonics in a coordinated way. For this, a hierarchical control structure is proposed that includes two control levels. The primary (local......) control consists of power controllers, selective virtual impedance loops and proportional-resonant (PR) voltage/current controllers. The secondary (central) control manages the compensation level of voltage harmonic distortion of sensitive load bus (SLB). Compensation of SLB harmonics by control of DGs...... excessive harmonics or overloading of interface inverters. Effectiveness of the proposed control scheme is demonstrated through simulation studies....

  15. One-Chip Solution to Intelligent Robot Control: Implementing Hexapod Subsumption Architecture Using a Contemporary Microprocessor

    Directory of Open Access Journals (Sweden)

    Nikita Pashenkov

    2008-11-01

    Full Text Available This paper introduces a six-legged autonomous robot managed by a single controller and a software core modeled on subsumption architecture. We begin by discussing the features and capabilities of IsoPod, a new processor for robotics which has enabled a streamlined implementation of our project. We argue that this processor offers a unique set of hardware and software features, making it a practical development platform for robotics in general and for subsumption-based control architectures in particular. Next, we summarize original ideas on subsumption architecture implementation for a six-legged robot, as presented by its inventor Rodney Brooks in 1980's. A comparison is then made to a more recent example of a hexapod control architecture based on subsumption. The merits of both systems are analyzed and a new subsumption architecture layout is formulated as a response. We conclude with some remarks regarding the development of this project as a hint at new potentials for intelligent robot design, opened up by a recent development in embedded controller market.

  16. Indirect learning control for nonlinear dynamical systems

    Science.gov (United States)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  17. A Cognitive Architecture Using Reinforcement Learning to Enable Autonomous Spacecraft Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an architecture to enable the modular development and deployment of autonomous intelligent agents in support of spacecraft operations. This architecture...

  18. Automatic Control of Contextual Interaction Integrated with Affection and Architectural Attentional Control

    Directory of Open Access Journals (Sweden)

    Yanrong Jiang

    2013-03-01

    Full Text Available It is still a challenge for robots to interact with complex environments in a smooth and natural manner. The robot should be aware of its surroundings and inner status to make decisions accordingly and appropriately. Contexts benefit the interaction a lot, such as avoiding frequent interruptions (e.g., the explicit inputting requests and thus are essential for interaction. Other challenges, such as shifting attentional focus to a more important stimulus, etc., are also crucial in interaction control. This paper presents a hybrid automatic control approach for interaction, as well as its integration, with these multiple important factors, aiming at performing natural, human-like interactions in robots. In particular, a novel approach of architectural attentional control, based on affection is presented, which attempts to shift the attentional focus in a natural manner. Context-aware computing is combined with interaction to endow the robot with proactive abilities. The long-term interaction control approaches are described. Emotion and personality are introduced into the interaction and their influence mechanism on interaction is explored. We implemented the proposal in an interactive head robot (IHR and the experimental results indicate the effectiveness.

  19. Towards a preliminary design of the ITER plasma control system architecture

    International Nuclear Information System (INIS)

    Treutterer, W.; Rapson, C.J.; Raupp, G.; Snipes, J.; Vries, P. de; Winter, A.; Humphreys, D.A.; Walker, M.; Tommasi, G. de; Cinque, M.; Bremond, S.; Moreau, P.; Nouailletas, R.; Felton, R.

    2017-01-01

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  20. Towards a preliminary design of the ITER plasma control system architecture

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Rapson, C.J.; Raupp, G. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Snipes, J.; Vries, P. de; Winter, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Humphreys, D.A.; Walker, M. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Tommasi, G. de; Cinque, M. [CREATE/Università di Napoli Federico II, Napoli (Italy); Bremond, S.; Moreau, P.; Nouailletas, R. [Association CEA pour la Fusion Contrôlée, CEA Cadarache, 13108 St Paul les Durance (France); Felton, R. [CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire, OX14 3DB (United Kingdom)

    2017-02-15

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  1. Architecture and performance of the new CESR control system

    International Nuclear Information System (INIS)

    Strohman, C.R.; Peck, S.B.

    1989-01-01

    The new control system for the Cornell Electron Storage Ring (CESR) is based on a multi-port memory which can be accessed by many computers. The computers are either VAXes, which run user programs, or Xbus Processors, which move data to and from the hardware devices which are being monitored or controlled. The control system database is in the multi-port memory, and contains all of the data needed to communicate with various pieces of hardware. 1 fig

  2. The system architecture of the new JET Shape Controller

    International Nuclear Information System (INIS)

    Sartori, F.; Ambrosino, G.; Ariola, M.; Cenedese, A.; Crisanti, F.; Tommasi, G. De; Cullen, P. Mc; Piccolo, F.; Pironti, A.

    2005-01-01

    This paper describes the installation of the new JET Shape Controller System [M. Garribba, R. Litunovsky, P. Noll, S. Puppin, The new control scheme for the JET plasma position and current control system, in: Proceedings of the 15th SOFE Conference, Massachusetts, 1993, pp. 33-36; F. Sartori, A. Cenedese, Plasma position and current control management at JET, in: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, 2003] especially focusing on the addition of the Extreme Shape Controller [G. Ambrosino, et al., A new shape controller for extremely shaped plasmas in JET, Fusion Eng. Des. 66-68 (2003) 797-802]. The activity was performed by the JET Operator in co-operation with the ENEA-CREATE design team, and involved both changes in the hardware and system software of JET and tuning of the proposed Extreme Shape Controller (XSC) design to satisfy the practical requirements of tokamak operation. The application of 10 years experience of controller implementation and commissioning combined with a modern and efficient modelling and design methodology has allowed an unprecedented fast and easy commissioning of the new system

  3. The development of an open architecture control system for CBN high speed grinding

    OpenAIRE

    Silva, E. Jannone da; Biffi, M.; Oliveira, J. F. G. de

    2004-01-01

    The aim of this project is the development of an open architecture controlling (OAC) system to be applied in the high speed grinding process using CBN tools. Besides other features, the system will allow a new monitoring and controlling strategy, by the adoption of open architecture CNC combined with multi-sensors, a PC and third-party software. The OAC system will be implemented in a high speed CBN grinding machine, which is being developed in a partnership between the University of São Paul...

  4. Control Architecture of a 10 DOF Lower Limbs Exoskeleton for Gait Rehabilitation

    Directory of Open Access Journals (Sweden)

    Natasa Koceska

    2013-01-01

    Full Text Available This paper describes the control architecture of a 10 DOF (Degrees of Freedom lower limbs exoskeleton for the gait rehabilitation of patients with gait dysfunction. The system has 4 double-acting rod pneumatic actuators (two for each leg that control the hip and knee joints. The motion of each cylinder's piston is controlled by two proportional pressure valves, connected to both cylinder chambers. The control strategy has been specifically designed in order to ensure a proper trajectory control for guiding patient's legs along a fixed reference gait pattern. An adaptive fuzzy controller which is capable of compensating for the influence of the dry friction was successfully designed, implemented and tested on an embedded real-time PC/104. In order to verify the proposed control architecture, laboratory experiments without a patient were carried out and the results are reported here and discussed.

  5. The architectural foundations for agent-based shop floor control

    DEFF Research Database (Denmark)

    Langer, Gilad; Bilberg, Arne

    1998-01-01

    simulation and cell controlenabling technologies. In order to continuethis research effortnew concepts and theories for shop floor control are investigated.This paper reviews the multi-agent concept aimed at investigatingits potential use in shop floor control systems. The paper willalso include a survey...

  6. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  7. Separating VNF and Network Control for Hardware‐Acceleration of SDN/NFV Architecture

    Directory of Open Access Journals (Sweden)

    Tong Duan

    2017-08-01

    Full Text Available A hardware‐acceleration architecture that separates virtual network functions (VNFs and network control (called HSN is proposed to solve the mismatch between the simple flow steering requirements and strong packet processing abilities of software‐defined networking (SDN forwarding elements (FEs in SDN/network function virtualization (NFV architecture, while improving the efficiency of NFV infrastructure and the performance of network‐intensive functions. HSN makes full use of FEs and accelerates VNFs through two mechanisms: (1 separation of traffic steering and packet processing in the FEs; (2 separation of SDN and NFV control in the FEs. Our HSN prototype, built on NetFPGA‐10G, demonstrates that the processing performance can be greatly improved with only a small modification of the traditional SDN/NFV architecture.

  8. Benchmarking hardware architecture candidates for the NFIRAOS real-time controller

    Science.gov (United States)

    Smith, Malcolm; Kerley, Dan; Herriot, Glen; Véran, Jean-Pierre

    2014-07-01

    As a part of the trade study for the Narrow Field Infrared Adaptive Optics System, the adaptive optics system for the Thirty Meter Telescope, we investigated the feasibility of performing real-time control computation using a Linux operating system and Intel Xeon E5 CPUs. We also investigated a Xeon Phi based architecture which allows higher levels of parallelism. This paper summarizes both the CPU based real-time controller architecture and the Xeon Phi based RTC. The Intel Xeon E5 CPU solution meets the requirements and performs the computation for one AO cycle in an average of 767 microseconds. The Xeon Phi solution did not meet the 1200 microsecond time requirement and also suffered from unpredictable execution times. More detailed benchmark results are reported for both architectures.

  9. Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes

    Science.gov (United States)

    Huang, Shaoming

    2003-06-01

    An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.

  10. HoMuCS - A methodology and architecture for Holonic Multi-cell Control Systems

    DEFF Research Database (Denmark)

    Langer, Gilad

    it in practice. An iterative developmentprocess was used to obtain the empiricalbasis for the research work. This involved development of prototypes aimed at testing the feasibility of the theory and investigating its applicability. The main issue that the prototypes were tested for was their agile performance...... as the hypothesis of the research. Firstly that it is possible to realise holonic systems based on the HMS theory, specifically its reference architecture, and secondly that they are in fact agile. Itpresents the concept of a Holonic Multi-cell Control System system-architecture and corresponding methodology, which...... suggests a solution for realising an agile shop floor control system. The current state of the technological development of the HoMuCS architecture and methodology is described....

  11. LHCb: Fast Readout Control for the upgraded readout architecture of the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F

    2013-01-01

    The LHCb experiment at CERN has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity with an upgraded LHCb detector. As a consequence, the various LHCb sub-systems in the readout architecture will be upgraded to cope with higher sub-detector occupancies, higher rate, and higher readout load. The new architecture, new functionalities, and the first hardware implementation of a new LHCb Readout Control system (commonly referred to as S-TFC) for the upgraded LHCb experiment is here presented. Our attention is focused in describing solutions for the distribution of clock and timing information to control the entire upgraded readout architecture by profiting of a bidirectional optical network and powerful FPGAs, including a real-time mechanism to synchronize the entire system. Solutions and implementations are presented, together with first results on the simulation and the validation of the system.

  12. A flexible software architecture for tokamak discharge control systems

    International Nuclear Information System (INIS)

    Ferron, J.R.; Penaflor, B.; Walker, M.L.; Moller, J.; Butner, D.

    1995-01-01

    The software structure of the plasma control system in use on the DIII-D tokamak experiment is described. This system implements control functions through software executing in real time on one or more digital computers. The software is organized into a hierarchy that allows new control functions needed to support the DIII-D experimental program to be added easily without affecting previously implemented functions. This also allows the software to be portable in order to create control systems for other applications. The tokamak operator uses an X-windows based interface to specify the time evolution of a tokamak discharge. The interface provides a high level view for the operator that reduces the need for detailed knowledge of the control system operation. There is provision for an asynchronous change to an alternate discharge time evolution in response to an event that is detected in real time. Quality control is enhanced through off-line testing that can make use of software-based tokamak simulators

  13. Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila.

    Science.gov (United States)

    Saumweber, Timo; Rohwedder, Astrid; Schleyer, Michael; Eichler, Katharina; Chen, Yi-Chun; Aso, Yoshinori; Cardona, Albert; Eschbach, Claire; Kobler, Oliver; Voigt, Anne; Durairaja, Archana; Mancini, Nino; Zlatic, Marta; Truman, James W; Thum, Andreas S; Gerber, Bertram

    2018-03-16

    The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.

  14. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    Science.gov (United States)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  15. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  16. Splendidly blended: a machine learning set up for CDU control

    Science.gov (United States)

    Utzny, Clemens

    2017-06-01

    As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.

  17. Architecture of the Neurath Basic Model View Controller

    Directory of Open Access Journals (Sweden)

    K. Yermashov

    2006-01-01

    Full Text Available The idea of the Neurath Basic Model View Controller (NBMVC appeared during the discussion of the design of domain-specific modeling tools based on the Neurath Modeling Language [Yer06]. The NBMVC is the core of the modeling process within the modeling environment. It reduces complexity out of the design process by providing domain-specific interfaces between the developer and the model. These interfaces help to organize and manipulate the model. The organization includes, for example, a layer with visual components to drop them in and filter them out. The control routines includes, for example, model transformations.

  18. Human-level control through deep reinforcement learning

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A.; Veness, Joel; Bellemare, Marc G.; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K.; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-01

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  19. Human-level control through deep reinforcement learning.

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A; Veness, Joel; Bellemare, Marc G; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-26

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  20. Design and reliability analysis of DP-3 dynamic positioning control architecture

    Science.gov (United States)

    Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru

    2011-12-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  1. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  2. Architecture and control of a high current ion implanter system

    International Nuclear Information System (INIS)

    Bayer, E.H.; Paul, L.F.; Kranik, J.R.

    1979-01-01

    The design of an ion implant system for use in production requires that special attention be given to areas of design which normally are not emphasized on research or development type ion implanters. Manually operated, local controls are replaced by remote controls, automatic sequencing, and digital displays. For ease of maintenance and replication the individual components are designed as simply as possible and are contained in modules of separate identities, joined only by the beam line and electrical interconnections. A production environment also imposes requirements for the control of contamination and maintainability of clean room integrity. For that reason the major portion of the hardware is separated from the clean operator area and is housed in a maintenance core area. The controls of a production system should also be such that relatively unskilled technicians are able to operate the system with optimum repeatability and minimum operator intervention. An extensive interlock system is required. Most important, for use in production the ion implant system has to have a relatively high rate of throughput. Since the rate of throughput at a given dose is a function of beam current, pumpdown time and wafer handling capacity, design of components affecting these parameters has been optimized. Details of the system are given. (U.K.)

  3. Service-oriented architecture for the ARGOS instrument control software

    Science.gov (United States)

    Borelli, J.; Barl, L.; Gässler, W.; Kulas, M.; Rabien, Sebastian

    2012-09-01

    The Advanced Rayleigh Guided ground layer Adaptive optic System, ARGOS, equips the Large Binocular Telescope (LBT) with a constellation of six rayleigh laser guide stars. By correcting atmospheric turbulence near the ground, the system is designed to increase the image quality of the multi-object spectrograph LUCIFER approximately by a factor of 3 over a field of 4 arc minute diameter. The control software has the critical task of orchestrating several devices, instruments, and high level services, including the already existing adaptive optic system and the telescope control software. All these components are widely distributed over the telescope, adding more complexity to the system design. The approach used by the ARGOS engineers is to write loosely coupled and distributed services under the control of different ownership systems, providing a uniform mechanism to offer, discover, interact and use these distributed capabilities. The control system counts with several finite state machines, vibration and flexure compensation loops, and safety mechanism, such as interlocks, aircraft, and satellite avoidance systems.

  4. State Analysis: A Control Architecture View of Systems Engineering

    Science.gov (United States)

    Rasmussen, Robert D.

    2005-01-01

    A viewgraph presentation on the state analysis process is shown. The topics include: 1) Issues with growing complexity; 2) Limits of common practice; 3) Exploiting a control point of view; 4) A glimpse at the State Analysis process; 5) Synergy with model-based systems engineering; and 6) Bridging the systems to software gap.

  5. The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation?

    Science.gov (United States)

    Chardenon, A; Montagne, G; Laurent, M; Bootsma, R J

    2004-09-01

    Intercepting a moving object while locomoting is a highly complex and demanding ability. Notwithstanding the identification of several informational candidates, the role of perceptual variables in the control process underlying such skills remains an open question. In this study we used a virtual reality set-up for studying locomotor interception of a moving ball. The subject had to walk along a straight path and could freely modify forward velocity, if necessary, in order to intercept-with the head-a ball moving along a straight path that led it to cross the agent's displacement axis. In a series of experiments we manipulated a local (ball size) and a global (focus of expansion) component of the visual flow but also the egocentric orientation of the ball. The experimental observations are well captured by a dynamic model linking the locomotor acceleration to properties of both global flow and egocentric direction. More precisely the changes in locomotor velocity depend on a linear combination of the change in bearing angle and the change in egocentric orientation, allowing the emergence of adaptive behavior under a variety of circumstances. We conclude that the mechanisms underlying the control of different goal-directed locomotion tasks (i.e. steering and interceptive tasks) could share a common architecture.

  6. Learning styles: The learning methods of air traffic control students

    Science.gov (United States)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  7. Online reinforcement learning control for aerospace systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Reinforcement Learning (RL) methods are relatively new in the field of aerospace guidance, navigation, and control. This dissertation aims to exploit RL methods to improve the autonomy and online learning of aerospace systems with respect to the a priori unknown system and environment, dynamical

  8. Energy Management Systems and tertiary regulation in hierarchical control architectures for islanded micro-grids

    DEFF Research Database (Denmark)

    Sanseverino, Eleonora Riva; Di Silvestre, Maria Luisa; Quang, Ninh Nguyen

    2015-01-01

    In this paper, the structure of the highest level of a hierarchical control architecture for micro-grids is proposed. Such structure includes two sub-levels: the Energy Management System, EMS, and the tertiary regulation. The first devoted to energy resources allocation in each time slot based...

  9. Federated Access Control in Heterogeneous Intercloud Environment: Basic Models and Architecture Patterns

    NARCIS (Netherlands)

    Demchenko, Y.; Ngo, C.; de Laat, C.; Lee, C.

    2014-01-01

    This paper presents on-going research to define the basic models and architecture patterns for federated access control in heterogeneous (multi-provider) multi-cloud and inter-cloud environment. The proposed research contributes to the further definition of Intercloud Federation Framework (ICFF)

  10. Flexible software architecture for user-interface and machine control in laboratory automation.

    Science.gov (United States)

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  11. Controllable thousand-port low-latency optical packet switch architecture for short link applications

    NARCIS (Netherlands)

    Di Lucente, S.; Nazarathy, J.; Raz, O.; Calabretta, N.; Dorren, H.J.S.; Bienstman, P.; Morthier, G.; Roelkens, G.; et al., xx

    2011-01-01

    The implementation of a low-latency optical packet switch architecture that is controllable while scaling to over thousand ports is investigated in this paper. Optical packet switches with thousand of input/output ports are promising devices to improve the performance of short link applications in

  12. Controlled phase gate for solid-state charge-qubit architectures

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Oi, D.K.L.; Greentree, Andrew D.

    2005-01-01

    We describe a mechanism for realizing a controlled phase gate for solid-state charge qubits. By augmenting the positionally defined qubit with an auxiliary state, and changing the charge distribution in the three-dot system, we are able to effectively switch the Coulombic interaction, effecting an entangling gate. We consider two architectures, and numerically investigate their robustness to gate noise

  13. Architecture of distributed control system at Hazira (Paper No. 3.2)

    International Nuclear Information System (INIS)

    Nema, V.P.

    1992-01-01

    The architecture of control system at Heavy Water Plant, Hazira has a physically centralized and functionally de-centralized configuration. The sub-systems for the functional areas such as automation system (AS), operating and monitoring system (OS) and communication system (CS) are described. (author). 3 figs

  14. Local Design Methodologies for a Hierarchic Control Architecture

    Science.gov (United States)

    1990-04-12

    regional (in the sense of knowledge and influence) controllers which are distributed throughout the structure [9,39,54,56,65,68]. Many decentralized...occurs, it is necessary that - gpk = gk > 0 (3.74) I which is true provided Hk > 0 and gt 0 0. These conditions will be met near a strong minimum, but...Astronautics, 19763 Semester spent at Leningrad State University, 1975 PROFESSIONAL SUMMARY Current major area of teaching and research is in the design and

  15. Data acquisition, storage and control architecture for the SuperNova Acceleration Probe

    International Nuclear Information System (INIS)

    Prosser, Alan; Fermilab; Cardoso, Guilherme; Chramowicz, John; Marriner, John; Rivera, Ryan; Turqueti, Marcos; Fermilab

    2007-01-01

    The SuperNova Acceleration Probe (SNAP) instrument is being designed to collect image and spectroscopic data for the study of dark energy in the universe. In this paper, we describe a distributed architecture for the data acquisition system which interfaces to visible light and infrared imaging detectors. The architecture includes the use of NAND flash memory for the storage of exposures in a file system. Also described is an FPGA-based lossless data compression algorithm with a configurable pre-scaler based on a novel square root data compression method to improve compression performance. The required interactions of the distributed elements with an instrument control unit will be described as well

  16. AziSA: An architecture for underground measurement and control networks - 2nd CSIR Biennial Conference

    CSIR Research Space (South Africa)

    Stewart, R

    2008-11-01

    Full Text Available products from various manufacturers. SOLUTION The architecture that has been developed at the CSIR is called AziSA, an isiZulu word meaning ‘to inform’. The AziSA architecture AziSA is a specification for an open measurement and control network... for in-mine communications even if the link with the outside world is disrupted. This requirement for robustness implies that processing in the system must be distributed and not totally dependent on central coordination. Decisions should be made...

  17. Reinforcement learning techniques for controlling resources in power networks

    Science.gov (United States)

    Kowli, Anupama Sunil

    As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the full functionalities of these resources. There is a critical need for control techniques that recognize the unique characteristics of the different resources and exploit the flexibility afforded by them to provide ancillary services to the grid. The work presented in this dissertation addresses these needs. Specifically, new algorithms are proposed, which allow control synthesis in settings wherein the precise distribution of the uncertainty and its temporal statistics are not known. These algorithms are based on recent developments in Markov decision theory, approximate dynamic programming and reinforcement learning. They impose minimal assumptions on the system model and allow the control to be "learned" based on the actual dynamics of the system. Furthermore, they can accommodate complex constraints such as capacity and ramping limits on generation resources, state-of-charge constraints on storage resources, comfort-related limitations on demand response resources and power flow limits on transmission lines. Numerical studies demonstrating applications of these algorithms to practical control problems in power systems are discussed. Results demonstrate how the proposed control algorithms can be used to improve the performance and reduce the computational complexity of the economic dispatch mechanism in a power network. We argue that the proposed algorithms are eminently suitable to develop operational decision-making tools for large power grids with many resources and many sources of uncertainty.

  18. Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture.

    Science.gov (United States)

    González, Isaías; Calderón, Antonio José; Barragán, Antonio Javier; Andújar, José Manuel

    2017-06-27

    The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted.

  19. Multi-core System Architecture for Safety-critical Control Applications

    DEFF Research Database (Denmark)

    Li, Gang

    and size, and high power consumption. Increasing the frequency of a processor is becoming painful now due to the explosive power consumption. Furthermore, components integrated into a single-core processor have to be certified to the highest SIL, due to that no isolation is provided in a traditional single...... certification cost. Meanwhile, hardware platforms with improved processing power are required to execute the applications of larger size. To tackle the two issues mentioned above, the state of the art approaches are using more Electronic Control Units (ECU) in a federated architecture or increasing......-core processor. A promising alternative to improve processing power and provide isolation is to adopt a multi-core architecture with on-chip isolation. In general, a specific multi-core architecture can facilitate the development and certification of safety-related systems, due to its physical isolation between...

  20. Optimal control in microgrid using multi-agent reinforcement learning.

    Science.gov (United States)

    Li, Fu-Dong; Wu, Min; He, Yong; Chen, Xin

    2012-11-01

    This paper presents an improved reinforcement learning method to minimize electricity costs on the premise of satisfying the power balance and generation limit of units in a microgrid with grid-connected mode. Firstly, the microgrid control requirements are analyzed and the objective function of optimal control for microgrid is proposed. Then, a state variable "Average Electricity Price Trend" which is used to express the most possible transitions of the system is developed so as to reduce the complexity and randomicity of the microgrid, and a multi-agent architecture including agents, state variables, action variables and reward function is formulated. Furthermore, dynamic hierarchical reinforcement learning, based on change rate of key state variable, is established to carry out optimal policy exploration. The analysis shows that the proposed method is beneficial to handle the problem of "curse of dimensionality" and speed up learning in the unknown large-scale world. Finally, the simulation results under JADE (Java Agent Development Framework) demonstrate the validity of the presented method in optimal control for a microgrid with grid-connected mode. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  1. 10 Management Controller for Time and Space Partitioning Architectures

    Science.gov (United States)

    Lachaize, Jerome; Deredempt, Marie-Helene; Galizzi, Julien

    2015-09-01

    The Integrated Modular Avionics (IMA) has been industrialized in aeronautical domain to enable the independent qualification of different application softwares from different suppliers on the same generic computer, this latter computer being a single terminal in a deterministic network. This concept allowed to distribute efficiently and transparently the different applications across the network, sizing accurately the HW equipments to embed on the aircraft, through the configuration of the virtual computers and the virtual network. , This concept has been studied for space domain and requirements issued [D04],[D05]. Experiments in the space domain have been done, for the computer level, through ESA and CNES initiatives [D02] [D03]. One possible IMA implementation may use Time and Space Partitioning (TSP) technology. Studies on Time and Space Partitioning [D02] for controlling resources access such as CPU and memories and studies on hardware/software interface standardization [D01] showed that for space domain technologies where I/O components (or IP) do not cover advanced features such as buffering, descriptors or virtualization, CPU overhead in terms of performances is mainly due to shared interface management in the execution platform, and to the high frequency of I/O accesses, these latter leading to an important number of context switches. This paper will present a solution to reduce this execution overhead with an open, modular and configurable controller.

  2. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    International Nuclear Information System (INIS)

    Groen, P.W.C.; Beveren, V. van; Broekema, A.; Busch, P.J.; Genuit, J.W.; Kaas, G.; Poelman, A.J.; Scholten, J.; Zeijlmans van Emmichoven, P.A.

    2013-01-01

    Highlights: ► An architecture based on a modular design. ► The design offers flexibility and extendability. ► The design covers the overall software architecture. ► It also covers its (sub)systems’ internal structure. -- Abstract: The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of several hardware subsystems, and a variety of diagnostic systems. The COntrol, Data Acquisition and Communication (CODAC) system integrates these subsystems and provides a complete interface for the Magnum-PSI users. Integrating it all, from the lowest hardware level of sensors and actuators, via the level of networked PLCs and computer systems, up to functions and classes in programming languages, demands a sound and modular software architecture, which is extendable and scalable for future changes. This paper describes this architecture, and the modular design of the software subsystems. The design is implemented in the CODAC system at the level of services and subsystems (the overall software architecture), as well as internally in the software subsystems

  3. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Architecture Lab Test Report

    Science.gov (United States)

    Iannicca, Dennis C.; McKim, James H.; Stewart, David H.; Thadhani, Suresh K.; Young, Daniel P.

    2015-01-01

    NASA Glenn Research Center, in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the FAA and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the current GRC prototype CNPC architecture as a demonstration platform. The security controls were integrated into a lab test bed mock-up of the Mobile IPv6 architecture currently being used for NASA flight testing, and a series of network tests were conducted to evaluate the security overhead of the controls compared to the baseline CNPC link without any security. The aim of testing was to evaluate the performance impact of the additional security control overhead when added to the Mobile IPv6 architecture in various modes of operation. The statistics collected included packet captures at points along the path to gauge packet size as the sample data traversed the CNPC network, round trip latency, jitter, and throughput. The effort involved a series of tests of the baseline link, a link with Robust Header Compression (ROHC) and without security controls, a link with security controls and without ROHC, and finally a link with both ROHC and security controls enabled. The effort demonstrated that ROHC is both desirable and necessary to offset the additional expected overhead of applying security controls to the CNPC link.

  4. Organizational Learning Supported by Reference Architecture Models: Industry 4.0 Laboratory Study

    Directory of Open Access Journals (Sweden)

    Marco Nardello

    2017-10-01

    Full Text Available The wave of the fourth industrial revolution (Industry 4.0 is bringing a new vision of the manufacturing industry. In manufacturing, one of the buzzwords of the moment is "Smart production". Smart production involves manufacturing equipment with many sensors that can generate and transmit large amounts of data. These data and information from manufacturing operations are however not shared in the organization. Therefore the organization is not using them to learn and improve their operations. To address this problem, the authors implemented in an Industry 4.0 laboratory an instance of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0 as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory by collecting and sharing up-to-date information concerning manufacturing equipment. This article discusses and generalizes the experience and outlines future research directions.

  5. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Science.gov (United States)

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  6. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.

    Science.gov (United States)

    Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan

    2017-06-01

    Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Customizable software architectures in the accelerator control system environment

    CERN Document Server

    Mejuev, I; Kadokura, E

    2001-01-01

    Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user customization has been extensively researched in applied computer science from HCI and software engineering perspectives. Customization allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user customization in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. We introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of a distributed monitoring application for the 12 GeV KEK Proton Synchrotron as an example. T...

  8. Learning to Control Advanced Life Support Systems

    Science.gov (United States)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  9. Control architecture for an adaptive electronically steerable flash lidar and associated instruments

    Science.gov (United States)

    Ruppert, Lyle; Craner, Jeremy; Harris, Timothy

    2014-09-01

    An Electronically Steerable Flash Lidar (ESFL), developed by Ball Aerospace & Technologies Corporation, allows realtime adaptive control of configuration and data-collection strategy based on recent or concurrent observations and changing situations. This paper reviews, at a high level, some of the algorithms and control architecture built into ESFL. Using ESFL as an example, it also discusses the merits and utility such adaptable instruments in Earth-system studies.

  10. A Trusted Autonomic Architecture to Safeguard Cyber-Physical Control Leaf Nodes and Protect Process Integrity

    OpenAIRE

    Chiluvuri, Nayana Teja

    2015-01-01

    Cyber-physical systems are networked through IT infrastructure and susceptible to malware. Threats targeting process control are much more safety-critical than traditional computing systems since they jeopardize the integrity of physical infrastructure. Existing defence mechanisms address security at the network nodes but do not protect the physical infrastructure if network integrity is compromised. An interface guardian architecture is implemented on cyber-physical control leaf nodes to mai...

  11. A universal bilateral manual controller utilizing a unique parallel architecture

    International Nuclear Information System (INIS)

    Bevill, P.J.; Lovett, J.T.

    1990-01-01

    Since 1987, the Advanced Technology Division of the US Department of Energy has sponsored a team composed of four universities and Oak Ridge National Laboratory to pursue research leading to the development and deployment of an advanced robotic system. The tasks to be performed by this system will be those tasks that are hazardous to humans, that generate significant occupational radiation exposure, and those which can be performed more rapidly and more accurately by an automated system. An essential component of the program plan is the annual technology demonstration performed at the Center for Engineering Systems Advanced Research (CESAR) at Oak Ridge National Laboratory. The scenario selected for the 1989 technology demonstration involved the cleanup of a spill of a simulated hazardous material. The demonstration utilized the seven-degrees-of-freedom CESARm manipulator, which is mounted aboard the HERMIES III transporter. The transporter traveled to the site of the simulated spill through an obstacle-strewn environment both under direct human control and autonomously, navigating by reference to the computer-stored world model. After arriving at the site of the spill, the vision system scanned and located the spill, thus determining its position in local and global coordinate frames. This information was used to generate a manipulator sweep pattern that resulted in the removal of the spilled material by a vacuum device

  12. Tailorable software architectures in the accelerator control system environment

    International Nuclear Information System (INIS)

    Mejuev, Igor; Kumagai, Akira; Kadokura, Eiichi

    2001-01-01

    Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user tailorability has been extensively researched in applied computer science from HCl and software engineering perspectives. Tailorability allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user tailorability in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. In this work we introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of distributed monitoring application for 12 GeV KEK Proton Synchrotron as an example. The software prototypes used in this work are based on a generic tailoring platform (VEDICI), which allows decoupling of tailoring interfaces and runtime components. While representing a reusable application-independent framework, VEDICI can be potentially applied for tailoring of arbitrary compositional Web-based applications

  13. Developing a real-time emulation of multiresolutional control architectures for complex, discrete-event systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.J.; Macro, J.G.; Brook, A.L. [Univ. of Illinois, Urbana, IL (United States)] [and others

    1996-12-31

    This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.

  14. Architectures and Algorithms for Control and Diagnostics of Coupled-Bunch Instabilities in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, Dmitry

    2003-07-08

    Modern light sources and circular colliders employ large numbers of high-intensity particle bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via resonant structures causes coherent instabilities at high beam currents. Achieving high luminosity requires the control of such unstable motion. Feedback control is challenging due to wideband nature of the problem with up to 250 MHz bandwidths required. This thesis presents digital signal processing architectures and diagnostic techniques for control of longitudinal and transverse coupled-bunch instabilities. Diagnostic capabilities integrated into the feedback system allow one to perform fast transient measurements of unstable dynamics by perturbing the beam from the controlled state via feedback and recording the time-domain response. Such measurements enable one to thoroughly characterize plant (beam) dynamics as well as performance of the feedback system. Beam dynamics can change significantly over the operating range of accelerator currents and energies . Here we present several methods for design of robust stabilizing feedback controllers. Experimental results from several accelerators are presented. A new baseband architecture for transverse feedback is described that compactly implements the digital processing functions using field-programmable gate array devices. The architecture is designed to be software configurable so that the same hardware can be used for instability control in different accelerators.

  15. Multi-agent based distributed control architecture for microgrid energy management and optimization

    International Nuclear Information System (INIS)

    Basir Khan, M. Reyasudin; Jidin, Razali; Pasupuleti, Jagadeesh

    2016-01-01

    Highlights: • A new multi-agent based distributed control architecture for energy management. • Multi-agent coordination based on non-cooperative game theory. • A microgrid model comprised of renewable energy generation systems. • Performance comparison of distributed with conventional centralized control. - Abstract: Most energy management systems are based on a centralized controller that is difficult to satisfy criteria such as fault tolerance and adaptability. Therefore, a new multi-agent based distributed energy management system architecture is proposed in this paper. The distributed generation system is composed of several distributed energy resources and a group of loads. A multi-agent system based decentralized control architecture was developed in order to provide control for the complex energy management of the distributed generation system. Then, non-cooperative game theory was used for the multi-agent coordination in the system. The distributed generation system was assessed by simulation under renewable resource fluctuations, seasonal load demand and grid disturbances. The simulation results show that the implementation of the new energy management system proved to provide more robust and high performance controls than conventional centralized energy management systems.

  16. Architectures and Algorithms for Control and Diagnostics of Coupled-Bunch Instabilities in Circular Accelerators

    International Nuclear Information System (INIS)

    Teytelman, Dmitry

    2003-01-01

    Modern light sources and circular colliders employ large numbers of high-intensity particle bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via resonant structures causes coherent instabilities at high beam currents. Achieving high luminosity requires the control of such unstable motion. Feedback control is challenging due to wideband nature of the problem with up to 250 MHz bandwidths required. This thesis presents digital signal processing architectures and diagnostic techniques for control of longitudinal and transverse coupled-bunch instabilities. Diagnostic capabilities integrated into the feedback system allow one to perform fast transient measurements of unstable dynamics by perturbing the beam from the controlled state via feedback and recording the time-domain response. Such measurements enable one to thoroughly characterize plant (beam) dynamics as well as performance of the feedback system. Beam dynamics can change significantly over the operating range of accelerator currents and energies . Here we present several methods for design of robust stabilizing feedback controllers. Experimental results from several accelerators are presented. A new baseband architecture for transverse feedback is described that compactly implements the digital processing functions using field-programmable gate array devices. The architecture is designed to be software configurable so that the same hardware can be used for instability control in different accelerators

  17. A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series.

    Science.gov (United States)

    Chambon, Stanislas; Galtier, Mathieu N; Arnal, Pierrick J; Wainrib, Gilles; Gramfort, Alexandre

    2018-04-01

    Sleep stage classification constitutes an important preliminary exam in the diagnosis of sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30 s of the signal of a sleep stage, based on the visual inspection of signals such as electroencephalograms (EEGs), electrooculograms (EOGs), electrocardiograms, and electromyograms (EMGs). We introduce here the first deep learning approach for sleep stage classification that learns end-to-end without computing spectrograms or extracting handcrafted features, that exploits all multivariate and multimodal polysomnography (PSG) signals (EEG, EMG, and EOG), and that can exploit the temporal context of each 30-s window of data. For each modality, the first layer learns linear spatial filters that exploit the array of sensors to increase the signal-to-noise ratio, and the last layer feeds the learnt representation to a softmax classifier. Our model is compared to alternative automatic approaches based on convolutional networks or decisions trees. Results obtained on 61 publicly available PSG records with up to 20 EEG channels demonstrate that our network architecture yields the state-of-the-art performance. Our study reveals a number of insights on the spatiotemporal distribution of the signal of interest: a good tradeoff for optimal classification performance measured with balanced accuracy is to use 6 EEG with 2 EOG (left and right) and 3 EMG chin channels. Also exploiting 1 min of data before and after each data segment offers the strongest improvement when a limited number of channels are available. As sleep experts, our system exploits the multivariate and multimodal nature of PSG signals in order to deliver the state-of-the-art classification performance with a small computational cost.

  18. The implementation of common object request broker architecture (CORBA) for controlling robot arm via web

    International Nuclear Information System (INIS)

    Syed Mahamad Zuhdi Amin; Mohd Yazid Idris; Wan Mohd Nasir Wan Kadir

    2001-01-01

    This paper presents the employment of the Common Object Request Broker Architecture (CORBA) technology in the implementation of our distributed Arm Robot Controller (ARC). CORBA is an industrial standard architecture based on distributed abstract object model, which is developed by Object Management Group (OMG). The architecture consists of five components i.e. Object Request Broker (ORB), Interface Definition Language (IDL), Dynamic Invocation Interface (DII), Interface Repositories (IR) and Object adapter (OA). CORBA objects are different from typical programming objects in three ways i.e. they can be executed on any platform, located anywhere on the network and written in any language that supports IDL mapping. In the implementation of the system, 5 degree of freedom (DOF) arm robot RCS 6.0 and Java as a programming mapping to the CORBA IDL. By implementing this architecture, the objects in the server machine can be distributed over the network in order to run the controller. the ultimate goal for our ARC system is to demonstrate concurrent execution of multiple arm robots through multiple instantiations of distributed object components. (Author)

  19. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    This paper reports on four fault-tolerant architectures that were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant, both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault-tolerant systems. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failure modes that may be important in nuclear power plants

  20. Advances in quantum control of three-level superconducting circuit architectures

    Energy Technology Data Exchange (ETDEWEB)

    Falci, G.; Paladino, E. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); CNR-IMM UOS Universita (MATIS), Consiglio Nazionale delle Ricerche, Catania (Italy); INFN, Sezione di Catania (Italy); Di Stefano, P.G. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University Belfast(United Kingdom); Ridolfo, A.; D' Arrigo, A. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Paraoanu, G.S. [Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science (Finland)

    2017-06-15

    Advanced control in Lambda (Λ) scheme of a solid state architecture of artificial atoms and quantized modes would allow the translation to the solid-state realm of a whole class of phenomena from quantum optics, thus exploiting new physics emerging in larger integrated quantum networks and for stronger couplings. However control solid-state devices has constraints coming from selection rules, due to symmetries which on the other hand yield protection from decoherence, and from design issues, for instance that coupling to microwave cavities is not directly switchable. We present two new schemes for the Λ-STIRAP control problem with the constraint of one or two classical driving fields being always-on. We show how these protocols are converted to apply to circuit-QED architectures. We finally illustrate an application to coherent spectroscopy of the so called ultrastrong atom-cavity coupling regime. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Learning Methods for Efficient Adoption of Contemporary Technologies in Architectural Design

    Science.gov (United States)

    Mahdavinejad, Mohammadjavad; Dehghani, Sohaib; Shahsavari, Fatemeh

    2013-01-01

    The interaction between technology and history is one of the most significant issues in achieving an efficient and progressive architecture in any era. This is a concept which stems from lesson of traditional architecture of Iran. Architecture as a part of art, has permanently been transforming just like a living organism. In fact, it has been…

  2. Architecture with landscape methods : Doctoral thesis proposal and SANAA Rolex Learning Center Lausanne Sample Field Trip

    NARCIS (Netherlands)

    Jauslin, D.

    2010-01-01

    Contemporary architecture has been strongly influenced by the concept of landscape in recent times. A new mindset evolves that changes the core of the architectural discipline: the organization and composition of architectural space as a landscape. The scope of this thesis is to investigate and

  3. Architecture with Landscape Methods : Case Study of the Rolex Learning Centre Lausanne by SANAA Tokyo

    NARCIS (Netherlands)

    Jauslin, D.

    2010-01-01

    Contemporary architecture has been strongly influenced by the concept of landscape in recent times. A new mindset evolves that changes the core of the architectural discipline: the organization and composition of architectural space as a landscape. The scope of this thesis is to investigate and

  4. Control System Architectures, Technologies and Concepts for Near Term and Future Human Exploration of Space

    Science.gov (United States)

    Boulanger, Richard; Overland, David

    2004-01-01

    Technologies that facilitate the design and control of complex, hybrid, and resource-constrained systems are examined. This paper focuses on design methodologies, and system architectures, not on specific control methods that may be applied to life support subsystems. Honeywell and Boeing have estimated that 60-80Y0 of the effort in developing complex control systems is software development, and only 20-40% is control system development. It has also been shown that large software projects have failure rates of as high as 50-65%. Concepts discussed include the Unified Modeling Language (UML) and design patterns with the goal of creating a self-improving, self-documenting system design process. Successful architectures for control must not only facilitate hardware to software integration, but must also reconcile continuously changing software with much less frequently changing hardware. These architectures rely on software modules or components to facilitate change. Architecting such systems for change leverages the interfaces between these modules or components.

  5. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    Science.gov (United States)

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-01-01

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957

  6. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture.

    Science.gov (United States)

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-09-16

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  7. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    Directory of Open Access Journals (Sweden)

    Song Zheng

    2017-09-01

    Full Text Available In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  8. Reversal Learning in Humans and Gerbils: Dynamic Control Network Facilitates Learning.

    Science.gov (United States)

    Jarvers, Christian; Brosch, Tobias; Brechmann, André; Woldeit, Marie L; Schulz, Andreas L; Ohl, Frank W; Lommerzheim, Marcel; Neumann, Heiko

    2016-01-01

    Biologically plausible modeling of behavioral reinforcement learning tasks has seen great improvements over the past decades. Less work has been dedicated to tasks involving contingency reversals, i.e., tasks in which the original behavioral goal is reversed one or multiple times. The ability to adjust to such reversals is a key element of behavioral flexibility. Here, we investigate the neural mechanisms underlying contingency-reversal tasks. We first conduct experiments with humans and gerbils to demonstrate memory effects, including multiple reversals in which subjects (humans and animals) show a faster learning rate when a previously learned contingency re-appears. Motivated by recurrent mechanisms of learning and memory for object categories, we propose a network architecture which involves reinforcement learning to steer an orienting system that monitors the success in reward acquisition. We suggest that a model sensory system provides feature representations which are further processed by category-related subnetworks which constitute a neural analog of expert networks. Categories are selected dynamically in a competitive field and predict the expected reward. Learning occurs in sequentialized phases to selectively focus the weight adaptation to synapses in the hierarchical network and modulate their weight changes by a global modulator signal. The orienting subsystem itself learns to bias the competition in the presence of continuous monotonic reward accumulation. In case of sudden changes in the discrepancy of predicted and acquired reward the activated motor category can be switched. We suggest that this subsystem is composed of a hierarchically organized network of dis-inhibitory mechanisms, dubbed a dynamic control network (DCN), which resembles components of the basal ganglia. The DCN selectively activates an expert network, corresponding to the current behavioral strategy. The trace of the accumulated reward is monitored such that large sudden

  9. A modular control architecture for real-time synchronous and asynchronous systems

    International Nuclear Information System (INIS)

    Butler, P.L.; Jones, J.P.

    1993-01-01

    This paper describes a control architecture for real-time control of complex robotic systems. The Modular Integrated Control Architecture (MICA), which is actually two complementary control systems, recognizes and exploits the differences between asynchronous and synchronous control. The asynchronous control system simulates shared memory on a heterogeneous network. For control information, a portable event-scheme is used. This scheme provides consistent interprocess coordination among multiple tasks on a number of distributed systems. The machines in the network can vary with respect to their native operating systems and the intemal representation of numbers they use. The synchronous control system is needed for tight real-time control of complex electromechanical systems such as robot manipulators, and the system uses multiple processors at a specified rate. Both the synchronous and asynchronous portions of MICA have been developed to be extremely modular. MICA presents a simple programming model to code developers and also considers the needs of system integrators and maintainers. MICA has been used successfully in a complex robotics project involving a mobile 7-degree-of-freedom manipulator in a heterogeneous network with a body of software totaling over 100,000 lines of code. MICA has also been used in another robotics system, controlling a commercial long-reach manipulator

  10. Measuring strategic control in artificial grammar learning.

    Science.gov (United States)

    Norman, Elisabeth; Price, Mark C; Jones, Emma

    2011-12-01

    In response to concerns with existing procedures for measuring strategic control over implicit knowledge in artificial grammar learning (AGL), we introduce a more stringent measurement procedure. After two separate training blocks which each consisted of letter strings derived from a different grammar, participants either judged the grammaticality of novel letter strings with respect to only one of these two grammars (pure-block condition), or had the target grammar varying randomly from trial to trial (novel mixed-block condition) which required a higher degree of conscious flexible control. Random variation in the colour and font of letters was introduced to disguise the nature of the rule and reduce explicit learning. Strategic control was observed both in the pure-block and mixed-block conditions, and even among participants who did not realise the rule was based on letter identity. This indicated detailed strategic control in the absence of explicit learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. On equivalence classes in iterative learning control

    NARCIS (Netherlands)

    Verwoerd, M.H.A.; Meinsma, Gjerrit; de Vries, Theodorus J.A.

    2003-01-01

    This paper advocates a new approach to study the relation between causal iterative learning control (ILC) and conventional feedback control. Central to this approach is the introduction of the set of admissible pairs (of operators) defined with respect to a family of iterations. Considered are two

  12. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.

    Science.gov (United States)

    Mutasa, Simukayi; Chang, Peter D; Ruzal-Shapiro, Carrie; Ayyala, Rama

    2018-02-05

    Bone age assessment (BAA) is a commonly performed diagnostic study in pediatric radiology to assess skeletal maturity. The most commonly utilized method for assessment of BAA is the Greulich and Pyle method (Pediatr Radiol 46.9:1269-1274, 2016; Arch Dis Child 81.2:172-173, 1999) atlas. The evaluation of BAA can be a tedious and time-consuming process for the radiologist. As such, several computer-assisted detection/diagnosis (CAD) methods have been proposed for automation of BAA. Classical CAD tools have traditionally relied on hard-coded algorithmic features for BAA which suffer from a variety of drawbacks. Recently, the advent and proliferation of convolutional neural networks (CNNs) has shown promise in a variety of medical imaging applications. There have been at least two published applications of using deep learning for evaluation of bone age (Med Image Anal 36:41-51, 2017; JDI 1-5, 2017). However, current implementations are limited by a combination of both architecture design and relatively small datasets. The purpose of this study is to demonstrate the benefits of a customized neural network algorithm carefully calibrated to the evaluation of bone age utilizing a relatively large institutional dataset. In doing so, this study will aim to show that advanced architectures can be successfully trained from scratch in the medical imaging domain and can generate results that outperform any existing proposed algorithm. The training data consisted of 10,289 images of different skeletal age examinations, 8909 from the hospital Picture Archiving and Communication System at our institution and 1383 from the public Digital Hand Atlas Database. The data was separated into four cohorts, one each for male and female children above the age of 8, and one each for male and female children below the age of 10. The testing set consisted of 20 radiographs of each 1-year-age cohort from 0 to 1 years to 14-15+ years, half male and half female. The testing set included left

  13. Proportional Load Sharing and Stability of DC Microgrid with Distributed Architecture Using SM Controller

    Directory of Open Access Journals (Sweden)

    Muhammad Rashad

    2018-01-01

    Full Text Available DC microgrids look attractive in distribution systems due to their high reliability, high efficiency, and easy integration with renewable energy sources. The key objectives of the DC microgrid include proportional load sharing and precise voltage regulation. Droop controllers are based on decentralized control architectures which are not effective in achieving these objectives simultaneously due to the voltage error and load power variation. A centralized controller can achieve these objectives using a high speed communication link. However, it loses reliability due to the single point failure. Additionally, these controllers are realized through proportional integral (PI controllers which cannot ensure load sharing and stability in all operating conditions. To address limitations, a distributed architecture using sliding mode (SM controller utilizing low bandwidth communication is proposed for DC microgrids in this paper. The main advantages are high reliability, load power sharing, and precise voltage regulation. Further, the SM controller shows high robustness, fast dynamic response, and good stability for large load variations. To analyze the stability and dynamic performance, a system model is developed and its transversality, reachability, and equivalent control conditions are verified. Furthermore, the dynamic behavior of the modeled system is investigated for underdamped and critically damped responses. Detailed simulations are carried out to show the effectiveness of the proposed controller.

  14. On the importance of controlling film architecture in detecting prostate specific antigen

    Science.gov (United States)

    Graça, Juliana Santos; Miyazaki, Celina Massumi; Shimizu, Flavio Makoto; Volpati, Diogo; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2018-03-01

    Immunosensors made with nanostructured films are promising for detecting cancer biomarkers, even at early stages of the disease, but this requires control of film architecture to preserve the biological activity of immobilized antibodies. In this study, we used electrochemical impedance spectroscopy (EIS) to detect Prostate Specific Antigen (PSA) with immunosensors produced with layer-by-layer (LbL) films containing anti-PSA antibodies in two distinct film architectures. The antibodies were either adsorbed from solutions in which they were free, or from solutions where they were incorporated into liposomes of dipalmitoyl phosphatidyl glycerol (DPPG). Incorporation into DPPG liposomes was confirmed with surface plasmon resonance experiments, while the importance of electrostatic interactions on the electrical response was highlighted using the Finite Difference Time-Domain Method (FDTD). The sensitivity of both architectures was sufficient to detect the threshold value to diagnose prostate cancer (ca. 4 ng mL-1). In contrast to expectation, the sensor with the antibodies incorporated into DPPG liposomes had lower sensitivity, though the range of concentrations amenable to detection increased, according to the fitting of the EIS data using the Langmuir-Freundlich adsorption model. The performance of the two film architectures was compared qualitatively by plotting the data with a multidimensional projection technique, which constitutes a generic approach for optimizing immunosensors and other types of sensors.

  15. Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded

    Science.gov (United States)

    Culley, Dennis

    2010-01-01

    Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders

  16. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    Science.gov (United States)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  17. Control Architecture for Intentional Island Operation in Distribution Network with High Penetration of Distributed Generation

    DEFF Research Database (Denmark)

    Chen, Yu

    , the feasibility of the application of Artificial Neural Network (ANN) to ICA is studied, in order to improve the computation efficiency for ISR calculation. Finally, the integration of ICA into Dynamic Security Assessment (DSA), the ICA implementation, and the development of ICA are discussed....... to utilize them for maintaining the security of the power supply under the emergency situations, has been of great interest for study. One proposal is the intentional island operation. This PhD project is intended to develop a control architecture for the island operation in distribution system with high...... amount of DGs. As part of the NextGen project, this project focuses on the system modeling and simulation regarding the control architecture and recommends the development of a communication and information exchange system based on IEC 61850. This thesis starts with the background of this PhD project...

  18. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    Science.gov (United States)

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  19. Emerging opportunities in enterprise integration with open architecture computer numerical controls

    Science.gov (United States)

    Hudson, Christopher A.

    1997-01-01

    The shift to open-architecture machine tool computer numerical controls is providing new opportunities for metal working oriented manufacturers to streamline the entire 'art to part' process. Production cycle times, accuracy, consistency, predictability and process reliability are just some of the factors that can be improved, leading to better manufactured product at lower costs. Open architecture controllers are allowing manufacturers to apply general purpose software and hardware tools increase where previous approaches relied on proprietary and unique hardware and software. This includes DNC, SCADA, CAD, and CAM, where the increasing use of general purpose components is leading to lower cost system that are also more reliable and robust than the past proprietary approaches. In addition, a number of new opportunities exist, which in the past were likely impractical due to cost or performance constraints.

  20. Parametric Approach to Assessing Performance of High-Lift Device Active Flow Control Architectures

    Directory of Open Access Journals (Sweden)

    Yu Cai

    2017-02-01

    Full Text Available Active Flow Control is at present an area of considerable research, with multiple potential aircraft applications. While the majority of research has focused on the performance of the actuators themselves, a system-level perspective is necessary to assess the viability of proposed solutions. This paper demonstrates such an approach, in which major system components are sized based on system flow and redundancy considerations, with the impacts linked directly to the mission performance of the aircraft. Considering the case of a large twin-aisle aircraft, four distinct active flow control architectures that facilitate the simplification of the high-lift mechanism are investigated using the demonstrated approach. The analysis indicates a very strong influence of system total mass flow requirement on architecture performance, both for a typical mission and also over the entire payload-range envelope of the aircraft.

  1. Architectural Narratives

    DEFF Research Database (Denmark)

    Kiib, Hans

    2010-01-01

    a functional framework for these concepts, but tries increasingly to endow the main idea of the cultural project with a spatially aesthetic expression - a shift towards “experience architecture.” A great number of these projects typically recycle and reinterpret narratives related to historical buildings......In this essay, I focus on the combination of programs and the architecture of cultural projects that have emerged within the last few years. These projects are characterized as “hybrid cultural projects,” because they intend to combine experience with entertainment, play, and learning. This essay...... and architectural heritage; another group tries to embed new performative technologies in expressive architectural representation. Finally, this essay provides a theoretical framework for the analysis of the political rationales of these projects and for the architectural representation bridges the gap between...

  2. Active learning units interrelated using TIC’s tools in architectural construction

    Directory of Open Access Journals (Sweden)

    Núria Martí Audí

    2013-08-01

    Full Text Available 0 0 1 141 779 USAL 6 1 919 14.0 Normal 0 21 false false false ES JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:ES; mso-fareast-language:EN-US;} The presence of new technologies in the university world is a matter of fact. Nevertheless, it has not always blended correctly as in many cases TIC incorporation has not taken alumni opinion understood as final users. A correct implementation might evaluate some variables as satisfaction, need, interest and finally that versatility to adapt it to proficient professional training on a regular basis. This paper analyses a new approach to learning in the field of Architectural Construction based on a series of strategically designed and interactive units. The centre of these is the collaborative project; this is based on complex problem-solving situations akin to the professional world; where theory and practice are combined in a discovery-learning process. The tools of Information and Communication Technology are applied, simultaneously facilitating the student’s autonomy in acquiring skills and knowledge.

  3. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    Science.gov (United States)

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  4. Fuzzy logic controller architecture for water level control in nuclear power plant steam generator using ANFIS training method

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Ekrami, AmirHasan; Naseri, Zahra

    2003-01-01

    Since suitable control of water level can greatly enhance the operation of a power station, a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical model of the object to be controlled. It is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial membership functions will be trained and appropriate functions are generated to control water level inside the steam generator while using the stated rules. The proposed architecture can construct an input-output mapping based on both human knowledge (in the from of fuzzy if - then rules) and stipulated input-output data. This fuzzy logic controller is applied to the steam generator level control by computer simulations. The simulation results confirm the excellent performance of this control architecture in compare with a well-turned PID controller. (author)

  5. Learning from Health Information Exchange Technical Architecture and Implementation in Seven Beacon Communities

    Science.gov (United States)

    McCarthy, Douglas B.; Propp, Karen; Cohen, Alexander; Sabharwal, Raj; Schachter, Abigail A.; Rein, Alison L.

    2014-01-01

    As health care providers adopt and make “meaningful use” of health information technology (health IT), communities and delivery systems must set up the infrastructure to facilitate health information exchange (HIE) between providers and numerous other stakeholders who have a role in supporting health and care. By facilitating better communication and coordination between providers, HIE has the potential to improve clinical decision-making and continuity of care, while reducing unnecessary use of services. When implemented as part of a broader strategy for health care delivery system and payment reform, HIE capability also can enable the use of analytic tools needed for population health management, patient engagement in care, and continuous learning and improvement. The diverse experiences of seven communities that participated in the three-year federal Beacon Community Program offer practical insight into factors influencing the technical architecture of exchange infrastructure and its role in supporting improved care, reduced cost, and a healthier population. The case studies also document challenges faced by the communities, such as significant time and resources required to harmonize variations in the interpretation of data standards. Findings indicate that their progress developing community-based HIE strategies, while driven by local needs and objectives, is also influenced by broader legal, policy, and market conditions. PMID:25848591

  6. Learning from health information exchange technical architecture and implementation in seven beacon communities.

    Science.gov (United States)

    McCarthy, Douglas B; Propp, Karen; Cohen, Alexander; Sabharwal, Raj; Schachter, Abigail A; Rein, Alison L

    2014-01-01

    As health care providers adopt and make "meaningful use" of health information technology (health IT), communities and delivery systems must set up the infrastructure to facilitate health information exchange (HIE) between providers and numerous other stakeholders who have a role in supporting health and care. By facilitating better communication and coordination between providers, HIE has the potential to improve clinical decision-making and continuity of care, while reducing unnecessary use of services. When implemented as part of a broader strategy for health care delivery system and payment reform, HIE capability also can enable the use of analytic tools needed for population health management, patient engagement in care, and continuous learning and improvement. The diverse experiences of seven communities that participated in the three-year federal Beacon Community Program offer practical insight into factors influencing the technical architecture of exchange infrastructure and its role in supporting improved care, reduced cost, and a healthier population. The case studies also document challenges faced by the communities, such as significant time and resources required to harmonize variations in the interpretation of data standards. Findings indicate that their progress developing community-based HIE strategies, while driven by local needs and objectives, is also influenced by broader legal, policy, and market conditions.

  7. Control software architecture and operating modes of the Model M-2 maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Satterlee, P.E. Jr.; Martin, H.L.; Herndon, J.N.

    1984-04-01

    The Model M-2 maintenance system is the first completely digitally controlled servomanipulator. The M-2 system allows dexterous operations to be performed remotely using bilateral force-reflecting master/slave techniques, and its integrated operator interface takes advantage of touch-screen-driven menus to allow selection of all possible operating modes. The control system hardware for this system has been described previously. This paper describes the architecture of the overall control system. The system's various modes of operation are identified, the software implementation of each is described, system diagnostic routines are described, and highlights of the computer-augmented operator interface are discussed. 3 references, 5 figures.

  8. The Architecture of the CMS Level-1 Trigger Control and Monitoring System

    CERN Document Server

    Magrans de Abril, Marc; Hammer, Josef; Hartl, Christian; Xie, Zhen

    2011-01-01

    The architecture of the Level-1 Trigger Control and Monitoring system for the CMS experiment is presented. This system has been installed and commissioned on the trigger online computers and is currently used for data taking at the LHC. This is a medium-size distributed system that runs over 40 PCs and 200 processes that control about 4000 electronic boards. It has been designed to handle the trigger configuration and monitoring during data taking as well as all communications with the main run control of CMS. Furthermore its design has foreseen the provision of the software infrastructure for detailed testing of the trigger system during beam down time.

  9. Supervisory control in a distributed, hierarchical architecture for a multimodular LMR

    International Nuclear Information System (INIS)

    Otaduy, P.J.; Brittain, C.R.; Rovere, L.A.

    1989-01-01

    This paper describes the directions and present status of the research in supervisory control for multimodular nuclear plants being conducted at Oak Ridge National Laboratory (ORNL) as part of US Department of Energy's (DOE) Advanced Controls Program. First, the hierarchical supervisory control structure envisioned for a Power Reactor Inherently Safe Module (PRISM) multimodular LMR is discussed. Next, the architecture of the supervisory module closest to the process actuators and its implementation for demonstration in a network of CPU's are presented. 12 refs., 3 figs

  10. A Heterogeneous Multi-core Architecture with a Hardware Kernel for Control Systems

    DEFF Research Database (Denmark)

    Li, Gang; Guan, Wei; Sierszecki, Krzysztof

    2012-01-01

    Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints....... This paper presents a multi-core architecture incorporating a hardware kernel on FPGAs, intended for high performance applications in control engineering domain. First, the hardware kernel is investigated on the basis of a component-based real-time kernel HARTEX (Hard Real-Time Executive for Control Systems...

  11. Control software architecture and operating modes of the Model M-2 maintenance system

    International Nuclear Information System (INIS)

    Satterlee, P.E. Jr.; Martin, H.L.; Herndon, J.N.

    1984-04-01

    The Model M-2 maintenance system is the first completely digitally controlled servomanipulator. The M-2 system allows dexterous operations to be performed remotely using bilateral force-reflecting master/slave techniques, and its integrated operator interface takes advantage of touch-screen-driven menus to allow selection of all possible operating modes. The control system hardware for this system has been described previously. This paper describes the architecture of the overall control system. The system's various modes of operation are identified, the software implementation of each is described, system diagnostic routines are described, and highlights of the computer-augmented operator interface are discussed. 3 references, 5 figures

  12. Predicting the academic success of architecture students by pre-enrolment requirement: using machine-learning techniques

    Directory of Open Access Journals (Sweden)

    Ralph Olusola Aluko

    2016-12-01

    Full Text Available In recent years, there has been an increase in the number of applicants seeking admission into architecture programmes. As expected, prior academic performance (also referred to as pre-enrolment requirement is a major factor considered during the process of selecting applicants. In the present study, machine learning models were used to predict academic success of architecture students based on information provided in prior academic performance. Two modeling techniques, namely K-nearest neighbour (k-NN and linear discriminant analysis were applied in the study. It was found that K-nearest neighbour (k-NN outperforms the linear discriminant analysis model in terms of accuracy. In addition, grades obtained in mathematics (at ordinary level examinations had a significant impact on the academic success of undergraduate architecture students. This paper makes a modest contribution to the ongoing discussion on the relationship between prior academic performance and academic success of undergraduate students by evaluating this proposition. One of the issues that emerges from these findings is that prior academic performance can be used as a predictor of academic success in undergraduate architecture programmes. Overall, the developed k-NN model can serve as a valuable tool during the process of selecting new intakes into undergraduate architecture programmes in Nigeria.

  13. The architecture of the CMS Level-1 Trigger Control and Monitoring System using UML

    International Nuclear Information System (INIS)

    Magrans de Abril, Marc; Ghabrous Larrea, Carlos; Lazaridis, Christos; Da Rocha Melo, Jose L; Hammer, Josef; Hartl, Christian

    2011-01-01

    The architecture of the Compact Muon Solenoid (CMS) Level-1 Trigger Control and Monitoring software system is presented. This system has been installed and commissioned on the trigger online computers and is currently used for data taking. It has been designed to handle the trigger configuration and monitoring during data taking as well as all communications with the main run control of CMS. Furthermore its design has foreseen the provision of the software infrastructure for detailed testing of the trigger system during beam down time. This is a medium-size distributed system that runs over 40 PCs and 200 processes that control about 4000 electronic boards. The architecture of this system is described using the industry-standard Universal Modeling Language (UML). This way the relationships between the different subcomponents of the system become clear and all software upgrades and modifications are simplified. The described architecture has allowed for frequent upgrades that were necessary during the commissioning phase of CMS when the trigger system evolved constantly. As a secondary objective, the paper provides a UML usage example and tries to encourage the standardization of the software documentation of large projects across the LHC and High Energy Physics community.

  14. The architecture of the CMS Level-1 Trigger Control and Monitoring System using UML

    Science.gov (United States)

    Magrans de Abril, Marc; Da Rocha Melo, Jose L.; Ghabrous Larrea, Carlos; Hammer, Josef; Hartl, Christian; Lazaridis, Christos

    2011-12-01

    The architecture of the Compact Muon Solenoid (CMS) Level-1 Trigger Control and Monitoring software system is presented. This system has been installed and commissioned on the trigger online computers and is currently used for data taking. It has been designed to handle the trigger configuration and monitoring during data taking as well as all communications with the main run control of CMS. Furthermore its design has foreseen the provision of the software infrastructure for detailed testing of the trigger system during beam down time. This is a medium-size distributed system that runs over 40 PCs and 200 processes that control about 4000 electronic boards. The architecture of this system is described using the industry-standard Universal Modeling Language (UML). This way the relationships between the different subcomponents of the system become clear and all software upgrades and modifications are simplified. The described architecture has allowed for frequent upgrades that were necessary during the commissioning phase of CMS when the trigger system evolved constantly. As a secondary objective, the paper provides a UML usage example and tries to encourage the standardization of the software documentation of large projects across the LHC and High Energy Physics community.

  15. A distributed hierarchical architecture of expert systems for supervisory control of multimodular nuclear reactors

    International Nuclear Information System (INIS)

    Otaduy, P.J.; Brittain, C.R.; Rovere, L.A.; Gove, N.B.

    1991-01-01

    A hierarchical supervisory control architecture has being implemented at ORNL to coordinate the controllers of a multimodular nuclear plant. The supervisory controller form a network of distributed expert system interfaced with a real-time simulation of the plant, the plant's automatic controllers, and the human operator. The main goal of the supervisory controllers is to maintain the plant operating within safety envelopes while optimizing availability, minimizing stress to components and operators, and facilitating operations. Representative rules implementing strategies for situation dependent reassignment of process goals by embedding diagnostics into the control philosophy are discussed. It should noted that the control philosophies here described use the ALMR concept for illustration purposes and are not part of the official ALMR design at this time. 3 refs., 1 fig

  16. Synthesis of fixed-architecture, robust H 2 and H ∞ controllers

    Directory of Open Access Journals (Sweden)

    Collins Jr. Emmanuel G.

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H 2 or H ∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H 2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H ∞ performance. Both robust H 2 and H ∞ , controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H ∞ performance is much more computationally intensive than that for robust H 2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis

  17. Synthesis of fixed-architecture, robust H2 and H∞ controllers

    Directory of Open Access Journals (Sweden)

    Emmanuel G. Collins

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H2 or H∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H∞ performance. Both robust H2 and H∞, controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H∞ performance is much more computationally intensive than that for robust H2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis.

  18. System architecture of Detector Control and safety for the ATLAS Inner Detector Upgrade

    International Nuclear Information System (INIS)

    Ferrere, D.; Kersten, S.

    2011-01-01

    In the current ATLAS Upgrade plan a new Inner Detector (ID) based upon silicon sensor technology is being considered. The operational monitoring and control of the ID will be very demanding. The Detector Control System (DCS) is a common tool that is essential for the operational safety of a system. Even at this early stage the DCS system architecture has to be defined such that it is well integrated and optimized for its later implementation and use. For example the DCS diagnostics for the front-end (FE) chips is a serious option being considered that needs an early requirement and specification definition. In addition one of the main constraints is the service reuse between the service patch panels of the ATLAS ID and the counting room that limits the number of electrical lines to be reused. Conceptual differences in terms of readout architecture and layout have been identified between the strip and the pixel detector that lead to two distinct architectures. Nevertheless, the limitation of available electrical lines going to the counting room as well as the low material budget requirements inside the ID volume are two major constraints that lead the ID to consider an on-detector radiation hard integrated circuitry for the slow control. At this stage of the project, the definitions of the logical actions and protocol for the ADCs of such a chip are still being specified. In addition the experience gained from the current ID will be essential for the guidance of tuning the future DCS architecture in the coming years.

  19. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    Directory of Open Access Journals (Sweden)

    Margarita Mauro-Herrera

    Full Text Available The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet and its wild relative S. viridis (green foxtail. In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.

  20. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    Science.gov (United States)

    Mauro-Herrera, Margarita; Doust, Andrew N

    2016-01-01

    The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.

  1. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    Four fault tolerant architectures were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant (TMR), both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault tolerant systems. An advantage of fault-tolerant controllers over those not fault tolerant, is that fault-tolerant controllers continue to function after the occurrence of most single hardware faults. However, most fault-tolerant controllers have single hardware components that will cause system failure, almost all controllers have single points of failure in software, and all are subject to common cause failures. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failures modes that may be important in nuclear power plants. 7 refs., 4 tabs

  2. Learning System Center App Controller

    CERN Document Server

    Naeem, Nasir

    2015-01-01

    This book is intended for IT professionals working with Hyper-V, Azure cloud, VMM, and private cloud technologies who are looking for a quick way to get up and running with System Center 2012 R2 App Controller. To get the most out of this book, you should be familiar with Microsoft Hyper-V technology. Knowledge of Virtual Machine Manager is helpful but not mandatory.

  3. Software architecture for a multi-purpose real-time control unit for research purposes

    Science.gov (United States)

    Epple, S.; Jung, R.; Jalba, K.; Nasui, V.

    2017-05-01

    A new, freely programmable, scalable control system for academic research purposes was developed. The intention was, to have a control unit capable of handling multiple PT1000 temperature sensors at reasonable accuracy and temperature range, as well as digital input signals and providing powerful output signals. To take full advantage of the system, control-loops are run in real time. The whole eight bit system with very limited memory runs independently of a personal computer. The two on board RS232 connectors allow to connect further units or to connect other equipment, as required in real time. This paper describes the software architecture for the third prototype that now provides stable measurements and an improvement in accuracy compared to the previous designs. As test case a thermal solar system to produce hot tap water and assist heating in a single-family house was implemented. The solar fluid pump was power-controlled and several temperatures at different points in the hydraulic system were measured and used in the control algorithms. The software architecture proved suitable to test several different control strategies and their corresponding algorithms for the thermal solar system.

  4. Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Becknell, Nigel [Department; Materials; Son, Yoonkook [Department; Kim, Dohyung [Department; Li, Dongguo [Materials; Yu, Yi [Department; Niu, Zhiqiang [Department; Lei, Teng [Department; Sneed, Brian T. [Center; More, Karren L. [Center; Markovic, Nenad M. [Materials; Stamenkovic, Vojislav R. [Materials; Yang, Peidong [Department; Materials; Department; Kavli Energy NanoSciences Institute, Berkeley, California 94720, United States

    2017-08-08

    Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive elpment, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed similar to 10 times higher specific and similar to 6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.

  5. Comparative assessment of instrumentation and control (I and C) system architectures for research reactors

    International Nuclear Information System (INIS)

    Khalil, Rah Man; Heo, Gyun Young; Son, Han Seong; Kim, Young Ki; Park, Jae Kwan

    2012-01-01

    Application of digital I and C has increased in nuclear industry since last two decades but lack of experience, innovative and naive nature of technology and insufficient failure information raised questions on its use. The issues has been highlighted due to the use of digital I and C which were not relevant to analog. These are the potential weakness of digital systems for Common Cause Failure, threat to system security and reliability due to inter channel communication, need for highly integrated control room and difficulty to assess the digital I and C reliability. In the existing scenario, HANARO and JRTR have hybrid I and C systems (digital plus analog) whereas OPAL is fully digitalized. In order to authenticate the choice of fully digital I and C architecture for research reactor, it is required to perform assessment from risk point of view, cyber security as well other issues. The architecture assessment method and restrictions are discussed in the next part of article

  6. Intelligent autonomy for unmanned marine vehicles robotic control architecture based on service-oriented agents

    CERN Document Server

    Insaurralde, Carlos C

    2015-01-01

    This book presents an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The presented ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. It is shown that they are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This book also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions.

  7. Network based control point for UPnP QoS architecture

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Wessing, Henrik; Rossello Busquet, Ana

    2011-01-01

    Enabling coexistence of non-UPnP Devices in an UPnP QoS Architecture is an important issue that might have a major impact on the deployment and usability of UPnP in future home networks. The work presented here shows potential issues of placing non-UPnP Device in the network managed by UPnP QoS. We...... address this issue by extensions to the UPnP QoS Architecture that can prevent non-UPnP Devices from degrading the overall QoS level. The obtained results show that deploying Network Based Control Point service with efficient traffic classifier, improves significantly the end-to-end packet delay...

  8. Comparative assessment of instrumentation and control (I and C) system architectures for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Rah Man; Heo, Gyun Young [Kyung Hee Univ., Seoul (Korea, Republic of); Son, Han Seong [Joongbu Univ., Chungnam (Korea, Republic of); Kim, Young Ki; Park, Jae Kwan [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Application of digital I and C has increased in nuclear industry since last two decades but lack of experience, innovative and naive nature of technology and insufficient failure information raised questions on its use. The issues has been highlighted due to the use of digital I and C which were not relevant to analog. These are the potential weakness of digital systems for Common Cause Failure, threat to system security and reliability due to inter channel communication, need for highly integrated control room and difficulty to assess the digital I and C reliability. In the existing scenario, HANARO and JRTR have hybrid I and C systems (digital plus analog) whereas OPAL is fully digitalized. In order to authenticate the choice of fully digital I and C architecture for research reactor, it is required to perform assessment from risk point of view, cyber security as well other issues. The architecture assessment method and restrictions are discussed in the next part of article.

  9. A Combination of Machine Learning and Cerebellar-like Neural Networks for the Motor Control and Motor Learning of the Fable Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, in the form of a Unit Learning Machine. The LWPR algorithm optimizes...... the input space and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar-like microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar-like circuits including analytical...

  10. Digital control systems training on a distance learning platform

    Directory of Open Access Journals (Sweden)

    Jan PIECHA

    2009-01-01

    Full Text Available The paper deals with new training technologies development based on approach to distance learning website, implemented in the laboratory of a Traffic Engineering study branch at Faculty of Transport. The discussed computing interface allows students complete knowledge of traffic controllers’ architecture and machine language programming fundamentals. These training facilities are available at home; at their remote terminal. The training resources consist of electronic / computer based training; guidebooks and software units. The laboratory provides the students with an interface entering into simulation packages and programming interfaces, supporting the web training facilities. The courseware complexity selection is one of the most difficult factors in intelligent training unit’s development. The dynamically configured application provides the user with his individually set structure of the training resources. The trainee controls the application structure and complexity, from the time he started. For simplifying the training process and studying activities, several unifications were provided. The introduced ideas need various standardisations, simplifying the e-learning units’ development and application control processes [8], [9]. Further training facilities development concerns virtual laboratory environment organisation in laboratories of Transport Faculty.

  11. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  12. Approaches to Learning to Control Dynamic Uncertainty

    Directory of Open Access Journals (Sweden)

    Magda Osman

    2015-10-01

    Full Text Available In dynamic environments, when faced with a choice of which learning strategy to adopt, do people choose to mostly explore (maximizing their long term gains or exploit (maximizing their short term gains? More to the point, how does this choice of learning strategy influence one’s later ability to control the environment? In the present study, we explore whether people’s self-reported learning strategies and levels of arousal (i.e., surprise, stress correspond to performance measures of controlling a Highly Uncertain or Moderately Uncertain dynamic environment. Generally, self-reports suggest a preference for exploring the environment to begin with. After which, those in the Highly Uncertain environment generally indicated they exploited more than those in the Moderately Uncertain environment; this difference did not impact on performance on later tests of people’s ability to control the dynamic environment. Levels of arousal were also differentially associated with the uncertainty of the environment. Going beyond behavioral data, our model of dynamic decision-making revealed that, in actual fact, there was no difference in exploitation levels between those in the highly uncertain or moderately uncertain environments, but there were differences based on sensitivity to negative reinforcement. We consider the implications of our findings with respect to learning and strategic approaches to controlling dynamic uncertainty.

  13. Bilateral Learning and Teaching in Chinese-Australian Arts and Architecture

    Science.gov (United States)

    Joubert, Lindy; Whitford, Steven

    2006-01-01

    A collaborative design-based, cross-cultural exchange between the Chinese School of Architecture, Tsinghua University of Beijing, and the Faculty of Architecture, Building, and Planning at the University of Melbourne is the case study presented in this article. Two design studios were conducted: one in the Master of Urban Design program, and the…

  14. Music Technology Competencies for Education: A Proposal for a Pedagogical Architecture for Distance Learning

    Science.gov (United States)

    Rosas, Fátima Weber; Rocha Machado, Leticia; Behar, Patricia Alejandra

    2016-01-01

    This article proposes a pedagogical architecture (PA) focused on the development of competencies for music technology in education. This PA used free Web 3.0 technologies, mainly those related to production and musical composition. The pedagogical architecture is geared for teachers and those pursing a teaching degree, working in distance…

  15. A PRIVACY MANAGEMENT ARCHITECTURE FOR PATIENT-CONTROLLED PERSONAL HEALTH RECORD SYSTEM

    Directory of Open Access Journals (Sweden)

    MD. NURUL HUDA

    2009-06-01

    Full Text Available Patient-controlled personal health record systems can help make health care safer, cheaper, and more convenient by facilitating patients to 1 grant any care provider access to their complete personal health records anytime from anywhere, 2 avoid repeated tests and 3 control their privacy transparently. In this paper, we present the architecture of our Privacy-aware Patient-controlled Personal Health Record (P3HR system through which a patient can view her integrated health history, and share her health information transparently with others (e.g., healthcare providers. Access to the health information of a particular patient is completely controlled by that patient. We also carry out intuitive security and privacy analysis of the P3HR system architecture considering different types of security attacks. Finally, we describe a prototype implementation of the P3HR system that we developed reflecting the special view of Japanese society. The most important advantage of P3HR system over other existing systems is that most likely P3HR system provides complete privacy protection without losing data accuracy. Unlike traditional partially anonymous health records (e.g., using k-anonymity or l-diversity, the health records in P3HR are closer to complete anonymity, and yet preserve data accuracy. Our approach makes it very unlikely that patients could be identified by an attacker from their anonymous health records in the P3HR system.

  16. Deep learning and model predictive control for self-tuning mode-locked lasers

    Science.gov (United States)

    Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.

    2018-03-01

    Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.

  17. Analysis of control and management plane for hybrid fiber radio architectures

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Pham, Tien Thang; Soler, José

    2010-01-01

    This paper presents the existing Radio over Fiber (RoF) architectures and focuses on the control and management plane of the Remote Antenna Unit (RAU). Broadband wireless standards, such as WiMAX and LTE, incorporate optical technologies following the distributed base station concept. The control...... and management of the RAU becomes a critical task, since it can facilitate allocation of resources, configuration and upgrade of the remote unit and constant monitoring of its performance. In the case of baseband over fiber, two protocols (OBSAI and CPRI) introduce a well-defined control and management plane....... In the case of intermediate/radio frequency over fiber, this paper presents a simple approach, which can provide configurability and real-time monitoring of the RAU over the same optical link. This is realized by multiplexing high frequency user data with baseband frequency control data at the Central Office...

  18. Digital control for nuclear reactors - lessons learned

    International Nuclear Information System (INIS)

    Bernard, J.A.; Aviles, B.N.; Lanning, D.D.

    1992-01-01

    Lessons learned during the course of the now decade-old MIT program on the digital control of nuclear reactors are enumerated. Relative to controller structure, these include the importance of a separate safety system, the need for signal validation, the role of supervisory algorithms, the significance of command validation, and the relevance of automated reasoning. Relative to controller implementation, these include the value of nodal methods to the creation of real-time reactor physics and thermal hydraulic models, the advantages to be gained from the use of real-time system models, and the importance of a multi-tiered structure to the simultaneous achievement of supervisory, global, and local control. Block diagrams are presented of proposed controllers and selected experimental and simulation-study results are shown. In addition, a history is given of the MIT program on reactor digital control

  19. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback

    Science.gov (United States)

    Humphreys, William M, Jr.; Culliton, William G.

    2008-01-01

    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  20. A Software Architecture for Control of Value Production in Federated Systems

    Directory of Open Access Journals (Sweden)

    Jay S. Bayne

    2003-08-01

    Full Text Available Federated enterprises are defined as interactive commercial entities that produce products and consume resources through a network of open, free-market transactions. Value production in such entities is defined as the real-time computation of enterprise value propositions. These computations are increasingly taking place in a grid-connected space – a space that must provide for secure, real-time, reliable end-to-end transactions governed by formal trading protocols. We present the concept of a value production unit (VPU as a key element of federated trading systems, and a software architecture for automation and control of federations of such VPUs.

  1. Background to the teaching-learning process of visual arts for appreciation of architecture in the second cycle

    Directory of Open Access Journals (Sweden)

    Paula Ester Azuy Chiroles

    2016-12-01

    Full Text Available This article is a systematization of the definitions given to the concept of Plastic Arts from different theoretical and historical-logical study of the teaching and learning of the arts to the appreciation of architecture in the second cycle, in which it is shown that This has been a failure and / or limiting in Primary Education for the formation of school; (For the appreciation of architecture, as part of the manifestations of the arts, offers the best potential to enhance the aesthetic taste and strengthening cultural identity the documentary analysis to various documents of the curriculum of primary education between which are cited: the ministerial resolutions, Curriculum programs, television programming, educational software, methodological guidance curriculum of primary education, methodological preparations corroborate this problem.

  2. Concurrent Learning of Control in Multi agent Sequential Decision Tasks

    Science.gov (United States)

    2018-04-17

    Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement... learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable... learning of policies in Dec-POMDPs, established performance bounds, evaluated these algorithms both theoretically and empirically, The views

  3. Algebraic and adaptive learning in neural control systems

    Science.gov (United States)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  4. Non-technical approach to the challenges of ecological architecture: Learning from Van der Laan

    Directory of Open Access Journals (Sweden)

    María-Jesús González-Díaz

    2016-06-01

    Full Text Available Up to now, ecology has a strong influence on the development of technical and instrumental aspects of architecture, such as renewable and efficient of resources and energy, CO2 emissions, air quality, water reuse, some social and economical aspects. These concepts define the physical keys and codes of the current ׳sustainable׳ architecture, normally instrumental but rarely and insufficiently theorised. But is not there another way of bringing us to nature? We need a theoretical referent. This is where we place the Van der Laan׳s thoughts: he considers that art completes nature and he builds his theoretical discourse on it, trying to better understand many aspects of architecture. From a conceptual point of view, we find in his works sense of timelessness, universality, special attention on the ׳locus׳ and a strict sense of proportions and use of materials according to nature. Could these concepts complement our current sustainable architecture? How did Laan apply the current codes of ecology in his architecture? His work may help us to get a theoretical interpretation of nature and not only physical. This paper develops this idea through the comparison of thoughts and works of Laan with the current technical approach to ׳sustainable׳ architecture.

  5. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  6. Adaptive Monitoring and Control Architectures for Power Distribution Grids over Heterogeneous ICT Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Hägerling, Christian; Kurtz, Fabian M.

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses) and the q......The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...... to the reliability due to the stochastic behaviour found in such networks. Therefore, key concepts are presented in this paper targeting the support of proper smart grid control in these network environments. An overview on the required Information and Communication Technology (ICT) architecture and its...

  7. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    Science.gov (United States)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was

  8. Remote observing from the bottom up: the architecture of the WIYN telescope control system

    Science.gov (United States)

    Percival, Jeffrey W.

    1995-06-01

    Remote observing has many definitions, ranging from unattended batch-mode use through simple remote logins to fully faithful off-site observing centers indistinguishable from the on- site telescope control room. There are problems with each of these ideas: batch mode operation, for example, precludes remote interactive target acquisition and remote access to targets of opportunity. Simple remote login suffers from network problems such as full-duplex character latency; shipping screens instead of the underlying data can cause bandwidth problems and interferes with analyzing or archiving data. Brute-force reproduction of the control room requires expensive fiber or satellite connections. The WIYN Telescope control system was designed to be inexpensive to build and inexpensive to maintain. We emphasized the use of standard tools, portable implementations, and network friendliness. These techniques and features are precisely those that underlie a powerful remote observing capability. The WIYN Telescope control system therefore supports remote observing from the very lowest levels, and does so effectively and inexpensively using a carefully planned architecture, standard software and network tools, and innovative methods to ship large digital images over low bandwidth connections such as phone lines. Even before the construction was complete, these techniques proved their value by allowing remote access for the purposes of eavesdropping, troubleshooting, and servo tuning. This paper presents a block diagram and detailed descriptions of the WIYN Telescope control system architecture. Each aspect of the control system is discussed with respect to its contribution to the overall goal of remote observing, including multi-user access, bandwidth conservation, interoperability, and portability.

  9. A Heterogeneous Multi-core Architecture with a Hardware Kernel for Control Systems

    DEFF Research Database (Denmark)

    Li, Gang; Guan, Wei; Sierszecki, Krzysztof

    2012-01-01

    Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints. This pa......Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints......). Second, a heterogeneous multi-core architecture is investigated, focusing on its performance in relation to hard real-time constraints and predictable behavior. Third, the hardware implementation of HARTEX is designated to support the heterogeneous multi-core architecture. This hardware kernel has...... several advantages over a similar kernel implemented in software: higher-speed processing capability, parallel computation, and separation between the kernel itself and the applications being run. A microbenchmark has been used to compare the hardware kernel with the software kernel, and compare...

  10. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    Science.gov (United States)

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  11. Architecture and performance of neural networks for efficient A/C control in buildings

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed A.; Ben-Nakhi, Abdullatif E.

    2003-01-01

    The feasibility of using neural networks (NNs) for optimizing air conditioning (AC) setback scheduling in public buildings was investigated. The main focus is on optimizing the network architecture in order to achieve best performance. To save energy, the temperature inside public buildings is allowed to rise after business hours by setting back the thermostat. The objective is to predict the time of the end of thermostat setback (EoS) such that the design temperature inside the building is restored in time for the start of business hours. State of the art building simulation software, ESP-r, was used to generate a database that covered the years 1995-1999. The software was used to calculate the EoS for two office buildings using the climate records in Kuwait. The EoS data for 1995 and 1996 were used for training and testing the NNs. The robustness of the trained NN was tested by applying them to a 'production' data set (1997-1999), which the networks have never 'seen' before. For each of the six different NN architectures evaluated, parametric studies were performed to determine the network parameters that best predict the EoS. External hourly temperature readings were used as network inputs, and the thermostat end of setback (EoS) is the output. The NN predictions were improved by developing a neural control scheme (NC). This scheme is based on using the temperature readings as they become available. For each NN architecture considered, six NNs were designed and trained for this purpose. The performance of the NN analysis was evaluated using a statistical indicator (the coefficient of multiple determination) and by statistical analysis of the error patterns, including ANOVA (analysis of variance). The results show that the NC, when used with a properly designed NN, is a powerful instrument for optimizing AC setback scheduling based only on external temperature records

  12. A Decentralized Control Architecture applied to DC Nanogrid Clusters for Rural Electrification in Developing Regions

    DEFF Research Database (Denmark)

    Nasir, Mashood; Jin, Zheming; Khan, Hassan

    2018-01-01

    resources with the community. An adaptive I-V droop method is used which relies on local measurements of SOC and DC bus voltage for the coordinated power sharing among the contributing nanogrids. PV generation capability of individual nanogrids is synchronized with the grid stability conditions through......DC microgrids built through bottom-up approach are becoming very popular for swarm electrification due to their scalability and resource sharing capabilities. However, they typically require sophisticated control techniques involving communication among the distributed resources for stable...... and coordinated operation. In this work, we present a communication-less strategy for the decentralized control of a PV/battery-based highly distributed DC microgrid. The architecture consists of clusters of nanogrids (households), where each nanogrid can work independently along with provisions of sharing...

  13. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants.

    Science.gov (United States)

    Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E

    2013-10-01

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Il workshop in architettura. Un processo di apprendimento in progress / The Workshop in Architecture. A learning process in progress

    Directory of Open Access Journals (Sweden)

    João Barros Matos

    2014-03-01

    Full Text Available Si riconosce che il workshop costituisce un modello dinamico di apprendimento, in continua evoluzione e sperimentazione, e in grado di essere costantemente riformulato per giungere a nuove e stimolanti situazioni per insegnare la pratica dell'architettura. Si tratta infatti di un modello particolarmente adatto alla ricerca di un approccio globale e coerente al progetto architettonico, dato che evita di separare gli argomenti in frammenti isolati nel processo progettuale. Riunire i gruppi di lavoro nello stesso spazio e nel tempo limitato a disposizione richiede un pensiero intenso e un ritmo di produzione che aiuta a migliorare il rapporto tra i riferimenti teorici riportabili al soggetto trattato e gli aspetti relativi all'elaborazione e alla comunicazione del progetto architettonico. / We recognize the workshop as a dynamic model of learning, which is continuously changing and experimenting, and is able to be constantly redesigned to achieve new and stimulating situations for teaching the practice of architecture. In fact it is a particularly suitable model for seeking a global and coherent approach to the architectural project, while avoiding separating the topics into isolated fragments, throughout the project’s process. Bringing work teams together in the same space and within a reduced time limit requires intensive thought and a rhythm of production which helps improve the relation between the theoretical references of the subject’s production and the aspects related to producing work and communication elements for the architectural project.

  15. Getting Their Hands Dirty: Qualitative Study on Hands-on Learning for Architectural Students in Design-build Course

    Directory of Open Access Journals (Sweden)

    Zunaibi B. Abdullah

    2011-06-01

    Full Text Available This qualitative study provides an in-depth perspective of hands-on learning through the observation and analysis of architectural students' views in a design-build program at the University of Nebraska-Lincoln during the fall semester of 2008. Qualitative data was gathered from 14 participants involved in the construction of a low energy double-storey house in the city of Lincoln, Nebraska. The study inventoried the requisite characteristics of a design-build course. Participants' views and activities were studied to ascribe the qualitative benefits of hands-on learning. In addition, students' motivation towards hands-on activities were evaluated in reference to student confidence and independence levels towards their future career as architects, designers or other design-build professionals. The findings showed the design-build course could offer a specific knowledge that link between theoretical subjects and the practical expect of building contractions.

  16. Challenges in the Development and Evolution of Secure Open Architecture Command and Control Systems (Briefing Charts)

    Science.gov (United States)

    2013-06-01

    widgets for an OA system Design-time architecture: Browser, email, widget, DB, OS Go ogle Instance architecture: Chrome, Gmail, Google...provides functionally similar components or applications compatible with an OA system design Firefox Browser, WP, calendar Opera Instance...architecture: Firefox , AbiWord, Evolution, Fedora GPL Ab1Word Google Docs Instance ardlitecture: Fire fox, OR Google cal., Google Docs, Fedora

  17. Cellular Automata as a learning process in Architecture and Urban design

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Foged, Isak Worre

    2014-01-01

    . An architectural methodological response to this situation is presented through the development of a conceptual computational design system that allows these dynamics to unfold and to be observed for architectural design decision taking. Reflecting on the development and implementation of a cellular automata based...... design approach on a master level urban design studio this paper will discuss the strategies for dealing with complexity at an urban scale as well as the pedagogical considerations behind applying computational tools and methods to a urban design education....

  18. Modular Plug’n’Play Control Architectures for Three-phase Inverters in UPS Applications

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Vasquez, Juan Carlos

    2015-01-01

    In this paper a control strategy for the parallel operation of three-phase inverters in a modular online uninterruptable power supply (UPS) system is proposed. The UPS system is composed of a number for DC/ACs with LC filter connected to the same AC critical bus and an AC/DC that forms the DC bus...... the AC critical bus voltage. Detailed control architecture, regarding individual layer and recovery layer, are presented in this paper. Also an experimental setup was built to validate the proposed control approach under several scenarios-case study........ The proposed control is designated in two layers, individual layer and recovery layer. In individual layer, virtual impedance concept is employed in order to achieve active power sharing while individual reactive power is calculated to modify output voltage phases to achieve reactive power sharing among...... different modules. Recovery layer is mainly responsible for guaranteeing synchronization capability with the utility and voltage recovery. With the proposed control, improved voltage transient performance can be achieved and also DC/AC modules are allowed to be plugged in and out flexibly while controlling...

  19. Model-Based Engine Control Architecture with an Extended Kalman Filter

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  20. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jé gu, Teddy; Domenichini, Sé verine; Blein, Thomas; Ariel, Federico; Christ, Auré lie; Kim, SoonKap; Crespi, Martin; Boutet-Mercey, Sté phanie; Mouille, Gré gory; Bourge, Mickaë l; Hirt, Heribert; Bergounioux, Catherine; Raynaud, Cé cile; Benhamed, Moussa

    2015-01-01

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  1. Applying Service-Oriented Architecture to Archiving Data in Control and Monitoring Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Trombly-Freytag, K. [Fermilab

    2017-01-01

    Current trends in the architecture of software systems focus our attention on building systems using a set of loosely coupled components, each providing a specific functionality known as service. It is not much different in control and monitoring systems, where a functionally distinct sub-system can be identified and independently designed, implemented, deployed and maintained. One functionality that renders itself perfectly to becoming a service is archiving the history of the system state. The design of such a service and our experience of using it are the topic of this article. The service is built with responsibility segregation in mind, therefore, it provides for reducing data processing on the data viewer side and separation of data access and modification operations. The service architecture and the details concerning its data store design are discussed. An implementation of a service client capable of archiving EPICS process variables (PV) and LabVIEW shared variables is presented. Data access tools, including a browser-based data viewer and a mobile viewer, are also presented.

  2. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  3. GREENING THE ARCHITECTURAL CURRICULUM IN ALL THE MALAYSIAN INSTITUTES OF HIGHER LEARNING- IT IS NOT AN OPTION

    Directory of Open Access Journals (Sweden)

    Abdul Malik Abdul Rahman

    2010-07-01

    Full Text Available Preparations toward sustainability and energy efficiency in buildings begun about a decade ago with many aspects of tangible and intangible results such as the existence of a The Ministry of Energy, Green Technology & Water (MEGTW - Low Energy Office, The Malaysian Energy Center (Green Energy Office and the forthcoming office building for the Energy Commission known as the Green Office. Other initiatives are the high efficient motor, the increase of the electricity tariffs, the introduction of the Renewable Energy as the 5th Fuel Policy with a national campaign known as the Suria 1000 where the use of solar electricity for the building industry is encouraged. At the same time there needs a parallel development for the critical mass otherwise initial noble efforts would be jeopardized due to lack of knowledge and skill support infrastructure. Training has been going on but only for specific tasks initiated either by non-governmental organizations (NGOs or government agencies. But as for the architecture profession, the efforts fully depended on individuals’ interests and passion. This slows the process of assimilation and adaptation. There should be a thorough awareness throughout the practicing and academic architects as to the seriousness of having green buildings as the next future direction for Malaysian buildings. This paper does not attempt to set an agenda for education in architecture but rather to espouse the idea. It sets to show one way to accelerate the change in the mindsets of architects as a whole towards designing for architectural sustainability, is to revamp the architectural courses and curriculums in institutes of higher learning.

  4. Architecture and Stages

    DEFF Research Database (Denmark)

    Kiib, Hans

    2009-01-01

    as "experiencescape" - a space between tourism, culture, learning and economy. Strategies related to these challenges involve new architectural concepts and art as ‘engines' for a change. New expressive architecture and old industrial buildings are often combined into hybrid narratives, linking the past...... with the future. But this is not enough. The agenda is to develop architectural spaces, where social interaction and learning are enhanced by art and fun. How can we develop new architectural designs in our inner cities and waterfronts where eventscapes, learning labs and temporal use are merged with everyday...

  5. Architectural study of the design and operation of advanced force feedback manual controllers

    Science.gov (United States)

    Tesar, Delbert; Kim, Whee-Kuk

    1990-01-01

    A teleoperator system consists of a manual controller, control hardware/software, and a remote manipulator. It was employed in either hazardous or unstructured, and/or remote environments. In teleoperation, the main-in-the-loop is the central concept that brings human intelligence to the teleoperator system. When teleoperation involves contact with an uncertain environment, providing the feeling of telepresence to the human operator is one of desired characteristics of the teleoperator system. Unfortunately, most available manual controllers in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size, high costs, or lack of smoothness and transparency, and elementary architectures. To investigate other alternatives, a force-reflecting, 3 degree of freedom (dof) spherical manual controller is designed, analyzed, and implemented as a test bed demonstration in this research effort. To achieve an improved level of design to meet criteria such as compactness, portability, and a somewhat enhanced force-reflecting capability, the demonstration manual controller employs high gear-ratio reducers. To reduce the effects of the inertia and friction on the system, various force control strategies are applied and their performance investigated. The spherical manual controller uses a parallel geometry to minimize inertial and gravitational effects on its primary task of transparent information transfer. As an alternative to the spherical 3-dof manual controller, a new conceptual (or parallel) spherical 3-dof module is introduced with a full kinematic analysis. Also, the resulting kinematic properties are compared to those of other typical spherical 3-dof systems. The conceptual design of a parallel 6-dof manual controller and its kinematic analysis is presented. This 6-dof manual controller is similar to the Stewart Platform with the actuators located on the base to minimize the dynamic effects. Finally, a combination of the new 3-dof and 6-dof

  6. EVALUATION OF UTILIZING SERVICE ORIENTED ARCHITECTURE AS A SUITABLE SOLUTION TO ALIGN UNIVERSITY MANAGEMENT INFORMATION SYSTEMS AND LEARNING MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. M. RIAD

    2009-10-01

    Full Text Available To help universities achieve their goals, it is important to align managerial functionalities side by side with educational aspects. Universities consume University Management Information Systems (UMIS to handle managerial aspects as they do with Learning Management Systems (LMS to achieve learning objectives. UMIS advances LMS by decades and has reached stable and mature consistency level. LMS is the newly acquired solution in Universities; compared to UMIS, and so adopting LMSs in universities can be achieved via three different deployment approaches. First approach believes in LMS ability to replace UMIS and performing its functionalities. Second approach presents the idea of extending UMIS to include LMS functionalities. Third approach arises from the shortages of the two proposed approaches and present integration between both as the appropriate deployment approach. Service Oriented Architecture (SOA is a design pattern that can be used as a suitable architectural solution to align UMIS and LMS. SOA can be utilized in universities to overcome some of information systems’ challenges like the integration between UMIS and LMS. This paper presents the current situation at Mansoura University; Egypt, presents integration as the most suitable solution, and evaluates three different implementation techniques: Dynamic Query, Stored Procedure, and Web services. Evaluation concludes that though SOA enhanced many different aspects of both UMIS and LMS; and consequently university overall. It is not recommended to adopt SOA via Web services as the building unit of the system, but as the interdisciplinary interface between systems.

  7. An Organisational Architecture to Support Personalised Learning: Parents' Perspectives on the Academic Advisers

    Science.gov (United States)

    Dorrington, Jamie

    2018-01-01

    This article reports some of the findings from research conducted by the author, who was also the principal of Saint Stephen's College, a coeducational independent school in South-east Queensland. The school was in the early stages of transitioning to a new organisational architecture (the way the physical, digital and human resources are aligned)…

  8. A Project-Based Learning Approach to Programmable Logic Design and Computer Architecture

    Science.gov (United States)

    Kellett, C. M.

    2012-01-01

    This paper describes a course in programmable logic design and computer architecture as it is taught at the University of Newcastle, Australia. The course is designed around a major design project and has two supplemental assessment tasks that are also described. The context of the Computer Engineering degree program within which the course is…

  9. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    Science.gov (United States)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  10. Role of graph architecture in controlling dynamical networks with applications to neural systems

    Science.gov (United States)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  11. Architectural Anthropology

    DEFF Research Database (Denmark)

    Stender, Marie

    Architecture and anthropology have always had a common focus on dwelling, housing, urban life and spatial organisation. Current developments in both disciplines make it even more relevant to explore their boundaries and overlaps. Architects are inspired by anthropological insights and methods......, while recent material and spatial turns in anthropology have also brought an increasing interest in design, architecture and the built environment. Understanding the relationship between the social and the physical is at the heart of both disciplines, and they can obviously benefit from further...... collaboration: How can qualitative anthropological approaches contribute to contemporary architecture? And just as importantly: What can anthropologists learn from architects’ understanding of spatial and material surroundings? Recent theoretical developments in anthropology stress the role of materials...

  12. Implementation of time synchronized cryogenics control system network architecture for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rakesh J., E-mail: rpatel@ipr.res.in; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-11-15

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  13. Implementation of time synchronized cryogenics control system network architecture for SST-1

    International Nuclear Information System (INIS)

    Patel, Rakesh J.; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  14. Self-learning fuzzy logic controllers based on reinforcement

    International Nuclear Information System (INIS)

    Wang, Z.; Shao, S.; Ding, J.

    1996-01-01

    This paper proposes a new method for learning and tuning Fuzzy Logic Controllers. The self-learning scheme in this paper is composed of Bucket-Brigade and Genetic Algorithm. The proposed method is tested on the cart-pole system. Simulation results show that our approach has good learning and control performance

  15. A Study of BUS Architecture Design for Controller of Nuclear Power Plant Using FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongil; Yun, Donghwa; Hwang, Sungjae; Kim, Myeongyun; Lee, Dongyun [PONUTech Co. Ltd., Seoul (Korea, Republic of)

    2014-05-15

    CPU (Central Processing Unit) operating speed and communication rate have been more technically improved than before. However, whole system is been a degradation of performance by electronic and structural limitation of parallel bus. Transmission quantity and speed have a limit and need arbiter in order to do arbitration because several boards shared parallel bus. Arbiter is a high complexity in implementing so it increases component per chip. If a parallel bus uses, it will occurs some problems what are reflection noise, power/ground noise (or ground bounce) as SSN (Simultaneous Switching Noise) and crosstalk noise like magnetic coupling. In this paper, in order to solve a problem of parallel bus in controller of NPP (Nuclear Power Plant), proposes the bus architecture design using FPGA (Field Programmable Gate Array) based on LVDS (Low Voltage Differential Signaling)

  16. A Study of BUS Architecture Design for Controller of Nuclear Power Plant Using FPGA

    International Nuclear Information System (INIS)

    Lee, Dongil; Yun, Donghwa; Hwang, Sungjae; Kim, Myeongyun; Lee, Dongyun

    2014-01-01

    CPU (Central Processing Unit) operating speed and communication rate have been more technically improved than before. However, whole system is been a degradation of performance by electronic and structural limitation of parallel bus. Transmission quantity and speed have a limit and need arbiter in order to do arbitration because several boards shared parallel bus. Arbiter is a high complexity in implementing so it increases component per chip. If a parallel bus uses, it will occurs some problems what are reflection noise, power/ground noise (or ground bounce) as SSN (Simultaneous Switching Noise) and crosstalk noise like magnetic coupling. In this paper, in order to solve a problem of parallel bus in controller of NPP (Nuclear Power Plant), proposes the bus architecture design using FPGA (Field Programmable Gate Array) based on LVDS (Low Voltage Differential Signaling)

  17. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay.

    Science.gov (United States)

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs.

  18. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay

    Science.gov (United States)

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs. PMID:23833548

  19. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials

    Directory of Open Access Journals (Sweden)

    Waldo M. Argüelles-Monal

    2018-03-01

    Full Text Available The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.

  20. From distributed to multicore architecture in the RFX-mod real time control system

    International Nuclear Information System (INIS)

    Manduchi, G.; Luchetta, A.; Soppelsa, A.; Taliercio, C.

    2014-01-01

    Highlights: • The paper describes the experience in running the real-time control system of RFX-mod. • It presents a new architecture based on multicore technology. • It analyze the feasibility of Linux MRG for real-time control. • It presents an application of the MARTe framework. - Abstract: The real-time control system of RFX has been operating since 2004 providing effective control of the plasma position and of the MagnetoHydroDynamic (MHD) modes. The demand for new and more computing-intensive control algorithms and the need for shorter latency pushed the system to its limits and, thus, a complete re-design was carried out in 2012. The new system adopts radically different solutions in hardware, operating system and software management. The VME PowerPC CPUs communicating over Ethernet have been now replaced by a single multicore server. VxWorks, previously used in the VME CPUs has now been replaced by Linux, which can be currently considered a real-time system provided an accurate tuning of the Linux scheduler and interrupt configuration. The previous framework for control and communication has been replaced by MARTe, a modern framework for real-time control gaining interest in the fusion community. The usage of MARTe allowed a rapid development of the control system and, in particular, its intrinsic simulation ability gave us the possibility of carrying out most debugging in simulation, without affecting machine operation. As a result the whole system has been finally commissioned in RFX in only two weeks

  1. From distributed to multicore architecture in the RFX-mod real time control system

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it; Luchetta, A.; Soppelsa, A.; Taliercio, C.

    2014-03-15

    Highlights: • The paper describes the experience in running the real-time control system of RFX-mod. • It presents a new architecture based on multicore technology. • It analyze the feasibility of Linux MRG for real-time control. • It presents an application of the MARTe framework. - Abstract: The real-time control system of RFX has been operating since 2004 providing effective control of the plasma position and of the MagnetoHydroDynamic (MHD) modes. The demand for new and more computing-intensive control algorithms and the need for shorter latency pushed the system to its limits and, thus, a complete re-design was carried out in 2012. The new system adopts radically different solutions in hardware, operating system and software management. The VME PowerPC CPUs communicating over Ethernet have been now replaced by a single multicore server. VxWorks, previously used in the VME CPUs has now been replaced by Linux, which can be currently considered a real-time system provided an accurate tuning of the Linux scheduler and interrupt configuration. The previous framework for control and communication has been replaced by MARTe, a modern framework for real-time control gaining interest in the fusion community. The usage of MARTe allowed a rapid development of the control system and, in particular, its intrinsic simulation ability gave us the possibility of carrying out most debugging in simulation, without affecting machine operation. As a result the whole system has been finally commissioned in RFX in only two weeks.

  2. Architecture of vagal motor units controlling striated muscle of esophagus: peripheral elements patterning peristalsis?

    Science.gov (United States)

    Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J

    2013-12-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.

  3. Agent-based Cyber Control Strategy Design for Resilient Control Systems: Concepts, Architecture and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Craig Rieger; Milos Manic; Miles McQueen

    2012-08-01

    The implementation of automated regulatory control has been around since the middle of the last century through analog means. It has allowed engineers to operate the plant more consistently by focusing on overall operations and settings instead of individual monitoring of local instruments (inside and outside of a control room). A similar approach is proposed for cyber security, where current border-protection designs have been inherited from information technology developments that lack consideration of the high-reliability, high consequence nature of industrial control systems. Instead of an independent development, however, an integrated approach is taken to develop a holistic understanding of performance. This performance takes shape inside a multiagent design, which provides a notional context to model highly decentralized and complex industrial process control systems, the nervous system of critical infrastructure. The resulting strategy will provide a framework for researching solutions to security and unrecognized interdependency concerns with industrial control systems.

  4. Building highly available control system applications with Advanced Telecom Computing Architecture and open standards

    International Nuclear Information System (INIS)

    Kazakov, Artem; Furukawa, Kazuro

    2010-01-01

    Requirements for modern and future control systems for large projects like International Linear Collider demand high availability for control system components. Recently telecom industry came up with a great open hardware specification - Advanced Telecom Computing Architecture (ATCA). This specification is aimed for better reliability, availability and serviceability. Since its first market appearance in 2004, ATCA platform has shown tremendous growth and proved to be stable and well represented by a number of vendors. ATCA is an industry standard for highly available systems. On the other hand Service Availability Forum, a consortium of leading communications and computing companies, describes interaction between hardware and software. SAF defines a set of specifications such as Hardware Platform Interface, Application Interface Specification. SAF specifications provide extensive description of highly available systems, services and their interfaces. Originally aimed for telecom applications, these specifications can be used for accelerator controls software as well. This study describes benefits of using these specifications and their possible adoption to accelerator control systems. It is demonstrated how EPICS Redundant IOC was extended using Hardware Platform Interface specification, which made it possible to utilize benefits of the ATCA platform.

  5. Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture

    OpenAIRE

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2013-01-01

    The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies...

  6. Iterative learning control an optimization paradigm

    CERN Document Server

    Owens, David H

    2016-01-01

    This book develops a coherent theoretical approach to algorithm design for iterative learning control based on the use of optimization concepts. Concentrating initially on linear, discrete-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately because their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates that there are new algorithms that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference signals and also to support new algorithms for local convergence of nonlinear iterative control. Simulation and application studies are used to illustrate algorithm properties and performance in systems like gantry robots and other elect...

  7. Cognitive Models for Learning to Control Dynamic Systems

    National Research Council Canada - National Science Library

    Eberhart, Russ; Hu, Xiaohui; Chen, Yaobin

    2008-01-01

    Report developed under STTR contract for topic "Cognitive models for learning to control dynamic systems" demonstrated a swarm intelligence learning algorithm and its application in unmanned aerial vehicle (UAV) mission planning...

  8. The ITER Fast Plant System Controller ATCA prototype Real-Time Software Architecture

    International Nuclear Information System (INIS)

    Carvalho, B.B.; Santos, B.; Carvalho, P.F.; Neto, A.; Boncagni, L.; Batista, A.J.N.; Correia, M.; Sousa, J.; Gonçalves, B.

    2013-01-01

    Highlights: ► High performance ATCA systems for fast control and data acquisition. ► IEEE1588 timing system and synchronization. ► Plasma control algorithms. ► Real-time control software frameworks. ► Targeted for nuclear fusion experiments with long duration discharges. -- Abstract: IPFN is developing a prototype Fast Plant System Controller (FPSC) based in ATCA embedded technologies dedicated to ITER CODAC data acquisition and control tasks in the sub-millisecond range. The main goal is to demonstrate the usability of the ATCA standard and its enhanced specifications for the high speed, very high density parallel data acquisition needs of the most demanding ITER tokamak plasma Instrumentation and Control (I and C) systems. This effort included the in-house development of a new family of high performance ATCA I/O and timing boards. The standard ITER software system CODAC Core System (CCS) v3.1, with the control based in the EPICS system does not cover yet the real-time requirements fulfilled by this hardware, so a new set of software components was developed for this specific platform, attempting to integrate and leverage the new features in CSS, for example the Multithreaded Application Real Time executor (MARTe) software framework, the new Data Archiving Network (DAN) solution, an ATCA IEEE-1588-2008 timing interface, and the Intelligent Platform Management Interface (IPMI) for system monitoring and remote management. This paper presents the overall software architecture for the ATCA FPSC, as well a discussion on the ITER constrains and design choices and finally a detailed description of the software components already developed

  9. The ITER Fast Plant System Controller ATCA prototype Real-Time Software Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, B.B., E-mail: bernardo@ipfn.ist.utl.pt [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Santos, B.; Carvalho, P.F.; Neto, A. [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Boncagni, L. [Associazione Euratom-ENEA sulla Fusione, Frascati Research Centre, Division of Fusion Physics, Frascati, Rome (Italy); Batista, A.J.N.; Correia, M.; Sousa, J.; Gonçalves, B. [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal)

    2013-10-15

    Highlights: ► High performance ATCA systems for fast control and data acquisition. ► IEEE1588 timing system and synchronization. ► Plasma control algorithms. ► Real-time control software frameworks. ► Targeted for nuclear fusion experiments with long duration discharges. -- Abstract: IPFN is developing a prototype Fast Plant System Controller (FPSC) based in ATCA embedded technologies dedicated to ITER CODAC data acquisition and control tasks in the sub-millisecond range. The main goal is to demonstrate the usability of the ATCA standard and its enhanced specifications for the high speed, very high density parallel data acquisition needs of the most demanding ITER tokamak plasma Instrumentation and Control (I and C) systems. This effort included the in-house development of a new family of high performance ATCA I/O and timing boards. The standard ITER software system CODAC Core System (CCS) v3.1, with the control based in the EPICS system does not cover yet the real-time requirements fulfilled by this hardware, so a new set of software components was developed for this specific platform, attempting to integrate and leverage the new features in CSS, for example the Multithreaded Application Real Time executor (MARTe) software framework, the new Data Archiving Network (DAN) solution, an ATCA IEEE-1588-2008 timing interface, and the Intelligent Platform Management Interface (IPMI) for system monitoring and remote management. This paper presents the overall software architecture for the ATCA FPSC, as well a discussion on the ITER constrains and design choices and finally a detailed description of the software components already developed.

  10. Help&Learn: A peer-to-peer architecture to support knowledge management in collaborative learning communities

    NARCIS (Netherlands)

    Guizzardi-Silva Souza, R.; Aroyo, L.M.; Wagner, G.

    Collaborative learning motivates active participation of individuals in their learning process, which often results in the attaining of creative and critical thinking skills. This way, students and teachers are viewed as both providers and consumers of knowledge gathered in environments where

  11. Design Principles of an Open Agent Architecture for Web-Based Learning Community.

    Science.gov (United States)

    Jin, Qun; Ma, Jianhua; Huang, Runhe; Shih, Timothy K.

    A Web-based learning community involves much more than putting learning materials into a Web site. It can be seen as a complex virtual organization involved with people, facilities, and cyber-environment. Tremendous work and manpower for maintaining, upgrading, and managing facilities and the cyber-environment are required. There is presented an…

  12. Architectural setup for online monitoring and control of process parameters in robot-based ISF

    Science.gov (United States)

    Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.

  13. Adaptive architectures for resilient control of networked multiagent systems in the presence of misbehaving agents

    Science.gov (United States)

    Torre, Gerardo De La; Yucelen, Tansel

    2018-03-01

    Control algorithms of networked multiagent systems are generally computed distributively without having a centralised entity monitoring the activity of agents; and therefore, unforeseen adverse conditions such as uncertainties or attacks to the communication network and/or failure of agent-wise components can easily result in system instability and prohibit the accomplishment of system-level objectives. In this paper, we study resilient coordination of networked multiagent systems in the presence of misbehaving agents, i.e. agents that are subject to exogenous disturbances that represent a class of adverse conditions. In particular, a distributed adaptive control architecture is presented for directed and time-varying graph topologies to retrieve a desired networked multiagent system behaviour. Apart from the existing relevant literature that make specific assumptions on the graph topology and/or the fraction of misbehaving agents, we show that the considered class of adverse conditions can be mitigated by the proposed adaptive control approach that utilises a local state emulator - even if all agents are misbehaving. Illustrative numerical examples are provided to demonstrate the theoretical findings.

  14. Command and Control Architectures for Autonomous Micro-Robotic Forces - FY-2000 Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean

    2001-04-01

    Advances in Artificial Intelligence (AI) and micro-technologies will soon give rise to production of large-scale forces of autonomous micro-robots with systems of innate behaviors and with capabilities of self-organization and real world tasking. Such organizations have been compared to schools of fish, flocks of birds, herds of animals, swarms of insects, and military squadrons. While these systems are envisioned as maintaining a high degree of autonomy, it is important to understand the relationship of man with such machines. In moving from research studies to the practical deployment of large-scale numbers of robots, one of critical pieces that must be explored is the command and control architecture for humans to re-task and also inject global knowledge, experience, and intuition into the force. Tele-operation should not be the goal, but rather a level of adjustable autonomy and high-level control. If a herd of sheep is comparable to the collective of robots, then the human element is comparable to the shepherd pulling in strays and guiding the herd in the direction of greener pastures. This report addresses the issues and development of command and control for largescale numbers of autonomous robots deployed as a collective force.

  15. Architecture of central control system for the 10 MW ECRH-plant at W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Braune, H. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: harald.braune@ipp.mpg.de; Brand, P. [Universitaet Stuttgart, Institut fuer Plasmaforschung Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Erckmann, V.; Jonitz, L. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Leonhardt, W.; Mellein, D. [Forschungszentrum Karlsruhe, Association EURATOM-FZK, IHM, FZK, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Michel, G. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Mueller, G. [Universitaet Stuttgart, Institut fuer Plasmaforschung Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Purps, F. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Schlueter, K.-H. [Universitaet Stuttgart, Institut fuer Plasmaforschung Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Winkler, M. [Max-Plank-Institut fuer Plasmaphysik, Euratom Association Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)

    2007-10-15

    Electron Cyclotron Resonance Heating (ECRH) is the main heating method for the Wendelstein 7-X stellarator (W7-X) which is presently under construction at IPP Greifswald. The mission of W7-X is to demonstrate the inherent steady state capability of stellarators at reactor relevant plasma parameters. A modular 10 MW ECRH-plant at 140 GHz with 1 MW CW-capability power for each module is also under construction to support the scientific objectives. The commissioning of the ECRH-plant is well under way; three gyrotrons are operational. The strict modular design allows to operate each gyrotron separately and independent from all others. The ECRH-plant consists of many devices such as gyrotrons and high voltage power supplies, superconductive magnets, collector sweep coils, gyrotron cooling systems with many water circuits and last but not least the quasi-optical transmission line for microwaves with remote controlled mirrors and further water cooled circuits. All these devices are essential for a CW operation. A steady state ECRH has specific requirements on the stellarator machine itself, on the microwave sources, transmission elements and in particular on the central control system. The quasi steady state operation (up to 30 min) asks for real time microwave power adjustment during the different segments of one stellarator discharge. Therefore, the ECRH-plant must operate with a maximum reliability and availability. A capable central control system is an important condition to achieve this goal. The central control system for the 10 MW ECRH-plant at W7-X comprises three main parts. In detail these are the voltage and current regulation of each gyrotron, the interlock system to prevent the gyrotrons from damages and the remote control system based on a hierarchy set of PLCs and computers. The architecture of this central control system is presented.

  16. An Efficient Radio Access Control Mechanism for Wireless Network-On-Chip Architectures

    Directory of Open Access Journals (Sweden)

    Maurizio Palesi

    2015-03-01

    Full Text Available Modern systems-on-chip (SoCs today contain hundreds of cores, and this number is predicted to reach the thousands by the year 2020. As the number of communicating elements increases, there is a need for an efficient, scalable and reliable communication infrastructure. As technology geometries shrink to the deep submicron regime, however, the communication delay and power consumption of global interconnections become the major bottleneck. The network-on-chip (NoC design paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues, such as the performance limitations of long interconnects and integration of large number of cores on a chip. Recently, new communication technologies based on the NoC concept have emerged with the aim of improving the scalability limitations of conventional NoC-based architectures. Among them, wireless NoCs (WiNoCs use the radio medium for reducing the performance and energy penalties of long-range and multi-hop communications. As the radio medium can be accessed by a single transmitter at a time, a radio access control mechanism (RACM is needed. In this paper, we present a novel RACM, which allows one to improve both the performance and energy figures of the WiNoC. Experiments, carried out on both synthetic and real traffic scenarios, have shown the effectiveness of the proposed RACM. On average, a 30% reduction in communication delay and a 25% energy savings have been observed when the proposed RACM is applied to a known WiNoC architecture.

  17. Locus of control and online learning

    Directory of Open Access Journals (Sweden)

    Suretha Esterhuysen

    2004-10-01

    Full Text Available The integration of online learning in university courses is considered to be both inevitable and necessary. Thus there is an increasing need to raise awareness among educators and course designers about the critical issues impacting on online learning. The aim of this study, therefore, was to assess the differences between two groups of first-year Business Sciences learners (online and conventional learners in terms of biographic and demographic characteristics and locus of control. The study population consisted of 586 first-year learners of whom 185 completed the Locus of Control Inventory (LCI. The results show that the two groups of learners do not differ statistically significantly from each other with respect to locus of control. The findings and their implications are also discussed. Opsomming Die integrasie van aanlyn-leer in universiteitskursusse word beskou as sowel onafwendbaar as noodsaaklik. Daar is dus ’n toenemende behoefte om bewustheid onder opvoedkundiges en kursusontwerpers te kweek oor die kritiese aspekte wat ’n impak op aanlyn-leer het (Morgan, 1996. Daarom was die doel van hierdie ondersoek om die verskille tussen twee groepe eerstejaarleerders in Bestuurs- en Ekonomiese Wetenskap (aanlyn en konvensionele leerders te bepaal ten opsigte van biografiese en demografiese eienskappe en lokus van beheer. Die populasie het bestaan uit 586 eerstejaarleerders waarvan 185 die Lokus van Beheer Vraelys voltooi het. Die resultate toon dat die twee groepe leerders nie statisties beduidend van mekaar verskil het met betrekking tot lokus van beheer nie. Die bevindinge en implikasies word ook bespreek.

  18. Tracker controls development and control architecture for the Hobby-Eberly Telescope Wide Field Upgrade

    Science.gov (United States)

    Mock, Jason R.; Beno, Joe; Rafferty, Tom H.; Cornell, Mark E.

    2010-07-01

    To enable the Hobby-Eberly Telescope Wide Field Upgrade, the University of Texas Center for Electromechanics and McDonald Observatory are developing a precision tracker system - a 15,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 14 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). This level of system complexity and emphasis on fail-safe operation is typical of large modern telescopes and numerous industrial applications. Due to this complexity, demanding accuracy requirements, and stringent safety requirements, a highly versatile and easily configurable centralized control system that easily links with modeling and simulation tools during the hardware and software design process was deemed essential. The Matlab/Simulink simulation environment, coupled with dSPACE controller hardware, was selected for controls development and realization. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. Custom designed position feedback loops, supplemented by feed forward force commands for enhanced performance, and algorithms to accommodate self-locking gearboxes (for safety), reside in dSPACE. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of software and hardware, design choices and analysis, and supporting simulations (primarily Simulink).

  19. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    Science.gov (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  20. Genetic architecture of sex determination in fish: Applications to sex ratio control in aquaculture

    Directory of Open Access Journals (Sweden)

    Paulino eMartínez

    2014-09-01

    Full Text Available Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD, a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two

  1. AziSA: an architecture for underground measurement and control networks - 2nd International Conference on Wireless Communications...

    CSIR Research Space (South Africa)

    Stewart, R

    2008-08-01

    Full Text Available AziSA is an architecture for measurement and control networks that can be used to collect, store and facilitate the analysis of data from challenging underground environments. AziSA defines four node classes, two (Classes Four and Three...

  2. Learning, Leading and Letting go of Control

    DEFF Research Database (Denmark)

    Jensen, Annie Aarup; Kjær-Rasmussen, Lone Krogh; Iversen, Ann-Merete

    Learning, leading and letting go of control – Learner Led Approaches in Education Annie Aarup Jensen, Lone Krogh Kjær-Rasmussen, Ann-Merete Iversen and Anni Stavnskær Pedersen Abstract The aim of the paper is to introduce a new term in teaching in Higher Education: Learner Led Approaches...... in Education: LED. The sources of inspiration are many as are the experiences we draw from. Problem-based project work (PBL) being one, various classical teacher centered methods, and last but not least a variety of methods aiming towards developing creativity, innovational skills and entrepreneurship. LED...... is inspired by collaboration between professors from Aalborg University, Cornwall College and University College of Northern Denmark. Moravec (2008) claims that educational systems still operate in 1.0 or perhaps 2.0 mode while the surrounding cultures and societies operate in 3.0 mode. The amount...

  3. RoCoMAR: Robots’ Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Seokhoon Yoon

    2013-07-01

    Full Text Available In a practical deployment, mobile sensor network (MSN suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots’ Controllable Mobility Aided Routing that uses robotic nodes’ controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  4. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Science.gov (United States)

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  5. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants

    International Nuclear Information System (INIS)

    Zhang, Z.; Jones, D.; Yue, S.; Lee, P.D.; Jones, J.R.; Sutcliffe, C.J.; Jones, E.

    2013-01-01

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Highlights: • Experimentally validated permeability prediction tools for hierarchical implants. • Randomised structures form preferential flow channels with stronger shear flows. • Hierarchical strut structures allow independent tailoring of flow and pore size

  6. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ (United Kingdom); Jones, D. [School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Yue, S. [Manchester X-ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); Lee, P.D., E-mail: peter.lee@manchester.ac.uk [Manchester X-ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); Jones, J.R. [Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ (United Kingdom); Sutcliffe, C.J. [School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Jones, E. [Department of Advanced Technology, Stryker Orthopaedics, Raheen Business Park, Limerick (Ireland)

    2013-10-15

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Highlights: • Experimentally validated permeability prediction tools for hierarchical implants. • Randomised structures form preferential flow channels with stronger shear flows. • Hierarchical strut structures allow independent tailoring of flow and pore size.

  7. Reconfiguration of brain network architecture to support executive control in aging.

    Science.gov (United States)

    Gallen, Courtney L; Turner, Gary R; Adnan, Areeba; D'Esposito, Mark

    2016-08-01

    Aging is accompanied by declines in executive control abilities and changes in underlying brain network architecture. Here, we examined brain networks in young and older adults during a task-free resting state and an N-back task and investigated age-related changes in the modular network organization of the brain. Compared with young adults, older adults showed larger changes in network organization between resting state and task. Although young adults exhibited increased connectivity between lateral frontal regions and other network modules during the most difficult task condition, older adults also exhibited this pattern of increased connectivity during less-demanding task conditions. Moreover, the increase in between-module connectivity in older adults was related to faster task performance and greater fractional anisotropy of the superior longitudinal fasciculus. These results demonstrate that older adults who exhibit more pronounced network changes between a resting state and task have better executive control performance and greater structural connectivity of a core frontal-posterior white matter pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Service oriented network architecture for control and management of home appliances

    Science.gov (United States)

    Hayakawa, Hiroshi; Koita, Takahiro; Sato, Kenya

    2005-12-01

    Recent advances in multimedia network systems and mechatronics have led to the development of a new generation of applications that associate the use of various multimedia objects with the behavior of multiple robotic actors. The connection of audio and video devices through high speed multimedia networks is expected to make the system more convenient to use. For example, many home appliances, such as a video camera, a display monitor, a video recorder, an audio system and so on, are being equipped with a communication interface in the near future. Recently some platforms (i.e. UPnP1, HAVi2 and so on) are proposed for constructing home networks; however, there are some issues to be solved to realize various services by connecting different equipment via the pervasive peer-to-peer network. UPnP offers network connectivity of PCs of intelligent home appliances, practically, which means to require a PC in the network to control other devices. Meanwhile, HAVi has been developed for intelligent AV equipments with sophisticated functions using high CPU power and large memory. Considering the targets of home alliances are embedded systems, this situation raises issues of software and hardware complexity, cost, power consumption and so on. In this study, we have proposed and developed the service oriented network architecture for control and management of home appliances, named SONICA (Service Oriented Network Interoperability for Component Adaptation), to address these issues described before.

  9. A Robot-Soccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Guarnizo, Jose Guillermo; Mellado, Martin

    2017-01-01

    of the energy storage systems, may ensure proper and reliable operation of the microgrid. This paper proposes a structured architecture based on tactics, roles and behaviors for a coordinated operation of islanded microgrids. The architecture is inspired on a robot soccer strategy with global perception...

  10. A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series

    OpenAIRE

    Chambon, Stanislas; Galtier, Mathieu; Arnal, Pierrick; Wainrib, Gilles; Gramfort, Alexandre

    2017-01-01

    Sleep stage classification constitutes an important preliminary exam in the diagnosis of sleep disorders. It is traditionally performed by a sleep expert who assigns to each 30s of signal a sleep stage, based on the visual inspection of signals such as electroencephalograms (EEG), electrooculograms (EOG), electrocardiograms (ECG) and electromyograms (EMG). We introduce here the first deep learning approach for sleep stage classification that learns end-to-end without computing spectrograms or...

  11. Control bandwidth improvements in GRAVITY fringe tracker by switching to a synchronous real time computer architecture

    Science.gov (United States)

    Abuter, Roberto; Dembet, Roderick; Lacour, Sylvestre; di Lieto, Nicola; Woillez, Julien; Eisenhauer, Frank; Fedou, Pierre; Phan Duc, Than

    2016-08-01

    The new VLTI (Very Large Telescope Interferometer) 1 instrument GRAVITY5, 22, 23 is equipped with a fringe tracker16 able to stabilize the K-band fringes on six baselines at the same time. It has been designed to achieve a performance for average seeing conditions of a residual OPD (Optical Path Difference) lower than 300 nm with objects brighter than K = 10. The control loop implementing the tracking is composed of a four stage real time computer system compromising: a sensor where the detector pixels are read in and the OPD and GD (Group Delay) are calculated; a controller receiving the computed sensor quantities and producing commands for the piezo actuators; a concentrator which combines both the OPD commands with the real time tip/tilt corrections offloading them to the piezo actuator; and finally a Kalman15 parameter estimator. This last stage is used to monitor current measurements over a window of few seconds and estimate new values for the main Kalman15 control loop parameters. The hardware and software implementation of this design runs asynchronously and communicates the four computers for data transfer via the Reflective Memory Network3. With the purpose of improving the performance of the GRAVITY5, 23 fringe tracking16, 22 control loop, a deviation from the standard asynchronous communication mechanism has been proposed and implemented. This new scheme operates the four independent real time computers involved in the tracking loop synchronously using the Reflective Memory Interrupts2 as the coordination signal. This synchronous mechanism had the effect of reducing the total pure delay of the loop from 3.5 [ms] to 2.0 [ms] which then translates on a better stabilization of the fringes as the bandwidth of the system is substantially improved. This paper will explain in detail the real time architecture of the fringe tracker in both is synchronous and synchronous implementation. The achieved improvements on reducing the delay via this mechanism will be

  12. Does supporting multiple student strategies lead to greater learning and motivation? Investigating a source of complexity in the architecture of intelligent tutoring systems

    NARCIS (Netherlands)

    Waalkens, Maaike; Aleven, Vincent; Taatgen, Niels

    Intelligent tutoring systems (ITS) support students in learning a complex problem-solving skill. One feature that makes an ITS architecturally complex, and hard to build, is support for strategy freedom, that is, the ability to let students pursue multiple solution strategies within a given problem.

  13. Innovation in Deep Space Habitat Interior Design: Lessons Learned From Small Space Design in Terrestrial Architecture

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry

    2014-01-01

    Increased public awareness of carbon footprints, crowding in urban areas, and rising housing costs have spawned a 'small house movement' in the housing industry. Members of this movement desire small, yet highly functional residences which are both affordable and sensitive to consumer comfort standards. In order to create comfortable, minimum-volume interiors, recent advances have been made in furniture design and approaches to interior layout that improve both space utilization and encourage multi-functional design for small homes, apartments, naval, and recreational vehicles. Design efforts in this evolving niche of terrestrial architecture can provide useful insights leading to innovation and efficiency in the design of space habitats for future human space exploration missions. This paper highlights many of the cross-cutting architectural solutions used in small space design which are applicable to the spacecraft interior design problem. Specific solutions discussed include reconfigurable, multi-purpose spaces; collapsible or transformable furniture; multi-purpose accommodations; efficient, space saving appliances; stowable and mobile workstations; and the miniaturization of electronics and computing hardware. For each of these design features, descriptions of how they save interior volume or mitigate other small space issues such as confinement stress or crowding are discussed. Finally, recommendations are provided to provide guidance for future designs and identify potential collaborations with the small spaces design community.

  14. Exploring Learner Autonomy: Language Learning Locus of Control in Multilinguals

    Science.gov (United States)

    Peek, Ron

    2016-01-01

    By using data from an online language learning beliefs survey (n?=?841), defining language learning experience in terms of participants' multilingualism, and using a domain-specific language learning locus of control (LLLOC) instrument, this article examines whether more experienced language learners can also be seen as more autonomous language…

  15. Interplay between requirements, software architecture, and hardware constraints in the development of a home control user interface

    DEFF Research Database (Denmark)

    Loft, M.S.; Nielsen, S.S.; Nørskov, Kim

    2012-01-01

    is to propose the hardware platform as a third Twin Peaks element that must be given attention in projects such as the one described in this paper. Specifically, we discuss how the presence of severe hardware constraints exacerbates making trade-offs between requirements and architecture.......We have developed a new graphical user interface for a home control device for a large industrial customer. In this industrial case study, we first present our approaches to requirements engineering and to software architecture; we also describe the given hardware platform. Then we make two...... contributions. Our first contribution is to provide a specific example of a real-world project in which a Twin Peaks-compliant approach to software development has been used, and to describe and discuss three examples of interplay between requirements and software architecture decisions. Our second contribution...

  16. Hardware and software architecture for the integration of the new EC waves launcher in FTU control system

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, L. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Centioli, C., E-mail: cristina.centioli@enea.it [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Galperti, C.; Alessi, E.; Granucci, G. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Grosso, L.A. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Marchetto, C. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Napolitano, M. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Nowak, S. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Panella, M. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Sozzi, C. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Tilia, B.; Vitale, V. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy)

    2013-10-15

    Highlights: ► The integration of a new ECRH launcher to FTU legacy control system is reported. ► Fast control has been developed with a three-node RT cluster within MARTe framework. ► Slow control was implemented with a Simatic S7 PLC and an EPICS IOC-CA application. ► The first results have assessed the feasibility of the launcher control architecture. -- Abstract: The role of high power electron cyclotron (EC) waves in controlling magnetohydrodynamic (MHD) instabilities in tokamaks has been assessed in several experiments, exploiting the physical effects induced by resonant heating and current drive. Recently a new EC launcher, whose main goal is controlling tearing modes and possibly preventing their onset, is being implemented on FTU. So far most of the components of the launcher control strategy have been realized and successfully tested on plasma experiments. Nevertheless the operations of the new launcher must be completely integrated into the existing one, and to FTU control system. This work deals with this final step, proposing a hardware and software architecture implementing up to date technologies, to achieve a modular and effective control strategy well integrated into a legacy system. The slow control system of the new EC launcher is based on a Siemens S7 Programmable Logic Controller (PLC), integrated into FTU control system supervisor through an EPICS input output controller (IOC) and an in-house developed Channel Access client application creating an abstraction layer that decouples the IOC and the PLC from the FTU Supervisor software. This architecture could enable a smooth migration to an EPICS-only supervisory control system. The real time component of the control system is based on the open source MARTe framework relying on a Linux real time cluster, devoted to the detection of MHD instabilities and the calculation of the injection angles and the time reference for the radiofrequency power enable commands for the EC launcher.

  17. Architecture and technology of 500 Msample/s feedback systems for control of coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Teytelman, Dmitry

    2000-01-01

    Feedback control of coupled-bunch instabilities presents many challenges. Control bandwidths up to 250 MHz are required to damp all of the unstable coupled-bunch modes in recent accelerators. A digital parallel-processing array with 80 DSPs has been developed to control longitudinal instabilities in PEP-II/ALS/DA NE machines. Here the authors present a description of the architecture as well as the technologies used to implement 500 Msample/s real-time control system with 2,000 FIR filtering channels. Algorithms for feedback control, data acquisition, and analysis are described and measurements from ALS are presented

  18. The control of tonic pain by active relief learning.

    Science.gov (United States)

    Zhang, Suyi; Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W; Seymour, Ben

    2018-02-27

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty ('associability') signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. © 2018, Zhang et al.

  19. The control of tonic pain by active relief learning

    Science.gov (United States)

    Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W

    2018-01-01

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716

  20. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana.

    Science.gov (United States)

    Passaia, Gisele; Queval, Guillaume; Bai, Juan; Margis-Pinheiro, Marcia; Foyer, Christine H

    2014-03-01

    Glutathione peroxidases (GPXs) fulfil important functions in oxidative signalling and protect against the adverse effects of excessive oxidation. However, there has been no systematic characterization of the functions of the different GPX isoforms in plants. The roles of the different members of the Arabidopsis thaliana GPX gene (AtGPX) family were therefore investigated using gpx1, gpx2, gpx3, gpx4, gpx6, gpx7, and gpx8 T-DNA insertion mutant lines. The shoot phenotypes were largely similar in all genotypes, with small differences from the wild type observed only in the gpx2, gpx3, gpx7, and gpx8 mutants. In contrast, all the mutants showed altered root phenotypes compared with the wild type. The gpx1, gpx4, gpx6, gpx7, and gpx8 mutants had a significantly greater lateral root density (LRD) than the wild type. Conversely, the gpx2 and gpx3 mutants had significantly lower LRD values than the wild type. Auxin increased the LRD in all genotypes, but the effect of auxin was significantly greater in the gpx1, gpx4, and gpx7 mutants than in the wild type. The application of auxin increased GPX4 and GPX7 transcripts, but not GPX1 mRNAs in the roots of wild-type plants. The synthetic strigolactone GR24 and abscisic acid (ABA) decreased LRD to a similar extent in all genotypes, except gpx6, which showed increased sensitivity to ABA. These data not only demonstrate the importance of redox controls mediated by AtGPXs in the control of root architecture but they also show that the plastid-localized GPX1 and GPX7 isoforms are required for the hormone-mediated control of lateral root development.

  1. Active controllers and the time duration to learn a task

    Science.gov (United States)

    Repperger, D. W.; Goodyear, C.

    1986-01-01

    An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.

  2. Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior

    Science.gov (United States)

    Meco, Edi; Lampe, Kyle J.

    2018-02-01

    Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  3. Microscale Architecture in Biomaterial Scaffolds for Spatial Control of Neural Cell Behavior

    Directory of Open Access Journals (Sweden)

    Edi Meco

    2018-02-01

    Full Text Available Biomaterial scaffolds mimic aspects of the native central nervous system (CNS extracellular matrix (ECM and have been extensively utilized to influence neural cell (NC behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and three-dimensional (3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  4. Conceptual Design on the System Architecture of Intellectual Export Control System(IXCS)

    International Nuclear Information System (INIS)

    Jeong, Seung Ho; Yang, Seung Hyo; Tae, Jae Woong; Shin, Dong Hoon

    2013-01-01

    The commodity classification is for identifying strategic commodity, and the export license is for verifying that exports have met the requirement by the national legislation following international obligations (i. e. NSG guidelines) Since 2008, the 'Nuclear Export Promotion Service (NEPS)' System has been used as a total IT system providing various functions for exporters and reviewers. However, reviewers who make the decisions for commodity classification and export license, may have difficulties caused by ambiguity of criteria. For example, it is not sure whether a CVCS (Chemical Volume Control System) of a certain nuclear reactor plant belongs to strategic commodity or not. The NEPS is a useful system helping users save their time, but it cannot provide solutions reducing ambiguity of each classification or license case. To solve these problems and provide more efficient ways to their decisions, various intelligent IT solutions are searched and studied. A functional architecture of IXCS is defined and designed conceptually. This conceptual design will be utilized to make database specification and to find the optimized artificial algorithm for review processes

  5. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems.

    Science.gov (United States)

    Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel

    2016-08-16

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  6. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems

    Directory of Open Access Journals (Sweden)

    Ali Albattat

    2016-08-01

    Full Text Available The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems. These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  7. Learning-based identification and iterative learning control of direct-drive robots

    NARCIS (Netherlands)

    Bukkems, B.H.M.; Kostic, D.; Jager, de A.G.; Steinbuch, M.

    2005-01-01

    A combination of model-based and Iterative Learning Control is proposed as a method to achieve high-quality motion control of direct-drive robots in repetitive motion tasks. We include both model-based and learning components in the total control law, as their individual properties influence the

  8. Predictive Variable Gain Iterative Learning Control for PMSM

    Directory of Open Access Journals (Sweden)

    Huimin Xu

    2015-01-01

    Full Text Available A predictive variable gain strategy in iterative learning control (ILC is introduced. Predictive variable gain iterative learning control is constructed to improve the performance of trajectory tracking. A scheme based on predictive variable gain iterative learning control for eliminating undesirable vibrations of PMSM system is proposed. The basic idea is that undesirable vibrations of PMSM system are eliminated from two aspects of iterative domain and time domain. The predictive method is utilized to determine the learning gain in the ILC algorithm. Compression mapping principle is used to prove the convergence of the algorithm. Simulation results demonstrate that the predictive variable gain is superior to constant gain and other variable gains.

  9. Recent Contributions to a Generic Architecture Design that Supports Learning Objects Interoperability

    Science.gov (United States)

    Botsios, Sotirios; Georgiou, Dimitrios A.

    2009-01-01

    Adaptation and personalization services in e-learning environments are considered the turning point of recent research efforts, as the "one-size-fits-all" approach has some important drawbacks, from the educational point of view. Adaptive Educational Hypermedia Systems in World Wide Web became a very active research field and the need of…

  10. Building Quality into Learning Management Systems – An Architecture-Centric Approach

    NARCIS (Netherlands)

    Avgeriou, P.; Retalis, Simos; Skordalakis, Manolis

    2003-01-01

    The design and development of contemporary Learning Management Systems (LMS), is largely focused on satisfying functional requirements, rather than quality requirements, thus resulting in inefficient systems of poor software and business quality. In order to remedy this problem there is a research

  11. Learning hardware using multiple-valued logic - Part 2: Cube calculus and architecture

    NARCIS (Netherlands)

    Perkowski, M.A.; Foote, D.; Chen, Qihong; Al-Rabadi, A.; Jozwiak, L.

    2002-01-01

    For Part 1 see ibid. vol.22, no.3 (2002). A massively parallel reconfigurable processor speeds up the logic operators performed in the learning hardware. The approach uses combinatorial synthesis methods developed within the framework of the logic synthesis approach in digital-circuit-design

  12. Collaborative Learning in Architectural Education: Benefits of Combining Conventional Studio, Virtual Design Studio and Live Projects

    Science.gov (United States)

    Rodriguez, Carolina; Hudson, Roland; Niblock, Chantelle

    2018-01-01

    Combinations of Conventional Studio and Virtual Design Studio (VDS) have created valuable learning environments that take advantage of different instruments of communication and interaction. However, past experiences have reported limitations in regards to student engagement and motivation, especially when the studio projects encourage abstraction…

  13. When Form Follows Fantasy: Lessons for Learning Scientists from Modernist Architecture and Urban Planning

    Science.gov (United States)

    O'Neill, D. Kevin

    2016-01-01

    Research in the learning sciences is often motivated by the goal of shaping a better future through design. Architects and urban planners share this goal, and the history of their more ambitious designs provides clear examples of how attempts to build the future can turn out. After discussing similarities and differences between design in the…

  14. Problems of Implementing SCORM in an Enterprise Distance Learning Architecture: SCORM Incompatibility across Multiple Web Domains.

    Science.gov (United States)

    Engelbrecht, Jeffrey C.

    2003-01-01

    Delivering content to distant users located in dispersed networks, separated by firewalls and different web domains requires extensive customization and integration. This article outlines some of the problems of implementing the Sharable Content Object Reference Model (SCORM) in the Marine Corps' Distance Learning System (MarineNet) and extends…

  15. Fault Tolerant Control Architecture Design for Mobile Manipulation in Scientific Facilities

    Directory of Open Access Journals (Sweden)

    Mohammad M. Aref

    2015-01-01

    Full Text Available This paper describes one of the challenging issues implied by scientific infrastructures on a mobile robot cognition architecture. For a generally applicable cognition architecture, we study the dependencies and logical relations between several tasks and subsystems. The overall view of the software modules is described, including their relationship with a fault management module that monitors the consistency of the data flow among the modules. The fault management module is the solution of the deliberative architecture for the single point failures, and the safety anchor is the reactive solution for the faults by redundant equipment. In addition, a hardware architecture is proposed to ensure safe robot movement as a redundancy for the cognition of the robot. The method is designed for a four-wheel steerable (4WS mobile manipulator (iMoro as a case study.

  16. An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport

    NARCIS (Netherlands)

    Jongsma, Marlieke L. M.; Berlin, Ilana; Wijdeven, Ruud H. M.; Janssen, Lennert; Janssen, George M. C.; Garstka, Malgorzata A.; Janssen, Hans; Mensink, Mark; van Veelen, Peter A.; Spaapen, Robbert M.; Neefjes, Jacques

    2016-01-01

    Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent.

  17. QoS Management and Control for an All-IP WiMAX Network Architecture: Design, Implementation and Evaluation

    Directory of Open Access Journals (Sweden)

    Thomas Michael Bohnert

    2008-01-01

    Full Text Available The IEEE 802.16 standard provides a specification for a fixed and mobile broadband wireless access system, offering high data rate transmission of multimedia services with different Quality-of-Service (QoS requirements through the air interface. The WiMAX Forum, going beyond the air interface, defined an end-to-end WiMAX network architecture, based on an all-IP platform in order to complete the standards required for a commercial rollout of WiMAX as broadband wireless access solution. As the WiMAX network architecture is only a functional specification, this paper focuses on an innovative solution for an end-to-end WiMAX network architecture offering in compliance with the WiMAX Forum specification. To our best knowledge, this is the first WiMAX architecture built by a research consortium globally and was performed within the framework of the European IST project WEIRD (WiMAX Extension to Isolated Research Data networks. One of the principal features of our architecture is support for end-to-end QoS achieved by the integration of resource control in the WiMAX wireless link and the resource management in the wired domains in the network core. In this paper we present the architectural design of these QoS features in the overall WiMAX all-IP framework and their functional as well as performance evaluation. The presented results can safely be considered as unique and timely for any WiMAX system integrator.

  18. Learning feedforward controller for a mobile robot vehicle

    NARCIS (Netherlands)

    Starrenburg, J.G.; Starrenburg, J.G.; van Luenen, W.T.C.; van Luenen, W.T.C.; Oelen, W.; Oelen, W.; van Amerongen, J.

    1996-01-01

    This paper describes the design and realisation of an on-line learning posetracking controller for a three-wheeled mobile robot vehicle. The controller consists of two components. The first is a constant-gain feedback component, designed on the basis of a second-order model. The second is a learning

  19. Continuous residual reinforcement learning for traffic signal control optimization

    NARCIS (Netherlands)

    Aslani, Mohammad; Seipel, Stefan; Wiering, Marco

    2018-01-01

    Traffic signal control can be naturally regarded as a reinforcement learning problem. Unfortunately, it is one of the most difficult classes of reinforcement learning problems owing to its large state space. A straightforward approach to address this challenge is to control traffic signals based on

  20. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)