WorldWideScience

Sample records for learn computational thinking

  1. Mobile learning and computational thinking

    OpenAIRE

    José Manuel Freixo Nunes; Teresa Margarida Loureiro Cardoso

    2017-01-01

    Computational thinking can be thought of as an approach to problem solving which has been applied to different areas of learning and which has become an important field of investigation in the area of educational research. [continue

  2. Mobile learning and computational thinking

    Directory of Open Access Journals (Sweden)

    José Manuel Freixo Nunes

    2017-11-01

    Full Text Available Computational thinking can be thought of as an approach to problem solving which has been applied to different areas of learning and which has become an important field of investigation in the area of educational research. [continue

  3. Mathematical Modeling and Computational Thinking

    Science.gov (United States)

    Sanford, John F.; Naidu, Jaideep T.

    2017-01-01

    The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…

  4. COMPUTATIONAL THINKING

    Directory of Open Access Journals (Sweden)

    Evgeniy K. Khenner

    2016-01-01

    Full Text Available Abstract. The aim of the research is to draw attention of the educational community to the phenomenon of computational thinking which actively discussed in the last decade in the foreign scientific and educational literature, to substantiate of its importance, practical utility and the right on affirmation in Russian education.Methods. The research is based on the analysis of foreign studies of the phenomenon of computational thinking and the ways of its formation in the process of education; on comparing the notion of «computational thinking» with related concepts used in the Russian scientific and pedagogical literature.Results. The concept «computational thinking» is analyzed from the point of view of intuitive understanding and scientific and applied aspects. It is shown as computational thinking has evolved in the process of development of computers hardware and software. The practice-oriented interpretation of computational thinking which dominant among educators is described along with some ways of its formation. It is shown that computational thinking is a metasubject result of general education as well as its tool. From the point of view of the author, purposeful development of computational thinking should be one of the tasks of the Russian education.Scientific novelty. The author gives a theoretical justification of the role of computational thinking schemes as metasubject results of learning. The dynamics of the development of this concept is described. This process is connected with the evolution of computer and information technologies as well as increase of number of the tasks for effective solutions of which computational thinking is required. Author substantiated the affirmation that including «computational thinking » in the set of pedagogical concepts which are used in the national education system fills an existing gap.Practical significance. New metasubject result of education associated with

  5. PENGEMBANGAN MODEL COMPUTER-BASED E-LEARNING UNTUK MENINGKATKAN KEMAMPUAN HIGH ORDER MATHEMATICAL THINKING SISWA SMA

    OpenAIRE

    Jarnawi Afgani Dahlan; Yaya Sukjaya Kusumah; Mr Heri Sutarno

    2011-01-01

    The focus of this research is on the development of mathematics teaching and learning activity which is based on the application of computer software. The aim of research is as follows : 1) to identify some mathematics topics which feasible to be presented by computer-based e-learning, 2) design, develop, and implement computer-based e-learning on mathematics, and 3) analyze the impact of computer-based e-learning in the enhancement of SMA students’ high order mathematical thinking. All activ...

  6. Computational Thinking in Constructionist Video Games

    Science.gov (United States)

    Weintrop, David; Holbert, Nathan; Horn, Michael S.; Wilensky, Uri

    2016-01-01

    Video games offer an exciting opportunity for learners to engage in computational thinking in informal contexts. This paper describes a genre of learning environments called constructionist video games that are especially well suited for developing learners' computational thinking skills. These games blend features of conventional video games with…

  7. Exploring the Effects of Web-Mediated Computational Thinking on Developing Students' Computing Skills in a Ubiquitous Learning Environment

    Science.gov (United States)

    Tsai, Chia-Wen; Shen, Pei-Di; Tsai, Meng-Chuan; Chen, Wen-Yu

    2017-01-01

    Much application software education in Taiwan can hardly be regarded as practical. The researchers in this study provided a flexible means of ubiquitous learning (u-learning) with a mobile app for students to access the learning material. In addition, the authors also adopted computational thinking (CT) to help students develop practical computing…

  8. A Human-Centred Tangible approach to learning Computational Thinking

    Directory of Open Access Journals (Sweden)

    Tommaso Turchi

    2016-08-01

    Full Text Available Computational Thinking has recently become a focus of many teaching and research domains; it encapsulates those thinking skills integral to solving complex problems using a computer, thus being widely applicable in our society. It is influencing research across many disciplines and also coming into the limelight of education, mostly thanks to public initiatives such as the Hour of Code. In this paper we present our arguments for promoting Computational Thinking in education through the Human-centred paradigm of Tangible End-User Development, namely by exploiting objects whose interactions with the physical environment are mapped to digital actions performed on the system.

  9. Teaching Computational Thinking: Deciding to Take Small Steps in a Curriculum

    Science.gov (United States)

    Madoff, R. D.; Putkonen, J.

    2016-12-01

    While computational thinking and reasoning are not necessarily the same as computer programming, programs such as MATLAB can provide the medium through which the logical and computational thinking at the foundation of science can be taught, learned, and experienced. And while math and computer anxiety are often discussed as critical obstacles to students' progress in their geoscience curriculum, it is here suggested that an unfamiliarity with the computational and logical reasoning is what poses a first stumbling block, in addition to the hurdle of expending the effort to learn how to translate a computational problem into the appropriate computer syntax in order to achieve the intended results. Because computational thinking is so vital for all fields, there is a need to initiate many and to build support in the curriculum for it. This presentation focuses on elements to bring into the teaching of computational thinking that are intended as additions to learning MATLAB programming as a basic tool. Such elements include: highlighting a key concept, discussing a basic geoscience problem where the concept would show up, having the student draw or outline a sketch of what they think an operation needs to do in order to perform a desired result, and then finding the relevant syntax to work with. This iterative pedagogy simulates what someone with more experience in programming does, so it discloses the thinking process in the black box of a result. Intended as only a very early stage introduction, advanced applications would need to be developed as students go through an academic program. The objective would be to expose and introduce computational thinking to majors and non-majors and to alleviate some of the math and computer anxiety so that students would choose to advance on with programming or modeling, whether it is built into a 4-year curriculum or not.

  10. Engineering Courses on Computational Thinking Through Solving Problems in Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Piyanuch Silapachote

    2017-09-01

    Full Text Available Computational thinking sits at the core of every engineering and computing related discipline. It has increasingly emerged as its own subject in all levels of education. It is a powerful cornerstone for cognitive development, creative problem solving, algorithmic thinking and designs, and programming. How to effectively teach computational thinking skills poses real challenges and creates opportunities. Targeting entering computer science and engineering undergraduates, we resourcefully integrate elements from artificial intelligence (AI into introductory computing courses. In addition to comprehension of the essence of computational thinking, practical exercises in AI enable inspirations of collaborative problem solving beyond abstraction, logical reasoning, critical and analytical thinking. Problems in machine intelligence systems intrinsically connect students to algorithmic oriented computing and essential mathematical foundations. Beyond knowledge representation, AI fosters a gentle introduction to data structures and algorithms. Focused on engaging mental tool, a computer is never a necessity. Neither coding nor programming is ever required. Instead, students enjoy constructivist classrooms designed to always be active, flexible, and highly dynamic. Learning to learn and reflecting on cognitive experiences, they rigorously construct knowledge from collectively solving exciting puzzles, competing in strategic games, and participating in intellectual discussions.

  11. Computational Thinking in Compulsory Education: Towards an Agenda for Research and Practice

    Science.gov (United States)

    Voogt, Joke; Fisser, Petra; Good, Jon; Mishra, Punya; Yadav, Aman

    2015-01-01

    Computational Thinking is considered a universal competence, which should be added to every child's analytical ability as a vital ingredient of their school learning. In this article we further elaborate on what Computational Thinking is and present examples of what needs to be taught and how. First we position Computational Thinking in Papert's…

  12. The Impact of User Interface on Young Children’s Computational Thinking

    Directory of Open Access Journals (Sweden)

    Amanda Sullivan

    2017-07-01

    Full Text Available Aim/Purpose: Over the past few years, new approaches to introducing young children to computational thinking have grown in popularity. This paper examines the role that user interfaces have on children’s mastery of computational thinking concepts and positive interpersonal behaviors. Background: There is a growing pressure to begin teaching computational thinking at a young age. This study explores the affordances of two very different programming interfaces for teaching computational thinking: a graphical coding application on the iPad (ScratchJr and tangible programmable robotics kit (KIBO. Methodology\t: This study used a mixed-method approach to explore the learning experiences that young children have with tangible and graphical coding interfaces. A sample of children ages four to seven (N = 28 participated. Findings: Results suggest that type of user interface does have an impact on children’s learning, but is only one of many factors that affect positive academic and socio-emotional experiences. Tangible and graphical interfaces each have qualities that foster different types of learning

  13. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    Science.gov (United States)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  14. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  15. Medical Computational Thinking

    DEFF Research Database (Denmark)

    Musaeus, Peter; Tatar, Deborah Gail; Rosen, Michael A.

    2017-01-01

    Computational thinking (CT) in medicine means deliberating when to pursue computer-mediated solutions to medical problems and evaluating when such solutions are worth pursuing in order to assist in medical decision making. Teaching computational thinking (CT) at medical school should be aligned...

  16. Understanding Computational Thinking before Programming: Developing Guidelines for the Design of Games to Learn Introductory Programming through Game-Play

    Science.gov (United States)

    Kazimoglu, Cagin; Kiernan, Mary; Bacon, Liz; MacKinnon, Lachlan

    2011-01-01

    This paper outlines an innovative game-based approach to learning introductory programming that is grounded in the development of computational thinking at an abstract conceptual level, but also provides a direct contextual relationship between game-play and learning traditional introductory programming. The paper proposes a possible model for,…

  17. Computational thinking in compulsory education: Towards an agenda for research and practice

    NARCIS (Netherlands)

    Voogt, J.; Fisser, P.; Good, J.; Mishra, P.; Yadav, A.

    2015-01-01

    Computational Thinking is considered a universal competence, which should be added to every child’s analytical ability as a vital ingredient of their school learning. In this article we further elaborate on what Computational Thinking is and present examples of what needs to be taught and how. First

  18. Computer assisted active learning system development for critical thinking in history of civilization

    Directory of Open Access Journals (Sweden)

    Adem Karahoca

    2010-03-01

    Full Text Available This study investigates a Computer Assisted Learning System (CALS according to the several factors that promote flow wherestudents are fully involved into the learning activities for history of civilization lessons. The designed CALS supported bymeta – cognitive (cognitive maps and multimedia tools (movies, flash cards and quiz applications that help students to reacha flow state in learning by actively by engaging students’ critical thinking and providing an environment for active participation.The research data was collected using focus group surveys from a randomly selected 54 students enrolled in history ofcivilization at Bahcesehir University in Istanbul, Turkey. Results showed that 53.7% of students can be in flow via implementedCALS. Also according to the results, the flow has significant predictors in the course enjoyment, perceived competence ofcourse, value–usefulness and the challenge–learning style match according to nature of course in such a CALS.

  19. Using NCLab-karel to improve computational thinking skill of junior high school students

    Science.gov (United States)

    Kusnendar, J.; Prabawa, H. W.

    2018-05-01

    Increasingly human interaction with technology and the increasingly complex development of digital technology world make the theme of computer science education interesting to study. Previous studies on Computer Literacy and Competency reveal that Indonesian teachers in general have fairly high computational skill, but their skill utilization are limited to some applications. This engenders limited and minimum computer-related learning for the students. On the other hand, computer science education is considered unrelated to real-world solutions. This paper attempts to address the utilization of NCLab- Karel in shaping the computational thinking in students. This computational thinking is believed to be able to making learn students about technology. Implementation of Karel utilization provides information that Karel is able to increase student interest in studying computational material, especially algorithm. Observations made during the learning process also indicate the growth and development of computing mindset in students.

  20. Thinking about computational thinking

    NARCIS (Netherlands)

    Lu, J.J.; Fletcher, G.H.L.; Fitzgerald, S.; Guzdial, M.; Lewandowski, G.; Wolfman, S.A.

    2009-01-01

    Jeannette Wing's call for teaching Computational Thinking (CT) as a formative skill on par with reading, writing, and arithmetic places computer science in the category of basic knowledge. Just as proficiency in basic language arts helps us to effectively communicate and in basic math helps us to

  1. Computational Thinking in Secondary Education: Where Does It Fit? A Systematic Literary Review

    Science.gov (United States)

    Lockwood, James; Mooney, Aidan

    2018-01-01

    Computational Thinking has been described as an essential skill which everyone should learn and can therefore include in their skill set. Seymour Papert (Papert, 1980) is credited as concretising Computational Thinking in 1980 but Jeanette Wing (Wing, 2006) popularised the term in 2006 and brought it to the international community's attention.…

  2. Towards playful learning and computational thinking — Developing the educational robot BRICKO

    DEFF Research Database (Denmark)

    Pedersen, B. K. M. K.; Andersen, K. E.; J⊘rgensen, A.

    2018-01-01

    Educational Robotics has proven a feasible way of supporting and exemplifying Computational Thinking. With this paper, we describe the user-centered iterative and incremental development of a new educational robotic system, BRICKO, to support tangible, social and playful interaction while educating...... children in 1st–3rd grade in Computational Thinking. We develop the system through seven main iterations including a total of 108 participant pupils and their teachers. The methodology is a mixture of observation and interviews using Wizard of OZ testing with the early pilot prototypes as well as usability...... categories of command-bricks. We discuss the methodologies used for assuring a playful and social educational robotic system and conclude that we achieved a useful prototype for supporting education in Computational Thinking....

  3. Bringing Computational Thinking into the High School Science and Math Classroom

    Science.gov (United States)

    Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern

    2013-01-01

    Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.

  4. Computational thinking as an emerging competence domain

    NARCIS (Netherlands)

    Yadav, A.; Good, J.; Voogt, J.; Fisser, P.; Mulder, M.

    2016-01-01

    Computational thinking is a problem-solving skill set, which includes problem decomposition, algorithmic thinking, abstraction, and automation. Even though computational thinking draws upon concepts fundamental to computer science (CS), it has broad application to all disciplines. It has been

  5. The Nature of Computational Thinking in Computing Education

    DEFF Research Database (Denmark)

    Spangsberg, Thomas Hvid; Brynskov, Martin

    2018-01-01

    Computational Thinking has gained popularity in recent years within educational and political discourses. It is more than ever crucial to discuss the term itself and what it means. In June 2017, Denning articulated that computational thinking can be viewed as either “traditional” or “new”. New...

  6. Operation ARA: A Computerized Learning Game that Teaches Critical Thinking and Scientific Reasoning

    Science.gov (United States)

    Halpern, Diane F.; Millis, Keith; Graesser, Arthur C.; Butler, Heather; Forsyth, Carol; Cai, Zhiqiang

    2012-01-01

    Operation ARA (Acquiring Research Acumen) is a computerized learning game that teaches critical thinking and scientific reasoning. It is a valuable learning tool that utilizes principles from the science of learning and serious computer games. Students learn the skills of scientific reasoning by engaging in interactive dialogs with avatars. They…

  7. Paper Circuits: A Tangible, Low Threshold, Low Cost Entry to Computational Thinking

    Science.gov (United States)

    Lee, Victor R.; Recker, Mimi

    2018-01-01

    In this paper, we propose that paper circuitry provides a productive space for exploring aspects of computational thinking, an increasingly critical 21st century skills for all students. We argue that the creation and operation of paper circuits involve learning about computational concepts such as rule-based constraints, operations, and defined…

  8. Teachers' learning about research for enhancing students' thinking skills in science learning

    Science.gov (United States)

    Nammungkhun, Wisanugorn; Satchukorn, Sureerat; Saenpuk, Nudchanard; Yuenyong, Chokchai; Chantharanuwong, Warawun

    2018-01-01

    This paper aimed to clarify teachers' learning about research for enhancing students' thinking skills in science learning. The study applied the lens of sociocultural view of learning to discuss teachers' learning about research. Participants included teachers who participated in the project of thinking research schools: research for enhancing students' thinking skills. The project of thinking research schools provided participants chance to learn knowledge about research and thinking research, doing research and publication, and participate in the international conference. Methodology regarded ethnographic research. The tools of interpretation included participant observation, interview, and document analysis. The researchers as participants of the research project of thinking research schools tried to clarify what they learned about research from their way of seeing the view of research about enhancing students' thinking skills through participant observation. The findings revealed what and how teachers as apprenticeship learn about research through legitimate peripheral participation in the research project community of practice. The paper clarified teachers' conceptualization about research for enhancing students' thinking through the workshop, doing research, writing up research article with supported by experts, presenting research in the international conference, editing their research article on the way of publishing, and so on.

  9. Introducing computational thinking through hands-on projects using R with applications to calculus, probability and data analysis

    Science.gov (United States)

    Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand

    2017-04-01

    The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data analysis. We present nine computer experiments and suggest a few more, with applications to calculus, probability and data analysis, which engage computational thinking through simulations, visualizations and data analysis. We are using the free (open-source) statistical programming language R. Our goal is to give a taste of what R offers rather than to present a comprehensive tutorial on the R language. In our experience, these kinds of interactive computer activities can be easily integrated into a smart classroom. Furthermore, these activities do tend to keep students motivated and actively engaged in the process of learning, problem solving and developing a better intuition for understanding complex mathematical concepts.

  10. Changing a Generation's Way of Thinking: Teaching Computational Thinking through Programming

    Science.gov (United States)

    Buitrago Flórez, Francisco; Casallas, Rubby; Hernández, Marcela; Reyes, Alejandro; Restrepo, Silvia; Danies, Giovanna

    2017-01-01

    Computational thinking (CT) uses concepts that are essential to computing and information science to solve problems, design and evaluate complex systems, and understand human reasoning and behavior. This way of thinking has important implications in computer sciences as well as in almost every other field. Therefore, we contend that CT should be…

  11. Using Discovery Learning to Encourage Creative Thinking

    Directory of Open Access Journals (Sweden)

    Mardia Hi. Rahman

    2017-10-01

    Full Text Available Creative thinking ability development is needed to be implemented by every educator including lecturers to their students. Therefore, they need to seriously act and design their learning process. One of the ways to develop student’s creative thinking is using discovery learning model. This research is conducted in physics education study program in 2016 with students who took learning and teaching class as research subject. From the research analysis result and discussion, it can be concluded that discovery learning model can encourage students’ creative thinking ability in learning and teaching strategy subject.

  12. Examination of the Computational Thinking Skills of Students

    Science.gov (United States)

    Korucu, Agah Tugrul; Gencturk, Abdullah Tarik; Gundogdu, Mustafa Mucahit

    2017-01-01

    Computational thinking is generally considered as a kind of analytical way of thinking. According to Wings (2008) it shares with mathematical thinking, engineering thinking and scientific thinking in the general ways in which we may use for solving a problem, designing and evaluating complex systems or understanding computability and intelligence…

  13. First steps in teaching computational thinking through mobile technology and robotics

    Directory of Open Access Journals (Sweden)

    Titipan Phetsrikran

    2017-07-01

    Full Text Available rogramming, or computational thinking, is becoming recognized as a skill that should be taught in primary and secondary schools. One technique for teaching programming is to use robotics, but usually this requires students to program via a PC. The purpose of this study is to investigate the potential for using an iPad application and robot that enables children to learn programming skills. This paper describes an application containing puzzles that involve creating a program to guide the physical robot from a start point to a goal. The application sends commands and controls the robots via Bluetooth and runs on the iPad with iOS. An initial experiment performed in a high school in Thailand explores how mobile technology and educational robotics can be applied to computational thinking in schools. The findings showed that the use of mobile technology opens up alternative styles of interaction in the classroom with potential for highly collaborative activities and greater focus on the learning domain.

  14. Educational Game Design as Gateway for Operationalizing Computational Thinking Skills among Middle School Students

    Science.gov (United States)

    Wu, Min Lun

    2018-01-01

    This qualitative case study reports descriptive findings of digital game-based learning involving 15 Taiwanese middle school students' use of computational thinking skills elicited through programmed activities in a game design workshop. Situated learning theory is utilized as framework to evaluate novice game designers' individual advancement in…

  15. Content Analysis in Computer-Mediated Communication: Analyzing Models for Assessing Critical Thinking through the Lens of Social Constructivism

    Science.gov (United States)

    Buraphadeja, Vasa; Dawson, Kara

    2008-01-01

    This article reviews content analysis studies aimed to assess critical thinking in computer-mediated communication. It also discusses theories and content analysis models that encourage critical thinking skills in asynchronous learning environments and reviews theories and factors that may foster critical thinking skills and new knowledge…

  16. Creating the computer player: an engaging and collaborative approach to introduce computational thinking by combining ‘unplugged’ activities with visual programming

    Directory of Open Access Journals (Sweden)

    Anna Gardeli

    2017-11-01

    Full Text Available Ongoing research is being conducted on appropriate course design, practices and teacher interventions for improving the efficiency of computer science and programming courses in K-12 education. The trend is towards a more constructivist problem-based learning approach. Computational thinking, which refers to formulating and solving problems in a form that can be efficiently processed by a computer, raises an important educational challenge. Our research aims to explore possible ways of enriching computer science teaching with a focus on development of computational thinking. We have prepared and evaluated a learning intervention for introducing computer programming to children between 10 and 14 years old; this involves students working in groups to program the behavior of the computer player of a well-known game. The programming process is split into two parts. First, students design a high-level version of their algorithm during an ‘unplugged’ pen & paper phase, and then they encode their solution as an executable program in a visual programming environment. Encouraging evaluation results have been achieved regarding the educational and motivational value of the proposed approach.

  17. Proto-computational Thinking

    DEFF Research Database (Denmark)

    Tatar, Deborah Gail; Harrison, Steve; Stewart, Michael

    2017-01-01

    . Utilizing university students in co-development activities with teachers, the current study located and implemented opportunities for integrated computational thinking in middle school in a large, suburban, mixed-socioeconomic standing (SES) , mixed-race district. The co-development strategy resulted...

  18. EXAMINATION OF THE COMPUTATIONAL THINKING SKILLS OF STUDENTS

    Directory of Open Access Journals (Sweden)

    Agah Tugrul Korucu

    2017-01-01

    Full Text Available Computational thinking is generally considered as a kind of analytical way of thinking. According to Wings (2008 it shares with mathematical thinking, engineering thinking and scientific thinking in the general ways in which we may use for solving a problem, designing and evaluating complex systems or understanding computability and intelligence as well as the mind and human behaviour. It is generally accepted important that like high order thinking skills the analytical way of thinking should be taught to the children at very early ages. The aim of this study is to investigate the computational thinking skills of secondary school students in terms of different variables. The study group of the research is 160 secondary school students who continue their education at different levels in Konya. The “Computational Thinking Skills Scale” which has been developed by Korkmaz, Çakır and Özden (2015 used for data collection. The scale includes 22 items and it is a 5 point likert type scale. The Cronbach Alpha reliability of the scale has been calculated as 0.80 and it has been found to be valid to measure the computational skills levels of the secondary school students as a result of the analysis. As a result of this research, the computational thinking skill levels of participants differ meaningfully in terms of their class levels, do not differ meaningfully in terms of their genders, do not differ meaningfully in terms of their weekly internet usage durations, do not differ meaningfully in terms of their mobile device usage competence situations, differ meaningfully in terms of their mobile Technologies possession durations.

  19. A Call for Computational Thinking in Undergraduate Psychology

    Science.gov (United States)

    Anderson, Nicole D.

    2016-01-01

    Computational thinking is an approach to problem solving that is typically employed by computer programmers. The advantage of this approach is that solutions can be generated through algorithms that can be implemented as computer code. Although computational thinking has historically been a skill that is exclusively taught within computer science,…

  20. Promises and perils of computational thinking

    DEFF Research Database (Denmark)

    Gad, Christopher; Douglas-Jones, Rachel

    slippage within the computational thinking concept, as it moves between the descriptive and promotional modes described above. We consider the implications of this slippage through various conceptual apparatuses available within STS – since these approaches are already critical of distinctions between......Proponents of computational thinking use the concept to account for what they perceive as important generalizable aspects of human thought (Wing 2011, National Research Council USA 2010, 2011). Simultaneously, the concept is employed to designate an ambitious pedagogical programme, in which...... computational thinking can be taught as a skill for the digitally literate 21st century (ibid.). As such, CT is seen both as an innate human capacity and a programme for developing future oriented skills - both for individuals and for populations at large. This paper explores what we perceive as conceptual...

  1. The Effect of Think-Pair-Share-Write Based on Hybrid Learning on Metakognitive Skills, Creative Thinking and Cognitive Learning at SMA Negeri 3 Malang

    Directory of Open Access Journals (Sweden)

    Ika Yulianti Siregar

    2017-07-01

    Full Text Available The results of biology learning observation show that there are many constraints during the learning process in the class and consultation meeting between teacher and students. The think-pair-share-write based on hybrid learning was conducted to analyze the effect on metacognitive skills, creative thinking and learning outcomes. The research design was quasi experiment with pretest-posttest non-equivalent control group design. The independent variable is think-pair-share-write based on Hybrid learning model, while the dependent variables are metacognitive skills, creative thinking, and cognitive learning outcomes. Metacognitive skills are measured by using metacognitive rubrics. Creative thinking skills and cognitive learning outcomes are measured by using a description test. The data were taken by conducting pretest and posttest. The hypothesis test used was anakova with level of significance 0,05 (P <0,05, as the test result was significant then the test was continued to LSD. Before the anakova test, normality and homogeneity test were performed. The results showed that think-pair-share-write based on Hybrid Learning significantly affecting: 1 the metacognitive skills with F arithmetic of 183,472 and Sig. 0,000; 2 the creative thinking skill with F value of 325,111 and Sig. 0,000; 3 the cognitive learning outcomes with F arithmetic of 175.068 and Sig. 0,000.

  2. Using Discovery Learning to Encourage Creative Thinking

    OpenAIRE

    Mardia Hi. Rahman

    2017-01-01

    Creative thinking ability development is needed to be implemented by every educator including lecturers to their students. Therefore, they need to seriously act and design their learning process. One of the ways to develop student’s creative thinking is using discovery learning model. This research is conducted in physics education study program in 2016 with students who took learning and teaching class as research subject. From the research analysis result and discussion, it can be concluded...

  3. Using computer simulation to improve high order thinking skills of physics teacher candidate students in Compton effect

    Science.gov (United States)

    Supurwoko; Cari; Sarwanto; Sukarmin; Fauzi, Ahmad; Faradilla, Lisa; Summa Dewi, Tiarasita

    2017-11-01

    The process of learning and teaching in Physics is often confronted with abstract concepts. It makes difficulty for students to understand and teachers to teach the concept. One of the materials that has an abstract concept is Compton Effect. The purpose of this research is to evaluate computer simulation model on Compton Effect material which is used to improve high thinking ability of Physics teacher candidate students. This research is a case study. The subject is students at physics educations who have attended Modern Physics lectures. Data were obtained through essay test for measuring students’ high-order thinking skills and quisioners for measuring students’ responses. The results obtained indicate that computer simulation model can be used to improve students’ high order thinking skill and can be used to improve students’ responses. With this result it is suggested that the audiences use the simulation media in learning

  4. Learning design thinking online : studying students' learning experience in shared virtual reality

    OpenAIRE

    Lau, Kung Wong

    2010-01-01

    Learning Design Thinking Online: Studying Students' Learning Experience in Shared Virtual Reality My study attempts to deepen understanding about the learning experiences of design students in undertaking design-thinking exercises in a shared virtual reality. This study has identified the areas of an appropriate pedagogy for E-Learning and the use of a shared virtual environment for students in tertiary design education. Specific questions arising ji"Om this research are: (1...

  5. THE RELATIONSHIP BETWEEN CREATIVE THINKING AND MOTIVATION TO LEARN CREATIVE THINKING AMONG PRE-SCHOOLERS IN JORDAN

    OpenAIRE

    Mohammad Ahmad Abdelaziz Al-Zu'bi; Mohd Sofian Omar-Fauzee; Amrita Kaur

    2017-01-01

    The investigation of the level of creative thinking and motivation to learn creative thinking, and the relationship between both of them, in Jordan is still insufficient due to lack of interest and research among researchers and scholars. Therefore, this study examines the relationship between creative thinking and motivation to learn creative thinking among pre-school children in Jordan. A total of 102 students from one kindergarten was examined. Parental consent was obtained before the stud...

  6. Learning styles and critical thinking relationship in baccalaureate nursing education: a systematic review.

    Science.gov (United States)

    Andreou, Christos; Papastavrou, Evridiki; Merkouris, Anastasios

    2014-03-01

    Critical thinking is a desirable competency for contemporary nurses although there are growing concerns supporting a disturbing paucity in its achievement. Learning styles reflect habitual behaviors which determine distinct preferences within learning situations. Evidence suggests that critical thinking could evolve through learning processes. Variances in critical thinking achievement by nursing students might therefore be influenced by individual learning preferences. The concepts "learning styles" and "critical thinking" have been independently examined in the nursing literature. No reviews were found however exploring their association in nursing education. To identify the potential relationships between learning styles and critical thinking in baccalaureate nursing students. Systematic review. Eleven electronic databases were utilized without geographical and time publishing filters. Hand-searching journals and scanning references from retrieved studies were also performed. Databases were searched for descriptive correlational studies which considered the relationship between learning styles and critical thinking in baccalaureate nursing students. The authors independently progressed three stage screening. Retrieved articles were reviewed at title, abstract and full text levels according to predetermined criteria. All included studies were quality appraised using a rating tool for descriptive studies. Six studies were finally included. Findings were grouped under four key themes: predominant learning styles, critical thinking scoring, critical thinking evolution across academic progress and learning styles-critical thinking correlations. Learning styles' diversities, weak critical thinking and inconsistent evolution through academic progress were revealed across studies. Critical thinking differed significantly between learning styles. Commonly accepted models in nursing education were lacking in both learning styles and critical thinking. Within studies

  7. The Implementation of Discovery Learning Model with Scientific Learning Approach to Improve Students’ Critical Thinking in Learning History

    Directory of Open Access Journals (Sweden)

    Edi Nurcahyo

    2018-03-01

    Full Text Available Historical learning has not reached optimal in the learning process. It is caused by the history teachers’ learning model has not used the innovative learning models. Furthermore, it supported by the perception of students to the history subject because it does not become final exam (UN subject so it makes less improvement and builds less critical thinking in students’ daily learning. This is due to the lack of awareness of historical events and the availability of history books for students and teachers in the library are still lacking. Discovery learning with scientific approach encourages students to solve problems actively and able to improve students' critical thinking skills with scientific approach so student can build scientific thinking include observing, asking, reasoning, trying, and networking   Keywords: discovery learning, scientific, critical thinking

  8. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  9. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  10. Spatial Thinking: Precept for Understanding Operational Environments

    Science.gov (United States)

    2016-06-10

    A Computer Movie Simulating Urban Growth in the Detroit Region,” 236. 29 U.S. National Research Council, Learning to Think Spatially: GIS as a... children and spatial language, the article focuses on the use of geospatial information systems (GIS) as a support mechanism for learning to think...Thinking, Cognition, Learning , Geospatial, Operating Environment, Space Perception 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  11. Programming Video Games and Simulations in Science Education: Exploring Computational Thinking through Code Analysis

    Science.gov (United States)

    Garneli, Varvara; Chorianopoulos, Konstantinos

    2018-01-01

    Various aspects of computational thinking (CT) could be supported by educational contexts such as simulations and video-games construction. In this field study, potential differences in student motivation and learning were empirically examined through students' code. For this purpose, we performed a teaching intervention that took place over five…

  12. Critical thinking dispositions and learning styles of baccalaureate nursing students from China.

    Science.gov (United States)

    Zhang, Huan; Lambert, Vickie

    2008-09-01

    Although considerable information exists regarding the learning styles and critical thinking dispositions of nursing students from Western countries, limited comparable information exists within China. The purposes of this study were to assess the learning styles and critical thinking dispositions of Chinese baccalaureate nursing students and to identify the relationships among the learning styles, critical thinking dispositions, and demographics. The sample consisted of 100 Chinese baccalaureate nursing students enrolled at two universities. The data were obtained through a Demographic Data Questionnaire, the California Critical Thinking Disposition Inventory, and the Index of Learning Styles. The primary learning style dimensions were found to be reflective, sensing, visual, and global, while the critically thinking abilities was found to be weak. A number of positive and negative correlations were found among the demographics, learning styles, and critical thinking dispositions. These findings suggest further examination on how to increase nursing students' critical thinking skills based upon their preferred learning styles.

  13. Assessing reflective thinking and approaches to learning.

    Science.gov (United States)

    Dunn, Louise; Musolino, Gina M

    2011-01-01

    Facilitation of reflective practice is critical for the ongoing demands of health care practitioners. Reflective thinking concepts, grounded in the work of Dewey and Schön, emphasize critical reflection to promote transformation in beliefs and learning necessary for reflective practice. The Reflective Thinking Questionnaire (QRT) and Revised Study Process Questionnaire (RSPQ-2F) assess skill aspects of professional reasoning, with promise for measuring changes over time. The purpose of this study was to examine the reliability and responsiveness and the model validity of reflective thinking and approaches to learning measures for U.S. health professions students enrolled in entry-level occupational (MOT) and physical therapy (DPT) programs. This measurement study addressed reliability and responsiveness of two measures, the QRT and RSPQ-2F, for graduate health professionals. A convenience sample of 125 MOT and DPT students participated in the two-measure, test-retest investigation, with electronic data collection. Outcomes support the stability of the four-scale QRT (ICC 0.63 to 0.82) and the two-scale RSPQ-2F (ICC 0.91 and 0.87). Descriptive data supporting responsiveness are presented. With noted limitations, the results support the use of the QRT and RSPQ-2F measures to assess changes in reflective thinking and approaches to learning. Measurement of these learning outcomes furthers our understanding and knowledge about instructional strategies, development of professional reasoning, and fostering of self-directed learning within MOT and DPT programs.

  14. Influence of Learning Strategy of Cognitive Conflict on Student Misconception in Computational Physics Course

    Science.gov (United States)

    Akmam, A.; Anshari, R.; Amir, H.; Jalinus, N.; Amran, A.

    2018-04-01

    Misconception is one of the factors causing students are not suitable in to choose a method for problem solving. Computational Physics course is a major subject in the Department of Physics FMIPA UNP Padang. The problem in Computational Physics learning lately is that students have difficulties in constructing knowledge. The indication of this problem was the student learning outcomes do not achieve mastery learning. The root of the problem is the ability of students to think critically weak. Student critical thinking can be improved using cognitive by conflict learning strategies. The research aims to determine the effect of cognitive conflict learning strategy to student misconception on the subject of Computational Physics Course at the Department of Physics, Faculty of Mathematics and Science, Universitas Negeri Padang. The experimental research design conducted after-before design cycles with a sample of 60 students by cluster random sampling. Data were analyzed using repeated Anova measurements. The cognitive conflict learning strategy has a significant effect on student misconception in the subject of Computational Physics Course.

  15. MENTAL SHIFT TOWARDS SYSTEMS THINKING SKILLS IN COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    MILDEOVÁ, Stanislava

    2012-03-01

    Full Text Available When seeking solutions to current problems in the field of computer science – and other fields – we encounter situations where traditional approaches no longer bring the desired results. Our cognitive skills also limit the implementation of reliable mental simulation within the basic set of relations. The world around us is becoming more complex and mutually interdependent, and this is reflected in the demands on computer support. Thus, in today’s education and science in the field of computer science and all other disciplines and areas of life need to address the issue of the paradigm shift, which is generally accepted by experts. The goal of the paper is to present the systems thinking that facilitates and extends the understanding of the world through relations and linkages. Moreover, the paper introduces the essence of systems thinking and the possibilities to achieve mental a shift toward systems thinking skills. At the same time, the link between systems thinking and functional literacy is presented. We adopted the “Bathtub Test” from the variety of systems thinking tests that allow people to assess the understanding of basic systemic concepts, in order to assess the level of systems thinking. University students (potential information managers were the examined subjects of the examination of systems thinking that was conducted over a longer time period and whose aim was to determine the status of systems thinking. . The paper demonstrates that some pedagogical concepts and activities, in our case the subject of System Dynamics that leads to the appropriate integration of systems thinking in education. There is some evidence that basic knowledge of system dynamics and systems thinking principles will affect students, and their thinking will contribute to an improved approach to solving problems of computer science both in theory and practice.

  16. Using Cooperative Learning In Teaching Critical Thinking In Reading

    Directory of Open Access Journals (Sweden)

    Anit Pranita Devi

    2015-12-01

    Full Text Available This study investigates how cooperative learning facilitates students in learning critical thinking in reading and to find out the benefits and challenges during the implementation of cooperative learning in one vocational school in Cimahi. A case study is utilized by using instruments of classroom observations, questionnaires, semi structured interview and students’ written tests. The findings show that the implementation of cooperative learning facilitates students develop their critical thinking and enhance critical thinking dispositions in reading. Three features which contribute to the development of students’ critical thinking in reading are: the encouragement of student-student interaction; the provision of group purposes; and the provision of stimulus to the students’ development of thought and ideas. The aforementioned features promote benefits which involved higher motivation and involvement, increased opportunity for language use, and developed interpersonal relationship. Nevertheless, these benefits are constrained by the availability of time, students’ English proficiency, and students’ contribution to the groupwork. It is recommended that further researchers conduct the similar study in a longer period to make sure that the key elements of cooperative learning are well-structured.

  17. The Comparison of Learning Model Viewed from the Students Thinking Style

    Directory of Open Access Journals (Sweden)

    Mohamad Nur Fauzi

    2017-09-01

    Full Text Available The aim of the research was to determine the effect of learning models with scientific approach, characteristics thinking style, the interaction between learning model with scientific approach and characteristics thinking style toward mathematics achievement. This research was quasi-experimental research with factorial design 2 x 4. The population of research was all students of the seven graders of junior high school in Surakarta city in academic year 2016/2017. The sample of research consists of 190 students. The data in the research was two ways analysis of variance with unequal cells, with the 5% level of significance. The results of the research were as follow: (1 SFEs Learning model gave better mathematics achievement than direct instruction model: (2 Characteristics of Sequential concret (SK, sequential abstract (SA, random concret (AK, and random abstract (AA thinking styles give the same effect on mathematics learning achievement; (3 In each learning model with SK, SA, AK, and AA thinking style characteristics have the same mathematics learning achievement. (4 In each of the SK, SA, AK, and AA thinking styles that are subject to the SFEs learning model and direct learning have the same mathematical learning achievement.

  18. Developing Critical Thinking Skills of Students in Mathematics Learning

    Directory of Open Access Journals (Sweden)

    Firdaus Firdaus

    2015-08-01

    Full Text Available Critical thinking skills should be owned by students. Therefore, schools should be responsible to develop and  evaluate critical thinking skills through teaching and learning process in schools. This study aims to identify the effects of mathematical learning modules based on problem-based learning to critical thinking skills at secondary school students in District of Bone. Assessment of critical thinking skills in mathematical problem solving non-routine includes three parts;  the identification and interpretation of information, information analysis, and evaluate of evidence and arguments. This study involved a total of 68 students grade 12 science state secondary school (SMAN in Bone District of South Sulawesi, Indonesia in academic year 2014-2015. The sample consists of 38 students in the city and 30 rural students. The design of the study was quasi experimental one group pretest-posttest. The data was analysed using the inferential t-test with SPSS 20.0 for windows. The study found that there are effects of the use of mathematical learning module based PBL to enhance the ability of critical thinking skills in mathematics students in all three components, namely, identifying and interpreting information, information analysis, and evaluate of evidence and argument.

  19. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    Science.gov (United States)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  20. Learning and Teaching with a Computer Scanner

    Science.gov (United States)

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  1. Learning by Thinking during Play: The Power of Reflection to Aid Performance

    Science.gov (United States)

    Salmon, Angela K.

    2016-01-01

    Coupled with reflection, play leads to the development of thinking dispositions and promotes deep learning and understanding. The twenty-first century world demands that children learn how to learn by becoming reflective, self-regulating inquirers capable of metacognition (thinking about thinking). This manuscript aims to analyse how young minds…

  2. THINKING OUTSIDE OF THE BOX: DETERMINING STUDENTS’ LEVEL OF CRITICAL THINKING SKILLS IN TEACHING AND LEARNING

    Directory of Open Access Journals (Sweden)

    Afifah Fadhlullah

    2017-12-01

    Full Text Available This paper discusses the level of critical thinking skills adapted from The Cornell Critical Thinking Test Level X (CCTTX by Ennis and Milan (1985 among final year diploma students from the Faculty of Business Management, UiTM Melaka taking the course of Office Administration and Introduction to Critical Thinking. This paper aims to encourage students to become critical thinkers and to provide lecturers with the best approach to develop students’ critical thinking skills at tertiary level. Findings have shown that their critical thinking ability ranged from low to moderate level. Thus, strategies of teaching and learning which stresses on student-centered learning must be adopted to stimulate student’s thinking by encouraging critical and creative thinking and the construction of new knowledge. 61 students taking Diploma in Office Management and Technology were chosen as samples of this study. The data was collected through observation and classroom based activities namely debates, discussions, article analysis, problem-solving situations and case studies.

  3. Development of Multiple Thinking and Creativity in Organizational Learning

    Science.gov (United States)

    Cheng, Yin Cheong

    2005-01-01

    Purpose: Based on a typology of contextualized multiple thinking, this paper aims to elaborate how the levels of thinking (data, information, knowledge, and intelligence), and the types of thinking as a whole, can be used to profile the characteristics of multiple thinking in organizational learning, re-conceptualize the nature of creativity in…

  4. Beliefs and Behaviors in Learning Critical Thinking Skills

    OpenAIRE

    Octavian REPOLSCHI

    2015-01-01

    The paper will present the relation between students’ beliefs and their behaviours observed in the process of learning critical thinking skills. In the first place some consideration concerning the fundamental epistemological concepts used in the research and about the particular critical thinking skills are to be sketched. Then the testing- learning procedure will be shortly summarized. Thirdly the evaluation of beliefs, their relations with knowledge and the associated behaviors are present...

  5. Thinking recursively

    CERN Document Server

    Roberts, Eric S

    1986-01-01

    Concentrating on the practical value of recursion, this text, the first of its kind, is essential to computer science students' education. In this text, students will learn the concept and programming applications of recursive thinking. This will ultimately prepare students for advanced topics in computer science such as compiler construction, formal language theory, and the mathematical foundations of computer science.

  6. Critical thinking traits of top-tier experts and implications for computer science education

    Science.gov (United States)

    Bushey, Dean E.

    of this study suggest a need to examine how critical-thinking abilities are learned in the undergraduate computer science curriculum and the need to foster these abilities in order to produce the high-level, critical-thinking professionals necessary to fill the growing need for these experts. Due to the fact that current measures of academic performance do not adequately depict students' cognitive abilities, assessment of these skills must be incorporated into existing curricula.

  7. Thinking processes used by high-performing students in a computer programming task

    Directory of Open Access Journals (Sweden)

    Marietjie Havenga

    2011-07-01

    Full Text Available Computer programmers must be able to understand programming source code and write programs that execute complex tasks to solve real-world problems. This article is a trans- disciplinary study at the intersection of computer programming, education and psychology. It outlines the role of mental processes in the process of programming and indicates how successful thinking processes can support computer science students in writing correct and well-defined programs. A mixed methods approach was used to better understand the thinking activities and programming processes of participating students. Data collection involved both computer programs and students’ reflective thinking processes recorded in their journals. This enabled analysis of psychological dimensions of participants’ thinking processes and their problem-solving activities as they considered a programming problem. Findings indicate that the cognitive, reflective and psychological processes used by high-performing programmers contributed to their success in solving a complex programming problem. Based on the thinking processes of high performers, we propose a model of integrated thinking processes, which can support computer programming students. Keywords: Computer programming, education, mixed methods research, thinking processes.  Disciplines: Computer programming, education, psychology

  8. Computational Thinking in K-9 Education

    NARCIS (Netherlands)

    Mannila, Linda; Dagiene, Valentina; Demo, Barbara; Grgurina, Natasa; Mirolo, Claudio; Rolandsson, Lennart; Settle, Amber

    2014-01-01

    In this report we consider the current status of the coverage of computer science in education at the lowest levels of education in multiple countries. Our focus is on computational thinking (CT), a term meant to encompass a set of concepts and thought processes that aid in formulating problems and

  9. Critical thinking as a self-regulatory process component in teaching and learning.

    Science.gov (United States)

    Phan, Huy P

    2010-05-01

    This article presents a theoretically grounded model of critical thinking and self-regulation in the context of teaching and learning. Critical thinking, deriving from an educational psychology perspective is a complex process of reflection that helps individuals become more analytical in their thinking and professional development. My conceptualisation in this discussion paper argues that both theoretical orientations (critical thinking and self-regulation) operate in a dynamic interactive system of teaching and learning. My argument, based on existing research evidence, suggests two important points: (i) critical thinking acts as another cognitive strategy of self-regulation that learners use in their learning, and (ii) critical thinking may be a product of various antecedents such as different self-regulatory strategies.

  10. Analysis of Secondary School Students’ Algebraic Thinking and Math-Talk Learning Community to Help Students Learn

    Science.gov (United States)

    Nurhayati, D. M.; Herman, T.; Suhendra, S.

    2017-09-01

    This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.

  11. iPad Learning Ecosystem: Developing Challenge-Based Learning Using Design Thinking

    Science.gov (United States)

    Marin, Catalina; Hargis, Jace; Cavanaugh, Cathy

    2013-01-01

    In order to maximize college English language students' learning, product development, 21st Century skills and engagement with real world meaningful challenges, a course was designed to integrate Challenge Based Learning (CBL) and iPad mobile learning technology. This article describes the course design, which was grounded in design thinking, and…

  12. Empowerment of Students Critical Thinking Skills Through Implementation of Think Talk Write Combined Problem Based Learning

    OpenAIRE

    Yanuarta, Lidya; Gofur, Abdul; Indriwati, Sri Endah

    2016-01-01

    Critical thinking is a complex reflection process that helps individuals become more analytical in their thinking. Empower critical thinking in students need to be done so that students can resolve the problems that exist in their life and are able to apply alternative solutions to problems in a different situations. Therefore, Think Talk Write (TTW) combined Problem Based Learning (PBL) were needed to empowered the critical thinking skills so that students were able to face the challenges of...

  13. Critical Thinking Assessment across Four Sustainability-Related Experiential Learning Settings

    Science.gov (United States)

    Heinrich, William F.; Habron, Geoffrey B.; Johnson, Heather L.; Goralnik, Lissy

    2015-01-01

    Today's complex societal problems require both critical thinking and an engaged citizenry. Current practices in higher education, such as service learning, suggest that experiential learning can serve as a vehicle to encourage students to become engaged citizens. However, critical thinking is not necessarily a part of every experiential learning…

  14. Effect of Robotics on Elementary Preservice Teachers' Self-Efficacy, Science Learning, and Computational Thinking

    Science.gov (United States)

    Jaipal-Jamani, Kamini; Angeli, Charoula

    2017-01-01

    The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' (n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science…

  15. Developing design-based STEM education learning activities to enhance students' creative thinking

    Science.gov (United States)

    Pinasa, Siwa; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Creative thinking on applying science and mathematics knowledge is required by the future STEM career. The STEM education should be provided for the required skills of future STEM career. This paper aimed to clarify the developing STEM education learning activities to enhance students' creative thinking. The learning activities were developed for Grade 10 students who will study in the subject of independent study (IS) of Khon Kaen Wittayayon School, Khon Kaen, Thailand. The developing STEM education learning activities for enhancing students' creative thinking was developed regarding on 6 steps including (1) providing of understanding of fundamental STEM education concept, (2) generating creative thinking from prototype, (4) revised ideas, (5) engineering ability, and (6) presentation and discussion. The paper will clarify the 18 weeks activities that will be provided based these 6 steps of developing learning activities. Then, these STEM learning activities will be discussed to provide the chance of enhancing students' creative thinking. The paper may have implication for STEM education in school setting.

  16. Project- Based Learning and Problem-Based Learning: Are They Effective to Improve Student's Thinking Skills?

    OpenAIRE

    Anazifa, R. D; Djukri, D

    2017-01-01

    The study aims at finding (1) the effect of project-based learning and problem-based learning on student's creativity and critical thinking and (2) the difference effect of project-based learning and problem-based learning on student's creativity and critical thinking. This study is quasi experiment using non-equivalent control-group design. Research population of this study was all classes in eleventh grade of mathematics and natural science program of SMA N 1 Temanggung. The participants we...

  17. The Impact of User Interface on Young Children's Computational Thinking

    Science.gov (United States)

    Pugnali, Alex; Sullivan, Amanda; Bers, Marina Umaschi

    2017-01-01

    Aim/Purpose: Over the past few years, new approaches to introducing young children to computational thinking have grown in popularity. This paper examines the role that user interfaces have on children's mastery of computational thinking concepts and positive interpersonal behaviors. Background: There is a growing pressure to begin teaching…

  18. Development of Critical Spatial Thinking through GIS Learning

    Science.gov (United States)

    Kim, Minsung; Bednarz, Robert

    2013-01-01

    This study developed an interview-based critical spatial thinking oral test and used the test to investigate the effects of Geographic Information System (GIS) learning on three components of critical spatial thinking: evaluating data reliability, exercising spatial reasoning, and assessing problem-solving validity. Thirty-two students at a large…

  19. Beliefs and Behaviors in Learning Critical Thinking Skills

    Directory of Open Access Journals (Sweden)

    Octavian REPOLSCHI

    2015-12-01

    Full Text Available The paper will present the relation between students’ beliefs and their behaviours observed in the process of learning critical thinking skills. In the first place some consideration concerning the fundamental epistemological concepts used in the research and about the particular critical thinking skills are to be sketched. Then the testing- learning procedure will be shortly summarized. Thirdly the evaluation of beliefs, their relations with knowledge and the associated behaviors are presented. The results of the periodic testing procedures that were taking place according to the established methodology are to be discussed. Finally, some general considerations concerning the relations between beliefs, behaviors and knowledge that have emerged in the process of learning are going to be presented.

  20. Computer-Mediated Assessment of Higher-Order Thinking Development

    Science.gov (United States)

    Tilchin, Oleg; Raiyn, Jamal

    2015-01-01

    Solving complicated problems in a contemporary knowledge-based society requires higher-order thinking (HOT). The most productive way to encourage development of HOT in students is through use of the Problem-based Learning (PBL) model. This model organizes learning by solving corresponding problems relative to study courses. Students are directed…

  1. Designing for deeper learning in a blended computer science course for middle school students

    Science.gov (United States)

    Grover, Shuchi; Pea, Roy; Cooper, Stephen

    2015-04-01

    The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course on Stanford's OpenEdX MOOC platform for blended in-class learning. Unique aspects of FACT include balanced pedagogical designs that address the cognitive, interpersonal, and intrapersonal aspects of "deeper learning"; a focus on pedagogical strategies for mediating and assessing for transfer from block-based to text-based programming; curricular materials for remedying misperceptions of computing; and "systems of assessments" (including formative and summative quizzes and tests, directed as well as open-ended programming assignments, and a transfer test) to get a comprehensive picture of students' deeper computational learning. Empirical investigations, accomplished over two iterations of a design-based research effort with students (aged 11-14 years) in a public school, sought to examine student understanding of algorithmic constructs, and how well students transferred this learning from Scratch to text-based languages. Changes in student perceptions of computing as a discipline were measured. Results and mixed-method analyses revealed that students in both studies (1) achieved substantial learning gains in algorithmic thinking skills, (2) were able to transfer their learning from Scratch to a text-based programming context, and (3) achieved significant growth toward a more mature understanding of computing as a discipline. Factor analyses of prior computing experience, multivariate regression analyses, and qualitative analyses of student projects and artifact-based interviews were conducted to better understand the factors affecting learning outcomes. Prior computing experiences (as measured by a pretest) and math ability were

  2. EkSTEMiT Learning Module and Inculcation of Inventive Thinking

    Directory of Open Access Journals (Sweden)

    Norhaslinda Abdul Samad

    2017-10-01

    Full Text Available The young generation of today must be prepared with the knowledge and skills necessary to be able to compete globally thus boosting economic growth and prosperity. Therefore, students should not only be equipped with knowledge but they are in need of the “21st century skills”, which is the top priority and one of the main education agenda goals today. As one of the domains in the 21st century skills, inventive thinking includes elements of flexibility, self-regulation, curiosity, creativity, risk taking, higher order thinking and reasoning. In order to inculcate inventive thinking for students, the EkSTEMiT Learning Module was developed for the topic Electrochemistry; one of the most difficult topics to learn among students. EkSTEMiT Learning Module was developed based on the STEM (Science, Technology, Engineering and Mathematics integrated model. Thus, this paper will discuss the conceptual framework underlying the development of EkSTEMiT Learning Module with descriptions of learning activities designed for Electrochemistry.

  3. Development of inquiry-based learning activities integrated with the local learning resource to promote learning achievement and analytical thinking ability of Mathayomsuksa 3 student

    Science.gov (United States)

    Sukji, Paweena; Wichaidit, Pacharee Rompayom; Wichaidit, Sittichai

    2018-01-01

    The objectives of this study were to: 1) compare learning achievement and analytical thinking ability of Mathayomsuksa 3 students before and after learning through inquiry-based learning activities integrated with the local learning resource, and 2) compare average post-test score of learning achievement and analytical thinking ability to its cutting score. The target of this study was 23 Mathayomsuksa 3 students who were studying in the second semester of 2016 academic year from Banchatfang School, Chainat Province. Research instruments composed of: 1) 6 lesson plans of Environment and Natural Resources, 2) the learning achievement test, and 3) analytical thinking ability test. The results showed that 1) student' learning achievement and analytical thinking ability after learning were higher than that of before at the level of .05 statistical significance, and 2) average posttest score of student' learning achievement and analytical thinking ability were higher than its cutting score at the level of .05 statistical significance. The implication of this research is for science teachers and curriculum developers to design inquiry activities that relate to student's context.

  4. Fostering computational thinking skills with a tangible blocks programming environment

    OpenAIRE

    Turchi, T; Malizia, A

    2016-01-01

    Computational Thinking has recently returned into the limelight as an essential skill to have for both the general public and disciplines outside Computer Science. It encapsulates those thinking skills integral to solving complex problems using a computer, thus widely applicable in our technological society. Several public initiatives such as the Hour of Code successfully introduced it to millions of people of different ages and backgrounds, mostly using Blocks Programming Environments like S...

  5. Using a kinesthetic learning strategy to engage nursing student thinking, enhance retention, and improve critical thinking.

    Science.gov (United States)

    Wagner, Elissa A

    2014-06-01

    This article reports the outcomes of a kinesthetic learning strategy used during a cardiac lecture to engage students and to improve the use of classroom-acquired knowledge in today's challenging clinical settings. Nurse educators are constantly faced with finding new ways to engage students, stimulate critical thinking, and improve clinical application in a rapidly changing and complex health care system. Educators who deviate from the traditional pedagogy of didactic, content-driven teaching to a concept-based, student-centered approach using active and kinesthetic learning activities can enhance engagement and improve clinical problem solving, communication skills, and critical thinking to provide graduates with the tools necessary to be successful. The goals of this learning activity were to decrease the well-known classroom-clinical gap by enhancing engagement, providing deeper understanding of cardiac function and disorders, enhancing critical thinking, and improving clinical application. Copyright 2014, SLACK Incorporated.

  6. Promoting Creative Thinking Ability Using Contextual Learning Model in Technical Drawing Achievement

    Science.gov (United States)

    Mursid, R.

    2018-02-01

    The purpose of this study is to determine whether there is influence; the differences in the results between students that learn drawing techniques taught by the Contextual Innovative Model (CIM) and taught by Direct Instructional Model (DIM), the differences in achievement among students of technical drawing that have High Creative Thinking Ability (HCTA) with Low Creative Thinking Ability (LCTA), and the interaction between the learning model with the ability to think creatively to the achievement technical drawing. Quasi-experimental research method. Results of research appoint that: the achievement of students that learned technical drawing by using CIM is higher than the students that learned technical drawing by using DIM, the achievement of students of technical drawings HCTA is higher than the achievement of students who have technical drawing LCTA, and there are interactions between the use of learning models and creative thinking abilities in influencing student achievement technical drawing.

  7. The Role of Visual Learning in Improving Students' High-Order Thinking Skills

    Science.gov (United States)

    Raiyn, Jamal

    2016-01-01

    Various concepts have been introduced to improve students' analytical thinking skills based on problem based learning (PBL). This paper introduces a new concept to increase student's analytical thinking skills based on a visual learning strategy. Such a strategy has three fundamental components: a teacher, a student, and a learning process. The…

  8. Building machines that learn and think like people.

    Science.gov (United States)

    Lake, Brenden M; Ullman, Tomer D; Tenenbaum, Joshua B; Gershman, Samuel J

    2017-01-01

    Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn and how they learn it. Specifically, we argue that these machines should (1) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (2) ground learning in intuitive theories of physics and psychology to support and enrich the knowledge that is learned; and (3) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes toward these goals that can combine the strengths of recent neural network advances with more structured cognitive models.

  9. Exploring Issues about Computational Thinking in Higher Education

    Science.gov (United States)

    Czerkawski, Betul C.; Lyman, Eugene W., III

    2015-01-01

    The term computational thinking (CT) has been in academic discourse for decades, but gained new currency in 2006, when Jeanette Wing used it to describe a set of thinking skills that students in all fields may require in order to succeed. Wing's initial article and subsequent writings on CT have been broadly influential; experts in…

  10. Exploring creativity and critical thinking in traditional and innovative problem-based learning groups.

    Science.gov (United States)

    Chan, Zenobia C Y

    2013-08-01

    To explore students' attitude towards problem-based learning, creativity and critical thinking, and the relevance to nursing education and clinical practice. Critical thinking and creativity are crucial in nursing education. The teaching approach of problem-based learning can help to reduce the difficulties of nurturing problem-solving skills. However, there is little in the literature on how to improve the effectiveness of a problem-based learning lesson by designing appropriate and innovative activities such as composing songs, writing poems and using role plays. Exploratory qualitative study. A sample of 100 students participated in seven semi-structured focus groups, of which two were innovative groups and five were standard groups, adopting three activities in problem-based learning, namely composing songs, writing poems and performing role plays. The data were analysed using thematic analysis. There are three themes extracted from the conversations: 'students' perceptions of problem-based learning', 'students' perceptions of creative thinking' and 'students' perceptions of critical thinking'. Participants generally agreed that critical thinking is more important than creativity in problem-based learning and clinical practice. Participants in the innovative groups perceived a significantly closer relationship between critical thinking and nursing care, and between creativity and nursing care than the standard groups. Both standard and innovative groups agreed that problem-based learning could significantly increase their critical thinking and problem-solving skills. Further, by composing songs, writing poems and using role plays, the innovative groups had significantly increased their awareness of the relationship among critical thinking, creativity and nursing care. Nursing educators should include more types of creative activities than it often does in conventional problem-based learning classes. The results could help nurse educators design an appropriate

  11. The Effect of Computer Games on Students’ Critical Thinking Disposition and Educational Achievement

    Directory of Open Access Journals (Sweden)

    Mohammad Seifi

    2015-10-01

    Full Text Available The main aim of this research was to investigate the effect of computer games on student’ critical thinking disposition and educational achievement. The research method was descriptive, and its type was casual-comparative. The sample included 270 female high school students in Andimeshk town selected by multistage cluster method. Ricketts questionnaire was used to test critical thinking and the researcher made questionnaires were used to test computer games. T-test and one-way ANOVA were employed to analysis of the data. The findings of the study showed that playing computer games has no significant effect on critical thinking, however, there were a significant effect of playing computer games on students’ educational achievement (P<0/05. Furthermore, the results showed that the type of computer game has no significant effect on students’ disposition to critical thinking and their educational achievement. Keywords: Computer games, disposition to critical thinking, educational achievement, secondary students

  12. Higher Order Thinking Skills as Effect of Problem Based Learning in the 21st Century Learning

    Directory of Open Access Journals (Sweden)

    Leni Widiawati

    2018-03-01

    Full Text Available This study aims to determine the responses of learners to learning using a scientific approach in Problem Based Learning integrated with the inculcation of critical thinking, communicative, collaboration; and creative (4C skills in 21st century learning. The design of this study is true experiment by using posttest only control design. The sample of the research is vocational school students selected by using cluster random sampling technique in Surakarta, Indonesia. The techniques of collecting data are using tests whose validity, reliability, level of difficulty, and the discrimination index have been tested. The data obtained are then tested using t test. The result of the research shows that higher order thinking skills of experimental class students learning using scientific approach in Problem Based Learning which is integrated with the inculcation of 4C skills are higher than those of the control class that are learning using scientific approach in Think-Pair-Share which is integrated with the inculcation of 4C skills.

  13. From Computational Thinking to Computational Empowerment: A 21st Century PD Agenda

    DEFF Research Database (Denmark)

    Iversen, Ole Sejer; Smith, Rachel Charlotte; Dindler, Christian

    2018-01-01

    We propose computational empowerment as an approach, and a Participatory Design response, to challenges related to digitalization of society and the emerging need for digital literacy in K12 education. Our approach extends the current focus on computational thinking to include contextual, human-c...... technology in education. We argue that PD has the potential to drive a computational empowerment agenda in education, by connecting political PD with contemporary visions for addressing a future digitalized labor market and society.......We propose computational empowerment as an approach, and a Participatory Design response, to challenges related to digitalization of society and the emerging need for digital literacy in K12 education. Our approach extends the current focus on computational thinking to include contextual, human......-centred and societal challenges and impacts involved in students’ creative and critical engagement with digital technology. Our research is based on the FabLab@School project, in which a PD approach to computational empowerment provided opportunities as well as further challenges for the complex agenda of digital...

  14. Think3d!: Improving mathematics learning through embodied spatial training.

    Science.gov (United States)

    Burte, Heather; Gardony, Aaron L; Hutton, Allyson; Taylor, Holly A

    2017-01-01

    Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a foundational cognitive skill. The present research examined the impact of an embodied spatial training program on elementary students' spatial and mathematical thinking. Students in rural elementary schools completed spatial and math assessments prior to and after participating in an origami and pop-up paper engineering-based program, called Think3d!. Think3d! uses embodied tasks, such as folding and cutting paper, to train two-dimensional to three-dimensional spatial thinking. Analyses explored spatial thinking gains, mathematics gains - specifically for problem types expected to show gains from spatial training - and factors predicting mathematics gains. Results showed spatial thinking gains in two assessments. Using a math categorization to target problems more and less likely to be impacted by spatial training, we found that all students improved on real-world math problems and older students improved on visual and spatial math problems. Further, the results are suggestive of developmental time points for implementing embodied spatial training related to applying spatial thinking to math. Finally, the spatial thinking assessment that was most highly related to training activities also predicted math performance gains. Future research should explore developmental issues related to how embodied spatial training might support STEM learning and outcomes.

  15. The Effect of Problem-Based Learning on the Creative Thinking and Critical Thinking Disposition of Students in Visual Arts Education

    Science.gov (United States)

    Ulger, Kani

    2018-01-01

    The problem-based learning (PBL) approach was implemented as a treatment for higher education visual arts students over one semester to examine its effect on the creative thinking and critical thinking disposition of these students. PBL had a significant effect on creative thinking, but critical thinking disposition was affected to a lesser…

  16. Students’ Mathematical Creative Thinking through Problem Posing Learning

    Science.gov (United States)

    Ulfah, U.; Prabawanto, S.; Jupri, A.

    2017-09-01

    The research aims to investigate the differences in enhancement of students’ mathematical creative thinking ability of those who received problem posing approach assisted by manipulative media and students who received problem posing approach without manipulative media. This study was a quasi experimental research with non-equivalent control group design. Population of this research was third-grade students of a primary school in Bandung city in 2016/2017 academic year. Sample of this research was two classes as experiment class and control class. The instrument used is a test of mathematical creative thinking ability. Based on the results of the research, it is known that the enhancement of the students’ mathematical creative thinking ability of those who received problem posing approach with manipulative media aid is higher than the ability of those who received problem posing approach without manipulative media aid. Students who get learning problem posing learning accustomed in arranging mathematical sentence become matter of story so it can facilitate students to comprehend about story

  17. EFFECT OF PROBLEM BASED LEARNING AND MODEL CRITICAL THINKING ABILITY TO PROBLEM SOLVING SKILLS

    Directory of Open Access Journals (Sweden)

    Unita S. Zuliani Nasution

    2016-12-01

    Full Text Available The purposes of this research were to analyze the different between physic resolving problem ability by using problem based learning model and direct instruction model, the different of physic resolving problem ability between the students that have critical thinking ability upper the average and the students that have critical thinking ability under the average, and the interaction of problem based learning model toward critical thinking ability and students’ physic resolving problem ability. This research was quasy experimental research that use critical thinking ability tests and physic resolving problem ability tests as the instruments. Result of the research showed that the students’ physic resolving problem ability by using problem based learning model was better than by using direct instruction model, students’ physic resolving problem ability and critical thinking ability upper the average showed better different and result than students’ critical thinking ability under the average, besides there was an interaction between problem based learning model and critical thinking ability in improving students’ physic resolving problem ability.

  18. A case study on support for students' thinking through computer-mediated communication.

    Science.gov (United States)

    Sannomiya, M; Kawaguchi, A

    2000-08-01

    This is a case study on support for thinking through computer-mediated communication. Two graduate students were supervised in their research using computer-mediated communication, which was asynchronous and written; the supervisor was not present. The students' reports pointed out there was more planning and editing and low interactivity in this approach relative to face-to-face communication. These attributes were confirmed by their supervisor's report. The students also suggested that the latter was effective in support of a production stage of thinking in research, while the former approach was effective in support of examination of thinking. For distance education to be successful, an appropriate combination of communication media must consider students' thinking stages. Finally, transient and permanent effects should be discriminated in computer-mediated communication.

  19. Analysis of Geometric Thinking Students’ and Process-Guided Inquiry Learning Model

    Science.gov (United States)

    Hardianti, D.; Priatna, N.; Priatna, B. A.

    2017-09-01

    This research aims to analysis students’ geometric thinking ability and theoretically examine the process-oriented guided iquiry (POGIL) model. This study uses qualitative approach with descriptive method because this research was done without any treatment on subjects. Data were collected naturally. This study was conducted in one of the State Junior High School in Bandung. The population was second grade students and the sample was 32 students. Data of students’ geometric thinking ability were collected through geometric thinking test. These questions are made based on the characteristics of geometry thinking based on van hiele’s theory. Based on the results of the analysis and discussion, students’ geometric thinking ability is still low so it needs to be improved. Therefore, an effort is needed to overcome the problems related to students’ geometric thinking ability. One of the efforts that can be done by doing the learning that can facilitate the students to construct their own geometry concept, especially quadrilateral’s concepts so that students’ geometric thinking ability can enhance maximally. Based on study of the theory, one of the learning models that can enhance the students’ geometric thinking ability is POGIL model.

  20. The Three-Part Harmony of Adult Learning, Critical Thinking, and Decision-Making

    Science.gov (United States)

    Moore, Kyle

    2010-01-01

    Adult learning, critical thinking, and decision-making are fields that receive attention individually, although they are interspersed with elements of each other's theories and philosophies. In addressing adult learning precepts, it is essential to include critical thinking and decision-making. One without the other creates weakness; all must be…

  1. Attitudes of Jordanian Undergraduate Students towards Using Computer Assisted Language Learning (CALL

    Directory of Open Access Journals (Sweden)

    Farah Jamal Abed Alrazeq Saeed

    2018-01-01

    Full Text Available The study aimed at investigating the attitudes of Jordanian undergraduate students towards using computer assisted -language learning (CALL and its effectiveness in the process of learning the English language.  In order to fulfill the study’s objective, the researchers used a questionnaire to collect data, followed-up with semi-structured interviews to investigate the students’ beliefs towards CALL. Twenty- one of Jordanian BA students majoring in English language and literature were selected according to simple random sampling. The results revealed positive attitudes towards CALL in facilitating the process of writing assignments, gaining information; making learning enjoyable; improving their creativity, productivity, academic achievement, critical thinking skills, and enhancing their knowledge about vocabulary grammar, and culture. Furthermore, they believed that computers can motivate them to learn English language and help them to communicate and interact with their teachers and colleagues. The researchers recommended conducting a research on the same topic, taking into consideration the variables of age, gender, experience in using computers, and computer skills.

  2. Critical Thinking & Lifelong Learning: An ADKAR Model-Based Framework for Managing a Change in Thinking & English Language Learning Styles at the Secondary Stage

    Science.gov (United States)

    Abdallah, Mahmoud M. S.; Mohammad, Marwa M. M.

    2016-01-01

    The general secondary stage in Egypt is a vital educational phase since it plays an essential role in developing students' thinking and learning styles to prepare them for life in general and higher education in particular. Accordingly, it has become urgent and persistent to develop secondary-stage students' critical thinking styles while…

  3. TGT for chemistry learning to enhance students' achievement and critical thinking skills

    Science.gov (United States)

    Bolhassan, Norlailatulakma; Taha, Hafsah

    2017-05-01

    The form of cooperative learning known as Teams-Games-Tournament (TGT) in this study favors the use of teams work and learning tools combined with student play and practice to foster students' achievement and critical thinking skills. Using this paradigm, this study incorporates Teams-Games-Tournament and Flash Cards Games Kit during an 8-weeks experimental instruction period that includes 67 Form Four students; 34 students in the experimental group and 33 in the control group. The learning design in experimental group emphasizes scaffolding, guided practices, cooperative learning, and active participation in learning. While the experimental group experienced the TGT approach, the control group encountered the conventional teaching approach of chemistry drills. An achievement chemistry test and Watson Glaser Critical Thinking Appraisal (WGCTA) were used for the pretest and posttest. The finding indicates that TGT learning was more effective than drills in promoting chemistry performance, and the playful competiveness among students promotes students' critical thinking. In addition, TGT cooperative learning also creates an active learning environment in solving problems and discussions among students and teachers.

  4. Developing the Mathematics Learning Management Model for Improving Creative Thinking in Thailand

    Science.gov (United States)

    Sriwongchai, Arunee; Jantharajit, Nirat; Chookhampaeng, Sumalee

    2015-01-01

    The study purposes were: 1) To study current states and problems of relevant secondary students in developing mathematics learning management model for improving creative thinking, 2) To evaluate the effectiveness of model about: a) efficiency of learning process, b) comparisons of pretest and posttest on creative thinking and achievement of…

  5. How mental health nurses improve their critical thinking through problem-based learning.

    Science.gov (United States)

    Hung, Tsui-Mei; Tang, Lee-Chun; Ko, Chen-Ju

    2015-01-01

    Critical thinking has been regarded as one of the most important elements for nurses to improve quality of patient care. The aim of this study was to use problem-based learning (PBL) as a method in a continuing education program to evaluate nurses' critical thinking skills. A quasiexperimental study design was carried out. The "Critical Thinking Disposition Inventory" in Chinese was used for data collection. The results indicated significant improvement after PBL continuous education, notably in the dimensions of systematic analysis and curiosity. Content analysis extracted four themes: (a) changes in linear thinking required, (b) logical and systematic thinking required performance improved, (3) integration of prior knowledge and clinical application, and (4) brainstorming learning strategy. The study supports PBL as a continuing education strategy for mental health nurses, and that systematic analysis and curiosity effectively facilitate the development of critical thinking.

  6. Investigating the Impact of Using a CAD Simulation Tool on Students' Learning of Design Thinking

    Science.gov (United States)

    Taleyarkhan, Manaz; Dasgupta, Chandan; Garcia, John Mendoza; Magana, Alejandra J.

    2018-02-01

    Engineering design thinking is hard to teach and still harder to learn by novices primarily due to the undetermined nature of engineering problems that often results in multiple solutions. In this paper, we investigate the effect of teaching engineering design thinking to freshmen students by using a computer-aided Design (CAD) simulation software. We present a framework for characterizing different levels of engineering design thinking displayed by students who interacted with the CAD simulation software in the context of a collaborative assignment. This framework describes the presence of four levels of engineering design thinking—beginning designer, adept beginning designer, informed designer, adept informed designer. We present the characteristics associated with each of these four levels as they pertain to four engineering design strategies that students pursued in this study—understanding the design challenge, building knowledge, weighing options and making tradeoffs, and reflecting on the process. Students demonstrated significant improvements in two strategies—understanding the design challenge and building knowledge. We discuss the affordances of the CAD simulation tool along with the learning environment that potentially helped students move towards Adept informed designers while pursuing these design strategies.

  7. A Tangible Programming Tool for Children to Cultivate Computational Thinking

    Science.gov (United States)

    Wang, Danli; Liu, Zhen

    2014-01-01

    Game and creation are activities which have good potential for computational thinking skills. In this paper we present T-Maze, an economical tangible programming tool for children aged 5–9 to build computer programs in maze games by placing wooden blocks. Through the use of computer vision technology, T-Maze provides a live programming interface with real-time graphical and voice feedback. We conducted a user study with 7 children using T-Maze to play two levels of maze-escape games and create their own mazes. The results show that T-Maze is not only easy to use, but also has the potential to help children cultivate computational thinking like abstraction, problem decomposition, and creativity. PMID:24719575

  8. A Tangible Programming Tool for Children to Cultivate Computational Thinking

    Directory of Open Access Journals (Sweden)

    Danli Wang

    2014-01-01

    Full Text Available Game and creation are activities which have good potential for computational thinking skills. In this paper we present T-Maze, an economical tangible programming tool for children aged 5–9 to build computer programs in maze games by placing wooden blocks. Through the use of computer vision technology, T-Maze provides a live programming interface with real-time graphical and voice feedback. We conducted a user study with 7 children using T-Maze to play two levels of maze-escape games and create their own mazes. The results show that T-Maze is not only easy to use, but also has the potential to help children cultivate computational thinking like abstraction, problem decomposition, and creativity.

  9. The Effect of Cooperative Learning Model Script and Think-Pair-Share to Critical Thinking Skills, Social Attitude and Learning Outcomes Cognitive Biology of multiethnic High School Students

    Directory of Open Access Journals (Sweden)

    Didimus Tanah Boleng

    2015-03-01

    Full Text Available Pengaruh Model Pembelajaran Cooperative Script dan Think-Pair-Share terhadap Keterampilan Berpikir Kritis, Sikap Sosial, dan Hasil Belajar Kognitif Biologi Siswa SMA Multietnis   Abstract: Biological learning process with multiethnic students requires a learning models which allow students to work independently, to work together in small groups, and to share with other groups. The purpose of this study was to determine the effect of learning models, ethnicity, and the interaction of learning model and ethnic on critical thinking skills, social attitudes, and cognitive achievement. This quasi experimental study was conducted in 11th grade of Natural Science Class Highschool students with six ethnicaly and Junior Highschool National score groups consisted of 132 samples. The results of Covarian Analysis showed that the learning models significantly affected the social attitudes and increased the critical thinking skills and cognitive achievement. Ethnicity significantly affected the social attitudes and cognitive achievement. Interaction of learning models and ethnicity significantly affected students social attitudes. Key Words: cooperative script, think-pair-share, critical thinking skills, social attitudes, biology cognitive achievement, multiethnic students Abstrak: Pengelolaan proses pembelajaran biologi pada siswa multietnis memerlukan model pembelajaran yang memungkinkan siswa bekerja mandiri, bekerja sama dalam kelompok kecil, dan berbagi dengan kelompok lain. Tujuan penelitian ini untuk mengetahui pengaruh model pembelajaran, etnis, serta interaksi model pembelajaran dan etnis terhadap keterampilan berpikir kritis, sikap sosial, dan hasil belajar kognitif biologi siswa. Penelitian eksperimen semu ini dilakukan di kelas XI IPA SMA dengan sampel sebanyak 132 orang siswa terbagi dalam enam kelas yang homogen berdasarkan etnis dan nilai ujian nasional SMP siswa. Hasil analisis data dengan menggunakan Analisis Kovarian menunjukkan bahwa model

  10. Using Robotics and Game Design to Enhance Children's Self-Efficacy, STEM Attitudes, and Computational Thinking Skills

    Science.gov (United States)

    Leonard, Jacqueline; Buss, Alan; Gamboa, Ruben; Mitchell, Monica; Fashola, Olatokunbo S.; Hubert, Tarcia; Almughyirah, Sultan

    2016-12-01

    This paper describes the findings of a pilot study that used robotics and game design to develop middle school students' computational thinking strategies. One hundred and twenty-four students engaged in LEGO® EV3 robotics and created games using Scalable Game Design software. The results of the study revealed students' pre-post self-efficacy scores on the construct of computer use declined significantly, while the constructs of videogaming and computer gaming remained unchanged. When these constructs were analyzed by type of learning environment, self-efficacy on videogaming increased significantly in the combined robotics/gaming environment compared with the gaming-only context. Student attitudes toward STEM, however, did not change significantly as a result of the study. Finally, children's computational thinking (CT) strategies varied by method of instruction as students who participated in holistic game development (i.e., Project First) had higher CT ratings. This study contributes to the STEM education literature on the use of robotics and game design to influence self-efficacy in technology and CT, while informing the research team about the adaptations needed to ensure project fidelity during the remaining years of the study.

  11. Cooperative Learning and Web 2.0: A Social Perspective on Critical Thinking

    Science.gov (United States)

    Schipke, Rae Carrington

    2018-01-01

    This article discusses how cooperative learning as a socioinstructional approach, relates to both socially-based emerging technologies (i.e. Web 2.0) and to critical thinking with respect to co-cognition. It begins with a discussion of the importance of connecting cooperative learning, Web 2.0, and critical thinking. This is followed by the need…

  12. Thinking about Learning from the Perspectives of Bruner and Ausubel.

    Science.gov (United States)

    Hartman, Hope J.

    This paper describes a teacher preparation instructional unit on the "Structure of Knowledge" that was designed to help students learn to think like Jerome Bruner and David Ausubel rather than merely acquire knowledge about them, while simultaneously improving students' thinking skills. The unit used Sternberg's triarchic theory to…

  13. Missing links between lean startup, design thinking, and experiential learning approaches in entrepreneurship education

    DEFF Research Database (Denmark)

    Ramsgaard, Michael Breum; Christensen, Marie Ernst

    2016-01-01

    Questions we care about • How do different pedagogical teaching approaches in entrepreneurship education construct learning outcome when comparing the underlying pedagogical models? • Where can unidentified fields and correlations of pedagogical insights between the approaches of lean startup......, design thinking, and experiential learning be identified? • How can new concepts of learning models, taking lean startup, design thinking and experiential learning approaches into account, be developed in entrepreneurship education? Approach This 3e conference paper begins as a conceptual paper...... highlighting the theories and underlying learning models behind three pedagogical approaches within entrepreneurship education, namely lean startup, design thinking and experiential learning. The paper builds this knowledge framework in order to set the design for an empirical investigation of the proposed...

  14. Defining a New 21st Century Skill-Computational Thinking: Concepts and Trends

    Science.gov (United States)

    Haseski, Halil Ibrahim; Ilic, Ulas; Tugtekin, Ufuk

    2018-01-01

    Computational Thinking is a skill that guides the 21th century individual in the problems experienced during daily life and it has an ever-increasing significance. Multifarious definitions were attempted to explain the concept of Computational Thinking. However, it was determined that there was no consensus on this matter in the literature and…

  15. Development of critical thinking skills through distance learning in ...

    African Journals Online (AJOL)

    Interpersonal contact between the lecturers and students improves the development of critical thinking skills. The process is hampered by the geographical distance between the lecturers and the students in the case of distance education and learning. In many cases distance learning is, however, the only option.

  16. Can Learning a Foreign Language Foster Analytic Thinking?-Evidence from Chinese EFL Learners' Writings.

    Science.gov (United States)

    Jiang, Jingyang; Ouyang, Jinghui; Liu, Haitao

    2016-01-01

    Language is not only the representation of thinking, but also shapes thinking. Studies on bilinguals suggest that a foreign language plays an important and unconscious role in thinking. In this study, a software-Linguistic Inquiry and Word Count 2007-was used to investigate whether the learning of English as a foreign language (EFL) can foster Chinese high school students' English analytic thinking (EAT) through the analysis of their English writings with our self-built corpus. It was found that: (1) learning English can foster Chinese learners' EAT. Chinese EFL learners' ability of making distinctions, degree of cognitive complexity and degree of thinking activeness have all improved along with the increase of their English proficiency and their age; (2) there exist differences in Chinese EFL learners' EAT and that of English native speakers, i. e. English native speakers are better in the ability of making distinctions and degree of thinking activeness. These findings suggest that the best EFL learners in high schools have gained native-like analytic thinking through six years' English learning and are able to switch their cognitive styles as needed.

  17. The Effect of Learning Styles, Critical Thinking Disposition, and Critical Thinking on Clinical Judgment in Senior Baccalaureate Nursing Students during Human Patient Simulation

    Science.gov (United States)

    McCormick, Kiyan

    2014-01-01

    Simulated learning experiences using high-fidelity human patient simulators (HPS) are increasingly being integrated into baccalaureate nursing programs. Thus, the purpose of this study was to examine relationships among learning style, critical thinking disposition, critical thinking, and clinical judgment during high-fidelity human patient…

  18. Student’s critical thinking skills in authentic problem based learning

    Science.gov (United States)

    Yuliati, L.; Fauziah, R.; Hidayat, A.

    2018-05-01

    This study aims to determine students’ critical thinking skills in authentic problem based learning, especially on geometric optics. The study was conducted at the vocational school. The study used a quantitative descriptive method with the open question to measure critical thinking skills. The indicators of critical thinking skills measured in this study are: formulating problems, providing simple answers, applying formulas and procedures, analyzing information, making conclusions, and synthesizing ideas. The results showed that there was a positive change in students’ critical thinking skills with the average value of N-Gain test is 0.59 and effect size test is 3.73. The critical thinking skills of students need to be trained more intensively using authentic problems in daily life.

  19. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    Science.gov (United States)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  20. Critical thinking level in geometry based on self-regulated learning

    Science.gov (United States)

    Bayuningsih, A. S.; Usodo, B.; Subanti, S.

    2018-03-01

    Critical thinking ability of mathematics students affected by the student’s ability in solving a specific problem. This research aims to determine the level of critical thinking (LCT) students in solving problems of geometry regarding self-regulated learning (SRL) students. This is a qualitative descriptive study with the purpose to analyze the level of Junior High School student’s critical thinking in the Regency of Banyumas. The subject is taken one student from each category SRL (high, medium and low). Data collection is given problem-solving tests to find out the level of critical thinking student, questionnaire, interview and documentation. The result of the research shows that student with SRL high is at the level of critical thinking 2, then a student with SRL medium is at the level of critical thinking 1 and student with SRL low is at the level of critical thinking 0. So students with SRL high, medium or low can solve math problems based on the critical thinking level of each student.

  1. Using the 5E Learning Cycle with Metacognitive Technique to Enhance Students’ Mathematical Critical Thinking Skills

    Directory of Open Access Journals (Sweden)

    Runisah Runisah

    2017-02-01

    Full Text Available This study aims to describe enhancement and achievement of mathematical critical thinking skills of students who received the 5E Learning Cycle with Metacognitive technique, the 5E Learning Cycle, and conventional learning. This study use experimental method with pretest-posttest control group design. Population are junior high school students in Indramayu city, Indonesia. Sample are three classes of eighth grade students from high level school and three classes from medium level school. The study reveal that in terms of overall, mathematical critical thinking skills enhancement and achievement of students who received the 5E Learning Cycle with Metacognitive technique is better than students who received the 5E Learning Cycle and conventional learning. Mathematical critical thinking skills of students who received the 5E Learning Cycle is better than students who received conventional learning. There is no interaction effect between learning model and school level toward enhancement and achievement of students’ mathematical critical thinking skills.

  2. Higher-order thinking in foreign language learning

    OpenAIRE

    Bastos, Ascensão; Ramos, Altina

    2017-01-01

    A project is being conducted in English as a foreign language (EFL), involving eleventh graders in formal and non-formal learning contexts, in a Portuguese high school. The goal of this study is to examine the impact of cognitive tools and higher-order thinking processes on the learning of EFL and achievement of larger processes oriented to action, involving problem solving, decision-making and creation of new products. YouTube videos emerge as cognitive tools in the process. Final results sh...

  3. Systems engineering, systems thinking, and learning a case study in space industry

    CERN Document Server

    Moser, Hubert Anton

    2014-01-01

    This book focuses on systems engineering, systems thinking, and how that thinking can be learned in practice. It describes a novel analytical framework based on activity theory for understanding how systems thinking evolves and how it can be improved to support multidisciplinary teamwork in the context of system development and systems engineering. This method, developed using data collected over four years from three different small space systems engineering organizations, can be applied in a wide variety of work activities in the context of engineering design and beyond in order to monitor and analyze multidisciplinary interactions in working teams over time. In addition, the book presents a practical strategy called WAVES (Work Activity for a Evolution of Systems engineering and thinking), which fosters the practical learning of systems thinking with the aim of improving process development in different industries. The book offers an excellent resource for researchers and practitioners interested in system...

  4. Probability Modeling and Thinking: What Can We Learn from Practice?

    Science.gov (United States)

    Pfannkuch, Maxine; Budgett, Stephanie; Fewster, Rachel; Fitch, Marie; Pattenwise, Simeon; Wild, Chris; Ziedins, Ilze

    2016-01-01

    Because new learning technologies are enabling students to build and explore probability models, we believe that there is a need to determine the big enduring ideas that underpin probabilistic thinking and modeling. By uncovering the elements of the thinking modes of expert users of probability models we aim to provide a base for the setting of…

  5. Systems Thinking, Lean Production and Action Learning

    Science.gov (United States)

    Seddon, John; Caulkin, Simon

    2007-01-01

    Systems thinking underpins "lean" management and is best understood through action-learning as the ideas are counter-intuitive. The Toyota Production System is just that--a system; the failure to appreciate that starting-place and the advocacy of "tools" leads many to fail to grasp what is, without doubt, a significant…

  6. Critical thinking instruction and technology enhanced learning from the student perspective: A mixed methods research study.

    Science.gov (United States)

    Swart, Ruth

    2017-03-01

    Critical thinking is acclaimed as a valuable asset for graduates from higher education programs. Technology has advanced in quantity and quality; recognized as a requirement of 21st century learners. A mixed methods research study was undertaken, examining undergraduate nursing student engagement with critical thinking instruction, platformed on two technology-enhanced learning environments: a classroom response system face-to-face in-class and an online discussion forum out-of-class. The Community of Inquiry framed the study capturing constructivist collaborative inquiry to support learning, and facilitate critical thinking capability. Inclusion of quantitative and qualitative data sources aimed to gather a comprehensive understanding of students' development of critical thinking and engagement with technology-enhanced learning. The findings from the students' perspectives were positive toward the inclusion of technology-enhanced learning, and use in supporting their development of critical thinking. Students considered the use of two forms of technology beneficial in meeting different needs and preferences, offering varied means to actively participate in learning. They valued critical thinking instruction being intentionally aligned with subject-specific content facilitating understanding, application, and relevance of course material. While the findings are limited to student participants, the instructional strategies and technology-enhanced learning identified as beneficial can inform course design for the development of critical thinking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of Problem-Based Learning Oriented Teaching Learning Materials to Facilitate Students’ Mastery of Concept and Critical Thinking Skill

    Science.gov (United States)

    Reza, M.; Ibrahim, M.; Rahayu, Y. S.

    2018-01-01

    This research aims to develop problem-based learning oriented teaching materials to improve students’ mastery of concept and critical thinking skill. Its procedure was divided into two phases; developmental phase and experimental phase. This developmental research used Four-D Model. However, within this research, the process of development would not involve the last stages, which is disseminate. The teaching learning materials which were developed consist of lesson plan, student handbook, student worksheet, achievement test and critical thinking skill test. The experimental phase employs a research design called one group pretest-posttest design. Results show that the validity of the teaching materials which were developed was good and revealed the enhancement of students’ activities with positive response to the teaching learning process. Furthermore, the learning materials improve the students’ mastery of concept and critical thinking skill.

  8. The role of critical thinking skills and learning styles of university students in their academic performance.

    Science.gov (United States)

    Ghazivakili, Zohre; Norouzi Nia, Roohangiz; Panahi, Faride; Karimi, Mehrdad; Gholsorkhi, Hayede; Ahmadi, Zarrin

    2014-07-01

    The Current world needs people who have a lot of different abilities such as cognition and application of different ways of thinking, research, problem solving, critical thinking skills and creativity. In addition to critical thinking, learning styles is another key factor which has an essential role in the process of problem solving. This study aimed to determine the relationship between learning styles and critical thinking of students and their academic performance in Alborz University of Medical Science. This cross-correlation study was performed in 2012, on 216 students of Alborz University who were selected randomly by the stratified random sampling. The data was obtained via a three-part questionnaire included demographic data, Kolb standardized questionnaire of learning style and California critical thinking standardized questionnaire. The academic performance of the students was extracted by the school records. The validity of the instruments was determined in terms of content validity, and the reliability was gained through internal consistency methods. Cronbach's alpha coefficient was found to be 0.78 for the California critical thinking questionnaire. The Chi Square test, Independent t-test, one way ANOVA and Pearson correlation test were used to determine relationship between variables. The Package SPSS14 statistical software was used to analyze data with a significant level of pstudents with convergent learning style have better performance than other groups. Also learning style had a relationship with age, gender, field of study, semester and job. The results about the critical thinking of the students showed that the mean of deductive reasoning and evaluation skills were higher than that of other skills and analytical skills had the lowest mean and there was a positive significant relationship between the students' performance with inferential skill and the total score of critical thinking skills (pskills and deductive reasoning had significant

  9. Artificial Intelligence, Computational Thinking, and Mathematics Education

    Science.gov (United States)

    Gadanidis, George

    2017-01-01

    Purpose: The purpose of this paper is to examine the intersection of artificial intelligence (AI), computational thinking (CT), and mathematics education (ME) for young students (K-8). Specifically, it focuses on three key elements that are common to AI, CT and ME: agency, modeling of phenomena and abstracting concepts beyond specific instances.…

  10. Assessing Creative Thinking in Design-Based Learning

    Science.gov (United States)

    Doppelt, Yaron

    2009-01-01

    Infusing creative thinking competence through the design process of authentic projects requires not only changing the teaching methods and learning environment, but also adopting new assessment methods, such as portfolio assessment. The participants in this study were 128 high school pupils who have studied MECHATRONICS from 10th to 12th grades…

  11. THE EFFECT OF 5E LEARNING CYCLE INSTRUCTIONAL MODEL USING SOCIOSCIENTIFIC ISSUES (SSI LEARNING CONTEXT ON STUDENTS’ CRITICAL THINKING

    Directory of Open Access Journals (Sweden)

    A. Cahyarini

    2016-11-01

    Full Text Available The aim of this study was to investigate the effect of 5E learning cycle instructional model using socioscientific issues (SSI learning context on students’ critical thinking skills of acid-base. This study used quasi-experimental posttest only control group design. The sample consisted of three classes, which were XI MIA-4class (n = 32 that learned using 5E LC model, XI MIA-5 class (n = 33 that learned using 5E LC+SSI, and XI MIA-6 class (n = 32 that learned using conventional method. The samples were choosen by convenience sampling technique. The test instrument consisted of 15 multiple choice items which were valid and reliable (r = 0.806. The data were analyzed using one way ANOVA test and LSD posthoc test. The results of this study indicated that the students who learned using 5E LC+SSI model showed greater levels of critical thinking skills (  = 74,95 than both the student who learned using 5E LC model (  = 74,17 and  the student who learned using conventional method (  = 68,96. Based on statistics analysis, there was significant differences on students’ critical thinkings between students taught using conventional method and students taught either using 5E LC+SSI model and 5E LC model. However,  there was no significant differences on students’ critical thinking skills between students taught using 5E LC+SSI model and the students taught using 5E LC model.

  12. Discovery learning model with geogebra assisted for improvement mathematical visual thinking ability

    Science.gov (United States)

    Juandi, D.; Priatna, N.

    2018-05-01

    The main goal of this study is to improve the mathematical visual thinking ability of high school student through implementation the Discovery Learning Model with Geogebra Assisted. This objective can be achieved through study used quasi-experimental method, with non-random pretest-posttest control design. The sample subject of this research consist of 62 senior school student grade XI in one of school in Bandung district. The required data will be collected through documentation, observation, written tests, interviews, daily journals, and student worksheets. The results of this study are: 1) Improvement students Mathematical Visual Thinking Ability who obtain learning with applied the Discovery Learning Model with Geogebra assisted is significantly higher than students who obtain conventional learning; 2) There is a difference in the improvement of students’ Mathematical Visual Thinking ability between groups based on prior knowledge mathematical abilities (high, medium, and low) who obtained the treatment. 3) The Mathematical Visual Thinking Ability improvement of the high group is significantly higher than in the medium and low groups. 4) The quality of improvement ability of high and low prior knowledge is moderate category, in while the quality of improvement ability in the high category achieved by student with medium prior knowledge.

  13. Effects of basic character design and animation concepts using the flipped learning and project-based learning approach on learning achievement and creative thinking of higher education students

    Science.gov (United States)

    Autapao, Kanyarat; Minwong, Panthul

    2018-01-01

    Creative thinking was an important learning skill in the 21st Century via learning and innovation to promote students' creative thinking and working with others and to construct innovation. This is one of the important skills that determine the readiness of the participants to step into the complex society. The purposes of this research were 1) to compare the learning achievement of students after using basic character design and animation concepts using the flipped learning and project-based learning and 2) to make a comparison students' creative thinking between pretest and posttest. The populations were 29 students in Multimedia Technology program at Thepsatri Rajabhat University in the 2nd semester of the academic year 2016. The experimental instruments were lesson plans of basic character design and animation concepts using the flipped learning and project based learning. The data collecting instrument was creative thinking test. The data were analyzed by the arithmetic mean, standard deviation and The Wilcoxon Matched Pairs Signed-Ranks Test. The results of this research were 1) the learning achievement of students were statistically significance of .01 level and 2) the mean score of student's creativity assessment were statistically significance of .05 level. When considering all of 11 KPIs, showed that respondents' post-test mean scores higher than pre-test. And 5 KPIs were statistically significance of .05 level, consist of Originality, Fluency, Elaboration, Resistance to Premature Closure, and Intrinsic Motivation. It's were statistically significance of .042, .004, .049, .024 and .015 respectively. And 6 KPIs were non-statistically significant, include of Flexibility, Tolerance of Ambiguity, Divergent Thinking, Convergent Thinking, Risk Taking, and Extrinsic Motivation. The findings revealed that the flipped learning and project based learning provided students the freedom to simply learn on their own aptitude. When working together with project

  14. The role of critical thinking skills and learning styles of university students in their academic performance

    Directory of Open Access Journals (Sweden)

    ZOHRE GHAZIVAKILI

    2014-07-01

    Full Text Available Introduction: The current world needs people who have a lot of different abilities such as cognition and application of different ways of thinking, research, problem solving, critical thinking skills and creativity. In addition to critical thinking, learning styles is another key factor which has an essential role in the process of problem solving. This study aimed to determine the relationship between learning styles and critical thinking of students and their academic performance in Alborz University of Medical Sciences. Methods: This cross-correlation study was performed in 2012, on 216 students of Alborz University who were selected randomly by the stratified method. The data was obtained via a three-part questionnaire included demographic data, Kolb standardized questionnaire of learning style and California critical thinking standardized questionnaire. The academic performance of the students was extracted by the school records. The validity of the instruments was determined in terms of content validity, and the reliability was gained through internal consistency methods. Cronbach's alpha coefficient was found to be 0.78 for the California critical thinking questionnaire. The Chi Square test, Independent T-test, one way ANOVA and Pearson Correlation test were used to determine relationship between variables. The Package SPSS14 statistical software was used to analyze data with a significant level of p<0.05. Results: Our findings indicated the significant difference of mean score in four learning style, suggesting university students with convergent learning style have better performance than other groups. Also learning style had a relationship with age, gender, field of study, semester and job. The results about the critical thinking of the students showed that the mean of deductive reasoning and evaluation skills were higher than that of other skills and analytical skills had the lowest mean and there was a positive significant

  15. Teachers' learning on the workshop of STS approach as a way of enhancing inventive thinking skills

    Science.gov (United States)

    Ngaewkoodrua, Nophakun; Yuenyong, Chokchai

    2018-01-01

    To improve science teachers to develop the STS lesson plans for enhancing the students' inventive thinking skills, the workshop of improving science teachers to develop the STS lesson plans for enhancing the Inventive thinking skills were organized. The paper aimed to clarify what teachers learn from the workshop. The goal of the activity of the workshop aimed to: 1) improve participants a better understanding of the relationship between the Inquiry based learning with STS approach, 2) understand the meaning and importance of the STS approach and identify the various stages of Yuenyong (2006) STS learning process, 3) discuss what they learned from the examples of Yuenyong (2006) lesson plan, 4) develop some activities for each stage of Yuenyong (2006) STS approach, and 5) ideas of providing STS approach activities for enhancing inventive thinking skills. Participants included 3 science teachers who work in Khon Kaen, Thailand. Methodology regarded interpretive paradigm. Teachers' learning about pedagogy of enhancing the students' inventive thinking skills will be interpreted through participant observation, teachers' tasks, and interview. The finding revealed that all participants could demonstrate their ideas how to generate the STS lesson plans as a way of enhancing inventive thinking skills. Teachers could mention some element of inventive thinking skills which could be generated on their STS learning activities.

  16. Group Theory, Computational Thinking, and Young Mathematicians

    Science.gov (United States)

    Gadanidis, George; Clements, Erin; Yiu, Chris

    2018-01-01

    In this article, we investigate the artistic puzzle of designing mathematics experiences (MEs) to engage young children with ideas of group theory, using a combination of hands-on and computational thinking (CT) tools. We elaborate on: (1) group theory and why we chose it as a context for young mathematicians' experiences with symmetry and…

  17. Nursing student stories on learning how to think like a nurse.

    Science.gov (United States)

    Di Vito-Thomas, Pam

    2005-01-01

    The ability to think critically, improve clinical systems, and decrease errors in clinical judgments are ever the vision of nursing practice. The author describes the thinking processes of nursing students as they make clinical judgments and the most important teaching/learning strategies that help develop their clinical judgment.

  18. Improving Critical Thinking Skills of College Students through RMS Model for Learning Basic Concepts in Science

    Science.gov (United States)

    Muhlisin, Ahmad; Susilo, Herawati; Amin, Mohamad; Rohman, Fatchur

    2016-01-01

    The purposes of this study were to: 1) Examine the effect of RMS learning model towards critical thinking skills. 2) Examine the effect of different academic abilities against critical thinking skills. 3) Examine the effect of the interaction between RMS learning model and different academic abilities against critical thinking skills. The research…

  19. The role of critical thinking skills and learning styles of university students in their academic performance

    Science.gov (United States)

    GHAZIVAKILI, ZOHRE; NOROUZI NIA, ROOHANGIZ; PANAHI, FARIDE; KARIMI, MEHRDAD; GHOLSORKHI, HAYEDE; AHMADI, ZARRIN

    2014-01-01

    Introduction: The Current world needs people who have a lot of different abilities such as cognition and application of different ways of thinking, research, problem solving, critical thinking skills and creativity. In addition to critical thinking, learning styles is another key factor which has an essential role in the process of problem solving. This study aimed to determine the relationship between learning styles and critical thinking of students and their academic performance in Alborz University of Medical Science. Methods: This cross-correlation study was performed in 2012, on 216 students of Alborz University who were selected randomly by the stratified random sampling. The data was obtained via a three-part questionnaire included demographic data, Kolb standardized questionnaire of learning style and California critical thinking standardized questionnaire. The academic performance of the students was extracted by the school records. The validity of the instruments was determined in terms of content validity, and the reliability was gained through internal consistency methods. Cronbach's alpha coefficient was found to be 0.78 for the California critical thinking questionnaire. The Chi Square test, Independent t-test, one way ANOVA and Pearson correlation test were used to determine relationship between variables. The Package SPSS14 statistical software was used to analyze data with a significant level of pcritical thinking of the students showed that the mean of deductive reasoning and evaluation skills were higher than that of other skills and analytical skills had the lowest mean and there was a positive significant relationship between the students’ performance with inferential skill and the total score of critical thinking skills (pcritical thinking had significant difference between different learning styles. Conclusion: The results of this study showed that the learning styles, critical thinking and academic performance are significantly associated

  20. Development of probabilistic thinking-oriented learning tools for probability materials at junior high school students

    Science.gov (United States)

    Sari, Dwi Ivayana; Hermanto, Didik

    2017-08-01

    This research is a developmental research of probabilistic thinking-oriented learning tools for probability materials at ninth grade students. This study is aimed to produce a good probabilistic thinking-oriented learning tools. The subjects were IX-A students of MTs Model Bangkalan. The stages of this development research used 4-D development model which has been modified into define, design and develop. Teaching learning tools consist of lesson plan, students' worksheet, learning teaching media and students' achievement test. The research instrument used was a sheet of learning tools validation, a sheet of teachers' activities, a sheet of students' activities, students' response questionnaire and students' achievement test. The result of those instruments were analyzed descriptively to answer research objectives. The result was teaching learning tools in which oriented to probabilistic thinking of probability at ninth grade students which has been valid. Since teaching and learning tools have been revised based on validation, and after experiment in class produced that teachers' ability in managing class was effective, students' activities were good, students' responses to the learning tools were positive and the validity, sensitivity and reliability category toward achievement test. In summary, this teaching learning tools can be used by teacher to teach probability for develop students' probabilistic thinking.

  1. Promoting Critical Thinking through Service Learning: A Home-Visiting Case Study

    Science.gov (United States)

    Campbell, Cynthia G.; Oswald, Brianna R.

    2018-01-01

    As stated in APA Learning Outcomes 2 and 3, two central goals of higher education instruction are promoting students' critical thinking skills and connecting student learning to real-life applications. To meet these goals, a community-based service-learning experience was designed using task value, interpersonal accountability, cognitive…

  2. A Case Study: Applying Critical Thinking Skills to Computer Science and Technology

    Science.gov (United States)

    Shannon, Li-Jen; Bennett, Judith

    2012-01-01

    A majority of incoming college freshmen and sophomores have not applied their critical thinking skills as part of their learning process. This paper investigates how students acquire their critical thinking skills while facing the copyright, fair use, and internet security challenges in this contemporary digital society. The findings show that 90…

  3. Critical Thinking Skills of Nursing Students in Lecture-Based Teaching and Case-Based Learning

    Science.gov (United States)

    Kaddoura, Mahmoud A.

    2011-01-01

    In today's technologically advanced healthcare world, nursing students should be active learners and think critically to provide safe patient care. A strategy that promotes students' active learning is case-based learning (CBL). The purpose of this study was to examine critical thinking (CT) abilities of nursing students from two different…

  4. Enhancing students' learning in problem based learning: validation of a self-assessment scale for active learning and critical thinking.

    Science.gov (United States)

    Khoiriyah, Umatul; Roberts, Chris; Jorm, Christine; Van der Vleuten, C P M

    2015-08-26

    Problem based learning (PBL) is a powerful learning activity but fidelity to intended models may slip and student engagement wane, negatively impacting learning processes, and outcomes. One potential solution to solve this degradation is by encouraging self-assessment in the PBL tutorial. Self-assessment is a central component of the self-regulation of student learning behaviours. There are few measures to investigate self-assessment relevant to PBL processes. We developed a Self-assessment Scale on Active Learning and Critical Thinking (SSACT) to address this gap. We wished to demonstrated evidence of its validity in the context of PBL by exploring its internal structure. We used a mixed methods approach to scale development. We developed scale items from a qualitative investigation, literature review, and consideration of previous existing tools used for study of the PBL process. Expert review panels evaluated its content; a process of validation subsequently reduced the pool of items. We used structural equation modelling to undertake a confirmatory factor analysis (CFA) of the SSACT and coefficient alpha. The 14 item SSACT consisted of two domains "active learning" and "critical thinking." The factorial validity of SSACT was evidenced by all items loading significantly on their expected factors, a good model fit for the data, and good stability across two independent samples. Each subscale had good internal reliability (>0.8) and strongly correlated with each other. The SSACT has sufficient evidence of its validity to support its use in the PBL process to encourage students to self-assess. The implementation of the SSACT may assist students to improve the quality of their learning in achieving PBL goals such as critical thinking and self-directed learning.

  5. Pengembangan Critical Thinking melalui Penerapan Model PBL (Problem Based Learning) dalam Pembelajaran Sains

    OpenAIRE

    Widowati, Asri

    2010-01-01

    This paper examines to explore how study by using model of Problem Based Learning ( PBL). Basically, this discussion is focussed at model of PBL as an effort in developing cognitive ability, especially critical thinking.Critical thinking including ability think high level (higher order of thinking) representing one of the component in issue intellegence of 21 st century ( Issue of The 21st literacy century). Development of ability of critical thinking in study of science of vital importance b...

  6. Improvement of The Ability of Junior High School Students Thinking Through Visual Learning Assisted Geo gbra Tutorial

    Science.gov (United States)

    Elvi, M.; Nurjanah

    2017-02-01

    This research is distributed on the issue of the lack of visual thinking ability is a must-have basic ability of students in learning geometry. The purpose of this research is to investigate and elucide: 1) the enhancement of visual thinking ability of students to acquire learning assisted with geogebra tutorial learning: 2) the increase in visual thinking ability of students who obtained a model of learning assisted with geogebra and students who obtained a regular study of KAM (high, medium, and low). This research population is grade VII in Bandung Junior High School. The instruments used to collect data in this study consisted of instruments of the test and the observation sheet. The data obtained were analyzed using the test average difference i.e. Test-t and ANOVA Test one line to two lines. The results showed that: 1) the attainment and enhancement of visual thinking ability of students to acquire learning assisted geogebra tutorial better than students who acquire learning; 2) there may be differences of visual upgrade thinking students who acquire the learning model assisted with geogebra tutorial earn regular learning of KAM (high, medium and low).

  7. The impact of computer-based versus "traditional" textbook science instruction on selected student learning outcomes

    Science.gov (United States)

    Rothman, Alan H.

    This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking

  8. Socrates, problem-based learning and critical thinking --- a philosophic point of view.

    Science.gov (United States)

    Wang, Shin-Yun; Tsai, Jer-Chia; Chiang, Horn-Che; Lai, Chung-Sheng; Lin, Hui-Ju

    2008-03-01

    Problem-based learning (PBL) is a learner-centered educational method based on the principles of heuristics and collaboration. It has been considered an effective learning method in general and in professional education, especially in medical education. This article analyzes the thinking structure and philosophical background of PBL through the educational ideas of Socrates and the truth conception of Karl Popper. In the different phases of the PBL process, various truth conceptions will help to formulate the thinking framework of PBL --- from Socrates' truth of openness toward the truth of scientific accuracy of our modern age. Meanwhile, Popper's scientific theory of falsifiability further leads us to discuss the relationship between PBL and critical thinking.

  9. Is adolescence a critical period for learning formal thinking skills? A case study investigating the development of formal thinking skills in a short-term inquiry-based intervention program

    Science.gov (United States)

    Towne, Forrest S.

    Current domestic and international comparative studies of student achievement in science are demonstrating that the U.S. needs to improve science education if it wants to remain competitive in the global economy. One of the causes of the poor performance of U.S. science education is the lack of students who have developed the formal thinking skills that are necessary to obtain scientific literacy. Previous studies have demonstrated that formal thinking skills can be taught to adolescents, however only 25% of incoming college freshman have these necessary skills. There is some evidence that adolescence (girls aged 11-13, boys aged 12-14) is a critical period where students must learn formal thinking skills, similar to the critical period that exists for young children learning languages. It is not known whether it is more difficult for students to learn formal thinking skills either prior to or following adolescence. The purpose of this quantitative case study is to determine whether adolescence is a critical period for students to learn formal thinking skills. The study also investigates whether a formal thinking skills focused program can improve students' intelligence. In this study 32 students who had not developed any formal thinking skills, ranging in age from 10-16, underwent an intensive four-week, inquiry-based, formal thinking skill intervention program that focused on two formal thinking skills: (1) the ability to control and exclude variables; and (2) the ability to manipulate ratios and proportionalities. The students undergoing the training were matched with control students by age, gender, formal thinking skill ability, and intelligence. The control group attended their traditional science course during the intervention periods. The results of the study showed that the intervention program was successful in developing students' formal thinking skills. The pre-adolescents (males, age 10-11, females, age 10) were unable to learn formal thinking skills

  10. Investigating Elementary Teachers' Thinking About and Learning to Notice Students' Science Ideas

    Science.gov (United States)

    Luna, Melissa Jo

    Children naturally use observations and everyday thinking to construct explanations as to why phenomena happen in the world. Science instruction can benefit by starting with these ideas to help children build coherent scientific understandings of how the physical world works. To do so, science teaching must involve attending to students' ideas so that those ideas become the basis for learning. Yet while science education reform requires teachers to pay close attention to their students' ideas, we know little about what teachers think this means in practice. To examine this issue, my dissertation research is two-fold. First, I examine teacher thinking by investigating how teachers understand what it means to pay attention to students' science ideas. Specifically, using new digital technology, three participating teachers captured moments of student thinking in the midst of instruction. Analysis of these moments reveals that teachers capture many different kinds of moments containing students' ideas and think about students' science ideas in different ways at different times. In particular, these three teachers most often think about students' ideas as being (a) from authority, (b) from experience, and (c) under construction. Second, I examine teacher learning through the development of an innovative science teaching video club model. The model differs from previous research on video clubs in several key ways in an attempt to focus teachers on student thinking in a sustained way. I investigate the ways in which this model was effective for engaging teachers in noticing and making sense of their students' science ideas during one implementation. Results indicate that teachers talked about student thinking early, often, and in meaningful ways. Science education leaders have recognized the potential of science teaching video clubs as a form of professional development, and the model presented in this work promotes the conditions for successful teacher learning. This

  11. Can Learning a Foreign Language Foster Analytic Thinking?—Evidence from Chinese EFL Learners' Writings

    Science.gov (United States)

    Jiang, Jingyang; Ouyang, Jinghui; Liu, Haitao

    2016-01-01

    Language is not only the representation of thinking, but also shapes thinking. Studies on bilinguals suggest that a foreign language plays an important and unconscious role in thinking. In this study, a software—Linguistic Inquiry and Word Count 2007—was used to investigate whether the learning of English as a foreign language (EFL) can foster Chinese high school students’ English analytic thinking (EAT) through the analysis of their English writings with our self-built corpus. It was found that: (1) learning English can foster Chinese learners’ EAT. Chinese EFL learners’ ability of making distinctions, degree of cognitive complexity and degree of thinking activeness have all improved along with the increase of their English proficiency and their age; (2) there exist differences in Chinese EFL learners’ EAT and that of English native speakers, i. e. English native speakers are better in the ability of making distinctions and degree of thinking activeness. These findings suggest that the best EFL learners in high schools have gained native-like analytic thinking through six years’ English learning and are able to switch their cognitive styles as needed. PMID:27741270

  12. Game-based programming towards developing algorithmic thinking skills in primary education

    Directory of Open Access Journals (Sweden)

    Hariklia Tsalapatas

    2012-06-01

    Full Text Available This paper presents cMinds, a learning intervention that deploys game-based visual programming towards building analytical, computational, and critical thinking skills in primary education. The proposed learning method exploits the structured nature of programming, which is inherently logical and transcends cultural barriers, towards inclusive learning that exposes learners to algorithmic thinking. A visual programming environment, entitled ‘cMinds Learning Suite’, has been developed aimed for classroom use. Feedback from the deployment of the learning methods and tools in classrooms in several European countries demonstrates elevated learner motivation for engaging in logical learning activities, fostering of creativity and an entrepreneurial spirit, and promotion of problem-solving capacity

  13. Embracing the Learning Paradigm to Foster Systems Thinking

    Science.gov (United States)

    Habron, Geoffrey; Goralnik, Lissy; Thorp, Laurie

    2012-01-01

    Purpose: Michigan State University developed an undergraduate, academic specialization in sustainability based on the learning paradigm. The purpose of this paper is to share initial findings on assessment of systems thinking competency. Design/methodology/approach: The 15-week course served 14 mostly third and fourth-year students. Assessment of…

  14. On The Subject of Thinking Machines

    OpenAIRE

    Olafenwa , John ,; Olafenwa , Moses

    2018-01-01

    An investigation of the concepts of thoughts, imagination and consciousness in learning machines.; 68 years ago, Alan Turing proposed the question "Can Machines Think" in his seminal paper [1] titled "Computing Machinery and Intelligence" and he formulated the "Imitation Game" also known as the Turing test as a way to answer this question without referring to a rather ambiguous dictionary definition of the word "Think" We have come a long way to building intelligent machines, in fact, the rat...

  15. Student teachers’ mathematical questioning and courage in metaphorical thinking learning

    Science.gov (United States)

    Hendriana, H.; Hidayat, W.; Ristiana, M. G.

    2018-01-01

    This study was designed in the form of experiments with control group design and post-test only which aimed to examine the role of metaphorical thinking learning in the mathematical questioning ability of student teachers based on the level of mathematical courage. The population of this study was student teachers of mathematics education study program in West Java Province, while the sample of this study was 152 student teachers which were set purposively and then randomly to be included in the experimental class and control class. Based on the results and discussion, it was concluded that: (a) the mathematical questioning ability of student teachers who received Metaphorical Thinking learning was better than those who received conventional learning seen from mathematical courage level; (b) learning and mathematical courage level factors affected the achievement of student teachers’ mathematical questioning ability. In addition, there was no interaction effect between learning and mathematical courage level (high, medium, and low) simultaneously in developing student teachers’ mathematical questioning ability; (c) achievement of mastering mathematical questioning ability of student teacher was still not well achieved on indicator of problem posing in the form of non-routine question and open question.

  16. Teaching programming to non-STEM novices: a didactical study of computational thinking and non-STEM computing education

    DEFF Research Database (Denmark)

    Spangsberg, Thomas Hvid

    research approach. Computational thinking plays a significant role in computing education but it is still unclear how it should be interpreted to best serve its purpose. Constructionism and Computational Making seems to be promising frameworks to do this. In regards to specific teaching activities...

  17. Gaia: "Thinking Like a Planet" as Transformative Learning

    Science.gov (United States)

    Haigh, Martin

    2014-01-01

    Transformative learning may involve gentle perspective widening or something more traumatic. This paper explores the impact of a transformative pedagogy in a course that challenges learners to "think like a planet". Among six sources of intellectual anxiety, learners worry about: why Gaia Theory is neglected by their other courses; the…

  18. The Effectiveness of Local Culture-Based Mathematical Heuristic-KR Learning towards Enhancing Student's Creative Thinking Skill

    Science.gov (United States)

    Tandiseru, Selvi Rajuaty

    2015-01-01

    The problem in this research is the lack of creative thinking skills of students. One of the learning models that is expected to enhance student's creative thinking skill is the local culture-based mathematical heuristic-KR learning model (LC-BMHLM). Heuristic-KR is a learning model which was introduced by Krulik and Rudnick (1995) that is the…

  19. Using Complementary Learning Clusters in Studying Literature to Enhance Students' Medical Humanities Literacy, Critical Thinking, and English Proficiency.

    Science.gov (United States)

    Liao, Hung-Chang; Wang, Ya-Huei

    2016-04-01

    This study examined whether students studying literature in complementary learning clusters would show more improvement in medical humanities literacy, critical thinking skills, and English proficiency compared to those in conventional learning clusters. Ninety-three students participated in the study (M age = 18.2 years, SD = 0.4; 36 men, 57 women). A quasi-experimental design was used over 16 weeks, with the control group (n = 47) working in conventional learning clusters and the experimental group (n = 46) working in complementary learning clusters. Complementary learning clusters were those in which individuals had complementary strengths enabling them to learn from and offer assistance to other cluster members, hypothetically facilitating the learning process. Measures included the Medical Humanities Literacy Scale, Critical Thinking Disposition Assessment, English proficiency tests, and Analytic Critical Thinking Scoring Rubric. The results showed that complementary learning clusters have the potential to improve students' medical humanities literacy, critical thinking skills, and English proficiency. © The Author(s) 2016.

  20. Critical Thinking Skills of Students through Mathematics Learning with ASSURE Model Assisted by Software Autograph

    Science.gov (United States)

    Kristianti, Y.; Prabawanto, S.; Suhendra, S.

    2017-09-01

    This study aims to examine the ability of critical thinking and students who attain learning mathematics with learning model ASSURE assisted Autograph software. The design of this study was experimental group with pre-test and post-test control group. The experimental group obtained a mathematics learning with ASSURE-assisted model Autograph software and the control group acquired the mathematics learning with the conventional model. The data are obtained from the research results through critical thinking skills tests. This research was conducted at junior high school level with research population in one of junior high school student in Subang Regency of Lesson Year 2016/2017 and research sample of class VIII student in one of junior high school in Subang Regency for 2 classes. Analysis of research data is administered quantitatively. Quantitative data analysis was performed on the normalized gain level between the two sample groups using a one-way anova test. The results show that mathematics learning with ASSURE assisted model Autograph software can improve the critical thinking ability of junior high school students. Mathematical learning using ASSURE-assisted model Autograph software is significantly better in improving the critical thinking skills of junior high school students compared with conventional models.

  1. Abstraction ability as an indicator of success for learning computing science?

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2008-01-01

    Computing scientists generally agree that abstract thinking is a crucial component for practicing computer science. We report on a three-year longitudinal study to confirm the hypothesis that general abstraction ability has a positive impact on performance in computing science. Abstraction ability...... is operationalized as stages of cognitive development for which validated tests exist. Performance in computing science is operationalized as grade in the final assessment of ten courses of a bachelor's degree programme in computing science. The validity of the operationalizations is discussed. We have investigated...... the positive impact overall, for two groupings of courses (a content-based grouping and a grouping based on SOLO levels of the courses' intended learning outcome), and for each individual course. Surprisingly, our study shows that there is hardly any correlation between stage of cognitive development...

  2. Affordances of the 'branch and bound' paradigm for developing computational thinking

    NARCIS (Netherlands)

    van der Meulen, Joris; Timmer, Mark

    As technological advances in engineering and computer science happen more and more quickly, we must shift focus from teaching specific techniques or programming languages to teaching something more transcending: computational thinking (Wing, 2006). Wing explained this concept later as “the thought

  3. The Impact of Problem-Based Learning Approach to Senior High School Students’ Mathematics Critical Thinking Ability

    Directory of Open Access Journals (Sweden)

    Reviandari Widyatiningtyas

    2015-07-01

    Full Text Available The study was report the findings of an only post-test control group research design and aims to analyze the influence of problem-based learning approach, school level, and students’ prior mathematical ability to student’s mathematics critical thinking ability. The research subjects were 140 grade ten senior high school students coming from excellent and moderate school level. The research instruments a set of mathematical critical thinking ability test, and the data were analyzed by using two ways ANOVA and t-test. The research found that the problem based learning approach has significant impact to the ability of students’ mathematics critical thinking in terms of school level and students’ prior mathematical abilities. Furthermore. This research also found that there is no interaction between learning approach and school level, and learning approach and students’ prior mathematics ability to students’ mathematics critical thinking ability.

  4. The Correlation of Critical Thinking Disposition and Approaches to Learning among Baccalaureate Nursing Students

    Science.gov (United States)

    Kabeel, Abeer Refaat; Eisa, Sahar Abd El-Mohsen Mosa

    2016-01-01

    Background: Part of the 21st century skills is critical thinking and learning approaches of students. A part of that resurgence can be attributable to several studies on critical thinking, logic, and thinking skills. Health care professionals are challenged by the complexities of the health care environment. The practice of nursing requires…

  5. Integrating Computational Thinking into Technology and Engineering Education

    Science.gov (United States)

    Hacker, Michael

    2018-01-01

    Computational Thinking (CT) is being promoted as "a fundamental skill used by everyone in the world by the middle of the 21st Century" (Wing, 2006). CT has been effectively integrated into history, ELA, mathematics, art, and science courses (Settle, et al., 2012). However, there has been no analogous effort to integrate CT into…

  6. System Thinking Scales and Learning Environment of Family Planning Field Workers in East Java, Indonesia

    Science.gov (United States)

    Listyawardani, Dwi; Hariastuti, Iswari

    2016-01-01

    Systems thinking is needed due to the growing complexity of the problems faced family planning field workers in the external environment that is constantly changing. System thinking ability could not be separated from efforts to develop learning for the workers, both learning at the individual, group, or organization level. The design of the study…

  7. The Evaluation of Conceptual Learning and Epistemological Beliefs on Physics Learning by Think-Pair-Share

    Science.gov (United States)

    Gok, Tolga

    2018-01-01

    The purpose of the research was to investigate the effects of think pair share (TPS) instructional strategy on students' conceptual learning and epistemological beliefs on physics and physics learning. The research was conducted with two groups. One of the groups was the experimental group (EG) and the other group was the control group (CG). 35…

  8. Critical Thinking and Collaboration: A Strategy to Enhance Student Learning

    Directory of Open Access Journals (Sweden)

    Ronald A. Styron, Jr.

    2014-12-01

    Full Text Available In numerous studies relative to collaboration and critical thinking, an instructional strategy called Team- Based Learning has proven to be an effective approach to teaching and learning. Team-Based Learning utilizes a specific sequence of individual work, group work and immediate feedback to create a motivational framework in which students increasingly hold each other accountable for coming to class prepared and contributing to discussion. Using an action research conceptual model diffusion of innovation theory, the process of P-20 quality enhancement using Team-Based Learning is examined.

  9. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Directory of Open Access Journals (Sweden)

    Thomas D. GRIFFIN

    2012-10-01

    Full Text Available The main goal for the current study was to investigate whether individual differences in domaingeneral thinking dispositions might affect learning from multiple-document inquiry tasks in science.Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be different from what has been observed in the past from those documents. Understanding was assessed with two measures: an essay task and an inference verification task. Domain-general thinking dispositions were assessed with a Commitment to Logic, Evidence, and Reasoning (CLEAR thinking scale. The measures of understanding wereuniquely predicted by both reading skills and CLEAR thinking scores, and these effects were not attributable to prior knowledge or interest. The results suggest independent roles for thinkingdispositions and reading ability when students read to learn from multiple-document inquiry tasks in science.

  10. Effects of problem-based learning vs. traditional lecture on Korean nursing students' critical thinking, problem-solving, and self-directed learning.

    Science.gov (United States)

    Choi, Eunyoung; Lindquist, Ruth; Song, Yeoungsuk

    2014-01-01

    Problem-based learning (PBL) is a method widely used in nursing education to develop students' critical thinking skills to solve practice problems independently. Although PBL has been used in nursing education in Korea for nearly a decade, few studies have examined its effects on Korean nursing students' learning outcomes, and few Korean studies have examined relationships among these outcomes. The objectives of this study are to examine outcome abilities including critical thinking, problem-solving, and self-directed learning of nursing students receiving PBL vs. traditional lecture, and to examine correlations among these outcome abilities. A quasi-experimental non-equivalent group pretest-posttest design was used. First-year nursing students (N=90) were recruited from two different junior colleges in two cities (GY and GJ) in South Korea. In two selected educational programs, one used traditional lecture methods, while the other used PBL methods. Standardized self-administered questionnaires of critical thinking, problem-solving, and self-directed learning abilities were administered before and at 16weeks (after instruction). Learning outcomes were significantly positively correlated, however outcomes were not statistically different between groups. Students in the PBL group improved across all abilities measured, while student scores in the traditional lecture group decreased in problem-solving and self-directed learning. Critical thinking was positively associated with problem-solving and self-directed learning (r=.71, and r=.50, respectively, plearning (r=.75, pLearning outcomes of PBL were not significantly different from traditional lecture in this small underpowered study, despite positive trends. Larger studies are recommended to study effects of PBL on critical student abilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Critical thinking skills profile of high school students in learning chemistry

    Directory of Open Access Journals (Sweden)

    Budi Utami

    2017-08-01

    Full Text Available Critical thinking skill is the priority in the goals of education. In this case, the critical thinking has the higher process, such as analyzing, synthesizing, evaluating, drawing conclusion and reflecting which enables the individual to make the reasonable assessment both in the classroom and in the daily life.  This research is aimed to determine the students’ critical thinking skill in learning Chemistry at senior high school. This research used descriptive method in which the instruments were developed based on the indicators of critical thinking skill. The population of this research was 100 students of tenth, eleventh and twelfth grade from senior high schools in Surakarta which was chosen using cluster random sampling technique. The result of the research shows that the students of tenth, eleventh and twelfth grade have adequate critical thinking skills.

  12. EFFECTS OF SCIENTIFIC INQUIRY LEARNING MODEL AND LOGICAL THINKING ABILITY OF HIGH SCHOOL STUDENTS SCIENCE PROCESS SKILLS

    Directory of Open Access Journals (Sweden)

    M. Akhyar Lubis

    2017-09-01

    Full Text Available This study aimed to analyze whether the results of science process skills of students. Who are taught by the teaching model scientific inquiry better than conventional learning, to analyze whether the results of science process skills of students? Who can think logically high is better than the students who have the potential to think logically low, analyze whether there is an interaction between scientific inquiry learning model with logical thinking skills to students' science process skills. This research is a quasi-experimental design with the two-group pretest-posttest design. The study population is all students of class X SMA Negeri 4 Padangsidimpuan semester II academic year 2016/2017. The The research instrument consists of two types: science process skills instrument consists of 10 questions in essay form which has been declared valid and reliable, and the instrument ability to think logically in the form of multiple choice is entirely groundless and complements (combination. The resulting data, analyzed by using two path Anava. The results showed that science process skills of students who are taught by the teaching model scientific inquiry better than conventional learning. Science process skills of students who can think logically high are better than the students who can think logically low, and there is an interaction between learning model scientific inquiry and conventional learning with the ability to think logically to improve students' science process skills.

  13. Role of Personality Traits, Learning Styles and Metacognition in Predicting Critical Thinking of Undergraduate Students

    Directory of Open Access Journals (Sweden)

    Soliemanifar O

    2015-04-01

    The aim of this study was to investigate the role of personality traits, learning styles and metacognition in predicting critical thinking. Instrument & Methods: In this descriptive correlative study, 240 students (130 girls and 110 boys of Ahvaz Shahid Chamran University were selected by multi-stage random sampling method. The instruments for collecting data were NEO Five-Factor Inventory, learning style inventory of Kolb (LSI, metacognitive assessment inventory (MAI of Schraw & Dennison (1994 and California Critical Thinking Skills Test (CCTST. The data were analyzed using Pearson correlation coefficient, stepwise regression analysis and Canonical correlation analysis.  Findings: Openness to experiment (b=0.41, conscientiousness (b=0.28, abstract conceptualization (b=0.39, active experimentation (b=0.22, reflective observation (b=0.12, knowledge of cognition (b=0.47 and regulation of cognition (b=0.29 were effective in predicting critical thinking. Openness to experiment and conscientiousness (r2=0.25, active experimentation, abstract conceptualization and reflective observation learning styles (r2=0.21 and knowledge and regulation of cognition metacognitions (r2=0.3 had an important role in explaining critical thinking. The linear combination of critical thinking skills (evaluation, analysis, inference was predictable by a linear combination of dispositional-cognitive factors (openness, conscientiousness, abstract conceptualization, active experimentation, knowledge of cognition and regulation of cognition. Conclusion: Personality traits, learning styles and metacognition, as dispositional-cognitive factors, play a significant role in students' critical thinking.

  14. Effectiveness of guided inquiry learning model to improve students’ critical thinking skills at senior high school

    Science.gov (United States)

    Nisa, E. K.; Koestiari, T.; Habibbulloh, M.; Jatmiko, Budi

    2018-03-01

    This research aimed to describe the effectiveness of guided inquiry learning model to improve students' critical thinking skills. Subjects in the research were 90 students at three groups of senior high school grade X on Tarik (Indonesia), which follows a physics lesson on static fluid material in academic year 2016/2017. The research was used one group pre-test and post-test design. Before and after being given physics learning with guided discovery learning model, students in the three groups were given the same test (pre-test and post-test). The results of this research showed: 1) there is an increased score of students' critical thinking skills in each group on α = 5%; 2) average N-gain of students' critical thinking skills of each group is a high category; and 3) average N-gain of the three groups did not differ. The conclusion of this research is that learning model of guided inquiry effective to improve students' critical thinking skills.

  15. Thinking Beyond Numbers: Learning Numeracy for the Future Workplace. Support Document

    Science.gov (United States)

    Marr, Beth; Hagston, Jan

    2007-01-01

    The use, learning and transfer of workplace numeracy skills, as well as current understandings of the term numeracy, are examined in this study. It also highlights the importance of numeracy as an essential workplace skill. "Thinking Beyond Numbers: Learning Numeracy for the Future Workplace" challenges the training system and training…

  16. Skill Based Teaching--Learning Science Implementing Metaphorical Thinking

    Science.gov (United States)

    Navaneedhan, Cittoor Girija; Kamalanabhan, T. J.

    2017-01-01

    Education in its general sense is a form of learning in which knowledge, skills, and habits of a group of people are transferred from one generation to the next through teaching, training, research, or simply through auto didacticism, Generally, it occurs through any experience that has a formative effect on the way one thinks, feels, or acts. The…

  17. A K-6 Computational Thinking Curriculum Framework : Implications for Teacher Knowledge

    NARCIS (Netherlands)

    Angeli, C.; Voogt, J.; Fluck, A.; Webb, M.; Cox, M.; Malyn-Smith, J.; Zagami, J.

    2016-01-01

    Adding computer science as a separate school subject to the core K-6 curriculum is a complex issue with educational challenges. The authors herein address two of these challenges: (1) the design of the curriculum based on a generic computational thinking framework, and (2) the knowledge teachers

  18. Critical-Inquiry-Based-Learning: Model of Learning to Promote Critical Thinking Ability of Pre-service Teachers

    Science.gov (United States)

    Prayogi, S.; Yuanita, L.; Wasis

    2018-01-01

    This study aimed to develop Critical-Inquiry-Based-Learning (CIBL) learning model to promote critical thinking (CT) ability of preservice teachers. The CIBL learning model was developed by meeting the criteria of validity, practicality, and effectiveness. Validation of the model involves 4 expert validators through the mechanism of the focus group discussion (FGD). CIBL learning model declared valid to promote CT ability, with the validity level (Va) of 4.20 and reliability (r) of 90,1% (very reliable). The practicality of the model was evaluated when it was implemented that involving 17 of preservice teachers. The CIBL learning model had been declared practice, its measuring from learning feasibility (LF) with very good criteria (LF-score = 4.75). The effectiveness of the model was evaluated from the improvement CT ability after the implementation of the model. CT ability were evaluated using the scoring technique adapted from Ennis-Weir Critical Thinking Essay Test. The average score of CT ability on pretest is - 1.53 (uncritical criteria), whereas on posttest is 8.76 (critical criteria), with N-gain score of 0.76 (high criteria). Based on the results of this study, it can be concluded that developed CIBL learning model is feasible to promote CT ability of preservice teachers.

  19. The Effect of Computer Games on Students’ Critical Thinking Disposition and Educational Achievement

    OpenAIRE

    Mohammad Seifi; Zahra Derikvandi; Saeed Moosavipour; Rouhollah Khodabandelou

    2015-01-01

    The main aim of this research was to investigate the effect of computer games on student’ critical thinking disposition and educational achievement. The research method was descriptive, and its type was casual-comparative. The sample included 270 female high school students in Andimeshk town selected by multistage cluster method. Ricketts questionnaire was used to test critical thinking and the researcher made questionnaires were used to test computer games. T-test and one-way ANOVA were empl...

  20. Using Rasch models to develop and validate an environmental thinking learning progression

    Science.gov (United States)

    Hashimoto-Martell, Erin A.

    Environmental understanding is highly relevant in today's global society. Social, economic, and political structures are connected to the state of environmental degradation and exploitation, and disproportionately affect those in poor or urban communities (Brulle & Pellow, 2006; Executive Order No. 12898, 1994). Environmental education must challenge the way we live, and our social and ecological quality of life, with the goal of responsible action. The development of a learning progression in environmental thinking, along with a corresponding assessment, could provide a tool that could be used across environmental education programs to help evaluate and guide programmatic decisions. This study sought to determine if a scale could be constructed that allowed individuals to be ordered along a continuum of environmental thinking. First, I developed the Environmental Thinking Learning Progression, a scale of environmental thinking from novice to advanced, based on the current available research and literature. The scale consisted of four subscales, each measuring a different aspect of environmental thinking: place consciousness, human connection, agency, and science concepts. Second, a measurement instrument was developed, so that the data appropriately fit the model using Rasch analysis. A Rasch analysis of the data placed respondents along a continuum, given the range of item difficulty for each subscale. Across three iterations of instrument revision and data collection, findings indicated that the items were ordered in a hierarchical way that corresponded to the construct of environmental thinking. Comparisons between groups showed that the average score of respondents who had participated in environmental education programs was significantly higher than those who had not. A comparison between males and females showed no significant difference in average measure, however, there were varied significant differences between how racial/ethnic groups performed. Overall

  1. Opportunities to learn scientific thinking in joint doctoral supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie; Grout, Brian William Wilson; Rump, Camilla Østerberg

    2015-01-01

    Research into doctoral supervision has increased rapidly over the last decades, yet our understanding of how doctoral students learn scientific thinking from supervision is limited. Most studies are based on interviews with little work being reported that is based on observation of actual...... supervision. While joint supervision has become widely used, its learning dynamics remains under-researched and this paper aims to address these gaps in research by exploring learning opportunities in doctoral supervision with two supervisors. The study explores how the tensions in scientific discussion...... between supervisors can become learning opportunities. We combine two different theoretical perspectives, using participation and positioning theory as a sociocultural perspective and variation theory as an individual constructivist perspective on learning. Based on our analysis of a complex episode we...

  2. Using Game-Based Learning to Foster Critical Thinking in Student Discourse

    Science.gov (United States)

    Cicchino, Marc I.

    2015-01-01

    Previous research indicates the importance of student discourse in the construction of knowledge and the fostering of critical thinking skills, especially in the field of problem-based learning (PBL). Further, a growing body of research on game-based learning (GBL) draws parallels between playing certain types of games and the solving of…

  3. Analyze Critical Thinking Skills and Scientific Attitude in Physics Learning Used Inquiry Training and Direct Instruction Learning Model

    OpenAIRE

    Parsaoran Damanik, Dede; Bukit, Nurdin

    2013-01-01

    This study was aimed to determine the differences: (1) the difference of critical thinking skills of students' that using Inquiry Training and Direct Instruction. (2) The difference of critical thinking skills among students who at high scientific attitude and students who at low scientific attitude. (3) To see if there is interaction between inquiry learning model of the scientific attitude students' to increase the ability to critical thinking. This is a quasi experimental research. Which s...

  4. Promoting middle school students’ abstract-thinking ability through cognitive apprenticeship instruction in mathematics learning

    Science.gov (United States)

    Yusepa, B. G. P.; Kusumah, Y. S.; Kartasasmita, B. G.

    2018-01-01

    The aim of this study is to get an in-depth understanding of students’ abstract-thinking ability in mathematics learning. This study was an experimental research with pre-test and post-test control group design. The subject of this study was eighth-grade students from two junior high schools in Bandung. In each schools, two parallel groups were selected and assigned into control and experimental groups. The experimental group was exposed to Cognitive Apprenticeship Instruction (CAI) treatment, whereas the control group was exposed to conventional learning. The results showed that abstract-thinking ability of students in experimental group was better than that of those in control group in which it could be observed from the overall and school level. It could be concluded that CAI could be a good alternative learning model to enhance students’ abstract-thinking ability.

  5. IMPROVEMENT OF GRAPH INTERPRETATION ABILITY USING HYPERTEXT-ASSISTED KINEMATIC LEARNING AND FORMAL THINKING ABILITY

    Directory of Open Access Journals (Sweden)

    S. R. Manurung

    2018-01-01

    Full Text Available The effectiveness of hypertext media in improving graph interpretation ability is investigated in this paper. In addition, joint ability of the formal thinking to improve the graph ability of prospective students is considered. The research design used is the one-group pretest-posttest experimental design is carried out in the research by taking 36 students on from Physics Education Program in one institute for teacher education in Medan. The test consists of graph interpretation ability test in the topic of kinematics and Test of Logical Thinking (TOLT or formal thinking before learning and graph interpretation ability test after learning. The data are then analysed by using SPSS based two ways Analisys of Variance (ANOVA method. The results show that the ability to interpretate graph is significantly improved by using hypertext media assisted kinematic learning.

  6. HOW DO ARCHITECTS THINK? LEARNING STYLES AND ARCHITECTURAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Magda Mostafa

    2010-07-01

    Full Text Available Architecture is a complex process involving the divergent resolution of a multitude of factors- social, ecological, technical, economic, functional, ethical and aesthetic. Despite this diversity all architectural problem solving processes share one common factor- they must be resolved spatially. This paper sets out to explore how best to develop these spatial thinking skills in young architects through addressing their learning styles in education. The primary hypothesis tested is twofold. First using the Solomon & Felder (2007 definition of learning styles and their Index of Learning Styles Questionnaire the average profile of a study group from the freshmen and sophomore architectural student body at the Architectural Engineering Program of the American University in Cairo is mapped and compared to that of a control group from the general population of the university from a cross-section of majors. Secondly, using the Spatial Ability test by Newton & Bristoll (2009, the spatial ability of both the control and study groups are measured and compared. The analysis of these results tests the assumption that the majority of architectural students will be visual, rather than verbal; and active, rather than reflective, learners; as well as exhibiting higher spatial abilities, as compared to the control group. The performance of students in these tests are then correlated against their learning styles profile using the following sets- low spatial ability against both reflective and verbal learning; moderate spatial ability against neutral learning styles; and high spatial ability against both active and visual learning. The results show a particular corroboration between high spatial ability and active learning in the entire group of students- both study, and control- as well as a strong corroboration between high spatial ability and visual learning- with a higher correlation in architecture students, reaching 100% in some classes. It is hoped that by

  7. A 3-D Approach for Teaching and Learning about Surface Water Systems through Computational Thinking, Data Visualization and Physical Models

    Science.gov (United States)

    Caplan, B.; Morrison, A.; Moore, J. C.; Berkowitz, A. R.

    2017-12-01

    Understanding water is central to understanding environmental challenges. Scientists use `big data' and computational models to develop knowledge about the structure and function of complex systems, and to make predictions about changes in climate, weather, hydrology, and ecology. Large environmental systems-related data sets and simulation models are difficult for high school teachers and students to access and make sense of. Comp Hydro, a collaboration across four states and multiple school districts, integrates computational thinking and data-related science practices into water systems instruction to enhance development of scientific model-based reasoning, through curriculum, assessment and teacher professional development. Comp Hydro addresses the need for 1) teaching materials for using data and physical models of hydrological phenomena, 2) building teachers' and students' comfort or familiarity with data analysis and modeling, and 3) infusing the computational knowledge and practices necessary to model and visualize hydrologic processes into instruction. Comp Hydro teams in Baltimore, MD and Fort Collins, CO are integrating teaching about surface water systems into high school courses focusing on flooding (MD) and surface water reservoirs (CO). This interactive session will highlight the successes and challenges of our physical and simulation models in helping teachers and students develop proficiency with computational thinking about surface water. We also will share insights from comparing teacher-led vs. project-led development of curriculum and our simulations.

  8. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  9. Critical thinking skills profile of senior high school students in Biology learning

    Science.gov (United States)

    Saputri, A. C.; Sajidan; Rinanto, Y.

    2018-04-01

    Critical thinking is an important and necessary skill to confront the challenges of the 21st century. Critical thinking skills accommodate activities that can improve high-order thinking skills. This study aims to determine senior high school students' critical thinking skills in Biology learning. This research is descriptive research using instruments developed based on the core aspects of critical thinking skills according to Facione which include interpretation, analysis, evaluation, explanation, conclusion, and self-regulation. The subjects in this study were 297 students in grade 12 of a senior high school in Surakarta selected through purposive sampling technique. The results of this study showed that the students' critical thinking skills on evaluation and self-regulation are in good criterion with 78% and 66% acquisition while 52% interpretation, 56% analysis, 52% conclusion and 42% explanation indicate sufficient criteria. The conclusion from this research is that critical thinking skill of the students still was in enough category, so that needed a way to enhance it on some indicators.

  10. Respon Belajar Penerapan Model Contextual Teaching And Learning Dibandingkan Dengan Think Pair Share Pada Siswa

    Directory of Open Access Journals (Sweden)

    Atan Pramana

    2017-10-01

    Full Text Available Penelitian ini dilaksanakan dengan tujuan untuk mengetahui sebagai berikutrespon belajar karena penerapan model Contextual Teaching And Learning dibandingkan dengan Think Pair Share terhadap hasil belajar perawatan PC siswa kelas X TKJ. Penelitian ini merupakan penelitian eksperimen semu (quasi eksperimen. Populasi penelitian ini adalah seluruh siswa kelas X SMK Negeri 3 Malang. Sampel ditentukan kelas X TKJ 3 dengan perlakuan model Contextual Teaching And Learning dan kelas X TKJ 1 dengan perlakuan model pembelajaran Think Pair Share. Instrumen pengukuran hasil belajar meliputi penilaian test, rubrik afektif, dan rubrik psikomotor yang sebelumnya dilakukan uji validasi instrumen. Teknik analisis data menggunakan uji-t berbantuan SPSS 20 yang digunakan untuk mengetahui respon belajar terhadap hasil belajar yaitu regresi linear sederhana untuk mengetahui besar sumbangan. Berdasarkan hasil penelitian dan analisis data yang dilakukan. Terdapat sumbangan respon belajar penerapan model pembelajaran Contextual Teaching and Learning sebesar 71,5%, sedangkan sumbangan respon belajar penerapan model pembelajaran Think Pair Share sebesar 67,8%. Dari besarnya persentase diketahui bahwa respon belajar siswa terhadap penerapan model Contextual Teaching And Learning lebih tinggi dari pada respon belajar siswa terhadap penerapan model pembelajaran Think Pair Share.

  11. Using Activity Theory to Design Constructivist Online Learning Environments for Higher Order Thinking: A Retrospective Analysis

    Directory of Open Access Journals (Sweden)

    Dirk Morrison

    2003-10-01

    Full Text Available Abstract. This paper examined a particular online learning activity, embedded within a computer supported collaborative learning (CSCL environment incorporated as part of the larger context of participation in a unique national agricultural leadership development program. Process outcomes such as a high level of collaboration and active peer facilitation as well as demonstration by participants of a variety of holistic thinking skills were observed via a transcript analysis of online interactions. This led to speculations that the particular design features embedded within the context of the online collaborative issues analysis project (IAP, were thought to clearly reflect a constructivist approach. Methods to confirm this included evaluating the learning activity in light of nine characteristics of an authentic task in CSCL environments, and using activity theory as a conceptual framework with which to further examine the extent to which the IAP reflected the values and principles of a constructivist online learning environment.

  12. Computer Assisted Language Learning. Routledge Studies in Computer Assisted Language Learning

    Science.gov (United States)

    Pennington, Martha

    2011-01-01

    Computer-assisted language learning (CALL) is an approach to language teaching and learning in which computer technology is used as an aid to the presentation, reinforcement and assessment of material to be learned, usually including a substantial interactive element. This books provides an up-to date and comprehensive overview of…

  13. From Hamburg to Belem: The Limits of Technocratic Thinking in Adult Learning Education

    Science.gov (United States)

    Torres, Carlos Alberto

    2015-01-01

    This article discusses some of the generalized analyses of adult learning education, mostly informed by technocratic thinking, highlighting perceived trends in adult learning education between CONFINTEA V and CONFITEA VI. Those trends could be understood as challenges. Employing a political sociology of adult learning education as a critique of…

  14. Analysis of critical thinking ability of VII grade students based on the mathematical anxiety level through learning cycle 7E model

    Science.gov (United States)

    Widyaningsih, E.; Waluya, S. B.; Kurniasih, A. W.

    2018-03-01

    This study aims to know mastery learning of students’ critical thinking ability with learning cycle 7E, determine whether the critical thinking ability of the students with learning cycle 7E is better than students’ critical thinking ability with expository model, and describe the students’ critical thinking phases based on the mathematical anxiety level. The method is mixed method with concurrent embedded. The population is VII grade students of SMP Negeri 3 Kebumen academic year 2016/2017. Subjects are determined by purposive sampling, selected two students from each level of mathematical anxiety. Data collection techniques include test, questionnaire, interview, and documentation. Quantitative data analysis techniques include mean test, proportion test, difference test of two means, difference test of two proportions and for qualitative data used Miles and Huberman model. The results show that: (1) students’ critical thinking ability with learning cycle 7E achieve mastery learning; (2) students’ critical thinking ability with learning cycle 7E is better than students’ critical thinking ability with expository model; (3) description of students’ critical thinking phases based on the mathematical anxiety level that is the lower the mathematical anxiety level, the subjects have been able to fulfil all of the indicators of clarification, assessment, inference, and strategies phases.

  15. Opportunities to Learn Scientific Thinking in Joint Doctoral Supervision

    Science.gov (United States)

    Kobayashi, Sofie; Grout, Brian W.; Rump, Camilla Østerberg

    2015-01-01

    Research into doctoral supervision has increased rapidly over the last decades, yet our understanding of how doctoral students learn scientific thinking from supervision is limited. Most studies are based on interviews with little work being reported that is based on observation of actual supervision. While joint supervision has become widely…

  16. Think big: learning contexts, algorithms and data science

    Directory of Open Access Journals (Sweden)

    Baldassarre Michele

    2016-12-01

    Full Text Available Due to the increasing growth in available data in recent years, all areas of research and the managements of institutions and organisations, specifically schools and universities, feel the need to give meaning to this availability of data. This article, after a brief reference to the definition of big data, intends to focus attention and reflection on their type to proceed to an extension of their characterisation. One of the hubs to make feasible the use of Big Data in operational contexts is to give a theoretical basis to which to refer. The Data, Information, Knowledge and Wisdom (DIKW model correlates these four aspects, concluding in Data Science, which in many ways could revolutionise the established pattern of scientific investigation. The Learning Analytics applications on online learning platforms can be tools for evaluating the quality of teaching. And that is where some problems arise. It becomes necessary to handle with care the available data. Finally, a criterion for deciding whether it makes sense to think of an analysis based on Big Data can be to think about the interpretability and relevance in relation to both institutional and personal processes.

  17. Thinking Critically about Critical Thinking: Integrating Online Tools to Promote Critical Thinking

    Directory of Open Access Journals (Sweden)

    B. Jean Mandernach

    2006-01-01

    Full Text Available The value and importance of critical thinking is clearly established; the challenge for instructors lies in successfully promoting students’ critical thinking skills within the confines of a traditional classroom experience. Since instructors are faced with limited student contact time to meet their instructional objectives and facilitate learning, they are often forced to make instructional decisions between content coverage, depth of understanding, and critical analysis of course material. To address this dilemma, it is essential to integrate instructional strategies and techniques that can efficiently and effectively maximize student learning and critical thinking. Modern advances in educational technology have produced a range of online tools to assist instructors in meeting this instructional goal. This review will examine the theoretical foundations of critical thinking in higher education, discuss empirically-based strategies for integrating online instructional supplements to enhance critical thinking, offer techniques for expanding instructional opportunities outside the limitations of traditional class time, and provide practical suggestions for the innovative use of critical thinking strategies via online resources.

  18. Improvement of nursing students' critical thinking skills through problem-based learning in the People's Republic of China: a quasi-experimental study.

    Science.gov (United States)

    Yuan, Haobin; Kunaviktikul, Wipada; Klunklin, Areewan; Williams, Beverly A

    2008-03-01

    A quasi-experimental, two-group pretest-post-test design was conducted to examine the effect of problem-based learning on the critical thinking skills of 46 Year 2 undergraduate nursing students in the People's Republic of China. The California Critical Thinking Skills Test Form A, Chinese-Taiwanese version was used as both a pretest and as a post-test for a semester-long nursing course. There was no significant difference in critical thinking skills at pretest, whereas, significant differences in critical thinking skills existed between the problem-based learning and lecture groups at post-test. The problem-based learning students had a significantly greater improvement on the overall California Critical Thinking Skills Test, analysis, and induction subscale scores compared with the lecture students. Problem-based learning fostered nursing students' critical thinking skills.

  19. Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration

    Science.gov (United States)

    Rehmat, Abeera Parvaiz

    As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.

  20. Improving Junior High Schools’ Critical Thinking Skills Based on Test Three Different Models of Learning

    Directory of Open Access Journals (Sweden)

    Nur Miftahul Fuad

    2017-01-01

    Full Text Available The aims of this study were (1 to find out the differences in critical thinking skills among students who were given three different learning models: differentiated science inquiry combined with mind map, differentiated science inquiry model, and conventional model, (2 to find out the differences of critical thinking skills among male and female students. This study is a quasi-experimental research with pretest-posttest nonequivalent control group design. The population in this research is the seventh grade students of junior high schools in Kediri, Indonesia. The sample of the research is in the number of 96 students distributed in three classes at different schools. The data of critical thinking skills are gained from test scores and then analyzed using descriptive and inferential statistics through ANCOVA. The results of research revealed that there are different skills in critical thinking in different models. The highest skills in critical thinking are reached by students who were given differentiated science inquiry model combined with mind map in their learning. There are also differences in critical thinking skills between male and female students.

  1. A Learning Trajectory in 6-Year-Olds' Thinking about Generalizing Functional Relationships

    Science.gov (United States)

    Blanton, Maria; Brizuela, Bárbara M.; Gardiner, Angela Murphy; Sawrey, Katie; Newman-Owens, Ashley

    2015-01-01

    The study of functions is a critical route into teaching and learning algebra in the elementary grades, yet important questions remain regarding the nature of young children's understanding of functions. This article reports an empirically developed learning trajectory in first-grade children's (6-year-olds') thinking about generalizing functional…

  2. The use of scientific direct instruction model with video learning of ethnoscience to improve students’ critical thinking skills

    Science.gov (United States)

    Sudarmin, S.; Mursiti, S.; Asih, A. G.

    2018-04-01

    In this disruption era, students are encouraged to develop critical thinking skills and important cultural conservation characters. Student's thinking skill in chemistry learning has not been developed because learning chemistry in schools still uses teacher-centered, lecture method, is less interesting and does not utilize local culture as a learning resource. The purpose of this research is to know the influence of the application of direct Instruction (DI) model with video learning of ethnoscience on the improvement of students’ critical thinking skills. This study was experimental research. The population was the students from class XI MIPA MA Negeri Gombong with the sample chosen by purposive random sampling. The material of local wisdom as the study of ethnosciences which was the focus of the research was the production of genting, dawet, lanting, and sempor reservoirs which is integrated with colloidal chemical contents. The learning video of ethnoscience before being applied was validated by experts. Students’ critical thinking skills were revealed through the concept of conceptualizing test instruments. The data analysis technique used was the test of proportion and Kolmogorov-Smirnov test. The results of this study suggested that the experimental class that was treated by scientific direct instruction model with the learning video of ethnoscience shows cognitive learning and critical thinking which were better than the control class. Besides, the students indicated their interest in the application of scientific direct instruction model with ethnoscience learning video.

  3. Learning by statistical cooperation of self-interested neuron-like computing elements.

    Science.gov (United States)

    Barto, A G

    1985-01-01

    Since the usual approaches to cooperative computation in networks of neuron-like computating elements do not assume that network components have any "preferences", they do not make substantive contact with game theoretic concepts, despite their use of some of the same terminology. In the approach presented here, however, each network component, or adaptive element, is a self-interested agent that prefers some inputs over others and "works" toward obtaining the most highly preferred inputs. Here we describe an adaptive element that is robust enough to learn to cooperate with other elements like itself in order to further its self-interests. It is argued that some of the longstanding problems concerning adaptation and learning by networks might be solvable by this form of cooperativity, and computer simulation experiments are described that show how networks of self-interested components that are sufficiently robust can solve rather difficult learning problems. We then place the approach in its proper historical and theoretical perspective through comparison with a number of related algorithms. A secondary aim of this article is to suggest that beyond what is explicitly illustrated here, there is a wealth of ideas from game theory and allied disciplines such as mathematical economics that can be of use in thinking about cooperative computation in both nervous systems and man-made systems.

  4. Designscholar: Examining Creative Thinking in an Online Learning Community for Interior Design Graduate Students

    Science.gov (United States)

    Ransdell, Marlo Evelyn

    2009-01-01

    This study examined the creative thinking of interior design graduate students in an online learning community. This study considered potential changes in creative thinking (fluency, flexibility, originality, and elaboration) about design research resulting from peer-led online discussions. It further studied the learner characteristics of…

  5. Think Pair Share (TPS as Method to Improve Student’s Learning Motivation and Learning Achievement

    Directory of Open Access Journals (Sweden)

    Hetika Hetika

    2018-03-01

    Full Text Available This research aims to find out the application of Think Pair Share (TPS learning method in improving learning motivation and learning achievement in the subject of Introduction to Accounting I of the Accounting Study Program students of Politeknik Harapan Bersama. The Method of data collection in this study used observation method, test method, and documentation method. The research instruments used observation sheet, questionnaire and test question. This research used Class Action Research Design which is an action implementation oriented research, with the aim of improving quality or problem solving in a group by carefully and observing the success rate due to the action. The method of analysis used descriptive qualitative and quantitative analysis method. The results showed that the application of Think Pair Share Learning (TPS Method can improve the Learning Motivation and Achievement. Before the implementation of the action, the obtained score is 67% then in the first cycle increases to 72%, and in the second cycle increasws to 80%. In addition, based on questionnaires distributed to students, it also increases the score of Accounting Learning Motivation where the score in the first cycle of 76% increases to 79%. In addition, in the first cycle, the score of pre test and post test of the students has increased from 68.86 to 76.71 while in the second cycle the score of pre test and post test of students has increased from 79.86 to 84.86.

  6. Thinking computers and virtual persons essays on the intentionality of machines

    CERN Document Server

    Dietrich, Eric

    1994-01-01

    Thinking Computers and Virtual Persons: Essays on the Intentionality of Machines explains how computations are meaningful and how computers can be cognitive agents like humans. This book focuses on the concept that cognition is computation.Organized into four parts encompassing 13 chapters, this book begins with an overview of the analogy between intentionality and phlogiston, the 17th-century principle of burning. This text then examines the objection to computationalism that it cannot prevent arbitrary attributions of content to the various data structures and representations involved in a c

  7. Students' Critical Thinking Skills in Chemistry Learning Using Local Culture-Based 7E Learning Cycle Model

    Science.gov (United States)

    Suardana, I. Nyoman; Redhana, I. Wayan; Sudiatmika, A. A. Istri Agung Rai; Selamat, I. Nyoman

    2018-01-01

    This research aimed at describing the effectiveness of the local culture-based 7E learning cycle model in improving students' critical thinking skills in chemistry learning. It was an experimental research with post-test only control group design. The population was the eleventh-grade students of senior high schools in Singaraja, Indonesia. The…

  8. The impact of inquiry-based learning on the critical thinking dispositions of pre-service science teachers

    Science.gov (United States)

    Arsal, Zeki

    2017-07-01

    In the study, the impact of inquiry-based learning on pre-service teachers' critical thinking dispositions was investigated. The sample of the study comprised of 56 pre-service teachers in the science education teacher education programme at the public university in the north of Turkey. In the study, quasi-experimental design with an experimental and a control group were applied to find out the impact of inquiry-based learning on the critical thinking dispositions of the pre-service teachers in the teacher education programme. The results showed that the pre-service teachers in the experimental group did not show statistically significant greater progress in terms of critical thinking dispositions than those in the control group. Teacher educators who are responsible for pedagogical courses in the teacher education programme should consider that the inquiry-based learning could not be effective method to improve pre-service teachers' critical thinking dispositions. The results are discussed in relation to potential impact on science teacher education and implications for future research.

  9. Moderate levels of activation lead to forgetting in the think/no-think paradigm.

    Science.gov (United States)

    Detre, Greg J; Natarajan, Annamalai; Gershman, Samuel J; Norman, Kenneth A

    2013-10-01

    Using the think/no-think paradigm (Anderson & Green, 2001), researchers have found that suppressing retrieval of a memory (in the presence of a strong retrieval cue) can make it harder to retrieve that memory on a subsequent test. This effect has been replicated numerous times, but the size of the effect is highly variable. Also, it is unclear from a neural mechanistic standpoint why preventing recall of a memory now should impair your ability to recall that memory later. Here, we address both of these puzzles using the idea, derived from computational modeling and studies of synaptic plasticity, that the function relating memory activation to learning is U-shaped, such that moderate levels of memory activation lead to weakening of the memory and higher levels of activation lead to strengthening. According to this view, forgetting effects in the think/no-think paradigm occur when the suppressed item activates moderately during the suppression attempt, leading to weakening; the effect is variable because sometimes the suppressed item activates strongly (leading to strengthening) and sometimes it does not activate at all (in which case no learning takes place). To test this hypothesis, we ran a think/no-think experiment where participants learned word-picture pairs; we used pattern classifiers, applied to fMRI data, to measure how strongly the picture associates were activating when participants were trying not to retrieve these associates, and we used a novel Bayesian curve-fitting procedure to relate this covert neural measure of retrieval to performance on a later memory test. In keeping with our hypothesis, the curve-fitting procedure revealed a nonmonotonic relationship between memory activation (as measured by the classifier) and subsequent memory, whereby moderate levels of activation of the to-be-suppressed item led to diminished performance on the final memory test, and higher levels of activation led to enhanced performance on the final test. Copyright

  10. E-Learning to Improve Higher Order Thinking Skills (HOTS of Students

    Directory of Open Access Journals (Sweden)

    R. Poppy Yaniawati

    2013-05-01

    Full Text Available The role of technology integration on modern learning is essential to optimize the acceleration process in Higher Order Thinking Skills (HOTS. This research describes how to implement e-learning to improve HOTS of students and students’ attitude toward e-learning of mathematics, pre- learning students knowledge, duration of login in website, and correlation of variables with HOTS. There is a significant correlation between pre-learning knowledge and students’ HOTS, but there is no significant correlation between students’ HOTS and students’ attitude toward e-learning of mathematics. There is a significant correlation between login duration and students attitude toward e-learning of mathematics. No significant correlation is found between login duration and students’ HOTS.

  11. Improvement of Student Critical Thinking Skills with the Natural Product Mini Project Laboratory Learning

    Directory of Open Access Journals (Sweden)

    Aliefman Hakim

    2016-12-01

    Full Text Available This research aims to investigate effect of learning using natural product mini project laboratory on students’ critical thinking skills. The research was conducted on sixth semester of 59 students of chemistry and chemistry education program from one of the state universities in West Nusa Tenggara, Indonesia in 2012/2013. This research revealed class where the student learn using natural product mini project laboratory had more critical thinking skills than those using verification laboratory. The average n-gain of critical thinking skills for experiment class was 0.58 while for the control class was 0.37. The highest n-gain in the experiment class was 0.70 for “deciding on an action (selecting criteria to judge possible solutions indicators”, while the smallest n-gain was 0.47 for “the making and judging value of judgments (balancing, weighing, and deciding indicators. We concluded that the natural product mini project laboratory was better than verification laboratory in improving the students’ critical thinking skills.

  12. Explicating Mathematical Thinking in Differential Equations Using a Computer Algebra System

    Science.gov (United States)

    Zeynivandnezhad, Fereshteh; Bates, Rachel

    2018-01-01

    The importance of developing students' mathematical thinking is frequently highlighted in literature regarding the teaching and learning of mathematics. Despite this importance, most curricula and instructional activities for undergraduate mathematics fail to bring the learner beyond the mathematics. The purpose of this study was to enhance…

  13. Learning Technologies: Affective and Social Issues in Computer-Supported Collaborative Learning

    Science.gov (United States)

    Jones, Ann; Issroff, Kim

    2005-01-01

    This paper is concerned with "affective" issues in learning technologies in a collaborative context. Traditionally in learning there has been a division between cognition and affect: where cognition is concerned with skills and processes such as thinking and problem-solving and affect with emotional areas such as motivation, attitudes, feelings.…

  14. Enhancing Higher Order Thinking Skills In A Marine Biology Class Through Problem-Based Learning

    Directory of Open Access Journals (Sweden)

    Richard M. Magsino

    2014-10-01

    Full Text Available The purpose of this research was to examine students' perspectives of their learning in marine biology in the collaborative group context of Problem-based Learning (PBL. Students’ higher order thinking skills (HOTS using PBL involves the development of their logical thinking and reasoning abilities which stimulates their curiosity and associative thinking. This study aimed to investigate how critical thinking skills, particularly analysis, synthesis and evaluation were enhanced in a marine biology class through PBL. Qualitative research approach was used to examine student responses in a questionnaire involving 10 open-ended questions that target students’ HOTS on a problem presented in a marine biology class for BS Biology students. Using axial coding as a qualitative data analysis technique by which grounded theory can be performed, the study was able to determine how students manifest their higher reasoning abilities when confronted with a marine biology situation. Results show student responses yielding affirmative remarks on the 10 questions intended to know their level of analysis (e.g., analyzing, classifying, inferring, discriminating and relating or connecting, synthesis (e.g., synthesizing and collaborating, and evaluation (e.g., comparing, criticizing, and convincing of information from the presented marine biology problem. Consequently, students were able to effectively design experiments to address the presented issue through problem-based learning. Results of the study show that PBL is an efficient instructional strategy embedded within a conventional curriculum used to develop or enhance critical thinking in marine biology.

  15. An Investigation of Higher-Order Thinking Skills in Smaller Learning Community Social Studies Classrooms

    Science.gov (United States)

    Fischer, Christopher; Bol, Linda; Pribesh, Shana

    2011-01-01

    This study investigated the extent to which higher-order thinking skills are promoted in social studies classes in high schools that are implementing smaller learning communities (SLCs). Data collection in this mixed-methods study included classroom observations and in-depth interviews. Findings indicated that higher-order thinking was rarely…

  16. Formal and Informal Learning and First-Year Psychology Students’ Development of Scientific Thinking: A Two-Wave Panel Study

    Science.gov (United States)

    Soyyılmaz, Demet; Griffin, Laura M.; Martín, Miguel H.; Kucharský, Šimon; Peycheva, Ekaterina D.; Vaupotič, Nina; Edelsbrunner, Peter A.

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students’ development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students’ need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students’ learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students’ scientific thinking. PMID:28239363

  17. Formal and Informal Learning and First-Year Psychology Students' Development of Scientific Thinking: A Two-Wave Panel Study.

    Science.gov (United States)

    Soyyılmaz, Demet; Griffin, Laura M; Martín, Miguel H; Kucharský, Šimon; Peycheva, Ekaterina D; Vaupotič, Nina; Edelsbrunner, Peter A

    2017-01-01

    Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students' development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students' need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students' learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students' scientific thinking.

  18. The effectiveness of problem-based learning on development of nursing students' critical thinking: a systematic review and meta-analysis.

    Science.gov (United States)

    Kong, Ling-Na; Qin, Bo; Zhou, Ying-qing; Mou, Shao-yu; Gao, Hui-Ming

    2014-03-01

    The objective of this systematic review and meta-analysis was to estimate the effectiveness of problem-based learning in developing nursing students' critical thinking. Searches of PubMed, EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Proquest, Cochrane Central Register of Controlled Trials (CENTRAL) and China National Knowledge Infrastructure (CNKI) were undertaken to identify randomized controlled trails from 1965 to December 2012, comparing problem-based learning with traditional lectures on the effectiveness of development of nursing students' critical thinking, with no language limitation. The mesh-terms or key words used in the search were problem-based learning, thinking, critical thinking, nursing, nursing education, nurse education, nurse students, nursing students and pupil nurse. Two reviewers independently assessed eligibility and extracted data. Quality assessment was conducted independently by two reviewers using the Cochrane Collaboration's Risk of Bias Tool. We analyzed critical thinking scores (continuous outcomes) using a standardized mean difference (SMD) or weighted mean difference (WMD) with a 95% confidence intervals (CIs). Heterogeneity was assessed using the Cochran's Q statistic and I(2) statistic. Publication bias was assessed by means of funnel plot and Egger's test of asymmetry. Nine articles representing eight randomized controlled trials were included in the meta-analysis. Most studies were of low risk of bias. The pooled effect size showed problem-based learning was able to improve nursing students' critical thinking (overall critical thinking scores SMD=0.33, 95%CI=0.13-0.52, P=0.0009), compared with traditional lectures. There was low heterogeneity (overall critical thinking scores I(2)=45%, P=0.07) in the meta-analysis. No significant publication bias was observed regarding overall critical thinking scores (P=0.536). Sensitivity analysis showed that the result of our meta-analysis was reliable. Most

  19. Effect of Learning Think-Pair-Share Think through the combined pattern Empowerment Question on Metacognitive Skills, Creative Thinking, Understanding Concepts IPA and retention as well as Social Attitudes Students

    Directory of Open Access Journals (Sweden)

    Maryanti Ekoningtyas

    2014-06-01

    Full Text Available Pengaruh Pembelajaran Think-Pair-Share dipadu Pola Pemberdayaan Berpikir melalui Pertanyaan terhadap Keterampilan Metakognitif, Berpikir Kreatif, Pemahaman Konsep IPA dan Retensinya serta Sikap Sosial Siswa Abstract: cooperative learning is a teaching strategy to raise awareness of student thinking, solve problems together by integrating and applying skills and knowledge, empowering metacognitive learning development, a means to teach social skills students need to live and work together. This study aims to determine the effect pattern combined PBMP TPS learning strategy against metacognitive skills, creative thinking skills, understanding of concepts, understanding of the concept of retention, and social attitudes of students. This study used a quasi-experimental approach (quasi experimental to design non-equivalent pretest-posttest control group design. Analysis of data normality test and homogeneity test, and analysis of covariance (ANCOVA. The study population is class VIII SMPN 1 Pasuruan learning year 2012/2013. Samples were selected at random to determine the experimental class and control class. Results of the study are: (1 no influence on the strategy of metacognitive skills, creative thinking skills, understanding of concepts, and social attitudes among the students who were given a learning strategy with the given TPS PBMP multistrategi learning, (2 there is an influence on the retention of understanding of the concept among students TPS given PBMP learning strategy with a given learning multistrategi. The increase occurred in the class and the class multistrategi PBMP TPS. Key Words: TPS, PBMP, metacognitive skills, creative thinking, understanding of concepts, understanding of the concept of retention, social attitudes Abstrak: Strategi pembelajaran kooperatif merupakan pembelajaran untuk menumbuhkan kesadaran berpikir siswa, menyelesaikan masalah secara bersama dengan mengintegrasikan serta mengaplikasikan kemampuan dan pengetahuan

  20. Promotion of critical thinking in e-learning: a qualitative study on the experiences of instructors and students

    Science.gov (United States)

    Gharib, Mitra; Zolfaghari, Mitra; Mojtahedzadeh, Rita; Mohammadi, Aeen; Gharib, Atoosa

    2016-01-01

    Background With the increasing popularity of e-learning programs, educational stakeholders are attempting to promote critical thinking in the virtual education system. This study aimed to explore the experiences of both the instructors and the students about critical thinking promotion within the virtual education system. Methods This qualitative study recruited the instructors and students from four academic disciplines provided by the Virtual School of Tehran University of Medical Sciences (Tehran, Iran). All programs were master’s degree programs and utilized a blended (combination of e-learning and face to face) training. Semistructured interviews with the participants were used to collect data. Results The participants had a variety of experiences about how to promote critical thinking. These experiences were conceptualized in four main themes, namely, instructional design, educational leadership and management, local evidence, and belief systems. Conclusion The present study clarified the factors affecting critical thinking promotion in e-learning. Not only the instructors but also the educational designers and leaders can benefit from our findings to improve the quality of virtual education programs and promote critical thinking. PMID:27217807

  1. Promotion of critical thinking in e-learning: a qualitative study on the experiences of instructors and students.

    Science.gov (United States)

    Gharib, Mitra; Zolfaghari, Mitra; Mojtahedzadeh, Rita; Mohammadi, Aeen; Gharib, Atoosa

    2016-01-01

    With the increasing popularity of e-learning programs, educational stakeholders are attempting to promote critical thinking in the virtual education system. This study aimed to explore the experiences of both the instructors and the students about critical thinking promotion within the virtual education system. This qualitative study recruited the instructors and students from four academic disciplines provided by the Virtual School of Tehran University of Medical Sciences (Tehran, Iran). All programs were master's degree programs and utilized a blended (combination of e-learning and face to face) training. Semistructured interviews with the participants were used to collect data. The participants had a variety of experiences about how to promote critical thinking. These experiences were conceptualized in four main themes, namely, instructional design, educational leadership and management, local evidence, and belief systems. The present study clarified the factors affecting critical thinking promotion in e-learning. Not only the instructors but also the educational designers and leaders can benefit from our findings to improve the quality of virtual education programs and promote critical thinking.

  2. The analysis of student’s critical thinking ability on discovery learning by using hand on activity based on the curiosity

    Science.gov (United States)

    Sulistiani, E.; Waluya, S. B.; Masrukan

    2018-03-01

    This study aims to determine (1) the effectiveness of Discovery Learning model by using Hand on Activity toward critical thinking abilities, and (2) to describe students’ critical thinking abilities in Discovery Learning by Hand on Activity based on curiosity. This study is mixed method research with concurrent embedded design. Sample of this study are students of VII A and VII B of SMP Daarul Qur’an Ungaran. While the subject in this study is based on the curiosity of the students groups are classified Epistemic Curiosity (EC) and Perceptual Curiosity (PC). The results showed that the learning of Discovery Learning by using Hand on Activity is effective toward mathematics critical thinking abilities. Students of the EC type are able to complete six indicators of mathematics critical thinking abilities, although there are still two indicators that the result is less than the maximum. While students of PC type have not fully been able to complete the indicator of mathematics critical thinking abilities. They are only strong on indicators formulating questions, while on the other five indicators they are still weak. The critical thinking abilities of EC’s students is better than the critical thinking abilities of the PC’s students.

  3. ASSESSMENT OF STUDENT LEARNING IN VIRTUAL SPACES, USING ORDERS OF COMPLEXITY IN LEVELS OF THINKING

    Directory of Open Access Journals (Sweden)

    Jose CAPACHO

    2017-04-01

    Full Text Available This paper aims at showing a new methodology to assess student learning in virtual spaces supported by Information and Communications Technology-ICT. The methodology is based on the Conceptual Pedagogy Theory, and is supported both on knowledge instruments (KI and intelectual operations (IO. KI are made up of teaching materials embedded in the virtual environment. The student carries out IO in his/her virtual formation process based on KI. Both instruments of knowledge and intellectual operations can be mathematically modelled by using functions of increasing complexity order. These functions represent the student’s learning change. This paper main contribution is to show that these functions let the student go from a concrete thinking to a formal one in his/her virtual learning process. The research showed that 47% of the students moved from a concrete thinking level to the formal thinking level.

  4. A Qualitative Study of Students' Computational Thinking Skills in a Data-Driven Computing Class

    Science.gov (United States)

    Yuen, Timothy T.; Robbins, Kay A.

    2014-01-01

    Critical thinking, problem solving, the use of tools, and the ability to consume and analyze information are important skills for the 21st century workforce. This article presents a qualitative case study that follows five undergraduate biology majors in a computer science course (CS0). This CS0 course teaches programming within a data-driven…

  5. Mathematical Creative Thinking Ability of the Seventh Grade Students in Terms of Learning Styles to the Preview-Question-Read-Reflect-Recite-Review (PQ4R Learning

    Directory of Open Access Journals (Sweden)

    Fiatun Istiqomah

    2017-08-01

    Full Text Available The purpose of this study are: (1 to know the effectiveness of PQ4R learning model in improving the creative thinking skills of the learners; (2 to know the classifications of the learners based on the levels of creative thinking skills; and (3 to describe the misconception which hampers the creative thinking skills at low level in  from the learning styles of the learners. The population in this study is the seventh grade students of SMP N 21 Semarang. The method in this study is mixed method research. Quantitative data analysis uses t-test, z-test, and normalized gain test. Analysis of qualitative data using data reduction stages, data presentation, and conclusions. The results show: (1 PQ4R learning model is effective in improving the creative thinking ability of the learners; (2 the classifications of the learners based on the levels of creative thinking ability which have variations the are many of the learners who are different in each level; and (3 misconception which hampers the creative thinking skills at low level with the learning styles: (a visual meets four misconception indicators, (b auditorial meets three misconception indicators, and (c kinesthetic meets six misconception indicators.

  6. Integrating Online and Active Learning in a Computer-Assisted Translation Workbench

    DEFF Research Database (Denmark)

    Alabau, Vicent; González-Rubio, Jésus; Ortíz-Martínez, Daniel

    2014-01-01

    This paper describes a pilot study with a computed-assisted translation workbench aiming at testing the integration of online and active learning features. We investigate the effect of these features on translation productivity, using interactive translation prediction (ITP) as a baseline. User...... activity data were collected from five beta testers using key-logging and eye-tracking. User feedback was also collected at the end of the experiments in the form of retrospective think-aloud protocols. We found that OL performs better than ITP, especially in terms of translation speed. In addition, AL...

  7. Critical and Creative Thinking Nexus: Learning Experiences of Doctoral Students

    Science.gov (United States)

    Brodin, Eva M.

    2016-01-01

    Critical and creative thinking constitute important learning outcomes at doctoral level across the world. While the literature on doctoral education illuminates this matter through the lens of experienced senior researchers, the doctoral students' own perspective is missing. Based upon interviews with 14 doctoral students from four disciplines at…

  8. On Systems Thinking and Ways of Building It in Learning

    Science.gov (United States)

    Abdyrova, Aitzhan; Galiyev, Temir; Yessekeshova, Maral; Aldabergenova, Saule; Alshynbayeva, Zhuldyz

    2016-01-01

    The article focuses on the issue of shaping learners' systems thinking skills in the context of traditional education using specially elaborated system methods that are implemented based on the standard textbook. Applying these methods naturally complements the existing learning process and contributes to an efficient development of learners'…

  9. Building machines that learn and think like people

    OpenAIRE

    Lake, Brenden M.; Ullman, Tomer David; Tenenbaum, Joshua B; Gershman, Samuel J

    2016-01-01

    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitiv...

  10. Think Like a Nurse: A Critical Thinking Initiative.

    Science.gov (United States)

    Ward, Terry D; Morris, Tiffany

    2016-01-01

    Critical thinking is essential in the practice of the nurse generalist, today. Nursing faculty is frequently trying to identify teaching strategies in promoting critical thinking and engaging students in active learning. To close the gap between critical thinking and student success, a school in the south east United States implemented the use of the 'think like a nurse initiative" for incoming junior nursing students. Faculty collaborated to adopt the fundamental and essential nursing concepts for nursing students to support thinking like a nurse.

  11. Evaluating Critical Thinking in Computer Mediated Communication Discussions

    Directory of Open Access Journals (Sweden)

    Faizah Mohamad

    2008-06-01

    Full Text Available This paper presents an investigation of whether computer mediated communication (CMC can develop critical thinking in language classrooms. The research was conducted at a university branch campus in Malaysia over a period of 12 weeks. It involved three groups of learners in which each group was exposed to different discussion modes. The first group was exposed to a CMC discussion mode, the second group was exposed to a mixed mode of CMC and face-to-face (F2F discussions and the third group had only the face-to-face mode of discussion. The critical thinking development in these three conditions was evaluated based on the content analysis method used by Newman, Johnson, Cochrane and Webb (1995. This research reports the findings which hopefully will give some insight to other teaching practitioners who are interested in incorporating IT in their classrooms

  12. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  13. Peer Led Team Learning in Introductory Biology: Effects on Peer Leader Critical Thinking Skills

    Science.gov (United States)

    Snyder, Julia J.; Wiles, Jason R.

    2015-01-01

    This study evaluated hypothesized effects of the Peer-Led Team Learning (PLTL) instructional model on undergraduate peer leaders’ critical thinking skills. This investigation also explored peer leaders’ perceptions of their critical thinking skills. A quasi-experimental pre-test/post-test with control group design was used to determine critical thinking gains in PLTL/non-PLTL groups. Critical thinking was assessed using the California Critical Thinking Skills Test (CCTST) among participants who had previously completed and been successful in a mixed-majors introductory biology course at a large, private research university in the American Northeast. Qualitative data from open-ended questionnaires confirmed that factors thought to improve critical thinking skills such as interaction with peers, problem solving, and discussion were perceived by participants to have an impact on critical thinking gains. However, no significant quantitative differences in peer leaders’ critical thinking skills were found between pre- and post-experience CCTST measurements or between experimental and control groups. PMID:25629311

  14. Peer led team learning in introductory biology: effects on peer leader critical thinking skills.

    Directory of Open Access Journals (Sweden)

    Julia J Snyder

    Full Text Available This study evaluated hypothesized effects of the Peer-Led Team Learning (PLTL instructional model on undergraduate peer leaders' critical thinking skills. This investigation also explored peer leaders' perceptions of their critical thinking skills. A quasi-experimental pre-test/post-test with control group design was used to determine critical thinking gains in PLTL/non-PLTL groups. Critical thinking was assessed using the California Critical Thinking Skills Test (CCTST among participants who had previously completed and been successful in a mixed-majors introductory biology course at a large, private research university in the American Northeast. Qualitative data from open-ended questionnaires confirmed that factors thought to improve critical thinking skills such as interaction with peers, problem solving, and discussion were perceived by participants to have an impact on critical thinking gains. However, no significant quantitative differences in peer leaders' critical thinking skills were found between pre- and post-experience CCTST measurements or between experimental and control groups.

  15. Peer led team learning in introductory biology: effects on peer leader critical thinking skills.

    Science.gov (United States)

    Snyder, Julia J; Wiles, Jason R

    2015-01-01

    This study evaluated hypothesized effects of the Peer-Led Team Learning (PLTL) instructional model on undergraduate peer leaders' critical thinking skills. This investigation also explored peer leaders' perceptions of their critical thinking skills. A quasi-experimental pre-test/post-test with control group design was used to determine critical thinking gains in PLTL/non-PLTL groups. Critical thinking was assessed using the California Critical Thinking Skills Test (CCTST) among participants who had previously completed and been successful in a mixed-majors introductory biology course at a large, private research university in the American Northeast. Qualitative data from open-ended questionnaires confirmed that factors thought to improve critical thinking skills such as interaction with peers, problem solving, and discussion were perceived by participants to have an impact on critical thinking gains. However, no significant quantitative differences in peer leaders' critical thinking skills were found between pre- and post-experience CCTST measurements or between experimental and control groups.

  16. Effects of a Critical Thinking Skills Program on the Learning Motivation of Primary School Students

    Science.gov (United States)

    Hu, Weiping; Jia, Xiaojuan; Plucker, Jonathan A.; Shan, Xinxin

    2016-01-01

    Learning motivation has a significant effect on student learning, which is a key determinant of academic performance and creativity. It is increasingly popular and important to cultivate learning motivation in schools. To consider this trend, a long-term intervention program named "Learn to Think" (LTT) was designed not only to improve…

  17. The Strategic Thinking and Learning Community: An Innovative Model for Providing Academic Assistance

    Science.gov (United States)

    Commander, Nannette Evans; Valeri-Gold, Maria; Darnell, Kim

    2004-01-01

    Today, academic assistance efforts are frequently geared to all students, not just the underprepared, with study skills offered in various formats. In this article, the authors describe a learning community model with the theme, "Strategic Thinking and Learning" (STL). Results of data analysis indicate that participants of the STL…

  18. The use of Facebook and WhatsApp application in learning process of physics to train students’ critical thinking skills

    Science.gov (United States)

    Kustijono, R.; Zuhri, F.

    2018-01-01

    The purpose of this research is to describe the learning process by using Facebook and WhatsApp to train students’ critical thinking skills. The research steps are: 1) analysis; 2) design; 3) development; 4) implementation; 5) evaluation. The research subjects are 40 students of Physics Department of Universitas Negeri Surabaya. This research used descriptive qualitative approach. The study The validation point, practicality, effectiveness, and critical thinking skills of students assessment use Likert scale. Learning process criteria are eligible if ≥ 60% is rated good or excellent. The results are: 1) the use of Facebook and WhatsApp can be implemented in the learning process, and the existing constraints can be overcome; 2) the assessment of students’ critical thinking skills is categorized as good and excellent. These results suggest that learning by using Facebook and WhatsApp can be used to train students’ critical thinking skills.

  19. Improving Middle School Students’ Critical Thinking Skills Through Reading Infusion-Loaded Discovery Learning Model in the Science Instruction

    Science.gov (United States)

    Nuryakin; Riandi

    2017-02-01

    A study has been conducted to obtain a depiction of middle school students’ critical thinking skills improvement through the implementation of reading infusion-loaded discovery learning model in science instruction. A quasi-experimental study with the pretest-posttest control group design was used to engage 55 eighth-year middle school students in Tasikmalaya, which was divided into the experimental and control group respectively were 28 and 27 students. Critical thinking skills were measured using a critical thinking skills test in multiple-choice with reason format questions that administered before and after a given instruction. The test was 28 items encompassing three essential concepts, vibration, waves and auditory senses. The critical thinking skills improvement was determined by using the normalized gain score and statistically analyzed by using Mann-Whitney U test.. The findings showed that the average of students’ critical thinking skills normalized gain score of both groups were 59 and 43, respectively for experimental and control group in the medium category. There were significant differences between both group’s improvement. Thus, the implementation of reading infusion-loaded discovery learning model could further improve middle school students’ critical thinking skills than conventional learning.

  20. Teaching and learning of interdisciplinary thinking in higher education in engineering

    NARCIS (Netherlands)

    Spelt, E.J.H.

    2015-01-01

    The present thesis research aim was to gain insight in the pedagogical content knowledge for interdisciplinary thinking to enhance student learning across higher education in engineering. In accordance to Boix Mansilla (2010) and Shulman (1987), pedagogical content knowledge was considered in the

  1. A Curriculum Development for the Enhancement of Learning Management Performances Emphasizing Higher Order Thinking Skills for Lower Secondary Science Teachers

    Directory of Open Access Journals (Sweden)

    Saksit Seeluangpetch

    2016-12-01

    Full Text Available This study aimed at 1 investigating the problems and needs for the enhancement of learning management performances emphasizing the higher order thinking skills for lower secondary Science teachers, 2 developing an effective curriculum to enhance the learning management performances which emphasized the higher order thinking skills for lower secondary Science teachers, and 3 studying the effects of using the curriculum developed for the enhancement of learning management performances emphasizing the higher order thinking skills for lower secondary Science teachers. The research was conducted in 4 phases. Phase 1 of the research was the study of fundamental information regarding problems and needs for the enhancement of learning management performances emphasizing the higher order thinking skills for lower secondary Science teachers. It was carried out by studying the related literature and exploring the needs. The instrument used in Phase 1 study was the needs assessment. The statistics used for data analysis were mean ( , percentage (%, and standard deviation (S.D.. The result of the study revealed that the Science teachers’ prior knowledge was at low level and the need to enhance their performances was at high level. The development of the curriculum was carried out in Phase 2 of the study. The curriculum was constructed and developed in order to enhance the learning management performances which emphasized the higher order thinking skills. The instrument used was the appropriateness the assessment of the curriculum framework. Mean ( , percentage (%, and standard deviation (S.D. were used to analyze the data. The result of the assessment showed that the overall appropriateness of the curriculum was at high level. The main components of the curriculum comprised of curriculum’s problem and necessity, rationale, objective, structure, training activity, training media, training duration, and evaluation and assessment. The curriculum trial was

  2. Constructing the Syllabus: Devising a Framework for Helping Students Learn to Think like Historians

    Science.gov (United States)

    Estes, Todd

    2007-01-01

    In this article, the author describes a syllabus which he designed in his United States history survey courses to help his students learn to think like historians. It contains important information about the way historians work and think, along with descriptions of the reading materials the student will use to further their practice of history.…

  3. Learning Support Assessment Study of a Computer Simulation for the Development of Microbial Identification Strategies

    Directory of Open Access Journals (Sweden)

    Tristan E. Johnson

    2009-12-01

    Full Text Available This paper describes a study that examined how microbiology students construct knowledge of bacterial identification while using a computer simulation. The purpose of this study was to understand how the simulation affects the cognitive processing of students during thinking, problem solving, and learning about bacterial identification and to determine how the simulation facilitates the learning of a domain-specific problem-solving strategy. As part of an upper-division microbiology course, five students participated in several simulation assignments. The data were collected using think-aloud protocol and video action logs as the students used the simulation. The analysis revealed two major themes that determined the performance of the students: Simulation Usage—how the students used the software features and Problem-Solving Strategy Development—the strategy level students started with and the skill level they achieved when they completed their use of the simulation. Several conclusions emerged from the analysis of the data: (i The simulation affects various aspects of cognitive processing by creating an environment that makes it possible to practice the application of a problem-solving strategy. The simulation was used as an environment that allowed students to practice the cognitive skills required to solve an unknown. (ii Identibacter (the computer simulation may be considered to be a cognitive tool to facilitate the learning of a bacterial identification problem-solving strategy. (iii The simulation characteristics did support student learning of a problem-solving strategy. (iv Students demonstrated problem-solving strategy development specific to bacterial identification. (v Participants demonstrated an improved performance from their repeated use of the simulation.

  4. Effects of an experiential learning program on the clinical reasoning and critical thinking skills of occupational therapy students.

    Science.gov (United States)

    Coker, Patty

    2010-01-01

    This study examined the effects of participation in a 1-week, experiential, hands-on learning program on the critical thinking and clinical reasoning skills of occupational therapy students. A quasi-experimental, nonrandomized pre- and post-test design was used with a sample of 25 students. The students had completed three semesters of didactic lecture coursework in a master's level OT educational program prior to participation in a hands-on therapy program for children with hemiplegic cerebral palsy. Changes in critical thinking and clinical reasoning skills were evaluated using the following dependent measures: Self-Assessment of Clinical Reflection and Reasoning (SACRR) and the California Critical Thinking Skills Test (CCTST). Changes in pretest and posttest scores on the SACRR and the CCTST were statistically significant (p>0.05) following completion of the experiential learning program. This study supports the use of hands-on learning to develop clinical reasoning and critical thinking skills in healthcare students, who face ever more diverse patient populations upon entry-level practice. Further qualitative and quantitative investigations are needed to support the results of this study and determine which components of experiential learning programs are essential for developing clinical reasoning and critical thinking skills in future allied health professionals.

  5. Learning Critical Thinking in Saudi Arabia: Student Perceptions of Secondary Pre-Service Teacher Education Programs

    Science.gov (United States)

    Allamnakhrah, Alhasan

    2013-01-01

    Saudi scholars have been agitating for education reforms to incorporate critical thinking in education programs. This paper is a qualitative case study undertaken at King Abdul Aziz University and Arab Open University and examines students' perception of learning critical thinking in secondary pre-service teacher education programs in Saudi…

  6. ANALYZE CRITICAL THINKING SKILLS AND SCIENTIFIC ATTITUDE IN PHYSICS LEARNING USED INQUIRY TRAINING AND DIRECT INSTRUCTION LEARNING MODEL

    Directory of Open Access Journals (Sweden)

    Dede Parsaoran Damanik

    2013-06-01

    Full Text Available This study was aimed to determine the differences: (1 the difference of critical thinking skills of students' that using Inquiry Training and Direct Instruction. (2 The difference of critical thinking skills among students who at high scientific attitude and students who at low scientific attitude. (3 To see if there is interaction between inquiry learning model of the scientific attitude students' to increase the ability to critical thinking. This is a quasi experimental research. Which students of private junior high school Two Raya Kahean District Simalungun. Population choose random sample of each class. Instrument used consisted of: (1 test the scientific attitude of students through a questionnaire with 25 statements questionnaire number (2 test the critical thinking skills in the form of descriptions by 9 questions. The data were analyzed according to ANAVA. It showed that: (1 There are differences in students' critical thinking of skills achievement Inquiry Training model and Direct Instruction model, (2 there was a difference of students' critical thinking in scientific attitude at high is better than who thought there is a difference of students' critical thinking in scientific attitude at low. (3 There was no interaction between Inquiry Training model and Direct Instruction with the scientific attitude students' to increase student’s critical thinking of skills.

  7. Improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward student of biology education

    Directory of Open Access Journals (Sweden)

    Bayu Sandika

    2018-03-01

    Full Text Available Inquiry-based learning is one of the learning methods which can provide an active and authentic scientific learning process in order students are able to improve the creative thinking skills and scientific attitude. This study aims at improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward students of biology education at the Institut Agama Islam Negeri (IAIN Jember, Indonesia. This study is included in a descriptive quantitative research. The research focused on the topic of cell transport which was taught toward 25 students of Biology 2 class from 2017 academic year of Biology Education Department at the IAIN Jember. The learning process was conducted in two meetings in November 2017. The enhancement of students' creative thinking skills was determined by one group pre-test and post-test research design using test instrument meanwhile the scientific attitude focused on curiosity and objectivity were observed using the non-test instrument. Research result showed that students' creative thinking skills enhanced highly and students' scientific attitude improved excellently through inquiry-based learning in basic biology lecture.

  8. Encouraging Higher-Order Thinking in General Chemistry by Scaffolding Student Learning Using Marzano's Taxonomy

    Science.gov (United States)

    Toledo, Santiago; Dubas, Justin M.

    2016-01-01

    An emphasis on higher-order thinking within the curriculum has been a subject of interest in the chemical and STEM literature due to its ability to promote meaningful, transferable learning in students. The systematic use of learning taxonomies could be a practical way to scaffold student learning in order to achieve this goal. This work proposes…

  9. Enhancing Student Learning and Critical Thinking through Academic Controversy in Post Secondary Macroeconomics

    Science.gov (United States)

    Santicola, Craig F.

    2011-01-01

    There is a lack of student learning and critical thinking skills in post-secondary macroeconomics courses. The literature indicates that the lack of learning outcomes can be attributed to the reliance on traditional lecture and the failure to adopt innovative instructional techniques. The purpose of this study was to investigate the student…

  10. Fostering students’ thinking skill and social attitude through STAD cooperative learning technique on tenth grade students of chemistry class

    Science.gov (United States)

    Kriswintari, D.; Yuanita, L.; Widodo, W.

    2018-04-01

    The aim of this study was to develop chemistry learning package using Student Teams Achievement Division (STAD) cooperative learning technique to foster students’ thinking skills and social attitudes. The chemistry learning package consisting of lesson plan, handout, students’ worksheet, thinking skill test, and observation sheet of social attitude was developed using the Dick and Carey model. Research subject of this study was chemistry learning package using STAD which was tried out on tenth grade students of SMA Trimurti Surabaya. The tryout was conducted using the one-group pre-test post-test design. Data was collected through observation, test, and questionnaire. The obtained data were analyzed using descriptive qualitative analysis. The findings of this study revealed that the developed chemistry learning package using STAD cooperative learning technique was categorized valid, practice and effective to be implemented in the classroom to foster students’ thinking skill and social attitude.

  11. An Analysis of Creative Process Learning in Computer Game Activities Through Player Experiences

    Directory of Open Access Journals (Sweden)

    Wilawan Inchamnan

    2016-09-01

    Full Text Available This research investigates the extent to which creative processes can be fostered through computer gaming. It focuses on creative components in games that have been specifically designed for educational purposes: Digital Game Based Learning (DGBL. A behavior analysis for measuring the creative potential of computer game activities and learning outcomes is described. Creative components were measured by examining task motivation and domain-relevant and creativity-relevant skill factors. The research approach applied heuristic checklists in the field of gameplay to analyze the stage of player activities involved in the performance of the task and to examine player experiences with the Player Experience of Need Satisfaction (PENS survey. Player experiences were influenced by competency, autonomy, intuitive controls, relatedness and presence. This study examines the impact of these activities on the player experience for evaluating learning outcomes through school records. The study is designed to better understand the creative potential of people who are engaged in learning knowledge and skills during the course while playing video games. The findings show the creative potential that occurred to yield levels of creative performance within game play activities to support learning. The anticipated outcome is knowledge on how video games foster creative thinking as an overview of the Creative Potential of Learning Model (CPLN. CPLN clearly describes the interrelationships between principles of learning and creative potential, the interpretation of the results is indispensable.

  12. Thinking about Metacognition

    Science.gov (United States)

    Crossland, John

    2015-01-01

    Learning depends on the effective use of basic cognitive processes such as memory and attention, but for optimal learning, learners also need to have awareness of, and control over, these cognitive processes. The literal meaning of metacognition is cognition about cognition or, more informally, thinking about your thinking: a good starting point…

  13. STUDI KOMPARATIF MODEL PEMBELAJARAN THINK PAIR SQUARE DAN THINK PAIR SHARE TERHADAP MOTIVASI DAN HASIL BELAJAR SISWA MAPEL TIK KELAS X SMA N 1 SUKASADA

    Directory of Open Access Journals (Sweden)

    Putu Deli Januartini

    2016-10-01

    Abstract The purpose of this study were to determine (1 the significant influence of the application of think pair square and think pair share learning model on student’s learning achievement, (2 better learning achievement between think pair square and think pair share learning model, (3 student’s motivation, (4 the student’s responses. The research was a quasi-experimental design experiment with post test only control group design. The population of study was all the students in grade X. The sample were as X1 class with the application of Think Pair Square learning model, X3 class with the application of Think Pair Share learning model, and X5 class with the application of Direct Instruction learning model. The data was collected by cognitive and psychomotor tests. The student’s learning achievement were analyzed by the prerequisite test with the results of the three groups at normal distribution and homogenous, and the hypothesis tested by One Way Anova which means there is a significant effect on the application of think pair square, think pair share, and direct instruction learning models. Then it was conducted a further test t-Scheffe with the results there are differences in the learning achievement between think pair square, think pair share, and direct instruction learning models. According to the average result we made a conclusion that Think Pair Square was better learning models with higher student’s learning achievement. The questionnaires results shows that Think Pair Square was very high positive response and very high learning motivation, Think Pair Share was high positive response and very high learning motivation.   Keywords :   Think Pair Square, Think Pair Share, Direct Instruction, learning achievement, learning motivation, and student response.

  14. Exploring Students' Computational Thinking Skills in Modeling and Simulation Projects: : A Pilot Study

    NARCIS (Netherlands)

    Grgurina, Natasa; van Veen, Klaas; Barendsen, Erik; Zwaneveld, Bert; Suhre, Cor; Gal-Ezer, Judith; Sentance, Sue; Vahrenhold, Jan

    2015-01-01

    Computational Thinking (CT) is gaining a lot of attention in education. We explored how to discern the occurrences of CT in the projects of 12th grade high school students in the computer science (CS) course. Within the projects, they constructed models and ran simulations of phenomena from other

  15. Reinforcement learning in computer vision

    Science.gov (United States)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  16. Learning to think strategically.

    Science.gov (United States)

    1994-01-01

    Strategic thinking focuses on issues that directly affect the ability of a family planning program to attract and retain clients. This issue of "The Family Planning Manager" outlines the five steps of strategic thinking in family planning administration: 1) define the organization's mission and strategic goals; 2) identify opportunities for improving quality, expanding access, and increasing demand; 3) evaluate each option in terms of its compatibility with the organization's goals; 4) select an option; and 5) transform strategies into action. Also included in this issue is a 20-question test designed to permit readers to assess their "strategic thinking quotient" and a list of sample questions to guide a strategic analysis.

  17. The Effect of Scaffolded Think-Group-Share Learning on Indonesian Elementary Schooler Satisfaction and Learning Achievement in English Classes

    Science.gov (United States)

    Mantik, Octavia; Choi, Hee Jun

    2017-01-01

    The purpose of this study was to examine whether or not "Scaffolded Think-Group-Share" learning can have a positive effect on student satisfaction and learning achievement in English classes of an Indonesian elementary school. To achieve this purpose, this study compared the findings from the two dependent variables (i.e., student…

  18. Using Online Learning Platforms to Enhance Students' Reflective and Critical Thinking

    Science.gov (United States)

    Lennon, Sean M.

    2010-01-01

    A working paper on how to use common E-Learning platforms to incorporate critical thinking and reflection into traditional and hybrid formatted curriculums. Definitions and conceptual framework of both constructs are discussed and their benefits towards cognitions and reflection are highlighted. Best practices, including examples of previous…

  19. Music Learning Based on Computer Software

    Directory of Open Access Journals (Sweden)

    Baihui Yan

    2017-12-01

    Full Text Available In order to better develop and improve students’ music learning, the authors proposed the method of music learning based on computer software. It is still a new field to use computer music software to assist teaching. Hereby, we conducted an in-depth analysis on the computer-enabled music learning and the music learning status in secondary schools, obtaining the specific analytical data. Survey data shows that students have many cognitive problems in the current music classroom, and yet teachers have not found a reasonable countermeasure to them. Against this background, the introduction of computer music software to music learning is a new trial that can not only cultivate the students’ initiatives of music learning, but also enhance their abilities to learn music. Therefore, it is concluded that the computer software based music learning is of great significance to improving the current music learning modes and means.

  20. Improving Junior High Schools' Critical Thinking Skills Based on Test Three Different Models of Learning

    Science.gov (United States)

    Fuad, Nur Miftahul; Zubaidah, Siti; Mahanal, Susriyati; Suarsini, Endang

    2017-01-01

    The aims of this study were (1) to find out the differences in critical thinking skills among students who were given three different learning models: differentiated science inquiry combined with mind map, differentiated science inquiry model, and conventional model, (2) to find out the differences of critical thinking skills among male and female…

  1. Developing Learning Model P3E to Improve Students’ Critical Thinking Skills of Islamic Senior High School

    Science.gov (United States)

    Bahtiar; Rahayu, Y. S.; Wasis

    2018-01-01

    This research aims to produce P3E learning model to improve students’ critical thinking skills. The developed model is named P3E, consisting of 4 (four) stages namely; organization, inquiry, presentation, and evaluation. This development research refers to the development stage by Kemp. The design of the wide scale try-out used pretest-posttest group design. The wide scale try-out was conducted in grade X of 2016/2017 academic year. The analysis of the results of this development research inludes three aspects, namely: validity, practicality, and effectiveness of the model developed. The research results showed; (1) the P3E learning model was valid, according to experts with an average value of 3.7; (2) The completion of the syntax of the learning model developed obtained 98.09% and 94.39% for two schools based on the assessment of the observers. This shows that the developed model is practical to be implemented; (3) the developed model is effective for improving students’ critical thinking skills, although the n-gain of the students’ critical thinking skills was 0.54 with moderate category. Based on the results of the research above, it can be concluded that the developed P3E learning model is suitable to be used to improve students’ critical thinking skills.

  2. Analysis of the critical thinking process of junior high school students in solving geometric problems by utilizing the v-a-k learning styles model

    Science.gov (United States)

    Hananto, R. B.; Kusmayadi, T. A.; Riyadi

    2018-05-01

    The research aims to identify the critical thinking process of students in solving geometry problems. The geometry problem selected in this study was the building of flat side room (cube). The critical thinking process was implemented to visual, auditory and kinesthetic learning styles. This research was a descriptive analysis research using qualitative method. The subjects of this research were 3 students selected by purposive sampling consisting of visual, auditory, and kinesthetic learning styles. Data collection was done through test, interview, and observation. The results showed that the students' critical thinking process in identifying and defining steps for each learning style were similar in solving problems. The critical thinking differences were seen in enumerate, analyze, list, and self-correct steps. It was also found that critical thinking process of students with kinesthetic learning style was better than visual and auditory learning styles.

  3. A Model of e-Learning by Constructivism Approach Using Problem-Based Learning to Develop Thinking Skills for Students in Rajaghat University

    Science.gov (United States)

    Shutimarrungson, Werayut; Pumipuntu, Sangkom; Noirid, Surachet

    2014-01-01

    This research aimed to develop a model of e-learning by using Problem-Based Learning--PBL to develop thinking skills for students in Rajabhat University. The research is divided into three phases through the e-learning model via PBL with Constructivism approach as follows: Phase 1 was to study characteristics and factors through the model to…

  4. Developing communicative competence through thinking tasks

    DEFF Research Database (Denmark)

    Maslo, Elina

    Developing communicative competence through thinking tasks - Experimenting with Thinking Approach in Danish as Second Language ClassroomSession on Innovations in the classroom, a presentation. Abstract for the conference Creativity & Thinking Skills in Learning, teaching & Management. Riga 19......-20 September 2014 Elina Maslo, Aarhus University, Department of Education, elma@edu.au.dk Summary: The goal of this presentation is to present some of the experiences with thinking tasks in the Danish language classroom, conducted in the Nordplus Nordic Language Project “Problem solving tasks for learning...... of Danish as second and foreign language in transformative learning spaces”. Two teachers have developed and tried out some thinking tasks in their classrooms, with the aim to foster the development of students´ communicative competence. The learning processes from two classrooms will be analysed...

  5. Android-assisted physics mobile learning to improve senior high school students' divergent thinking skills and physics HOTS

    Science.gov (United States)

    Mardiana, Nana; Kuswanto, Heru

    2017-08-01

    The aims of the research concerned here were to reveal (1) the characteristics of Android-assisted PML (physics mobile learning) to improve SMA (sekolah menengah atas, Indonesian senior high school) students' divergent thinking skills and physics HOTS (higher order thinking skills); (2) the feasibility of the Android-assisted PML; and (3) the influence of using the Android-assisted PML on improvement in SMA students' divergent thinking skills and physics HOTS. The7 research was of the R&D (research and development) type, adapted from theBorg-&-Gall development model. The research data were analyzed by means of MANOVA with the significance level of 5%. The results are as follows. (1) The product of the development, a learning media in software form with the android package(apk) format, is named PML (to refer to Physics Mobile Learning), which has such characterictics as being operable with use of Android devicesand being very good in quality in the aspect oflearning, material, software technology, and audiovisual appearance. 2) The developed learning media referred to as PML is appropriate for learning activity according to evaluation by a material expert, a media expert, peer reviewers, and physics teachers as well as according to results of students' tryouts. (3) The use of the Android-assisted PML media product could improve SMA students' divergent thinking skillsand physics HOTS with the respective high-category gain scores of 0.701 and 0.759.

  6. LEARNING CYCLE-7E MODEL TO INCREASE STUDENT’S CRITICAL THINKING ON SCIENCE

    Directory of Open Access Journals (Sweden)

    Hartono -

    2013-01-01

    Full Text Available Penelitian ini bertujuan untuk memperoleh model pembelajaran Learning Cycle-7E  yang dapat meningkatkan kemampuan berpikir kritis siswa dan menuntaskan hasil belajar siswa SMPN 21 Semarang terhadap matapelajaran IPA. Penelitian PTK ini dilaksanakan dalam dua siklus. Siklus pertama belum menunjukkan peningkatan yang maksimum. Aktivitas bertanya kepada guru, keseriusan melaksanakan tugas, dan persiapan dalam mengikuti pelajaran masih pada kategori sedang. Ketuntasan belajar secara individual dan klasikal belum memenuhi kriteria yang ditetapkan. Oleh sebab itu, aktivitas ini menjadi fokus perbaikan pada siklus berikutnya. Hasil pada siklus ke-dua menunjukkan peningkatan yang signifikan. Kemampuan berpikir kritis telah tumbuh, aktivitas bertanya pada guru dan keseriusan dalam melaksanakan tugas meningkat pada kategori tinggi. Ketuntasan belajar klasikal sebesar 79%, melebihi kriteria keberhasilan tindakan yang ditetapkan pada penelitian ini yaitu sebesar 75%. Hal ini berarti bahwa model pembelajaran Learning Cycle-7E dapat meningkatkan kemampuan berpikir kritis siswa, tanpa mengganggu hasil belajar kognitifnya. This research aimed to increase the students’ critical thinking by designing Learning Cycle- 7E which is suitable with the criteria set out in SJHS 21 Semarang. Thisclassroom action research was carried out in two cycles. In cycle-I, the students’ critical thinking was growing but not maximum, their activity during learning process was in medium category. That is why there were several aspects of students’ activity that need to be investigated. They were the students’courage to ask the teacher, their seriousness to do the assignments, and their readiness to learn as well as to prepare a question prior learning. The students’ average cognitive learning outcomes and the classical learning outcomes were not very satisfied. The result of the cycle-II showed a significant improvements. The students

  7. Breaking with fun, educational and realistic learning games

    DEFF Research Database (Denmark)

    Duus Henriksen, Thomas

    2009-01-01

    are commonly conceived as means for staging learning processes, and that thinking learning games so has an inhibiting effect in regard to creating learning processes. The paper draws upon a qualitative study of participants' experiences with ‘the EIS Simulation', which is a computer-based learning game......This paper addresses the game conceptions and values that learning games inherit from regular gaming, as well as how they affect the use and development of learning games. Its key points concern the issues of thinking learning games as fun, educative and realistic, which is how learning games...... for teaching change management and change implementation. The EIS is played in groups, who share the game on a computer, and played by making change decisions in order to implement an IT system in an organisation. In this study, alternative participatory incentives, means for creating learning processes...

  8. Visual Thinking Strategies: Using Art to Deepen Learning across School Disciplines

    Science.gov (United States)

    Yenawine, Philip

    2013-01-01

    "What's going on in this picture?" With this one question and a carefully chosen work of art, teachers can start their students down a path toward deeper learning and other skills now encouraged by the Common Core State Standards. The Visual Thinking Strategies (VTS) teaching method has been successfully implemented in schools,…

  9. Stop Think: a simple approach to encourage the self-assessment of learning.

    Science.gov (United States)

    Guy, Richard; Byrne, Bruce; Dobos, Marian

    2017-03-01

    A simple "stop think" approach was developed to encourage the self-assessment of learning. A key element was the requirement for students to rate their feeling of difficulty before [FOD (pre) ] and after [FOD (post) ] completing each of three authentic anatomy and physiology concept map exercises. The cohort was divided into low- (group L) and high-performing (group H) groups (based on final subject marks). Both FOD (pre) (group L) and FOD (post) (groups L and H) were significantly negatively correlated with score for some maps. A comparison of FOD (pre) and FOD (post) showed that students changed their mind about difficulty in 58-70% of the completed maps. Students who changed their estimation were asked to provide explanatory comments, and an increase in difficulty was related to problems with map link generation. For students who found the maps easier, 40% of comments indicated that map generation prompted recall of information from memory. Both difficulty estimations and comments supported the contention that students were self-assessing their interaction with the concept maps. Group H was significantly older than group L, had significantly higher levels of deep strategic and deep motivational learning, and had significantly higher marks in two of three concept map exercises. Notwithstanding these differences, the results from the "stop think" approach were similar between groups, indicating that it may be appropriate for students of varying academic ability. It is suggested that "stop think" may be a useful approach to encourage student self-assessment, an important step in assisting self-regulated learning development. Copyright © 2017 the American Physiological Society.

  10. Analysis of creative mathematic thinking ability in problem based learning model based on self-regulation learning

    Science.gov (United States)

    Munahefi, D. N.; Waluya, S. B.; Rochmad

    2018-03-01

    The purpose of this research identified the effectiveness of Problem Based Learning (PBL) models based on Self Regulation Leaning (SRL) on the ability of mathematical creative thinking and analyzed the ability of mathematical creative thinking of high school students in solving mathematical problems. The population of this study was students of grade X SMA N 3 Klaten. The research method used in this research was sequential explanatory. Quantitative stages with simple random sampling technique, where two classes were selected randomly as experimental class was taught with the PBL model based on SRL and control class was taught with expository model. The selection of samples at the qualitative stage was non-probability sampling technique in which each selected 3 students were high, medium, and low academic levels. PBL model with SRL approach effectived to students’ mathematical creative thinking ability. The ability of mathematical creative thinking of low academic level students with PBL model approach of SRL were achieving the aspect of fluency and flexibility. Students of academic level were achieving fluency and flexibility aspects well. But the originality of students at the academic level was not yet well structured. Students of high academic level could reach the aspect of originality.

  11. Think Pair Share: A Teaching Learning Strategy to Enhance Students' Critical Thinking

    Science.gov (United States)

    Kaddoura, Mahmoud

    2013-01-01

    This study investigated the change in critical thinking (CT) skills of baccalaureate nursing students who were educated using a Think-Pair-Share (TPS) or an equivalent Non-Think-Pair-Share (Non-TPS) teaching method. Critical thinking has been an essential outcome of nursing students to prepare them to provide effective and safe quality care for…

  12. Using narrative pedagogy: learning and practising interpretive thinking.

    Science.gov (United States)

    Ironside, Pamela M

    2006-08-01

    This paper reports a hermeneutic study undertaken to explicate students' experiences in educational courses in which teachers enact Narrative Pedagogy. International interest in developing and implementing discipline-specific pedagogies is becoming commonplace as teachers respond to the challenges of preparing students for contemporary practice. Lifeworld Pedagogy, developed in Scandinavia, and Narrative Pedagogy, developed in the United States of America, Canada and New Zealand, are two approaches developed from nursing research for nursing education that provide teachers with research-based alternatives to conventional pedagogy. Further research is needed, however, that addresses how new pedagogies are experienced in schools of nursing. Teachers and students from 22 schools of nursing in the United States of America were interviewed over a 4-year period between 2002 and 2005. Using interpretive phenomenology as the philosophical background and Heideggerian hermeneutics as the method, accounts from 52 participants were analysed by a research team. The theme Learning and Practising Interpretive Thinking reveals how reform is occurring in schools of nursing that use Narrative Pedagogy. It documents how Narrative Pedagogy helps students challenge their assumptions and think through and interpret situations they encounter from multiple perspectives. Findings suggest that by focusing teachers' and students' attention on thinking and interpreting as communal experiences, interpretive pedagogies such as Narrative Pedagogy engage teachers and students in pooling their wisdom, challenging their preconceptions, envisioning new possibilities for providing care and engaging with others to ensure patient-centred care and safety. By documenting students' experiences in courses in which Narrative Pedagogy is used, this study provides teachers with research-based evidence to guide their pedagogical decisions. It extends international efforts to develop discipline

  13. Systems thinking.

    Science.gov (United States)

    Cabrera, Derek; Colosi, Laura; Lobdell, Claire

    2008-08-01

    Evaluation is one of many fields where "systems thinking" is popular and is said to hold great promise. However, there is disagreement about what constitutes systems thinking. Its meaning is ambiguous, and systems scholars have made diverse and divergent attempts to describe it. Alternative origins include: von Bertalanffy, Aristotle, Lao Tsu or multiple aperiodic "waves." Some scholars describe it as synonymous with systems sciences (i.e., nonlinear dynamics, complexity, chaos). Others view it as taxonomy-a laundry list of systems approaches. Within so much noise, it is often difficult for evaluators to find the systems thinking signal. Recent work in systems thinking describes it as an emergent property of four simple conceptual patterns (rules). For an evaluator to become a "systems thinker", he or she need not spend years learning many methods or nonlinear sciences. Instead, with some practice, one can learn to apply these four simple rules to existing evaluation knowledge with transformative results.

  14. Thinking Critically about Critical Thinking: Integrating Online Tools to Promote Critical Thinking

    OpenAIRE

    B. Jean Mandernach, PhD

    2006-01-01

    The value and importance of critical thinking is clearly established; the challenge for instructors lies in successfully promoting students’ critical thinking skills within the confines of a traditional classroom experience. Since instructors are faced with limited student contact time to meet their instructional objectives and facilitate learning, they are often forced to make instructional decisions between content coverage, depth of understanding, and critical analysis of course material. ...

  15. The Contribution of Learning Outcomes for Listening to Creative Thinking Skills

    Science.gov (United States)

    Aldig, Ebru; Arseven, Ayla

    2017-01-01

    This study aims to examine teacher's opinions on the contribution of learning outcomes for listening defined in the Ministry of National Education's Turkish course curriculum for the 6th, 7th and 8th grades to the development of creative thinking skills. Mixed methods research design was adopted in the study. As the quantitative part of the study,…

  16. Thinking About Adoption

    Science.gov (United States)

    ... asked questions. Q: I think I want to adopt. Where do I begin?​ A: Thinking about adoption ... through adoption. Learn more about their How-to-Adopt and Adoption Parenting Network . Q: What are the ...

  17. The Relationship Between the California Critical Thinking Disposition Inventory and Student Learning Outcomes in Baccalaureate Nursing Students.

    Science.gov (United States)

    Searing, Lisabeth Meade; Kooken, Wendy Carter

    2016-04-01

    Critical thinking is the foundation for nurses' decision making. One school of nursing used the California Critical Thinking Disposition Inventory (CCTDI) to document improvement in critical thinking dispositions. A retrospective study of 96 nursing students' records examined the relationships between the CCTDI and learning outcomes. Correlational statistics assessed relationships between CCTDI scores and cumulative grade point averages (GPA) and scores on two Health Education Systems Incorporated (HESI) examinations. Ordinal regression assessed predictive relationships between CCTDI scores and science course grades and NCLEX-RN success. First-year CCTDI scores did not predict first-year science grades. Senior-year CCTDI scores did not correlate with cumulative GPA or HESI RN Exit Exam scores, but were weakly correlated with HESI Pharmacology Exam scores. CCTDI scores did not predict NCLEX-RN success. This study did not identify meaningful relationships between critical thinking dispositions, as measured by the CCTDI, and important learning outcomes. The results do not support the efficacy of using the CCTDI in nursing education. Copyright 2016, SLACK Incorporated.

  18. Examining the Relationship between Digital Game Preferences and Computational Thinking Skills

    Science.gov (United States)

    Yildiz, Hatice Durak; Yilmaz, Fatma Gizem Karaoglan; Yilmaz, Ramazan

    2017-01-01

    The purpose of this study is to identify whether computational thinking skills among secondary school students differ depending on the type of digital games they play. The participants of this study were 202 secondary school students at 5th, 6th, 7th and 8th grades during 2016-2017 academic year. Correlational survey method was used during this…

  19. Creative thinking level of students with high capability in relations and functions by problem-based learning

    Science.gov (United States)

    Nurdyani, F.; Slamet, I.; Sujadi, I.

    2018-03-01

    This research was conducted in order to describe the creative thinking level of students with high capability in relations and functions with Problem Based Learning. The subjects of the research were students with high capability grade VIII at SMPIT Ibnu Abbas Klaten. This research is an qualitative descriptive research. The data were collected using observation, tests and interviews. The result showed that the creative thinking level of students with high capability in relations and functions by Problem Based Learning was at level 4 or very creative because students were able to demonstrate fluency, flexibility, and novelty.

  20. Music Learning Based on Computer Software

    OpenAIRE

    Baihui Yan; Qiao Zhou

    2017-01-01

    In order to better develop and improve students’ music learning, the authors proposed the method of music learning based on computer software. It is still a new field to use computer music software to assist teaching. Hereby, we conducted an in-depth analysis on the computer-enabled music learning and the music learning status in secondary schools, obtaining the specific analytical data. Survey data shows that students have many cognitive problems in the current music classroom, and yet teach...

  1. Rigorous Mathematical Thinking Approach to Enhance Students’ Mathematical Creative and Critical Thinking Abilities

    Science.gov (United States)

    Hidayat, D.; Nurlaelah, E.; Dahlan, J. A.

    2017-09-01

    The ability of mathematical creative and critical thinking are two abilities that need to be developed in the learning of mathematics. Therefore, efforts need to be made in the design of learning that is capable of developing both capabilities. The purpose of this research is to examine the mathematical creative and critical thinking ability of students who get rigorous mathematical thinking (RMT) approach and students who get expository approach. This research was quasi experiment with control group pretest-posttest design. The population were all of students grade 11th in one of the senior high school in Bandung. The result showed that: the achievement of mathematical creative and critical thinking abilities of student who obtain RMT is better than students who obtain expository approach. The use of Psychological tools and mediation with criteria of intentionality, reciprocity, and mediated of meaning on RMT helps students in developing condition in critical and creative processes. This achievement contributes to the development of integrated learning design on students’ critical and creative thinking processes.

  2. Foundations for Critical Thinking

    Science.gov (United States)

    Bers, Trudy; Chun, Marc; Daly, William T.; Harrington, Christine; Tobolowsky, Barbara F.

    2015-01-01

    "Foundations for Critical Thinking" explores the landscape of critical-thinking skill development and pedagogy through foundational chapters and institutional case studies involving a range of students in diverse settings. By establishing a link between active learning and improved critical thinking, this resource encourages all higher…

  3. Developing an e-pedagogy for interprofessional learning: Lecturers' thinking on curriculum design.

    Science.gov (United States)

    Gordon, Frances; Booth, Karen; Bywater, Helen

    2010-09-01

    E-learning is seen as offering possible solutions to the barriers of large scale interprofessional education. This paper discusses a study that explored the underlying pedagogical thinking employed by lecturers when planning e-learning materials for interprofessional education. The themes uncovered in the data were: "reflective spaces for creativity"; "from logistics to learner autonomy"; "authentic"; "constructivist approaches"; "inter-active learning to promote collaboration" and "bringing the patient/service user into the classroom". Discussions about e-learning can focus on the technological aspects of design and delivery. However the findings of this study revealed that technology was not a consideration for the lecturers who saw e-learning as a vehicle to promote interactive learning. Their prime focus was revealed as the application of learning theory to the design of materials that would support students' acquisition of collaborative skills and the generation of new interprofessional knowledge.

  4. PENINGKATAN KEMAMPUAN BERPIKIR KRITIS DAN KETERAMPILAN PROSES SAINS SISWA SMA MELALUI IMPLEMENTASI PROBLEM BASED LEARNING DIPADU THINK PAIR SHARE

    Directory of Open Access Journals (Sweden)

    Abu Husen

    2017-06-01

    Full Text Available This study aims to implement of Problem Based Learning combined Think Pair Share in order to improve critical thinking and science process skills of students at XI IPA SMA. This research was classroom action research. The subjects were 28 students of classroom XI IPA 1 SMAN 1 Kasiman Bojonegoro 2016/2017. This research was conducted in two cycles. The research data consists of the learning realized by observation, the results of the critical thinking paper and pencil tests, and the science process skills by observation. Data were analyzed by descriptive qualitative technique. The results showed that the combined PBL and TPS learning model can improve the ability of critical thinking, and science process skills students of classroom XI IPA 1 SMAN 1 Kasiman Bojonegoro. Penelitian ini bertujuan untuk menerapkan Problem Based Learning dipadu Think Pair Share dalam rangka meningkatkan kemampuan berpikir kritis dan keterampilan proses sains siswa kelas XI IPA SMA. Penelitian ini merupakan penelitian tindakan kelas. Subjek penelitian adalah siswa kelas XI IPA 1 SMAN 1 Kasiman Bojonegoro tahun pelajaran 2016/2017 dengan jumlah 28 siswa. Penelitian dilaksanakan selama dua siklus. Data penelitian terdiri atas hasil observasi keterlaksanaan pembelajaran, hasil tes tulis kemampuan berpikir kritis, dan hasil observasi keterampilan proses sains. Data dianalisis secara deskriptif kualitatif. Hasil penelitian menunjukkan bahwa model pembelajaran PBL dipadu TPS dapat meningkatkan kemampuan berpikir kritis dan keterampilan proses sains siswa kelas XI IPA 1 SMAN 1 Kasiman Bojonegoro.

  5. Formative Value of an Active Learning Strategy: Technology Based Think-Pair-Share in an EFL Writing Classroom

    Science.gov (United States)

    Demirci, Cavide; Düzenli, Halil

    2017-01-01

    Think-Pair-Share (TPS) activities in classrooms provide an opportunity for students to revise, practice and reproduce previously learned knowledge. Teachers also benefit from this active learning strategy by exploiting new learning materials, saving time by minimizing presentations and using it as a formative assessment tool. This article explores…

  6. "Who Dunnit?": Learning Chemistry and Critical Thinking through Hands-On Forensic Science.

    Science.gov (United States)

    Demetry, Chrysanthe; Nicoletti, Denise; Mix, Kimberlee; O'Connor, Kerri; Martin, Andrea

    2002-01-01

    Demonstrates how forensic science can be used as a framework for generating student interest and learning in chemistry and promoting critical thinking. The "Who Dunnit?" forensic science workshop was developed by undergraduate students and is one element of a two-week residential summer outreach program that seeks to develop interest in…

  7. The Relationships between Critical Thinking Skills and Learning Styles of Gifted Students

    Science.gov (United States)

    Dilekli, Yalçin

    2017-01-01

    The current study investigates the relationship between critical thinking skills and learning styles of mentally gifted students. The participants were 225 gifted students in Turkey attending Science and Art Centres which are after-school activity centers for mentally gifted students. Participants were 9-15 years old and were attending secondary…

  8. Higher order thinking skills: using e-portfolio in project-based learning

    Science.gov (United States)

    Lukitasari, M.; Handhika, J.; Murtafiah, W.

    2018-03-01

    The purpose of this research is to describe students' higher-order thinking skills through project-based learning using e-portfolio. The method used in this research is descriptive qualitative method. The research instruments used were test, unstructured interview, and documentation. Research subjects were students of mathematics, physics and biology education department who take the Basics Physics course. The result shows that through project-based learning using e-portfolio the students’ ability to: analyze (medium category, N-Gain 0.67), evaluate (medium category, N-Gain 0.51), and create (medium Category, N-Gain 0.44) are improved.

  9. Rapid mental computation system as a tool for algorithmic thinking of elementary school students development

    OpenAIRE

    Ziatdinov, Rushan; Musa, Sajid

    2013-01-01

    In this paper, we describe the possibilities of using a rapid mental computation system in elementary education. The system consists of a number of readily memorized operations that allow one to perform arithmetic computations very quickly. These operations are actually simple algorithms which can develop or improve the algorithmic thinking of pupils. Using a rapid mental computation system allows forming the basis for the study of computer science in secondary school.

  10. Think Pair Share Using Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Afthina, H.; Mardiyana; Pramudya, I.

    2017-09-01

    This research aims to determine the impact of mathematics learning applying Think Pair Share (TPS) using Realistic Mathematics Education (RME) viewed from mathematical-logical intelligence in geometry learning. Method that used in this research is quasi experimental research The result of this research shows that (1) mathematics achievement applying TPS using RME approach gives a better result than those applying direct learning model; (2) students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low one, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one; (3) there is no interaction between learning model and the level of students’ mathematical-logical intelligence in giving a mathematics achievement. The impact of this research is that TPS model using RME approach can be applied in mathematics learning so that students can learn more actively and understand the material more, and mathematics learning become more meaningful. On the other hand, internal factors of students must become a consideration toward the success of students’ mathematical achievement particularly in geometry material.

  11. The Effectiveness of SSCS Learning Model with KNWS Strategy towards Mathematical Creative Thinking Ability and Self Confidence of Students

    Directory of Open Access Journals (Sweden)

    Asa Kuntifatin Warda

    2017-11-01

    Full Text Available Type of this study is quantitative. The purpose of this study was to determine the effectiveness of SSCS learning model with KNWS strategy towards mathematical creative thinking ability and self confidence of students. The populations of this study was students at grade VIII SMP Muhammadiyah 8 Semarang academic year 2016/2017. The sampling was done by cluster random sampling technique, which were chosen VIIIA as experiment class and VIIIC as control class. Data collection methods used documentation, a test, a questionnaire, and an observation. The result of this study stated that the mathematical creative thinking ability of the experiment class students had reached the classical completeness, percentage of mastery learning on mathematical creative thinking ability of the experiment class students was better than that percentage of the control class students, average of test result on mathematical creative thinking ability of the experiment class students was better than that average of the control class students, average of self confidence score of the experiment class students was better than that average of the control class students, teacher ability and the learning activities at the experiment class students included in good category, response of the experiment class students to joint the learning is positive.

  12. Fostering critical thinking and collaborative learning skills among medical students through a research protocol writing activity in the curriculum.

    Science.gov (United States)

    Sahoo, Soumendra; Mohammed, Ciraj Ali

    2018-06-01

    This intervention was aimed to analyse the effect of academic writing and journal critiquing as educational approaches in improving critical thinking and collaborative learning among undergraduate medical students. A research proposal writing format was created for the 4th year medical students of Melaka Manipal Medical College, Malaysia during their ophthalmology clinical postings. The students worked in small groups and developed research protocols through an evidence based approach. This was followed by writing reflective summaries in academic portfolios about the activity undertaken. A mixed methods study was designed to explore the possible role of collaborative research proposal writing in enhancing critical thinking and collaborative learning. Analysis of reflections submitted by 188 medical students after the intervention indicate that majority of them found an improvement in their skills of critical thinking and collaborative learning as a result of research protocol writing. All participants agreed that the model helped in applying concepts to new situations in the form of designing their own study, which reflected in enhanced higher order cognitive skills. This study shows that the introduction of a structured module in the core medical curriculum that focuses on research writing skills embedded with collaborative and reflective practices can enhance collaborative learning, critical thinking, and reasoning among medical students.

  13. Fostering critical thinking and collaborative learning skills among medical students through a research protocol writing activity in the curriculum

    Directory of Open Access Journals (Sweden)

    Soumendra Sahoo

    2018-06-01

    Full Text Available Purpose This intervention was aimed to analyse the effect of academic writing and journal critiquing as educational approaches in improving critical thinking and collaborative learning among undergraduate medical students. Methods A research proposal writing format was created for the 4th year medical students of Melaka Manipal Medical College, Malaysia during their ophthalmology clinical postings. The students worked in small groups and developed research protocols through an evidence based approach. This was followed by writing reflective summaries in academic portfolios about the activity undertaken.A mixed methods study was designed to explore the possible role of collaborative research proposal writing in enhancing critical thinking and collaborative learning. Results Analysis of reflections submitted by 188 medical students after the intervention indicate that majority of them found an improvement in their skills of critical thinking and collaborative learning as a result of research protocol writing. All participants agreed that the model helped in applying concepts to new situations in the form of designing their own study, which reflected in enhanced higher order cognitive skills. Conclusion This study shows that the introduction of a structured module in the core medical curriculum that focuses on research writing skills embedded with collaborative and reflective practices can enhance collaborative learning, critical thinking, and reasoning among medical students.

  14. Thinking about "Design Thinking": A Study of Teacher Experiences

    Science.gov (United States)

    Retna, Kala S.

    2016-01-01

    Schools are continuously looking for new ways of enhancing student learning to equip students with skills that would enable them to cope with twenty-first century demands. One promising approach focuses on design thinking. This study examines teacher's perceptions, experiences and challenges faced in adopting design thinking. There is a lack of…

  15. Planning Computer-Aided Distance Learning

    Directory of Open Access Journals (Sweden)

    Nadja Dobnik

    1996-12-01

    Full Text Available Didactics of autonomous learning changes under the influence of new technologies. Computer technology can cover all the functions that a teacher develops in personal contact with the learner. People organizing distance learning must realize all the possibilities offered by computers. Computers can take over and also combine the functions of many tools and systems, e. g. type­ writer, video, telephone. This the contents can be offered in form of classic media by means of text, speech, picture, etc. Computers take over data pro­cessing and function as study materials. Computer included in a computer network can also function as a medium for interactive communication.

  16. Hybrid Task Design: Connecting Learning Opportunities Related to Critical Thinking and Statistical Thinking

    Science.gov (United States)

    Kuntze, Sebastian; Aizikovitsh-Udi, Einav; Clarke, David

    2017-01-01

    Stimulating thinking related to mathematical content is the focus of many tasks in the mathematics classroom. Beyond such content-related thinking, promoting forms of higher order thinking is among the goals of mathematics instruction as well. So-called hybrid tasks focus on combining both goals: they aim at fostering mathematical thinking and…

  17. Alignment of learning objectives and assessments in therapeutics courses to foster higher-order thinking.

    Science.gov (United States)

    FitzPatrick, Beverly; Hawboldt, John; Doyle, Daniel; Genge, Terri

    2015-02-17

    To determine whether national educational outcomes, course objectives, and classroom assessments for 2 therapeutics courses were aligned for curricular content and cognitive processes, and if they included higher-order thinking. Document analysis and student focus groups were used. Outcomes, objectives, and assessment tasks were matched for specific therapeutics content and cognitive processes. Anderson and Krathwohl's Taxonomy was used to define higher-order thinking. Students discussed whether assessments tested objectives and described their thinking when responding to assessments. There were 7 outcomes, 31 objectives, and 412 assessment tasks. The alignment for content and cognitive processes was not satisfactory. Twelve students participated in the focus groups. Students thought more short-answer questions than multiple choice questions matched the objectives for content and required higher-order thinking. The alignment analysis provided data that could be used to reveal and strengthen the enacted curriculum and improve student learning.

  18. Learning within the Worlds of Reifications, Selves, and Phenomena: Expanding on the Thinking of Vygotsky and Popper

    Science.gov (United States)

    Hung, David Wei Loong; Chen, Der-Thanq

    2008-01-01

    A framework, termed the RSP, is proposed. It is mainly for analyzing and explaining how learning occurs. This framework is grounded in the social-cultural perspective, in particular, in the thinking of both Vygotsky and Popper. Although the thinking of Popper is generally not referred to as having a social-cultural orientation, mostly due to…

  19. The Effects of Aesthetic Science Activities on Improving At-Risk Families Children's Anxiety About Learning Science and Positive Thinking

    Science.gov (United States)

    Hong, Zuway-R.; Lin, Huann-shyang; Chen, Hsiang-Ting; Wang, Hsin-Hui; Lin, Chia-Jung

    2014-01-01

    The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families' children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families' children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.

  20. Deep learning for computational chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland Washington 99354; Hodas, Nathan O. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland Washington 99354; Vishnu, Abhinav [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland Washington 99354

    2017-03-08

    The rise and fall of artificial neural networks is well documented in the scientific literature of both the fields of computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on “deep” neural networks. Within the last few years, we have seen the transformative impact of deep learning the computer science domain, notably in speech recognition and computer vision, to the extent that the majority of practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. In this review, we provide an introductory overview into the theory of deep neural networks and their unique properties as compared to traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including QSAR, virtual screening, protein structure modeling, QM calculations, materials synthesis and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non neural networks state-of-the-art models across disparate research topics, and deep neural network based models often exceeded the “glass ceiling” expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a useful tool and may grow into a pivotal role for various challenges in the computational chemistry field.

  1. Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, Elvis

    2015-01-01

    The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…

  2. Inculcating Positive Thinking in the Self-Concept of Children with Learning Difficulties

    Science.gov (United States)

    Abed, Mohaned Ghazi

    2017-01-01

    Inculcating positive thinking can act as a valuable tool in enhancing the overall self-concept of children with learning disabilities. The value of positive psychology is recognized as the basis for recent research conducted in the field of strength development. Positive psychology is centered on the view that individual lives can be improved by…

  3. Learning to think like a nurse: stories from new nurse graduates.

    Science.gov (United States)

    Etheridge, Sharon A

    2007-01-01

    One aim of nursing education is to help students learn to be beginning practitioners, which includes making clinical judgments that ensure patient safety. Clinical judgments often determine how quickly nurses detect a life-threatening complication, how soon patients leave the hospital, or how quickly patients learn to take care of themselves. However, current research shows that new graduates do not perform well when making clinical judgments, despite having graduated from accredited schools of nursing and passing the NCLEX examination. This descriptive, qualitative study examined the perceptions of recent nursing graduates about learning to make clinical judgments. Graduates with baccalaureate degrees in nursing were interviewed three times in 9 months to determine their perceptions of how they learned to think like nurses. The results of this study should be useful in identifying strategies to help new graduates make the transition from students to registered nurses.

  4. Neo Strategy to Use Fixed-Whiteboard Based on Student’s Thinking Process and Cultural Ethicaly in Learning Physics

    Directory of Open Access Journals (Sweden)

    Wahyu Hari Kristiyanto

    2017-08-01

    Full Text Available Old guidelines to use the whiteboard stated that teachers were not allowed to write on the whiteboard while talking, because unethical if speak while back facing students. Findings about thinking process profile in information processing were presented with a whiteboard showed that the assimilation process is going to be supported, and audio-visual stimulants. This paper aims to describe the implementation of the latest strategies to use fixed-whiteboard based on student’s thinking process in learning physics with maximum the optimal thought processes and also maintain cultural ethics. This research was conducted through the use of guideline development assessment implementation fixed-slates based on the findings of the process of thinking and ethical culture in physics learning. The results showed that the latest strategy the use of fixed-whiteboard based on the thought process students and ethical culture in learning physics are (1 the assimilation process so that the display contents whiteboard is a material that is correct and does not cause cognitive conflict, (2 they are mutually reinforcing a combination of visual and audio so that the need to write while spelling, and (3 the thinking process to the stage of internalization that stage of the emergence of good information text / image / formula can be seen intact by all students by writing not cover impressions. The implementation results show the subject has been able to implement the latest strategies use fixed-whiteboard with both categories. The conclusions of this study that the use of the latest strategies fixed-whiteboard can be used for the presentation of information which is more than usual for students according to their thinking process and also maintain cultural ethics. The implication of this research is for Workforce Education Institutions need to equip student teachers with the skills to use the whiteboard based on the latest strategy. How to CiteKristiyanto, W. H

  5. Using problem-based learning to improve students' creative thinking skills on water purification

    Science.gov (United States)

    Wahyu, Wawan; Kurnia, Eli, Rohaeni Nur

    2016-02-01

    The aim of this study is to obtain information about the using Problem-based Learning (PBL) to improve students' creative thinking skills on water purification. The research adopted quasi-experimental method with one group pre-test-post-test design, involving 31students of class XI in one SMK in Cimahi as the subjects of study. The students were divided into three groups categories: high, medium, and low based on the average grades of daily tests. The used instruments in this study were essay, observation sheet, questionnaire (Likert scale), and interview sheet Aspects of creative thinking skills are developed including: fluency, flexibility, originality, detailing (elaborative), and judging (evaluative). To identify the improvement of students' creative thinking skills on water purification, "normalized gain" or of the pre-test and post-test scores was calculated. The results showed that PBL can enhance students' creative thinking skills by means high category (percentage of = 70.12%). This nformation can be used as an input to teachers in the school and teacher education programs.

  6. Effects of Multimedia-Based Graphic Novel Presentation on Critical Thinking among Students of Different Learning Approaches

    Science.gov (United States)

    Ching, Hii Sii; Fook, Fong Soon

    2013-01-01

    This study investigated the effects of graphic novels on the critical thinking skills in history learning among 291 Secondary Two students in three secondary schools in Malaysia. This research consisted of two parts, namely, development and evaluation. In the first part, the multimedia learning material entitled "Japanese Occupation of Malaya…

  7. Analysis of Students Ability on Creative Thinking Aspects in terms of Cognitive Style in Mathematics Learning with CORE Model Using Constructivism Approach

    Directory of Open Access Journals (Sweden)

    Mita Konita

    2017-03-01

    Full Text Available Tujuan penelitian ini adalah untuk menguji hasil belajar kemampuan siswa pada aspek berpikir kreatif dengan model CORE menggunakan pendekatan konstruktivisme dapat mencapai ketuntasan klasikal; mengetahui rata-rata hasil belajar kemampuan siswa pada aspek berpikir kreatif dengan model CORE menggunakan pendekatan konstruktivisme lebih dari 75; mendeskripsikan gaya kognitif siswa dalam menjawab masalah dan kemampuan siswa pada aspek berpikir kreatif dalam pembelajaran matematika. Penelitian ini merupakan penelitian kombinasi (mixed methods. Populasi penelitian ini adalah siswa kelas X SMAN 6 Semarang. Hasil penelitian ini menunjukkan: (1 hasil belajar kemampuan siswa pada aspek berpikir kreatif dengan model CORE pendekatan konstruktivisme mencapai ketuntasan klasikal; (2 rata-rata hasil belajar kemampuan siswa pada aspek berpikir kreatif dengan model CORE pendekatan konstruktivisme lebih dari 75; (3 catatan waktu karakterikstik gaya kognitif reflektif terlambat namun frekuensi menjawab paling sedikit, sedangkan catatan waktu karakterikstik gaya kognitif implusif tercepat namun frekuensi menjawab paling banyak; (4 Kelompok siswa gaya kognitif reflektif memenuhi komponen berpikir kreatif yaitu fleksibilitas dan kebaruan serta kelompok siswa gaya kognitif implusif memenuhi komponen berpikir kreatif fleksibel dalam menjawab masalah.   The purpose of this research is to determine learning outcomes in the aspect of creative thinking abilities with CORE model use a constructivist approach achieve mastery of classical, determine the mean result of learning on aspect of creative thinking abilities with CORE learning model use a constructivist approach is more than 75, to describe the characteristics of the cognitive styles of students in answering problems, and describe the creative thinking abilities based on cognitive style. This research is combined (mixed methods. The study population was class X SMAN 6 Semarang. The result of this research showed

  8. Learning outcomes with visual thinking strategies in nursing education.

    Science.gov (United States)

    Moorman, Margaret; Hensel, Desiree; Decker, Kim A; Busby, Katie

    2017-04-01

    There is a need to develop innovative strategies that cultivate broad cognitive, intrapersonal, and interpersonal skills in nursing curricula. The purpose of this project was to explore transferable skills students gained from Visual Thinking Strategies (VTS). This qualitative descriptive study was conducted with 55 baccalaureate nursing students enrolled in an entry level healthy population course. The students participated in a 1h VTS session led by a trained facilitator. Data came from the group's written responses to a question about how they would use skills learned from VTS in caring for patients and in their nursing practice. Content analysis showed students perceived gaining observational, cognitive, interpersonal, and intrapersonal skills from the VTS session. VTS is a unique teaching strategy that holds the potential to help nursing students develop a broad range of skills. Studies are needed on optimal exposure needed to develop observational, communication, collaboration, and critical thinking skills. Research is also needed on how skills gained in VTS translate to practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The effectiveness of web-programming module based on scientific approach to train logical thinking ability for students in vocational high school

    Science.gov (United States)

    Nashiroh, Putri Khoirin; Kamdi, Waras; Elmunsyah, Hakkun

    2017-09-01

    Web programming is a basic subject in Computer and Informatics Engineering, a program study in a vocational high school. It requires logical thinking ability in its learning activities. The purposes of this research were (1) to develop a web programming module that implement scientific approach that can improve logical thinking ability for students in vocational high school; and (2) to test the effectiveness of web programming module based on scientific approach to train students' logical thinking ability. The results of this research was a web-programming module that apply scientific approach for learning activities to improve logical thinking ability of students in the vocational high school. The results of the effectiveness test of web-programming module give conclusion that it was very effective to train logical thinking ability and to improve learning result, this conclusion was supported by: (1) the average of posttest result of students exceeds the minimum criterion value, it was 79.91; (2) the average percentage of students' logical thinking score is 82,98; and (3) the average percentage of students' responses to the web programming module was 81.86%.

  10. How Computer Games Help Children Learn

    Science.gov (United States)

    Shaffer, David Williamson

    2008-01-01

    This book looks at how particular video and computer games--such as "Digital Zoo", "The Pandora Project", "SodaConstructor", and more--can help teach children and students to think like doctors, lawyers, engineers, urban planners, journalists, and other professionals. In the process, new "smart games" will give them the knowledge and skills they…

  11. The effect of reading assignments in guided inquiry learning on students’ critical thinking skills

    Science.gov (United States)

    Syarkowi, A.

    2018-05-01

    The purpose of this study was to determine the effect of reading assignment in guided inquiry learning on senior high school students’ critical thinking skills. The research method which was used in this research was quasi-experiment research method with reading task as the treatment. Topic of inquiry process was Kirchhoff law. The instrument was used for this research was 25 multiple choice interpretive exercises with justification. The multiple choice test was divided on 3 categories such as involve basic clarification, the bases for a decision and inference skills. The result of significance test proved the improvement of students’ critical thinking skills of experiment class was significantly higher when compared with the control class, so it could be concluded that reading assignment can improve students’ critical thinking skills.

  12. Deep learning for computational chemistry.

    Science.gov (United States)

    Goh, Garrett B; Hodas, Nathan O; Vishnu, Abhinav

    2017-06-15

    The rise and fall of artificial neural networks is well documented in the scientific literature of both computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on multilayer neural networks. Within the last few years, we have seen the transformative impact of deep learning in many domains, particularly in speech recognition and computer vision, to the extent that the majority of expert practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. In this review, we provide an introductory overview into the theory of deep neural networks and their unique properties that distinguish them from traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including quantitative structure activity relationship, virtual screening, protein structure prediction, quantum chemistry, materials design, and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non-neural networks state-of-the-art models across disparate research topics, and deep neural network-based models often exceeded the "glass ceiling" expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a valuable tool for computational chemistry. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Spatial Thinking in Atmospheric Science Education

    Science.gov (United States)

    McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.

    2016-12-01

    Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple

  14. The critical thinking curriculum model

    Science.gov (United States)

    Robertson, William Haviland

    The Critical Thinking Curriculum Model (CTCM) utilizes a multidisciplinary approach that integrates effective learning and teaching practices with computer technology. The model is designed to be flexible within a curriculum, an example for teachers to follow, where they can plug in their own critical issue. This process engages students in collaborative research that can be shared in the classroom, across the country or around the globe. The CTCM features open-ended and collaborative activities that deal with current, real world issues which leaders are attempting to solve. As implemented in the Critical Issues Forum (CIF), an educational program administered by Los Alamos National Laboratory (LANL), the CTCM encompasses the political, social/cultural, economic, and scientific realms in the context of a current global issue. In this way, students realize the importance of their schooling by applying their efforts to an endeavor that ultimately will affect their future. This study measures student attitudes toward science and technology and the changes that result from immersion in the CTCM. It also assesses the differences in student learning in science content and problem solving for students involved in the CTCM. A sample of 24 students participated in classrooms at two separate high schools in New Mexico. The evaluation results were analyzed using SPSS in a MANOVA format in order to determine the significance of the between and within-subjects effects. A comparison ANOVA was done for each two-way MANOVA to see if the comparison groups were equal. Significant findings were validated using the Scheffe test in a Post Hoc analysis. Demographic information for the sample population was recorded and tracked, including self-assessments of computer use and availability. Overall, the results indicated that the CTCM did help to increase science content understanding and problem-solving skills for students, thereby positively effecting critical thinking. No matter if the

  15. Thinking is believing.

    Science.gov (United States)

    Kasturirangan, Rajesh

    2008-01-01

    Philosophers as well lay people often think of beliefs as psychological states with dubious epistemic properties. Beliefs are conceptualized as unregulated conceptual structures, for the most part hypothetical and often fanciful or deluded. Thinking and reasoning on the other hand are seen as rational activities regulated by rules and governed by norms. Computational modeling of the mind has focused on rule-governed behavior, ultimately trying to reduce them to rules of logic. What if thinking is less like reasoning and more like believing? I argue that the classical model of thought as rational is mistaken and that thinking is fundamentally constituted by believing. This new approach forces us to re-evaluate classical epistemic concepts like "truth", "justification" etc. Furthermore, if thinking is believing, then it is not clear how thoughts can be modeled computationally. We need new mathematical ideas to model thought, ideas that are quite different from traditional logic-based mathematical structures.

  16. Developing Critical Thinking of Middle School Students using Problem Based Learning 4 Core Areas (PBL4C) Model

    Science.gov (United States)

    Haridza, R.; E Irving, K.

    2017-02-01

    Traditional methods such as rote learning and memorization in teaching science create passive students in science classrooms. The impact of this continuous action for many decades is inactive learners who cannot develop higher order thinking skills. Based on the performance test, students’ critical thinking skill in Public Middle School 3 Pontianak was in low level although their achievement score were higher than school standards. The purpose of this study is to develop critical thinking skills of middle school students using Problem Based Learning 4 Core Areas (PBL4C). The design of this research is classroom action research with two cycles. Data has been collected using observation checklist, rating scale, self and peer assessment. Research findings reveal that students experience development from 11.11% to 88.45% in identifying the problem correctly, 37.03% to 76.92% for sub skills distinguish knowledge and opinion, 18.51% to 65.38% for sub skills providing possible solution, 22.22% to 69.23% for sub skills making decision, and 11.11% to 69.23% for sub skills identifying the impact of the implementation of their solution. In conclusion, the findings indicate that development of students’ critical thinking skills occurs when PBL4C model applied in science classroom. These findings suggest that teachers should act as facilitator in a classroom as well as should provide meaningful learning resources that can benefit students’ critical thinking skills. On the other hand, students should practice constantly to offer a sharp, accurate and appropriate solution.

  17. Principals Who Think Like Teachers

    Science.gov (United States)

    Fahey, Kevin

    2013-01-01

    Being a principal is a complex job, requiring quick, on-the-job learning. But many principals already have deep experience in a role at the very essence of the principalship. They know how to teach. In interviews with principals, Fahey and his colleagues learned that thinking like a teacher was key to their work. Part of thinking the way a teacher…

  18. The effects of using concept mapping as an artifact to engender metacognitive thinking in first-year medical students' problem-based learning discussions: A mixed-methods investigation

    Science.gov (United States)

    Shoop, Glenda Hostetter

    Attention in medical education is turning toward instruction that not only focuses on knowledge acquisition, but on developing the medical students' clinical problem-solving skills, and their ability to critically think through complex diseases. Metacognition is regarded as an important consideration in how we teach medical students these higher-order, critical thinking skills. This study used a mixed-methods research design to investigate if concept mapping as an artifact may engender metacognitive thinking in the medical student population. Specifically the purpose of the study is twofold: (1) to determine if concept mapping, functioning as an artifact during problem-based learning, improves learning as measured by scores on test questions; and (2) to explore if the process of concept mapping alters the problem-based learning intragroup discussion in ways that show medical students are engaged in metacognitive thinking. The results showed that students in the problem-based learning concept-mapping groups used more metacognitive thinking patterns than those in the problem-based learning discussion-only group, particularly in the monitoring component. These groups also engaged in a higher level of cognitive thinking associated with reasoning through mechanisms-of-action and breaking down complex biochemical and physiologic principals. The students disclosed in focus-group interviews that concept mapping was beneficial to help them understand how discrete pieces of information fit together in a bigger structure of knowledge. They also stated that concept mapping gave them some time to think through these concepts in a larger conceptual framework. There was no significant difference in the exam-question scores between the problem-based learning concept-mapping groups and the problem-based learning discussion-only group.

  19. Traditional Literacy and Critical Thinking

    Science.gov (United States)

    Dando, Priscille

    2016-01-01

    How school librarians focus on activating critical thinking through traditional literacy development can proactively set the stage for the deep thinking that occurs in all literacy development. The critical-thinking skills students build while becoming accomplished readers and writers provide the foundation for learning in a variety of…

  20. The Effect of Computer Games on Students' Critical Thinking Disposition and Educational Achievement

    Science.gov (United States)

    Seifi, Mohammad; Derikvandi, Zahra; Moosavipour, Saeed; Khodabandelou, Rouhollah

    2015-01-01

    The main aim of this research was to investigate the effect of computer games on student' critical thinking disposition and educational achievement. The research method was descriptive, and its type was casual-comparative. The sample included 270 female high school students in Andimeshk town selected by multistage cluster method. Ricketts…

  1. Critical Thinking in the Classroom…and Beyond

    Science.gov (United States)

    Murawski, Linda M.

    2014-01-01

    Critical thinking in the classroom is a common term used by educators. Critical thinking has been called "the art of thinking about thinking" (Ruggiero, V. R., 2012) with the intent to improve one's thinking. The challenge, of course, is to create learning environments that promote critical thinking both in the classroom and beyond.…

  2. The Role of CLEAR Thinking in Learning Science from Multiple-Document Inquiry Tasks

    Science.gov (United States)

    Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne; Salas, Carlos R.

    2012-01-01

    The main goal for the current study was to investigate whether individual differences in domain-general thinking dispositions might affect learning from multiple-document inquiry tasks in science. Middle school students were given a set of documents and were tasked with understanding how and why recent patterns in global temperature might be…

  3. Improving Critical Thinking Skills Using Learning Model Logan Avenue Problem Solving (LAPS)-Heuristic

    Science.gov (United States)

    Anggrianto, Desi; Churiyah, Madziatul; Arief, Mohammad

    2016-01-01

    This research was conducted in order to know the effect of Logan Avenue Problem Solving (LAPS)-Heuristic learning model towards critical thinking skills of students of class X Office Administration (APK) in SMK Negeri 1 Ngawi, East Java, Indonesia on material curve and equilibrium of demand and supply, subject Introduction to Economics and…

  4. Science Learning with Information Technologies as a Tool for "Scientific Thinking" in Engineering Education

    Science.gov (United States)

    Smirnov, Eugeny; Bogun, Vitali

    2011-01-01

    New methodologies in science (or mathematics) learning process and scientific thinking in the classroom activity of engineer students with ICT (information and communication technology), including graphic calculator are presented: visual modelling with ICT, action research with graphic calculator, insight in classroom and communications and…

  5. Think Tanks: At Work – 2010-2011 Think Tank Initiative Annual ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-11-24

    Nov 24, 2011 ... In its latest Annual Report, the Think Tank Initiative reflects on its third year of programming and showcases the institutions it supports. Learn about the valuable research these think tanks lead, the contexts under which they operate, their achievements, as well as the challenges and strategies they face.

  6. Conceptualising and measuring collaborative critical thinking on asynchronous discussion forums: Challenges and possible solutions

    Directory of Open Access Journals (Sweden)

    Nazanin Ghodrati

    2015-04-01

    Full Text Available The use of asynchronous discussion forums (ADFs is thought to assist in enhancing students’ collaborative learning and critical thinking throughout higher education. However, previous research has mainly focused on individual critical thinking while the investigation of critical thinking during group work has been generally overlooked. Furthermore, few studies have investigated critical thinking processes of the individual and of the group in a single study to present a comprehensive picture of collaborative critical thinking (CCT. To address these gaps, I examined the demonstration of CCT on ADFs in a graduate subject at an Australian university over two academic semesters as students discussed topics online. In this paper, I discuss the ontological and methodological challenges in conducting the above research and present possible solutions to these challenges. At the ontological level, I discuss challenges in conceptualising and defining CCT. At the methodological level, I present challenges in constructing a coding scheme to measure the demonstration of CCT on ADFs. I then discuss ways to tackle the above challenges, propose an operational definition of CCT and present a synthetic coding scheme for measuring CCT in computer-supported collaborative learning contexts such as on ADFs.

  7. Development and Evaluation of a Web Map Mind Tool Environment with the Theory of Spatial Thinking and Project-Based Learning Strategy

    Science.gov (United States)

    Hou, Huei-Tse; Yu, Tsai-Fang; Wu, Yi-Xuan; Sung, Yao-Ting; Chang, Kuo-En

    2016-01-01

    The theory of spatial thinking is relevant to the learning and teaching of many academic domains. One promising method to facilitate learners' higher-order thinking is to utilize a web map mind tool to assist learners in applying spatial thinking to cooperative problem solving. In this study, an environment is designed based on the theory of…

  8. Learning Universal Computations with Spikes

    Science.gov (United States)

    Thalmeier, Dominik; Uhlmann, Marvin; Kappen, Hilbert J.; Memmesheimer, Raoul-Martin

    2016-01-01

    Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them. PMID:27309381

  9. MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE DAN HASIL BELAJAR DI SEKOLAH

    Directory of Open Access Journals (Sweden)

    Elhefni Elhefni

    2011-11-01

    Full Text Available Abstract Cooperative learning is learning that requires students to be responsible for himself and his group are responsible for. With cooperative learning students will more easily find and understand difficult concepts if they were in discussions with his students regularly work in groups to help each other in solving complex problems. In cooperative learning are learning techniques of the type of think-pair-share. Type of cooperative learning model think-pair-share it has the advantage that students can be a lot of time to think, respond, and help each other, the teacher only to deliver the material briefly, then ask a question, then the teacher wants students to think more deeply about the material that has been described and experienced. This technique can encourage students to enthusiastic in working together, and by applying a type of cooperative learning model think-pair-share is expected to better learning outcomes for students who learn on their own. Keywords: Type of cooperative learning model think-pair-share, learning outcomes

  10. How Babies Think

    Science.gov (United States)

    Bachleda, Amelia R.; Thompson, Ross A.

    2018-01-01

    Babies think differently than adults, and understanding how they think can help us see their explosive brain growth in everyday behavior. Infants learn language faster than adults do, use statistics to understand how the world works, and even reason about the minds of others. But these achievements can be hidden by their poor self-regulatory…

  11. Supporting Pre-Service Teachers' Technology-Enabled Learning Design Thinking through Whole of Programme Transformation

    Science.gov (United States)

    Bower, Matt; Highfield, Kate; Furney, Pam; Mowbray, Lee

    2013-01-01

    This paper explains a development and evaluation project aimed at transforming two pre-service teacher education programmes at Macquarie University to more effectively cultivate students' technology-enabled learning design thinking. The process of transformation was based upon an explicit and sustained focus on developing university academics'…

  12. Soft systems thinking and social learning for adaptive management.

    Science.gov (United States)

    Cundill, G; Cumming, G S; Biggs, D; Fabricius, C

    2012-02-01

    The success of adaptive management in conservation has been questioned and the objective-based management paradigm on which it is based has been heavily criticized. Soft systems thinking and social-learning theory expose errors in the assumption that complex systems can be dispassionately managed by objective observers and highlight the fact that conservation is a social process in which objectives are contested and learning is context dependent. We used these insights to rethink adaptive management in a way that focuses on the social processes involved in management and decision making. Our approach to adaptive management is based on the following assumptions: action toward a common goal is an emergent property of complex social relationships; the introduction of new knowledge, alternative values, and new ways of understanding the world can become a stimulating force for learning, creativity, and change; learning is contextual and is fundamentally about practice; and defining the goal to be addressed is continuous and in principle never ends. We believe five key activities are crucial to defining the goal that is to be addressed in an adaptive-management context and to determining the objectives that are desirable and feasible to the participants: situate the problem in its social and ecological context; raise awareness about alternative views of a problem and encourage enquiry and deconstruction of frames of reference; undertake collaborative actions; and reflect on learning. ©2011 Society for Conservation Biology.

  13. Analisis Kemampuan Berpikir Tingkat Tinggi Mahasiswa (Higher Order Thinking dalam Menyelesaikan Soal Konsep Optika melalui Model Problem Based Learning

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2017-12-01

    Full Text Available Abstract This study aims to describe the ability of higher order thinking students in solving the problem of the concept of optics after given the learning with problem-based learning model. This research uses a descriptive method with quantitative approach. The subjects of the research are students of the second semester of physics education study program, amounting to 19 people. Data collection techniques used are two tier multiple choice shaped test consisting of eight questions include the level of analyzing, evaluating and creating. Based on the results of data analysis, it is known that the ability of high-level thinking of students in optical learning has enough categories with the following details: (1 The percentage of students who have excellent high-level thinking skills is 15.79%, good category of 31.58%, enough category of 42.11%, and category less than 10.53%; (2 The percentage of student ability in answer about level of analyze equal to 68.42%, student ability in answer about evaluation level 57.89% and equal to 53.51% for student ability in answer level question create. Keywords: higher order thinking, optics, problem-based learning model Abstrak Penelitian ini bertujuan untuk mendeskripsikan kemampuan berpikir tingkat tinggi mahasiswa (higher order thinking dalam menyelesaikan soal konsep optika setelah diberikan pembelajaran dengan model problem based learning. Metode penelitian yang digunakan adalah metode deskriptif dengan pendekatan kuantitatif. Subjek penelitian yaitu mahasiswa semester II program studi pendidikan fisika yang berjumlah 19 orang. Teknik pengumpulan data yang digunakan adalah tes berbentuk two tier multiple choice yang terdiri dari delapan soal meliputi tingkatan menganalisis, mengevaluasi dan mencipta. Berdasarkan hasil analisis data, diketahui bahwa kemampuan berpikir tingkat tinggi mahasiswa dalam pembelajaran optika memiliki kategori cukup dengan rincian sebagai berikut: (1 Persentase mahasiswa yang

  14. The Effect of the Inquiry-Based Learning Approach on Student's Critical-Thinking Skills

    Science.gov (United States)

    Duran, Meltem; Dökme, Ilbilge

    2016-01-01

    The purpose of this study is to determine the effect of an activity set developed according to the inquiry-based learning (IBL) approach in the unit "Particulate Structure of Matter" on students' critical-thinking skills in science and technology courses. The study was conducted with 90 students from the 6th grade attending four, 6th…

  15. Problem-Based Learning on Students' Critical Thinking Skills in Teaching Business Education in Malaysia: A Literature Review

    Science.gov (United States)

    Zabit, Mohd Nazir Md

    2010-01-01

    This review forms the background to explore and to gain empirical support among lecturers to improve the students' critical thinking skills in business education courses in Malaysia, in which the main teaching and learning methodology is Problem-Based Learning (PBL). The PBL educational approach is known to have maximum positive impacts in…

  16. Pengaruh Pendekatan Cooperative Learning Tipe (TPS Think, Pair, and Share Terhadap Hasil Belajar PKn di Sekolah Dasar

    Directory of Open Access Journals (Sweden)

    Sulistyani Puteri Ramadhani

    2017-12-01

    Full Text Available Tujuan penelitian ini adalah untuk mengetahui pengaruh penggunaan pendekatan cooperative learning tipe think, pair, and share terhadap hasil belajar PKn pada siswa kelas V sekolah dasar. Penelitian ini dilaksanakan di SDN Kebon Baru 10 Pagi dengan sampel penelitian siswa kelas V pada semester II tahun pelajaran 2016-2017. Sampel penelitian menggunakan teknik Simple Random Sampling. Penelitian ini menggunakan metode eksperimen. Adapun teknik pengumpulan data dilakukan menggunakan lembar tes yang dilakukan setelah materi pembelajaran diberikan lembar tes untuk mengetahui hasil belajar PKn siswa, yang sebelumnya telah dilakukan pengujian validitas dan reliabilitas dengan justifikasi ahli dan dianalisis dengan uji normalitas dan uji homogenitas baik kelas kontrol maupun kelas eksperimen. Hasil pengujian normalitas menunjukan bahwa kedua kelas berdistribusi normal. Hasil pengujian homogenitas menunjukan bahwa kedua kelas tersebut homogen. Setelah dilakukan uji persyaratan analisis, maka dilakukan uji hipotesis dengan perhitungan uji-t. Berdasarkan hasil perhitungan uji-t maka hipotesis nol (Ho ditolak dan hipotesis kerja (H1 diterima. Dari perhitungan tersebut maka dapat disimpulkan bahwa penggunaan pendekatan cooperative learning tipe think, pair, and share berpengaruh signifikan terhadap hasil belajar PKn pada siswa kelas V sekolah dasar. Implikasi hasil penelitian ini adalah penggunaan pendekatan cooperative learning tipe think, pair, and share pada pembelajaran PKn dapat  diterapkan guru agar dapat meningkatkan hasil belajar siswa.

  17. The effectiveness of module with critical thinking approach on hydrolysis and buffer materials in chemistry learning

    Science.gov (United States)

    Nuswowati, M.; Purwanti, E.

    2018-03-01

    The research aims is to find out the effectiveness of critical thinking approach in Chemistry learning especially on hydrolysis and buffer materials. The level of its effectiveness was viewed from the students’ learning outcomes including knowledge, attitude and skill domains. The data were collected through validation sheets, questionnaires and tests, which were then analyzed by using descriptive quantitative method. The first step conducted was validating the module that was going to be used in the learning processes. The students’ learning outcome on knowledge domain was very good, viewed from the classical attainment by 88.63% with N-gain 0.718 with high criteria. It was also viewed from the students’ criticality level in solving the given problems. The result of the study revealed that more than 75% of the students obtained critical and very critical criteria in solving the given problems. The students’ attitudes and skills values were viewed through observation sheets during the learning processes. The result of the observation stated that more than 75% of the students showed good and very good attitudes and skills values. Based on the data, it could be concluded that the module with critical thinking approach was effective to be used on hydrolysis and buffer materials.

  18. Process-oriented guided inquiry learning strategy enhances students' higher level thinking skills in a pharmaceutical sciences course.

    Science.gov (United States)

    Soltis, Robert; Verlinden, Nathan; Kruger, Nicholas; Carroll, Ailey; Trumbo, Tiffany

    2015-02-17

    To determine if the process-oriented guided inquiry learning (POGIL) teaching strategy improves student performance and engages higher-level thinking skills of first-year pharmacy students in an Introduction to Pharmaceutical Sciences course. Overall examination scores and scores on questions categorized as requiring either higher-level or lower-level thinking skills were compared in the same course taught over 3 years using traditional lecture methods vs the POGIL strategy. Student perceptions of the latter teaching strategy were also evaluated. Overall mean examination scores increased significantly when POGIL was implemented. Performance on questions requiring higher-level thinking skills was significantly higher, whereas performance on questions requiring lower-level thinking skills was unchanged when the POGIL strategy was used. Student feedback on use of this teaching strategy was positive. The use of the POGIL strategy increased student overall performance on examinations, improved higher-level thinking skills, and provided an interactive class setting.

  19. Resilience and Higher Order Thinking

    Directory of Open Access Journals (Sweden)

    Ioan Fazey

    2010-09-01

    Full Text Available To appreciate, understand, and tackle chronic global social and environmental problems, greater appreciation of the importance of higher order thinking is required. Such thinking includes personal epistemological beliefs (PEBs, i.e., the beliefs people hold about the nature of knowledge and how something is known. These beliefs have profound implications for the way individuals relate to each other and the world, such as how people understand complex social-ecological systems. Resilience thinking is an approach to environmental stewardship that includes a number of interrelated concepts and has strong foundations in systemic ways of thinking. This paper (1 summarizes a review of educational psychology literature on PEBs, (2 explains why resilience thinking has potential to facilitate development of more sophisticated PEBs, (3 describes an example of a module designed to teach resilience thinking to undergraduate students in ways conducive to influencing PEBs, and (4 discusses a pilot study that evaluates the module's impact. Theoretical and preliminary evidence from the pilot evaluation suggests that resilience thinking which is underpinned by systems thinking has considerable potential to influence the development of more sophisticated PEBs. To be effective, however, careful consideration of how resilience thinking is taught is required. Finding ways to encourage students to take greater responsibility for their own learning and ensuring close alignment between assessment and desired learning outcomes are particularly important.

  20. The Effects of Problem-Based Learning on Pre-Service Teachers' Critical Thinking Dispositions and Perceptions of Problem-Solving Ability

    Science.gov (United States)

    Temel, Senar

    2014-01-01

    The aim of this study was two-fold. The first aim was to determine the levels of critical thinking disposition and perception of problem-solving ability of pre-service teachers. The second aim was to compare the effects of problem-based learning and traditional teaching methods on the critical thinking dispositions and perceptions of…

  1. Digital Storytelling for Enhancing Student Academic Achievement, Critical Thinking, and Learning Motivation: A Year-Long Experimental Study

    Science.gov (United States)

    Yang, Ya-Ting C.; Wu, Wan-Chi I.

    2012-01-01

    The purpose of this study was to explore the impact of Digital storytelling (DST) on the academic achievement, critical thinking, and learning motivation of senior high school students learning English as a foreign language. The one-year study adopted a pretest and posttest quasi-experimental design involving 110 10th grade students in two English…

  2. Learning and teaching ecosystem behaviour in secondary education : Systems thinking and modelling in authentic practices

    NARCIS (Netherlands)

    Westra, R.H.V.

    2008-01-01

    This thesis describes developmental research, aiming at a useful approach for modern secondary ecology education. The research question is: What are the characteristics of a valid, feasible and effective learning and teaching strategy about ecosystem behaviour using modelling and systems thinking in

  3. A Study of an Architecture Design Learning Process Based on Social Learning, Course Teaching, Interaction, and Analogical Thinking

    Directory of Open Access Journals (Sweden)

    Yun-Wu Wu

    2014-01-01

    Full Text Available The students in the vocational education of architecture design in Taiwan often face many learning obstacles, such as no problem solving ability and lack of creativity. Therefore, this study used a social learning model as a learning strategy in the architecture design learning process to solve related learning difficulties. Firstly, this study used cognitive development teaching activities and a learning process based on analogical thinking and analogical reasoning to build the social learning model. Secondly, the social learning model of this study was implemented in the teaching of a required course of architecture design for 120 freshmen in China University of Technology. The questionnaire survey results were then statically analyzed and compared to measure the differences in the students’ knowledge about architecture designs before and after the teaching in this study. In this study, the social learning model is proven helpful in inspiring the students’ creativity by converting new knowledge of architecture design into schemas and hence retaining the new knowledge for future application. The social learning model can be applied in the teaching of architecture design in other schools, while more research can be conducted in the future to further confirm its feasibility to promote effective learning.

  4. Critical Thinking Theory to Practice: Using the Expert's Thought Process as Guide for Learning and Assessment.

    Science.gov (United States)

    Marshall, Teresa A; Marchini, Leonardo; Cowen, Howard; Hartshorn, Jennifer E; Holloway, Julie A; Straub-Morarend, Cheryl L; Gratton, David; Solow, Catherine M; Colangelo, Nicholas; Johnsen, David C

    2017-08-01

    Critical thinking skills are essential for the successful dentist, yet few explicit skillsets in critical thinking have been developed and published in peer-reviewed literature. The aims of this article are to 1) offer an assessable critical thinking teaching model with the expert's thought process as the outcome, learning guide, and assessment instrument and 2) offer three critical thinking skillsets following this model: for geriatric risk assessment, technology decision making, and situation analysis/reflections. For the objective component, the student demonstrates delivery of each step in the thought process. For the subjective component, the student is judged to have grasped the principles as applied to the patient or case. This article describes the framework and the results of pilot tests in which students in one year at this school used the model in the three areas, earning scores of 90% or above on the assessments. The model was thus judged to be successful for students to demonstrate critical thinking skillsets in the course settings. Students consistently delivered each step of the thought process and were nearly as consistent in grasping the principles behind each step. As more critical thinking skillsets are implemented, a reinforcing network develops.

  5. A study of rural preschool practitioners' views on young children's mathematical thinking

    Science.gov (United States)

    Hunting, Robert P.; Mousley, Judith A.; Perry, Bob

    2012-03-01

    The project Mathematical Thinking of Preschool Children in Rural and Regional Australia: Research and Practice aimed to investigate views of preschool practitioners about young children's mathematical thinking and development. Structured individual interviews were conducted with 64 preschool practitioners from rural areas of three Australian states. The questions focused on five broad themes: children's mathematics learning, support for mathematics teaching, technology and computers, attitudes and feelings, and assessment and record keeping. We review results from the interview data for each of these themes, discuss their importance, and outline recommendations related to teacher education as well as resource development and research.

  6. Educational Design Thinking

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft

    2015-01-01

    thinking (e.g. Nelson & Stolterman or Cross), empathic design (e.g. Bannon or Gagnon & Coté), technological imagination (McCarthy & Wright or Balsamo), educational design and technology use within education (Laurrilard or Donohue), the paper builds a case for new ways of thinking through technologies...... is on how to promote, sustain and scaffold designerly ideation and technological imagination within formal/informal educational settings. Something that seems to require a dialectics focused on children’s transitions, transformations and transgressions within educational settings, engaged, empathic teaching...... and radical educational experience and competence in the tradition of e.g. Freire, Ranciére, or Hooks. Rather, than focusing on the potentials of technology to support visible learning, instructional design, differentiated learning or measurement of quality in teaching and learning, this paper focuses...

  7. A Wittgenstein Approach to the Learning of OO-modeling

    Science.gov (United States)

    Holmboe, Christian

    2004-12-01

    The paper uses Ludwig Wittgenstein's theories about the relationship between thought, language, and objects of the world to explore the assumption that OO-thinking resembles natural thinking. The paper imports from research in linguistic philosophy to computer science education research. I show how UML class diagrams (i.e., an artificial context-free language) correspond to the logically perfect languages described in Tractatus Logico-Philosophicus. In Philosophical Investigations Wittgenstein disputes his previous theories by showing that natural languages are not constructed by rules of mathematical logic, but are language games where the meaning of a word is constructed through its use in social contexts. Contradicting the claim that OO-thinking is easy to learn because of its similarity to natural thinking, I claim that OO-thinking is difficult to learn because of its differences from natural thinking. The nature of these differences is not currently well known or appreciated. I suggest how explicit attention to the nature and implications of different language games may improve the teaching and learning of OO-modeling as well as programming.

  8. Learning Style and Attitude toward Computer among Iranian Medical Students

    Directory of Open Access Journals (Sweden)

    Seyedeh Shohreh Alavi

    2016-02-01

    Full Text Available Background and purpose: Presently, the method of medical teaching has shifted from lecture-based to computer-based. The learning style may play a key role in the attitude toward learning computer. The goal of this study was to study the relationship between the learning style and attitude toward computer among Iranian medical students.Methods: This cross-sectional study included 400 medical students. Barsch learning style inventory and a questionnaire on the attitude toward computer was sent to each student. The enthusiasm, anxiety, and overall attitude toward computer were compared among the different learning styles.Results: The response rate to the questionnaire was 91.8%. The distribution of learning styles in the students was 181 (49.3% visual, 106 (28.9% auditory, 27 (7.4% tactual, and 53 (14.4% overall. Visual learners were less anxious for computer use and showed more positive attitude toward computer. Sex, age, and academic grade were not associated with students’ attitude toward computer.Conclusions: The learning style is an important factor in the students’ attitude toward computer among medical students, which should be considered in planning computer-based learning programs.Keywords: LEARNING STYLE, ATTITUDE, COMPUTER, MEDICAL STUDENT, ANXIETY, ENTHUSIASM

  9. Instructional Model and Thinking Skill in Chemistry Class

    Science.gov (United States)

    Langkudi, H. H.

    2018-02-01

    Chemistry course are considered a difficult lesson for students as evidenced by low learning outcomes on daily tests, mid-semester tests as well as final semester tests. This research intended to investigate the effect of instructional model, thinking skill and the interaction of these variables on students’ achievement in chemistry. Experimental method was applying used 2 x 2 factorial design. The results showed that the use of instructional model with thinking skill influences student’s learning outcomes, so that the chemistry teacher is recommended to pay attention to the learning model, and adjusted to the student’s skill thinking on the chemistry material being taught. The conclusion of this research is that discovery model is suitable for students who have formal thinking skill and conventional model is fit for the students that have concrete thinking skill.

  10. Computer use changes generalization of movement learning.

    Science.gov (United States)

    Wei, Kunlin; Yan, Xiang; Kong, Gaiqing; Yin, Cong; Zhang, Fan; Wang, Qining; Kording, Konrad Paul

    2014-01-06

    Over the past few decades, one of the most salient lifestyle changes for us has been the use of computers. For many of us, manual interaction with a computer occupies a large portion of our working time. Through neural plasticity, this extensive movement training should change our representation of movements (e.g., [1-3]), just like search engines affect memory [4]. However, how computer use affects motor learning is largely understudied. Additionally, as virtually all participants in studies of perception and actions are computer users, a legitimate question is whether insights from these studies bear the signature of computer-use experience. We compared non-computer users with age- and education-matched computer users in standard motor learning experiments. We found that people learned equally fast but that non-computer users generalized significantly less across space, a difference negated by two weeks of intensive computer training. Our findings suggest that computer-use experience shaped our basic sensorimotor behaviors, and this influence should be considered whenever computer users are recruited as study participants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Integrating Human and Computer Intelligence. Technical Report No. 32.

    Science.gov (United States)

    Pea, Roy D.

    This paper explores the thesis that advances in computer applications and artificial intelligence have important implications for the study of development and learning in psychology. Current approaches to the use of computers as devices for problem solving, reasoning, and thinking--i.e., expert systems and intelligent tutoring systems--are…

  12. Enhancing programming logic thinking using analogy mapping

    Science.gov (United States)

    Sukamto, R. A.; Megasari, R.

    2018-05-01

    Programming logic thinking is the most important competence for computer science students. However, programming is one of the difficult subject in computer science program. This paper reports our work about enhancing students' programming logic thinking using Analogy Mapping for basic programming subject. Analogy Mapping is a computer application which converts source code into analogies images. This research used time series evaluation and the result showed that Analogy Mapping can enhance students' programming logic thinking.

  13. Considerations of How to Study Learning Processes when Students use GIS as an Instrument for Developing Spatial Thinking Skills

    DEFF Research Database (Denmark)

    Madsen, Lene Møller; Rump, Camilla Østerberg

    2012-01-01

    be studied. We empirically analyse students’ learning processes and the influences of teaching practice in an introductory course in GIS. We show that students have different strategies for creating their personal instrument for spatial thinking and how teaching interacts with the students’ learning...

  14. Learning Sorting Algorithms through Visualization Construction

    Science.gov (United States)

    Cetin, Ibrahim; Andrews-Larson, Christine

    2016-01-01

    Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed…

  15. Developing thinking skill system for modelling creative thinking and critical thinking of vocational high school student

    Science.gov (United States)

    Dewanto, W. K.; Agustianto, K.; Sari, B. E.

    2018-01-01

    Vocational students must have practical skills in accordance with the purpose of vocational school that creating the skilled graduates according to their field. Graduates of vocational education are required not just as users, but be able to create. Thus requiring critical and creative thinking skills to assist students in generating ideas, analyzing and creating a product of value. Based on this, then this research aims to develop a system to know the level of ability to think critically and creative students, that resulted students can do self-reflection in improving the ability to think critically and creatively as a supporter of practical ability. The system testing using Naïve Bayes Correlation shown an average accuracy of 93.617% in assessing the students’ critical and creative thinking ability. By using modeling with this system will be known level of students’ critical and creative thinking ability, then the output of the system is used to determine the type of innovation in the learning process to improve the critical and creative thinking skills to support the practical skills of students as skilled vocational students.

  16. Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments.

    NARCIS (Netherlands)

    Dewiyanti, Silvia; Brand-Gruwel, Saskia; Jochems, Wim; Broers, Nick

    2008-01-01

    Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. (2007). Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23, 496-514.

  17. Process-Oriented Guided Inquiry Learning Strategy Enhances Students’ Higher Level Thinking Skills in a Pharmaceutical Sciences Course

    Science.gov (United States)

    Verlinden, Nathan; Kruger, Nicholas; Carroll, Ailey; Trumbo, Tiffany

    2015-01-01

    Objective. To determine if the process-oriented guided inquiry learning (POGIL) teaching strategy improves student performance and engages higher-level thinking skills of first-year pharmacy students in an Introduction to Pharmaceutical Sciences course. Design. Overall examination scores and scores on questions categorized as requiring either higher-level or lower-level thinking skills were compared in the same course taught over 3 years using traditional lecture methods vs the POGIL strategy. Student perceptions of the latter teaching strategy were also evaluated. Assessment. Overall mean examination scores increased significantly when POGIL was implemented. Performance on questions requiring higher-level thinking skills was significantly higher, whereas performance on questions requiring lower-level thinking skills was unchanged when the POGIL strategy was used. Student feedback on use of this teaching strategy was positive. Conclusion. The use of the POGIL strategy increased student overall performance on examinations, improved higher-level thinking skills, and provided an interactive class setting. PMID:25741027

  18. Thinking about thinking: implications for patient safety.

    Science.gov (United States)

    Montgomery, Kathryn

    2009-01-01

    Clinical medicine, a learned, rational, science-using practice, is labelled a science even though physicians have the good sense not to practise it that way. Rather than thinking like scientists - or how we think scientists think - physicians are engaged in analogical, interpretive reasoning that resembles Aristotle's phronesis, or practical reasoning, more closely than episteme, or scientific reasoning. In medicine, phronesis is clinical judgment; and while it depends on both a fund of information and extensive experience, somehow it is not quite teachable. This practical, clinical rationality relies on case narrative for teaching and learning about illness and disease, for recording and communicating about patient care and, inevitably, for thinking about and remembering the details, as well as the overarching rules of practice. At the same time, "anecdotal" remains the most pejorative word in medicine, and the tension between the justifiable caution this disdain expresses and the pervasive narrative structure of medical knowledge is characteristic of clinical knowing generally: a tug-of-war between apparent irreconcilables that can be settled only by an appeal to the circumstances of the clinical situation. Practical rationality in the clinical encounter is characterized by a productive circulation between the particular details of the patient's presentation and general information about disease stored as a taxonomy of cases. Evidence-based medicine can improve this negotiation between general knowledge and the patient's particulars, but it cannot replace it. In a scientific era, clinical judgment remains the quintessential intellectual strength of the clinician. Why, then, do we not teach the epistemology of medicine? Understanding the mis-description of physicians' thinking - and the accompanying claim that medicine is, in itself, a science - could mitigate the misplaced perfectionism that makes mistakes in medicine personal and unthinkable.

  19. Enhancing Critical Thinking in a PBL Environment

    DEFF Research Database (Denmark)

    Guerra, Aida; Holgaard, Jette Egelund

    2016-01-01

    Engineering education accreditation bodies emphasize the need for competencies beyond technical expertise. Critical thinking is one of these competencies, which is also considered as a precursor for the development of other competencies such as multidisciplinary collaboration, problem......-solving skills and lifelong learning. There is an urgent need to enhance engineering students’ critical thinking and one way to do this is to make use of active, student-centred learning approaches such as Problem Based Learning (PBL). This study aims to provide a model for understanding and enhancing critical...... thinking in a PBL environment. The development of the model takes its point of departure from a conceptual model for critical thinking that is concretized in a PBL context by including theoretical as well as empirical perspectives. The empirical study was conducted at the Faculty of Engineering and Science...

  20. Think Pair Share with Formative Assessment for Junior High School Student

    Science.gov (United States)

    Pradana, O. R. Y.; Sujadi, I.; Pramudya, I.

    2017-09-01

    Geometry is a science related to abstract thinking ability so that not many students are able to understand this material well. In this case, the learning model plays a crucial role in improving student achievement. This means that a less precise learning model will cause difficulties for students. Therefore, this study provides a quantitative explanation of the Think Pair Share learning model combined with the formative assessment. This study aims to test the Think Pair Share with the formative assessment on junior high school students. This research uses a quantitative approach of Pretest-Posttest in control group and experiment group. ANOVA test and Scheffe test used to analyse the effectiveness this learning. Findings in this study are student achievement on the material geometry with Think Pair Share using formative assessment has increased significantly. This happens probably because this learning makes students become more active during learning. Hope in the future, Think Pair Share with formative assessment be a useful learning for teachers and this learning applied by the teacher around the world especially on the material geometry.

  1. The Importance of Computer Based Active Learning for Basic Chemistry in Vocational High Schools

    Directory of Open Access Journals (Sweden)

    Tuğçe GÜNTER

    2011-01-01

    Full Text Available Chemistry is a very comprehensive discipline that researches atoms; molecules; the structure of matter in the form of element or compound; combinations, and physical and chemical properties of matter; macroscopic and microscopic transformations of matters; the energy and entropy released or absorbed in the course of these transformations; the structures and functions of carbohydrates, lipids, proteins, enzymes, vitamins and minerals in the body. This discipline includes numerous reactions at the macroscopic, microscopic and particulate levels, abstract concepts, three-dimensional structure of molecules, mathematics, and graphics. It is important for students to be trained as scientists to internalize -with meaningful learning - chemistry having much abstract concepts. Especially for students in associate degree programs in Vocational High Schools, taking this integrated course will provide them to be more creative in their future professional work; to cope with and overcome analytical problems; to be self-learners; to fill the gaps concerning chemical analysis originated from secondary education; and to gain critical thinking and self-evaluation skills regarding chemical problems. In the age of developing science and technology, “Computer-Based Active Learning Method” emerged with the introduction of multi-media into education and training. In this context, students will learn difficult and complex mathematical operations and graphics interpretations more meaningfully with computer-based simulations and analogies.

  2. The influence of project-based learning on the student conception about kinematics and critical thinking skills

    Science.gov (United States)

    Handhika, J.; Cari, C.; Sunarno, W.; Suparmi, A.; Kurniadi, E.

    2018-05-01

    This research revealed the influence of project-based learning (PjBL) to increasing the level of the conception. The research method used the pre-experimental design with one group pre-test post-test. PjBL applied to students of physics education program of IKIP PGRI Madiun (23 Students). The test used to determine the level of conception is multiple choice tests and index of certainty. Activities on PjBL described. Obtained that the PjBL model can increase the level of conception and Critical thinking skills with the average normalized gain 0.49 and 0.57 (Medium category). It can be concluded that the PjBL could improve the level of conception and critical thinking ability of the students. Implementation of each model phase following learning objectives and needs analysis is the key to improve both.

  3. Children's Learning in Scientific Thinking: Instructional Approaches and Roles of Variable Identification and Executive Function

    Science.gov (United States)

    Blums, Angela

    The present study examines instructional approaches and cognitive factors involved in elementary school children's thinking and learning the Control of Variables Strategy (CVS), a critical aspect of scientific reasoning. Previous research has identified several features related to effective instruction of CVS, including using a guided learning approach, the use of self-reflective questions, and learning in individual and group contexts. The current study examined the roles of procedural and conceptual instruction in learning CVS and investigated the role of executive function in the learning process. Additionally, this study examined how learning to identify variables is a part of the CVS process. In two studies (individual and classroom experiments), 139 third, fourth, and fifth grade students participated in hands-on and paper and pencil CVS learning activities and, in each study, were assigned to either a procedural instruction, conceptual instruction, or control (no instruction) group. Participants also completed a series of executive function tasks. The study was carried out with two parts--Study 1 used an individual context and Study 2 was carried out in a group setting. Results indicated that procedural and conceptual instruction were more effective than no instruction, and the ability to identify variables was identified as a key piece to the CVS process. Executive function predicted ability to identify variables and predicted success on CVS tasks. Developmental differences were present, in that older children outperformed younger children on CVS tasks, and that conceptual instruction was slightly more effective for older children. Some differences between individual and group instruction were found, with those in the individual context showing some advantage over the those in the group setting in learning CVS concepts. Conceptual implications about scientific thinking and practical implications in science education are discussed.

  4. Educational strategies associated with development of problem-solving, critical thinking, and self-directed learning.

    Science.gov (United States)

    Hendricson, William D; Andrieu, Sandra C; Chadwick, D Gregory; Chmar, Jacqueline E; Cole, James R; George, Mary C; Glickman, Gerald N; Glover, Joel F; Goldberg, Jerold S; Haden, N Karl; Meyerowitz, Cyril; Neumann, Laura; Pyle, Marsha; Tedesco, Lisa A; Valachovic, Richard W; Weaver, Richard G; Winder, Ronald L; Young, Stephen K; Kalkwarf, Kenneth L

    2006-09-01

    This article was developed for the Commission on Change and Innovation in Dental Education (CCI), established by the American Dental Education Association. CCI was created because numerous organizations within organized dentistry and the educational community have initiated studies or proposed modifications to the process of dental education, often working to achieve positive and desirable goals but without coordination or communication. The fundamental mission of CCI is to serve as a focal meeting place where dental educators and administrators, representatives from organized dentistry, the dental licensure community, the Commission on Dental Accreditation, the ADA Council on Dental Education and Licensure, and the Joint Commission on National Dental Examinations can meet and coordinate efforts to improve dental education and the nation's oral health. One of the objectives of the CCI is to provide guidance to dental schools related to curriculum design. In pursuit of that objective, this article summarizes the evidence related to this question: What are educational best practices for helping dental students acquire the capacity to function as an entry-level general dentist or to be a better candidate to begin advanced studies? Three issues are addressed, with special emphasis on the third: 1) What constitutes expertise, and when does an individual become an expert? 2) What are the differences between novice and expert thinking? and 3) What educational best practices can help our students acquire mental capacities associated with expert function, including critical thinking and self-directed learning? The purpose of this review is to provide a benchmark that faculty and academic planners can use to assess the degree to which their curricula include learning experiences associated with development of problem-solving, critical thinking, self-directed learning, and other cognitive skills necessary for dental school graduates to ultimately become expert performers as

  5. Adopting a Design-Thinking Multidisciplinary Learning Approach: Integrating Mobile Applications into a Marketing Research Course

    Science.gov (United States)

    Zarzosa, Jennifer

    2018-01-01

    This article seeks to address the gap between marketing education and marketing practice by integrating a design-thinking (DT) methodology to the marketing research (MR) framework to achieve learning objectives that will enhance cross-functional, collaborative, conceptual, and technical skills. The mobile application marketing research project…

  6. Reflective Learning and Prospective Teachers' Conceptual Understanding, Critical Thinking, Problem Solving, and Mathematical Communication Skills

    Science.gov (United States)

    Junsay, Merle L.

    2016-01-01

    This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…

  7. Cooperative learning model with high order thinking skills questions: an understanding on geometry

    Science.gov (United States)

    Sari, P. P.; Budiyono; Slamet, I.

    2018-05-01

    Geometry, a branch of mathematics, has an important role in mathematics learning. This research aims to find out the effect of learning model, emotional intelligence, and the interaction between learning model and emotional intelligence toward students’ mathematics achievement. This research is quasi-experimental research with 2 × 3 factorial design. The sample in this research included 179 Senior High School students on 11th grade in Sukoharjo Regency, Central Java, Indonesia in academic year of 2016/2017. The sample was taken by using stratified cluster random sampling. The results showed that: the student are taught by Thinking Aloud Pairs Problem-Solving using HOTs questions provides better mathematics learning achievement than Make A Match using HOTs questions. High emotional intelligence students have better mathematics learning achievement than moderate and low emotional intelligence students, and moderate emotional intelligence students have better mathematics learning achievement than low emotional intelligence students. There is an interaction between learning model and emotional intelligence, and these affect mathematics learning achievement. We conclude that appropriate learning model can support learning activities become more meaningful and facilitate students to understand material. For further research, we suggest to explore the contribution of other aspects in cooperative learning modification to mathematics achievement.

  8. On the Relationship among Critical Thinking, Language Learning Strategy Use and University Achievement of Iranian English as a Foreign Language Majors

    Science.gov (United States)

    Afshar, Hassan Soodmand; Movassagh, Hossein

    2017-01-01

    The study investigated the relationship among critical thinking, strategy use and university achievement. To this end, 76 English major students sat the California Critical Thinking Skills Test and filled out Oxford's Strategy Inventory for Language Learning. Participants' Grade Point Averages were regarded as their university achievement. The…

  9. Assessing Children's Multiplicative Thinking

    Science.gov (United States)

    Hurst, Chris; Hurrell, Derek

    2016-01-01

    Multiplicative thinking is a "big idea" of mathematics that underpins much of the mathematics learned beyond the early primary school years. This paper reports on a current study that utilises an interview tool and a written quiz to gather data about children's multiplicative thinking. The development of the tools and some of the…

  10. It Makes You Think

    Science.gov (United States)

    Harden, Helen

    2009-01-01

    This article provides an overview of the "It Makes You Think" resource. The lessons provided by this resource show how students can learn about the global dimension through science. The "It Makes You Think" resource contains ten topics: (1) Metals in jewellery worldwide; (2) Global food market; (3) The worldwide travels of…

  11. Cloud Computing Benefits for E-learning Solutions

    OpenAIRE

    Paul POCATILU

    2010-01-01

    E-learning systems usually require many hardware and software resources. There are many educational institutions that cannot afford such investments, and cloud computing is the best solution. This paper presents the impact on using cloud computing for e-learning solutions.

  12. PENGARUH PELAKSANAAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE TERHADAP HASIL BELAJAR IPS SISWA

    Directory of Open Access Journals (Sweden)

    andi fathur asdar

    2016-08-01

    Full Text Available The objective of this research was to describe: 1 Teacher ability in the implementation of cooperative learning Think Pair Share, 2 Ttudent activities in the implementation of cooperative learning Think Pair Share, 3 Tearning result on IPS before and after the implementation of cooperative learning Think Pair Share, 4 learning result on IPS before and after learning process with lecture method, 5 to find out the influence of the implementation of cooperative learning Think Pair Share toward learning result on IPS. The method used was true experiment with pre-test post-test control group design. The population in the study are 4th grade student at SDN Sungguminasa II Somba Opu District Gowa Regency. Samples used are 40 student 20 student each from experiment and comparing group. chosen by simple random sampling. The data obtained from samples were analyzed with descritive and inferensial statistic. The result shows: 1 teacher ability in the implementation of cooperative learning Think Pair Share have increased, 2 student activities in the implementation of cooperative learning Think Pair Share, 3 student learning result who teached by cooperative learning Think Pair Share have increased, 4 student learning result who teached by lecture method have not increased, 5 the implementation of cooperative learning Think Pair Share is influencing toward learning result on IPS in 4th grade student at SDN Sungguminasa II Somba Opu District Gowa Regency.

  13. Assisting at-risk community college students' acquisition of critical thinking learning strategies in human anatomy and physiology

    Science.gov (United States)

    Arburn, Theresa Morkovsky

    1998-11-01

    The purpose of this study was to investigate whether learning thinking strategies within the context of a community college course in Human Anatomy and Physiology would result in increased academic performance and the incidence of critical thinking skills. Included in the study sample were 68 community college students, many of whom would be categorized as "at-risk," who were enrolled in four sections of a Human Anatomy and Physiology class. Two of the class sections served as the experimental group and two sections served as the control group. During the course of one semester, members of the experimental group participated in the use of a student-generated questioning technique in conjunction with lecture presentations, while members of the control group did not. All students were pretested using the Learning and Study Strategies Inventory (LASSI) and the California Critical Thinking Skills Test (CCTST). Posttesting was completed using these same instruments and an end-of-course comprehensive examination. Analysis of data revealed no significant differences between the experimental and control groups with regard to their overall achievement, their ability to process information, or their demonstration of critical thinking. It was interesting to note, however, that members of the experimental group did exhibit a change in their ability to select main ideas, apply deductive reasoning, and use inference. While the use of thinking strategies within the context of the course did not effect a significant change in academic achievement or critical thinking among at-risk community college students, it should be noted that application of a non-lecture method of class participation had no negative impact on student performance. Whether more abstruse changes have occurred with regard to the acquisition of cognitive skills remains to be elucidated.

  14. Assessing an Introduction to Systems Thinking

    Science.gov (United States)

    Monroe, Martha C.; Plate, Richard R.; Colley, Lara

    2015-01-01

    This research study investigated the learning outcomes of a brief systems thinking intervention at the undergraduate level. A pre/post experimental design (n = 50) was used to address two primary questions: (1) Can a brief introduction to systems thinking improve students' understanding of systems thinking? and (2) Which teaching method (of…

  15. Grade 8 students' capability of analytical thinking and attitude toward science through teaching and learning about soil and its' pollution based on science technology and society (STS) approach

    Science.gov (United States)

    Boonprasert, Lapisarin; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 8 students' analytical thinking and attitude toward science in teaching and learning about soil and its' pollution through science technology and society (STS) approach. The participants were 36 Grade 8 students in Naklang, Nongbualumphu, Thailand. The teaching and learning about soil and its' pollution through STS approach had carried out for 6 weeks. The soil and its' pollution unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' analytical thinking and attitude toward science was collected during their learning by participant observation, analytical thinking test, students' tasks, and journal writing. The findings revealed that students could gain their capability of analytical thinking. They could give ideas or behave the characteristics of analytical thinking such as thinking for classifying, compare and contrast, reasoning, interpreting, collecting data and decision making. Students' journal writing reflected that the STS class of soil and its' pollution motivated students. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  16. THE LEARNING RESULT DIFFERENCE OF STUDENT TEACH BY USING ENHANCEMENT LEARNING MODEL OF STUDENT’S THINKING ABILITY WITH CONVENSIONAL MODEL FOR FORCE AND NEWTON LAWS MATERIAL

    Directory of Open Access Journals (Sweden)

    Derlina .

    2013-06-01

    Full Text Available This research was done to observe the difference of learning achievement between student who have been teach by Enhancement Learning Model of Student’s Thinking Ability and Conventional Model. This research was done at SMP Negeri 2 Gebang. Type of this research is quasi experiment. Research population is every student of grade VIII semester 2 SMP Negeri 2 Gebang. Research sample was taken by random sampling around 2 classes as 34 students for experiment class and 34 students for control class. Learning achievement of test objective 20 of multiple choice was done as an instrument. The experiment result of pretest average is 37.94 for experiment class and 36.82 for control class. Treatment was done to each class, post test average score is 73.38 for experiment class and for student who have been teach by conventional learning is 67.05. Hypothetical testing is tcalculate > ttabe i.e 3.459 > 1.66 with significance standard α = 0.05 and dk = 66. It means that Ha was accepted, so it may conclude that there is a difference of learning achievement between Enhancement Learning Model of Student’s Thinking Ability with Conventional Learning Model for Force and Newton Laws on Grade VIII SMP Negeri 2 Gebang Annual Year 2011/2012.

  17. A Reflective Study into Children's Cognition When Making Computer Games

    Science.gov (United States)

    Allsop, Yasemin

    2016-01-01

    In this paper, children's mental activities when making digital games are explored. Where previous studies have mainly focused on children's learning, this study aimed to unfold the children's thinking process for learning when making computer games. As part of an ongoing larger scale study, which adopts an ethnographic approach, this research…

  18. Growing of the mathematical thinking imaginative to students in designing of the teaching aids for CWD towards to joyful learning

    Science.gov (United States)

    Sugiman; Sugiharti, E.; Kurniawati, N. F.

    2018-03-01

    Government and the private parties had also organized of Special School (SS) and Inclusive School. SS requires of math teachers who were professional in the material, but also master the needs of Children with Disabilities (CwD) in teaching-learning process. The problem: How to design the Teaching Aids for CwD through Extra-Curriculum Training (ECT) activities to Joyful Learning? The purposes of this research: (1) To find new ways how to grow the imaginative in mathematical thinking for students of Mathematics Education. (2) To find a Teaching Aids Design that suitable for CwD who studying in SS. (3) In order to create a Teaching Aids for CwD through activities based on ECT to Joyful Learning. The research method was done by qualitative approach. The research subjects were 6 students of Mathematics Education Study Program of FMIPA UNNES who were interested in attending of the training activities based on ECT. The results: (1) ECT can be a place to grow an Imaginative in Mathematical Thinking of students, (2) created the design of the teaching aids for CwD through activities based on ECT to Joyful Learning as a mirror of the imaginative growth in mathematical thinking for students.

  19. Preservice Teachers' Introduction to Computing: Exploring Utilization of Scratch

    Science.gov (United States)

    Cetin, Ibrahim

    2016-01-01

    Computational thinking has been gaining new impetus in the academic community and in K-12 level education. Scratch is a visual programming environment that can be utilized to teach and learn introductory computing concepts. There are some studies investigating the effectiveness of Scratch for K-12 level education. However, studies that have been…

  20. The Application of Carousel Feedback and Round Table Cooperative Learning Models to Improve Student's Higher Order Thinking Skills (HOTS) and Social Studies Learning Outcomes

    Science.gov (United States)

    Yusmanto, Harry; Soetjipto, Budi Eko; Djatmika, Ery Tri

    2017-01-01

    This Classroom Action Research aims to improve students' HOTS (High Order Thinking Skills) and Social Studies learning outcomes through the application of Carousel Feedback and Round Table cooperative learning methods. This study was based on a model proposed by Elliott and was implemented for three cycles. The subjects were 30 female students of…

  1. The influence of discovery learning model application to the higher order thinking skills student of Srijaya Negara Senior High School Palembang on the animal kingdom subject matter

    Science.gov (United States)

    Riandari, F.; Susanti, R.; Suratmi

    2018-05-01

    This study aimed to find out the information in concerning the influence of discovery learning model application to the higher order thinking skills at the tenth grade students of Srijaya Negara senior high school Palembang on the animal kingdom subject matter. The research method used was pre-experimental with one-group pretest-posttest design. The researchconducted at Srijaya Negara senior high school Palembang academic year 2016/2017. The population sample of this research was tenth grade students of natural science 2. Purposive sampling techniquewas applied in this research. Data was collected by(1) the written test, consist of pretest to determine the initial ability and posttest to determine higher order thinking skills of students after learning by using discovery learning models. (2) Questionnaire sheet, aimed to investigate the response of the students during the learning process by using discovery learning models. The t-test result indicated there was significant increasement of higher order thinking skills students. Thus, it can be concluded that the application of discovery learning modelhad a significant effect and increased to higher order thinking skills students of Srijaya Negara senior high school Palembang on the animal kingdom subject matter.

  2. Impact of Computer Aided Learning on Children with Specific Learning Disabilities

    OpenAIRE

    The Spastic Society Of Karnataka , Bangalore

    2004-01-01

    Study conducted by The Spastics Society of Karnataka on behalf of Azim Premji Foundation to assess the effectiveness of computers in enhancing learning for children with specific learning disabilities. Azim Premji Foundation is not liable for any direct or indirect loss or damage whatsoever arising from the use or access of any information, interpretation and conclusions that may be printed in this report.; Study to assess the effectiveness of computers in enhancing learning for children with...

  3. Get set for computer science

    CERN Document Server

    Edwards, Alistair

    2006-01-01

    This book is aimed at students who are thinking of studying Computer Science or a related topic at university. Part One is a brief introduction to the topics that make up Computer Science, some of which you would expect to find as course modules in a Computer Science programme. These descriptions should help you to tell the difference between Computer Science as taught in different departments and so help you to choose a course that best suits you. Part Two builds on what you have learned about the nature of Computer Science by giving you guidance in choosing universities and making your appli

  4. Evaluation of the Correlation between Learning Styles and Critical Thinking Dispositions of the Students of School of Physical Education and Sports

    Science.gov (United States)

    Çetin, Mehmet Çagri

    2014-01-01

    The study was conducted in order to detect critical thinking dispositions and learning styles of the students of school of physical education and sports, to explore whether there was a significant difference in terms of gender variable and academic department variable and, to discover the correlation between critical thinking tendencies and…

  5. Thinking Routines: Replicating Classroom Practices within Museum Settings

    Science.gov (United States)

    Wolberg, Rochelle Ibanez; Goff, Allison

    2012-01-01

    This article describes thinking routines as tools to guide and support young children's thinking. These learning strategies, developed by Harvard University's Project Zero Classroom, actively engage students in constructing meaning while also understanding their own thinking process. The authors discuss how thinking routines can be used in both…

  6. A case study about supporting the development of thinking by means of ICT and concretisation tools

    NARCIS (Netherlands)

    Lou A.M.P. Slangen; Piet A.M. Kommers; Nardie L.J.A.

    2008-01-01

    Improving learning and thinking in school has been an objective of the educational community for a long time. Computer applications and especially mind tools can be helpful in reaching this objective. Control software that operates a connected physical micro world and is used as a kind of mind tool,

  7. The Effect of English Language Learning on Creative Thinking Skills: A Mixed Methods Case Study

    Science.gov (United States)

    Sehic, Sandro

    2017-01-01

    The purpose of this sequential explanatory mixed-methods case study was to investigate the effects of English language learning on creative thinking skills in the domains of fluency, flexibility, originality, and elaboration as measured with the Alternate Uses Test. Unlike the previous research studies that investigated the links between English…

  8. 311 Developing Critical Thinking and Communication Skills in ...

    African Journals Online (AJOL)

    User

    2012-01-24

    Jan 24, 2012 ... educators as vital skills required for mastery of school subjects. However, it is observed ... thinking, communication competence and its importance for effective teaching and learning; teachers must learn to think critically and must ..... students should engage in a formal/informal discussion/debate activity on ...

  9. What we think we learn from watching others: the moderating role of ability on perceptions of learning from observation.

    Science.gov (United States)

    Hodges, Nicola J; Coppola, Thomas

    2015-07-01

    Despite increased interest in the processes guiding action observation and observational learning, we know little about what people think they learn from watching, how well perceptions of learning marry with actual ability and how ability perceptions develop across multiple observation trials. Based on common coding ideas, we would think that ability and perceptions of ability from watching should be well matched. We conducted two studies to answer these questions that involved repeated observation of a 2-ball juggling task. After each video observation, observers judged if they could perform the skill and gave a confidence score (0-100%). In Experiment 1, an Observe-only group was compared to an Observe + Physical practice and No-practice group. Both observer groups showed a better physical approximation of the juggling action after practice and in retention and their confidence increased in a linear fashion. Confidence showed a small, yet significant relationship to actual success. In Experiment 2, we limited physical practice to 5 attempts (across 50 observation trials). In general, people who had high perceptions of ability following a demonstration were overconfident, whereas those with lower perceptions of ability were accurate in their assessments. Confidence generally increased across practice, particularly for trials following observation rather than physical practice. We conclude that while perceptions of ability and actual ability show congruence across trials and individuals, observational practice increases people's confidence in their ability to perform a skill, even despite physical experiences to the contrary.

  10. THINK-PAIR-SHARE: A TECNIQUE TO ENHANCE STUDENTS’ WRITING SKILL

    OpenAIRE

    Okta Ika Rahmawati

    2017-01-01

    Abstract: Think – Pair Share: A Tecnique to Enhance Students’ Writing Skill. This article refers to a classroom action research on teaching writing by implementing Think-Pair-Share at High School in Bojonegoro. Think-Pair-Share Technique is a kind of cooperative learning technique. This technique encourages students to actively involve in the learning process since they have to discuss with their partner about the material being learned. The subject of the study was the tenth-grade students o...

  11. Assessment of (Computer-Supported) Collaborative Learning

    Science.gov (United States)

    Strijbos, J. -W.

    2011-01-01

    Within the (Computer-Supported) Collaborative Learning (CS)CL research community, there has been an extensive dialogue on theories and perspectives on learning from collaboration, approaches to scaffold (script) the collaborative process, and most recently research methodology. In contrast, the issue of assessment of collaborative learning has…

  12. The Computational Development of Reinforcement Learning during Adolescence.

    Directory of Open Access Journals (Sweden)

    Stefano Palminteri

    2016-06-01

    Full Text Available Adolescence is a period of life characterised by changes in learning and decision-making. Learning and decision-making do not rely on a unitary system, but instead require the coordination of different cognitive processes that can be mathematically formalised as dissociable computational modules. Here, we aimed to trace the developmental time-course of the computational modules responsible for learning from reward or punishment, and learning from counterfactual feedback. Adolescents and adults carried out a novel reinforcement learning paradigm in which participants learned the association between cues and probabilistic outcomes, where the outcomes differed in valence (reward versus punishment and feedback was either partial or complete (either the outcome of the chosen option only, or the outcomes of both the chosen and unchosen option, were displayed. Computational strategies changed during development: whereas adolescents' behaviour was better explained by a basic reinforcement learning algorithm, adults' behaviour integrated increasingly complex computational features, namely a counterfactual learning module (enabling enhanced performance in the presence of complete feedback and a value contextualisation module (enabling symmetrical reward and punishment learning. Unlike adults, adolescent performance did not benefit from counterfactual (complete feedback. In addition, while adults learned symmetrically from both reward and punishment, adolescents learned from reward but were less likely to learn from punishment. This tendency to rely on rewards and not to consider alternative consequences of actions might contribute to our understanding of decision-making in adolescence.

  13. Computer-Supported Collaborative Learning in Higher Education

    Science.gov (United States)

    Roberts, Tim, Ed.

    2005-01-01

    "Computer-Supported Collaborative Learning in Higher Education" provides a resource for researchers and practitioners in the area of computer-supported collaborative learning (also known as CSCL); particularly those working within a tertiary education environment. It includes articles of relevance to those interested in both theory and practice in…

  14. An E-learning System based on Affective Computing

    Science.gov (United States)

    Duo, Sun; Song, Lu Xue

    In recent years, e-learning as a learning system is very popular. But the current e-learning systems cannot instruct students effectively since they do not consider the emotional state in the context of instruction. The emergence of the theory about "Affective computing" can solve this question. It can make the computer's intelligence no longer be a pure cognitive one. In this paper, we construct an emotional intelligent e-learning system based on "Affective computing". A dimensional model is put forward to recognize and analyze the student's emotion state and a virtual teacher's avatar is offered to regulate student's learning psychology with consideration of teaching style based on his personality trait. A "man-to-man" learning environment is built to simulate the traditional classroom's pedagogy in the system.

  15. Visual Thinking, Algebraic Thinking, and a Full Unit-Circle Diagram.

    Science.gov (United States)

    Shear, Jonathan

    1985-01-01

    The study of trigonometric functions in terms of the unit circle offer an example of how students can learn algebraic relations and operations while using visually oriented thinking. Illustrations are included. (MNS)

  16. The effects of practice schedule and critical thinking prompts on learning and transfer of complex judgment

    NARCIS (Netherlands)

    Helsdingen, Anne; Van Gog, Tamara; Van Merriënboer, Jeroen

    2010-01-01

    Helsdingen, A. S., Van Gog, T., & Van Merriënboer, J. J. G. (2011). The effects of practice schedule and critical thinking prompts on learning and transfer of complex judgment task. Journal of Educational Psychology, 103(2), 383-398. doi:10.1037/a0022370

  17. Debate: a teaching-learning strategy for developing competence in communication and critical thinking.

    Science.gov (United States)

    Darby, Michele

    2007-01-01

    The literature highlights key benefits from debate as a teaching-learning strategy for developing critical thinking and analytical skills while fostering teamwork and communication. Authors report that this method of teaching-learning has been implemented successfully in nursing and occupational therapy programs and would benefit other academic programs in the health sciences, particularly in courses that cover controversial issues. Although there are disadvantages to using the debate as a teaching-learning strategy, the benefits far outweigh the disadvantages. In conclusion, debating is an effective pedagogical strategy because of the level of responsibility for learning and active involvement required by all student debaters. Moreover, it provides an experience by which students can develop competencies in researching current issues, preparing logical arguments, actively listening to various perspectives, differentiating between subjective and evidence-based information, asking cogent questions, integrating relevant information, and formulating their own opinions based on evidence. After the debate is over, students also report that the experience is FUN!

  18. Effects of an Integrated Science and Societal Implication Intervention on Promoting Adolescents' Positive Thinking and Emotional Perceptions in Learning Science

    Science.gov (United States)

    Hong, Zuway R.; Lin, Huann-Shyang; Lawrenz, Frances P.

    2012-02-01

    The goal of this study was to test the effectiveness of integrating science and societal implication on adolescents' positive thinking and emotional perceptions about learning science. Twenty-five eighth-grade Taiwanese adolescents (9 boys and 16 girls) volunteered to participate in a 12-week intervention and formed the experimental group. Fifty-seven eighth-grade Taiwanese adolescents (30 boys and 27 girls) volunteered to participate in the assessments and were used as the comparison group. Additionally, 15 experimental students were recruited to be observed and interviewed. Paired t-tests, correlations, and analyses of covariance assessed the similarity and differences between groups. The findings were that the experimental group significantly outperformed its counterpart on positive thinking and emotional perceptions, and all participants' positive thinking scores were significantly related to their emotional perceptions about learning science. Recommendations for integrating science and societal implication for adolescents are provided.

  19. Writing Shapes Thinking: Investigative Study of Preservice Teachers Reading, Writing to Learn, and Critical Thinking

    Science.gov (United States)

    Sanchez, Bernice; Lewis, Katie D.

    2014-01-01

    Teacher Preparation Programs must work towards not only preparing preservice teachers to have knowledge of classroom pedagogy but also must expand preservice teachers understanding of content knowledge as well as to develop higher-order thinking which includes thinking critically. This mixed methods study examined how writing shapes thinking and…

  20. Design of Intelligent Robot as A Tool for Teaching Media Based on Computer Interactive Learning and Computer Assisted Learning to Improve the Skill of University Student

    Science.gov (United States)

    Zuhrie, M. S.; Basuki, I.; Asto B, I. G. P.; Anifah, L.

    2018-01-01

    The focus of the research is the teaching module which incorporates manufacturing, planning mechanical designing, controlling system through microprocessor technology and maneuverability of the robot. Computer interactive and computer-assisted learning is strategies that emphasize the use of computers and learning aids (computer assisted learning) in teaching and learning activity. This research applied the 4-D model research and development. The model is suggested by Thiagarajan, et.al (1974). 4-D Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with an objective to produce a tool of learning in the form of intelligent robot modules and kit based on Computer Interactive Learning and Computer Assisted Learning. From the data of the Indonesia Robot Contest during the period of 2009-2015, it can be seen that the modules that have been developed confirm the fourth stage of the research methods of development; disseminate method. The modules which have been developed for students guide students to produce Intelligent Robot Tool for Teaching Based on Computer Interactive Learning and Computer Assisted Learning. Results of students’ responses also showed a positive feedback to relate to the module of robotics and computer-based interactive learning.

  1. Towards an understanding of students’ thinking in learning new and unfamiliar concepts: Focus on the factorial function

    Directory of Open Access Journals (Sweden)

    Satsope Maoto

    2015-11-01

    Full Text Available This study used participant observation to explore students’ thinking when learning the concept of factorial functions. First-year university students undertaking a mathematics methodology course were asked to find the number of ways in which five people could sit around a circular table with five seats. Using grounded theory as a qualitative research strategy, we analysed student responses and written reflections according to the sequence of their experiential realities: practical and textual experiences. This was followed by an analysis of their reflections on both experiences in a pedagogical context. We found that the way basic mathematics operations are learned impacts on the student’s ability to experience components of new problems as familiar. Consequently, they encounter these problems as new and unfamiliar. At the same time we found that engagement with practical experience does allow for the emergence of representations that have the potential to be used as foundations for learning new and unfamiliar concepts. The blending of practical, textual and teaching experiences provoked students’ thinking and ultimately their understanding of a given new and unfamiliar mathematics concept.

  2. THE DEVELOPMENT, IMPLEMENTATION, AND EFFECTIVENESS OF A PEDAGOGICAL TREATMENT FOR THE TEACHING AND LEARNING OF CRITICAL THINKING

    Directory of Open Access Journals (Sweden)

    Joanne R. Reid

    2013-08-01

    Full Text Available A quasi-experimental study of a pedagogical treatment in critical thinking was undertaken in a college of business. The quantitative results demonstrated significant improvements in 6 of 7 measures of critical thinking using a validated assessment instrument. This treatment was taught in the college of business for four years. A qualitative/quantitative survey was taken of the graduates of the college who had taken this treatment. Quantitative results were validated by the qualitative responses of the graduates. Graduates were confirmed to use the critical thinking knowledge, skills and strategies they had learned in their personal, academic, and professional lives. Graduates were also shown to be highly satisfied with the effects of the treatment in their personal, academic, and professional lives.

  3. System of didactic procedures to drive the teaching-learning of the computation in the half school level

    Directory of Open Access Journals (Sweden)

    Isabel Alonso-Berenguer

    2016-09-01

    Full Text Available A system of teaching methods is presented to drive the dynamics of the teaching-learning process of the Computation in the Half School Level, based on an interdisciplinary logic from cognitive nodes. This practical construct was designed using the Systemic-Structural-Functional method and was structured in two procedures, the relative to the appropriation of a computational culture and the concerning to the development of computational thinking, which in turn, are composed of a set of linked actions that are structured logically, that make possible the development of said dynamic. It also has evaluative criteria and patterns of achievement that allow for evaluation of the results obtained. The feasibility and relevance of the system of procedures was validated by conducting a socialization workshop with specialists of territory and through a survey of specialists from other provinces. Its application during the last two years has enabled its improvement.

  4. Teaching Sociology and Womens’ Critical Thinking

    OpenAIRE

    Mohammad-Ali Zaki

    2013-01-01

    Introduction Sociology of Teaching sociology is seen as a fresh new place to explore the importance and role of critical thinking in the sociology of education has been one of the most important issues to consider.Principles of Sociology course ample opportunities for students to develop critical thinking skills and attitudes and serves as a missionary spirit, critical thinking has suggested an alternative,Areas has brought the development of critical thinking. Learn the basics of critical...

  5. The Effect of Search, Solve, Create, And Share (SSCS Learning Model towards Student’s Critical Thinking Skills

    Directory of Open Access Journals (Sweden)

    Burhanudin Milama

    2017-11-01

    Full Text Available The aim of this study is determine the effect of search, solve, create, and share (SSCS learning model on critical thinking skills of hydrocarbons and petroleum material. The method used in this study was quasi experimental design, with research design nonequivalent control group design. The sample was taken by purposive sampling and divided into two groups consist of control group and experimental group. The data gathering techniques in this study was through 8 items of essay test instrument which is analyzed by using t-test. The results of t-test data showed that tcount ttable or 16.36 1.980 at significance level 5%, value tcount lies in the region reject H0 and accept Ha. The result shows that there are significant search, solve, create, and share (SSCS learning model on student’s critical thinking skills.

  6. Lessons Learned from Applying Design Thinking in a NASA Rapid Design Study in Aeronautics

    Science.gov (United States)

    McGowan, Anna-Maria; Bakula, Casey; Castner, Raymond

    2017-01-01

    In late 2015, NASA's Aeronautics Research Mission Directorate (ARMD) funded an experiment in rapid design and rapid teaming to explore new approaches to solving challenging design problems in aeronautics in an effort to cultivate and foster innovation. This report summarizes several lessons learned from the rapid design portion of the study. This effort entailed learning and applying design thinking, a human-centered design approach, to complete the conceptual design for an open-ended design challenge within six months. The design challenge focused on creating a capability to advance experimental testing of autonomous aeronautics systems, an area of great interest to NASA, the US government as a whole, and an entire ecosystem of users and developers around the globe. A team of nine civil servant researchers from three of NASA's aeronautics field centers with backgrounds in several disciplines was assembled and rapidly trained in design thinking under the guidance of the innovation and design firm IDEO. The design thinking process, while used extensively outside the aerospace industry, is less common and even counter to many practices within the aerospace industry. In this report, several contrasts between common aerospace research and development practices and design thinking are discussed, drawing upon the lessons learned from the NASA rapid design study. The lessons discussed included working towards a design solution without a set of detailed design requirements, which may not be practical or even feasible for management to ascertain for complex, challenging problems. This approach allowed for the possibility of redesigning the original problem statement to better meet the needs of the users. Another lesson learned was to approach problems holistically from the perspective of the needs of individuals that may be affected by advances in topic area instead of purely from a technological feasibility viewpoint. The interdisciplinary nature of the design team also

  7. Effects of Using Problem of the Week in Teaching on Teacher Learning and Change in Algebraic Thinking and Algebra

    Science.gov (United States)

    Wu, Zhonghe

    2017-01-01

    The study investigated the effects of using the problem of the week in teaching (POWT) on teachers' learning and changes in knowledge and teaching skills, in algebraic thinking and algebra tasks, in the setting of a university mathematics education graduate program. The graduate students participated in learning POWT weekly in a mathematics…

  8. Bilingualism and Creativity: Benefits in Convergent Thinking Come with Losses in Divergent Thinking

    Science.gov (United States)

    Hommel, Bernhard; Colzato, Lorenza S.; Fischer, Rico; Christoffels, Ingrid K.

    2011-01-01

    Bilingualism is commonly assumed to improve creativity but the mechanisms underlying creative acts, and the way these mechanisms are affected by bilingualism, are not very well understood. We hypothesize that learning to master multiple languages drives individuals toward a relatively focused cognitive-control state that exerts strong top-down impact on information processing and creates strong local competition for selection between cognitive codes. Considering the control requirements posed by creativity tasks tapping into convergent and divergent thinking, this predicts that high-proficient bilinguals should outperform low-proficient bilinguals in convergent thinking, while low-proficient bilinguals might be better in divergent thinking. Comparing low- and high-proficient bilinguals on convergent-thinking and divergent-thinking tasks indeed showed a high-proficient bilingual advantage for convergent thinking but a low-proficient bilingual advantage for fluency in divergent thinking. These findings suggest that bilingualism should not be related to “creativity” as a unitary concept but, rather, to the specific processes and mechanisms that underlie creativity. PMID:22084634

  9. Bilingualism and creativity: Benefits in convergent thinking come with losses in divergent thinking

    Directory of Open Access Journals (Sweden)

    Bernhard eHommel

    2011-11-01

    Full Text Available Bilingualism is commonly assumed to improve creativity but the mechanisms underlying creative acts, and the way these mechanisms are affected by bilingualism, are not very well understood. We hypothesize that learning to master multiple languages drives individuals towards a strongly focused cognitive-control state that exerts strong top-down impact on information processing and creates strong local competition for selection between cognitive codes. Considering the control requirements posed by creativity tasks tapping into convergent and divergent thinking, this predicts that high-proficient bilinguals should outperform low-proficient bilinguals in convergent thinking, while low-proficient bilinguals might be better in divergent thinking. Comparing low- and high-proficient bilinguals on convergent-thinking and divergent-thinking tasks indeed showed a high-proficient bilingual advantage for convergent thinking but a low-proficient bilingual advantage for fluency in divergent thinking. These findings suggest that bilingualism should not be related to creativity as a unitary concept but, rather, to the specific processes and mechanisms that underlie creativity.

  10. Computer Support for Vicarious Learning.

    Science.gov (United States)

    Monthienvichienchai, Rachada; Sasse, M. Angela

    This paper investigates how computer support for vicarious learning can be implemented by taking a principled approach to selecting and combining different media to capture educational dialogues. The main goal is to create vicarious learning materials of appropriate pedagogic content and production quality, and at the same time minimize the…

  11. The Role of System Thinking Development and Experiential Learning on Enterprise Transformation

    Science.gov (United States)

    Lopez, Gabriel

    The recent economic downturn has had global repercussions in all businesses alike. Competition is fierce and a survival of the fittest model is always present; fast delivery times and innovative designs ultimately translate into the enterprises' bottom line. In such market conditions, enterprises have to find ways to develop and train their workforce in a manner that enhances the innovative capabilities of the enterprise. Additionally, if companies are to stay competitive, they have to ensure critical skills in their workforce are transferred from generation to generation. This study builds on recent research on system-thinking development via experiential learning methodologies. First, a conceptual framework model was developed. This conceptual model captures a methodology to construct a system-thinking apprenticeship program suitable for system engineers. Secondly, a survey of system engineering professionals was conducted in order to assess and refine the proposed conceptual model. This dissertation captures the findings of the conceptual model and the implications of the study for enterprises and for system engineering organizations.

  12. INQUIRY –BASED LEARNING FOR ENHANCING CRITICAL THINKING SKILLS: INDONESIAN STUDENTS‘ PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Hersulastuti Hersulastuti

    2017-12-01

    Full Text Available This paper was mainly intended to shed light on students‘ response towards the implementation of Inquiry-Based Learning (IBL in Reading and Writing subject, and explore its benefits for enhancing critical thinking skills from students‘perspectives in ELT context. This research was conducted through a qualitative case study approach. Three students of graduate program were purposively selected to be the participants. Data were gathered primarily from observation notes and interviews, and then further analyzed using interractive model analysis as proposed by Miles & Huberman (1994. The findings demonstrate that students have good responses towards the implementation of IBL. Moreover, IBL is beneficial to make students become more self-directed, selfdisciplined, self-monitored thinkers. Through IBL, students develop their critical thinking abilities: 1 raise vital questions and problems; 2 gather and assess relevant information; 3 drawing well-reasoned conclusions; and 4 communicate effectively with others to seek solution to complex problems.

  13. Learning to Think Slower: Review of Thinking, Fast and Slow by Daniel Kahneman (2011)

    OpenAIRE

    Samuel L. Tunstall; Patrick N. Beymer

    2017-01-01

    Daniel Kahneman. Thinking, Fast and Slow (New York, NY: Farrar, Straus and Giroux) 499 pp. ISBN 978-0374275631. As an expansive review of Kahneman and others' work over the past half-century in understanding human decision-making, Thinking, Fast and Slow provides Numeracy readers much to consider for both pedagogy and research. In this review, we outline Kahneman's core argument—that humans use both rash (emotional) System 1 thinking and slow (logical) System 2 thinking—then discuss how su...

  14. Deep Learning for Computer Vision: A Brief Review

    Science.gov (United States)

    Doulamis, Nikolaos; Doulamis, Anastasios; Protopapadakis, Eftychios

    2018-01-01

    Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein. PMID:29487619

  15. Deep Learning for Computer Vision: A Brief Review

    Directory of Open Access Journals (Sweden)

    Athanasios Voulodimos

    2018-01-01

    Full Text Available Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.

  16. Deep Learning for Computer Vision: A Brief Review.

    Science.gov (United States)

    Voulodimos, Athanasios; Doulamis, Nikolaos; Doulamis, Anastasios; Protopapadakis, Eftychios

    2018-01-01

    Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.

  17. Computer Assisted Language Learning (CALL): Using Internet for Effective Language Learning

    NARCIS (Netherlands)

    Kremenska, Anelly

    2006-01-01

    Please, cite this publication as: Kremenska, A. (2006). Computer Assisted Language Learning (CALL): Using Internet for Effective Language Learning. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. March 30th-31st, Sofia,

  18. Developing Learning Model Based on Local Culture and Instrument for Mathematical Higher Order Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin

    2017-01-01

    This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…

  19. Scrutiny of Critical Thinking Concept

    Science.gov (United States)

    Atabaki, Ali Mohammad Siahi; Keshtiaray, Narges; Yarmohammadian, Mohammad H.

    2015-01-01

    Learning critical thinking skills are the goal of educational systems so the term "critical thinking" (CT) is frequently found in educational policy documents. Despite this frequency, however, precise understandings among teachers of what CT really means do not exit. The present study is designed to answer the following question. We can…

  20. The Impact of Cloud Computing Technologies in E-learning

    Directory of Open Access Journals (Sweden)

    Hosam Farouk El-Sofany

    2013-01-01

    Full Text Available Cloud computing is a new computing model which is based on the grid computing, distributed computing, parallel computing and virtualization technologies define the shape of a new technology. It is the core technology of the next generation of network computing platform, especially in the field of education, cloud computing is the basic environment and platform of the future E-learning. It provides secure data storage, convenient internet services and strong computing power. This article mainly focuses on the research of the application of cloud computing in E-learning environment. The research study shows that the cloud platform is valued for both students and instructors to achieve the course objective. The paper presents the nature, benefits and cloud computing services, as a platform for e-learning environment.

  1. Questioning and metacognitive thinking: On-line and off-line assessments in understanding the role of prompting/questioning and metacognitive thinking in a digital learning environment

    Science.gov (United States)

    Schroeder, Mubina Khan

    In science education, the use of digital technology-based learning can help students struggling with difficult concepts such as the movement of molecules. While digital learning tools hold much promise for science education, the question arises as to whether or not such technology can serve as an adequate surrogate for the teacher-student interactions that theorists like Lev Vygotsky (1978) underscored as being critical to learning. In response to such concerns, designers of digital curricula often utilize scaffolds to help students as they learn from such programs. Using a simulation designed to teach students about the concept of diffusion as an example, I examine the effect of including prompting language in the learning sequence of the simulation. The use of prompting language in digital curriculum appears to be successful because it elicits science students to reflect and metacognise about their learning, lending support to Vygotsky's (1978) ideas of teaching and learning involving outer and inner dialog. However, findings from think aloud data continue to underscore the importance of human linguistic exchange as a preferable learning paradigm.

  2. Exploring Cloud Computing for Distance Learning

    Science.gov (United States)

    He, Wu; Cernusca, Dan; Abdous, M'hammed

    2011-01-01

    The use of distance courses in learning is growing exponentially. To better support faculty and students for teaching and learning, distance learning programs need to constantly innovate and optimize their IT infrastructures. The new IT paradigm called "cloud computing" has the potential to transform the way that IT resources are utilized and…

  3. Experiences of Scientific Thinking in Physics Classrooms

    Directory of Open Access Journals (Sweden)

    Alexandre Fagundes Faria

    2018-04-01

    Full Text Available There is a contemporary demand on STEM education to support learning experiences in which students use scientific thinking to solve tasks. Scientific thinking involves domain-specific knowledge and general domain strategies of thinking. The object of interest in this research was the set of students’ experiences of scientific thinking in which they articulate domain-general strategies and domain-specific knowledge to solve physics tasks. Our goal was to characterize the experiences of scientific thinking of two groups of four students engaged in tasks about Newtonian Mechanics. The volunteers were 19 students, 15-17 years old, enrolled in electronics or computer science courses (11th grade of a Brazilian vocational high school at Belo Horizonte/Minas Gerais. All class activities proposed to the students have been regularly used since 2010, therefore, we made no special intervention to conduct the study. Data collection occurred during the classes and involved audio and video recordings of students working in group; field notes; and photographs of students’ notebooks and of the posters they made to conduct oral presentations. The choice of the groups was based on how assiduous the members were. We have transcribed episodes in which we identified experiences of scientific thinking. These transcriptions, the field notes and the photographs were analyzed together, in interaction with each other. Data analysis is based upon John Dewey’s Theory of Experience. Our results show that the experiences of scientific thinking of the two groups were educative experiences, although qualitatively different. This difference was due to the way students interacted with the conditions given to solve the tasks. Additional information is given about the school circumstances in which the study was conducted to allow a better evaluation of results quality.

  4. Improving Undergraduates' Critical Thinking Skills through Peer-learning Workshops

    Science.gov (United States)

    Cole, S. B.

    2013-12-01

    Critical thinking skills are among the primary learning outcomes of undergraduate education, but they are rarely explicitly taught. Here I present a two-fold study aimed at analyzing undergraduate students' critical thinking and information literacy skills, and explicitly teaching these skills, in an introductory Planetary Science course. The purpose of the research was to examine the students' information-filtering skills and to develop a short series of peer-learning workshops that would enhance these skills in both the students' coursework and their everyday lives. The 4 workshops are designed to be easily adaptable to any college course, with little impact on the instructor's workload. They make use of material related to the course's content, enabling the instructor to complement a pre-existing syllabus while explicitly teaching students skills essential to their academic and non-academic lives. In order to gain an understanding of undergraduates' existing information-filtering skills, I examined the material that they consider to be appropriate sources for a college paper. I analyzed the Essay 1 bibliographies of a writing-based introductory Planetary Science course for non-majors. The 22 essays cited 135 (non-unique) references, only half of which were deemed suitable by their instructors. I divided the sources into several categories and classified them as recommended, recommended with caution, and unsuitable for this course. The unsuitable sources ranged from peer-reviewed journal articles, which these novice students were not equipped to properly interpret, to websites that cannot be relied upon for scientific information (e.g., factoidz.com, answersingenesis.org). The workshops aim to improve the students' information-filtering skills by sequentially teaching them to evaluate search engine results, identify claims made on websites and in news articles, evaluate the evidence presented, and identify specific correlation/causation fallacies in news articles

  5. "Bigger Number Means You Plus!"--Teachers Learning to Use Clinical Interviews to Understand Students' Mathematical Thinking

    Science.gov (United States)

    Heng, Mary Anne; Sudarshan, Akhila

    2013-01-01

    This paper examines the perceptions and understandings of ten grades 1 and 2 Singapore mathematics teachers as they learned to use clinical interviews (Ginsburg, "Human Development" 52:109-128, 2009) to understand students' mathematical thinking. This study challenged teachers' pedagogical assumptions about what it means to teach for…

  6. The Impact of Computer Use on Learning of Quadratic Functions

    Science.gov (United States)

    Pihlap, Sirje

    2017-01-01

    Studies of the impact of various types of computer use on the results of learning and student motivation have indicated that the use of computers can increase learning motivation, and that computers can have a positive effect, a negative effect, or no effect at all on learning outcomes. Some results indicate that it is not computer use itself that…

  7. (e- Mind Thinking with e-Um

    Directory of Open Access Journals (Sweden)

    Damjan Kobal

    2008-04-01

    Full Text Available Modern technology has opened up many new possibilities in learning. Unfortunately, technology's uncritical use can also be damaging. In promoting productive and comprehensive IT learning the essential issue lies within the capability of the teacher and IT material to use computer to promote the basic cognitive aspects of learning and not only to manipulate the learner to remain motivated. Motivation is productive only if used with a focus towards knowledge and understanding. Especially in mathematics the concepts, we try to teach, are simple and logical, but often abstract. Smart use of computers can motivate this abstract concepts through intuitive simulations and animations as well as provide a sophisticated but simple insight into the causality of mathematical thinking. Thus, we argue that preparation of good e-Learning materials requires an almost contemplative focus on what we want to communicate in order not to overwhelm the student with too many effects that the technology offers. The concept and the vision of E-um project has been based on the above premises with a comprehensive system of simple technical, mathematical and didactical guidelines, together with a dynamic and creative system of permanent self evaluation and control. To support those premises new software package based on the Exe open source system has been developed. In order to provide an adequate technical framework for our conceptual ideas new emerging technologies with an emphasis on writing mathematical texts had been used.

  8. Development of cyberblog-based intelligent tutorial system to improve students learning ability algorithm

    Science.gov (United States)

    Wahyudin; Riza, L. S.; Putro, B. L.

    2018-05-01

    E-learning as a learning activity conducted online by the students with the usual tools is favoured by students. The use of computer media in learning provides benefits that are not owned by other learning media that is the ability of computers to interact individually with students. But the weakness of many learning media is to assume that all students have a uniform ability, when in reality this is not the case. The concept of Intelligent Tutorial System (ITS) combined with cyberblog application can overcome the weaknesses in neglecting diversity. An Intelligent Tutorial System-based Cyberblog application (ITS) is a web-based interactive application program that implements artificial intelligence which can be used as a learning and evaluation media in the learning process. The use of ITS-based Cyberblog in learning is one of the alternative learning media that is interesting and able to help students in measuring ability in understanding the material. This research will be associated with the improvement of logical thinking ability (logical thinking) of students, especially in algorithm subjects.

  9. A systematic review of creative thinking/creativity in nursing education.

    Science.gov (United States)

    Chan, Zenobia C Y

    2013-11-01

    This systematic review aimed to identify the types of nursing course structure that promotes students' creative thinking and creativity. Systematic review. Five electronic databases: The British Nursing Index, CINAHL, PsycINFO, Scopus and Ovid Medline. The databases were systematically searched to identify studies that discussed the concept of creative thinking in nursing education or reported a strategy that improved students' creative thinking. Qualitative studies or studies that included qualitative data were included. After reading the full content of the included studies, key themes and concepts were extracted and synthesized. Eight studies were identified. Four main themes relating to the course structure in teaching creativity were developed: diversity learning, freedom to learn, learning with confidence and learning through group work. To promote creative thinking in nursing students, educators themselves need to be creative in designing courses that allow students to learn actively and convert thoughts into actions. Educators should balance course freedom and guidance to allow students to develop constructive and useful ideas. Confidence and group work may play significant roles in helping students to express themselves and think creatively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The Proposed Model of Collaborative Virtual Learning Environment for Introductory Programming Course

    Science.gov (United States)

    Othman, Mahfudzah; Othman, Muhaini

    2012-01-01

    This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the "Think-Pair-Share". The main objective of this study is to design a model for an online learning system that facilitates the…

  11. Learning With Computers; Today and Tomorrow.

    Science.gov (United States)

    Bork, Alfred

    This paper describes the present practical use of computers in two large beginning physics courses at the University of California, Irvine; discusses the versatility and desirability of computers in the field of education; and projects the possible future directions of computer-based learning. The advantages and disadvantages of educational…

  12. Critical Thinking and Disposition Toward Critical Thinking Among Physical Therapy Students.

    Science.gov (United States)

    Domenech, Manuel A; Watkins, Phillip

    2015-01-01

    Students who enter a physical therapist (PT) entry-level program with weak critical thinking skills may not be prepared to benefit from the educational training program or successfully engage in the future as a competent healthcare provider. Therefore, assessing PT students' entry-level critical thinking skills and/or disposition toward critical thinking may be beneficial to identifying students with poor, fair, or good critical thinking ability as one of the criteria used in the admissions process into a professional program. First-year students (n=71) from the Doctor of Physical Therapy (DPT) program at Texas Tech University Health Sciences Center completed the California Critical Thinking Skills Test (CCTST), the California Critical Thinking Dispositions Inventory (CCTDI), and demographic survey during orientation to the DPT program. Three students were lost from the CCTST (n=68), and none lost from the CCTDI (n=71). Analysis indicated that the majority of students had a positive disposition toward critical thinking, yet the overall CCTST suggested that these students were somewhat below the national average. Also, individuals taking math and science prerequisites at the community-college level tended to have lower overall CCTST scores. The entering DPT class demonstrated moderate or middle range scores in critical thinking and disposition toward critical thinking. This result does not indicate, but might suggest, the potential for learning challenges. Assessing critical thinking skills as part of the admissions process may prove advantageous.

  13. The Impact and Promise of Open-Source Computational Material for Physics Teaching

    Science.gov (United States)

    Christian, Wolfgang

    2017-01-01

    A computer-based modeling approach to teaching must be flexible because students and teachers have different skills and varying levels of preparation. Learning how to run the ``software du jour'' is not the objective for integrating computational physics material into the curriculum. Learning computational thinking, how to use computation and computer-based visualization to communicate ideas, how to design and build models, and how to use ready-to-run models to foster critical thinking is the objective. Our computational modeling approach to teaching is a research-proven pedagogy that predates computers. It attempts to enhance student achievement through the Modeling Cycle. This approach was pioneered by Robert Karplus and the SCIS Project in the 1960s and 70s and later extended by the Modeling Instruction Program led by Jane Jackson and David Hestenes at Arizona State University. This talk describes a no-cost open-source computational approach aligned with a Modeling Cycle pedagogy. Our tools, curricular material, and ready-to-run examples are freely available from the Open Source Physics Collection hosted on the AAPT-ComPADRE digital library. Examples will be presented.

  14. Investigating engagement, thinking, and learning among culturally diverse, urban sixth graders experiencing an inquiry-based science curriculum, contextualized in the local environment

    Science.gov (United States)

    Kelley, Sybil Schantz

    This mixed-methods study combined pragmatism, sociocultural perspectives, and systems thinking concepts to investigate students' engagement, thinking, and learning in science in an urban, K-8 arts, science, and technology magnet school. A grant-funded school-university partnership supported the implementation of an inquiry-based science curriculum, contextualized in the local environment through field experiences. The researcher worked as co-teacher of 3 sixth-grade science classes and was deeply involved in the daily routines of the school. The purposes of the study were to build a deeper understanding of the complex interactions that take place in an urban science classroom, including challenges related to implementing culturally-relevant instruction; and to offer insight into the role educational systems play in supporting teaching and learning. The central hypothesis was that connecting learning to meaningful experiences in the local environment can provide culturally accessible points of engagement from which to build science learning. Descriptive measures provided an assessment of students' engagement in science activities, as well as their levels of thinking and learning throughout the school year. Combined with analyses of students' work files and focus group responses, these findings provided strong evidence of engagement attributable to the inquiry-based curriculum. In some instances, degree of engagement was found to be affected by student "reluctance" and "resistance," terms defined but needing further examination. A confounding result showed marked increases in thinking levels coupled with stasis or decrease in learning. Congruent with past studies, data indicated the presence of tension between the diverse cultures of students and the mainstream cultures of school and science. Findings were synthesized with existing literature to generate the study's principal product, a grounded theory model representing the complex, interacting factors involved in

  15. Learning with touchscreen devices: game strategies to improve geometric thinking

    Science.gov (United States)

    Soldano, Carlotta; Arzarello, Ferdinando

    2016-03-01

    The aim of this paper is to reflect on the importance of the students' game-strategic thinking during the development of mathematical activities. In particular, we hypothesise that this type of thinking helps students in the construction of logical links between concepts during the "argumentation phase" of the proving process. The theoretical background of our study lies in the works of J. Hintikka, a Finnish logician, who developed a new type of logic, based on game theory, called the logic of inquiry. In order to experiment with this new approach to the teaching and learning of mathematics, we have prepared five game-activities based on geometric theorems in which two players play against each other in a multi-touch dynamic geometric environment (DGE). In this paper, we present the design of the first game-activity and the relationship between it and the logic of inquiry. Then, adopting the theoretical framework of the instrumental genesis by Vérillon and Rabardel (EJPE 10: 77-101, 1995), we will present and analyse significant actions and dialogues developed by students while they are solving the game. We focus on the presence of a particular way of playing the game introduced by the students, the "reflected game", and highlight its functions for the development of the task.

  16. Learning to Think Slower: Review of Thinking, Fast and Slow by Daniel Kahneman (2011

    Directory of Open Access Journals (Sweden)

    Samuel L. Tunstall

    2017-07-01

    Full Text Available Daniel Kahneman. Thinking, Fast and Slow (New York, NY: Farrar, Straus and Giroux 499 pp. ISBN 978-0374275631. As an expansive review of Kahneman and others' work over the past half-century in understanding human decision-making, Thinking, Fast and Slow provides Numeracy readers much to consider for both pedagogy and research. In this review, we outline Kahneman's core argument—that humans use both rash (emotional System 1 thinking and slow (logical System 2 thinking—then discuss how such systems might be addressed in a quantitative literacy classroom.

  17. Integrating critical thinking and evidence-based dentistry across a four-year dental curriculum: a model for independent learning.

    Science.gov (United States)

    Marshall, Teresa A; Straub-Morarend, Cheryl L; Handoo, Nidhi; Solow, Catherine M; Cunningham-Ford, Marsha A; Finkelstein, Michael W

    2014-03-01

    Introducing critical thinking and evidence-based dentistry (EBD) content into an established dental curriculum can be a difficult and challenging process. Over the past three years, the University of Iowa College of Dentistry has developed and implemented a progressive four-year integrated critical thinking and EBD curriculum. The objective of this article is to describe the development and implementation process to make it available as a model for other dental schools contemplating introduction of critical thinking and EBD into their curricula. The newly designed curriculum built upon an existing problem-based learning foundation, which introduces critical thinking and the scientific literature in the D1 year, in order to expose students to the rationale and resources for practicing EBD in the D2 and D3 years and provide opportunities to practice critical thinking and apply the EBD five-step process in the D2, D3, and D4 years. All curricular content is online, and D3 and D4 EBD activities are integrated within existing clinical responsibilities. The curricular content, student resources, and student activities are described.

  18. Computer Augmented Learning; A Survey.

    Science.gov (United States)

    Kindred, J.

    The report contains a description and summary of computer augmented learning devices and systems. The devices are of two general types programed instruction systems based on the teaching machines pioneered by Pressey and developed by Skinner, and the so-called "docile" systems that permit greater user-direction with the computer under student…

  19. Wiki Activities in Blended Learning for Health Professional Students: Enhancing Critical Thinking and Clinical Reasoning Skills

    Science.gov (United States)

    Snodgrass, Suzanne

    2011-01-01

    Health professionals use critical thinking, a key problem solving skill, for clinical reasoning which is defined as the use of knowledge and reflective inquiry to diagnose a clinical problem. Teaching these skills in traditional settings with growing class sizes is challenging, and students increasingly expect learning that is flexible and…

  20. The Impact of Problem-Based Learning Approach to Senior High School Students' Mathematics Critical Thinking Ability

    Science.gov (United States)

    Widyatiningtyas, Reviandari; Kusumah, Yaya S.; Sumarmo, Utari; Sabandar, Jozua

    2015-01-01

    The study reported the findings of an only post-test control group research design and aims to analyze the influence of problem-based learning approach, school level, and students' prior mathematical ability to student's mathematics critical thinking ability. The research subjects were 140 grade ten senior high school students coming from…

  1. Deeply Affecting First-Year Students' Thinking: Deep Approaches to Learning and Three Dimensions of Cognitive Development

    Science.gov (United States)

    Laird, Thomas F. Nelson; Seifert, Tricia A.; Pascarella, Ernest T.; Mayhew, Matthew J.; Blaich, Charles F.

    2014-01-01

    This study estimates the effects of a deep approaches to learning scale and its subscales on measures of students' critical thinking, need for cognition, and positive attitudes toward literacy, controlling for pre-college scores for the outcomes and other covariates. Results suggest reflection is critical to making gains across the outcomes.

  2. A Study of Intuitive Thinking.

    Science.gov (United States)

    Goethe, Susan E. A. M.

    The development and use of intuitive thinking, at all levels of education, have been of concern to scholars in recent years. This paper discusses the findings and theories of various scholars about intuitive thinking and learning, including the work of Jean Piaget, Jerome Bruner, Richard Jones, and Robert Ornstein. The paper also explores the use…

  3. Improving self-regulated learning junior high school students through computer-based learning

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.

    2018-05-01

    This study is back grounded by the importance of self-regulated learning as an affective aspect that determines the success of students in learning mathematics. The purpose of this research is to see how the improvement of junior high school students' self-regulated learning through computer based learning is reviewed in whole and school level. This research used a quasi-experimental research method. This is because individual sample subjects are not randomly selected. The research design used is Pretest-and-Posttest Control Group Design. Subjects in this study were students of grade VIII junior high school in Bandung taken from high school (A) and middle school (B). The results of this study showed that the increase of the students' self-regulated learning who obtain learning with computer-based learning is higher than students who obtain conventional learning. School-level factors have a significant effect on increasing of the students' self-regulated learning.

  4. Critical-Thinking Grudge Match: Biology vs. Chemistry--Examining Factors That Affect Thinking Skill in Nonmajors Science

    Science.gov (United States)

    Quitadamo, Ian J.; Kurtz, Martha J.; Cornell, Caitlyn Nicole; Griffith, Lindsay; Hancock, Julie; Egbert, Brandi

    2011-01-01

    Chemistry students appear to bring significantly higher critical-thinking skill to their nonmajors course than do biology students. Knowing student preconceptions and thinking ability is essential to learning growth and effective teaching. Of the factors investigated, ethnicity and high school physics had the largest impact on critical-thinking…

  5. Computer-Based Learning in Chemistry Classes

    Science.gov (United States)

    Pietzner, Verena

    2014-01-01

    Currently not many people would doubt that computers play an essential role in both public and private life in many countries. However, somewhat surprisingly, evidence of computer use is difficult to find in German state schools although other countries have managed to implement computer-based teaching and learning in their schools. This paper…

  6. The Development of Learning Model Based on Problem Solving to Construct High-Order Thinking Skill on the Learning Mathematics of 11th Grade in SMA/MA

    Science.gov (United States)

    Syahputra, Edi; Surya, Edy

    2017-01-01

    This paper is a summary study of team Postgraduate on 11th grade. The objective of this study is to develop a learning model based on problem solving which can construct high-order thinking on the learning mathematics in SMA/MA. The subject of dissemination consists of Students of 11th grade in SMA/MA in 3 kabupaten/kota in North Sumatera, namely:…

  7. "Thinking like a Neuroscientist": Using Scaffolded Grant Proposals to Foster Scientific Thinking in a Freshman Neuroscience Course.

    Science.gov (United States)

    Köver, Hania; Wirt, Stacey E; Owens, Melinda T; Dosmann, Andrew J

    2014-01-01

    Learning and practicing scientific inquiry is an essential component of a STEM education, but it is often difficult to teach to novices or those outside of a laboratory setting. To promote scientific thinking in a freshmen introductory neuroscience course without a lab component, we developed a series of learning activities and assignments designed to foster scientific thinking through the use of scientific grant proposals. Students wrote three short grant proposals on topics ranging from molecular to cognitive neuroscience during a 10-week class (one quarter). We made this challenging and advanced task feasible for novice learners through extensive instructional scaffolding, opportunity for practice, and frequent peer and instructor feedback. Student and instructor reports indicate that the assignments were highly intellectually engaging and that they promoted critical thinking, a deeper understanding of neuroscience material, and effective written communication skills. Here we outline the mechanics of the assignment, student and instructor impressions of learning outcomes, and the advantages and disadvantages of implementing this approach.

  8. The effect of physics-based scientific learning on the improvement of the student’s critical thinking skills

    Science.gov (United States)

    Zaidah, A.; Sukarmin; Sunarno, W.

    2018-04-01

    This study aimed to determine the influence of a physics-based scientific learning to increase student’s critical thinking skill. This type of this research was quantitative research with taking the conclusion through statistical analysis. This research was carried out in MA (Senior High School) Mu'allimat NW Pancor in the second semester in the academic year of 2016/2017 with all students of XI class. The sampling is done by using technique purposive sampling where the class was taken from XI 6 class. Based on the result of descriptive analysis, it was obtained an average pre-test score of 49.17 and an average post-test score of 82.43. Also, the results showed that the average score was gained of 0.67 with a medium category. Based on the inferential analysis showed the value of t = 22.559 while the ttable in significance level of 5% was 2.04. Thus, t > the ttable from Ha is accepted. Therefore, the pre-test and posttest were different significantly when the students used scientific-based learning. The result showed that a physics-based scientific learning has influenced to increase the student’s critical thinking skill.

  9. Smart learning services based on smart cloud computing.

    Science.gov (United States)

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  10. Smart Learning Services Based on Smart Cloud Computing

    Directory of Open Access Journals (Sweden)

    Yong-Ik Yoon

    2011-08-01

    Full Text Available Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  11. Applying critical thinking to nursing.

    Science.gov (United States)

    Price, Bob

    2015-08-19

    Critical thinking and writing are skills that are not easy to acquire. The term 'critical' is used differently in social and clinical contexts. Nursing students need time to master the inquisitive and ruminative aspects of critical thinking that are required in academic environments. This article outlines what is meant by critical thinking in academic settings, in relation to both theory and reflective practice. It explains how the focus of a question affects the sort of critical thinking required and offers two taxonomies of learning, to which students can refer when analysing essay requirements. The article concludes with examples of analytical writing in reference to theory and reflective practice.

  12. Incorporating Critical Thinking into an Engineering Undergraduate Learning Environment

    Science.gov (United States)

    Adair, Desmond; Jaeger, Martin

    2016-01-01

    Critical thinking extends to all aspects of professional engineering, especially in technical development, and, since the introduction of the ABET 2000 criteria, there has been an increased emphasis in engineering education on the development of critical thinking skills. What is hoped for is that the students obtain critical thinking skills to…

  13. Thinking about Educational Technology and Creativity

    Science.gov (United States)

    Spector, J. Michael

    2016-01-01

    The 2016 National Educational Technology Plan mentions fostering creativity, collaboration, leadership, and critical thinking while engaging learners in complex, real-world challenges through a project-based learning approach (see http://tech.ed.gov/netp/learn ing/). The Partnership for 21st Century Learning (P21; see…

  14. Computer-Mediated Intersensory Learning Model for Students with Learning Disabilities

    Science.gov (United States)

    Seok, Soonhwa; DaCosta, Boaventura; Kinsell, Carolyn; Poggio, John C.; Meyen, Edward L.

    2010-01-01

    This article proposes a computer-mediated intersensory learning model as an alternative to traditional instructional approaches for students with learning disabilities (LDs) in the inclusive classroom. Predominant practices of classroom inclusion today reflect the six principles of zero reject, nondiscriminatory evaluation, appropriate education,…

  15. Concept Mapping for Higher Order Thinking

    Directory of Open Access Journals (Sweden)

    Susan Marie Zvacek

    2013-02-01

    Full Text Available Engineering education is facing a changing world in which how one thinks is becoming more important than what one thinks; that is, our course content is important but constantly changing and we need to help students learn how to think about that content.Today’s students have grown accustomed to immediate rewards, multi-channel stimuli, and rapid-fire communications.  As a result, they are often impatient and suffer a lack of focus. When reflection is called for in the learning process - a time consuming practice - students may find it difficult to overcome the conflict between their typically speedy management of priorities and the focused, time-intensive thinking required to acquire a strong foundation of declarative knowledge.Therefore, the exploration of tools to facilitate the formation of deep knowledge structures is essential. One instructional strategy that shows promise is the use of concept mapping, a learning activity that requires students to explain their understanding of important ideas and the relationships among those ideas.  This paper describes a pilot project to integrate concept mapping into a Mechanical Engineering Course and the preliminary results of that project.This project has been established within the Working Group of “Tools for Developing High Order Thinking Skills”, of the Portuguese Society for Engineering Education, in which the first author is the leader and the other two co-authors, are working group members

  16. Affect and Learning : a computational analysis

    NARCIS (Netherlands)

    Broekens, Douwe Joost

    2007-01-01

    In this thesis we have studied the influence of emotion on learning. We have used computational modelling techniques to do so, more specifically, the reinforcement learning paradigm. Emotion is modelled as artificial affect, a measure that denotes the positiveness versus negativeness of a situation

  17. INTERACTIVE LEARNING: ADVANTAGES AND DISADVANTAGES

    Directory of Open Access Journals (Sweden)

    O. Kustovska

    2016-10-01

    Full Text Available In the article the use of interactive technologies in the educational process of the university, allowing students to develop innovative thinking, away from stereotypes, develop imagination, communication skills and expertise, intellectual, emotional, motivational and other areas of personality. Implementing the principles of technological learning, interactive educational technology and provides interactive computer learning tools, and interactivity of educational process when the basic conceptual provisions defined training based on interactive communication.

  18. Application of Learning Engineering Techniques Thinking Aloud Pair Problem Solving in Learning Mathematics Students Class VII SMPN 15 Padang

    Science.gov (United States)

    Widuri, S. Y. S.; Almash, L.; Zuzano, F.

    2018-04-01

    The students activity and responsible in studying mathematic is still lack. It gives an effect for the bad result in studying mathematic. There is one of learning technic to increase students activity in the classroom and the result of studying mathematic with applying a learning technic. It is “Thinking Aloud Pair Problem Solving (TAPPS)”. The purpose of this research is to recognize the developing of students activity in mathematic subject during applying that technic “TAPPS” in seven grade at SMPN 15 Padang and compare the students proportion in learning mathematic with TAPPS between learning process without it in seven grade at SMPN 15 Padang. Students activity for indicators 1, 2, 3, 4, 5, 6 at each meeting is likely to increase and students activity for indicator 7 at each meeting is likely to decrease. The finding of this research is χ 2 = 9,42 and the value of p is 0,0005 < p < 0,005. Therefore p < 0,05 has means H 0 was rejected and H 1 was accepted. Thus, it was concluded that the activities and result in studying mathematic increased after applying learning technic the TAPPS.

  19. Active Learning Environments with Robotic Tangibles: Children's Physical and Virtual Spatial Programming Experiences

    Science.gov (United States)

    Burleson, Winslow S.; Harlow, Danielle B.; Nilsen, Katherine J.; Perlin, Ken; Freed, Natalie; Jensen, Camilla Nørgaard; Lahey, Byron; Lu, Patrick; Muldner, Kasia

    2018-01-01

    As computational thinking becomes increasingly important for children to learn, we must develop interfaces that leverage the ways that young children learn to provide opportunities for them to develop these skills. Active Learning Environments with Robotic Tangibles (ALERT) and Robopad, an analogous on-screen virtual spatial programming…

  20. The ‘taking place’ of learning in computer games

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel; Løfgreen, Lars Bo

    2008-01-01

    In the long-standing tradition for discounting digital technologies as a learning resource within the formal educational setting, computer games have often either been marked as distraction or totally ignored. However, as argued in the paradigmatic text by Shaffer, Squire, Halverson and Gee, Video...... Games and The Future of Learning, computer games do not only offer an interesting perspective on how “learners can understand complex concepts without losing the connection between abstract ideas and the real problems”, but can as well cast “a glimpse into how we might create new and more powerful ways...... to learn in schools, communities, and workplaces – new ways to learn for a new Information Age” [1].  In line with this general approach to seeing computer games as a reservoir of learning strategies and potentials, this paper aims to examine how a specific computer game teach us how to play the game. [1...

  1. Learning theories in computer-assisted foreign language acquisition

    OpenAIRE

    Baeva, D.

    2013-01-01

    This paper reviews the learning theories, focusing to the strong interest in technology use for language learning. It is important to look at how technology has been used in the field thus far. The goals of this review are to understand how computers have been used in the past years to support foreign language learning, and to explore any research evidence with regards to how computer technology can enhance language skills acquisition

  2. How to practice creative thinking skills through scaffolding on biotech content?

    Science.gov (United States)

    Natadiwijaya, I. F.; Rahmat, A.; Redjeki, S.; Anggraeni, S.

    2018-05-01

    Biotechnology content is a more applicative field of science, so learners should be able to have creative thinking skills in applying concepts to problem solving. In this research, Scaffolding learning has been conducted, which is student form of concept development based on constructivism learning paradigm and students build creative thinking skill through the creation of biotechnology product ideas. The research design was R & D method. The subject of this research is a semester V biology education student at Wiralodra University. The instruments used are biotechnology creative thinking tests and program implementation observations. The data of creative thinking test was analyzed using inferential statistic, while the observation sheet used descriptive analysis. The result of this research is the result of students’ creative thinking skill as well as description of the recommended shape and characteristics of the program, with the following results. The scaffolding learning program has a significant influence on students’ creative thinking skill, and the program that trains creative thinking skill is built through two phases, namely phase 1 in concept building where students build their own knowledge, and phase 2 where students build thinking skills creatively through the creation of biotechnology product ideas.

  3. Analysis of Learning Behavior in a Flipped Programing Classroom Adopting Problem-Solving Strategies

    Science.gov (United States)

    Chiang, Tosti Hsu-Cheng

    2017-01-01

    Programing is difficult for beginners because they need to learn the new language of computers. Developing software, especially complex software, is bound to result in problems, frustration, and the need to think in new ways. Identifying the learning behavior behind programing by way of empirical studies can help beginners learn more easily. In…

  4. Validating the Persian Version of Reflective Thinking Questionnaire and Probing Iranian University Students' Reflective Thinking and Academic Achievement

    Directory of Open Access Journals (Sweden)

    Afsaneh Ghanizadeh

    2017-07-01

    Full Text Available Scholars in higher education deem reflective thinking as integral to the development of professional disciplinary practices. One of the major issues in studying reflective thinking pivots around its conceptualization and assessment. Over the years, researchers have used several methods and scales to measure reflective thinking. One of the most widely known scales of reflective thinking was constructed and validated by Kember et al. (2000. It is entitled 'Reflective Thinking Questionnaire (RTQ' and includes 16 items measuring four types of reflective thinking: understanding (UND; reflection (REF; critical reflection (CREF; habitual action (HA. The present study aimed at validating the Persian version of RTQ among one hundred ninety six English as a foreign language (EFL university students. It then scrutinized the role of reflective thinking in academic achievements measured by grade point average (GPA. The association of learners' reflective thinking style with their educational level and gender was also estimated. To conduct the research, the scale was first translated into Persian and its validity (computed via confirmatory factor analysis, convergent, and divergent validity estimates and reliability (computed via Cronbach's alpha were substantiated. It was indicated that among the comprising factors of reflective thinking, UND received the highest mean followed by REF and CREF

  5. Learning and Teaching in a Synchronous Collaborative Environment.

    Science.gov (United States)

    Marjanovic, Olivera

    1999-01-01

    Describes a new synchronous collaborative environment that combines interactive learning and Group Support Systems for computer-mediated collaboration. Illustrates its potential to improve critical thinking, problem solving, and communication skills, and describes how teachers' roles are changed. (Author/LRW)

  6. Computer-Assisted Language Learning: Diversity in Research and Practice

    Science.gov (United States)

    Stockwell, Glenn, Ed.

    2012-01-01

    Computer-assisted language learning (CALL) is an approach to teaching and learning languages that uses computers and other technologies to present, reinforce, and assess material to be learned, or to create environments where teachers and learners can interact with one another and the outside world. This book provides a much-needed overview of the…

  7. Critical thinking in physics education

    Science.gov (United States)

    Sadidi, Farahnaz

    2016-07-01

    We agree that training the next generation of leaders of the society, who have the ability to think critically and form a better judgment is an important goal. It is a long-standing concern of Educators and a long-term desire of teachers to establish a method in order to teach to think critically. To this end, many questions arise on three central aspects: the definition, the evaluation and the design of the course: What is Critical Thinking? How can we define Critical Thinking? How can we evaluate Critical Thinking? Therefore, we want to implement Critical Thinking in physics education. How can we teach for Critical Thinking in physics? What should the course syllabus and materials be? We present examples from classical physics and give perspectives for astro-particle physics. The main aim of this paper is to answer the questions and provide teachers with the opportunity to change their classroom to an active one, in which students are encouraged to ask questions and learn to reach a good judgment. Key words: Critical Thinking, evaluation, judgment, design of the course.

  8. Learning and instruction with computer simulations

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.

    1991-01-01

    The present volume presents the results of an inventory of elements of such a computer learning environment. This inventory was conducted within a DELTA project called SIMULATE. In the project a learning environment that provides intelligent support to learners and that has a simulation as its

  9. Computer-based learning in neuroanatomy: A longitudinal study of learning, transfer, and retention

    Science.gov (United States)

    Chariker, Julia H.

    A longitudinal experiment was conducted to explore computer-based learning of neuroanatomy. Using a realistic 3D graphical model of neuroanatomy, and sections derived from the model, exploratory graphical tools were integrated into interactive computer programs so as to allow adaptive exploration. 72 participants learned either sectional anatomy alone or learned whole anatomy followed by sectional anatomy. Sectional anatomy was explored either in perceptually continuous animation or discretely, as in the use of an anatomical atlas. Learning was measured longitudinally to a high performance criterion. After learning, transfer to biomedical images and long-term retention was tested. Learning whole anatomy prior to learning sectional anatomy led to a more efficient learning experience. Learners demonstrated high levels of transfer from whole anatomy to sectional anatomy and from sectional anatomy to complex biomedical images. All learning groups demonstrated high levels of retention at 2--3 weeks.

  10. Rational Thinking in School-Based Practice

    Science.gov (United States)

    Clark, Mary Kristen; Flynn, Perry

    2011-01-01

    Purpose: We reflect on Alan Kamhi's (2011) prologue on balancing certainty and uncertainty as it pertains to school-based practice. Method: In schools, rational thinking depends on effective team processes, much like professional learning communities. We consider the conditions that are required for rational thinking and how rational team dialogue…

  11. Thinking like a Neuroscientist”: Using Scaffolded Grant Proposals to Foster Scientific Thinking in a Freshman Neuroscience Course

    Science.gov (United States)

    Köver, Hania; Wirt, Stacey E.; Owens, Melinda T.; Dosmann, Andrew J.

    2014-01-01

    Learning and practicing scientific inquiry is an essential component of a STEM education, but it is often difficult to teach to novices or those outside of a laboratory setting. To promote scientific thinking in a freshmen introductory neuroscience course without a lab component, we developed a series of learning activities and assignments designed to foster scientific thinking through the use of scientific grant proposals. Students wrote three short grant proposals on topics ranging from molecular to cognitive neuroscience during a 10-week class (one quarter). We made this challenging and advanced task feasible for novice learners through extensive instructional scaffolding, opportunity for practice, and frequent peer and instructor feedback. Student and instructor reports indicate that the assignments were highly intellectually engaging and that they promoted critical thinking, a deeper understanding of neuroscience material, and effective written communication skills. Here we outline the mechanics of the assignment, student and instructor impressions of learning outcomes, and the advantages and disadvantages of implementing this approach. PMID:25565917

  12. CRITICAL THINKING AND ITS AFFECTING FACTORS

    Directory of Open Access Journals (Sweden)

    S Slameto

    2017-09-01

    Full Text Available The objectives of this research were to measure the success rate achieved by the alumni of Open/Distance Learning (O/DL, the Bachelor Education In-service Teachers Program (BEITP, Staya Jacana Christian University(SWCU, Salatiga in their critical thinking habit that lead to their success, and to find factors which determined their critical thinking habit. The factors concerned were student factor (learning motivation, alumni’s readiness to enter ICT community, prerequisite or teacher factor (teacher’s ability in creating and using a new instructional context. This quantitative research belongs to the causality ex-post facto research. The data source was one class of O/ DL, the BEITP, SWCUstudents, who were chosen out of four classes, as many as 32 alumni in the academic year 2015/2016. Data were screened using a self-rating scale, which consisted of 40 items tested valid and reliable, and then reduced to 5 variablas. The BEITP, SWCU Salatiga had graduated most of its alumni who owned critical thinking habit at a high rate. The critical thinking habit was affected by the instructional contexts which enabled a new situation (Model 1, alumni’s readiness to enter the ICT community (Model 2, pre-requisite, i.e., mastery of previous lecture materials (Model 3, and student’s learning motivation (Model 4 to reach 81%. The alumni’s critical thinking habit of 51.20% was determined by the teacher’s role in developing instructional contexts which made a new situation possible. This finding was useful for educational quality management for the effectiveness and productivity of higher education, which should have been focused on the teacher in developing an instructional strategy based on context, alumni readiness to enter the ICT community, prerequisite, and student’s learning motivation.

  13. Computer Assisted Language Learning (CALL) Software: Evaluation ...

    African Journals Online (AJOL)

    Evaluating the nature and extent of the influence of Computer Assisted Language Learning (CALL) on the quality of language learning is highly problematic. This is owing to the number and complexity of interacting variables involved in setting the items for teaching and learning languages. This paper identified and ...

  14. Nuclear age thinking

    Energy Technology Data Exchange (ETDEWEB)

    Depastas, A.N.

    1990-01-01

    According to the practicalist school, thinking emerges from activity and each human practice is giving food to its own distinctive kinds of perception, conduct, and perspective of the world. The author, while studying and describing developments after the commencement of the nuclear age in many fields of human behavior and knowledge, including the social sciences, particularly psychology and international politics, became an adherent to the practicalist philosophy when he perceived new relevant thoughts coming to his mind at the same time. Indeed writing is a learning experience. He has, therefore, systematically included these thoughts in the following pages and synoptically characterized them in the title: Nuclear Age Thinking. He considers this kind of thinking as automatic, conscious activity which is gradually influencing our choices and decisions. The author has reservations as regards Albert Einstein's saying that the unleashed power of the atom changed everything save our modes of thinking, because the uncontrollability of nuclear energy is apparently in the subconscious of mankind nowadays, influencing the development of a new mode of thinking, and that is the nuclear age thinking which is the subject of this book. Nuclear age thinking drives from the collective fear of extinction of life on earth due to this new power at man's disposal, and it is not only limited to the change in the conventional meaning of the words war and peace.

  15. Enhancing students' higher order thinking skills through computer-based scaffolding in problem-based learning

    Science.gov (United States)

    Kim, Nam Ju

    This multiple paper dissertation addressed several issues in Problem-based learning (PBL) through conceptual analysis, meta-analysis, and empirical research. PBL is characterized by ill-structured tasks, self-directed learning process, and a combination of individual and cooperative learning activities. Students who lack content knowledge and problem-solving skills may struggle to address associated tasks that are beyond their current ability levels in PBL. This dissertation addressed a) scaffolding characteristics (i.e., scaffolding types, delivery method, customization) and their effects on students' perception of optimal challenge in PBL, b) the possibility of virtual learning environments for PBL, and c) the importance of information literacy for successful PBL learning. Specifically, this dissertation demonstrated the effectiveness of scaffolding customization (i.e., fading, adding, and fading/adding) to enhance students' self-directed learning in PBL. Moreover, the effectiveness of scaffolding was greatest when scaffolding customization is self-selected than based on fixed-time interval and their performance. This suggests that it might be important for students to take responsibility for their learning in PBL and individualized and just-in-time scaffolding can be one of the solutions to address K-12 students' difficulties in improving problem-solving skills and adjusting to PBL.

  16. Gender: Its relation to Mathematical Creative Thinking Skill

    Science.gov (United States)

    Permatasari, H. R.; Wahyudin, W.

    2017-09-01

    Mathematical creative thinking skill is one of the most important capabilities in the present century, both for men and women. One of the current issues is about gender and how gender mainstreaming can be realized optimally. The purpose of this study is to determine the comparison of the mathematical creative thinking skill increasing between male and female students after the application of Team Games Tournament (TGT) learning. This research was conducted at 28 students in the 4th grade of an elementary school in Bandung City. The research method used is quasi experiment because it is aimed to test wether there are differences in mathematical creative thinking skill improving between male and female students after being treatment in the form of learnig with TGT. The result of this research is that there is no difference in mathematical creative thinking skill improving between male and female students after the application of TGT learning. It is influenced by some factors such as how the teacher treats male and female with the same treatment in learning process. Recommendation of this research that can be done further research about this topic more deeply. Beside that, the teacher especially in elementary school can use the TGT learning application to reduce the gap between male and female students during the learning process.

  17. Teaching Creative Thinking Skills with Laboratory Work

    Directory of Open Access Journals (Sweden)

    Nur Khoiri

    2017-12-01

    Full Text Available Research on figuring out the ways to teach creative thinking skills via learning processes has been carried out. One of the methods applied to be efficient to teach creative thinking skills is laboratory work. Laboratory work is an important process in learning physics since students tend to find it hard to understand physical concepts if they are only taught verbally. Students will understand better when they are given real life examples and are allowed to learn the concepts through the laboratory work, whenever possible. The research was conducted at SMAN 1 Bringin by employing the quasi-experiment pre-test - post-test control group design. Creative thinking skills were measured based on four indicators: flexibility, fluency, originality, and detail. Results show that laboratory work was suitable to improve students’ fluent thinking ability with 77% students showing improvement, and it was also a fit to improve students’ original thinking with 84% students showing improvement. The experiment class revealed a gain of 0.51, taken from an average pre-test score of 45.64 compared to the average post-test score of 73.5, which is an increase of 27.86. Meanwhile, the control class resulted in a gain of 0.40, taken from an average pre-test score of 39.11 compared to the average post-test score of 83.44, which is an increase of 24.33.

  18. Using Robotics and Game Design to Enhance Children's Self-Efficacy, STEM Attitudes, and Computational Thinking Skills

    Science.gov (United States)

    Leonard, Jacqueline; Buss, Alan; Gamboa, Ruben; Mitchell, Monica; Fashola, Olatokunbo S.; Hubert, Tarcia; Almughyirah, Sultan

    2016-01-01

    This paper describes the findings of a pilot study that used robotics and game design to develop middle school students' computational thinking strategies. One hundred and twenty-four students engaged in LEGO® EV3 robotics and created games using Scalable Game Design software. The results of the study revealed students' pre-post self-efficacy…

  19. Cultivating Design Thinking in Students through Material Inquiry

    Science.gov (United States)

    Renard, Helene

    2014-01-01

    Design thinking is a way of understanding and engaging with the world that has received much attention in academic and business circles in recent years. This article examines a hands-on learning model as a vehicle for developing design thinking capacity in students. An overview of design thinking grounds the discussion of the material-based…

  20. Oersted Lecture 2013: How should we think about how our students think?

    Science.gov (United States)

    Redish, Edward F.

    2014-06-01

    Physics Education Research (PER) applies a scientific approach to the question, "How do our students think about and learn physics?" PER allows us to explore such intellectually engaging questions as "What does it mean to understand something in physics?" and "What skills and competencies do we want our students to learn from our physics classes?" To address questions like these, we need to do more than observe student difficulties and build curricula. We need a theoretical framework—a structure for talking about, making sense of, and modeling how one thinks about, learns, and understands physics. In this paper, I outline some aspects of the Resources Framework, a structure that some of us are using to create a phenomenology of physics learning that ties closely to modern developments in neuroscience, psychology, and linguistics. As an example of how this framework gives new insights, I discuss epistemological framing—the role of students' perceptions of the nature of the knowledge they are learning and what knowledge is appropriate to bring to bear on a given task. I discuss how this foothold idea fits into our theoretical framework, show some classroom data on how it plays out in the classroom, and give some examples of how my awareness of the resources framework influences my approach to teaching.

  1. The Effect of Animation in Multimedia Computer-Based Learning and Learning Style to the Learning Results

    Directory of Open Access Journals (Sweden)

    Muhammad RUSLI

    2017-10-01

    Full Text Available The effectiveness of a learning depends on four main elements, they are content, desired learning outcome, instructional method and the delivery media. The integration of those four elements can be manifested into a learning modul which is called multimedia learning or learning by using multimedia. In learning context by using computer-based multimedia, there are two main things that need to be noticed so that the learning process can run effectively: how the content is presented, and what the learner’s chosen way in accepting and processing the information into a meaningful knowledge. First it is related with the way to visualize the content and how people learn. The second one is related with the learning style of the learner. This research aims to investigate the effect of the type of visualization—static vs animated—on a multimedia computer-based learning, and learning styles—visual vs verbal, towards the students’ capability in applying the concepts, procedures, principles of Java programming. Visualization type act as independent variables, and learning styles of the students act as a moderator variable. Moreover, the instructional strategies followed the Component Display Theory of Merril, and the format of presentation of multimedia followed the Seven Principles of Multimedia Learning of Mayer and Moreno. Learning with the multimedia computer-based learning has been done in the classroom. The subject of this research was the student of STMIK-STIKOM Bali in odd semester 2016-2017 which followed the course of Java programming. The Design experiments used multivariate analysis of variance, MANOVA 2 x 2, with a large sample of 138 students in 4 classes. Based on the results of the analysis, it can be concluded that the animation in multimedia interactive learning gave a positive effect in improving students’ learning outcomes, particularly in the applying the concepts, procedures, and principles of Java programming. The

  2. Inquiry Guided Learning Projects for the Development of Critical Thinking in the College Classroom: A Pilot Study

    Science.gov (United States)

    Bentley, Danielle C.

    2014-01-01

    This paper describes the inaugural success of implementing Inquiry Guided Learning Projects within a college-level human anatomy and physiology course. In this context, scientific inquiry was used as a means of developing skills required for critical thinking among students. The projects were loosely designed using the Information Search Process…

  3. The relationship among critical thinking skill measured by science virtual test, gender, andmotivation in 9th grade students

    Science.gov (United States)

    Fernandi, R. A. U. I.; Firman, H.; Rusyati, L.

    2018-05-01

    The purpose of this study was to identify the relationship among critical thinking skill, gender and motivation in 9th grade students of Junior High School in Kuningan. This descriptive study used purposive sampling that comprised 110 ninth grade students taken from three junior high school that has good computer literacy and use 2013 curriculum. The data were obtained through Science Virtual Test on living things and environmental sustainability theme, respondent identity, and science motivation questionnaire (SMQ). Female students scored highest on generating purpose skill (M = 73.81), while male students performed better on generating implication and consequences skill (M = 78.01) where both groups differed significantly (p = 0.011). Students scored highest on generating purpose skill for high and moderate motivation group, while for the lowest score, moderate and low motivation group performed it on making assumption skill. Additionally, some critical thinking elements differed significantly by motivation to learn science. Despite, there was no correlation between students’ critical thinking and motivation (r = 0.155, p > 0.05). The finding indicated that students’ critical thinking is not differed by gender and not affected by motivation to learn science.

  4. Critical thinking: Not all that critical

    Directory of Open Access Journals (Sweden)

    Bruce Dietrick Price

    2016-09-01

    Full Text Available Critical Thinking basically says to be suspicious of everything, except the fad known as Critical Thinking. It is perhaps best understood as a new and watered-down version of an earlier fad called Deconstruction. That was just a fancy word for debunking. After you strip away all the high-minded rhetoric, Critical Thinking is typically used to tell students that they should not trust conventional wisdom, tradition, religion, parents, and all that irrelevant, old-fashioned stuff. Critical Thinking, somewhat surprisingly, also turns out to be highly contemptuous of facts and knowledge. The formulation in public schools goes like this: children must learn how to think, not what to think. WHAT is, of course, all the academic content and scholarly knowledge that schools used to teach.

  5. Thinking Drawing

    Science.gov (United States)

    Adams, Eileen

    2017-01-01

    This article draws heavily on the author's critical autobiography: "Eileen Adams: Agent of Change." It presents evidence of the value of drawing as a medium for learning, particularly in art and design, and argues that drawing is a useful educational tool. The premise is that drawing makes you think. This article explains various…

  6. Augmenting Think-Pair-Share with Simulations

    Science.gov (United States)

    Lee, Kevin M.; Siedell, C. M.; Prather, E. E.; CATS

    2009-01-01

    Computer simulations are valuable tools for the teaching and learning of introductory astronomy. They enable students to link together small pieces of information into mental models of complex physical systems that are far beyond their everyday experience. They can also be used to authentically test a student's conceptual understanding of a physical system by asking the student to make predictions regarding its behavior. Students receive formative feedback by testing their predictions in simulations. Think-Pair-Share - the posing of conceptual questions to students and having them vote on the answer before and after discussion with their peers - can benefit considerably from the incorporation of simulations. Simulations can be used for delivering content that precedes Think-Pair-Share, as the prompt the questions is based upon, or as a feedback tool to illustrate the answer to a question. These techniques are utilized in ClassAction - a collection of materials designed to enhance the metacognitive skills of Astro 101 students by promoting interactive engagement and providing rapid feedback. The main focus is dynamic conceptual questions largely based upon graphics that can be projected in the classroom. Many questions are available in a Flash computer database and instructors have the capability to recast these questions into alternate permutations based on their own preferences and student responses. Outlines, graphics, and simulations are included which instructors can use to provide feedback. This poster provides examples of simulation usage in Think-Pair-Share related to sky motions, lunar phases, and stellar properties. A multi-institutional classroom validation study of ClassAction is currently underway as a Collaboration of Astronomy Teaching Scholars (CATS) research project. All materials are publicly available at http://astro.unl.edu. We would like to thank the NSF for funding under Grant Nos. 0404988 and 0715517, a CCLI Phase III Grant for the

  7. Cultivating Critical Thinking in the Clinical Learning Environment.

    Science.gov (United States)

    Behar-Horenstein, Linda S.; Dolan, Teresa A.; Courts, Frank J.; Mitchell, Gail S.

    2000-01-01

    Used qualitative research methods to assess the frequency and nature of teaching critical thinking skills in the University of Florida College of Dentistry predoctoral student clinics. Observation of 13 faculty and 44 students in six clinics found critical thinking skills were infrequently taught and teacher-dominated instruction predominated.…

  8. Primary School Pupils' Attitudes toward Learning Programming through Visual Interactive Environments

    Science.gov (United States)

    Asad, Khaled; Tibi, Moanis; Raiyn, Jamal

    2016-01-01

    New generations are using and playing with mobile and computer applications extensively. These applications are the outcomes of programming work that involves skills, such as computational and algorithmic thinking. Learning programming is not easy for students children. In recent years, academic institutions like the Massachusetts Institute of…

  9. Computer Games Created by Middle School Girls: Can They Be Used to Measure Understanding of Computer Science Concepts?

    Science.gov (United States)

    Denner, Jill; Werner, Linda; Ortiz, Eloy

    2012-01-01

    Computer game programming has been touted as a promising strategy for engaging children in the kinds of thinking that will prepare them to be producers, not just users of technology. But little is known about what they learn when programming a game. In this article, we present a strategy for coding student games, and summarize the results of an…

  10. Programming Games for Logical Thinking

    Directory of Open Access Journals (Sweden)

    H. Tsalapatas

    2013-03-01

    Full Text Available Analytical thinking is a transversal skill that helps learners synthesize knowledge across subject areas; from mathematics, science, and technology to critical reading, critical examination, and evaluation of lessons. While most would not doubt the importance of analytical capacity in academic settings and its growing demand for the skill in professional environments, school curricula do not comprehensively address its development. As a result, the responsibility for structuring related learning activities falls to teachers. This work examines learning paradigms that can be integrated into mathematics and science school education for developing logical thinking through game-based exercises based on programming. The proposed learning design promotes structured algorithmic mindsets, is based on inclusive universal logic present in all cultures, and promotes constructivism educational approaches encouraging learners to drive knowledge building by composing past and emerging experiences.

  11. Blended Learning Experience in a Programming Language Course and the Effect of the Thinking Styles of the Students on Success and Motivation

    Science.gov (United States)

    Yagci, Mustafa

    2016-01-01

    High-level thinking and problem solving skill is one requirement of computer programming that most of the students experience problems with. Individual differences such as motivation, attitude towards programming, thinking style of the student, and complexity of the programming language have influence on students' success on programming. Thus,…

  12. The Effectiveness of Problem Based Learning Integrated With Islamic Values Based on ICT on Higher Order Thinking Skill and Students’ Character

    Directory of Open Access Journals (Sweden)

    Chairul Anwar

    2017-02-01

    Full Text Available The focus of this research is to known the influence of Problem Based Learning (PBL model application, that intergrated with Islamic values based on ICT, toward the ability of higher-order thinkingskill and the strenghtening of students’ characters. This research is quasy experiment type with group design pretest-postest. The research was conducted in SMA.Sampling by means of random sampling, to determine the control class and experimentalclass.Data analysis technique used is the t-test, based on the value of significance, as well as test-effect size. The research data shows that the model of problem based learning integrates Islamic values based on ICThas positive influence towards the increasing of higher-order thinking skill and the strenghtening of students’ characters compared to the students that use conventional method.The result of effect size test on experimental class in on medium category. It means that the learning which use problem based learning (PBL model, integrated with Islamic values based on ICT, can be said effective on increasing higher order thinking skillof students.

  13. Developing Decision-Making Skill: Experiential Learning in Computer Games

    OpenAIRE

    Kurt A. April; Katja M. J. Goebel; Eddie Blass; Jonathan Foster-Pedley

    2012-01-01

    This paper explores the value that computer and video games bring to learning and leadership and explores how games work as learning environments and the impact they have on personal development. The study looks at decisiveness, decision-making ability and styles, and on how this leadership-related skill is learnt through different paradigms. The paper compares the learning from a lecture to the learning from a designed computer game, both of which have the same content through the use of a s...

  14. Computer-Mediated Collaborative Learning

    Science.gov (United States)

    Beatty, Ken; Nunan, David

    2004-01-01

    The study reported here investigates collaborative learning at the computer. Ten pairs of students were presented with a series of comprehension questions about Mary Shelley's novel "Frankenstein or a Modern Prometheus" along with a CD-ROM, "Frankenstein Illuminated," containing the novel and a variety of source material. Five students worked with…

  15. The Effect of Computer Game-Based Learning on FL Vocabulary Transferability

    Science.gov (United States)

    Franciosi, Stephan J.

    2017-01-01

    In theory, computer game-based learning can support several vocabulary learning affordances that have been identified in the foreign language learning research. In the observable evidence, learning with computer games has been shown to improve performance on vocabulary recall tests. However, while simple recall can be a sign of learning,…

  16. The sociability of computer-supported collaborative learning environments

    NARCIS (Netherlands)

    Kreijns, C.J.; Kirschner, P.A.; Jochems, W.M.G.

    2002-01-01

    There is much positive research on computer-supported collaborative learning (CSCL) environments in asynchronous distributed learning groups (DLGs). There is also research that shows that contemporary CSCL environments do not completely fulfil expectations on supporting interactive group learning,

  17. Developing Critical Thinking through the Study of Paranormal Phenomena.

    Science.gov (United States)

    Wesp, Richard; Montgomery, Kathleen

    1998-01-01

    Argues that accounts of paranormal phenomena can serve as an ideal medium in which to encourage students to develop critical-thinking skills. Describes a cooperative-learning approach used to teach critical thinking in a course on paranormal events. Reports that critical-thinking skills increased and that the course received favorable student…

  18. Instructional design in mathematics for undergraduate students based on learning by mistakes approach utilizing scilab assistance

    Science.gov (United States)

    Kartika, H.

    2018-03-01

    The issue related to making mistake while learning such as negative emotion is found while students learn mathematics with the aid of a computer. When the computer output showed a mistake message, the students considered it as a computer software malfunction. Based on this issue, the writer designs an instructional model based on learning by mistake approach and which is Scilab assisted. The method used in this research is research design involving undergraduate students in matrix algebra courses. The data collected throught survey with questionnaire to gain feedback about the approach implemented. The data analyzed using quantitative descriptive. The instructional design proposed is the student act as a mistake corrector while the teacher acts as a mistake maker. Teacher deliberately makes mistakes with the help of Scilab software. On the other hand, students correct, analyze and explain errors resulting from Scilab software. The result of this research is an ICT based instructional design which is expected to be applicable as an alternative learning in directing students to think positively about mistakes in learning. Furthermore, students are also expected to improve their ability in understanding and thinking critically while solving problems and improving themselves in learning mathematics.

  19. An Experimental Study of the Use of Design Thinking as a Requirements Elicitation Approach for Mobile Learning Environments

    Directory of Open Access Journals (Sweden)

    Carla Silva

    2015-04-01

    Full Text Available Mobile learning (m-learning is a research field that aims to analyze how mobile devices can contribute to learning. The development of software for mobile devices to support learning is essential for an effective implementation of m-learning or mobile learning environments (MLE. Requirements Engineering processes need to include activities that provoke creativity in the stakeholders to conceive MLEs that actually modify and improve the teaching and learning process. In this context, this paper presents a process for requirements elicitation and documentation of mobile learning environments. This process is based on the concepts of the Design Thinking process that provides a methodology to elicit customer needs, producing simple prototypes that eventually converge to innovative solutions. An experiment was conducted to evaluate if the proposed process contributes to create MLEs that present distinctive and interesting characteristics when compared to existing solutions for a specific problem.

  20. WHAT STUDENTS SAY AND WHAT TEACHERS THINK: INFORMAL TALK IN ESL LEARNING

    Directory of Open Access Journals (Sweden)

    Kimberly Bunts-Anderson, PhD

    2017-04-01

    Full Text Available The importance of interacting with others has long been considered a critical component of learning processes in general and from a Social Interactions perspective, of language learning, specifically. This presentation explores these relationships from either side of the classroom door. The discussion centers on the beliefs and experiences of learners’ spoken interactions in their own lives outside the classroom and how students view communication with others as impacting their overall knowledge of the language. The paper also looks at these issues from the perspective of the teachers. Multiple perspectives are illustrated with data collected from two Australian studies. The first study describes a cooperative action research project conducted with 13 foreign ESL students focused on enhancing their language learning through improving their personal out-of-class spoken interactions with others. Individual’s narratives of language learning and communication are presented. Results indicate improved learner efficacy and higher assessments in formal learning contexts. The second study is a phenomenographic investigation of 28 EAP instructors’ reported descriptions of learners’ verbal communications in and outside the classroom. Findings indicate greater awareness of formal interactions and fewer categories of conceptions for informal spoken language. The resulting categories for language appear similar to reports of surface and deeper approaches of learning, knowing and thinking in other subject areas. The researcher provided excerpts of instructors' reports and discusses the significance of developing an awareness of the relationships between these spoken communications and cognition. In conclusion, audience participants were asked to share their own thoughts and experiences with these relationships.