WorldWideScience

Sample records for leaf nutrient ranges

  1. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency.

    Directory of Open Access Journals (Sweden)

    Anne eMaillard

    2015-05-01

    Full Text Available Higher plants have to cope with fluctuating mineral resource availability. However strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare and tree species (Quercus robur, Populus nigra, Alnus glutinosa grown under field conditions were harvested regularly during their life span and analysed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize to 90% (wheat, other macronutrients (K-P-S-Mg were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu or increased by nutrient deficiency (K-P-Mg while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms.

  2. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems

    NARCIS (Netherlands)

    Hemminga, M.A.; Marbà, N.; Stapel, J.

    1999-01-01

    Efficient nutrient resorption from senescing leaves, and extended leaf life spans are important strategies in order to conserve nutrients for plants in general. Despite the fact that seagrasses often grow in oligotrophic waters, these conservation strategies are not strongly developed in seagrasses.

  3. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    Science.gov (United States)

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  4. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2002-01-01

    Roč. 155, - (2002), s. 89-100 ISSN 0028-646X R&D Projects: GA AV ČR IAA6005905 Institutional research plan: CEZ:AV0Z6005908 Keywords : terrestrial carnivorous plant s * utilization of prey * mineral nutrient re-utilization * leaf nutrient supply Subject RIV: EF - Botanics Impact factor: 2.945, year: 2002

  5. Weak leaf photosynthesis and nutrient content relationships from tropical vegetation

    Science.gov (United States)

    Domingues, T. F.; Ishida, F. Y.; Feldpaush, T.; Saiz, G.; Grace, J.; Meir, P.; Lloyd, J.

    2015-12-01

    Evergreen rain forests and savannas are the two major vegetations of tropical land ecosystems, in terms of land area, biomass, biodiversity, biogeochemical cycles and rates of land use change. Mechanistically understanding ecosystem functioning on such ecosystems is still far from complete, but important for generation of future vegetation scenarios in response to global changes. Leaf photosynthetic rates is a key processes usually represented on land surface-atmosphere models, although data from tropical ecosystems is scarce, considering the high biodiversity they contain. As a shortcut, models usually recur to relationships between leaf nutrient concentration and photosynthetic rates. Such strategy is convenient, given the possibility of global datasets on leave nutrients derived from hyperspectral remote sensing data. Given the importance of Nitrogen on enzyme composition, this nutrient is usually used to infer photosynthetic capacity of leaves. Our experience, based on individual measurements on 1809 individual leaves from 428 species of trees and shrubs naturally occurring on tropical forests and savannas from South America, Africa and Australia, indicates that the relationship between leaf nitrogen and its assimilation capacity is weak. Therefore, leaf Nitrogen alone is a poor predictor of photosynthetic rates of tropical vegetation. Phosphorus concentrations from tropical soils are usually low and is often implied that this nutrient limits primary productivity of tropical vegetation. Still, phosphorus (or other nutrients) did not exerted large influence over photosynthetic capacity, although potassium influenced vegetation structure and function. Such results draw attention to the risks of applying universal nitrogen-photosynthesis relationships on biogeochemical models. Moreover, our data suggests that affiliation of plant species within phylogenetic hierarchy is an important aspect in understanding leaf trait variation. The lack of a strong single

  6. Leaf trait response to nutrients and herbivore exclusion across a globally replicated grassland experiment

    Science.gov (United States)

    Firn, Jennifer

    2017-04-01

    Leaf trait response to nutrients and herbivore exclusion across a globally replicated grassland experiment Jennifer Firn1, James McGree2, Eric Lind3, Elizabeth Borer3, Eric Seabloom3, Lauren Sullivan3, Kimberly Lapierre4 and the Nutrient Network 1Queensland University of Technology (QUT), School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Brisbane, QLD, 4001 Australia 2Queensland University of Technology (QUT), School of Mathematical Sciences, Science and Engineering Faculty, Brisbane, QLD, 4001 Australia 3Universtiy of Minnesota, Department of Ecology, Evolution, and Behavior, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN 55108 USA 4Department of integrative Biology, University of California, Berkeley, CA 94720 USA Functional trait research has developed with the aim of finding general patterns in how the function of plant assemblages changes with respect to different land-uses. Most studies have compared sites within and across regions with variations in land-use history, but not necessarily with standardized treatments in an experimental framework. The trends that have emerged from this research is that characteristics of leaf traits such as specific leaf area (SLA) correlate with carbon acquisition strategies known to influence ecosystem functioning. SLA has been found to represent a plant's investment in growing light-capturing area per dry mass content. Species with a relatively high SLA tend to have a higher rate of return on the resources invested into making tissue (cheaper leaves in terms of energy and resources needed to produce them) when compared to species with a lower SLA (more expensive leaves to produce). Few studies have examined quantitatively measured traits in an experimental framework. The Nutrient Network experiment, globally distributed experiment, presents a unique opportunity to examine the response of functional traits across grassland ecosystems characterised by a diverse range of

  7. [Effects of herbicide on grape leaf photosynthesis and nutrient storage].

    Science.gov (United States)

    Tan, Wei; Wang, Hui; Zhai, Heng

    2011-09-01

    Selecting three adjacent vineyards as test objects, this paper studied the effects of applying herbicide in growth season on the leaf photosynthetic apparatus and branch nutrient storage of grape Kyoho (Vitis vinfrraxVitis labrusca). In the vineyards T1 and T2 where herbicide was applied in 2009, the net photosynthesis rate (Pa) of grape leaves had a significant decrease, as compared with that in vineyard CK where artificial weeding was implemented. The leaves at the fourth node in vineyard T1 and those at the sixth node in vineyard T2 had the largest decrement of Pn (40.5% and 32.1%, respectively). Herbicide had slight effects on the leaf stomatal conductance (Gs). In T1 where herbicide application was kept on with in 2010, the Pn, was still significantly lower than that in CK; while in T2 where artificial weeding was implemented in 2010, the Pn and Gs of top- and middle node leaves were slightly higher than those in T1, but the Pn was still lower than that in CK, showing the aftereffects of herbicide residual. The herbicide application in 2009 decreased the leaf maximum photochemical efficiency of PS II (Fv/Fm) and performance index (P1) while increased the relative variable fluorescence in the J step and K step, indicating the damage of electron transportation of PS II center and oxygen-evolving complex. Herbicide application decreased the pigment content of middle-node leaves in a dose-manner. Applying herbicide enhanced the leaf catalase and peroxidase activities significantly, increased the superoxide dismutase (SOD) activity of middle-node leaves, but decreased the SOD activity of top- and bottom node leaves. After treated with herbicide, the ascorbate peroxidase (APX) activity of middle- and bottom node leaves increased, but that of top-node leaves decreased. Herbicide treatment aggravated leaf lipid peroxidation, and reduced the soluble sugar, starch, free amino acids, and soluble protein storage in branches.

  8. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.

    Science.gov (United States)

    Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl

    2012-06-01

    Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.

  9. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie

    2015-01-01

    season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... Svalbard in two vegetation types spanning three moisture regimes. We measured growing-season availability of ammonium (NH4 (+)), nitrate (NO3 (-)), total dissolved organic carbon (DOC) and nitrogen (TON) in soil; C, N, delta N-15 and chlorophyll content in Salix polaris leaves; and leaf sizes of Salix...

  10. The effects of leaf litter nutrient pulses on Alliaria petiolata performance

    Directory of Open Access Journals (Sweden)

    Robert W. Heckman

    2015-08-01

    Full Text Available Nutrient pulses can facilitate species establishment and spread in new habitats, particularly when one species more effectively uses that nutrient pulse. Biological differences in nutrient acquisition between native and exotic species may facilitate invasions into a variety of habitats including deciduous forest understories. Alliaria petiolata (Bieb. Cavara & Grande is an important invader of deciduous forest understories throughout much of North America. These understory communities contain many species which perform the majority of their growth and reproduction before canopy closure in spring. Because A. petiolata is a wintergreen biennial that can be active during autumn and winter, it may utilize nutrients released from decaying leaf litter before its competitors. To investigate this we manipulated the timing of leaf litter addition (fall or spring and experimentally simulated the nutrient pulse from decaying leaves using artificial fertilizer. To determine whether A. petiolata affected the abundance of understory competitors, we also removed A. petiolata from one treatment. A. petiolata that received early nutrients exhibited greater growth. Treatments receiving fall leaf litter or artificial nutrients had greater A. petiolata adult biomass than plots receiving spring nutrient additions (leaf litter or artificial nutrients. However, fall leaf litter addition had no effect on the richness of competitor species. Thus, wintergreen phenology may contribute to the spread of A. petiolata through deciduous forest understories, but may not explain community-level impacts of A. petiolata in deciduous forests.

  11. Leaf life span and the mobility of "non-mobile" mineral nutrients - the case of boron in conifers

    Science.gov (United States)

    Pedro J. Aphalo; Anna W. Schoettle; Tarja Lehto

    2002-01-01

    Nutrient conservation is considered important for the adaptation of plants to infertile environments. The importance of leaf life spans in controlling mean residence time of nutrients in plants has usually been analyzed in relation to nutrients that can be retranslocated within the plant. Longer leaf life spans increase the mean residence time of all mineral...

  12. Nutrient allocation among stem, leaf and inflorescence of jatropha plants

    Directory of Open Access Journals (Sweden)

    Rosiane L. S. de Lima

    2015-08-01

    Full Text Available ABSTRACTInformation on the partitioning of nutrients among various organs in jatropha plants, as a complementary tool for the recommendation of fertilization, is still not available. This study aimed to evaluate the contents of macro and micronutrients in stems, leaves and inflorescences of jatropha branches at the beginning of flowering. At the beginning of flowering, adult jatropha plants were sampled and divided into five compartments: inflorescences, leaves from vegetative branches, leaves from flowering branches, stems from vegetative branches and stems from flowering branches. Jatropha inflorescences are a drain of nutrients. Leaves are important sources of nutrients demanded by the inflorescences at the beginning of flowering. The higher allocation of nutrients in the inflorescences suggests the need for preventive/corrective fertilizations, which must be performed at least 30 days before flowering, providing plants with nutrients in adequate amounts for a good yield.

  13. Variation in leaf litter production and resorption of nutrients in abundant tree species in Nyungwe tropical montane rainforest in Rwanda

    Science.gov (United States)

    Nyirambangutse, Brigitte; Mirindi Dusenge, Eric; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2014-05-01

    African tropical rainforests play many roles from local to global scale as providers of resources and ecosystem services. Although covering 30% of the global rainforest, only few studies aiming to better understand the storage and fluxes of carbon and nutrients in these forests have been conducted. To answer questions related to these issues, we have established 15 permanent 0.5 ha plots where we compare carbon and nutrient fluxes of primary and secondary forest tree communities in a tropical montane forest in central Africa. The studies are conducted in Nyungwe montane tropical rain forest gazetted as a National Park to protect its extensive floral and faunal diversity covering an area of 970 km2. Nyungwe is located in Southwest Rwanda (2o17'-2o50'S, 29o07'-29o26A'E). The forest is ranging between 1600-2950 m.a.s.l. and is one of the most biologically important rainforest in Albertine Rift region in terms of Biodiversity. Nyungwe consists of a mixture of primary and secondary forest communities supporting a richness of plant and animal life. More than 260 species of trees and shrubs have been found in Nyungwe, including species endemic to the Albertine Rift. The forest has a climate with a mean annual temperature of 15.5oC and annual rainfall of ca 1850 mm yr-1, with July and August being the only months when rainfall drops. A part of this study is focusing on the dynamics of nutrients through leaf turnover. This turnover of leaves is regulated to maximize the carbon gain through canopy photosynthesis and resource-use efficiency of the plant. It is known that about half of leaf nitrogen is invested in photosynthetic apparatus and that there normally is a strong correlation between the photosynthetic capacity and leaf nitrogen per unit area. Hence leaf nitrogen is an important factor for canopy photosynthesis. However, leaves are produced, senesce and fall. Some nitrogen in the leaf is lost when leaves senesce but other is resorbed. The resorption of nitrogen

  14. Leaf senescence and nutrient remobilisation in barley and wheat

    DEFF Research Database (Denmark)

    Gregersen, P L; Holm, P B; Krupinska, K

    2008-01-01

    Extensive studies have been undertaken on senescence processes in barley and wheat and their importance for the nitrogen use efficiency of these crop plants. During the senescence processes, proteins are degraded and nutrients are re-mobilised from senescing leaves to other organs, especially...... of chloroplasts is summarised. Rubisco is thought to be released from chloroplasts into vesicles containing stroma material (RCB = Rubisco-containing bodies). These vesicles may then take different routes for their degradation. Transcriptome analyses on barley and wheat senescence have identified genes involved...... in degradative, metabolic and regulatory processes that could be used in future strategies aimed at modifying the senescence process. The breeding of crops for characters related to senescence processes, e.g. higher yields and better nutrient use efficiency, is complex. Such breeding has to cope with the dilemma...

  15. Leaf Litter Decomposition and Nutrient Dynamics Associated with Common Horticultural Cropland Agroforest Tree Species of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Hasanuzzaman

    2014-01-01

    Full Text Available Mangifera indica, Zizyphus jujuba, Litchi chinensis, and Artocarpus heterophyllus are the most common cropland agroforest horticultural tree species of Bangladesh. This study focused on leaf litter decomposition and nutrient (N, P, and K dynamics during the decomposition process. This experiment was conducted for 180 days by using litter bag technique during dry and wet seasons. Mass loss was the highest (49% and 57% for A. heterophyllus and the lowest (25% was found for L. chinensis. The highest initial rates (0.75% and 2.35%/day of decomposition were observed for Z. jujuba and the lowest (0.50% and 0.79%/day for L. chinensis. The highest decay constant was observed for A. heterophyllus (2.14 and 2.34 and the lowest (0.88 and 0.94 for L. chinensis. Leaf litter of all the studied species showed a similar pattern (K > N > P of nutrient release during the decomposition process. Zizyphus jujuba showed comparatively higher return of N, P, and K than others. However, a significant (P<0.05 higher amount of mass loss, rate of decomposition, decay constant, and amount of nutrient return from leaf litter were observed during the wet season.

  16. Calcium and potassium contents in nutrient solution on Phoma leaf spot intensity in coffee seedlings

    Directory of Open Access Journals (Sweden)

    Aricléia de Moraes Catarino

    Full Text Available ABSTRACT Coffee is one of the main export commodities of Brazilian agribusiness. Phoma leaf spot [Phoma tarda (Stewart Boerema & Bollen] is one of the most important coffee fungal diseases in Brazil. Therefore, this study aimed to evaluate the intensity of Phoma leaf spot in coffee seedlings supplied with different rates of Ca+2 and K+. The study was conducted under controlled conditions in a growth chamber, at the Department of Phytopathology - UFLA, from February 2010 to December 2011. The assay was repeated twice under the same conditions. The nutrient solutions consisted of five concentrations of K+ (3, 4, 5, 6, 7 mmol L-1 and Ca+2 (2, 4, 6, 8 and 10 mmol L-1. The experiment was arranged in a randomized block design, with 25 treatments and three replicates, with two plants per plot. The areas under incidence progress curve (AUIPC and severity (AUSPC were calculated. At the lowest rate of Ca2+ (2 mmol L-1 and highest K+ (6 and 7 mmol L-1, approximately, the AUIPC was the smallest. For the AUSPC, the lowest rates of Ca+2 and K+ resulted in the lowest severities. Supply of Ca+2 and K+ in nutrient solution reduced AUIPC and AUSPC of Phoma leaf spot, and these nutrients can be recommended for the management of the disease.

  17. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter

    Science.gov (United States)

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...

  18. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Niyonzima, Felix; Adolfsson, Lisa; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.

  19. Canopy and leaf composition drive patterns of nutrient release from pruning residues in a coffee agroforest.

    Science.gov (United States)

    Tully, Katherine L; Lawrence, Deborah

    2012-06-01

    In a coffee agroforest, the crop is cultivated under the shade of fruit-bearing and nitrogen (N)-fixing trees. These trees are periodically pruned to promote flowering and fruiting as well as to make nutrients stored in tree biomass available to plants. We investigated the effect of canopy composition and substrate quality on decomposition rates and patterns of nutrient release from pruning residues in a coffee agroforest located in Costa Rica's Central Valley. Initial phosphorus (P) release was enhanced under a canopy composed solely of N-fixing, Erythrina poeppigiana compared to a mixed canopy of Erythrina and Musa acuminata (banana). Both initial and final N release were similar under the two canopy types. However, after five months of decomposition, a higher proportion of initial N had been released under the single canopy. Although patterns of decomposition and nutrient release were not predicted by initial substrate quality, mass loss in leaf mixtures rates were well predicted by mean mass loss of their component species. This study identifies specific pruning regimes that may regulate N and P release during crucial growth periods, and it suggests that strategic pruning can enhance nutrient availability. For example, during the onset of rapid fruit growth, a two-species mixture may release more P than a three-species mixture. However, by the time of the harvest, the two- and three-species mixtures have released roughly the same amount of N and P. These nutrients do not always follow the same pattern, as N release can be maximized in single-species substrates, while P release is often facilitated in species mixtures. Our study indicates the importance of management practices in mediating patterns of nutrient release. Future research should investigate how canopy composition and farm management can also mediate on-farm nutrient losses.

  20. Estimating Apparent Nutrient Digestibility of Diets Containing or Leaf Meals for Growing Rabbits by Two Methods

    Directory of Open Access Journals (Sweden)

    A. M. Safwat

    2015-08-01

    Full Text Available This study aimed to evaluate the nutrient digestibility of growing rabbits fed diets with different levels of either Leucaena leucocephala (LLM or Moringa oleifera (MOLM leaf meals and also to compare total collection and TiO2 marker methods for estimating digestibility. A total of 30 California growing rabbits (1.81±0.19 kg live weight on average were randomly distributed into five experimental groups of six rabbits each and were housed in individual cages. The groups were control, 30% LLM, 40% LLM, 30% MOLM, and 40% MOLM. All groups received pelleted diets for two weeks; diets also contained 4 g/kg titanium dioxide as dietary marker. Daily feed intake was recorded during the whole experimental period and total feces were collected daily and weighed individually during four days. The results showed that there were no difference (p>0.05 in feed, dry matter (DM, organic matter (OM, crude protein (CP, digestible energy, and crude fiber (CF intake between the control group and the other experimental groups. The apparent digestibility values of DM, OM, CP, CF, acid detergent fiber, and gross energy were the highest for control group (p = 0.001, meanwhile MOLM diets had generally higher nutrient digestibility coefficients than LLM diets. Increasing the inclusion level of leaf meal in the diet from 30% to 40% improved the digestibility of CF from 45.02% to 51.69% for LLM and from 48.11% to 55.89% for MOLM. Similar results for apparent nutrient digestibility coefficients were obtained when either total collection or indigestible marker method was used. In conclusion, the digestibility of MOLM containing diets were better than LLM diets, furthermore TiO2 as an external marker could be used as a simple, practical and reliable method to estimate nutrients digestibility in rabbit diets.

  1. Relations among Valencia orange yields with soil and leaf nutrients in Northwestern Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Jonez Fidalski

    2000-01-01

    Full Text Available The Valencia orange orchards established on soils of low fertility in the Northwest region of Paraná State, Brazil, have showed symptoms of Mg deficiency and reduced fruit yields. The objective of this study was to verify the relationship between yield with soil and leaf nutrients during 1996/97 growing season. Two sites of low and high productivity were selected in seven orchards. Leaf and soil samples (fertilized rows and interrows were collected in 1996. The results showed that the citrus yields were negatively related with soil Mg/K and Ca+Mg/K ratios in the fertilized rows, and fruit weight positively correlated with leaf Zn in the low productivity orchards. The fruit weight was positively related with leaf Ca and soil Ca in the fertilized rows of the high productivity orchards. The results suggested an adequate lime and K fertilization managements in the fertilized rows, as well as an adequate Zn supply.Os pomares de laranja Valência (Citrus sinensis (L. Osbeck estabelecidos em solos de baixa fertilidade da região noroeste do Paraná, tem apresentado sintomas de desequilíbrio nutricional, principalmente deficiência de Mg e redução da produção e do tamanho dos frutos. O objetivo deste trabalho foi verificar as relações da produção e peso dos frutos com os nutrientes das folhas e do solo de sete pomares de laranja Valência na safra de 1996/97, em talhões de produtividade inferior e superior. Em 1996, foram coletadas amostras de folha e de solo nas faixas de adubação e nas entrelinhas. Os resultados mostraram que a produção de frutos correlacionou-se negativamente com as relações dos cátions Mg/K e Ca+Mg/K do solo das faixas de adubação dos pomares de baixa produtividade e, o peso dos frutos, correlacionou-se positivamente com os teores foliares de Zn. Nos pomares de produtividade superior, o peso dos frutos correlacionou-se positivamente com os teores de Ca das folhas e do solo nas faixas de adubação. Estes

  2. SOIL CHEMICAL ATTRIBUTES AND LEAF NUTRIENTS OF ‘PACOVAN’ BANANA UNDER TWO COVER CROPS

    Directory of Open Access Journals (Sweden)

    JOSÉ EGÍDIO FLORI

    2016-01-01

    Full Text Available Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloides, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus communis L., Canavalia ensiformis, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1 and between the banana rows (location 2. There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.

  3. Generation of Nutrients and Detoxification: Possible Roles of Yeasts in Leaf-Cutting Ant Nests

    Directory of Open Access Journals (Sweden)

    Fernando C. Pagnocca

    2012-02-01

    Full Text Available The possible roles played by yeasts in attine ant nests are mostly unknown. Here we present our investigations on the plant polysaccharide degradation profile of 82 yeasts isolated from fungus gardens of Atta and Acromyrmex species to demonstrate that yeasts found in ant nests may play the role of making nutrients readily available throughout the garden and detoxification of compounds that may be deleterious to the ants and their fungal cultivar. Among the yeasts screened, 65% exhibited cellulolytic enzymes, 44% exhibited pectinolytic activity while 27% and 17% possess enzyme systems for the degradation of protease and amylase, respectively. Galacturonic acid, which had been reported in previous work to be poorly assimilated by the ant fungus and also to have a negative effect on ants’ survival, was assimilated by 64% and 79% of yeasts isolated from nests of A. texana and Acromyrmex respectively. Our results suggest that yeasts found in ant nests may participate in generation of nutrients and removal of potentially toxic compounds, thereby contributing to the stability of the complex microbiota found in the leaf-cutting ant nests.

  4. Leaf nutrient contents and morphology of invasive tamarisk in different soil conditions in the lower Virgin River

    Science.gov (United States)

    Imada, S.; Acharya, K.; Tateno, R.; Yamanaka, N.

    2012-12-01

    Invasive plants can alter ecosystem nitrogen (N) cycling. To increase our understanding of nutrient use strategy of invasive tamarisk (Tamarix spp.) on an arid riparian ecosystem, we examined leaf nutrient contents and morphology of Tamarix ramosissima and its relationship with soil properties in the lower Virgin River floodplain, Nevada, U.S. Leaves were collected in three different locations; near the river, near the stand edge (60-70 m from the river edge) and at 30-40 m from the river edge in the summer of 2011. Leaves were analyzed for carbon (C) and N contents, and specific leaf area (SLA). Soil samples at 10-20 cm depths and under the canopy were also collected for soil water, pH, electrical conductivity (EC) and inorganic nitrogen (NO3- and NH4+) analysis. Results suggested that tree size and SLA increased with decreasing distance from the river, whereas C isotope discrimination did not differ among the samples based on distance from the river. Nitrogen content per unit mass and N isotope discrimination (δ15N) were significantly higher in the trees near the river. Soil NO3- and total inorganic N had positive relationships with δ15N in leaves, which suggests that leaf δ15N may be influenced by N concentrations on the soil surface. Negative correlations were found between soil EC and leaf N contents, suggesting that high soil salinity may decrease Tamarix leaf N and thus limit tree growth.

  5. Nutrient assessment of olive leaf residues processed by solid-state fermentation as an innovative feedstuff additive.

    Science.gov (United States)

    Xie, P-J; Huang, L-X; Zhang, C-H; Zhang, Y-L

    2016-07-01

    Olive leaf residue feedstuff additives were prepared by solid-state fermentation (SSF), and its feeding effects on broiler chickens were examined. The fermentation's nutrient value, that is, protein enrichment, cellulase activity, tannic acid degradation and amino acid enhancement, was determined. The effect of different strains, including molds (Aspergillus niger, Aspergillus oryzae and Trichoderma viride) and yeasts (Candida utilis, Candida tropicalis and Geotrichum candidum), and the fermentation time on the nutrient values of the feedstuff additives was investigated. The experimental results showed that the optimal parameters for best performance were A. niger and C. utilis in a 1 : 1 ratio (v/v) in co-culture fermentation for 5 days. Under these conditions, the total content of amino acids in the fermented olive leaf residues increased by 22·0% in comparison with that in the raw leaf residues. Both Glutamic acid and Aspartic acid contents were increased by more than 25·4%. Broiler chickens fed with different amounts of feedstuff additives were assessed. The results demonstrated that the chicken weight gains increased by 120%, and normal serum biochemical parameters were improved significantly after 10% of the feedstuff additives were supplemented to the daily chicken feed for 28 days. The co-culture combination of A. niger and C. utilis with SSF for olive leaf residue had the best nutrient values. The addition of 10% fermented olive leaf residue facilitated the chicken growth and development. This study reveals that olive leaf residues fermented by SSF exhibited considerable potential as feed additives for feeding poultry. © 2016 The Society for Applied Microbiology.

  6. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species.

    Science.gov (United States)

    Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George

    2012-01-01

    Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.

  7. Improved horticultural practices against leaf wilting, root rot and nutrient uptake in mango (mangiferaindica l.)

    International Nuclear Information System (INIS)

    Nafees, M.; Ahmad, I.; Ahmad, S.; Anwar, R.; Maryyam, A.; Hussnain, R.R.

    2013-01-01

    Poor plant health condition due to various known biotic and abiotic stresses; becoming a disaster in each mango growing country of the world including Pakistan. On the basis of previous researches on the identification of pathogen and several abiotic factors; Soil drenching and foliar spray of various concentrations of Topsin M (TMIC), Aliette (ATP) and Ridomil Gold (ACE) in combination with CuSO/sub 4/(Copper sulphate) was done on mango plants of cv. S.B. (Samar Bahist) Chaunsa showing wilting of leaves and shoots. Foliar application of micro-nutrients (Fe, B and Zn) (Iron, Boron and Zinc) was also practiced to improve general health of experimental plants Month-wise emergence of flushes was significantly higher in all treated plants compared with control. Percentage of wilted leaves and root rot in plants, which received drenching and foliar treatments, was significantly reduced (50%) compared with untreated plants. Nitrogen, phosphorus and potassium (N, P and K) levels in leaves were significantly improved in treated plants compared with control. Sigmoid relatioship was observed between fungicides and copper sulphate concentrations and uptake of N, P and K in treated plants. Application of 250g ATP fungicide by foliar spray plus 125g by soil drench, each along with 50g CuSO/sub 4/proved to be the best against leaf wilting and it improved the N and P level in leaves. While, application of 250g TMIC by foliar spray and 125g by soil drench, each with 50g CuSO/sub 4/, was found to be the best to reduce the spread of root rot in experimental plants. Preliminary spray of TMIC along with Copper sulphate is effective to improve plant health of mango cv. S.B. Chounsa. (author)

  8. Interspecific variation in leaf pigments and nutrients of five tree species from a subtropical forest in southern Brazil

    Directory of Open Access Journals (Sweden)

    MÁRCIA BÜNDCHEN

    2016-01-01

    Full Text Available ABSTRACT The purpose of this study was to analyze the seasonal variation in the nutrient and pigment content of leaves from five tree species - of which three are perennial (Cupania vernalis, Matayba elaeagnoides and Nectandra lanceolata and two are deciduous (Cedrela fissilis and Jacaranda micrantha - in an ecotone between a Deciduous Seasonal Forest and a Mixed Ombrophilous Forest in the state of Santa Catarina, Brazil. Leaf samples were collected in the four seasons of the year to determine the content of macronutrients (N, K, P, Mg, Ca, S and photosynthetic pigments (Chla, Chlb, Chltot, Cartot, Chla:Chlb and Cartot:Chltot. The principal component analysis showed that leaf pigments contributed to the formation of the first axis, which explains most of the data variance for all species, while leaf nutrient contribution showed strong interspecific variation. These results demonstrate that the studied species have different strategies for acquisition and use of mineral resources and acclimation to light, which are determinant for them to coexist in the forest environment.

  9. Photosynthetic capacity, nutrient status and growth of maize (Zea mays L. upon MgSO4 leaf-application

    Directory of Open Access Journals (Sweden)

    Mareike eJezek

    2015-01-01

    Full Text Available The major plant nutrient magnesium is involved in numerous physiological processes and its deficiency can severely reduce the yield and quality of crops. Since Mg availability in soil and uptake into the plant is often limited by unfavorable soil or climatic conditions, application of Mg onto leaves, the site with highest physiological Mg demand, might be a reasonable alternative fertilization strategy. This study aimed to investigate, if MgSO4 leaf-application in practically relevant amounts can efficiently alleviate the effects of Mg starvation in maize, namely reduced photosynthesis capacity, disturbed ion homeostasis and growth depression. Results clearly demonstrated that Mg deficiency could be mitigated by MgSO4 leaf-application as efficiently as by resupply of MgSO4 via the roots in vegetative maize plants. Significant increases in SPAD values and net rate of CO2-assimilation as well as enhanced shoot biomass have been achieved. Ion analysis furthermore revealed an improvement of the nutrient status of Mg-deficient plants with regard to [Mg], [K] and [Mn] in distinct organs, thereby reducing the risk of Mn-toxicity at the rootside, which often occurs together with Mg deficiency on acid soils. In conclusion, foliar fertilization with Mg proved to be an efficient strategy to adequately supply maize plants with magnesium and might hence be of practical relevance to correct nutrient deficiencies during the growing season.

  10. A REVIEW ON DIAGNOSIS OF NUTRIENT DEFICIENCY SYMPTOMS IN PLANT LEAF IMAGE USING DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    S Jeyalakshmi

    2017-05-01

    Full Text Available Plants, for their growth and survival, need 13 mineral nutrients. Toxicity or deficiency in any one or more of these nutrients affects the growth of plant and may even cause the destruction of the plant. Hence, a constant monitoring system for tracking the nutrient status in plants becomes essential for increase in production as well as quality of yield. A diagnostic system using digital image processing would diagnose the deficiency symptoms much earlier than human eyes could recognize. This will enable the farmers to adopt appropriate remedial action in time. This paper focuses on the review of work using image processing techniques for diagnosing nutrient deficiency in plants.

  11. Estimating Apparent Nutrient Digestibility of Diets Containing Leucaena leucocephala or Moringa oleifera Leaf Meals for Growing Rabbits by Two Methods.

    Science.gov (United States)

    Safwat, A M; Sarmiento-Franco, L; Santos-Ricalde, R H; Nieves, D; Sandoval-Castro, C A

    2015-08-01

    This study aimed to evaluate the nutrient digestibility of growing rabbits fed diets with different levels of either Leucaena leucocephala (LLM) or Moringa oleifera (MOLM) leaf meals and also to compare total collection and TiO2 marker methods for estimating digestibility. A total of 30 California growing rabbits (1.81±0.19 kg live weight on average) were randomly distributed into five experimental groups of six rabbits each and were housed in individual cages. The groups were control, 30% LLM, 40% LLM, 30% MOLM, and 40% MOLM. All groups received pelleted diets for two weeks; diets also contained 4 g/kg titanium dioxide as dietary marker. Daily feed intake was recorded during the whole experimental period and total feces were collected daily and weighed individually during four days. The results showed that there were no difference (p>0.05) in feed, dry matter (DM), organic matter (OM), crude protein (CP), digestible energy, and crude fiber (CF) intake between the control group and the other experimental groups. The apparent digestibility values of DM, OM, CP, CF, acid detergent fiber, and gross energy were the highest for control group (p = 0.001), meanwhile MOLM diets had generally higher nutrient digestibility coefficients than LLM diets. Increasing the inclusion level of leaf meal in the diet from 30% to 40% improved the digestibility of CF from 45.02% to 51.69% for LLM and from 48.11% to 55.89% for MOLM. Similar results for apparent nutrient digestibility coefficients were obtained when either total collection or indigestible marker method was used. In conclusion, the digestibility of MOLM containing diets were better than LLM diets, furthermore TiO2 as an external marker could be used as a simple, practical and reliable method to estimate nutrients digestibility in rabbit diets.

  12. Comparative growth behaviour and leaf nutrient status of native trees planted on mine spoil with and without nutrient amendment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Singh, J.S. [Banaras Hindu University, Varanasi (India). Dept. of Botany

    2001-07-01

    The effect of nutrient amendment on growth of nine indigenous tree species planted on coal mine spoil was studied. Greater growth in fertilized plots was accompanied by greater foliar N and P concentrations in all species. The response to fertilization varied among species and was greater in non-leguminous than in leguminous species. Furthermore, leguminous species exhibited higher growth rates compared to non-leguminous species. Acacia catechu, Dalbergia sissoo, Gmelina arborea and Azadirachta indica fitted the elastic similarity model of tree growth; whereas Pongamia pinnata and Phyllanthus emblica followed the constant stress model. Tectona grandis was the only species which fitted the geometric similarity model.

  13. Photopolarimetric properties of leaf and vegetation covers over a wide range of measurement directions

    Science.gov (United States)

    Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng

    2018-02-01

    The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.

  14. [Effects of elevated O3 on leaf litter decomposition and nutrient release of Quercus mongolica in city].

    Science.gov (United States)

    Su, Li-li; Xu, Sheng; Fu, Wei; He, Xing-yuan; Chen, Wei; Zhao, Yi; Ping, Qin

    2016-02-01

    The leaf litters of 10-year-old Quercus mongolica were put in nylon bags and exposed to elevated 03 level (120 nmol . mol-1) with the control of 40 nmol . mol-1 in open top chambers (OTCs) for 150 days to test the effect of high O3 on the litter decomposition. The results showed that no significant difference was observed in residual mass between elevated O3 treatment and the control. Elevated 03 inhibited the release of C and K during the decomposition, the residual rate of K under elevated O3 treatment (23.9%) was significantly higher than that of the control (17.1%) after 150-day decomposition. Compared with the control, N mineralization and lignin degradation in elevated O3 treatment were inhibited during early period of decomposition (0-60 d), but were promoted in later period (90-150 d). The changes of lignin/N showed no significant difference between elevated O3 treatment and the control during the decomposition. Elevated O3 generally promoted the release of P in leaf litter of Q. mongolica during the decomposition. C/P ratio was higher under elevated 03 than that under control. Significant positive correlation was shown between residual dry mass of leaf litters and the residual rate of C, N, K, C/N ratio during decomposition. Elevated 03 might play an important role in the nutrient cycle of forest ecosystem in high-O3 pollution area.

  15. Conservative nutrient use by big-leaf mahogany (Swietenia macrophylla King) planted under contrasting environmental conditions

    Science.gov (United States)

    E. Medina; E. Cuevas; A.E. Lugo; E. Terezo; J. Jimenez-Osornio; P.A. Macario-Mendoza; P. Montanez

    2014-01-01

    We analyzed the nutritional composition and isotope ratios (C and N) of big-leaf mahogany (Swietenia macrophylla King) leaves in plantations established on contrasting soils and climates in Central America (State of Quintana Roo, Yucatan, Mexico) and South America (State of Para, Brazil). The objective was to determine the adaptability of this species to large...

  16. Changes in nutrients and decay rate of Ginkgo biloba leaf litter exposed to elevated O3 concentration in urban area

    Directory of Open Access Journals (Sweden)

    Wei Fu

    2018-03-01

    Full Text Available Ground-level ozone (O3 pollution has been widely concerned in the world, particularly in the cities of Asia, including China. Elevated O3 concentrations have potentially influenced growth and nutrient cycling of trees in urban forest. The decomposition characteristics of urban tree litters under O3 exposure are still poorly known. Ginkgo biloba is commonly planted in the cities of northern China and is one of the main tree species in the urban forest of Shenyang, where concentrations of ground-level O3 are very high in summer. Here, we hypothesized that O3 exposure at high concentrations would alter the decomposition rate of urban tree litter. In open-top chambers (OTCs, 5-year-old G. biloba saplings were planted to investigate the impact of elevated O3 concentration (120 ppb on changes in nutrient contents and decomposition rate of leaf litters. The results showed that elevated O3 concentration significantly increased K content (6.31 ± 0.29 vs 17.93 ± 0.40, P < 0.01 in leaves of G. biloba, significantly decreased the contents of total phenols (2.82 ± 0.93 vs 1.60 ± 0.44, P < 0.05 and soluble sugars (86.51 ± 19.57 vs 53.76 ± 2.40, P < 0.05, but did not significantly alter the contents of C, N, P, lignin and condensed tannins, compared with that in ambient air. Furthermore, percent mass remaining in litterbags after 150 days under ambient air and elevated O3 concentration was 56.0% and 52.8%, respectively. No significant difference between treatments was observed in mass remaining at any sampling date during decomposition. The losses of the nutrients in leaf litters of G. biloba showed significant seasonal differences regardless of O3 treatment. However, we found that elevated O3 concentration slowed down the leaf litter decomposition only at the early decomposition stage, but slightly accelerated the litter decomposition at the late stage (after 120 days. This study provides our understanding of the ecological processes regulating

  17. ACUMULAÇÃO DE NUTRIENTES NO LIMBO FOLIAR DE GUANDU E ESTILOSANTES NUTRIENT ACCUMULATION IN PIGEON PEA AND STYLO LEAF BLADE

    Directory of Open Access Journals (Sweden)

    Huberto José Kliemann

    2007-09-01

    ="western" style="margin-bottom: 0cm;" align="JUSTIFY">Pigeon pea (Cajanus cajan and stylo plants (Stylosanthes guianensis var. vulgaris cv. Mineirão are two legumes cultivated in cerrado soils of central-west Brazil and cultivates for green manure, seed production, and pasture. The objective of this study was to evaluate accumulation of N, P, K, Ca, Mg, Zn, Cu, Mn, and Fe in leaf blades as a function of days after emergence. The experiment was developed in a dystrophic Oxisol at Embrapa Rice and Bean Research Center, in Santo Antônio de Goiás, Goiás State, Brazil. The treatments were arranged in a completely randomized block design with four replications. Plot size was 6.0 m wide and 20.0 m long. Planting fertilization was 400 kg ha-1 of a 5-30-15 formula. Sowing was done in December 2001. During crop growth, nine random leaf blades samples were collected on the different days after sowing for chemical analysis. Nutrient accumulation (Y was determined and data were adjusted as a function of days after emergence (X using a quadratic exponential regression model Y = a exp(bx + cx2. Pigeon pea showed higher dry matter and, generally, higher nutrient accumulation than stylo plants until 98 days. Among macronutrients, N had the highest accumulation and P the lowest. Among micronutrients, Fe had the highest accumulation and Cu the lowest in the leaf laminas of the two legumes.

    KEY-WORDS: Legumes, nutrient content, mineral nutrition, Cajanus cajan,

  18. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    Science.gov (United States)

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  19. Lignification in beech grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation

    International Nuclear Information System (INIS)

    Blaschke, L; Forstreuter, M.; Sheppard, L. J.; Leith, K.; Murray, M. B.; Polle, A.

    2002-01-01

    Results of a study undertaken to investigate contradictory observations reported in the literature to the effect that growth in elevated carbon dioxide affects ontogeny, are discussed. Results of this study showed that seedlings grown at elevated carbon dioxide had nitrogen concentrations of about 15 per cent lower than seedlings grown in ambient carbon dioxide. Elevated carbon dioxide caused increased growth and biomass production in trees with a medium to high nutrient supply, but had no effect on growth of trees with a low nutrient supply rate. Because elevated carbon dioxide enhanced seedling growth in the high nutrient supply treatments, the total amount of lignin produced per seedling was higher in these treatments. Overall, the results suggest that carbon dioxide availability does not directly affect lignin concentrations, but affects them indirectly through the effects on or an interaction with nitrogen supply and growth. In seedlings, elevated carbon dioxide reduced lignin concentration on a dry mass basis, indicating diminished wood quality in a carbon dioxide-enriched atmosphere. 51 refs., 2 tabs., 5 figs

  20. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  1. Variability in leaf optical properties among 26 species from a broad range of habitats

    International Nuclear Information System (INIS)

    Knapp, A.K.; Carter, G.A.

    1998-01-01

    Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r2 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases

  2. Detection and Host Range Study of Virus Associated with Pepper Yellow Leaf Curl Disease

    Directory of Open Access Journals (Sweden)

    SRI SULANDARI

    2006-03-01

    Full Text Available High incidence of Pepper yellow leaf curl virus (PepYLCV was observed in Indonesia since early 2000. Disease incidence in Yogyakarta, Central and West Java reached 100% on Capsicum frutescens, but only 10-35% on C. annuum. As an exception, the disease incidence on C. annuum cv. TM 999 was in the range of 70-100%. The causal agent of the disease, PepYLCV, was detected by polymerase chain reaction. Viral specific DNA fragment of the size ~1600 bp and ~550 bp was amplified from infected plants using two pairs of geminivirus universal primers pAL1v1978/pAL1c715, and pAv494/pAc1048, respectively. The PepYLCV has an intermediate host range including plants belonging to the family of Solanaceae, Leguminosae, and Compositae. The species belonging to the families of Cucurbitaceae, Malvaceae, Chenopodiaceae, and Amaranthaceae were resistant to the virus. Physalis floridana, is very prospective as a propagation host for the geminivirus infecting pepper. Nicotiana spp., cucumber, watermelon, cotton, and Sida sp. could be used as a differential host. Besides, Capsicum frutescens cv. Cakra, tomato, N. benthamiana, N. glutinosa, and Ageratum conyzoides could be used as indicator plants for the geminivirus infecting pepper.

  3. Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Adolfsson, Lisa; Niyonzima, Felix; Nsabimana, Donat; Uddling, Johan

    2014-05-01

    Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax to Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better

  4. A Range-Wide Experiment to Investigate Nutrient and Soil Moisture Interactions in Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Rodney E. Will

    2015-06-01

    Full Text Available The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction and fertilization (complete suite of nutrients. Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.

  5. Yield performance and leaf nutrient levels of coffee cultivars under different plant densities Produtividade e níveis foliares de nutrientes em cultivares de café sob diferentes populações de plantas

    Directory of Open Access Journals (Sweden)

    Edison Martins Paulo

    2010-12-01

    Full Text Available Coffee (Coffea Arabica L. plantations using adapted cultivars to regional environmental conditions with optimal plant population density and adequate nutrition are expected to show high yield responses. The triennial production and leaf macronutrient concentrations of four coffee cultivars were studied under different plant population densities. Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 and Icatu Amarelo (IAC 2944 were planted in densities of 2,500; 5,000; 7,519; and 10,000 plants ha-1 with one plant per hole and two plants per hole in the 2,500 plant ha-1. Plants were homogeneously fertilized without liming. As the population density increased the triennial coffee productivity increased, the yield per plant decreased, and leaf concentrations of phosphorus (P, potassium (K and sulfur (S increased. Coffee plants under dense systems presented equal or higher leaf macronutrient concentrations compared to the plants under conventional population. Taller cultivars presented the highest nutrient concentration values, and Obatã, a dwarf cultivar, the lowest values. Higher coffee yields and lower leaf P, Ca and S concentrations were observed in plots with one plant compared to the plots with two plants. In general, the coffee cultivars had leaf N and S concentrations above the reference limits reported in the literature, but leaf concentrations of other macronutrients were within adequate ranges.Cultivares de cafeeiro (Coffea Arabica L. adaptadas às regiões de cultivo, com população de plantas otimizada e adequado estado nutricional são premissas para a obtenção de produções elevadas de café. Estudou-se a produção trienal de café e o teor foliar de macronutrientes de cultivares de cafeeiro em função das densidades de plantio. Foram utilizados os cultivares Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 e Icatu Amarelo (IAC 2944 nas populações de 2.500 plantas ha-1 com duas plantas por cova; e, 5

  6. Varying plant density and harvest time to optimize cowpea leaf yield and nutrient content

    Science.gov (United States)

    Ohler, T. A.; Nielsen, S. S.; Mitchell, C. A.

    1996-01-01

    Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g m-2 day-1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g m-2 day-1 g-1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

  7. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    Science.gov (United States)

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (Pforest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, Pforest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  8. Short communication: A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil

    OpenAIRE

    GAURAV MISHRA; KRISHNA GIRI; ANTARA DUTTA

    2016-01-01

    Abstract. Mishra G, Giri K, Dutta A, Hazarika S and Borgohain P. 2015. A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil. Nusantara Bioscience 8: 5-7. Plant litter or residues can be used as soil amendment to maintain the carbon stock and soil fertility. The amount and rate of mineralization depends on biochemical composition of plant litter. Alnus nepalensis (Alder) is known for its symbiotic nitrogen fixa...

  9. Effect of Nutrient Solution Concentration, Time and Frequency of Foliar Application on Growth of Leaf and Daughter Corms of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    R Khorasani

    2015-07-01

    Full Text Available In order to investigate the effect of different levels of nutrient solution concentration and times and frequencies of foliar applications on dry weight, nitrogen, phosphorus and potassium concentrations of leaf and corm of saffron, a pot experiment was conducted as a completely randomized design with factorial arrangement and three replications under open door conditions in research garden of ferdowsi university, faculty of agriculture. The experimental treatments were included 4 levels of solution concentration (0, 4, 8 and 12 per 1000 and 7 levels of time and frequency of foliar applications (F1: foliar application on 3th February, F2: foliar application on 18th February, F3: foliar application on 5th March, F4: foliar applications on 3th and 18th February, F5: foliar applications on 3th February and 5th March, F6: foliar applications on 18th February and 5th March, F7: foliar applications on 3th and 18th February and 5th March. Results of variance analysis showed that fresh and dry weight of corm and leaf were not influenced by concentration, time and frequency of foliar applications. Also, comparison of nitrogen, phosphorus and potassium concentrations of leaf and corm showed that there was no significant difference between levels of foliar treatments and control. Therefore, it seems that due attention to pattern of leaf and low nutrient demand of saffron, foliar applications in different levels of nutrient solution concentrations and times and frequencies of foliar applications could not increase vegetative growth and consequently, could not improve the growth and nutritional properties of saffron corms.

  10. Lack of Impact of Posidonia oceanica Leaf Nutrient Enrichment on Sarpa salpa Herbivory: Additional Evidence for the Generalist Consumer Behavior of This Cornerstone Mediterranean Herbivore.

    Science.gov (United States)

    Marco-Méndez, Candela; Wessel, Caitlin; Scheffel, Whitney; Ferrero-Vicente, Luis; Fernández-Torquemada, Yolanda; Cebrián, Just; Heck, Kenneth L; Sánchez-Lizaso, Jose Luis

    2016-01-01

    The fish Sarpa salpa (L.) is one of the main macroherbivores in the western Mediterranean. Through direct and indirect mechanisms, this herbivore can exert significant control on the structure and functional dynamics of seagrass beds and macroalgae. Past research has suggested nutritional quality of their diet influences S. salpa herbivory, with the fish feeding more intensively and exerting greater top down control on macrophytes with higher internal nutrient contents. However recent findings have questioned this notion and shown that herbivores do not preferentially feed on macrophytes with higher nutrient contents, but rather feed on a wide variety of them with no apparent selectivity. To contribute to this debate, we conducted a field fertilization experiment where we enriched leaves of the seagrass Posidonia oceanica, a staple diet for S. salpa, and examined the response by the herbivore. These responses included quantification of leaf consumption in fertilized and non-fertilized/control plots within the bed, and food choice assays where fertilized and non-fertilized/control leaves were simultaneously offered to the herbivore. Despite the duration of leaf exposure to herbivores (30 days) and abundant schools of S. salpa observed around the plots, leaf consumption was generally low in the plots examined. Consumption was not higher on fertilized than on non-fertilized leaves. Food choice experiments did not show strong evidence for selectivity of enriched leaves. These results add to a recent body of work reporting a broad generalist feeding behavior by S. salpa with no clear selectivity for seagrass with higher nutrient content. In concert, this and other studies suggest S. salpa is often generalist consumers not only dictated by diet nutrient content but by complex interactions between other traits of nutritional quality, habitat heterogeneity within their ample foraging area, and responses to predation risk.

  11. Can nutrient limitations explain low and declining white spruce growth near the Arctic treeline in the eastern Brooks Range, Alaska?

    Science.gov (United States)

    Ellison, S.; Sullivan, P. F.

    2014-12-01

    The position of the Arctic treeline is of critical importance for global carbon cycling and surface energy budgets. However, controls on tree growth at treeline remain uncertain. In the Alaskan Brooks Range, 20th century warming has caused varying growth responses among treeline trees, with trees in the west responding positively, while trees in the east have responded negatively. The prevailing explanation of this trend ascribes the negative growth response to warming-induced drought stress in the eastern Brooks Range. However, recent measurements of carbon isotope discrimination in tree rings, xylem sap flow and needle gas exchange suggest that drought stress cannot explain these regional growth declines. Additionally, evidence from the western Brooks Range suggests that nutrient availability, rather than drought stress, may be the proximate control on tree growth. In this study, we investigated the hypothesis that low and declining growth of eastern Brooks Range trees is due to low and declining soil nutrient availability, which may continue to decrease with climate change as soils become drier and microbial activity declines. We compared microclimate, tree performance, and a wide range of proxies for soil nutrient availability in four watersheds along a west-east transect in the Brooks Range during the growing seasons of 2013 and 2014. We hypothesized that soil nutrient availability would track closely with the strong west-east precipitation gradient, with higher rainfall and greater soil nutrient availability in the western Brooks Range. We expected to find that soil water contents in the west are near optimum for nitrogen mineralization, while those in the east are below optimum. Needle nitrogen concentration, net photosynthesis, branch extension growth, and growth in the main stem are expected to decline with the hypothesized decrease in soil nutrient availability. The results of our study will elucidate the current controls on growth of trees near the

  12. Nutrient release from decomposing leaf mulches of karité (Vitellaria paradoxa) and néré (Parkia biglobosa) under semi-arid conditions in Burkina Faso, West Africa

    NARCIS (Netherlands)

    Bayala, J.; Mando, A.; Teklehaimanot, Z.; Ouedraogo, S.J.

    2005-01-01

    Information on decomposition and nutrient release from leaf litter of trees in agroforestry parkland systems in Sub-Saharan Africa is scarce despite the significant role of these trees on soil fertility improvement and maintenance. Decomposition and nutrient release patterns from pruned leaves of

  13. Leaf and soil nitrogen and phosphorus availability in a neotropical rain forest of nutrient-rich soil

    Directory of Open Access Journals (Sweden)

    José Luis Martínez-Sánchez

    2006-06-01

    Full Text Available The nitrogen and phosphorus supply in a lowland rain forest with a nutrient-rich soil was investigated by means of the leaf N/P quotient. It was hypothesised a high N and P supply to the forest ecosystem with a N and P rich soil. Total N and extractable P were determined in the surface (10 cm soil of three plots of the forest. Total N was analysed by the Kjeldahl method, and P was extracted with HCl and NH4F. The leaf N/P quotient was evaluated from the senesced leaves of 11 dominant tree species from the mature forest. Samples of 5 g of freshly fallen leaves were collected from three trees of each species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid, and determined by photometry. Concentrations of total N (0.50%, n = 30 and extractable P (4.11 μg g-1, n = 30 in the soil were high. As expected, P supply was sufficient, but contrary to expected, N supply was low (N/P = 11.8, n = 11. Rev. Biol. Trop. 54(2: 357-361. Epub 2006 Jun 01.A través del cociente foliar N/P, se investigó la disponibilidad de nitrógeno y fósforo en una selva húmeda tropical con suelo fértil. Como hipótesis se esperaba encontrar una alta disponibilidad de N y P en el ecosistema debido a un suelo rico en N y P. Se determinó el N total y el P extraible en el suelo superficial (10 cm en tres sitios de la selva. El N total se analizó por el método Kjeldahl y el P por extracción con HCl y NH4F. El cociente foliar N/P se evaluó a partir de hojas seniles de 11 especies arbóreas dominantes de la selva madura. Se recolectaron muestras de 5 g de hojas recién caídas de tres árboles de cada especie. El nitrógeno se analizó por digestión microkjeldahl con ácido sulfúrico y destilación con ácido bórico, y el fósforo por digestión con ácido nítrico y ácido perclórico, y determinación con fotometría. Las concetraciones de N

  14. Effects of supplements with increasing glucogenic precursor content on reproduction and nutrient partitioning in young postpartum range cows

    Science.gov (United States)

    Altering nutrient partitioning in young postpartum beef cows from milk production to body weight gain has potential to improve reproductive performance. A 2-yr study conducted at the Corona Range and Livestock Research Center from February to July in 2003 (n = 33) and 2004 (n = 26) evaluated respons...

  15. EFFECTS OF FEEDING Moringa stenopetala LEAF MEAL ON NUTRIENT INTAKE AND GROWTH PERFORMANCE OF RHODE ISLAND RED CHICKS UNDER TROPICAL CLIMATE

    Directory of Open Access Journals (Sweden)

    Aberra Melesse

    2011-03-01

    Full Text Available The effects of Moringa stenopetala leaf meal (MSLM on nutrient intake and weight gain (WG were evaluated. Forty unsexed Rhode Island Red chicks were randomly assigned to 4 treatment groups. The control diet (T1 (MSLM 0%, the experimental diets contained MSML at a rate of 2% (T2, 4% (T3, and 6% (T4 of the diets (as fed basis to replace 3%, 5.9% and 8.8% of the crude protein (CP of the control diet. Daily feed, dry matter and CP intake of the chicks fed MSLM diets were higher (p

  16. Leaf vegetables for use in integrated hydroponics and aquaculture systems: Effects of root flooding on growth, mineral composition and nutrient uptake

    DEFF Research Database (Denmark)

    Trang, Ngo Thuy Diem; Schierup, Hans-Henrik; Brix, Hans

    2010-01-01

    In recirculating aquaculture and hydroponics systems, the waste products from fish production are used to produce vegetables or other crops of economic value, and the water is recirculated to the fish tanks. We studied growth, productivity and nutrient uptake of four leaf vegetable species (Lactuca...... sativa, Ipomoea aquatica, Brassica rapa var. chinensis and Brassica rapa var. parachinensis) in a controlled growth experiment with three root flooding treatments (drained, half-flooded and flooded) to assess their preferred hydroponic growth requirements, biomass production and nutrient removal......, respectively. The two Brassica varieties produced much less aerial biomass (50-54 g DW/m2 during a 60-day period). Both I. aquatica and L. sativa are promising species to be included in integrated hydroponic and aquaculture facilities, with I. aquatica showing the most promise because of its higher growth...

  17. Evaluation of dried vegetables residues for poultry: II. Effects of feeding cabbage leaf residues on broiler performance, ileal digestibility and total tract nutrient digestibility.

    Science.gov (United States)

    Mustafa, A F; Baurhoo, B

    2017-03-01

    A study was conducted to investigate the effects of partial replacing corn and soybean meal with dried cabbage leaf residues (DCR) on broiler growth performance, apparent ileal nutrient digestibility, and apparent total tract nutrient utilization. Dietary treatments include 4 levels of DCR (0, 3, 6, and 9%). Two hundred and twenty-four day-old male broilers were randomly assigned to one of 4 groups (8 cage replicates; 7 birds/cage) and grown over a 35-d experimental period. Results showed that feeding DCR had no effects on daily body weigh gain (average 53.4 g/d), daily feed intake (average 94.9 g/d), and feed conversion ratio (average 1.78 g of feed/g of gain). Inclusion of DCR reduced apparent ileal DM (quadratic effect, P digestibility of younger birds (d 21) while incremental levels of DCR had no effect on apparent ileal nutrient digestibilities of older birds (d 35). Apparent total tract digestibility of DM, OM, and CP increased (linear effect, P digestibility of older birds and improved apparent total tract nutrient digestibility. © 2016 Poultry Science Association Inc.

  18. Short communication: A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil

    Directory of Open Access Journals (Sweden)

    GAURAV MISHRA

    2016-04-01

    Full Text Available Abstract. Mishra G, Giri K, Dutta A, Hazarika S and Borgohain P. 2015. A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil. Nusantara Bioscience 8: 5-7. Plant litter or residues can be used as soil amendment to maintain the carbon stock and soil fertility. The amount and rate of mineralization depends on biochemical composition of plant litter. Alnus nepalensis (Alder is known for its symbiotic nitrogen fixation and capability to restore fertility of degraded lands. A laboratory incubation experiment was conducted for 60 days under controlled conditions to validate the carbon and nutrients mineralization potential of alder litter. Soil fertility indicators, i.e. soil organic carbon (SOC, available nitrogen (N, available phosphorus (P, and available potassium (K were analyzed using standard procedures. Significant differences were observed in the soil properties after addition of litter. Nutrient composition of alder litter was found superior by providing significantly higher organic matter and helped in better nutrient cycling. Therefore, alder based land use system may be replicated in other degraded lands or areas for productivity enhancement which is important for sustaining biodiversity and soil fertility.

  19. TEORES FOLIARES E EXPORTAÇÃO DE NUTRIENTES DO MAMOEIRO BAIXINHO DE SANTA AMÁLIA TRATADO COM BIOFERTILIZANTES LEAF NUTRIENT STATUS AND NUTRIENT EXPORTATION OF “BAIXINHO DE SANTA AMÁLIA” PAPAYA CULTIVAR TREATED WITH BIOFERTILIZERS

    Directory of Open Access Journals (Sweden)

    Ítalo Herbert Lucena Cavalcante

    2009-12-01

    ="font-size: small;">sódio, macro e micronutrientes, nas folhas das plantas e na exportação dos respectivos nutrientes, com a colheita dos frutos do mamoeiro em todas as doses de insumos aplicados ao solo. As plantas, no início da floração, estavam com teores adequados de nitrogênio, potássio, enxofre, boro, cobre e zinco e deficientes em fósforo, cálcio, magnésio, ferro e manganês. O potássio (dentre os macronutrientes e o ferro (dentre os micronutrientes foram os mais exportados, com a colheita dos frutos.

    PALAVRAS-CHAVE: Carica papaya L.; biofertilizante; composição mineral.

    Papaya tree is a crop with expressive economic importance in Brazil, where it has been traditionally cultivated with mineral soil fertilizing, although, for the last two decades, the world market has required lower levels of synthetic products use for food production and higher levels of the natural ones. In this way, one experiment was carried out in Remígio, Paraíba State, Brazil, to evaluate the leaf nutrient status, at the beginning of the blooming stage, and the exportation of sodium, macro, and micronutrients of the “Baixinho de Santa Amália” papaya cultivar. A complete randomized blocks experimental design was used in a

  20. Urbanization effects on leaf litter decomposition, foliar nutrient dynamics and aboveground net primary productivity in the subtropics

    Science.gov (United States)

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    Urbanization can alter nutrient cycling. This research evaluated how urbanization affected nutrient dynamics in the subtropics. We established 17–0.04 ha plots in five different land cover types—slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n= 3), rural natural oak forests (n=4), urban pine forests (n=3) and urban oak forests (n=4) in the...

  1. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Coyle; J. Blake; K. Britton; M.; R.G. Campbell; J. Cox; B. Cregg; D. Daniels; M. Jacobson; K. Johnsen; T. McDonald; K. McLeod; E.; D. Robison; R. Rummer; F. Sanchez; J.; B. Stokes; C. Trettin; J. Tuskan; L. Wright; S. Wullschleger

    2003-12-31

    Coleman, M.D., et. al. 2003. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses. Report. USDA Forest Service, Savannah River, Aiken, SC. 26 pp. Abstract: Many researchers have studied the productivity potential of intensively managed forest plantations. However, we need to learn more about the effects of fundamental growth processes on forest productivity; especially the influence of aboveground and belowground resource acquisition and allocation. This report presents installation, establishment, and first-year results of four tree species (two cottonwood clones, sycamore, sweetgum, and loblolly pine) grown with fertilizer and irrigation treatments. At this early stage of development, irrigation and fertilization were additive only in cottonwood clone ST66 and sweetgum. Leaf area development was directly related to stem growth, but root production was not always consistent with shoot responses, suggesting that allocation of resources varies among treatments. We will evaluate the consequences of these early responses on resource availability in subsequent growing seasons. This information will be used to: (1) optimize fiber and bioenergy production; (2) understand carbon sequestration; and (3) develop innovative applications such as phytoremediation; municipal, industrial, and agricultural wastes management; and protection of soil, air, and water resources.

  2. Astrotischeria neotropicana sp. nov.-a leaf-miner on Sida, Malvaceae, currently with the broadest distribution range in the Neotropics (Lepidoptera, Tischeriidae).

    Science.gov (United States)

    Diškus, Arūnas; Stonis, Jonas R

    2015-11-05

    This paper describes Astrotischeria neotropicana Diškus & Stonis, sp. nov. (Lepidoptera: Tischeriidae), a new leaf-miner on Sida (Malvaceae) with a broad distribution range in tropical Central & South America. The new species is currently recorded from the Amazon Basin in Peru and Ecuador to tropical lowlands in Guatemala and Belize (including the Caribbean Archipelago). The new species is illustrated with photographs of the adults, male and female genitalia, and the leaf-mines; distribution map is also provided.

  3. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    Science.gov (United States)

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  4. Leaf Gas Exchange and Nutrient Use Efficiency Help Explain the Distribution of Two Neotropical Mangroves under Contrasting Flooding and Salinity

    Directory of Open Access Journals (Sweden)

    Pablo Cardona-Olarte

    2013-01-01

    Full Text Available Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1 were simulated over 10 months. Assimilation (A, stomatal conductance (gw, intercellular CO2 concentration (Ci, instantaneous photosynthetic water use efficiency (PWUE, and photosynthetic nitrogen use efficiency (PNUE were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and gw and, accordingly, had greater intercellular CO2 (calculated during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  5. Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2008-01-01

    Information about macro- and micro-nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps to maximize biomass production and understand impacts of leachate chemistry on tree health. We irrigated eight Populus clones (NC 13460, NCI4O18, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized (N, P, K) well...

  6. Macro- and micro-nutrient concentration in leaf, woody, and root tissue of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2007-01-01

    Landfill leachate offers an opportunity to supply water and plant nutritional benefits at a lower cost than traditional sources. Information about nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps increase biomass production along with evaluating the impacts of leachate chemistry on tree health.

  7. Leaf Litter Decomposition and Nutrient Dynamics in Woodland and Wetland Conditions along a Forest to Wetland Hillslope

    OpenAIRE

    Qiu, Song; McComb, Arthur J.; Bell, Richard W.

    2012-01-01

    Leaf litters of jarrah (Eucalyptus marginata Donn ex Sm.) and banksia (Banksia menziesii R. Br.) were decomposed at woodland and wetland conditions for two years to test site influence on the rates of decomposition. Weight loss was rapid in early rains but slowed substantially in the following months, resulting in 2/3 to 1/2 weights remaining after two years of field exposure. Litter weight loss was well described by a two-substrate quality decay model (R2=0.97−0.99), and the half-lives were ...

  8. Mineral and Nutrient Leaf Composition of Two Cassava (Manihot esculenta Crantz Cultivars Defoliated at Varying Phenological Phases

    Directory of Open Access Journals (Sweden)

    Oyeyemi Adigun DADA

    2010-12-01

    Full Text Available The effect of defoliation on mineral and food value of two cassava varieties defoliated at varying phenological phases was studied to ascertain the appropriate phenological phase when harvested leaves would contain the optimum mineral and proximate composition, gross energy and the least cyanide content. Two cassava cultivars were subjected to defoliation at varying phenological stages including logarithmic, vegetative and physiological maturity phases. The mineral content was highest at the logarithmic phase than any other phases. The proximate composition of the cassava leaves showed that crude protein was highest at physiological maturity, while the least HCN was observed in cassava defoliated at logarithmic phase. Analysis of mineral and proximate content showed that leaf of the �TMS30572� cultivar had the highest mineral content, fat, fibre, ash, dry matter and gross energy at the logarithm phase while �Oko-Iyawo� had the highest crude protein and HCN at physiological maturity. This study indicates the high potential of cassava leaf as an unconventional source of protein for both humans and animals when defoliated at logarithmic growth phase.

  9. Nutrient contents and physiological quality of common bean seeds in response to leaf fertilization with manganese and zinc

    OpenAIRE

    Teixeira, Itamar Rosa; Borém, Aluízio; Araújo, Geraldo Antônio de Andrade; Andrade, Messias José Bastos de

    2005-01-01

    No presente trabalho, objetivou-se avaliar os teores de nutrientes minerais e a qualidade fisiológica de sementes de feijão (Phaseolus vulgaris L.), em resposta à adubação foliar com manganês e zinco. O experimento foi desenvolvido a campo em Latossolo Vermelho-Amarelo distrófico fase cerrado, em Ijaci (MG). Utilizou-se o esquema fatorial em blocos casualizados, com quatro repetições, sendo os tratamentos formados pela combinação de cinco doses de Mn (0, 75, 150, 300 e 600 g ha-1) e cinco de ...

  10. Effect of condensed tannins from Ficus infectoria and Psidium guajava leaf meal mixture on nutrient metabolism, methane emission and performance of lambs.

    Science.gov (United States)

    Pathak, A K; Dutta, Narayan; Pattanaik, A K; Chaturvedi, V B; Sharma, K

    2017-12-01

    The study examined the effect of condensed tannins (CT) containing Ficus infectoria and Psidium guajava leaf meal mixture (LMM) supplementation on nutrient metabolism, methane emission and performance of lambs. Twenty four lambs of ~6 months age (average body weight 10.1±0.60 kg) were randomly divided into 4 dietary treatments (CT-0, CT-1, CT-1.5, and CT-2 containing 0, 1.0, 1.5, and 2.0 percent CT through LMM, respectively) consisting of 6 lambs each in a completely randomized design. All the lambs were offered a basal diet of wheat straw ad libitum, oat hay (100 g/d) along with required amount of concentrate mixture to meet their nutrient requirements for a period of 6 months. After 3 months of experimental feeding, a metabolism trial of 6 days duration was conducted on all 24 lambs to determine nutrient digestibility and nitrogen balance. Urinary excretion of purine derivatives and microbial protein synthesis were determined using high performance liquid chromatography. Respiration chamber study was started at the mid of 5th month of experimental feeding trial. Whole energy balance trials were conducted on individual lamb one after the other, in an open circuit respiration calorimeter. Intake of dry matter and organic matter (g/d) was significantly (p<0.05) higher in CT-1.5 than control. Digestibility of various nutrients did not differ irrespective of treatments. Nitrogen retention and microbial nitrogen synthesis (g/d) was significantly (p<0.01) higher in CT-1.5 and CT-2 groups relative to CT-0. Total body weight gain (kg) and average daily gain (g) were significantly (linear, p<0.01) higher in CT-1.5 followed by CT-1 and CT-0, respectively. Feed conversion ratio (FCR) by lambs was significantly (linear, p<0.01) better in CT-1.5 followed by CT-2 and CT-0, respectively. Total wool yield (g; g/d) was linearly (p<0.05) higher for CT-1.5 than CT-0. Methane emission was linearly decreased (p<0.05) in CT groups and reduction was highest (p<0.01) in CT-2 followed by

  11. Growth performance, nutrient utilization, and feed efficiency in broilers fed Tithonia diversifolia leaf meal as substitute of conventional feed ingredients in Mizoram.

    Science.gov (United States)

    Buragohain, Rajat

    2016-05-01

    The study was for assessment of growth performance, nutrient utilization, and feed efficiency in broilers fed rations with varying levels of Tithonia diversifolia leaf meal (TDLM) as a substitute of conventional feed ingredients in Mizoram. A total of 180, 1-day-old broiler chicks were randomly divided into six homogeneous groups and fed rations incorporated with TDLM (TDLM at 0% [TDLM-0], 2% [TDLM-2], 4% [TDLM-4], 6% [TDLM-6], 8% [TDLM-8], and 10% [TDLM-10] level as substitute of conventional feed ingredients) for 6 weeks. The chicks were reared in battery brooders for the first 2 weeks, and thereafter, in well-ventilated deep litter house following standard management protocols. Feed and drinking water were provided ad libitum to all the groups throughout the experiment. The daily feed intake and weekly body weight gain were recorded, and a metabolic trial for 3 days was conducted at the end of the 6(th) week. Feed consumption decreased for inclusion of TDLM but without any significant differences, except during the 3(rd) week where it reduced significantly (pbroilers reared under deep litter system of management in Mizoram.

  12. Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard

    Energy Technology Data Exchange (ETDEWEB)

    Olego, M.A.; Visconti, F.; Quiroga, M.J.; Paz, J.M. De; Garzón-Jimeno, E.

    2016-11-01

    Aluminium toxicity has been recognized as one of the most common causes of reduced grape yields in vineyard acid soils. The main aim of this study was to evaluate the effect of two liming materials, i.e. dolomitic lime and sugar foam, on a vineyard cultivated in an acid soil. The effects were studied in two soil layers (0-30 and 30-60 cm), as well as on leaf nutrient contents, must quality properties and grape yield, in an agricultural soil dedicated to Vitis vinifera L. cv. ‘Mencía’ cultivation. Data management and analysis were performed using analysis of variance (ANOVA). As liming material, sugar foam was more efficient than dolomitic limestone because sugar foam promoted the highest decrease in soil acidity properties at the same calcium carbonate equivalent dose. However, potassium contents in vines organs, including leaves and berries, seemed to decrease as a consequence of liming, with a concomitant increase in must total acidity. Soil available phosphorus also decreased as a consequence of liming, especially with sugar foam, though no effects were observed in plants. For these reasons fertilization of this soil with K and P is recommended along with liming. Grape yields in limed soils increased, although non-significantly, by 30%. This research has therefore provided an important opportunity to advance in our understanding of the effects of liming on grape quality and production in acid soils. (Author)

  13. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  14. Shoot regeneration and plantlet formation by cascade huckleberry, mountain huckleberry, and in oval-leaf bilberry on a zeatin-containing nutrient medium

    Science.gov (United States)

    A plant regeneration protocol was developed for Cascade huckleberry (Vaccinium deliciosum Piper), mountain huckleberry (V. membranaceum Douglas ex Hooker) and for oval-leaf bilberry (V. ovalifolium Smith) clones. The effects of zeatin concentrations (0, 4.6, 9.1 and 13.7 µM) and explant type (leaf a...

  15. Effects of feeding different proportions of silver leaf desmodium (Dismodium uncinatum) with banana (Musa paradisiaca) leaf on nutrient utilization in Horro sheep fed a basal diet of natural grass hay.

    Science.gov (United States)

    Chali, Diriba; Nurfeta, Ajebu; Banerjee, Sandip; Eik, Lars Olav

    2018-03-02

    The objective was to evaluate feed intake, digestibility, body weight change and carcass characteristics of sheep fed a basal diet of hay supplemented with banana leaves and silver leaf desmodium. Thirty yearling lambs with an average initial body weight of 15.85 ± 1.6 kg were grouped into six blocks of five rams in each block. The treatments were: hay alone (T1), hay + 100% banana leaf (T2), hay + 67% banana leaf + 33% desmodium leaf (T3), hay + 33% banana leaf + 67% desmodium leaf (T4) and hay + 100% desmodium leaf (T5). Three hundred grams of treatment diets were offered daily on as fed basis. The feeding and digestibility trial lasted for 84 and 7 days, respectively, followed by carcass evaluation. The total dry matter (DM) intake for T3, T4 and T5 were greater (P T4 > T3 > T2 > T1. Rams lambs receiving supplementary diets had higher (P<0.05) DM, OM, CP, neutral detergent fiber and acid detergent fiber digestibility compared with the control diet. The empty body weight and slaughter weight was highest (P<0.05) in rams receiving T3, T4 and T5 diets. The average daily gain and feed conversion efficiency was highest (P<0.05) in rams receiving the supplementary diets. The DP on the basis of hot carcass weight linearly increased with increasing levels of desmodium. Rams reared on supplementary diet had higher (P<0.05) rib eye area compared with the control diet. In conclusion, when banana leaf is used as a supplement to poor quality grass, better response was obtained when fed in combination with desmodium.

  16. Nutrient and Phytochemical Composition of Some Leafy Vegetables ...

    African Journals Online (AJOL)

    Objective: To determine the nutrient and phytochemical composition of Vernoniaamygdalina, Ocimumgratissimum, Gnetumafricanum and Gongronemalatifolium leaves. Materials and Methods: Fresh leaves of Vernoniaamygdalina (bitter leaf), Ocimumgratissimum (scent leaf), Gnetumafricanum (okazi leaf) and ...

  17. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax...

  18. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum...

  19. Pinus taeda clones and soil nutrient availability: effects of soil organic matter incorporation and fertilization on biomass partitioning and leaf physiology

    Science.gov (United States)

    Michael Tyree; John Seiler; Chris Maier; Kurt Johnsen

    2009-01-01

    The combined effects of intensive management and planting of improved seedlings have led to large increases in productivity on intensively managed pine forests in the southeastern United States. To best match clones to particular site conditions, an understanding of how specific clones respond to changes in nutrition in terms of biomass partitioning, leaf physiology...

  20. Inferring the past and present connectivity across the range of a North American leaf beetle: combining ecological niche modeling and a geographically explicit model of coalescence.

    Science.gov (United States)

    Dellicour, Simon; Fearnley, Shannon; Lombal, Anicée; Heidl, Sarah; Dahlhoff, Elizabeth P; Rank, Nathan E; Mardulyn, Patrick

    2014-08-01

    The leaf beetle Chrysomela aeneicollis occurs across Western North America, either at high elevation or in small, isolated populations along the coast, and thus has a highly fragmented distribution. DNA sequence data (three loci) were collected from five regions across the species range. Population connectivity was examined using traditional ecological niche modeling, which suggested that gene flow could occur among regions now and in the past. We developed geographically explicit coalescence models of sequence evolution that incorporated a two-dimensional representation of the hypothesized ranges suggested by the niche-modeling estimates. We simulated sequence data according to these models and compared them to observed sequences to identify most probable scenarios regarding the migration history of C. aeneicollis. Our results disagreed with initial niche-modeling estimates by clearly rejecting recent connectivity among regions, and were instead most consistent with a long period of range fragmentation, extending well beyond the last glacial maximum. This application of geographically explicit models of coalescence has highlighted some limitations of the use of climatic variables for predicting the present and past range of a species and has explained aspects of the Pleistocene evolutionary history of a cold-adapted organism in Western North America. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. Nutrients in the cassava (Manihot esculenta Crantz leaf meal at three ages of the plant Nutrientes na farinha de folhas de mandioca (Manihot esculenta Crantz em três idades da planta

    Directory of Open Access Journals (Sweden)

    Carmen Wobeto

    2006-12-01

    Full Text Available The high number of cassava cultivars adapted to many different regions provides a wide variation in the chemical composition of cassava leaves meal (CLM. Therefore, the contents of some nutrients in CLM from five cultivars at three ages of the plant were investigated in order to select the cultivars and ages with superior levels of these nutrients. When the plants were 12 months old, the highest levels of crude protein (CP, beta-carotene, iron, magnesium, phosphorus and sulfur were observed. The IAC 289-70 cv. showed the highest levels of magnesium, as well as considerable contents of CP, beta-carotene, iron, zinc and sulfur, which did not differ statistically from the cultivars showing the highest levels of these nutrients.O número elevado de cultivares de mandioca adaptados às mais diversas regiões confere ampla variação na composição química da farinha de folhas de mandioca (FFM. Portanto, foram investigados os teores de alguns nutrientes nas FFM de cinco cultivares em três idades da planta, a fim de selecionar cultivares e idades com níveis superiores destes nutrientes. Aos 12 meses de idade da planta, observaram-se os maiores níveis de proteína bruta (PB, beta-caroteno, ferro, magnésio, fósforo e enxofre. O cultivar IAC 289-70 apresentou os maiores níveis de magnésio, assim como teores apreciáveis de PB, beta-caroteno, ferro, zinco e enxofre, pois não diferiu estatisticamente dos cultivares com os níveis mais elevados destes nutrientes.

  2. Invasiveness of Cut-Leaf Ground-Cherry (Physalis angulata L. Populations and Impact of Soil Water and Nutrient Availability Potencial Invasor de Poblaciones de Tomatillos de Brihuega (Physalis angulata L. e Impacto del Contenido de Agua y Disponibilidad de Nutrientes del Suelo

    Directory of Open Access Journals (Sweden)

    Ilias S Travlos

    2012-09-01

    Full Text Available Biological invasions are a major threat to natural ecosystems and agroecosystems, while weed flora is noticeably changing globally. In this study we evaluated the potential of cut-leaf ground-cherry (Physalis angulata L., a species native to America, to invade the semi-arid regions of Greece. Greenhouse and laboratory experiments were conducted to evaluate the effects of different environmental resources (nutrient and water availability on seedling growth, biomass production, fecundity, and seed germination of four populations of cut-leaf ground-cherry. Our results suggest that cut-leaf ground-cherry does not tolerate extreme drought during the first growth stages, while it can survive and produce adequate and rapidly germinated seed (> 85% under low soil moisture conditions. Moreover, high water and nutrient availability results in high growth and biomass production and ensures high seed production, reaching more than 4000 seeds plant-1. We suggest that soil water content and nutrient availability are the two critical factors affecting the invasive potential of cut-leaf ground-cherry in semi-arid environments. Understanding the plant's ecological features through a study conducted at an early stage rather than a late stage of invasion will help us to take appropriate control measures for this species, which should primarily target frequently fertilized fields after precipitation events.Las invasiones biológicas son una amenaza importante para los ecosistemas naturales y agroecosistemas, mientras que, globalmente, la flora de malezas parece cambiar notablemente. En este estudio se evaluó el potencial de una especie nativa de América, tomatillos de Brihuega (Physalis angulata L., para invadir las regiones semiáridas de Grecia. Se realizaron experimentos de invernadero y laboratorio para evaluar los efectos de diferentes recursos ambientales (disponibilidad de nutrientes y agua, crecimiento de las plántulas, producción de biomasa, fecundidad

  3. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  4. Seagrass leaf element content

    NARCIS (Netherlands)

    Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.

    2017-01-01

    Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.

  5. Possible Roles of Strigolactones during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Yusuke Yamada

    2015-09-01

    Full Text Available Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  6. INFLUÊNCIA DE HÚMUS DE MINHOCA E DE ESTERCO DE GADO NA CONCENTRAÇÃO FOLIAR DE NUTRIENTES E NA PRODUÇÃO DE MANGA 'TOMMY ATKINS' EFFECT OF EARTHWORM EXCREMENTS AND CATTLE MANURE ON LEAF NUTRIENT CONCENTRATION AND ON THE PRODUCTION OF MANGO

    Directory of Open Access Journals (Sweden)

    DAVI JOSÉ SILVA

    2001-12-01

    Full Text Available Com o objetivo de avaliar o efeito da aplicação de húmus de minhoca e de esterco de gado na concentração foliar de nutrientes e na produção de manga 'Tommy Atkins', conduziu-se um experimento na empresa Meta Export Agrícola Ltda, no período de 1996 a 1999. Os tratamentos resultaram da combinação fatorial de três fontes (húmus de minhoca - HM, esterco de gado - EG e mistura de HM + EG e cinco doses de matéria orgânica (0;20; 40; 60 e 80 dm³/planta. Os tratamentos foram aplicados, anualmente, no mês de janeiro, e as avaliações foram realizadas nas safras de 1997, 1998 e 1999. Não houve efeito dos tratamentos sobre a concentração foliar de nutrientes. Os teores de nitrogênio nas folhas mostraram-se bastante elevados, e a concentração de cálcio apresentou-se muito baixa. Não houve diferença entre as fontes, nem entre as doses de matéria orgânica durante o período de estudo. Houve um crescimento na produção ao longo das safras, devido ao aumento na idade das plantas.Concurrent studies on the benefits of earthworm excrements and of cattle manure on leaf nutrient concentration and on the production of mango (Mangifera indica, variety Tommy Atkins, were conducted at Meta Export Agrícola Ltda, from 1996 to 1999. The treatments consisted of a factorial combination among three sources (earthworm excrements -- HM, cattle manure -- EG and a mixture of HM + EG and five levels of organic matter (0, 20, 40, 60 and 80 dm³/plant. The treatments were applied annually always in January. The evaluations were carried out on growing season of 1997, 1998 and 1999. There was no effect of treatments on leaf nutrient concentration. The traits of nitrogen in the leaves were high and the concentration of calcium was low. There was neither difference among sources, nor among the levels of organic matter in the three years of study. There was an increase in production in all growing seasons, because of plant age.

  7. Teores foliares de nutrientes em mudas do abacaxizeiro ‘smooth cayenne’ em resposta à adubação Leaf nutrient contents on ´smooth cayenne´ planting material as response to fertilization

    Directory of Open Access Journals (Sweden)

    Ruimário Inácio Coelho

    2010-12-01

    Full Text Available Mudas do abacaxizeiro ‘Smooth Cayenne’ obtidas por seccionamento de caule foram submetidas à adubação foliar com soluções em diferentes concentrações de uréia, KCl e H3BO3, em pulverizações semanais, num total de vinte e seis para a uréia e o KCl e aplicações mensais num total de quatro, para o H3BO3. Todos os tratamentos foram iniciados na nona semana após o plantio das secções. O delineamento utilizado foi fatorial fracionado do tipo (1/553, com três tipos de adubo (uréia, KCl e H3BO3 e cinco concentrações num total de 25 tratamentos. Cada parcela constituiu-se de 50 secções. Os tratamentos consistiram nas combinações das seguintes concentrações em g L-1: 0; 2,5; 5; 7,5 e 10 para a uréia e o KCl, e 0; 0,5; 1; 1,5 e 2,0 de H3BO3. Análises das amostras de folhas “D” revelam efeitos da uréia e H3BO3 sobre os teores foliares de S, Cl e B e efeito do KCL sobre K e Cl foliar. A uréia não apresentou efeito sobre o teor de N foliar, porém influencia significativamente o conteúdo de N nas mudas.‘Smooth Cayenne’ planting material obtained through stem sectioning were trea-ted with foliar fertilization with different concentrations of urea, KCl, in weekly pulverizations, and H3BO4, totalizing twenty-six for urea and KCL pulverizations and four for H3BO3, which was applied monthly The treatments were began nine weeks after planting thestem sections. The experimental scheme was a fractionated factorial (1/55³ with three types of fertilizers (urea, KCl and H3BO3 and five concentrations in a total of 25 treatments. There were 50 sections per plot. Treatments were a combination of concentrations in g L-1: 0, 2.5, 5.0, 7.5 and 10 of urea and KCl, and 0, 0.5, 1.0, 1.5 and 2,0 of H3BO3. Sample analyses of ‘D’ leaves showed urea and H3BO3 effect on S, Cl and B leaf contents whereas KCL affected leaf K and Cl contents. Urea did not affect N leaf content, however it strongly influenced N content in planting material.

  8. Spatial variability of leaf nutrient contents in a drip irrigated citrus orchard Variabilidade espacial dos teores foliares de nutrientes em um pomar de citros sob irrigação localizada

    Directory of Open Access Journals (Sweden)

    Robson A. Armindo

    2012-06-01

    Full Text Available This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.O objetivo do presente trabalho foi estudar a variabilidade espacial de macro e micronutrientes foliares. O pomar com plantas de 5 anos de idade, plantado com espaçamento regular de 8 x 7 m, foi manejado sob irrigação localizada. Foram coletadas amostras foliares de cada planta do pomar para serem analisadas em laboratório. Os dados foram analisados por meio do programa computacional R, versão 2.5.1 Copyright (C 2007, juntamente com o pacote GeoR. Todos os teores de macro e micronutrientes estudados ajustaram-se à distribuição normal e apresentaram dependência espacial. Os modelos de melhor ajuste, com base na verosimilhança, para os macro e micronutrientes, foram esférico e matern. Para os macronutrientes nitrogênio, fósforo, potássio, cálcio, magnésio e enxofre, sugerem-se distâncias mínimas entre amostras de 37; 58; 29; 63; 46 e 15 m, respectivamente, enquanto para os micronutrientes boro, cobre, ferro, manganês e zinco, essas distâncias são de 29; 9; 113; 35 e 14 m, respectivamente.

  9. Teores de nutrientes e qualidade fisiológica de sementes de feijão em resposta à adubação foliar com manganês e zinco Nutrient contents and physiological quality of common bean seeds in response to leaf fertilization with manganese and zinc

    Directory of Open Access Journals (Sweden)

    Itamar Rosa Teixeira

    2005-01-01

    Full Text Available No presente trabalho, objetivou-se avaliar os teores de nutrientes minerais e a qualidade fisiológica de sementes de feijão (Phaseolus vulgaris L., em resposta à adubação foliar com manganês e zinco. O experimento foi desenvolvido a campo em Latossolo Vermelho-Amarelo distrófico fase cerrado, em Ijaci (MG. Utilizou-se o esquema fatorial em blocos casualizados, com quatro repetições, sendo os tratamentos formados pela combinação de cinco doses de Mn (0, 75, 150, 300 e 600 g ha-1 e cinco de Zn (0, 50, 100, 200 e 400 g ha-1, fracionadas em duas pulverizações foliares, sendo metade aplicada aos 25 e o restante aos 35 dias após a emergência das plântulas. Avaliaram-se os teores de nutrientes minerais presentes nas sementes e sua qualidade fisiológica pelos testes padrão de germinação e de vigor, incluindo a primeira contagem, envelhecimento acelerado e da condutividade elétrica. Com a adubação foliar com manganês e zinco foram obtidos acréscimos lineares dos teores de Mn e Zn nas sementes de feijão. Os teores de N, P, B e Cu nas sementes foram influenciados pela adubação com manganês e zinco, não ocorrendo entretanto nenhum efeito destes micronutrientes sobre os teores dos demais nutrientes determinados nas sementes (K, Ca, Mg, Fe e S. A qualidade fisiológica das sementes mostrou-se influenciada pela adubação mangânica, quando estimada pelo teste de condutividade elétrica. A qualidade fisiológica das sementes de feijão não foi afetada pela adubação com zinco.The objective of this work was to evaluate the contents of nutrients and the physiological quality of seeds from common bean that had leaf application of manganese and zinc. The experiment was carried out at Dystrophic Red-Yellow Latosol 'cerrado' phase, in Ijaci, Minas Gerais State, Brazil. A randomized block design with four replicates was analyzed in a factorial arrangement, being the treatments formed by the combination of five rates of Mn (0, 75, 150

  10. Putative sugar transporters of the mustard leaf beetle Phaedon cochleariae: their phylogeny and role for nutrient supply in larval defensive glands.

    Directory of Open Access Journals (Sweden)

    Magdalena Stock

    Full Text Available BACKGROUND: Phytophagous insects have emerged successfully on the planet also because of the development of diverse and often astonishing defensive strategies against their enemies. The larvae of the mustard leaf beetle Phaedon cochleariae, for example, secrete deterrents from specialized defensive glands on their back. The secretion process involves ATP-binding cassette transporters. Therefore, sugar as one of the major energy sources to fuel the ATP synthesis for the cellular metabolism and transport processes, has to be present in the defensive glands. However, the role of sugar transporters for the production of defensive secretions was not addressed until now. RESULTS: To identify sugar transporters in P. cochleariae, a transcript catalogue was created by Illumina sequencing of cDNA libraries. A total of 68,667 transcripts were identified and 68 proteins were annotated as either members of the solute carrier 2 (SLC2 family or trehalose transporters. Phylogenetic analyses revealed an extension of the mammalian GLUT6/8 class in insects as well as one group of transporters exhibiting distinctive conserved motifs only present in the insect order Coleoptera. RNA-seq data of samples derived from the defensive glands revealed six transcripts encoding sugar transporters with more than 3,000 counts. Two of them are exclusively expressed in the glandular tissue. Reduction in secretions production was accomplished by silencing two of four selected transporters. RNA-seq experiments of transporter-silenced larvae showed the down-regulation of the silenced transporter but concurrently the up-regulation of other SLC2 transporters suggesting an adaptive system to maintain sugar homeostasis in the defensive glands. CONCLUSION: We provide the first comprehensive phylogenetic study of the SLC2 family in a phytophagous beetle species. RNAi and RNA-seq experiments underline the importance of SLC2 transporters in defensive glands to achieve a chemical defense

  11. PET imaging of thin objects: measuring the effects of positron range and partial-volume averaging in the leaf of Nicotiana tabacum

    Energy Technology Data Exchange (ETDEWEB)

    Alexoff, David L., E-mail: alexoff@bnl.gov; Dewey, Stephen L.; Vaska, Paul; Krishnamoorthy, Srilalan; Ferrieri, Richard; Schueller, Michael; Schlyer, David J.; Fowler, Joanna S.

    2011-02-15

    Introduction: PET imaging in plants is receiving increased interest as a new strategy to measure plant responses to environmental stimuli and as a tool for phenotyping genetically engineered plants. PET imaging in plants, however, poses new challenges. In particular, the leaves of most plants are so thin that a large fraction of positrons emitted from PET isotopes ({sup 18}F, {sup 11}C, {sup 13}N) escape while even state-of-the-art PET cameras have significant partial-volume errors for such thin objects. Although these limitations are acknowledged by researchers, little data have been published on them. Methods: Here we measured the magnitude and distribution of escaping positrons from the leaf of Nicotiana tabacum for the radionuclides {sup 18}F, {sup 11}C and {sup 13}N using a commercial small-animal PET scanner. Imaging results were compared to radionuclide concentrations measured from dissection and counting and to a Monte Carlo simulation using GATE (Geant4 Application for Tomographic Emission). Results: Simulated and experimentally determined escape fractions were consistent. The fractions of positrons (mean{+-}S.D.) escaping the leaf parenchyma were measured to be 59{+-}1.1%, 64{+-}4.4% and 67{+-}1.9% for {sup 18}F, {sup 11}C and {sup 13}N, respectively. Escape fractions were lower in thicker leaf areas like the midrib. Partial-volume averaging underestimated activity concentrations in the leaf blade by a factor of 10 to 15. Conclusions: The foregoing effects combine to yield PET images whose contrast does not reflect the actual activity concentrations. These errors can be largely corrected by integrating activity along the PET axis perpendicular to the leaf surface, including detection of escaped positrons, and calculating concentration using a measured leaf thickness.

  12. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition

    Science.gov (United States)

    Beth Cheever; Erika Kratzer; Jackson Webster

    2012-01-01

    According to theory, the rate and stoichiometry of microbial mineralization depend, in part, on nutrient availability. For microbes associated with leaves in streams, nutrients are available from both the water column and the leaf. Therefore, microbial nutrient cycling may change with nutrient availability and during leaf decomposition. We explored spatial and temporal...

  13. EFEITO DE TRICOMAS, ALELOQUÍMICOS E NUTRIENTES NA RESISTÊNCIA DE LYCOPERSICON HIRSUTUM À TRAÇA-DO-TOMATEIRO EFFECT OF TRICHOMES, ALELLOCHEMICALS AND MINERALS ON THE RESISTANCE OF LYCOPERSICON HIRSUTUM TO TOMATO LEAF MINER

    Directory of Open Access Journals (Sweden)

    GERMANO LEÃO DEMOLIN LEITE

    1999-11-01

    Full Text Available Estudos foram conduzidos com o objetivo de verificar o efeito de tricomas, aleloquímicos e nutrientes nas folhas de partes do dossel das plantas na resistência de Lycopersicon hirsutum à traça- do-tomateiro, Tuta absoluta (Lepidoptera: Gelechiidae. Foram quantificados os teores de 2-tridecanona (2-TD, 2-undecanona (2-UD, N, P, K, Ca e Mg, densidade e tipos de tricomas e tamanho das folhas nos terços apical, mediano e basal do dossel de plantas de L. hirsutum e de L. esculentum e estudaram- se os efeitos destes fatores sobre características biológicas de T. absoluta. Observou-se elevação no teor de 2-TD da base para o ápice do dossel. Não se detectou diferença significativa quanto ao número de ovos de T. absoluta ao longo do dossel de L. hirsutum, constatando-se em L. esculentum maior oviposição nos terços apical e mediano do que no basal. As folhas do terço apical de L. hirsutum apresentaram maior efeito deletério sobre as larvas de traça.The objective of this work was to study the effect of trichomes, alellochemicals and minerals in the leaves of different canopy heights on the resistance of Lycopersicon hirsutum to tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae. Effects of 2-tridecanone (2-TD, 2-undecanone (2-UD, N, P, K, Ca and Mg levels, density and types of trichomes and leaf area on apical, medium and basal parts of plant dossel of L. hirsutum and L. esculentum on the oviposition and mines number of T. absoluta was studied. Production of 2-TD increased from the bottom to the top of the canopy. The apical part of plants of L. hirsutum showed more antibiotic effect on the caterpillar. T. absoluta oviposited more on leaves of the apical and medium portion of the plants than in the basal parts of L. esculentum.

  14. Leaf-IT: An Android application for measuring leaf area.

    Science.gov (United States)

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  15. Modification of photo-thermal model by accommodating light integrals using antirrhinum flowering and leaf number data from restricted range of environmental conditions

    International Nuclear Information System (INIS)

    Hadley, P.; Carew, J.; Pearson, S.

    2017-01-01

    The objective of study was to quantify the flowering and leaf number response of Antirrhinum majus L. cv. Chimes White to different photoperiods, night temperatures and light integrals using photo-thermal model. Two experiments were conducted i.e. first one in February (under low ambient light integrals) and the second one in June (under high ambient light integrals). In each experiment plants of an early flowering cv. Chimes White were transferred (after 80% germination) to two night temperature suits (set-point temperatures 10 and 20 degree C), each having four photoperiod chambers (8, 11, 14 and 17 h.d-1). Results revealed that plants flowered earlier at long photoperiod (17 h.d-1), higher mean diurnal temperature (19.2 degree C in February and 23.4 degree C in June) and high ambient light integrals (8.26 MJ.m-2.d-1) and vice versa. These findings were successfully incorporated in to photo-thermal model, which was not reported before in Antirrhinum. The simple linear model hence updated, which would be helpful for growers to predict and quantify flowering time and leaf number (plant quality) of Antirrhinum well before their plantation to maintain its continual supply to the market. (author)

  16. Estado nutricional de diferentes cultivares de pereira nas condições edafoclimáticas de Guarapuava-PR Leaf content and nutrient extraction by fruit harvest of pear trees cultivars grafted on quince 'CP'

    Directory of Open Access Journals (Sweden)

    Renato Vasconcelos Botelho

    2010-09-01

    of 2.500 plants ha-1. Samples of leaves and fruits were collected in 2006 and 2007 for chemical analysis of nutrient contents. Complete and normal leaves were sampled in the end of January, token from the middle part of one-year shoots. The fruits were collected when the total soluble solids content reached 10º Brix. The pear cultivars showed differences in relation to nutrient content in leaves and fruits, indicating distinct nutritional requirements. The cv. Cascatense presented the highest N and P contents in fruits at least in one of the years, and the cv Hosui the highest K content. The nutrient extraction by fruits ranged from 0.366 to 0.825 kg N; 0.097 to 0.205 kg P, 0.996 to 1.302 kg K, 0.049 to 0.085 kg Ca and 0.041 to 0.095 kg Mg per fruit ton.

  17. Nutrient value of leaf versus seed

    Directory of Open Access Journals (Sweden)

    Marvin Edelman

    2016-07-01

    Full Text Available Major differences stand out between edible leaves and seeds in protein quality, vitamin and mineral concentrations and omega 6 / omega 3 fatty acid ratios. Data for seeds (wheat, rice, corn, soy, lentil, chick pea are compared with corresponding data for edible green leaves (kale, spinach, broccoli, duckweed. An x/y representation of data for lysine and methionine content highlights the group differences between grains, pulses, leafy vegetables and animal foods. Leaves come out with flying colors in all these comparisons. The perspective ends with a discussion on So why do we eat mainly seeds?

  18. Production of gherkin seedlings in coconut fiber fertirrigated with different nutrient solutions

    Directory of Open Access Journals (Sweden)

    Francisco de Assis de Oliveira

    Full Text Available ABSTRACT Seedling quality is a key factor to achieve success in vegetable production. The present work aimed to evaluate the production of gherkin seedlings in substrate of coconut fiber fertirrigated with different concentrations of nutrients. The experimental design was completely randomized in a 3 × 5 factorial with four replications. The treatments consisted of combinations of three cultivars of gherkin (Do Norte, Liso de Calcutá, e Liso Gibão with five concentrations of nutrients in the solution (0, 25, 50, 75, and 100%. The nutrient solution, considered standard, matches the recommended solution for melon in hydroponic systems. We evaluated the variables: chlorophyll index, shoot length, number of leaves, stem diameter, main root length, dry weight of leaves, roots, and stem, mass of total dry matter, leaf area, specific leaf area, and leaf area ratio. All variables were affected by the ionic concentration in nutrient solutions. The use of coconut fiber in the production of gherkin seedlings is more efficient with nutrient solutions in concentrations ranging from 75 to 100% of the recommended solution for melon cultivation.

  19. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Science.gov (United States)

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  20. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.

    Science.gov (United States)

    Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E

    2017-09-05

    Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.

  1. Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation.

    Science.gov (United States)

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Jariyavidyanont, Katalee; Kaunzner, Jennifer; Juncheed, Kantida; Uengwetwanit, Tanaporn; Rudloff, Renate; Schulz, Elke; Hofrichter, Martin; Schloter, Michael; Krüger, Dirk; Buscot, François

    2015-05-01

    Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.

  2. Nutrient content of biomass components of Hamlin sweet orange trees

    Directory of Open Access Journals (Sweden)

    Mattos Jr. Dirceu

    2003-01-01

    Full Text Available The knowledge of the nutrient distribution in trees is important to establish sound nutrient management programs for citrus production. Six-year-old Hamlin orange trees [Citrus sinensis (L. Osb.] on Swingle citrumelo [Poncirus trifoliata (L. Raf. x Citrus paradisi Macfad.] rootstock, grown on a sandy Entisol in Florida were harvested to investigate the macro and micronutrient distributions of biomass components. The biomass of aboveground components of the tree represented the largest proportion of the total. The distribution of the total tree dry weight was: fruit = 30.3%, leaf = 9.7%, twig = 26.1%, trunk = 6.3%, and root = 27.8%. Nutrient concentrations of recent mature leaves were in the adequate to optimal range as suggested by interpretation of leaf analysis in Florida. Concentrations of Ca in older leaves and woody tissues were much greater than those in the other parts of the tree. Concentrations of micronutrients were markedly greater in fibrous root as compared to woody roots. Calcium made up the greatest amount of nutrient in the citrus tree (273.8 g per tree, followed by N and K (234.7 and 181.5 g per tree, respectively. Other macronutrients comprised about 11% of the total nutrient content of trees. The contents of various nutrients in fruits were: N = 1.20, K = 1.54, P = 0.18, Ca = 0.57, Mg = 0.12, S = 0.09, B = 1.63 x 10-3, Cu = 0.39 x 10-3, Fe = 2.1 x 10-3, Mn = 0.38 10-3, and Zn = 0.40 10-3 (kg ton-1. Total contents of N, K, and P in the orchard corresponded to 66.5, 52.0, and 8.3 kg ha-1, respectively, which were equivalent to the amounts applied annually by fertilization.

  3. Patterns in foliar nutrient resorption stoichiometry at multiple scales: controlling factors and ecosystem consequences (Invited)

    Science.gov (United States)

    Reed, S.; Cleveland, C. C.; Davidson, E. A.; Townsend, A. R.

    2013-12-01

    During leaf senescence, nutrient rich compounds are transported to other parts of the plant and this 'resorption' recycles nutrients for future growth, reducing losses of potentially limiting nutrients. Variations in leaf chemistry resulting from nutrient resorption also directly affect litter quality, in turn, regulating decomposition rates and soil nutrient availability. Here we investigated stoichiometric patterns of nitrogen (N) and phosphorus (P) resorption efficiency at multiple spatial scales. First, we assembled a global database to explore nutrient resorption among and within biomes and to examine potential relationships between resorption stoichiometry and ecosystem nutrient status. Next, we used a forest regeneration chronosequence in Brazil to assess how resorption stoichiometry linked with a suite of other nutrient cycling measures and with ideas of how nutrient limitation may change over secondary forest regrowth. Finally, we measured N:P resorption ratios of six canopy tree species in a Costa Rican tropical forest. We calculated species-specific resorption ratios and compared them with patterns in leaf litter and topsoil nutrient concentrations. At the global scale, N:P resorption ratios increased with latitude and decreased with mean annual temperature (MAT) and precipitation (MAP; P1 in latitudes >23°. Focusing on tropical sites in our global dataset we found that, despite fewer data and a restricted latitudinal range, a significant relationship between latitude and N:P resorption ratios persisted (PAmazon Basin chronosequence of regenerating forests, where previous work reported a transition from apparent N limitation in younger forests to P limitation in mature forests, we found N resorption was highest in the youngest forest, whereas P resorption was greatest in the mature forest. Over the course of succession, N resorption efficiency leveled off but P resorption continued to increase with forest age. In Costa Rica, though we found species

  4. [Citrus boron nutrient level and its impact factors in the Three Gorges Reservoir region of Chongqing, China].

    Science.gov (United States)

    Zhou, Wei; Peng, Liang-Zhi; Chun, Chang-Pin; Jiang, Cai-Lun; Ling, Li-Li; Wang, Nan-Qi; Xing, Fei; Huang, Yi

    2014-04-01

    To investigate the level of boron nutrient in citrus and its impact factors, a total of 954 citrus leaf samples and 302 soil samples were collected from representative orchards in the 12 main citrus production counties in the Three Gorges Reservoir region of Chongqing to determine the boron content in citrus leaves, as well as the relationships between leaf boron content with soil available boron content, soil pH value, cultivar, rootstock and the age of tree. Results indicated that the leaf samples from 41.6% orchards (tree did affect the leaf boron content. The leaves from the orchards with soil pH of 4.5-6.4 demonstrated significantly higher boron contents than with the soil pH of 6.5-8.5. The leaf boron contents in the different cultivars was ranged as Satsuma mandarin > pomelo > valencia orange > sweet orange > tangor > navel orange. The citrus on trifoliate orange and sour pomelo rootstocks had significantly higher leaf boron contents than on Carrizo citrange and red tangerine rootstocks. Compared with the adult citrus trees (above 8 year-old), 6.6% more of leaf samples of younger trees (3 to 8 year-old) contained boron contents in the optimum range (35-100 mg x kg(-1)).

  5. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?

    Science.gov (United States)

    Hodgson, John G; Santini, Bianca A; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J; Band, Stuart R; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Díez, Angel; de Torres Espuny, Lluis; Warham, Gemma

    2017-11-10

    While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL

  6. Aplicação foliar de cálcio em pessegueiro na Serra Gaúcha: avaliação do teor de nutrientes na folha, no fruto e produção Foliar application of calcium in peach in Serra Gaúcha: evaluation of content of nutrients in the leaf, fruit and yield

    Directory of Open Access Journals (Sweden)

    Gustavo Brunetto

    2008-06-01

    calcium in Peach tree in the Southern Brasil is used during productive cycle, without any information about calcium content and other nutrients in the leaves, fruits and yield. Two experiments were carried out in 2003/2004 to evaluate the effect of foliar application of different sources of calcium in its content and other nutrients in the leaf, fruit and yield of peach trees, Chimarrita cultivar, at an Haplumbrept soil in Southern Brazil, Pinto Bandeira city. The treatments in the experiment 1 were three foliar applications of calcium chloride, concentrations 0 (water, 0.5, 1.0 and 2.0%.Experiment 2 were three foliar applications of calcium nitrate, concentrations 0 (water, 0.5, 1.0 and 2.0%. A randomized block experimental design was used with three replications and three plants for treatment. Leaves were collected, oven-dried and analyzed total calcium, nitrogen, potassium and magnesium. In the maturation, fruits were collected and determined the mass, yield and total content of calcium, nitrogen, potassium and magnesium. The results showed that foliar applications of calcium in the form of chloride and nitrate in peach tree, increase calcium content in the leaves, but did not affect the content of nitrogen, potassium and magnesium in the leaves, content of calcium, nitrogen, potassium and magnesium in the fruit and yield.

  7. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    Science.gov (United States)

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.

  8. Formation of adventitious roots on green leaf cuttings of Phaseolus vulgaris L.

    NARCIS (Netherlands)

    Oppenoorth, Johanna Margriet

    1980-01-01

    n this thesis the development of adventitious roots on green leaf cuttings of Phaseolus vulgaris L. is studies. The use of green leaf cuttings has the advantage that the leaf blade provides the developing roots inthe petiole with all the nutrients required, a disadvantage is that the composition of

  9. Produção de castanha e de folhada e concentração de nutrientes nas folhas de soutos submetidos a diferentes sistemas de mobilização do solo Chestnut and litterfall production and leaf nutrient concentration in chestnut groves submitted to different soil tillage systems

    Directory of Open Access Journals (Sweden)

    F. Raimundo

    2009-01-01

    Full Text Available Estudou-se o efeito de vários sistemas de preparação do solo na produção das componentes caducas da biomassa (folhas, ouriços, castanhas e inflorescências e no teor de nutrientes nas folhas, num souto com árvores de 50 anos de idade média localizado no Nordeste de Portugal. O sistema experimental foi instalado no início de 1996 e incluiu os seguintes tratamentos: mobilização tradicional com escarificador a uma profundidade média de 15 cm (MT, mobilização com grade de discos até 7 cm de profundidade (GD, pastagem semeada plurianual de sequeiro (PS e não-mobilização com vegetação herbácea espontânea (NM. A produção média da biomassa caduca (folhas, ouriços, castanhas e inflorescências, durante o período de 1999 a 2004, expressa por m² de área de projecção vertical da copa, foi máxima no tratamento NM (755 g m-2, seguida do PS (729 g m-2, do GD (708 g m-2 e por último do MT (627 g m-2, não se observando diferenças significativas entre os tratamentos. Durante o período de estudo, os ouriços (36,7% foram a componente mais importante do total da biomassa caduca, seguidos pelas folhas (32,5%, castanhas (24,7% e inflorescências (6,1%. A produção de castanhas, também para aquele período, no tratamento MT (133 g m-2 foi significativamente inferior à observada nos tratamentos NM (193 g m-2 e PS (191 g m². O teor de N, P e Mg das folhas, em 2003 e 2004, foi significativamente menor no tratamento MT do que nos restantes; o teor de K, por seu turno, foi significativamente menor nos tratamentos MT e PS do que no GD; o teor de Ca nos tratamentos GD e PS foi significativamente maior do que no tratamento MT. As alternativas de gestão à mobilização tradicional revelaram-se mais promissoras para a produtividade dos soutos e para a redução dos custos de produção.The effects of several soil management systems on litterfall production (leaves, burs, chestnuts and inflorescences and leaf nutrient concentration were

  10. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem.

    Science.gov (United States)

    van Gestel, Natasja C; Dhungana, Nirmala; Tissue, David T; Zak, John C

    2016-01-01

    High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.

  11. Simulated browsing affects leaf shedding phenology and litter quality of oak and birch saplings

    OpenAIRE

    Palacio, Sara; Hester, A. J.; Maestro Martínez, Melchor; Millard, P.

    2013-01-01

    Herbivore effects on leaf litter can have a strong impact on ecosystem nutrient cycling. Although such effects are well described for insect herbivory, research on the impacts of browsing by mammalian herbivores on leaf litter dynamics and nutrient cycling has been more limited, particularly at the level of the individual plant. Clipping treatments (66% shoot removal twice, plus unclipped) were applied to analyse the effect of browsing on the phenology (start date and pattern of leaf shedding...

  12. Growth and nutrient utilization of Heteroclarias (H. Bidorsalis x c ...

    African Journals Online (AJOL)

    The experiment was carried out to determine the effect of dietary levels of Alchornia cordifolia leaf meal on the growth and nutrient utilization of Heteroclarias (H. bidorsalis x C. gariepinus) post fingerlings. 35% isonitrogenous dietary levels of 0%, 5%, 10%, 15% and 20% Alchornia cordifolia leaf meal were formulated.

  13. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... water and nutrient stress made significant effects on nitrogen and phosphorus concentration, but no .... Measurements of relative water content (RWC), leaf relative ... C1 is the electrical conductivity value of samples at the first .... biomass, root, stem and leaf mass) were significant. ..... Plant, Cell and Environ.

  14. Leaf nutrient contents of rangpur lime rootstock as afected by N, P, K, Ca and S fertilization Concentrações foliares do porta-enxerto limoeiro 'cravo' em função da adubação N, P, K, Ca e S

    Directory of Open Access Journals (Sweden)

    Jonas Ruschel

    2004-10-01

    Full Text Available Analysis of leaf nutrient contents can demonstrate plant nutritional status, identify symptoms of deficiency and toxicity, and evaluate the need to adjust fertilization programs. This research determined N:P:K:Ca:S rates for optimal nutrition of Rangpur lime - RL (Citrus limonia Osb. rootstock, in an experiment arranged in a fractional factorial design of the (¹/25 5(4 type, with 25 treatments distributed within five blocks. Seedlings of RL were transplanted into 3.8-dm³ containers filled with commercial growing media, when plant height = 10 cm, in a nursery. Treatments consisted of the following nutrient rates (g per plant: N = 0.31, 0.62, 1.25, 2.5 and 5; K = 0.4, 0.62, 1.25, 2.5 and 5; P = 0.35, 1.0, 2.0, 3.0 and 4.0; and Ca = 3.5, 5.0, 6.0, 7.0 and 8.0. Phosphorus and Ca were applied to the compost before transplant of seedlings, while N and K were applied later and total amounts were split into 20 weekly applications via fertigation. Nutrient sources were triple super phosphate, gypsum, NH4NO3 and KCl. Leaf nutrient concentrations of five-mo-old plants were high or in excess for N, P, K and S. Calcium and Mg concentrations were low. Greater dry mass of plants were observed at nutrient rates of N = 3.5, P = 2.7, K = 2.0, and Ca = 6.5 g per plant.A determinação das concentrações foliares representa o estado nutricional das plantas, identifica deficiências e/ou excessos e avalia a necessidade de ajustar as adubações. Este trabalho objetivou determinar a melhor combinação de doses NPKCa e S que proporcione a concentração foliar responsável pela maior quantidade de matéria seca total das plantas de porta-enxerto limoeiro `Cravo', em um experimento fatorial fracionário (¹/25 5(4, com 25 tratamentos, repartidos em cinco blocos de cinco tratamentos. As mudas do limoeiro `Cravo' (Citrus limonia Osb. foram transplantadas para recipientes (3,8 dm³ com substrato comercial, em viveiro telado, quando atingiram 10 cm. Os tratamentos

  15. Nutrients and temperature additively increase stream microbial respiration

    Science.gov (United States)

    David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski

    2017-01-01

    Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across...

  16. Accumulative capabilities of essential nutrient elements in organs of ...

    African Journals Online (AJOL)

    Monsonia burkeana is widely used as herbal tea in South Africa. However, the accumulative capabilities (ACs) of its organs for essential nutrient elements are not documented. A study was conducted to determine the ACs for nutrient elements in fruit, leaf, stem and root of M. burkeana. Ten plants per plot, with three ...

  17. Maize nutrient uptake affected by genotype and fertilization

    Directory of Open Access Journals (Sweden)

    Đalović Ivica

    2015-01-01

    Full Text Available The content of nutrients in maize are commonly related with fertilization and soil quality and rarely explained with the individual hybrid properties. Therefore, the aim of this study is to access a long term fertilization system on ear leaf of Mg, Fe, Mn and Cu content in six maize hybrids(NS 3014, NS 4015, NS 5043, NS 6010, NS 6030 and NS 7020. Samples were collected from a long-term experiment at the Rimski Šančevi experimental field of the Institute of Field and Vegetable Crops in Novi Sad. The study included maize monoculture and 2-year rotations with the application of NPK and manure. Results showed that ear Mg content was influenced with the treatments, hybrid and their interaction and ranged from 1.77-2.69 g kg-1. Iron variability was significantly affected with the treatments and interaction (hybrid x treatments in range from 103.2 to151.9g kg-1. The ear manganese content (41.1-63.6g kg-1 derived from treatments and hybrid effect and Cu (12.3-23.6 g kg-1 was significantly influenced with treatments. Across all treatments, in average, NS6030 had higher values of nutrient and NS3014 was lower in ear nutrient content. This indicates that vegetation length could favor nutrient accumulation. Obtained results suggested that even on fairly productive soil such as Chernozem hybrid selection and the balanced fertilization is crucial for managing the maize nutrient content. [Projekat Ministarsva nauke Republike Srbije, br. TR031073

  18. Effect of pig manure on nutrient composition, growth and yield of Okra

    African Journals Online (AJOL)

    Five rates of manure, 0,2.5,5.0,7.5, and 10.0t/ha and NPK (15-15-15) fertilizer } at 200kg/ha were compared as to their effects on leaf nutrient composition, growth and pod yield of okra. Pig manure increased okra leaf nutrient N,P,K Ca and Mg contents, and the nutrients increased with application of manure. NPK fertilizer ...

  19. Transcriptional analyses of natural leaf senescence in maize.

    Directory of Open Access Journals (Sweden)

    Wei Yang Zhang

    Full Text Available Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML, early senescent leaves (ESL, and later senescent leaves (LSL, and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence

  20. Diagnose nutricional de cafeeiros da região do Alto Jequitinhonha (MG: normas dris e faixas críticas de nutrientes Nutritional diagnosis of coffee plantations in the Upper Jequitinhonha Valley, Minas Gerais State, Brazil: dris norms and critical nutrient ranges

    Directory of Open Access Journals (Sweden)

    Múcio Mágno de Melo Farnezi

    2009-08-01

    , have not been established yet. The lack of these norms hinders the application of the DRIS to the coffee plantations in the region. The foliar diagnosis, based on the DRIS and on critical reference ranges, stands out among the tools that allow an efficient use of fertilizers. This study aimed to determine DRIS norms as well as to establish values of the critical nutrient ranges of reference for the nutritional diagnosis of coffee in the Upper Jequitinhonha Valley, by the DRIS. The foliar concentrations of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn in 52 coffee plantations were determined in two cropping years (2005 and 2006. To establish DRIS norms 23 plantations were chosen, with yields higher than or equal to 30 sacks of coffee grain per hectare in each harvest. The critical nutrient ranges for the DRIS were obtaind by determinig the frequency with which each nutrient content of the plantations in two harvests was deficient, adequate or excessive according to the cited standards and sufficiency ranges reported in the literature. The DRIS norms were established for coffee in the region of the Upper Jequitinhonha Valley and used to propose appropriate critical ranges. For this purpose, the following values were proposed: for N (2.25-2.79 kg dag-1, P (0.18-0.22 kg dag-1, K (1.72-2.10 kg dag-1, Ca (1.26-1.51 kg dag-1, Mg (0.29-0.35 kg dag-1, S (0.13-0.32 kg dag-1, B (83.8-96.3 mg kg-1, Cu (5.7-9.3 mg kg-1, Fe (67.5 - 116.2 mg kg-1, Mn (219-422 mg kg-1, and for Zn (17.4-30.0 mg kg-1. In regional coffee plantations with inadequate nutrition deficiencies of P, K, S, B, Cu, Mn, and Zn were observed as well as excessive contents of Ca, Mg and Fe.

  1. Nutrient cycling in a RRIM 600 clone rubber plantation

    Directory of Open Access Journals (Sweden)

    Murbach Marcos Roberto

    2003-01-01

    Full Text Available Few reports have been presented on nutrient cycling in rubber tree plantations (Hevea brasiliensis Muell. Arg.. This experiment was carried out to evaluate: the effect of K rates on the amount of nutrients transfered to the soil in a 13-year old Hevea brasilensis RRIM 600 clone plantation, nutrient retranslocation from the leaves before falling to the soil, and nutrient loss by dry rubber export. The experiment started in 1998 and potassium was applied at the rates of 0, 40, 80 and 160 kg ha-1 of K2O under the crowns of 40 rubber trees of each plot. Literfall collectors, five per plot, were randomly distributed within the plots under the trees. The accumulated literfall was collected monthly during one year. The coagulated rubber latex from each plot was weighed, and samples were analyzed for nutrient content. Increasing K fertilization rates also increased the K content in leaf literfall. Calcium and N were the most recycled leaf nutrients to the soil via litterfall. Potassium, followed by P were the nutrients with the highest retranslocation rates. Potassium was the most exported nutrient by the harvested rubber, and this amount was higher than that transfered to the soil by the leaf literfall.

  2. Seasonality of nutrients in leaves and fruits of apple trees

    Directory of Open Access Journals (Sweden)

    Nachtigall Gilmar Ribeiro

    2006-01-01

    Full Text Available The nutrient accumulation curves of apple trees are good indicators of plant nutrient demand for each developmental stage. They are also a useful tool to evaluate orchard nutritional status and to estimate the amount of soil nutrient removal. This research aimed at evaluating the seasonality of nutrients in commercial apple orchards during the agricultural years of 1999, 2000, and 2001. Therefore, apple tree leaves and fruits of three cultivars 'Gala', 'Golden Delicious' and 'Fuji' were weekly collected and evaluated for fresh and dry matter, fruit diameter and macronutrient (N, P, K, Ca and Mg and micronutrient (B, Cu, Fe, Mn, and Zn concentrations. Leaf and fruit sampling started one or two weeks after full bloom, depending on the cultivar, and ended at fruit harvest or four weeks later (in the case of leaf sampling. In general, leaf concentrations of N, P, K, Cu, and B decreased; Ca increased; and Mg, Fe, Mn, and Zn did vary significantly along the plant vegetative cycle. In fruits, the initial nutrient concentrations decreased quickly, undergoing slow and continuous decreases and then remaining almost constant until the end of fruit maturation, indicating nutrient dilution, once the total nutrient accumulation increased gradually with fruit growth. Potassium was the nutrient present in highest quantities in apple tree fruits and thus, the most removed from the soil.

  3. Biophysical control of leaf temperature

    Science.gov (United States)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  4. Chinese tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization.

    Science.gov (United States)

    Zhang, Ling; Zhang, Yaojun; Wang, Hong; Zou, Jianwen; Siemann, Evan

    2013-01-01

    Two mechanisms that have been proposed to explain success of invasive plants are unusual biotic interactions, such as enemy release or enhanced mutualisms, and increased resource availability. However, while these mechanisms are usually considered separately, both may be involved in successful invasions. Biotic interactions may be positive or negative and may interact with nutritional resources in determining invasion success. In addition, the effects of different nutrients on invasions may vary. Finally, genetic variation in traits between populations located in introduced versus native ranges may be important for biotic interactions and/or resource use. Here, we investigated the roles of soil biota, resource availability, and plant genetic variation using seedlings of Triadica sebifera in an experiment in the native range (China). We manipulated nitrogen (control or 4 g/m(2)), phosphorus (control or 0.5 g/m(2)), soil biota (untreated or sterilized field soil), and plant origin (4 populations from the invasive range, 4 populations from the native range) in a full factorial experiment. Phosphorus addition increased root, stem, and leaf masses. Leaf mass and height growth depended on population origin and soil sterilization. Invasive populations had higher leaf mass and growth rates than native populations did in fresh soil but they had lower, comparable leaf mass and growth rates in sterilized soil. Invasive populations had higher growth rates with phosphorus addition but native ones did not. Soil sterilization decreased specific leaf area in both native and exotic populations. Negative effects of soil sterilization suggest that soil pathogens may not be as important as soil mutualists for T. sebifera performance. Moreover, interactive effects of sterilization and origin suggest that invasive T. sebifera may have evolved more beneficial relationships with the soil biota. Overall, seedlings from the invasive range outperformed those from the native range, however

  5. Trends in nutrients

    Science.gov (United States)

    Heathwaite, A.L.; Johnes, P.J.; Peters, N.E.

    1996-01-01

    The roles of nitrogen (N) and phosphorus (P) as key nutrients determining the trophic status of water bodies are examined, and evidence reviewed for trends in concentrations of N and P species which occur in freshwaters, primarily in northern temperate environments. Data are reported for water bodies undergoing eutrophication and acidification, especially water bodies receiving increased nitrogen inputs through the atmospheric deposition of nitrogen oxides (NOx). Nutrient loading on groundwaters and surface freshwaters is assessed with respect to causes and rates of (change, relative rates of change for N and P, and implications of change for the future management of lakes, rivers and groundwaters. In particular, the nature and emphasis of studies for N species and P fractions in lakes versus rivers and groundwaters are contrasted. This review paper primarily focuses on results from North America and Europe, particularly for the UK where a wide range of data sets exists. Few nutrient loading data have been published on water bodies in less developed countries; however, some of the available data are presented to provide a global perspective. In general, N and P concentrations have increased dramatically (>20 times background concentrations) in many areas and causes vary considerably, ranging from urbanization to changes in agricultural practices.

  6. The Nissan LEAF electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Shinsuke [Nissan Motor Co., Ltd. (Japan)

    2011-07-01

    The need for CO{sub 2} reduction as a countermeasure to global warming, and to move away from our dependence on fossil fuels as a countermeasure to energy security are urgent issues. One of the ultimate goals to achieving these targets is to develop a 'Zero emission car' such as an electric vehicle or a fuel cell vehicle, along with the manufacturing of clean energy. Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. Sales of the Nissan LEAF started in North America, Europe and Japan in 2010, with plans to sell it globally by 2012. In order to achieve an improved driving range, power performance and drivability performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and reducer. Moreover, the Nissan LEAF has the capability of a 3.3kW AC charge and a 50kW DC quick charge. This presentation will introduce the features of the electric powertrain adopted for Nissan LEAF. (orig.)

  7. Leaf litter decomposition and elemental change in three Appalachian mountain streams of different pH

    Science.gov (United States)

    Steven W. Solada; Sue A. Perry; William B. Perry

    1996-01-01

    The decomposition of leaf litter provides the primary nutrient source for many of the headwater mountain streams in forested catchments. An investigation of factors affected by global change that influence organic matter decomposition, such as temperature and pH, is important in understanding the dynamics of these systems. We conducted a study of leaf litter elemental...

  8. Interactive effects of climate and nutrient enrichment on patterns of herbivory by different feeding guilds in mangrove forests

    KAUST Repository

    Feller, Ilka C.

    2017-09-28

    Aim Global warming and eutrophication are major threats to coastal environments worldwide. As a result of differences between temperate and tropical ecosystems in nutrient availability, nitrogen (N):phosphorus (P) coupling and carbon retention, primary productivity and biotic interactions in the tropics are predicted to have stronger responses to increased nutrients than in temperate ecosystems. Habitats that occur across broad climatic ranges, such as mangrove forests, provide an opportunity to test this hypothesis by investigating the responses of herbivores to nutrient enrichment in temperate versus tropical latitudes on the same species. Location Australia and New Zealand. Time period Fertilization experiments were established at Port Douglas and Cape Cleveland in October 2000; Batemans Bay and Waikopua in August 2001; Whangapoua in January 2003; Tinchi Tamba in September 2005; and Garalia in October 2007. Herbivory was measured in 2009. Major taxa studied Insect leaf miners; insect and fungal leaf gallers. Methods We used seven fertilization experiments in Australia and New Zealand across 20° of latitude to determine how increased nutrients affected herbivory and diversity of leaf miners and gallers of the mangrove Avicennia marina. Individual trees were fertilized annually with one of three treatments (Control, +N, +P); herbivory was measured in 2009. Results Fertilization did not significantly affect herbivory or herbivore diversity. Leaf N:P, latitude and rainfall contributed significantly to herbivory, accounting for > 56% of the variation. Latitude, temperature, %P and salinity differentiated herbivory by feeding guild in the tropical versus subtropical and temperate latitudes. The effect of N fertilization on folivory differed across climatic regions; relative to Control trees, N-fertilized trees in temperate areas had greater folivory than in tropical and subtropical latitudes. Species richness for leaf miners and gallers was correlated with latitude

  9. RESPONSE OF NUTRIENTS, BIOFILM, AND BENTHIC INSECTS TO SALMON CARCASS ADDITION

    Science.gov (United States)

    Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinverte...

  10. Wheat cultivar tolerance to boron deficiency and toxicity in nutrient solution

    Directory of Open Access Journals (Sweden)

    Furlani Ângela Maria Cangiani

    2003-01-01

    Full Text Available Field symptoms of open spikelets in wheat were observed in specific cultivars and supposedly related to low B soils and differential B requirement among cultivars. This study aimed to evaluate the response of four wheat (Triticum aestivum L. cultivars, IAC 24, IAC 60, IAC 287 and IAC 289, to increasing B concentrations in nutrient solution. The experiment was set up in a randomized complete block design, with four replicates and five B concentrations (0.0, 0.05, 0.2, 0.8 and 2.0 mg L-1, during 1997/1998, in a greenhouse. Plants were grown to maturity and evaluated for plant height, spike number and length, open spikelet number, grains per spike, plant parts dry matter, B, P, K, Ca and Mg leaf concentrations and total nutrient contents. The visual symptoms of B deficiency consisted of open spikelets, distorted spikes without grains. 'IAC 60' and 'IAC 287' had higher B efficiency, with the highest grain yields in lower B concentrations. The 'IAC 287' and 'IAC 24' were more tolerant to the highest B concentrations. 'IAC 24' required more B for grain production as compared to the other cultivars. The critical leaf B concentration for deficiency was 25 mg kg-1 of dry matter tissue for all cultivars, and for toxicity were: 44 to 45 mg kg-1 for 'IAC 60' and 'IAC 289'; 228 and 318 mg kg-1 for 'IAC 24' and 'IAC 287', respectively. Except for the highest B level in the nutrient solution, the leaf P, K, Ca and Mg concentrations and whole plant contents were in an adequate range in the plants and did not vary among cultivars.

  11. An evaluation of mixture of Moringa ( Moringa oleifera ) leaf and ...

    African Journals Online (AJOL)

    A 56-day feeding trial was conducted to evaluate the growth performance and nutrient utilization of Clarias gariepinus juveniles fed graded levels of a mixture of Moringa oleifera leaf and kernel meal (1:1) as partial replacement for fishmeal. Triplicates groups of fish (average weight, 8.83±0.04 g) were allotted to four ...

  12. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Science.gov (United States)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations

  13. Fixação biológica de nitrogênio e teores foliares de nutrientes na soja em função de doses de molibdênio e gesso agrícola Biological nitrogen fixation and leaf nutrient concentration on soybean as a function of molybdenum and gypsum levels

    Directory of Open Access Journals (Sweden)

    Evandro Gelain

    2011-04-01

    Full Text Available A competitividade econômica da soja brasileira no mercado mundial se deve, em grande parte, aos benefícios da fixação biológica do nitrogênio na cultura. O trabalho foi conduzido a campo, sob sistema plantio direto, em condição de sequeiro, no Município de Maracaju-MS, com o objetivo de avaliar a nodulação, o crescimento, nutrição mineral e produtividade de grãos da soja submetida a diferentes doses de gesso agrícola e molibdênio. Foi utilizado o delineamento experimental de blocos ao acaso, com cinco repetições e esquema de parcelas subdivididas, sendo as parcelas representadas por quatro doses de gesso agrícola (0, 1.000, 2.000 e 3.000 kg ha-1 e as subparcelas, por quatro doses de molibdênio (0, 20, 40 e 60 g ha-1. Não houve efeito da interação gesso x Mo sobre a produtividade da soja. O gesso agrícola não influencia no teor foliar de N e na produtividade. O Mo proporciona incrementos na produtividade e no teor de proteínas dos grãos.The economic competitiveness of Brazilian soybeans on the world market occurs, in large part, due to the benefits of biological nitrogen fixation in this crop. The field experiment was carried out in Maracaju, Mato Grosso do Sul State, Brazil, under no-tillage system, in rainfed condition. The aim was to evaluate nodulation, growth, mineral nutrition and grain yield of soybeans under different doses of gypsum and molybdenum. The experimental design used was a randomized block with five replicates and arranged in a split-plot squeme, with the plot represented by four doses of gypsum (0, 1.000, 2.000 and 3.000 kg ha-1 and the subplots by four doses of molybdenum (0, 20, 40 and 60 g ha-1. There were no interaction effects of Mo x gypsum for grain yield. Gypsum has no influence in the N leaf content and grain yield. Mo increases grain yield and protein levels in the grain.

  14. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  15. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    Science.gov (United States)

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  17. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...

  18. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  19. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    Energy Technology Data Exchange (ETDEWEB)

    Khadempour, Lily [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Zoology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA; Burnum-Johnson, Kristin E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Nicora, Carrie D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Webb-Robertson, Bobbie-Jo M. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; White, Richard A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Huang, Eric L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Currie, Cameron R. [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA

    2016-10-26

    Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles were significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.

  20. Leaf blade and petiole nutritional diagnosis for Vitis vinifera L. cv. 'Tempranillo' by deviation from optimum percentage method

    Energy Technology Data Exchange (ETDEWEB)

    Romero, I.; Benito, A.; Dominguez, N.; Garcia-Escudero, E.

    2014-06-01

    Deviation from optimum percentage (DOP) is a diagnosis methodology for leaf analyses which expresses the deviation for each element with respect to its optimal concentration. This deviation is an individual index for each nutrient and allows the sorting of all the analyzed nutrients according to their limitations. A nutritional survey was undertaken over eleven years in La Rioja (Spain), to establish reference concentrations for the nutritional diagnosis of Vitis vinifera L., cv. 'Tempranillo' grafted on Richter-110. Reference concentrations for DOP methodology are proposed, and sensibility for the nutritional diagnosis was evaluated for blade and petiole analysis of N, P, K, Ca, Mg, Fe, Mn, Zn, Cu, and B at flowering and veraison phenological stages by comparison between DOP and sufficiency ranges (SR) methods. Results suggest that petiole has lower sensibility than blade to detect deficiencies or excesses of N, P, K, Ca, Mg, Zn, and Mn at veraison. In addition, petiole is a better tissue than blade to detect Fe and B deficiencies or excesses. Therefore, our results make possible the right choice between tissues, leaf blade or petiole, for a general nutritional diagnosis of 'Tempranillo' grapevines. On the other hand, it is possible to evaluate the status of each nutrient in each phonological stage analyzing both tissues and comparing the nutrient status to its references, DOP or SR, in the most adequate tissue. (Author)

  1. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    Energy Technology Data Exchange (ETDEWEB)

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  2. Contribuição de folhas na formação da serrapilheira e no retorno de nutrientes em floresta de transição no norte de Mato Grosso Leaf contribution to litterfall and litterpool and nutrients recycling in transition forest in Mato Grosso

    Directory of Open Access Journals (Sweden)

    Carlos José da Silva

    2009-09-01

    to the soil through decomposition. Litter was collected monthly during one year and leaves decomposition was analyzed during the dry and rainy seasons. Litter fall varied along the year with higher values in the dry season and predominance of the leaf fraction. Nevertheless, there was no significant difference between dry and rainy seasons for litter pool as well as significant correlation between litter pool and litter fall. Decomposition of leaves was more intense in the rainy season in order of decreasing species: T. schomburgkii, Thyrsodium sp, B. lactescens and P. sagotianum. The species P. sagotianum in both dry and rainy seasons showed most slowly decomposition. The potential return was 70.3 kg.ha-1.year-1for nitrogen, 76.1 kg.ha-1.years-1 for phosphorus, 3.5 ton.ha-1.years-1 for carbon. There was significant correlation between leave decomposition and nitrogen and phosphorus return for all species analyzed in the dry season. However, it was found significant correlation only for the carbon and the nitrogen for the species P. sagotianum in the rainy season.

  3. Litterfall and nutrient dynamics in Acacia mangium (Mimosaceae) forest plantations of Antioquia, Colombia

    International Nuclear Information System (INIS)

    Castellanos Barliza, Jeiner; Leon Pelaez, Juan Diego

    2010-01-01

    Fine litter production, nutrient return, nutrient resorption, and nutrient use efficiency were studied during one year in Acacia mangium forest plantations in mining gold degraded soils at the Bajo Cauca region of Colombia. annual fine litter production was estimated at 10.4 mg ha -1 and it was dominated by the leaf fraction (54%), followed by the reproductive material (24%) and to a lesser proportion by other debris (6%) and other species leaves (1.5%). the highest organic matter and nutrients returns were found on sites classified as high quality. Soil plowing realized previous Acacia mangium planting, did not show any significant effect on organic matter and nutrients returns. A. mangium leaf litter had a high N concentration and consequently, given the high leaf litter production values, it was found a high N return. By the opposite, leaf litter P content and P returns via litter fall were very low. The high values found for p retranslocation and P use efficiency indexes showed that P was the most limiting nutrient for the species. the high values of fine litter production and nutrient return via leaf litter indicate that A. mangium has a great capacity for degraded areas reclamation, as of the restoration of the biogeochemical cycles.

  4. Juvenile tree growth correlates with photosynthesis and leaf phosphorus content in central Amazonia

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Marenco

    2015-04-01

    Full Text Available Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04. Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K, the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003. At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P

  5. Diagnosis of the nutrient compositional space of fruit crops

    Directory of Open Access Journals (Sweden)

    Léon-Étienne Parent

    2011-03-01

    Full Text Available Tissue analysis is a useful tool for the nutrient management of fruit orchards. The mineral composition of diagnostic tissues expressed as nutrient concentration on a dry weight basis has long been used to assess the status of 'pure' nutrients. When nutrients are mixed and interact in plant tissues, their proportions or concentrations change relatively to each other as a result of synergism, antagonism, or neutrality, hence producing resonance within the closed space of tissue composition. Ternary diagrams and nutrient ratios are early representations of interacting nutrients in the compositional space. Dual and multiple interactions were integrated by the Diagnosis and Recommendation Integrated System (DRIS into nutrient indexes and by Compositional Nutrient Diagnosis into centered log ratios (CND-clr. DRIS has some computational flaws such as using a dry matter index that is not a part as well as nutrient products (e.g. NxCa instead of ratios. DRIS and CND-clr integrate all possible nutrient interactions without defining an ad hoc interactive model. They diagnose D components while D-1 could be diagnosed in the D-compositional Hilbert space. The isometric log ratio (ilr coordinates overcome these problems using orthonormal binary nutrient partitions instead of dual ratios. In this study, it is presented a nutrient interactive model as well as computation methods for DRIS and CND-clr and CND-ilr coordinates (CND-ilr using leaf analytical data from an experimental apple orchard in Southwestern Quebec, Canada. It was computed the Aitchison and Mahalanobis distances across ilr coordinates as measures of nutrient imbalance. The effect of changing nutrient concentrations on ilr coordinates are simulated to identify the ones contributing the most to nutrient imbalance.

  6. Automated rice leaf disease detection using color image analysis

    Science.gov (United States)

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  7. Characterization of nutrient deficiency in Hancornia speciosa Gomes seedlings by omitting micronutrients from the nutrient solution

    Directory of Open Access Journals (Sweden)

    Layara Alexandre Bessa

    2013-06-01

    Full Text Available Hancornia speciosa Gomes (Mangaba tree is a fruit tree belonging to the Apocynaceae family and is native to Brazil. The production of seedlings of this species is limited by a lack of technical and nutritional expertise. To address this deficiency, this study aimed to characterize the visual symptoms of micronutrient deficiency and to assess growth and leaf nutrient accumulation in H. speciosa seedlings supplied with nutrient solutions that lack individual micronutrients. H. speciosa plants were grown in nutrient solution in a greenhouse according to a randomized block design, with four replicates. The treatments consisted of a group receiving complete nutrient solution and groups treated with a nutrient solution lacking one of the following micronutrients: boron (B, copper (Cu, iron (Fe, manganese (Mn, zinc (Zn, and molybdenum (Mo. The visual symptoms of nutrient deficiency were generally easy to characterize. Dry matter production was affected by the omission of micronutrients, and the treatment lacking Fe most limited the stem length, stem diameter, root length, and number of leaves in H. speciosa seedlings as well as the dry weight of leaves, the total dry weight, and the relative growth in H. speciosa plants. The micronutrient contents of H. speciosa leaves from plants receiving the complete nutrient solution treatment were, in decreasing order, Fe>Mn>Cu>Zn>B.

  8. Effect of nutrient calcium on the cell wall composition and ...

    African Journals Online (AJOL)

    The effect of calcium in the nutrient medium on kikuyu grass (Pennisetum clandestinum Hochst), grown in a solution culture, was investigated. Calcium had no effect on the lignin content of leaf material, but decreased the lignin content per unit stem cell wall. Calcium appeared to have no significant effect on either the ...

  9. Soil-plant nutrient interactions in two mangrove areas at Southern Brazil

    Directory of Open Access Journals (Sweden)

    Ana Paula Lang Martins Madi

    2016-01-01

    The results exposed that the nutritional state of the mangrove species is different and independent form the soil attributes in which they grow. Few correlations were found among leaf nutrient concentrations and soil attributes, suggesting differential selective nutrient uptake among species.

  10. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.)

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Hooijdonk, van J.

    1999-01-01

    Radish (Raphanus sativus L.) plants were grown at five soil salinity levels (1, 2, 4, 9 and 13 dS m-1) to analyse the effects on growth, dry matter partitioning, leaf expansion and water and nutrient use. Salinity was varied by proportionally changing the concentration of all macro nutrients. When

  11. Incorporating hydrologic variability into nutrient spiraling

    Science.gov (United States)

    Doyle, Martin W.

    2005-09-01

    Nutrient spiraling describes the path of a nutrient molecule within a stream ecosystem, combining the biochemical cycling processes with the downstream driving force of stream discharge. To date, nutrient spiraling approaches have been hampered by their inability to deal with fluctuating flows, as most studies have characterized nutrient retention within only a small range of discharges near base flow. Here hydrologic variability is incorporated into nutrient spiraling theory by drawing on the fluvial geomorphic concept of effective discharge. The effective discharge for nutrient retention is proposed to be that discharge which, over long periods of time, is responsible for the greatest portion of nutrient retention. A developed analytical model predicts that the effective discharge for nutrient retention will equal the modal discharge for small streams or those with little discharge variability. As modal discharge increases or discharge variability increases, the effective discharge becomes increasingly less than the modal discharge. In addition to the effective discharge, a new metric is proposed, the functionally equivalent discharge, which is the single discharge that will reproduce the magnitude of nutrient retention generated by the full hydrologic frequency distribution when all discharge takes place at that rate. The functionally equivalent discharge was found to be the same as the modal discharge at low hydrologic variability, but increasingly different from the modal discharge at large hydrologic variability. The functionally equivalent discharge provides a simple quantitative means of incorporating hydrologic variability into long-term nutrient budgets.

  12. Morpho-physiological and mineral nutrient characterization of 45 collected Purslane (Portulaca oleracea L. accessions

    Directory of Open Access Journals (Sweden)

    Amirul Alam

    2014-12-01

    Full Text Available This study was carried out to determine, evaluation and characterization of the morphological, physiological as well as mineral nutrient vitiations among all forty five purslane accessions collected from different locations of West Peninsular, Malaysia. Significant differences (p<0.05 were observed for all those traits measured regarding morphological, physiological and mineral composition. Morphological traits viz. plant height varied between 20.06-40.8 cm; number of main branch, 1.4-4.4; number of nodes, 8.4-31; internode distance, 2.1-3.43 cm; stem diameter, 2.12-3.8 mm; number of leaves, 97-1019; leaf area, 1.03-2.21 cm², number of flowers, 14-826.8; root length, 5.09-11.7 cm; fresh weight, 40-280 g; and dry weight varied between 2.71-29.16 g. Among physiological traits, total chlorophyll content varied between 26.2-39.52 (SPAD value, net photosynthesis, 20.8-28.73 µmol CO2/m²/sec; stomatal conductance, 0.02-0.28 cm/sec; transpiration rate, 0.46-2.48 mol/m²/sec; and water vapor deficit varied between 0.51-2.65 mol H2O/m²/sec. Analysis of mineral macro and micro nutrient compositions showed that all accessions contained appreciable amount of essential nutrients. Among the macro nutrient elements; N, P, K, Ca and Mg contents ranged respectively between 31.2-100, 2.51-8.2, 78.4-276, 9.1-62.2 and 8.7-32.55 ppm. Whereas micro nutrient elements; Zn, Fe and Mn ranged respectively between 0.31-1.09; 1.01-13.09 and 0.06-1.32 ppm. This great variability among the purslane accessions may contribute enhancing the genetic improvement of the species for desired traits.

  13. The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2011-02-01

    Full Text Available Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus, a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus, and the absence of a hexamerin (which sequesters amino acids during larval development in other insects. Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.

  14. The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

    Science.gov (United States)

    Suen, Garret; Holt, Carson; Abouheif, Ehab; Bornberg-Bauer, Erich; Bouffard, Pascal; Caldera, Eric J.; Cash, Elizabeth; Cavanaugh, Amy; Denas, Olgert; Elhaik, Eran; Favé, Marie-Julie; Gadau, Jürgen; Gibson, Joshua D.; Graur, Dan; Grubbs, Kirk J.; Hagen, Darren E.; Harkins, Timothy T.; Helmkampf, Martin; Hu, Hao; Johnson, Brian R.; Kim, Jay; Marsh, Sarah E.; Moeller, Joseph A.; Muñoz-Torres, Mónica C.; Murphy, Marguerite C.; Naughton, Meredith C.; Nigam, Surabhi; Overson, Rick; Rajakumar, Rajendhran; Reese, Justin T.; Scott, Jarrod J.; Smith, Chris R.; Tao, Shu; Tsutsui, Neil D.; Viljakainen, Lumi; Wissler, Lothar; Yandell, Mark D.; Zimmer, Fabian; Taylor, James; Slater, Steven C.; Clifton, Sandra W.; Warren, Wesley C.; Elsik, Christine G.; Smith, Christopher D.; Weinstock, George M.; Gerardo, Nicole M.; Currie, Cameron R.

    2011-01-01

    Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses. PMID:21347285

  15. Geometric leaf placement strategies

    International Nuclear Information System (INIS)

    Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M

    2004-01-01

    Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline

  16. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2016-12-24

    As coastal plants that can survive in salt water, mangroves play an essential role in large marine ecosystems (LMEs). The Red Sea, where the growth of mangroves is stunted, is one of the least studied LMEs in the world. Mangroves along the Central Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week-old seedlings of Avicennia marina to identify limiting nutrients and stoichiometric effects. We measured height, number of leaves, number of nodes and root development at different time periods as well as the leaf content of C, N, P, Fe, and Chl a in the experimental seedlings. Height, number of nodes and number of leaves differed significantly among treatments. Iron treatment resulted in significantly taller plants compared with other nutrients, demonstrating that iron is the primary limiting nutrient in the tested mangrove population and confirming Liebig\\'s law of the minimum: iron addition alone yielded results comparable to those using complete fertilizer. This result is consistent with the biogenic nature of the sediments in the Red Sea, which are dominated by carbonates, and the lack of riverine sources of iron.

  17. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  18. Urban trees reduce nutrient leaching to groundwater.

    Science.gov (United States)

    Nidzgorski, Daniel A; Hobbie, Sarah E

    2016-07-01

    Many urban waterways suffer from excess nitrogen (N) and phosphorus (P), feeding algal blooms, which cause lower water clarity and oxygen levels, bad odor and taste, and the loss of desirable species. Nutrient movement from land to water is likely to be influenced by urban vegetation, but there are few empirical studies addressing this. In this study, we examined whether or not urban trees can reduce nutrient leaching to groundwater, an important nutrient export pathway that has received less attention than stormwater. We characterized leaching beneath 33 trees of 14 species, and seven open turfgrass areas, across three city parks in Saint Paul, Minnesota, USA. We installed lysimeters at 60 cm depth to collect soil water approximately biweekly from July 2011 through October 2013, except during winter and drought periods, measured dissolved organic carbon (C), N, and P in soil water, and modeled water fluxes using the BROOK90 hydrologic model. We also measured soil nutrient pools (bulk C and N, KCl-extractable inorganic N, Brays-P), tree tissue nutrient concentrations (C, N, and P of green leaves, leaf litter, and roots), and canopy size parameters (leaf biomass, leaf area index) to explore correlations with nutrient leaching. Trees had similar or lower N leaching than turfgrass in 2012 but higher N leaching in 2013; trees reduced P leaching compared with turfgrass in both 2012 and 2013, with lower leaching under deciduous than evergreen trees. Scaling up our measurements to an urban subwatershed of the Mississippi River (~17 400 ha, containing ~1.5 million trees), we estimated that trees reduced P leaching to groundwater by 533 kg in 2012 (0.031 kg/ha or 3.1 kg/km 2 ) and 1201 kg in 2013 (0.069 kg/ha or 6.9 kg/km 2 ). Removing these same amounts of P using stormwater infrastructure would cost $2.2 million and $5.0 million per year (2012 and 2013 removal amounts, respectively). © 2016 by the Ecological Society of America.

  19. The biomedical significance of the phytochemical, proximate and mineral compositions of the leaf, stem bark and root of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Atamgba Agbor Asuk

    2015-08-01

    Conclusions: The outcome of this study suggests that the leaf, stem bark and root of J. curcas have very good medicinal potentials, meet the standard requirements for drug formulation and serve as good sources of energy and nutrients except for the presence of some anti-nutritional elements predominant in the leaf.

  20. Leaf litter traits of invasive alien species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison.

    NARCIS (Netherlands)

    Godoy, O.; Castro Diez, P.; van Logtestijn, R.S.P; Cornelissen, J.H.C.; Valladares, F.

    2010-01-01

    Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves

  1. A comparison of nutrient density scores for 100% fruit juices.

    Science.gov (United States)

    Rampersaud, G C

    2007-05-01

    The 2005 Dietary Guidelines for Americans recommend that consumers choose a variety of nutrient-dense foods. Nutrient density is usually defined as the quantity of nutrients per calorie. Food and nutrition professionals should be aware of the concept of nutrient density, how it might be quantified, and its potential application in food labeling and dietary guidance. This article presents the concept of a nutrient density score and compares nutrient density scores for various 100% fruit juices. One hundred percent fruit juices are popular beverages in the United States, and although they can provide concentrated sources of a variety of nutrients, they can differ considerably in their nutrient profiles. Six methodologies were used to quantify nutrient density and 7 100% fruit juices were included in the analysis: apple, grape, pink grapefruit, white grapefruit, orange, pineapple, and prune. Food composition data were obtained from the USDA National Nutrient Database for Standard Reference, Release 18. Application of the methods resulted in nutrient density scores with a range of values and magnitudes. The relative scores indicated that citrus juices, particularly pink grapefruit and orange juice, were more nutrient dense compared to the other nonfortified 100% juices included in the analysis. Although the methods differed, the relative ranking of the juices based on nutrient density score was similar for each method. Issues to be addressed regarding the development and application of a nutrient density score include those related to food fortification, nutrient bioavailability, and consumer education and behavior.

  2. Deferral of leaf senescence and increased productivity in rice

    International Nuclear Information System (INIS)

    Biswas, A.K.; Choudhari, M.A.

    1978-01-01

    The effect of spraying of different hormones and nurtient solutions on plants at 3 developmental stages of growth of Jaya rice has been studied. Increased plant growth and leaf longevity have been correlated with increased yield of the crop. 32 P feeding experiments showed that major export of materials took place from flag leaf to grains, while various treatments with hormones and nutrients could modify this export by implicating other leaves as well. These data also support the increased yield and longevity of the top. (author)

  3. Biology and host range of Tecmessa elegans (Lepidoptera: Notodontidae), a leaf-feeding moth evaluated as a potential biological control agent for Schinus terebinthifolius (Sapindales: Anacardiaceae) in the United States.

    Science.gov (United States)

    Oleiro, Marina; Mc Kay, Fernando; Wheeler, Gregory S

    2011-06-01

    During surveys for natural enemies that could be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper), the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the shrub in South America. The biology and larval and adult host range of this species were examined to determine the insect's suitability for biological control of this invasive weed in North America and Hawaii. Biological observations indicate that the larvae have five instars. When disturbed, the late instar larvae emit formic acid from a prothoracic gland that may protect larvae from generalist predators. Larval host range tests conducted both in South and North America indicated that this species feeds and completes development primarily on members of the Anacardiaceae within the tribe Rhoeae. Oviposition tests indicated that when given a choice in large cages the adults will select the target weed over Pistacia spp. However, considering the many valued plant species in its host range, especially several North American natives, this species will not be considered further for biological control of S. terebinthifolius in North America.

  4. Is the lotus leaf superhydrophobic?

    Science.gov (United States)

    Cheng, Yang-Tse; Rodak, Daniel E.

    2005-04-01

    Superhydrophobic surfaces have important technical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. The archetype superhydrophobic surface is that of the lotus leaf. When rain falls on lotus leaves, water beads up with a contact angle in the superhydrophobic range of about 160°. The water drops promptly roll off the leaves collecting dirt along the way. This lotus effect has, in recent years, stimulated much research effort worldwide in the fabrication of surfaces with superhydrophobicity. But, is the lotus surface truly superhydrophobic? This work shows that the lotus leaves can be either hydrophobic or hydrophilic, depending on how the water gets on to their surfaces. This finding has significant ramifications on how to make and use superhydrophobic surfaces.

  5. Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil

    Science.gov (United States)

    Yang, Xian; Chi, Xiulian; Ji, Chengjun; Liu, Hongyan; Ma, Wenhong; Mohhammat, Anwar; Shi, Zhaoyong; Wang, Xiangping; Yu, Shunli; Yue, Ming; Tang, Zhiyao

    2016-08-01

    Concentrations of leaf nitrogen (N) and phosphorus (P) are two key traits of plants for ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on the stoichiometric patterns of trees and grasses, leaving a significant knowledge gap for shrubs. In this study, we explored the intraspecific and interspecific variations of leaf N and P concentrations in response to the changes in climate, soil property, and evolutionary history. We analysed 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China encompassing 46.1° (86.7-132.8° E) in longitude and 19.8° (32.6-52.4° N) in latitude. Leaf N concentrations decreased with precipitation, while leaf P concentrations decreased with temperature and increased with precipitation and soil total P concentrations. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentrations were less conserved than leaf N concentrations. At the community level, climate explained more interspecific variation of leaf nutrient concentrations, while soil nutrients explained most of the intraspecific variation. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits. New patterns were discovered using our observations on specific regions and vegetation types, which improved our knowledge of broad biogeographic patterns of leaf chemical traits.

  6. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats1[OPEN

    Science.gov (United States)

    de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean

    2016-01-01

    Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769

  7. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  8. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    Science.gov (United States)

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    Science.gov (United States)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf

  10. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    Energy Technology Data Exchange (ETDEWEB)

    Bouriaud, O. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France); Soudani, K. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Lab. Ecologie Systematique et Evolution, Orsay Cedex (France); Breda, N. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France)

    2003-06-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m{sup 2}{center_dot}g{sup -1}) is used to convert dry leaf litter biomass (g .m{sup -}2) into leaf area per ground unit area (m{sup 2}{center_dot}m{sup -2}). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m{sup 2}) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm{sup 2}{center_dot}g{sup -1}. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant

  11. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    International Nuclear Information System (INIS)

    Bouriaud, O.; Soudani, K.; Breda, N.

    2003-01-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m 2 ·g -1 ) is used to convert dry leaf litter biomass (g .m - 2) into leaf area per ground unit area (m 2 ·m -2 ). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m 2 ) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm 2 ·g -1 . Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA

  12. Understanding of Leaf Development—the Science of Complexity

    Directory of Open Access Journals (Sweden)

    Robert Malinowski

    2013-06-01

    Full Text Available The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity influence the choice of experimental approach.

  13. Detection of wine grape nutrient levels using visible and near infrared 1nm spectral resolution remote sensing

    Science.gov (United States)

    Anderson, Grant; van Aardt, Jan; Bajorski, Peter; Vanden Heuvel, Justine

    2016-05-01

    The grape industry relies on regular crop assessment to aid in the day-to-day and seasonal management of their crop. More specifically, there are six key nutrients of interest to viticulturists in the growing of wine grapes, namely nitrogen, potassium, phosphorous, magnesium, zinc and boron. Traditional methods of determining the levels of these nutrients are through collection and chemical analysis of petiole samples from the grape vines themselves. We collected ground-level observations of the spectra of the grape vines, using a hyperspectral spectrometer (0.4-2.5um), at the same time that petioles samples were harvested. We then interpolated the data into a consistent 1 nm spectral resolution before comparing it to the nutrient data collected. This nutrient data came from both the industry standard petiole analysis, as well as an additional leaf-level analysis. The data were collected for two different grape cultivars, both during bloom and veraison periods to provide variability, while also considering the impact of temporal/seasonal change. A narrow-band NDI (Normalized Difference Index) approach, as well as a simple ratio index, was used to determine the correlation of the reflectance data to the nutrient data. This analysis was limited to the silicon photodiode range to increase the utility of our approach for wavelength-specific cameras (via spectral filters) in a low cost drone platform. The NDI generated correlation coefficients were as high as 0.80 and 0.88 for bloom and veraison, respectively. The ratio index produced correlation coefficient results that are the same at two decimal places with 0.80 and 0.88. These results bode well for eventual non-destructive, accurate and precise assessment of vineyard nutrient status.

  14. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].

    Science.gov (United States)

    Wu, Jian; Chen, Tai-sheng; Pan, Li-xin

    2015-07-01

    Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.

  15. Using variation in the chemical and stable isotopic composition of Zostera noltii to assess nutrient dynamics in a temperate seagrass meadow

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, S.; Kennedy, H.; Rodrigues, R.M.N.V.; Kennedy, D.P. [University of Wales, Bangor (United Kingdom). School of Ocean Sciences; Heaton, T.H.E. [British Geological Survey, Nottingham (United Kingdom). NERC Isotope Geosciences Laboratory

    2006-10-15

    The influence of seasonality in growth and benthic organic matter remineralization on the chemical and isotopic composition of the seagrass Zostera noltii was investigated from March to November over the course of two years in a temperate meadow in North Wales, UK. The carbon (C{sub org}) and nitrogen (N{sub org}) concentrations in new {sub leaf} tissue ranged from 25 to 35 mmol C g{sup -1} and 2 to 5 mmol N g{sup -1}. Their stable isotopic composition ranged from -11.0 per thousand to -6.9 per thousand ({delta}{sup 13}C{sub leaf}) and +3.3 per thousand to +7.5 per thousand ({delta}{sup 15}N{sub leaf}), while the stable isotopic composition of sulphur in the new {sub leaf} ({delta}{sup 34}S{sub leaf}) ranged from -3.0 per thousand to +6.4 per thousand. The young seagrass tissues had lowest Norg, highest C:N, most depleted {delta}{sup 13}C{sub leaf}, and most enriched {delta}{sup 15}N{sub leaf} at the standing biomass maximum (approximately 150-200 g dry weight m{sup -2}) in the summer, reflecting the temporal imbalance between inorganic nutrient supply and plant demand imposed by seasonality in the growth rate. The most depleted {delta}{sup 34}S{sub leaf} was recorded in the same season. The isotopic composition of the seagrass tissues reflected that of the external inorganic source. The {delta}{sup 13}C{sub leaf} correlated (r{sup 2} {approx} 0.4) with the {delta}{sup 13}C of total dissolved inorganic carbon (DIC) in the surface waters ({delta}{sup 13}C{sub DIC} range: -0.4 per thousand to +1.2 per thousand).The apparent carbon isotope enrichment factor of new leaf relative to the bulk seawater DIC ({epsilon} {sub seagrass-DIC} range: -11.2 to -8.1 per thousand) indicated reliance on direct HCO{sub 3}{sup -} uptake, especially early in the growing season (spring). The {delta}{sup 15}N{sub leaf} reflected the {delta}{sup 15}N of pore water ammonium ({delta}{sup 15}NH{sub 4}{sup +} range: +6 per thousand to +10 per thousand; average: +7.4 {+-} 0.8 per thousand) as

  16. Autonomous nutrient detection for water quality monitoring

    OpenAIRE

    Maher, Damien; Cleary, John; Cogan, Deirdre; Diamond, Dermot

    2012-01-01

    The ever increasing demand for real time environmental monitoring is currently being driven by strong legislative and societal drivers. Low cost autonomous environmental monitoring systems are required to meet this demand as current monitoring solutions are insufficient. This poster presents an autonomous nutrient analyser platform for water quality monitoring. Results from a field trial of the nutrient analyser are reported along with current work to expand the range of water quality targ...

  17. Carrot, Corn, Lettuce and Soybean Nutrient Contents are ...

    Science.gov (United States)

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from some feedstocks also could adversely affect crop quality by changing soil pH and reducing nutrients (e.g., Ca, K, Mg, N, Na, and P) in plant tissues. To evaluate effects of biochar on the nutrient quality of four crops, we conducted a greenhouse study using pots with: carrot (Daucus carota cv. Tendersweet), corn (Zea mays, cv. Golden Bantam), lettuce (Lactuca sativa, cv. Black-Seeded Simpson) and soybean (Glycine max cv. Viking 2265). Plants were grown in one of two South Carolina sandy Coastal Plain soils (Norfolk and Coxville Soil Series), along with biochar (1% by weight) produced from pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG), and two blends of pine chips plus poultry litter (PC/PL, 50/50% and 80/20%). Each of the feedstocks and feedstock blends was pyrolyzed at 350, 500, and 700 ̊ C to produce the biochar used to amend the Norfolk and Coxville soils. Effects of biochar on leaf nutrients (% dry weight) statistically varied with species, soil, feedstock and temperature and nutrient. For carrot and lettuce, the PL, PL/PC, and SS biochars generally decreased leaf N, Ca, Mg, and P; while PL and PL/PC increased K and Na. Biochars had little effect on lea

  18. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Voelker, Steven L.; Brooks, J. Renée; Meinzer, Frederick C.; Anderson, Rebecca D.; Bader, Martin K.-F.; Battipaglia, Giovanna; Becklin, Katie M.; Beerling, David; Bert, Didier; Betancourt, Julio L.; Dawson, Todd E.; Domec, Jean-Christophe; Guyette, Richard P.; Körner, Christian; Leavitt, Steven W.; Linder, Sune; Marshall, John D.; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina P.; Plumpton, Heather J.; Pregitzer, Kurt S.; Saurer, Matthias; Smith, Andrew R.; Siegwolf, Rolf T.W.; Stambaugh, Michael C.; Talhelm, Alan F.; Tardif, Jacques C.; Van De Water, Peter K.; Ward, Joy K.; Wingate, Lisa

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2(ca − ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca. To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca-induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca − ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.

  19. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  20. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  1. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants.

    Science.gov (United States)

    Turcotte, Martin M; Davies, T Jonathan; Thomsen, Christina J M; Johnson, Marc T J

    2014-07-22

    The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    Science.gov (United States)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    at the end of the experiment. Enrichment of roots was significantly higher than leaves (δ13C range: 111.5-219.2‰; δ15N range: 1516.9-3939.3‰) indicating that nutrients were translocated away from leaves prior to senescence, which is supported by the increase in C:N ratio between the initial (19.0) and final (60.1) leaf sampling. Despite the variable levels of enrichment, leaves from all species were sufficiently labeled for use in future studies aimed at tracking the transformation of carbon and nitrogen during decomposition. The greatest challenges were treating diseases and pests and creating ideal growing conditions for many species within the same chamber. Reducing the number of individuals and better pest management will lead to even higher level enrichment in the future.

  3. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems

    KAUST Repository

    Houborg, Rasmus

    2015-05-05

    Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants and in response to changes in leaf nitrogen (N) availability, plant phenology and environmental conditions. Houborg et al. (2013) outlined a semi-mechanistic relationship between V max 25 (Vmax normalized to 25 °C) and Chll based on inter-linkages between V max 25 , Rubisco enzyme kinetics, N and Chll. Here, these relationships are parameterized for a wider range of important agricultural crops and embedded within the leaf photosynthesis-conductance scheme of the Community Land Model (CLM), bypassing the questionable use of temporally invariant and broadly defined plant functional type (PFT) specific V max 25 values. In this study, the new Chll constrained version of CLM is refined with an updated parameterization scheme for specific application to soybean and maize. The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35–55 μg cm−2 for maize and 20–35 μg cm−2 for soybean) are

  4. Effect of boron nutrition on American ginseng in field and in nutrient cultures

    Directory of Open Access Journals (Sweden)

    John T.A. Proctor

    2014-01-01

    Full Text Available Field and nutrient cultures of American ginseng (Panax quinquefolius L. were used to establish foliar symptoms related to boron (B concentration in leaves and soils, and to evaluate radish as a time-saving model system for B nutrition. Application of excess B, 8 kg/ha versus the recommended 1.5 kg/ha, to field plantings of 2-, 3-, and 4-yr-old American ginseng plants just prior to crop emergence caused, within 4 wk after crop emergence, leaf symptoms of chlorosis followed by necrosis starting at the tips and progressing along the margins. The B concentration in leaves of 2–4-yr-old plants receiving 1.5 kg/ha B was 30 μg/g dry mass compared to 460 μg/g dry mass where 8 kg/ha B was applied. Similarly, B concentration in soils receiving the lower B concentration was 1.8 μg/g dry mass and 2.2–2.8 μg/g dry mass where the higher B concentration was applied. Application of 8 kg/ha B reduced the dry yield of 3rd-yr roots by 20% from 2745 kg/ha to 2196 kg/ha and 4th-yr roots by 26% from 4130 kg/ha to 3071 kg/ha. Ginseng seedlings and radish were grown under greenhouse conditions in nutrient culture with four B concentrations ranging from 0 mg/L to 10 mg/L. At 5 mg/L and 10 mg/L ginseng and radish developed typical leaf B toxicity symptoms similar to those described above for field-grown plants. Increasing B in the nutrient solution from 0.5 mg/L to 10 mg/L decreased, in a linear fashion, the root and leaf dry mass of ginseng, but not radish. Given the many similarities of ginseng and radish to B utilization, radish might be used as a time-saving model system for the study of B, and other micronutrients, in the slow-growing perennial ginseng.

  5. The action spectrum in chloroplast translocation in multilayer leaf cells

    Directory of Open Access Journals (Sweden)

    Zbigniew Lechowski

    2015-01-01

    Full Text Available By measurement of light transmittance through a leaf as criterion of chloroplast translocation, the action spectrum of Ajuga reptans was established. In the spectrum obtained, a correction was introduced for leaf autoabsorption calculated on the basis of the Beer-Lambert law. The action spectrum has two maxima: at λ= 375 nm and λ= 481 nm. The range above 502 nm has no significant effect on chloroplast translocation. Comparison with other objects examined demonstrated that in multilayer leaf cells riboflavin seems also to be a photoreceptor active in this process.

  6. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Science.gov (United States)

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  7. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.

    Science.gov (United States)

    van Huysen, Tiff L; Harmon, Mark E; Perakis, Steven S; Chen, Hua

    2013-12-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using (15)N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7-20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  8. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    Science.gov (United States)

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  9. Climatic Controls on Leaf Nitrogen Content and Implications for Biochemical Modeling.

    Science.gov (United States)

    Tcherednichenko, I. A.; White, M.; Bastidas, L.

    2007-12-01

    Leaf nitrogen (N) content, expressed as percent total nitrogen per unit of leaf dry mass, is a widely used parameter in biochemical modeling, due mainly to its role as a potentially limiting factor for photosynthesis. The amount of nitrogen, however, does not occur in a fixed amount in every leaf, but rather varies continuously with the leaf life cycle, in constant response to soil-root-stem-leaf-climate interactions and demand for growth. Moreover, while broad data on leaf N has become available it is normally measured under ambient conditions with consequent difficulty for distinguishing between genetic and time specific environmental effects. In the present work we: 1) Investigate the theoretical variation of leaf mass, specific heat capacity and leaf thickness of full sun-expanded leaves as a regulatory mechanism to ensure thermal survival along with long-term climatic radiation/temperature gradient; and discuss nitrogen and carbon controls on leaf thickness. 2) Based on possible states of partition between nitrogenous and non-nitrogenous components of a leaf we further derive probability density functions (PDFs) of nitrogen and carbon content and assess the effect of water and nutrient uptake on the PDFs. 3) Translate the results to spatially explicit representation over the conterminous USA at 1 km spatial resolution by providing maximum potential values of leaf N of fully expanded leaf optimally suited for long term climatic averages values and soils conditions. Implications for potential presence of inherently slow/fast growing species are discussed along with suitability of results for use by biochemical models.

  10. Leaf Dynamics of Panicum maximum under Future Climatic Changes.

    Science.gov (United States)

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.

  11. Effects of nutrients on interaction between the invasive bidens pilosa the parasitic cusuta australis

    International Nuclear Information System (INIS)

    Yang, B.; Li, J.; Yan, M.

    2015-01-01

    Parasitic plants have been identified as potential biological agents to control invasive plants. Understanding the interaction between invasive plants and their novel natural enemies is important for understanding mechanisms underlying plant invasion success and thus taking measures to control invasion. We conducted a factorial experiment to test the interactive effects of nutrient addition (low vs. high) and parasitism (with vs. without Cuscuta australis) on the growth of the invasive Bidens pilosa. Parasitism significantly decreased leaf, stem and root biomass of the host invasive plant, and nutrient addition increased leaf and stem biomass of the host. A synergistic effect of parasitism and nutrient addition was found on stem and leaf biomass of the hosts. Nutrient addition significantly increased vegetative biomass of the parasitic plant and caused a more deleterious effect on the invasive host. Reproductive biomass of the parasitic plant was significantly positively related with net photosynthetic rate, light-utilisation efficiency and apparent carboxylation efficiency. Vegetative biomass and total biomass of the parasitic plants were significantly positively related with specific leaf area and the relative chlorophyll content of the host plant. The deleterious effect of the parasite on the growth of the host plant was significantly positively correlated with vegetative biomass of the parasitic plant. Nutrient addition increased the negative effect of the parasitic plant on the invasive host, indicating that the parasitic plant is potentially a biological control agent for the invasive plant even in the context of changing global resources. (author)

  12. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes.

    Science.gov (United States)

    Vincent, Gregoire

    2006-02-01

    The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months. All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate. Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.

  13. Contrasting nutritional acclimation of sugar maple (Acer saccharum Marsh. and red maple (Acer rubrum L. to increasing conifers and soil acidity as demonstrated by foliar nutrient balances

    Directory of Open Access Journals (Sweden)

    Alexandre Collin

    2016-07-01

    Full Text Available Sugar maple (Acer saccharum Marshall, SM is believed to be more sensitive to acidic and nutrient-poor soils associated with conifer-dominated stands than red maple (Acer rubrum L., RM. Greater foliar nutrient use efficiency (FNUE of RM is likely the cause for this difference. In the context of climate change, this greater FNUE could be key in favouring northward migration of RM over SM. We used the concept of foliar nutrient balances to study the nutrition of SM and RM seedlings along an increasing gradient in forest floor acidity conditioned by increasing proportions of conifers (pH values ranging from 4.39 under hardwoods, to 4.29 under mixed hardwood-conifer stands and 4.05 under conifer-dominated stands. Nutrients were subjected to isometric log-ratio (ilr transformation, which views the leaf as one closed system and considers interactions between nutrients. The ilr method eliminates numerical biases and weak statistical inferences based on raw or operationally’’ log-transformed data. We analyzed foliar nutrients of SM and RM seedlings and found that the [Ca,Mg,K|P,N] and [Ca,Mg|K] balances of SM seedlings were significantly different among soil acidity levels, whereas they did not vary for RM seedlings. For SM seedlings, these differences among soil acidity levels were due to a significant decrease in foliar Ca and Mg concentrations with increasing forest floor acidity. Similar differences in foliar balances were also found between healthy and declining SM stands estimated from literature values. Conversely, foliar balances of RM seedlings did not differ among soil acidity levels, even though untransformed foliar nutrient concentrations were significantly different. This result highlights the importance of using ilr transformation, since it provides more sensitive results than standard testing of untransformed nutrient concentrations. The lower nutrient requirements of RM and its greater capacity to maintain nutrient equilibrium are

  14. Herbivores sculpt leaf traits differently in grasslands depending on life form and land-use histories.

    Science.gov (United States)

    Firn, Jennifer; Schütz, Martin; Nguyen, Huong; Risch, Anita C

    2017-01-01

    Vertebrate and invertebrate herbivores alter plant communities directly by selectively consuming plant species; and indirectly by inducing morphological and physiological changes to plant traits that provide competitive or survivorship advantages to some life forms over others. Progressively excluding aboveground herbivore communities (ungulates, medium and small sized mammals, invertebrates) over five growing seasons, we explored how leaf morphology (specific leaf area or SLA) and nutrition (nitrogen, carbon, phosphorous, potassium, sodium, and calcium) of different plant life forms (forbs, legumes, grasses, sedges) correlated with their dominance. We experimented in two subalpine grassland types with different land-use histories: (1) heavily grazed, nutrient-rich, short-grass vegetation and (2) lightly grazed, lower nutrient tall-grass vegetation. We found differences in leaf traits between treatments where either all herbivores were excluded or all herbivores were present, showing the importance of considering the impacts of both vertebrates and invertebrates on the leaf traits of plant species. Life forms responses to the progressive exclusion of herbivores were captured by six possible combinations: (1) increased leaf size and resource use efficiency (leaf area/nutrients) where lower nutrient levels are invested in leaf construction, but a reduction in the number of leaves, for example, forbs in both vegetation types, (2) increased leaf size and resource use efficiency, for example, legumes in short grass, (3) increased leaf size but a reduction in the number of leaves, for example, legumes in the tall grass, (4) increased number of leaves produced and increased resource use efficiency, for example, grasses in the short grass, (5) increased resource use efficiency of leaves only, for example, grasses and sedges in the tall grass, and (6) no response in terms of leaf construction or dominance, for example, sedges in the short grass. Although we found multiple

  15. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-04-01

    Full Text Available Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523–4685 m on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3–47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2–75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m, likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer, their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most

  16. Antibacterial activity, chemical composition, and cytotoxicity of leaf?s essential oil from brazilian pepper tree (schinus terebinthifolius, raddi)

    OpenAIRE

    Silva, A.B.; Silva, T.; Franco, E.S.; Rabelo, S.A.; Lima, E.R.; Mota, R.A.; da C?mara, C.A.G.; Pontes-Filho, N.T.; Lima-Filho, J.V.

    2010-01-01

    The antibacterial potential of leaf?s essential oil (EO) from Brazilian pepper tree (Schinus terebinthifolius Raddi) against staphylococcal isolates from dogs with otitis externa was evaluated. The minimum inhibitory concentration of EO ranged from 78.1 to 1,250 ?g/mL. The oil was analyzed by GC and GC/MS and cytotoxicity tests were carried out with laboratory animals.

  17. Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians

    Science.gov (United States)

    James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad

    1995-01-01

    We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...

  18. Leaf life spans of some conifers of the temperate forests of South America Longevidad foliar de algunas coníferas de los bosques templados de Sudamérica

    Directory of Open Access Journals (Sweden)

    CHRISTOPHER H. LUSK

    2001-09-01

    Full Text Available Interspecific variation in leaf life span has wide-ranging implications for plant species sorting on resource availability gradients, and for ecosystem processes such as nutrient cycling. Very little is known about leaf life spans of evergreen trees in the temperate forests of South America. Leaf life spans were estimated by static demographic methods, and associated leaf traits measured, for four conifers of this region. It was expected that leaf life span variation would correlate negatively with soil fertility of habitats normally occupied by each species. This prediction was upheld by the data. The mean leaf life span determined for Araucaria araucana (24 years is among the highest figures reported for any plant species. This extreme leaf longevity was associated with very robust construction (high leaf mass per unit area and very low nitrogen content. These aspects of the ecology of A. araucana may affect its fitness in two ways. Firstly, slow foliage turnover will reduce its annual nutrient requirements for crown maintenance, a trait that is thought to be crucial for survival on nutrient-poor sites. Secondly, the low decomposability of A. araucana leaf litter is likely to cause nutrient immobilisation, possibly favouring site retention by A. araucana in the face of competition from faster-growing but more nutrient-demanding species. Interspecific variation in leaf life span appeared to be systematically related to variation in leaf mass per unit area (LMA and leaf nitrogen, in agreement with a large body of evidence that leaf evolution is constrained by a trade-off between trait combinations which optimise carbon gain and growth in resource-rich habitats, and those which favour persistence in chronically adverse environmentsLas diferencias específicas en longevidad foliar tienen importantes implicancias para la distribución de las plantas en relación con gradientes de recursos, y en procesos ecosistémicos tales como el ciclaje de

  19. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves

    Science.gov (United States)

    Bowman, William D.

    1989-01-01

    Measurements of leaf spectral reflectance, the components of water potential, and leaf gas exchanges as a function of leaf water content were made to evaluate the use of NIR reflectance as an indicator of plant water status. Significant correlations were determined between spectral reflectance at 810 nm, 1665 nm, and 2210 nm and leaf relative water content, total water potential, and turgor pressure. However, the slopes of these relationships were relatively shallow and, when evaluated over the range of leaf water contents in which physiological activity occurs (e.g., photosynthesis), had lower r-squared values, and some relationships were not statistically significant. NIR reflectance varied primarily as a function of leaf water content, and not independently as a function of turgor pressure, which is a sensitive indicator of leaf water status. The limitations of this approach to measuring plant water stress are discussed.

  20. Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading.

    Science.gov (United States)

    Ravaglioli, Chiara; Capocchi, Antonella; Fontanini, Debora; Mori, Giovanna; Nuccio, Caterina; Bulleri, Fabio

    2018-05-01

    Coastal ecosystems are exposed to multiple stressors. Predicting their outcomes is complicated by variations in their temporal regimes. Here, by means of a 16-month experiment, we investigated tolerance and resistance traits of Posidonia oceanica to herbivore damage under different regimes of nutrient loading. Chronic and pulse nutrient supply were combined with simulated fish herbivory, treated as a pulse stressor. At ambient nutrient levels, P. oceanica could cope with severe herbivory, likely through an increase in photosynthetic activity. Elevated nutrient levels, regardless of the temporal regime, negatively affected plant growth and increased leaf nutritional quality. This ultimately resulted in a reduction of plant biomass that was particularly severe under chronic fertilization. Our results suggest that both chronic and pulse nutrient loadings increase plant palatability to macro-grazers. Strategies for seagrass management should not be exclusively applied in areas exposed to chronic fertilization since even short-term nutrient pulses could alter seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Water Relations, Gas Exchange, and Nutrient Response to a Long Term Constant Water Deficit

    Science.gov (United States)

    Berry, Wade L.; Goldstein, Guillermo; Dreschel, Thomas W.; Wheeler, Raymond M.; Sager, John C.; Knott, William M.

    1992-01-01

    Wheat plants (Triticum aestivum) were grown for 43 days in a micro-porous tube nutrient delivery system. Roots were unable to penetrate the microporous tube, but grew on the surface and maintained capillary contact with the nutrient solution on the inside of the tube through the 5-micron pores of the porous tube. Water potential in the system was controlled at -0.4, -0.8, and -3.0 kPa by adjusting the applied pressure (hydrostatic head) to the nutrient solution flowing through the microporous tubes. A relatively small decrease in applied water potential from -0.4 to -3.0 kPa resulted in a 34% reduction of shoot growth but only a moderate reduction in the midday leaf water potential from -1.3 to -1.7 MPa. Carbon dioxide assimilation decreased and water use efficiency increased with the more negative applied water potentials, while intercellular CO2 concentration remained constant. This was associated with a decrease in stomatal conductance to water vapor from 1.90 to 0.98 mol/(sq m sec) and a decrease in total apparent hydraulic conductance from 47 to 12 (micro)mol/(sec MPa). Although the applied water potentials were in the -0.4 to -3.0 kPa range, the actual water potential perceived by the plant roots appeared to be in the range of -0.26 to -0.38 MPa as estimated by the leaf water potential of bagged plants. The amount of K, Ca, Mg, Zn, Cu, and B accumulated with each unit of transpired water increased as the applied water potential became less negative. The increase in accumulation ranged from 1.4-fold for K to 2.2-fold for B. The physiological responses observed in this study in response to small constant differences in applied water potentials were much greater than expected from either the applied water potential or the observed plant water potential. Even though the micro-porous tube may not represent natural conditions and could possibly introduce morphological and physiological artifacts, it enables a high degree of control of water potential that

  2. Nutrient synchrony in preruminant calves

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.

    2006-01-01

    In animal nutrition, the nutrient composition of the daily feed supply is composed to match the nutrient requirements for the desired performance. The time of nutrient availability within a day is usually considered not to affect the fate of nutrients. The aim of this thesis was to evaluate effects

  3. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment

    Science.gov (United States)

    Keller Suberkropp; Vladislav Gulis; Amy D. Rosemond; Jonathan Benstead

    2010-01-01

    Our study examined the response of leaf detritus–associated microorganisms (both bacteria and fungi) to a 5-yr continuous nutrient enrichment of a forested headwater stream. Leaf litter dominates detritus inputs to such streams and, on a system wide scale, serves as the key substrate for microbial colonization. We determined physiological responses as microbial biomass...

  4. Radiation-use efficiency and gas exchange responses to water and nutrient availability in irrigated and fertilized stands of sweetgum and sycamore

    Science.gov (United States)

    Christopher B. Allen; Rodney E. Will; Robert C. McGravey; David R. Coyle; Mark D. Coleman

    2005-01-01

    We investigated how water and nutrient availability affect radiation-use effeciency (e) and assessed leaf gas exchange as a possible mechanism for shifts in e. We measured aboveground net primary production (ANPP) and annual photosynthetically active radiation (PAR) capture to calculate e as well as leaf-level physiological variables (light-saturated net photosynthesis...

  5. (TECTONA GRANDIS LEAF POWDER

    Directory of Open Access Journals (Sweden)

    Yash Mishra

    2015-01-01

    Full Text Available In this study, the adsorption potential of Teak (Tectona grandis leaf powder (TLP toremove Methylene blue (MB and Malachite Green (MG dye molecules from aqueoussolution was investigated. Batch experiments were conducted to evaluate the influenceof operational parameters such as, pH (2−9, adsorbent dosage (1−7 g/L, contact time(15−150 minutes and initial dye concentration (20−120 mg/L at stirring speed of 150rpm for the adsorption of MB and MG on TLP. Maximum removal efficiency of 98.4%and 95.1% was achieved for MB and MG dye, respectively. The experimentalequilibrium data were analysed using Langmuir, Freundlich and Temkin isothermmodels and it was found that, it fitted well to the Freundlich isotherm model. Thesurface structure and morphology of the adsorbent was characterized using scanningelectron microscopy (SEM and the presence of functional groups and its interactionwith the dye molecules were analysed using Fourier transform infrared spectroscopy(FTIR. Based on the investigation, it has been demonstrated that the teak leaf powderhas good potential for effective adsorption of methylene blue and malachite green dye.

  6. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    Science.gov (United States)

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  7. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?

    Science.gov (United States)

    Danger, Michael; Cornut, Julien; Chauvet, Eric; Chavez, Paola; Elger, Arnaud; Lecerf, Antoine

    2013-07-01

    In detritus-based ecosystems, autochthonous primary production contributes very little to the detritus pool. Yet primary producers may still influence the functioning of these ecosystems through complex interactions with decomposers and detritivores. Recent studies have suggested that, in aquatic systems, small amounts of labile carbon (C) (e.g., producer exudates), could increase the mineralization of more recalcitrant organic-matter pools (e.g., leaf litter). This process, called priming effect, should be exacerbated under low-nutrient conditions and may alter the nature of interactions among microbial groups, from competition under low-nutrient conditions to indirect mutualism under high-nutrient conditions. Theoretical models further predict that primary producers may be competitively excluded when allochthonous C sources enter an ecosystem. In this study, the effects of a benthic diatom on aquatic hyphomycetes, bacteria, and leaf litter decomposition were investigated under two nutrient levels in a factorial microcosm experiment simulating detritus-based, headwater stream ecosystems. Contrary to theoretical expectations, diatoms and decomposers were able to coexist under both nutrient conditions. Under low-nutrient conditions, diatoms increased leaf litter decomposition rate by 20% compared to treatments where they were absent. No effect was observed under high-nutrient conditions. The increase in leaf litter mineralization rate induced a positive feedback on diatom densities. We attribute these results to the priming effect of labile C exudates from primary producers. The presence of diatoms in combination with fungal decomposers also promoted decomposer diversity and, under low-nutrient conditions, led to a significant decrease in leaf litter C:P ratio that could improve secondary production. Results from our microcosm experiment suggest new mechanisms by which primary producers may influence organic matter dynamics even in ecosystems where autochthonous

  8. Nutrient Shielding in Clusters of Cells

    Science.gov (United States)

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.

    2014-01-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells’ spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude between different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ. PMID:23848711

  9. Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization

    International Nuclear Information System (INIS)

    Bhupinder Singh; Sumedha Ahuja; Singhal, R.K.; Venu Babu, P.

    2013-01-01

    The experiment was conducted to determine the effect of gamma radiation on plant growth and development, flag leaf gas exchange characteristics such as net photosynthetic rate (P N ), stomatal conductance (g s ), and transpiration rate (E) and activity of key carbon and nitrogen assimilating enzymes like Rubisco, starch synthase (SS) and nitrate reductase (NR) in field grown wheat. Grains of cultivar PBW-343 were exposed to a 60 Co (Cobalt-60) gamma source at a dose range from 0 to 500 Gy (Gray). Gas exchange characteristics of flag leaf were measured using Infrared Gas Analyzer (IRGA), while mineral nutrients were analyzed spectrophotometrically. Our results show that an irradiation treatment, in general, caused an improvement in plant growth and yield characteristics such as shoot and root mass, root length and surface area, leaf area and chlorophyll SPAD index, tiller number and grain yield. However, irradiation exceeding 5 Gy reduced the magnitude of radiation advantage for most of the investigated physiological and biochemical traits. No germination was recorded at 500 Gy irradiation dose. A dose-dependant increase in shoot Fe in radiated plants up to 25 Gy reflected its higher plant root to shoot translocation which may yield micronutrient rich grains. At higher dose of 100 Gy, there was a drastic reduction in flag leaf membrane stability index (MSI), photosynthesis, Rubisco, NR, and nutrients like K, P, Mg, Fe, and Zn. Starch synthase enzyme activity was unaffected by gamma irradiation indicating that the negative effect of high dose (100 Gy) on the grain yield were caused by the adverse effect of radiation on the gas exchange attributes particularly photosynthesis, carbon, and nitrogen assimilation efficiency and the plant uptake of mineral nutrients. The study concludes that gamma radiation at a low dose (25 Gy or lower) stimulates, while a high dose (100 Gy and above) inhibits plant growth and development of wheat. The adverse effect at 100 Gy and beyond

  10. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.

    Science.gov (United States)

    Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L

    2009-01-01

    Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release from decomposing litter influences the magnitude. Seasonal or annual variation in leaf litter mass, such as occurs in strong El Niño events, could positively

  11. [Relationships among leaf traits and their expression in different vegetation zones in Yanhe River basin, Northwest China].

    Science.gov (United States)

    Guo, Ru; Wen, Zhong-ming; Wang, Hong-xia; Qi, De-hui

    2015-12-01

    This article selected zonal plant communities as the research objects in different vegetation zones in Yanhe River basin. We measured six leaf traits of the dominant species and main accompanying species in each community, and then analyzed the relationships and their changes along with environmental gradients between these traits in order to understand the plant adaptation strategies to the environment changes. The results showed that the specific leaf area was significantly negatively correlated to leaf tissue density, area-based leaf nitrogen and phosphorus concentrations, and significantly positively correlated to mass-based leaf phosphorus concentration. Both the scaling relationships among these traits and plant life strategies were different among the three vegetation zones, the scaling-dependent relationship between leaf tissue density and specific leaf area was stronger in steppe and forest-steppe zones than in forest zone, but the correlations among area-based leaf nitrogen/phosphorus concentrations and specific leaf area and leaf tissue density were more significant in forest zone than in steppe zone. In the arid grassland and forest-steppe zone, plants give priority to defensive and stress resistance strategies, and in relatively moist nutrient-rich forest zone, plants give priority to fast growth and resource optimization allocation strategies.

  12. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.

    Science.gov (United States)

    Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the

  13. NUTRIENT ALLOCATION IN Eucalyptus saligna Sm. STANDS IN THE REGION OF GUAÍBA - RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Rudi Witschoreck

    2015-12-01

    Full Text Available This research conducted in Eucalyptus saligna Sm. stands, between 2 and 7 years of age, in the region of Guaíba - RS, had as objective: to estimate the nutrients stock in the biomass. On the basis of the forest inventory, trees of medium diameter were collected and fractionated in leaf, branch, bark, wood and root. The accumulated litter was evaluated with sampling units of 1 m2. Samples of arboreal components and litter were collected to estimate the dry matter and nutritional content. Nutrients stock was obtained through the product between the average biomass of each component and the average concentration of nutrients. For the average of stands, the stock of nutrients showed the following order of accumulation, for biomass components: wood > root > leaf > bark > branch; and for nutrients: Ca > N > K > Mg > P.

  14. Evaluating a tobacco leaf humidification system involving nebulisation

    Directory of Open Access Journals (Sweden)

    Néstor Enrique Cerquera Peña

    2010-05-01

    Full Text Available A tobacco leaf humidifying system involving nebulisation was designned, implemented and evaluated; it had a system for monitoring and recording environmental conditions thereby producing an environment having more homogeneous relative humidity, ensuring better water use, better control of relative humidity and better control in managing cured tobacco leaf moisture content, thereby leading to a consequent improvement in final product quality. 55% to 75% relative humidity and 4 to 6 hour working ranges were obtained to en- sure leaf humidification reached 16% humidity on a wet basis. Two new designs are proposed for the conditioning stage regarding this conditioning chamber’s operational management, based on the results and field observations, which would allow better leaf management, thereby avoiding the risk of losses due to manipulation and over-humidification. This work strengthens research in the field of tobacco pos- tharvest technology, complementing other research projects which have been carried out in Colombia.

  15. FOLIAR NUTRIENT CONTENTS AND FRUIT YIELD IN CUSTARD APPLE PROGENIES

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2009-01-01

    Full Text Available Foliar nutrient contents are evaluated in several fruit trees with many objectives. Leaf analysis constitutes a way of evaluating the nutritional requirements of crops. Due to the positive impact that fertilizers have on crop yields, researchers frequently try to evaluate the correlations between yield and foliar nutrient contents. This work's objective was to present fruit yields from the 4th to the 6th cropping seasons, evaluate foliar nutrient contents (on the 5th cropping season, and estimate the correlations between these two groups of traits for 20 half-sibling custard apple tree progenies. The progenies were evaluated in a random block design with five replicates and four plants per plot. One hundred leaves were collected from the middle third of the canopy (in height of each of four plants in each plot. The leaves were collected haphazardly, i.e., in a random manner, but without using a drawing mechanism. In the analysis of variance, the nutrient concentrations in the leaves from plants of each plot were represented by the average of four plants in the plot. Fruit yield in the various progenies did not depend on cropping season; progeny A4 was the most productive. No Spearman correlation was found between leaf nutrient concentrations and fruit yield. Increased nutrient concentrations in the leaves were progeny-dependent, i.e., with regard to Na (progenies FE5 and JG1, Ca (progeny A4, Mg (progeny SM7, N (progeny A3, P (progeny M, and K contents (progeny JG3. Spearman's correlation was negative between Na-Mg, Na-Ca, and Mg-P contents, and positive between Mg-Ca and N-K contents.

  16. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  17. Trophic discrimination of stable isotopes and potential food source partitioning by leaf-eating crabs in mangrove environments

    DEFF Research Database (Denmark)

    Kristensen, Erik; Lee, Shing Yip; Mangion, Perrine

    2017-01-01

    Diet composition of leaf-eating mangrove crabs is a puzzle among mangrove ecologists. Nutrient-poor leaf litter can in most cases not support animal growth. Food partitioning (mangrove leaves, animal tissue, and microphytobenthos [MPB]) of sesarmid and ucidid mangrove crabs from eight locations...... here for crabs foraging on leaf litter to identify discrimination values that provide a balanced diet with sufficient nutrients (i.e., N) when combined with other food sources. The data from all mangrove locations suggest that sesarmid and ucidid crabs ingest and assimilate mixtures of available food...... is probably caused by metabolic disparities between these two crab families. Deviations in 15N discrimination have in most cases only minor influence on the model-based 13C discrimination thresholds. The present findings lead us to suggest a modified Optimal Foraging Theory for leaf-eating mangrove crabs....

  18. LEAF RESIDUE DECOMPOSITION OF SELECTED ATLANTIC FOREST TREE SPECIES

    Directory of Open Access Journals (Sweden)

    Helga Dias Arato

    2018-02-01

    Full Text Available ABSTRACT Biogeochemical cycling is essential to establish and maintain plant and animal communities. Litter is one of main compartments of this cycle, and the kinetics of leaf decomposition in forest litter depend on the chemical composition and environmental conditions. This study evaluated the effect of leaf composition and environmental conditions on leaf decomposition of native Atlantic Forest trees. The following species were analyzed: Mabea fistulifera Mart., Bauhinia forficata Link., Aegiphila sellowiana Cham., Zeyheria tuberculosa (Vell, Luehea grandiflora Mart. et. Zucc., Croton floribundus Spreng., Trema micrantha (L Blume, Cassia ferruginea (Schrad Schrad ex DC, Senna macranthera (DC ex Collad. H. S. Irwin and Barney and Schinus terebinthifolius Raddi (Anacardiaceae. For each species, litter bags were distributed on and fixed to the soil surface of soil-filled pots (in a greenhouse, or directly to the surface of the same soil type in a natural forest (field. Every 30 days, the dry weight and soil basal respiration in both environments were determined. The cumulative decomposition of leaves varied according to the species, leaf nutrient content and environment. In general, the decomposition rate was lowest for Aegiphila sellowiana and fastest for Bauhinia forficate and Schinus terebinthifolius. This trend was similar under the controlled conditions of a greenhouse and in the field. The selection of species with a differentiated decomposition pattern, suited for different stages of the recovery process, can help improve soil restoration.

  19. Litter production and its nutrient concentration in some fuelwood trees grown on sodic soil

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V.K. (National Botanical Research Inst., Lucknow (India))

    1992-01-01

    Litter production was estimated in 8-year-old tree plantations of Acacia nilotica, Prosopis juliflora, Dalbergia sisso, and Terminalia arjuna planted in a monoculture tree cropping system on sodic soils of Lucknow Division, India. Mean annual litter fall of these trees amounted to 5.9, 7.4, 5.0 and 5.4 t ha[sup -1], respectively. Irrespective of tree species, the leaf litter concentrations of N, K and Ca were greater than those of P and Mg. The concentration of nutrients in leaf tissues was negatively correlated for N and Ca, with the magnitude of leaf fall in D. sissoo, but was positively correlated for Ca and Mg in A. nilotica; no such correlations were found in P. juliflora and T. arjuna. The variations in the concentration of leaf litter nutrient did not appear to be species specific but depended on adverse edaphic properties including the fertility status of sodic soil. A. nilotica and P. juliflora with bimodal patterns of litter fall return greater amounts of nutrients to the soil surface than D. sissoo and T. arjuna which have unimodal patterns of litter fall. The study indicated the potential benefit of a mixed plantation system having variable leaf fall patterns among the planted trees so providing constant litter mulch to help in conserving soil moisture. (author).

  20. Late gestational nutrient restriction

    DEFF Research Database (Denmark)

    Tygesen, Malin Plumhoff; Nielsen, Mette Olaf; Nørgaard, Peder

    2008-01-01

    We investigated the effect of 50% nutrient restriction during the last 6 weeks of gestation on twin-pregnant ewes' plasma glucose, non-esterified fatty acid, ß-hydroxybutyrate, insulin, IGF-1 and leptin concentrations and the effects on lamb birth weight and ewes' lactation performance. Plasma...

  1. The Influence of Epiphytic Lichens on the Nutrient Cycling of a Blue Oak Woodland

    Science.gov (United States)

    Johannes M. Knops; Thomas H. H. Nash III; William H. Schlesinger

    1997-01-01

    We evaluated the importance of epiphytic lichens in the nutrient cycling of a blue oak (Quercus douglasii) woodland in California. Each oak tree contained an average of 3.8 kg lichen biomass, totaling 590 kg per ha. For comparison, oak leaf biomass was 958 kg per ha. We compared tree growth, volume and composition of throughfall (rainfall falling...

  2. Effects of sun and shade drying on nutrient and antinutrient content ...

    African Journals Online (AJOL)

    This work determined the effect of sun and shade drying on the nutrient, antinutrient and food toxicant composition of atama – Heinsia crinata, editan - Lasianthore Africana and water – leaf – Talinum tringulare vegetables. Two and a half kilogram of these green leafy vegetable were purchased from Uyo market, picked from ...

  3. Grazing animal husbandry based on sustainable nutrient management

    NARCIS (Netherlands)

    Hermans, C.; Vereijken, P.H.

    1995-01-01

    Sustainable husbandry systems for grazing animals (cattle and sheep) can be achieved by sustainable nutrient management (SNM). This implies the tuning of inputs to outputs of nutrients, to achieve and maintain optimum ranges of agronomically wanted and ecologically acceptable reserves of single

  4. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Science.gov (United States)

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  5. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    Science.gov (United States)

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-02

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.

  6. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    KAUST Repository

    Boegh, E.; Houborg, Rasmus; Bienkowski, J.; Braban, C.F.; Dalgaard, T.; Van, Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di, Tommasi, P.; Vitale, L.; Theobald, M.R.; Cellier, P.; Sutton, M.A.

    2013-01-01

    as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse Combining double low line 0.76), 46% of measured canopy chlorophyll contents (rmse Combining double low line 719 mg m-2) and 51% of measured canopy nitrogen contents (rmse Combining double low line 2.7 g m-2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km-2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatiooral resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl. Author(s) 2013. CC Attribution 3.0 License.

  7. Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes

    KAUST Repository

    Boegh, E.

    2013-10-07

    as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse Combining double low line 0.76), 46% of measured canopy chlorophyll contents (rmse Combining double low line 719 mg m-2) and 51% of measured canopy nitrogen contents (rmse Combining double low line 2.7 g m-2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km-2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatiooral resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl. Author(s) 2013. CC Attribution 3.0 License.

  8. Consequences of leaf calibration errors on IMRT delivery

    International Nuclear Information System (INIS)

    Sastre-Padro, M; Welleweerd, J; Malinen, E; Eilertsen, K; Olsen, D R; Heide, U A van der

    2007-01-01

    IMRT treatments using multi-leaf collimators may involve a large number of segments in order to spare the organs at risk. When a large proportion of these segments are small, leaf positioning errors may become relevant and have therapeutic consequences. The performance of four head and neck IMRT treatments under eight different cases of leaf positioning errors has been studied. Systematic leaf pair offset errors in the range of ±2.0 mm were introduced, thus modifying the segment sizes of the original IMRT plans. Thirty-six films were irradiated with the original and modified segments. The dose difference and the gamma index (with 2%/2 mm criteria) were used for evaluating the discrepancies between the irradiated films. The median dose differences were linearly related to the simulated leaf pair errors. In the worst case, a 2.0 mm error generated a median dose difference of 1.5%. Following the gamma analysis, two out of the 32 modified plans were not acceptable. In conclusion, small systematic leaf bank positioning errors have a measurable impact on the delivered dose and may have consequences for the therapeutic outcome of IMRT

  9. A finger leaf design for dual layer MLCs

    International Nuclear Information System (INIS)

    Cui Weijie; Dai Jianrong

    2010-01-01

    Objective: To introduce a finger leaf design that is applied to dual layer MLCs. Methods: An optimization model was firstly constructed to describe the problem of determining leaf end shapes,and the corresponding problems were then solved by the simplex search method or the simulated annealing technique. Optimal parameters for arc shapes of leaf end projections were obtained, and a comparison was done between optimized MLCs and conventional MLCs in terms of field conformity. The optimization process was based on 634 target fields selected from the patient data base of a treatment planning system. Areas of these fields ranged from 20.0 to 602.7 cm with a mean and its standard deviation of (125.7 ± 0.0) cm 2 . Results: The optimized leaf end shapes projected to the isocenter plane were semicircles. With the finger leaf design, the total area of discrepancy regions between MLC fields and target fields was reduced by 32.3%. Conclusions: The finger leaf design improves the conformity of the MLC shaped fields to the desired target fields. (authors)

  10. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  11. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  12. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  13. Growth and nutrient efficiency of Betula alnoides clones in response to phosphorus supply

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2016-12-01

    Full Text Available As phosphorus deficiency limits the productivity of many plantation forests in Asia, there is considerable interest in developing phosphorus-efficient clones for the region through targeted breeding programs. Therefore, we determined growth, nutrient concentrations and nutrient absorption and utility efficiencies of four Betula alnoides clones (C5, C6, 1-202 and BY1 in response to six phosphorus levels of 0, 17, 52, 70, 140 and 209 mg P plant-1 coded as P1 to P6, respectively. Maximum growth occurred in the P4, P5 and P6 plants since they had the largest height, biomass, leaf area and branch number. Phosphorus application increased the phosphorus concentrations of all clones. Nutrient loading was achieved with the P6 treatment because growth and biomass were not significantly higher, but root, stem and leaf phosphorus concentrations were approximately twice those of P4 plants. Clone BY1 had the highest phosphorus-efficiency, and is recommended for field application due to its maximum root collar diameter, biomass, root/shoot ratio, leaf area, nutrient absorption and utility efficiency among the four clones. The findings will help to improve the nutrient efficiency of this species in plantation forestry in Asia.

  14. The YABBY Genes of Leaf and Leaf-Like Organ Polarity in Leafless Plant Monotropa hypopitys

    Directory of Open Access Journals (Sweden)

    Anna V. Shchennikova

    2018-01-01

    Full Text Available Monotropa hypopitys is a mycoheterotrophic, nonphotosynthetic plant acquiring nutrients from the roots of autotrophic trees through mycorrhizal symbiosis, and, similar to other extant plants, forming asymmetrical lateral organs during development. The members of the YABBY family of transcription factors are important players in the establishment of leaf and leaf-like organ polarity in plants. This is the first report on the identification of YABBY genes in a mycoheterotrophic plant devoid of aboveground vegetative organs. Seven M. hypopitys YABBY members were identified and classified into four clades. By structural analysis of putative encoded proteins, we confirmed the presence of YABBY-defining conserved domains and identified novel clade-specific motifs. Transcriptomic and qRT-PCR analyses of different tissues revealed MhyYABBY transcriptional patterns, which were similar to those of orthologous YABBY genes from other angiosperms. These data should contribute to the understanding of the role of the YABBY genes in the regulation of developmental and physiological processes in achlorophyllous leafless plants.

  15. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy.

    Science.gov (United States)

    Panchen, Zoe A; Primack, Richard B; Nordt, Birgit; Ellwood, Elizabeth R; Stevens, Albert-Dieter; Renner, Susanne S; Willis, Charles G; Fahey, Robert; Whittemore, Alan; Du, Yanjun; Davis, Charles C

    2014-09-01

    Leaf out phenology affects a wide variety of ecosystem processes and ecological interactions and will take on added significance as leaf out times increasingly shift in response to warming temperatures associated with climate change. There is, however, relatively little information available on the factors affecting species differences in leaf out phenology. An international team of researchers from eight Northern Hemisphere temperate botanical gardens recorded leaf out dates of c. 1600 woody species in 2011 and 2012. Leaf out dates in woody species differed by as much as 3 months at a single site and exhibited strong phylogenetic and anatomical relationships. On average, angiosperms leafed out earlier than gymnosperms, deciduous species earlier than evergreen species, shrubs earlier than trees, diffuse and semi-ring porous species earlier than ring porous species, and species with smaller diameter xylem vessels earlier than species with larger diameter vessels. The order of species leaf out was generally consistent between years and among sites. As species distribution and abundance shift due to climate change, interspecific differences in leaf out phenology may affect ecosystem processes such as carbon, water, and nutrient cycling. Our open access leaf out data provide a critical framework for monitoring and modelling such changes going forward. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Usefulness of Models in Precision Nutrient Management

    DEFF Research Database (Denmark)

    Plauborg, Finn; Manevski, Kiril; Zhenjiang, Zhou

    Modern agriculture increasingly applies new methods and technologies to increase production and nutrient use efficiencies and at the same time reduce leaching of nutrients and greenhouse gas emissions. GPS based ECa-measurement equipment, ER or EM instrumentations, are used to spatially character......Modern agriculture increasingly applies new methods and technologies to increase production and nutrient use efficiencies and at the same time reduce leaching of nutrients and greenhouse gas emissions. GPS based ECa-measurement equipment, ER or EM instrumentations, are used to spatially...... and mineral composition. Mapping of crop status and the spatial-temporal variability within fields with red-infrared reflection are used to support decision on split fertilisation and more precise dosing. The interpretation and use of these various data in precise nutrient management is not straightforward...... of mineralisation. However, whether the crop would benefit from this depended to a large extent on soil hydraulic conductivity within the range of natural variation when testing the model. In addition the initialisation of the distribution of soil total carbon and nitrogen into conceptual model compartments...

  17. Why do leaf-tying caterpillars abandon their leaf ties?

    Directory of Open Access Journals (Sweden)

    Michelle Sliwinski

    2013-09-01

    Full Text Available Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats, but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently

  18. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  19. Nutrients in the nexus

    Science.gov (United States)

    Davidson, Eric A.; Niphong, Rachel; Ferguson, Richard B.; Palm, Cheryl; Osmond, Deanna L.; Baron, Jill S.

    2016-01-01

    Synthetic nitrogen (N) fertilizer has enabled modern agriculture to greatly improve human nutrition during the twentieth century, but it has also created unintended human health and environmental pollution challenges for the twenty-first century. Averaged globally, about half of the fertilizer-N applied to farms is removed with the crops, while the other half remains in the soil or is lost from farmers’ fields, resulting in water and air pollution. As human population continues to grow and food security improves in the developing world, the dual development goals of producing more nutritious food with low pollution will require both technological and socio-economic innovations in agriculture. Two case studies presented here, one in sub-Saharan Africa and the other in Midwestern United States, demonstrate how management of nutrients, water, and energy is inextricably linked in both small-scale and large-scale food production, and that science-based solutions to improve the efficiency of nutrient use can optimize food production while minimizing pollution. To achieve the needed large increases in nutrient use efficiency, however, technological developments must be accompanied by policies that recognize the complex economic and social factors affecting farmer decision-making and national policy priorities. Farmers need access to affordable nutrient supplies and support information, and the costs of improving efficiencies and avoiding pollution may need to be shared by society through innovative policies. Success will require interdisciplinary partnerships across public and private sectors, including farmers, private sector crop advisors, commodity supply chains, government agencies, university research and extension, and consumers.

  20. LEAF MINERAL CONCENTRATION OF FIVE OLIVE CULTIVARS GROWN ON CALCAREOUS SOIL

    Directory of Open Access Journals (Sweden)

    Igor Pasković

    2013-12-01

    Full Text Available There are limited numbers of scientific publication regarding genotypic differences which exist among olive cultivars concerning nutrient uptake and translocation. For that purpose, the object of our study was to determine possible differences between leaf mineral content of five selected olive cultivars since leaf nutrient analysis is consider being the best method for diagnosing olive tree nutritional status. Plant material was obtained from an olive collection, grown on calcareous soil maintained at Institute of Adriatic Crops and Karst Reclamation, Split, Croatia. The study was conducted with two Croatian autochthonous olive cultivars (“Istarska bjelica”, “Lastovka”, two Italian cultivars (“Pendolino”, “Leccino” and one Spanish cultivar (“Hojiblanca”. Completely randomized design was applied. This study has shown questionably low Mg concentration in all olive cultivars with exception for “Hojiblanca” cultivar. Also, only Croatian cultivars “Istarska bjelica” and “Lastovka” as well as Spanish cultivar “Hojiblanca” recorded sufficient levels of iron leaf mineral content. Regarding other elements studied (P, K, Ca, Zn, Mn, Cu all cultivars were above literature cited thresholds for possible deficiencies. Selected olive cultivars in our experiment demonstrated different nutrient leaf concentration, which is of particular importance for fertilization requirements and fertilization practice in Croatian orchards grown on calcareous soil.

  1. Underwater Ranging

    OpenAIRE

    S. P. Gaba

    1984-01-01

    The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  2. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Science.gov (United States)

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  3. Influence of nutrient levels in Tamarix on Diorhabda sublineata (Coleoptera: Chrysomelidae) survival and fitness with implications for biological control.

    Science.gov (United States)

    Guenther, D A; Gardner, K T; Thompson, D C

    2011-02-01

    Establishment of the saltcedar leaf beetle (Diorhabda spp.) has been unpredictable when caged or released in the field for saltcedar (Tamarix spp.) biocontrol. It has been observed that one caged tree might be voraciously fed upon by beetles while an adjacent tree in the cage is left untouched. We hypothesized that differences in the nutrient content of individual trees may explain this behavior. We evaluated survival, development rate, and egg production of beetles fed in the laboratory on saltcedar foliage from trees that had been grown under a range of fertilizer treatments. Tissue samples from the experimental trees and from the field were analyzed for percent nitrogen, phosphorus, and potassium. There was essentially no survival of beetle larvae fed foliage from saltcedar trees at nitrogen levels below 2.0%. At levels above 2.0% N, beetle larvae had corresponding increased survival rates and shorter development times. Multiple regression analyses indicated that nitrogen and phosphorus are important for larval survival and faster development rates. Higher levels of potassium were important for increased egg cluster production. The plant tissue analysis showed that the percentage of nitrogen in the experimental trees reflected the range of trees in the field and also that there is high variability within trees in the field. Our research indicates that if beetles are released on trees with poor nutrient quality, the larvae will not survive. © 2011 Entomological Society of America

  4. REVOLUTA and WRKY53 connect early and late leaf development in Arabidopsis

    DEFF Research Database (Denmark)

    Xie, Yakun; Huhn, Kerstin; Brandt, Ronny

    2014-01-01

    As sessile organisms, plants have to continuously adjust growth and development to ever-changing environmental conditions. At the end of the growing season, annual plants induce leaf senescence to reallocate nutrients and energy-rich substances from the leaves to the maturing seeds. Thus, leaf se...... of WRKY53 in response to oxidative stress, and mutations in HD-ZIPIII genes strongly delay the onset of senescence. Thus, a crosstalk between early and late stages of leaf development appears to contribute to reproductive success.......As sessile organisms, plants have to continuously adjust growth and development to ever-changing environmental conditions. At the end of the growing season, annual plants induce leaf senescence to reallocate nutrients and energy-rich substances from the leaves to the maturing seeds. Thus, leaf...... senescence is a means with which to increase reproductive success and is therefore tightly coupled to the developmental age of the plant. However, senescence can also be induced in response to sub-optimal growth conditions as an exit strategy, which is accompanied by severely reduced yield. Here, we show...

  5. Nitrogen concentration in dry matter of the fifth leaf during growth of greenhouse tomato plants

    Directory of Open Access Journals (Sweden)

    Rattin Jorge E.

    2002-01-01

    Full Text Available The nitrogen concentration in dry matter of the fifth leaf during growth of a greenhouse tomato crop was determined. Plants of hybrid Monte Carlo were grown in 4.5 L bags, using a commercial substrate, in a plant density of 3.3 plants m-2. A nutrient solution containing, in mmol L-1: KNO3, 4.0; K2SO4, 0.9; Ca(NO32, 3.75; KH2PO4, 1.5; MgSO4, 1.0; iron chelate 19. 10³, was used as reference. Microelements were added by a commercial mixture. The T3 treatment was equal to the reference nutrient solution, whereas in treatments T1, T2, T4 and T5 quantities of all nutrients from T3 were multiplied by 0.25, 0.50, 1.25 and 1.50, respectively. In each treatment, the volume of 1 L of nutrient solution was supplied to each plant once a week by fertigation. Periodically destructive measurements were made from anthesis to ripening of the first truss, to determine dry matter and N concentration in shoot and in fifth leaf tissues, counted from the apex to the bottom of the plant. Five dilution curves were fitted from data of N concentration in the fifth leaf and shoot dry matter accumulation during growth of plants. A general relationship was adjusted between actual N concentration in shoot (Nt and in the fifth leaf (Nf: Nt = 1.287 Nf (R² = 0.80. This relationship could be used to estimate the N status of plants by means of a nitrogen nutrition index (NNI, from analysis of the fifth leaf sap.

  6. Effect of multi-nutrient complex fertilizers on growth and tuber yield of very early potato (Solanum tuberosum L. cultivars

    Directory of Open Access Journals (Sweden)

    Wanda Wadas

    2013-10-01

    Full Text Available The aim of the study was to compare the effect of multi-nutrient complex fertilizers (HydroComplex, Nitrophoska Blue Special and Viking 13 from the nitrophoska group, and Polimag S from the amophoska group and single-nutrient fertilizers on the growth and tuber yield of very early potato cultivars (‘Aster’, ‘Fresco’, ‘Gloria’. The field experiment was carried out on podzolic soil in mid-eastern Poland during 2005–2007. The study showed a greater beneficial effect of HydroComplex and Nitrophoska Blue Special on the growth of very early potato cultivars than that of Viking 13 and Polimag S. The application of HydroComplex and Nitrophoska Blue Special resulted in greater above-ground plant biomass and assimilation leaf area compared with single-nutrient fertilizers; the leaf area index (LAI was higher by 0.28 and 0.32, respectively. The differences were smaller and not statistically confirmed with the use of Polimag S and Viking 13. When the multi-nutrient complex fertilizers were applied, leaf weight ratio (LWR, leaf area ratio (LAR and specific leaf area (SLA were similar to the single-nutrient fertilizers. Of the multi-nutrient complex fertilizers, only Nitrophoska Blue Special resulted in higher tuber yield, on average by 2.40 t × ha-1, compared with the single-nutrient fertilizers. The studied cultivars showed a similar response to applied fertilizers. LAI for ‘Gloria’ was higher than for ‘Aster’ and ‘Fresco’, with smaller LAR found in ‘Gloria’. LWR for ‘Fresco’ was smaller than for ‘Aster’ and ‘Gloria’, with higher SLA found in ‘Fresco’. The tuber yield of ‘Aster” (24.04 t × ha-1 was higher on average by 3 t × ha-1 than for ‘Fresco’ and ‘Gloria’.

  7. Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient

    International Nuclear Information System (INIS)

    Burton, A.J.; Pregitzer, K.S.; Reed, D.D.

    1991-01-01

    The canopies of northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.) were examined at five locations spanning 800 km along an acid deposition and climatic gradient in the Great Lakes region. Leaf area index (LAI) calculated from litterfall ranged from 6.0 to 8.0 in 1988, from 4.9 to 7.9 in 1989, and from 5.3 to 7.8 in 1990. The data suggest that maximum LAI for the sites is between 7 and 8. Insect defoliation and the allocation of assimilates to reproductive parts in large seed years reduced LAI by up to 34%. Allometric equations for leaf area and foliar biomass were not significantly different among sites. They predicted higher LAI values than were estimated from litterfall and could not account for the influences of defoliation and seed production. Canopy transmittance was a viable alternative for estimating LAI. Extinction coefficients (K) of 0.49 to 0.65 were appropriate for solar elevations of 63 degree to 41 degree. Patterns of specific leaf area (SLA) were similar for the sites. Average sugar maple SLA increased from 147 cm 2 g -1 in the upper 5 m of the canopy to 389 cm 2 g -1 in the seeding layer. Litterfall SLA averaged 196 cm 2 g -1 for all species and 192 cm 2 g -1 for sugar maple. Similarity among the sites in allometric relationships, maximum LAI, canopy transmittance, and patterns of SLA suggests these characteristics were controlled primarily by the similar nutrient and moisture availability at the sites. A general increasing trend in litter production along the gradient could not be attributed to N deposition or length of growing season due to year to year variability resulting from insect defoliation and seed production

  8. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around “set...

  9. Plant response to nutrient availability across variable bedrock geologies

    Science.gov (United States)

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  10. Soil Nutrient Dynamics under Old and Young Cocoa, Coffee and Cashew Plantations at Uhonmora, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Rotimi Rufus Ipinmoroti

    2014-06-01

    Full Text Available A study was conducted to assess nutrient dynamics of soils under old and young cocoa, coffee and cashew plantations and the leaf nutrient contents of the crops at Uhonmora, Edo State, Nigeria for proper cultural and soil fertility management of the plantations. Soil and crop leaf samples were collected from each plantation using a random sampling technique. The samples were analyzed using standard procedures for sand, silt, clay, pH (H2O, electrical conductivity (EC, total N, available P, K, Ca, Mg, Na, and Effective Cation Exchange Capacity (ECEC. Leaf samples were analyzed for N, P, K, Ca, Mg and Na. Data were compared with the corresponding soil and foliar critical nutrient values for each crop. Results indicated that the soils were texturally sandy clay loam and acidic. The soils varied in their nutrient contents, with soil P for the old cocoa, young coffee and cashew plantations far below critical values. The young cashew plot was low in N content but adequate for other plots. However, the soil ECEC increased with the increasing of calcium contents. Leaf N was below critical for all the crops. Leaf K was low for cocoa and coffee plants, leaf Ca was low for the young cashew plants, while leaf Mg was low for the young cocoa and old cashew. The high soil Mg/K ratio of 8.7- 22.3 as against the established value of 2.0 might have resulted in gross nutrient imbalance which must have affected the absorption and utilization of other nutrients. Hence, adequate soil N did not translate the same availability to the crops. The ECEC showed that the soil needs to be improved upon for sustainable productivity. Soil nutrient content variation across the plantations with age of establishment will necessitate the need for consistent routine soil nutrient assessment for proper and balanced soil nutrient supply to the crops, for healthy crop growth and optimum yield. Management practices of soil surface mulching using organic wastes and cover crops under

  11. Interaction between Silver Nanoparticles and Spinach Leaf

    Science.gov (United States)

    Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.

    2013-12-01

    Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. Cyto

  12. Níveis críticos e faixas de suficiência nutricional em laranjeira-pêra na Amazônia Central obtidas pelo método DRIS Critical levels and nutrient sufficiency ranges in orange of the Central Amazon determined by DRIS method

    Directory of Open Access Journals (Sweden)

    Jairo Rafael Machado Dias

    2013-09-01

    fields of Central Amazonia (municipalities of Iranduba, Manacapuru, Manaus, Presidente Figueiredo and Rio Preto da Eva. We used the Diagnosis and Recommendation Integrated System for multivariate relation (DRIS method to establish the nutrient reference values. The nutritional status of 120 commercial orchards of orange grafted on rangpur lime was evaluated by the sufficiency ranges defined from the set of nutritionally balanced plants. For macronutrients, the nutritional sufficiency ranges were (g kg-1: 28-30 (for nitogen, N; 1.6-1.7 (phosphorus, P; 7-9 (potassium, K; 26-29 (calcium, Ca; 3.6-4.0 (magnesium, Mg; 1.7-2.0 (sulfur - S and for micronutrients (mg kg-1: 47-56 (boron, B; 8-10 (copper, Cu; 84-93 (iron, Fe; 12-13 (manganese, Mn; 14-16 (zinc, Zn. For macronutrients, the critical levels were (g kg-1: 28 (for N; 1.6 (P; 7 (K; 26 (Ca; 3.6 (Mg; 1.7 (S and for micronutrients (mg kg-1: 47 (B; 8 (Cu; 84 (Fe; 12 (Mn and 14 for Zn. Nutritional standards obtained by the DRIS methods are in disagreement with the normal ranges proposed in the literature for most nutrients. In about 50% of orchards, the elements P, K, Ca, S, B, Cu e Fe were found below the critical levels. This suggests that orange producers in Central Amazonia should pay more attention to these elements when planning fertilization practices.

  13. Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Fitridge, Isla

    2012-01-01

    We compared photosynthetic gas exchange, the photosynthesis-leaf nitrogen (N) relationship, and growth response to nutrient enrichment in the invasive wetland grass Glyceria maxima (Hartman) Holmburg with two native New Zealand Carex sedges (C. virgata Boott and C. secta Boott), to explore...... the ecophysiological traits contributing to invasive behaviour. The photosynthesis-nitrogen relationship was uniform across all three species, and the maximum light-saturated rate of photosynthesis expressed on a leaf area basis (Amaxa) did not differ significantly between species. However, specific leaf area (SLA...... the sedges, but correlations between leaf N, gas exchange parameters (Amaxa, Amaxm, Rd and gs) and RGR were all highly significant in G. maxima, whereas they were weak or absent in the sedges. Allocation of biomass (root:shoot ratio, leaf mass ratio, root mass ratio), plant N and P content, and allocation...

  14. Dairy production systems in the United States: Nutrient budgets and environmental impacts

    Science.gov (United States)

    Across the diversity of US dairy production systems, nutrient management priorities range widely, from feeding regimes to manure handling, storage and application to crop systems. To assess nutrient management and environmental impacts of dairy production systems in the US, we evaluated nutrient bud...

  15. Linkage between canopy water storage and drop size distributions of leaf drips

    Science.gov (United States)

    Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu

    2013-04-01

    Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).

  16. Translational researches on leaf senescence for enhancing plant productivity and quality.

    Science.gov (United States)

    Guo, Yongfeng; Gan, Su-Sheng

    2014-07-01

    Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. [Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China].

    Science.gov (United States)

    Yan, Tao; Zhu, Jiao-Jun; Yang, Kai; Yu, Li-Zhong

    2014-10-01

    Larch is the main timber species of forest plantations in North China. Imbalance in nutrient cycling in soil emerged due to single species composition and mono system structure of plantation. Thus it is necessary to grasp its biomass and nutrients allocation for scientific management and nutrient cycling studies of larch plantation. We measured aboveground biomass (stem, branch, bark and leaf) and nutrient concentrations (C, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn), and analyzed the patterns of accumulation and distribution of 19-year-old larch plantation with diameter at breast height of 12. 8 cm, tree height of 15. 3 m, and density of 2308 trees · hm(-2), in a montane region of eastern Liaoning Province, China. The results showed that aboveground biomass values were 70.26 kg and 162.16 t · hm(-2) for the individual tree of larch and the stand, respectively. There was a significant difference between biomass of the organs, and decreased in the order of stem > branch > bark > leaf. Nutrient accumulation was 749.94 g and 1730.86 kg · hm(-2) for the individual tree of larch and the stand, respectively. Nutrient accumulation of stem was significantly higher than that of branch, bark and leaf, whether it was macro-nutrient or micro-nutrient. Averagely, 749.94 g nutrient elements would be removed from the system when a 19-year-old larch tree was harvested. If only the stem part was removed from the system, the removal of nutrient elements could be reduced by 40.7%.

  18. Some of the Effects of Aqueous Leaf Extract of Cnidoscolous ...

    African Journals Online (AJOL)

    treatment for numerous ailments ranging from its ability to strengthen fingernails and darken gray hair to curing alcoholism, insomnia, gout, and scorpion stings. This study was to elucidate the effect of aqueous leaf extract of Cnidoscolus aconitifolius commonly used as food supplement on the kidney and liver of Sprague ...

  19. Allelopathic Effects of Lantana (Lantana camara L.) Leaf Extracts on ...

    African Journals Online (AJOL)

    Bheema

    In contrast, tef plants had reduced root growth in various leaf extracts with the ... grows under a wide range of climate conditions and occurs on a variety of soil types ... prepared by soaking 100g fresh leaves of lantana with 500 ml distilled water .... Relative elongation ratio (RER) of root and shoot (percent of control) of three.

  20. Do leaf surface characteristics affect Agrobacterium infection in tea

    Indian Academy of Sciences (India)

    The host range specificity of Agrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree of Agrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry.

  1. Bivalve nutrient cycling : nutrient turnover by suspended mussel communities in oligotrophic fjords

    NARCIS (Netherlands)

    Jansen, H.M.

    2012-01-01

    This study examined a range of eco-physiological processes (i.e filtration, growth, excretion,

    faeces production) and feedback mechanisms with the aim to investigate the contribution of

    suspended mussel Mytilus edulis communities to nutrient cycling in oligotrophic

  2. The new electric powertrain on the 2013 MY Nissan LEAF

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Naoki; Nakazawa, Shinsuke [Nissan Motor Co., Ltd. (Japan)

    2013-08-01

    The Nissan LEAF was launched in 2010 as the world's first mass-produced electric vehicle. Among its many honours received to date, the Nissan LEAF won the 2011 European Car of the Year (COTY) award, the 2011 World COTY award, the 2011-2012 Japan COTY award and was named in Ward's 10 Best Engines list for 2011, which attest to its high market acclaim. As of 2012, over 46,000 units of the Nissan LEAF are now on the road in some 33 countries worldwide, especially in Japan, the U.S. and Europe. The 2013 model year Nissan LEAF has been announced and released, featuring substantial improvements in all-around performance based on a thoroughgoing analysis of the driving data recorded by the Nissan LEAF in real-world use during the past two years. One of the major changes made to the 2013 model is the adoption of an all-new electric powertrain. The traction motor, inverter and charging unit of this new electric powertrain have all been fully redesigned. Moreover, these high-voltage parts specific to an EV are now assembled into an integrated powertrain that is 30% smaller, 10% lighter and significantly less expensive than the corresponding electric powertrain used on the 2011 model. The driving range of the 2013 Nissan LEAF has also been extended by more than 10% over that of the 2011 model as a result of adopting an improved cooperative regenerative braking system and a heat pump-based air-conditioning system, lightening the vehicle weight, lowering the drag coefficient, and reducing the parasitic loads of the auxiliary units. In addition, the human-machine interface elements, including the navigation system and the instruments have also been improved to enhance the convenience of driving an EV. This paper describes various key technologies featured on the 2013 Nissan LEAF, focusing in particular on the newly developed electric powertrain. (orig.)

  3. Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.)

    KAUST Repository

    Shah, Syed Haleem

    2017-09-12

    .85) was determined based on a large (n = 277) dataset. We demonstrate that the SPAD-502 readings and plant photosynthetic pigment content per-leaf area are profoundly affected by salinity and nutrient stress, but that the general form of their relationship remains largely unaffected by the stress. As such, a generalized regression model can be used for Chlt and Ct estimation, even across a range of salinity and fertilizer gradients.

  4. Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison.

    Science.gov (United States)

    Godoy, Oscar; Castro-Díez, Pilar; Van Logtestijn, Richard S P; Cornelissen, Johannes H C; Valladares, Fernando

    2010-03-01

    Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardized incubations, in 19 invasive-native pairs of co-familial species from Spain. They included 12 woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native) > leaf type. Within species pairs litter decomposition tended to be slower and more dependent on N and P in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion.

  5. WERF Nutrient Challenge investigates limits of nutrient removal technologies.

    Science.gov (United States)

    Neethling, J B; Clark, D; Pramanik, A; Stensel, H D; Sandino, J; Tsuchihashi, R

    2010-01-01

    The WERF Nutrient Challenge is a multi-year collaborative research initiative established in 2007 to develop and provide current information about wastewater treatment nutrients (specifically nitrogen and phosphorus in wastewater), their characteristics, and bioavailability in aquatic environments to help regulators make informed decisions. The Nutrient Challenge will also provide data on nutrient removal so that treatment facilities can select sustainable, cost-effective methods and technologies to meet permit limits. To meet these goals, the Nutrient Challenge has teamed with a wide array of utilities, agencies, consultants, universities and other researchers and practitioners to collaborate on projects that advance these goals. The Nutrient Challenge is focusing on a different approach to collaborating and leveraging resources (financial and intellectual) on research projects by targeting existing projects and research that correspond with its goals and funding those aspects that the Nutrient Challenge identified as a priority. Because the Nutrient Challenge is focused on collaboration, outreach is an absolutely necessary component of its effectiveness. Through workshops, webinars, a web portal and online compendium, published papers, and conference lectures, the Nutrient Challenge is both presenting important new information, and soliciting new partnerships.

  6. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Science.gov (United States)

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  7. Mango leaf gall formation: varietal susceptibility and within tree distribution

    International Nuclear Information System (INIS)

    Khan, H.A.; Akram, W.; Khan, M.A.

    2012-01-01

    The present study was carried out to screen most commonly cultivated mango, Mangifera indica L., cultivars for their susceptibility to gall formation. Sarooli cultivar proved to be the most resistant one by having a minimum number of galls per 100 leaves. The abundance of galls in four quadrants of the tree i.e., east, west, north and south, was also studied which revealed that east quadrant had maximum number of galls while the abundance of galls in the remaining quadrants was variable. Gall formation on mango leaves seemed to increase gradually with increasing height from the ground level, reached a maximum at the height 12 ft to 16 ft and then declined. Leaf area measurements and nutrient analysis of the leaves were also done to see their impact on gall formation. Correlation analysis revealed that gall formation was positively linked with leaf area and the amount of Zn (ppm), P (%), K (%) while N (%) had negative correlation (P<0.05) with gall formation. In conclusion, the findings of the present study could be helpful in the management of mango leaf gall formation. (author)

  8. Comparison of leaf color chart observations with digital photographs and spectral measurements for estimating maize leaf chlorophyll content

    Science.gov (United States)

    Crop nitrogen management is important world-wide, as much for small fields as it is for large operations. Developed as a non-destructive aid for estimating nitrogen content in rice crops, leaf color charts (LCC) are a numbered series of plastic panels that range from yellowgreen to dark green. By vi...

  9. Responses of rubber leaf phenology to climatic variations in Southwest China

    Science.gov (United States)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-01

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  10. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panamá

    Science.gov (United States)

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Engelbrecht, B.M.J.; Ball, M.C.

    2004-01-01

    1. Dwarf stands of the mangrove Rhizophora mangle L. are extensive in the Caribbean. We fertilized dwarf trees in Almirante Bay, Bocas del Toro Province, north-eastern Panama with nitrogen (N) and phosphorus (P) to determine (1) if growth limitations are due to nutrient deficiency; and (2) what morphological and/or physiological factors underlie nutrient limitations to growth. 2. Shoot growth was 10-fold when fertilized with P and twofold with N fertilization, indicating that stunted growth of these mangroves is partially due to nutrient deficiency. 3. Growth enhancements caused by N or P enrichment could not be attributed to increases in photosynthesis on a leaf area basis, although photosynthetic nutrient-use efficiency was improved. The most dramatic effect was on stem hydraulic conductance, which was increased sixfold by P and 2-5-fold with N enrichment. Fertilization with P enhanced leaf and stem P concentrations and reduced C:N ratio, but did not alter leaf damage by herbivores. 4. Our findings indicate that addition of N and P significantly alter tree growth and internal nutrient dynamics of mangroves at Bocas del Toro, but also that the magnitude, pattern and mechanisms of change will be differentially affected by each nutrient.

  11. Nutrient Status of Adults with Cystic Fibrosis

    Science.gov (United States)

    GORDON, CATHERINE M.; ANDERSON, ELLEN J.; HERLYN, KAREN; HUBBARD, JANE L.; PIZZO, ANGELA; GELBARD, RONDI; LAPEY, ALLEN; MERKEL, PETER A.

    2011-01-01

    Nutrition is thought to influence disease status in patients with cystic fibrosis (CF). This cross-sectional study sought to evaluate nutrient intake and anthropometric data from 64 adult outpatients with cystic fibrosis. Nutrient intake from food and supplements was compared with the Dietary Reference Intakes for 16 nutrients and outcomes influenced by nutritional status. Attention was given to vitamin D and calcium given potential skeletal implications due to cystic fibrosis. Measurements included weight, height, body composition, pulmonary function, and serum metabolic parameters. Participants were interviewed about dietary intake, supplement use, pulmonary function, sunlight exposure, and pain. The participants’ mean body mass index (±standard deviation) was 21.8±4.9 and pulmonary function tests were normal. Seventy-eight percent used pancreatic enzyme replacement for malabsorption. Vitamin D deficiency [25-hydroxyvitamin D (25OHD)<37.5 nmol/L] was common: 25 (39%) were deficient despite adequate vitamin D intake. Lipid profiles were normal in the majority, even though total and saturated fat consumption represented 33.0% and 16.8% of energy intake, respectively. Reported protein intake represented 16.9% of total energy intake (range 10%–25%). For several nutrients, including vitamin D and calcium, intake from food and supplements in many participants exceeded recommended Tolerable Upper Intake Levels. Among adults with cystic fibrosis, vitamin D deficiency was common despite reported adequate intake, and lipid profiles were normal despite a relatively high fat intake. Mean protein consumption was adequate, but the range of intake was concerning, as both inadequate or excessive intake may have deleterious skeletal effects. These findings call into question the applicability of established nutrient thresholds for patients with cystic fibrosis. PMID:18060897

  12. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species

    NARCIS (Netherlands)

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, W.K.; Prinzing, A.; Dong, Ming; Cornelissen, J.H.C.

    2015-01-01

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such

  13. Characterization and pathogenicity of Fusarium species associated with leaf spot of mango (Mangifera indica L.).

    Science.gov (United States)

    Omar, Nurul Husna; Mohd, Masratulhawa; Mohamed Nor, Nik Mohd Izham; Zakaria, Latiffah

    2018-01-01

    Leaf spot diseases are mainly caused by fungi including Fusarium. In the present study several species of Fusarium were isolated from the leaf spot lesion of mango (Mangifera indica L.) Based on morphological characteristics, TEF-1α sequences and phylogenetic analysis, five species were identified as F. proliferatum, F. semitectum, F. mangiferae, F. solani and F. chlamydosporum. Pathogenicity test indicated that representative isolates of F. proliferatum, F. semitectum and F. chlamydosporum were pathogenic on mango leaves causing leaf spot with low to moderate virulence. Nevertheless, abundance of spots on the leaf can disrupt photosynthesis which in turn reduced growth, and lead to susceptibility to infection by opportunistic pathogens due to weakening of the plant. Fusarium solani and F. mangiferae were non-pathogenic and it is possible that both species are saprophyte which associated with nutrient availability on the surface of the leaf through decaying leave tissues. The occurrence of Fusarium spp. on the leaf spot lesion and the effect from the disease needs to be considered when developing disease management method of mango cultivation as numerous spot on the leaves could effect the photosynthesis process and finally giving low yield and less quality of mango. Copyright © 2017. Published by Elsevier Ltd.

  14. Extending the generality of leaf economic design principles in the cycads, an ancient lineage.

    Science.gov (United States)

    Zhang, Yong-Jiang; Cao, Kun-Fang; Sack, Lawren; Li, Nan; Wei, Xue-Mei; Goldstein, Guillermo

    2015-04-01

    Cycads are the most ancient lineage of living seed plants, but the design of their leaves has received little study. We tested whether cycad leaves are governed by the same fundamental design principles previously established for ferns, conifers and angiosperms, and characterized the uniqueness of this relict lineage in foliar trait relationships. Leaf structure, photosynthesis, hydraulics and nutrient composition were studied in 33 cycad species from nine genera and three families growing in two botanical gardens. Cycads varied greatly in leaf structure and physiology. Similarly to other lineages, light-saturated photosynthetic rate per mass (Am ) was related negatively to leaf mass per area and positively to foliar concentrations of chlorophyll, nitrogen (N), phosphorus and iron, but unlike angiosperms, leaf photosynthetic rate was not associated with leaf hydraulic conductance. Cycads had lower photosynthetic N use efficiency and higher photosynthetic performance relative to hydraulic capacity compared with other lineages. These findings extend the relationships shown for foliar traits in angiosperms to the cycads. This functional convergence supports the modern synthetic understanding of leaf design, with common constraints operating across lineages, even as they highlight exceptional aspects of the biology of this key relict lineage. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species.

    Science.gov (United States)

    Falster, Daniel S; Reich, Peter B; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2012-01-01

    • Co-occurring species often differ in their leaf lifespan (LL) and it remains unclear how such variation is maintained in a competitive context. Here we test the hypothesis that leaves of long-LL species yield a greater return in carbon (C) fixed per unit C or nutrient invested by the plant than those of short-LL species. • For 10 sympatric woodland species, we assessed three-dimensional shoot architecture, canopy openness, leaf photosynthetic light response, leaf dark respiration and leaf construction costs across leaf age sequences. We then used the YPLANT model to estimate light interception and C revenue along the measured leaf age sequences. This was done under a series of simulations that incorporated the potential covariates of LL in an additive fashion. • Lifetime return in C fixed per unit C, N or P invested increased with LL in all simulations. • In contrast to other recent studies, our results show that extended LL confers a fundamental economic advantage by increasing a plant's return on investment in leaves. This suggests that time-discounting effects, that is, the compounding of income that arises from quick reinvestment of C revenue, are key in allowing short-LL species to succeed in the face of this economic handicap. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  16. Response of Vallisneria natans to Increasing Nitrogen Loading Depends on Sediment Nutrient Characteristics

    Directory of Open Access Journals (Sweden)

    Jiao Gu

    2016-11-01

    Full Text Available High nitrogen (N loading may contribute to recession of submerged macrophytes in shallow lakes; yet, its influences vary depending on environmental conditions. In August 2013, we conducted a 28-day factorial-designed field mesocosm experiment in Lake Taihu at the Taihu Laboratory for Lake Ecosystem Research (TLLER to examine the effects of high N loading on the growth of Vallisneria natans in systems with contrasting sediment types. We ran the experiments with two levels of nutrient loading—present-day external nutrient loading (average P: 5 μg·L−1·day−1, N: 130 μg·L−1·day−1 and P: 5 μg·L−1·day−1, and with three times higher N loading (N: 390 μg·L−1·day−1 and used sediment with two contrasting nutrient levels. V. natans growth decreased significantly with increasing N loading, the effect being dependent, however, on the nutrient status of the sediment. In low nutrient sediment, relative growth rates, leaf biomass and root biomass decreased by 11.9%, 18.2% and 23.3%, respectively, at high rather than low N loading, while the decline was larger (44.0%, 32.7% and 41.8%, respectively when using high nutrient sediment. The larger effect in the nutrient-rich sediment may reflect an observed higher shading of phytoplankton and excess nutrient accumulation in plant tissue, though potential toxic effects of the high-nutrient sediment may also have contributed. Our study confirms the occurrence of a negative effect of increasing N loading on submerged plant growth in shallow nutrient-enriched lakes and further shows that this effect is augmented when the plants grow in nutrient-rich sediment. External N control may, therefore, help to protect or restore submerged macrophytes, especially when the sediment is enriched with nutrients and organic matter.

  17. Plant traits and environment: floating leaf blade production and turnover of waterlilies

    Directory of Open Access Journals (Sweden)

    Peter F. Klok

    2017-04-01

    Full Text Available Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L. Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba, Nuphar lutea, Nymphaea candida. The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/Bmax of the three species ranged from 1.35–2.25. The ratio Vegetation period (Period with floating leaves/Mean leaf life span ranged from 2.94–4.63, the ratio Growth period (Period with appearance of new floating leaves/Vegetation period from 0.53–0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba, may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.

  18. Plant traits and environment: floating leaf blade production and turnover of waterlilies.

    Science.gov (United States)

    Klok, Peter F; van der Velde, Gerard

    2017-01-01

    Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba , Nuphar lutea , Nymphaea candida . The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/B max ) of the three species ranged from 1.35-2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94-4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53-0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba , may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.

  19. Waiting for the Leaf; Warten auf den Leaf

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Jan

    2012-01-15

    Nissan will be the first manufacturer to launch an electric vehicle of the VW Golf category in the German market. With a mileage of about 170 km and a roomy passenger compartment, the Leaf promises much comfort. In the US market, it was launched two years ago. Was it worth while waiting for?.

  20. Lateral diffusion of nutrients by mammalian herbivores in terrestrial ecosystems.

    Directory of Open Access Journals (Sweden)

    Adam Wolf

    Full Text Available Animals translocate nutrients by consuming nutrients at one point and excreting them or dying at another location. Such lateral fluxes may be an important mechanism of nutrient supply in many ecosystems, but lack quantification and a systematic theoretical framework for their evaluation. This paper presents a mathematical framework for quantifying such fluxes in the context of mammalian herbivores. We develop an expression for lateral diffusion of a nutrient, where the diffusivity is a biologically determined parameter depending on the characteristics of mammals occupying the domain, including size-dependent phenomena such as day range, metabolic demand, food passage time, and population size. Three findings stand out: (a Scaling law-derived estimates of diffusion parameters are comparable to estimates calculated from estimates of each coefficient gathered from primary literature. (b The diffusion term due to transport of nutrients in dung is orders of magnitude large than the coefficient representing nutrients in bodymass. (c The scaling coefficients show that large herbivores make a disproportionate contribution to lateral nutrient transfer. We apply the diffusion equation to a case study of Kruger National Park to estimate the conditions under which mammal-driven nutrient transport is comparable in magnitude to other (abiotic nutrient fluxes (inputs and losses. Finally, a global analysis of mammalian herbivore transport is presented, using a comprehensive database of contemporary animal distributions. We show that continents vary greatly in terms of the importance of animal-driven nutrient fluxes, and also that perturbations to nutrient cycles are potentially quite large if threatened large herbivores are driven to extinction.

  1. Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes.

    Science.gov (United States)

    Pereira, Marcio Paulo; Corrêa, Felipe Fogaroli; de Castro, Evaristo Mauro; de Oliveira, Jean Paulo Vitor; Pereira, Fabricio José

    2017-11-01

    Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd 2+ ) contamination. The aim of this study was to evaluate the Cd 2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 μM of Cd 2+ . Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd 2+ level (10 μM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 μM of Cd 2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd 2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd 2+ -exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd 2+ levels. Furthermore, older leaves showed higher Cd 2+ content when compared to the younger ones, preventing the Cd 2+ toxicity to these leaves. Thus, low Cd 2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves.

  2. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment.

    Science.gov (United States)

    Fife, D N; Nambiar, E K S; Saur, E

    2008-02-01

    Internal nutrient recycling through retranslocation (resorption) is important for meeting the nutrient demands of new tissue production in trees. We conducted a comparative study of nutrient retranslocation from leaves of five tree species from three genera grown in plantation forests for commercial or environmental purposes in southern Australia--Acacia mearnsii De Wild., Eucalyptus globulus Labill., E. fraxinoides H. Deane & Maiden, E. grandis W. Hill ex Maiden and Pinus radiata D. Don. Significant amounts of nitrogen, phosphorus and potassium were retranslocated during three phases of leaf life. In the first phase, retranslocation occurred from young leaves beginning 6 months after leaf initiation, even when leaves were physiologically most active. In the second phase, retranslocation occurred from mature green leaves during their second year, and in the third phase, retranslocation occurred during senescence before leaf fall. Nutrient retranslocation occurred mainly in response to new shoot production. The pattern of retranslocation was remarkably similar in the leaves of all study species (and in the phyllodes of Casuarina glauca Sieber ex Spreng.), despite their diverse genetics, leaf forms and growth rates. There was no net retranslocation of calcium in any of the species. The amounts of nutrients at the start of each pre-retranslocation phase had a strong positive relationship with the amounts subsequently retranslocated, and all species fitted a common relationship. The percentage reduction in concentration or content (retranslocation efficiency) at a particular growth phase is subject to many variables, even within a species, and is therefore not a meaningful measure of interspecific variation. It is proposed that the pattern of retranslocation and its governing factors are similar among species in the absence of interspecies competition for growth and crown structure which occurs in mixed species stands.

  3. Measuring nutrient spiralling in streams

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; O' Neill, R V; Van Winkle, W

    1981-01-01

    Nutrient cycling in streams involves some downstream transport before the cycle is completed. Thus, the path traveled by a nutrient atom in passing through the cycle can be visualized as a spiral. As an index of the spiralling process, we introduce spiralling length, defined as the average distance associated with one complete cycle of a nutrient atom. This index provides a measure of the utilization of nutrients relative to the available supply from upstream. Using /sup 32/p as a tracer, we estimated a spiralling length of 193 m for phosphorus in a small woodland stream.

  4. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  5. Effects of nutrient omission in Caesalpinia echinata plants

    Directory of Open Access Journals (Sweden)

    Sergio Valiengo Valeri

    2014-03-01

    Full Text Available The objective of this study was to evaluate the growth, the morphological alterations and the mineral composition of brazilwood (Caesalpinia echinata plants caused by mineral nutrients omission in a green house experiment. The experimental units were distributed in the green house according to a completely random design. The treatments, each repeated five times, were the following : check (natural soil, complete (N, P, K, Ca, Mg, S, B, Cu, Mn, and Zn and a complete solution but for the omission of one of the nutrients in parenthesis. Each plot was represented by a plant growing in a 7 dm3 vase filled with Quartzarenic Neosol. The analyzed variables were the following: visual nutritional deficiency symptoms, plant height, stem diameter, shoot dry matter, stem, branches and leaves included, and leaf nutrients level. The omission of nitrogen limited plant growth in height and shoot biomass production. The first visual deficiency symptoms were those due to N omission followed by those caused by P, Ca, Mg, S, Cu, and Mn omissions. Later on the K and B deficiency symptoms became visible. The omission of a nutrient always caused its level in the leaves to be significantly lower than that found when it was not omitted.

  6. Reallocation and nutrient use efficiency in Antioquia central forests

    International Nuclear Information System (INIS)

    Leon Pelaez, Juan; Gonzalez Hernandez, Maria; Gallardo Lancho, Juan

    2009-01-01

    We have studied nutrient related variables such as reallocation, nutrient use efficiency (NUE) and fine litter fall for three years in an oak forest Quercus humboldtii Bonpl. and also in some other forest plantations like pine, Pinus patula, and cypress, Cupressus lusitanica, in Antioquia, Colombia. Leaf litter quantities returned to the soil followed a falling sequence: oak (5313.3 kg ha-1 year-1) > pine (4866.5 kg ha-1 year-1) > cypress (2460.3 kg ha-1 year-1). The coniferous species showed the highest NUE for the majority of elements that were examined, except for P, which reached its absolute maximum in the oak forest -where a clear reallocation of this nutrient was also recorded-, probably because of its reduced availability in these volcanic ash-derived soils. Nutrient reallocation allows the conservation of the nutrients by reducing its loss from leaching and litter-fall, thereby closing the nutrient cycle in this native forest. In fact, P gains from net deposition were found there -this includes foliar leaching and atmospheric deposition-, which indicates that the species absorbs the P contained in rainfall from the leaves before it reaches the forest ground. N slow-efficiency use was probably due to its low availability in soil, given its low mineralization rates in these montane forests. K showed the highest reallocation values. Such figures are influenced by its clearly mobile character, according to the highest net deposition levels also verified for this element. With the exception of Mg, there was no clear relationship between the reallocation process and NUE.

  7. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    Science.gov (United States)

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed

  8. Elevated CO2 and O3 Levels Influence the Uptake and Leaf Concentration of Mineral N, P, K in Phyllostachys edulis (Carrière J.Houz. and Oligostachyum lubricum (wen King f.

    Directory of Open Access Journals (Sweden)

    Minghao Zhuang

    2018-04-01

    Full Text Available Rising CO2 and O3 concentrations significantly affect plant growth and can alter nutrient cycles. However, the effects of elevated CO2 and O3 concentrations on the nutrient dynamics of bamboo species are not well understood. In this study, using open top chambers (OTCs, we examined the effects of elevated CO2 and O3 concentrations on leaf biomass and nutrient (N, P, and K dynamics in two bamboo species, Phyllostachys edulis (Carrière J.Houz. and Oligostachyum lubricum (wen King f. Elevated O3 significantly decreased leaf biomass and nutrient uptake of both bamboo species, with the exception of no observed change in K uptake by O. lubricum. Elevated CO2 increased leaf biomass, N and K uptake of both bamboo species. Elevated CO2 and O3 simultaneously had no significant influence on leaf biomass of either species but decreased P and N uptake in P. edulis and O. lubricum, respectively, and increased K uptake in O. lubricum. The results indicate that elevated CO2 alleviated the damage caused by elevated O3 in the two bamboo species by altering the uptake of certain nutrients, which further highlights the potential interactive effects between the two gases on nutrient uptake. In addition, we found differential responses of nutrient dynamics in the two bamboo species to the two elevated gases, alone or in combination. These findings will facilitate the development of effective nutrient management strategies for sustainable management of P. edulis and O. lubricum under global change scenarios.

  9. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  10. Assessment of nutritional quality of water hyacinth leaf protein concentrate

    Directory of Open Access Journals (Sweden)

    Oyeyemi Adeyemi

    2016-09-01

    Full Text Available This study was embarked upon to convert water hyacinth, an environmental nuisance, to a natural resource for economic development. Water hyacinth leaf protein concentrate (WHLPC was extracted in edible form and determination of its physicochemical characteristics, total alkaloids and phenolic compounds was done. Analysis of proximate composition and amino acid profile of the WHLPC was also done. The level of heavy metals (mg/kg in WHLPC was found to be Cd (0.02 ± 0.001, Cr (0.13 ± 0.001, Pd (0.003 ± 0.001 and Hg (0.02 ± 0.001 while concentrations of Pb, Pt, Sn, Fe, Cu, Zn, Ni and Co were found to be 0.001 ± 0.00. Level of all heavy metals was found to be within safe limit. Proximate analysis revealed that protein in WHLPC accounted for 50% of its nutrients, carbohydrate accounted for 33% of its nutrients while fat, ash and fibre made up the remaining nutrients. Amino acid analysis showed that WHLPC contained 17 out of 20 common amino acids, particularly, Phe (3.67%, Leu (5.01%. Level of total alkaloids and phenolic compounds was 16.6 mg/kg and 6.0 mg/kg respectively. Evidence from this study suggests that WHLPC is a good source of leaf protein concentrate (LPC; it is nutritious and acutely non toxic.

  11. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    Science.gov (United States)

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  12. Higher photosynthesis, nutrient- and energy-use efficiencies contribute to invasiveness of exotic plants in a nutrient poor habitat in northeast China.

    Science.gov (United States)

    Liu, Ming-Chao; Kong, De-Liang; Lu, Xiu-Rong; Huang, Kai; Wang, Shuo; Wang, Wei-Bin; Qu, Bo; Feng, Yu-Long

    2017-08-01

    The roles of photosynthesis-related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient-poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light-saturated photosynthetic rate (P max ) between 22 invasive and native plants in a nutrient-poor habitat in northeast China. The invasive plants had significantly higher P max , photosynthetic nitrogen- (PNUE), phosphorus- (PPUE), potassium- (PKUE) and energy-use efficiencies (PEUE) than the co-occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher P max for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as P max , PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource-use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat. © 2017 Scandinavian Plant Physiology Society.

  13. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  14. Continental-scale effects of nutrient pollution on stream ecosystem functioning.

    Science.gov (United States)

    Woodward, Guy; Gessner, Mark O; Giller, Paul S; Gulis, Vladislav; Hladyz, Sally; Lecerf, Antoine; Malmqvist, Björn; McKie, Brendan G; Tiegs, Scott D; Cariss, Helen; Dobson, Mike; Elosegi, Arturo; Ferreira, Verónica; Graça, Manuel A S; Fleituch, Tadeusz; Lacoursière, Jean O; Nistorescu, Marius; Pozo, Jesús; Risnoveanu, Geta; Schindler, Markus; Vadineanu, Angheluta; Vought, Lena B-M; Chauvet, Eric

    2012-06-15

    Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.

  15. 7 CFR 30.2 - Leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf...

  16. 7 CFR 29.3035 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  17. 7 CFR 29.6023 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  18. 7 CFR 29.1030 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  19. 7 CFR 29.3527 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  20. 7 CFR 29.3526 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling...

  1. 7 CFR 29.3034 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and...

  2. 7 CFR 29.6022 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  3. Phosphorus uptake by decomposing leaf detritus: effect of microbial biomass and activity

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, P J; Elwood, J W; Newbold, J D; Webster, J R; Ferren, L A; Perkins, R E

    1984-12-01

    The dominant energy source in small woodland streams is the allochthonous input of leaves. Utilization of this energy source by stream biota establishes the patterns of secondary productivity and nutrient uptake in these ecosystems. Although leaf inputs support much of the production of macroinvertebrates and higher consumers in streams, microbes are the critical link between these organisms and the leaf resource, much of which is undigestible by higher organisms. A number of studies have indicated that stream macroinvertebrates preferentially select leaves with greater levels of microbial activity. Rates of microbial activity associated with decomposing leaves were shown to be dependent on the supply of P in one woodland stream. In other streams, leaf decomposition has been shown to be nutrient limited as well. Thus, as in many other ecosystems, maintenance of high levels of production in streams is dependent on retention and efficient recycling of nutrients. Uptake of P by microbes colonizing leaves is an important mechanism for nutrient retention in small woodland streams. In these systems, numerous debris collections efficiently retard downstream movement of particulate materials, especially decomposing leaves. Uptake of dissolved, easily transportable forms of P by microbes attached to decomposing leaves increases P retention in streams. The more rapid the rate of P uptake onto decomposing leaves for a given P supply, the shorter the P uptake length and the more times an atom of P is utilized within a given stream reach. In this study the authors examined the temporal patterns of P uptake during the early stages of leaf decomposition in streams. Patterns of P uptake were compared to patterns of other measurements of microbial activity to identify the effect of microbial succession or conditioning of leaves on P uptake. 22 references, 1 figure, 2 tables.

  4. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized with ectomycorrhizal or litter decomposing basidiomycetes

    OpenAIRE

    COLPAERT, Jan; VAN TICHELEN, Katia

    1996-01-01

    The decomposition and the nitrogen and phosphorus mineralization of fresh beech (Fagus sylvatica L.) leaf litter are described. Leaves were buried for up to 6 months in plant containers in which Scots pine (Pinus sylvestris L.) seedlings were cultivated at a low rate of nutrient addition. The saprotrophic abilities of three ectomycorrhizal fungi, Thelephora terrestris Ehrh.: Fr., Suillus bovinus (L.: Fr.) O. Kuntze and Paxillus involutes (Batsch: Fr) Fr., were compared with the degradation ca...

  5. Correlation of Aquaporins and Transmembrane Solute Transporters Revealed by Genome-Wide Analysis in Developing Maize Leaf

    Directory of Open Access Journals (Sweden)

    Xun Yue

    2012-01-01

    Full Text Available Aquaporins are multifunctional membrane channels that facilitate the transmembrane transport of water and solutes. When transmembrane mineral nutrient transporters exhibit the same expression patterns as aquaporins under diverse temporal and physiological conditions, there is a greater probability that they interact. In this study, genome-wide temporal profiling of transcripts analysis and coexpression network-based approaches are used to examine the significant specificity correlation of aquaporins and transmembrane solute transporters in developing maize leaf. The results indicate that specific maize aquaporins are related to specific transmembrane solute transporters. The analysis demonstrates a systems-level correlation between aquaporins, nutrient transporters, and the homeostasis of mineral nutrients in developing maize leaf. Our results provide a resource for further studies into the physiological function of these aquaporins.

  6. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2.

    Science.gov (United States)

    Arnone, J A; Zaller, J G; Körner, Ch; Ziegler, C; Zandt, H

    1995-09-01

    Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO 2 . Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO 2 -induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 μl CO 2 l -1 or to 610 μl CO 2 l -1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO 2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO 2 . Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO 2 under

  7. Betel leaf in stoma care.

    Science.gov (United States)

    Banu, Tahmina; Talukder, Rupom; Chowdhury, Tanvir Kabir; Hoque, Mozammel

    2007-07-01

    Construction of a stoma is a common procedure in pediatric surgical practice. For care of these stomas, commercially available devices such as ostomy bag, either disposable or of longer duration are usually used. These are expensive, particularly in countries like Bangladesh, and proper-sized ones are not always available. We have found an alternative for stoma care, betel leaf, which is suitable for Bangladeshis. We report the outcome of its use. After construction of stoma, at first zinc oxide paste was applied on the peristomal skin. A betel leaf with shiny, smooth surface outwards and rough surface inwards was put over the stoma with a hole made in the center according to the size of stoma. Another intact leaf covers the stomal opening. When bowel movement occurs, the overlying intact leaf was removed and the fecal matter was washed away from both. The leaves were reused after cleaning. Leaves were changed every 2 to 3 days. From June 1998 to December 2005, in the department of pediatric surgery, Chittagong Medical College and Hospital, Chittagong, Bangladesh, a total of 623 patients had exteriorization of bowel. Of this total, 495 stomas were cared for with betel leaves and 128 with ostomy bags. Of 623 children, 287 had sigmoid colostomy, 211 had transverse colostomy, 105 had ileostomy, and 20 had jejunostomy. Of the 495 children under betel leaf stoma care, 13 patients (2.6%) developed skin excoriation. There were no allergic reactions. Of the 128 patients using ostomy bag, 52 (40.65%) had skin excoriation. Twenty-four (18.75%) children developed some allergic reactions to adhesive. Monthly costs for betel leaves were 15 cents (10 BDT), whereas ostomy bags cost about US$24. In the care of stoma, betel leaves are cheap, easy to handle, nonirritant, and nonallergic.

  8. Multiple nutrient imbalances in ear leaves of on-farm unfertilized maize in eastern and southern Africa

    DEFF Research Database (Denmark)

    Jensen, Henning Høgh; Kamalongo, Donwell; Myaka, Fidelis A

    2009-01-01

    when using the proportion of nutrients in the leaf tissue. The content of six macro elements (N, P, K, S, Mg, Ca) at the tasseling stage were found to be able to predict 83% of the variation in the grain yield at maturity whereas the inclusion of micronutrients only improved this prediction...

  9. BREEAM Green Leaf Eco-rating Program

    International Nuclear Information System (INIS)

    2001-01-01

    The environmental performance of buildings is measured for several reasons, the main one being that it can help owners decide where to invest their retrofit dollars to maximize the energy performance of their building and reduce operating costs. The buildings constructed in the 1950s and 1960s in North America are reaching obsolescence and will require major retrofits to improve their energy efficiency, particularly in the area of mechanical equipment. In addition to reducing operating costs, better maintenance and environmental management of buildings can also address issues such as comfort, health, indoor air quality and productivity. In order to accurately measure the environmental performance of a building, it is necessary to develop a comprehensive measuring and benchmarking tool that would allow occupants to compare the buildings' performance with others. In this pilot study, 6 high-rise multi-residential buildings were assessed for environmental performance using the BREEAM Green Leaf assessment method. The methodology originated in Canada and was developed by ECD Energy, Environment Canada and Terra Choice. It combines the BREEAM set of environmental issues with the Green Leaf Eco-Rating technique. The method covers occupant health, energy efficiency, resource efficiency, environmental responsibility and affordability. Operation and management issues are also taken into consideration. The buildings used in this study were located in various locations, ranging from inner city housing to city/suburban areas. 2 tabs., 17 figs

  10. The Nutrient Density of Snacks

    Directory of Open Access Journals (Sweden)

    Julie Hess BA

    2017-03-01

    Full Text Available Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3, milk (52.5, and fruit (30.1 emerged as the most nutrient-dense snacks. Ice cream (−4.4, pies and cakes (−11.1, and carbonated soft drinks (−17.2 emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  11. Nutrient management in substrate systems

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    Speaking about nutrient solutions in soilless cultivation, different solutions can be discerned. Originally, in soilless culture only one nutrient solution was taken into account, being the solution in the containers in which the plants were grown. Such solutions were intensively moved by air

  12. Fisheries management under nutrient influence

    DEFF Research Database (Denmark)

    Hammarlund, Cecilia; Nielsen, Max; Waldo, Staffan

    2018-01-01

    A fisheries management model that identifies the economic optimal management of fisheries under the influence of nutrients is presented. The model starts from the idea that growth in fish biomass increases with increasing availability of nutrients owing to higher food availability up to a peak...

  13. Habitat Modification by the Leaf-Cutter Ant, Atta cephalotes, and Patterns of Leaf-Litter Arthropod Communities.

    Science.gov (United States)

    Wells, Rachel L; Murphy, Serena K; Moran, Matthew D

    2017-12-08

    Ecosystem engineers are profoundly important in many biological communities. A Neotropical taxonomic group considered to have engineering effects is the Formicidae (ants). Leaf-cutter ants (LCAs), in particular, which form extensive colonies of millions of individuals, can be important ecosystem engineers in these environments. While the effects of LCAs on plant community structure and soil chemistry are well-studied, their effects on consumers are poorly understood. Therefore, we examined the indirect effects of the LCA Atta cephalotes L. on the leaf-litter arthropod community. We compared abundance and diversity patterns at ant nests to areas distant from nests, utilizing both a factorial design and gradient analysis for both nocturnal and diurnal arthropods. We found that arthropod abundance and diversity was significantly lower for multiple taxonomic groups and trophic levels near leaf-cutter nests, and this pattern was strongest at night. Exceptions to this pattern included two morphospecies of Collembola that were more abundant on nests, suggesting some specialization for these species. For the gradient analysis, abundance increased exponentially for most groups of arthropods. However, for the dominant arthropod species, the amphipod Cerrorchestia hyloraina Lindeman, a quadratic function was the best fit curvilinear model for abundance. It appeared that C. hyloraina had maximal abundance at the transition between nest site and less disturbed forest. These results indicate that LCA activity has a strong effect on the leaf-litter arthropod community, adding to spatial heterogeneity within neotropical forests. These effects may translate into changes in important ecological processes such as nutrient cycling and food web function. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    Science.gov (United States)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  15. Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication

    International Nuclear Information System (INIS)

    Dunck, Bárbara; Lima-Fernandes, Eva; Cássio, Fernanda; Cunha, Ana; Rodrigues, Liliana; Pascoal, Cláudia

    2015-01-01

    We assessed the eutrophication effects on leaf litter decomposition and primary production, and on periphytic algae, fungi and invertebrates. According to the subsidy-stress model, we expected that when algae and decomposers were nutrient limited, their activity and diversity would increase at moderate levels of nutrient enrichment, but decrease at high levels of nutrients, because eutrophication would lead to the presence of other stressors and overwhelm the subsidy effect. Chestnut leaves (Castanea sativa Mill) were enclosed in mesh bags and immersed in five streams of the Ave River basin (northwest Portugal) to assess leaf decomposition and colonization by invertebrates and fungi. In parallel, polyethylene slides were attached to the mesh bags to allow colonization by algae and to assess primary production. Communities of periphytic algae and decomposers discriminated the streams according to the trophic state. Primary production decomposition and biodiversity were lower in streams at both ends of the trophic gradient. - Highlights: • Algae and decomposers discriminated the streams according to the eutrophication level. • Primary production and litter decomposition are stimulated by moderate eutrophication. • Biodiversity and process rates were reduced in highly eutrophic streams. • Subsidy-stress model explained biodiversity and process rates under eutrophication. - Rates of leaf litter decomposition, primary production and richness of periphytic algae, fungi and invertebrates were lower in streams at both ends of the trophic gradient

  16. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  17. Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation.

    Science.gov (United States)

    Lim, Sanghyun; Chisholm, Kenneth; Coffin, Robert H; Peters, Rick D; Al-Mughrabi, Khalil I; Wang-Pruski, Gefu; Pinto, Devanand M

    2012-04-06

    Foliar diseases, such as late blight, result in serious threats to potato production. As such, potato leaf tissue becomes an important substrate to study biological processes, such as plant defense responses to infection. Nonetheless, the potato leaf proteome remains poorly characterized. Here, we report protein profiling of potato leaf tissues using a modified differential centrifugation approach to separate the leaf tissues into cell wall and cytoplasmic fractions. This method helps to increase the number of identified proteins, including targeted putative cell wall proteins. The method allowed for the identification of 1484 nonredundant potato leaf proteins, of which 364 and 447 were reproducibly identified proteins in the cell wall and cytoplasmic fractions, respectively. Reproducibly identified proteins corresponded to over 70% of proteins identified in each replicate. A diverse range of proteins was identified based on their theoretical pI values, molecular masses, functional classification, and biological processes. Such a protein extraction method is effective for the establishment of a highly qualified proteome profile.

  18. Variation of leaf margin serration in Populus nigra of industrial dumps

    Directory of Open Access Journals (Sweden)

    Yu. A. Shtirs

    2017-07-01

    Full Text Available The variability of leaf margin serration of Populus nigra L. in conditions of industrial dumps (coal mines dumps and overburden dumps and city park is estimated. The value of this indicator is in the range from 1.25 to 1.76 and significantly increases along the gradient: coal mines dumps – overburden dumps – city park. From the number of selected gradations of P. nigra leaf blades, the gradation with values of 1.45-1.55 is most pronounced according to the analyzed index for industrial dumps, for the park – with the values of 1.55-1.65. The degree of serration of edge leaf blade is characterized by low values of variation – coefficient of variation is less than 10.0%. We registered the significant positive correlation between the average values of leaf margin serration and the length of P. nigra leaf blade.

  19. LIME REQUIREMENT DETERMINATION AND LIMING IMPACT ON SOIL NUTRIENT STATUS

    Directory of Open Access Journals (Sweden)

    Krunoslav Karalić

    2010-06-01

    Full Text Available The aim of conducted research was to determine the influence of liming, mineral and organic fertilization on soil chemical properties and nutrient availability in the soil, yield height and mineral composition of alfalfa. Results were used to create regression models for prediction of liming impact on soil chemical properties. Liming and fertilization experiment was sat up in 20 L volume plastic pots with two types of acid soils with different texture from two sites. Ten liming and fertilization treatments were applied in four repetitions. Lime treatments increased soil pH values and decreased hydrolytic acidity. Mineral and organic fertilization affected additional soil acidification. Application of lime intensified mineralization and humus decomposition, while organic fertilization raised humus content. The results showed significant increase of AL-P2O5 and K2O availability. The treatments increased soil Ca concentrations, but at the same time decreased exchangeable Mg concentrations. Soil pH increase resulted in lower Fe, Mn, Zn and Cu availability. Soil CEC was increased by applied treatments. Lime rates increased number and height of alfalfa plants, as well as yield of leaf, stalk increased concentrations of N, P, K and Ca in alfalfa leaf and stalk, but decreased leaf Mg and Fe, Mn, Zn and Cu concentrations. Regression computer models predicted with adequate accuracy P, Fe, Mn, Zn and Cu availability and final pH value as a result of liming and fertilization impact.

  20. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Fourty, T. [INRA, Avignon (France); Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J.

    1996-05-15

    This study presents a methodology to estimate the leaf biochemical compounds specific absorption coefficients and to use them to predict leaf biochemistry. A wide range of leaves was collected including variations in species and leaf status. All the leaves were dried out. The biochemical composition was measured using classical wet chemistry techniques to determine lignin, cellulose, hemicellulose, starch, and protein contents. Concurrently, leaf reflectance and transmittance were measured with a high spectral resolution spectrophotometer in the 800–2500 nm range with approximately 1 nm spectral resolution and sampling interval. In addition, infinite reflectance achieved by stacking leaves was also measured. The PROSPECT leaf optical properties model was first inverted over a selection of wavebands in the 800–2400 nm domain to provide estimates of the scattering characteristics using leaf reflectance, transmittance, and infinite reflectance data. Then, the model was inverted again over all the wavelengths to estimate the global absorption coefficient, using the previously estimated scattering properties. The global absorption coefficient was eventually explained using the measured biochemical composition by fitting the corresponding specific absorption coefficients after substraction of the measured contribution of the residual structural water absorption. Results show that the derived specific absorption coefficients are quite robustly estimated. Further, they are in good agreement with known absorption features of each biochemical compound. The average contribution of each biochemical compound to leaf absorption feature is also evaluated. Sugar, cellulose, and hemicellulose are the main compounds that contribute to absorption. Results demonstrate the possibility of modeling leaf optical properties of dry leaves with explicit description of leaf biochemistry. Estimates of the detailed biochemical composition obtained by model inversion over the 1300–2400 nm

  1. Approaches and uncertainties in nutrient budgets; Implications for nutrient management and environmental policies

    NARCIS (Netherlands)

    Oenema, O.; Kros, J.; Vries, de W.

    2003-01-01

    Nutrient budgets of agroecosystems are constructed either (i) to increase the understanding of nutrient cycling, (ii) as performance indicator and awareness raiser in nutrient management and environmental policy, or (iii) as regulating policy instrument to enforce a certain nutrient management

  2. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Directory of Open Access Journals (Sweden)

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  3. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen

  4. The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior.

    Science.gov (United States)

    Wedmann, Sonja; Bradler, Sven; Rust, Jes

    2007-01-09

    Stick and leaf insects (insect order Phasmatodea) are represented primarily by twig-imitating slender forms. Only a small percentage ( approximately 1%) of extant phasmids belong to the leaf insects (Phylliinae), which exhibit an extreme form of morphological and behavioral leaf mimicry. Fossils of phasmid insects are extremely rare worldwide. Here we report the first fossil leaf insect, Eophyllium messelensis gen. et sp. nov., from 47-million-year-old deposits at Messel in Germany. The new specimen, a male, is exquisitely preserved and displays the same foliaceous appearance as extant male leaf insects. Clearly, an advanced form of extant angiosperm leaf mimicry had already evolved early in the Eocene. We infer that this trait was combined with a special behavior, catalepsy or "adaptive stillness," enabling Eophyllium to deceive visually oriented predators. Potential predators reported from the Eocene are birds, early primates, and bats. The combination of primitive and derived characters revealed by Eophyllium allows the determination of its exact phylogenetic position and illuminates the evolution of leaf mimicry for this insect group. It provides direct evidence that Phylliinae originated at least 47 Mya. Eophyllium enlarges the known geographical range of Phylliinae, currently restricted to southeast Asia, which is apparently a relict distribution. This fossil leaf insect bears considerable resemblance to extant individuals in size and cryptic morphology, indicating minimal change in 47 million years. This absence of evolutionary change is an outstanding example of morphological and, probably, behavioral stasis.

  5. Gas exchange, phisiological indexes and ionic accumulation in Annona emarginata (Schltdl. H. Rainer seedlings in nutrients solution

    Directory of Open Access Journals (Sweden)

    Daniel Baron

    2013-06-01

    Full Text Available "Araticum-de-terra-fria" (Annona emarginata (Schltdl. H. Rainer has been consider a good alternative in rootstock production for the main commercial Annonaceae species. Although this species develops in different soil and climate conditions, there is no understanding by the physiological responses of this species at different nutritional levels. Thus, the objective of this study was to evaluate the influence of different ionic strengths on development of vegetative species known as "Araticum-de-terra-fria". It was evaluated in seedlings grown in different ionic strengths (25% I, 50% I, 75% I and 100% I of the complete nutrient solution Hoagland and Arnon (1950 nº 2, for 140 days, the following characteristics: Gas Exchange (CO2 assimilation rate, stomatal conductance, internal CO2 concentration, transpiration rate, water use efficiency, Rubisco carboxylation efficiency; Vegetative growth characteristics (diameter, leaf number, dry matter; Physiological Indexes (leaf area ratio, specific leaf area, relative growth rate, net assimilation rate, leaf weight ratio and Ionic Accumulation (nutrients leaf analysis. Seedlings grown under 50% I showed the highest values of Leaf CO2 assimilation rate, water use efficiency, carboxylation efficiency, growth, relative growth rate, net assimilation rate and ionic accumulation in the total dry matter. So it is concluded that "Araticum-de-terra-fria" seedlings grown under intermediate nutrient concentrations of complete nutrient solution Hoagland and Arnon (1950 nº 2, explored more adequately their physiological potential that justify their adaptation in different nutritional conditions and allow reducing the amount of mineral nutrition of seedlings production.

  6. Adsorption Studies of Radish Leaf Powder

    Directory of Open Access Journals (Sweden)

    Ankita

    2016-01-01

    Full Text Available Radish leaves (Raphanus sativus powder fractions was subjected to moisture adsorption isotherms at different isothermal temperature conditions from 15-45°C with an equal interval of 10°C. The sorption data obtained in gravimetric static method under 0.11–0.90 water activity conditions were subjected for sorption isotherms and found to be typical sigmoid trend. Experimental data were assessed for the applicability in the prediction through sorption models fitting and found that Polynomial and GAB equations performed well over all fitted models in describing equilibrium moisture content – equilibrium relative humidity (EMC–ERH relationships for shelf stable dehydrated radish leaf powder, over the entire range of temperatures condition under study. The net isosteric heat of sorption, differential entropy and free energy were determined at different temperatures and their dependence was seen with respect to equilibrium moisture content.

  7. Analysis of Peanut Leaf Proteome

    DEFF Research Database (Denmark)

    Ramesh, R.; Suravajhala, Prashanth; Pechan, T.

    2010-01-01

    Peanut (Arachis hypogaea) is one of the most important sources of plant protein. Current selection of genotypes requires molecular characterization of available populations. Peanut genome database has several EST cDNAs which can be used to analyze gene expression. Analysis of proteins is a direct...... approach to define function of their associated genes. Proteome analysis linked to genome sequence information is critical for functional genomics. However, the available protein expression data is extremely inadequate. Proteome analysis of peanut leaf was conducted using two-dimensional gel...... electrophoresis in combination with sequence identification using MALDI/TOF to determine their identity and function related to growth, development and responses to stresses. Peanut leaf proteins were resolved into 300 polypeptides with pI values between 3.5 and 8.0 and relative molecular masses from 12 to 100 k...

  8. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  9. Seasonal Pattern of Decomposition and N, P, and C Dynamics in Leaf litter in a Mongolian Oak Forest and a Korean Pine Plantation

    Directory of Open Access Journals (Sweden)

    Jaeeun Sohng

    2014-10-01

    Full Text Available Distinct seasons and diverse tree species characterize temperate deciduous forests in NE Asia, but large areas of deciduous forests have been converted to conifer plantations. This study was conducted to understand the effects of seasons and tree species on leaf litter decomposition in a temperate forest. Using the litterbag method, the decomposition rate and nitrogen, phosphorous, and carbon dynamics of Mongolian oak (Quercus mongolica, Korean pine (Pinus koraiensis, and their mixed leaf litter were compared for 24 months in a Mongolian oak stand, an adjacent Korean pine plantation, and a Mongolian oak—Korean pine mixed stand. The decomposition rates of all the leaf litter types followed a pattern of distinct seasonal changes: most leaf litter decomposition occurred during the summer. Tree species was less influential on the leaf litter decomposition. The decomposition rates among different leaf litter types within the same stand were not significantly different, indicating no mixed litter effect. The immobilization of leaf litter N and P lasted for 14 months. Mongolian oak leaf litter and Korean pine leaf litter showed different N and P contents and dynamics during the decomposition, and soil P2O5 was highest in the Korean pine plantation, suggesting effects of plantation on soil nutrient budget.

  10. Nutrient flows in international trade: Ecology and policy issues

    International Nuclear Information System (INIS)

    Grote, Ulrike; Craswell, Eric; Vlek, Paul

    2005-01-01

    Impacts of increasing population pressure on food demand and land resources has sparked interest in nutrient balances and flows at a range of scales. West Asia/North Africa, China, and sub-Saharan Africa are net importers of NPK in agricultural commodities. These imported nutrients do not, however, redress the widely recognized declines in fertility in sub-Saharan African soils, because the nutrients imported are commonly concentrated in the cities, creating waste disposal problems rather than alleviating deficiencies in rural soils. Countries with a net loss of NPK in agricultural commodities are the major food exporting countries-the United States, Australia, and some Latin American countries. In the case of the United States, exports of NPK will increase from 3.1 Tg in 1997 to 4.8 Tg in 2020. The results suggest that between 1997 and 2020, total international net flows of NPK in traded agricultural commodities will double to 8.8 million tonnes. Against this background, the paper analyses the impact of different policy measures on nutrient flows and balances. This includes not only the effects of agricultural trade liberalization and the reduction of subsidies, but also the more direct environmental policies like nutrient accounting schemes, eco-labeling, and nutrient trading. It finally stresses the need for environmental costs to be factored into the debate on nutrient management and advocates more inter-disciplinary research on these important problems

  11. Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning

    OpenAIRE

    Woodward , Guy; Gessner , Mark O.; Giller , Paul S.; Gulis , Vladislav; Hladyz , Sally; Lecerf , Antoine; Malmqvist , Björn; McKie , Brendan G.; Tiegs , Scott D.; Cariss , Helen; Dobson , Mike; Elosegi , Arturo; Ferreira , Veronica; Graça , Manuel A. S.; Fleituch , Tadeusz

    2012-01-01

    International audience; Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 100...

  12. Local geology determines responses of stream producers and fungal decomposers to nutrient enrichment: A field experiment.

    Science.gov (United States)

    Mykrä, Heikki; Sarremejane, Romain; Laamanen, Tiina; Karjalainen, Satu Maaria; Markkola, Annamari; Lehtinen, Sirkku; Lehosmaa, Kaisa; Muotka, Timo

    2018-04-16

    We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.

  13. Nutrient solution and substrates for ‘cedro doce’ (Pochota fendleri seedling production

    Directory of Open Access Journals (Sweden)

    Oscar J. Smiderle

    Full Text Available ABSTRACT This study assessed the effect of different substrates and addition of nutrient solution on the production of Pochota fendleri seedlings, leaf contents of macro and micronutrients and chlorophyll a and b. The experimental design was completely randomized, in a 3 x 2 factorial scheme, with four replicates. The factors were three substrates, with or without addition of nutrient solution, composing six treatments: (T1 = sand; (T2 = soil; (T3 = sand + soil (1:1; (T4 = sand + nutrient solution; (T5 = soil + nutrient solution; (T6 = sand + soil + nutrient solution. Growth characteristics (height, collar diameter, shoot dry matter, root dry matter, root/shoot ratio and total dry matter and contents of macro- and micronutrients and chlorophyll a and b were evaluated. The use of nutrient solution reduces the time to obtain seedlings of Pochota fendleri, and it is important for proper growth and quality of seedlings. The sequence of nutritional requirement presented by Pochota fendleri seedlings in three substrates with addition of nutrient solution follows the descending order: macronutrients (N > Ca > K > Mg > P > S and micronutrients (Fe > Mn > B > Zn > Cu.

  14. The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Eric L.; Aylward, Frank O.; Kim, Young-Mo; Webb-Robertson, Bobbie-Jo M.; Nicora, Carrie D.; Hu, Zeping; Metz, Thomas O.; Lipton, Mary S.; Smith, Richard D.; Currie, Cameron R.; Burnum-Johnson, Kristin E.

    2014-08-01

    Leaf-cutter ants are dominant herbivores in ecosystems throughout the Neotropics. Rather than directly consuming the fresh foliar biomass they harvest, these ants use it to cultivate specialized fungus gardens. Although recent investigations have shed light on how plant biomass is degraded in fungus gardens, the cycling of nutrients that takes place in these specialized microbial ecosystems is still not well understood. Here, using metametabolomics and metaproteomics techniques, we examine the dynamics of nutrient turnover and biosynthesis in these gardens. Our results reveal that numerous free amino acids and sugars are depleted throughout the process of biomass degradation, indicating that easily accessible nutrients from plant material are readily consumed by microbes in these ecosystems. Accumulation of cellobiose and lignin derivatives near the end of the degradation process is consistent with previous findings of cellulases and laccases produced by Leucoagaricus gongylophorus, the fungus cultivated by leaf-cutter ants. Our results also suggest that ureides may be an important source of nitrogen in fungus gardens, especially during nitrogen-limiting conditions. No free arginine was detected in our metametabolomics experiments despite evidence that the host ants cannot produce this amino acid, suggesting that biosynthesis of this metabolite may be tightly regulated in the fungus garden. These results provide new insights into the dynamics of nutrient cycling that underlie this important ant-fungus symbiosis.

  15. Dynamics of root and leaf decomposition in chronosequence of rubber plantation (Hevea brasilensis) in SW China

    International Nuclear Information System (INIS)

    Moazzam, N.S.; Yiping, Z.; Liqing, S.; Moazzam, N.S.

    2018-01-01

    This study highlighted the dynamics of stand parameters as well as root and leaf litter decomposition in the chronosequence (49, 32, 24 and 12 years old plantations established in the year 1965, 1982, 1990 and 2002) of the rubber plantation in Xishuangbanna SW China. Litter trappers were installed on the study site to collect the leaf litter and litter bag experiment was carried out to investigate the rate of root and leaf litter decomposition. The study revealed significant variation of stand characteristics during the decomposition process. The monthly litter fall and root biomass (all categories; kg m-3) showed positive correlation with stand characteristics and age. Remaining leaf litter mass % in the litter bags reduced with the passage of time and was significantly different in the chronosequence. The highest root decomposition rate (55%) was shown by fine roots and minimum (32%) by coarse roots during the study period. The investigations on elemental composition of the leaf and root provides basic important information for rate of nutrient cycle along with decomposition rate in rubber plantation and result are quite helpful for simulating the below ground carbon stock of rubber plantation in SW China. (author)

  16. Impacts of multiple stressors on ecosystem function: Leaf decomposition in constructed urban wetlands

    International Nuclear Information System (INIS)

    Mackintosh, Teresa J.; Davis, Jenny A.; Thompson, Ross M.

    2016-01-01

    The impact of stormwater on stream biota is well documented, but less is known about the impacts on ecosystem processes, such as the breakdown of organic matter. This study sought to establish whether the degree of urbanisation affected rates of leaf-litter breakdown within constructed wetlands. A litter bag method was used to ascertain rate of decomposition along a gradient of urbanisation (total imperviousness, TI), in constructed wetlands in western and south-eastern Melbourne. A significant positive relationship between TI and breakdown rate was found in the south-eastern wetlands. The significant reduction in rate of invertebrate-mediated breakdown with increasing concentration of certain metals was consistent with other studies. However, overall there was an increase in rate of breakdown. Studies have shown that the effects of heavy metals can be negated if nutrient levels are high. Our results suggest that other parameters besides exposure to contaminants are likely to affect leaf litter breakdown. - Highlights: • There have been few studies on the effect of urbanisation on ecosystem function. • Rate of leaf litter breakdown increased moving along a gradient of urbanisation. • There was a reduction in invertebrate mediated breakdown with certain metals. • Results suggest other parameters besides contaminants affect leaf litter breakdown. - Certain heavy metals led to a decrease in leaf litter breakdown; however overall, there was a positive relationship between breakdown and increasing urbanisation.

  17. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades.

    Science.gov (United States)

    Qian, Y; Miao, S L; Gu, B; Li, Y C

    2009-01-01

    Plant ash derived from fire plays an important role in nutrient balance and cycling in ecosystems. Factors that determine the composition and availability of ash nutrients include fire intensity (burn temperature and duration), plant species, habitat nutrient enrichment, and leaf type (live or dead leaf). We used laboratory simulation methods to evaluate temperature effects on nutrient composition and metals in the residual ash of sawgrass (Cladium jamaicense) and cattail (Typha domingensis), particularly on post-fire phosphorus (P) availability in plant ash. Live and dead leaf samples were collected from Water Conservation Area 2A in the northern Everglades along a soil P gradient, where prescribed fire may be used to accelerate recovery of this unique ecosystem. Significant decreases in total carbon and total nitrogen were detected with increasing fire temperature. Organic matter combustion was nearly complete at temperatures > or = 450 degrees C. HCl-extractable P (average, 50% of total P in the ash) and NH(4)Cl-extractable P (average, 33% of total P in the ash) were the predominant P fractions for laboratory-burned ash. Although a low-intensity fire could induce an elevation of P availability, an intense fire generally resulted in decreased water-soluble P. Significant differences in nutrient compositions were observed between species, habitat nutrient status, and leaf types. More labile inorganic P remained in sawgrass ash than in cattail ash; hence, sawgrass ash has a greater potential to release available P than cattail. Fire intensity affected plant ash nutrient composition, particularly P availability, and the effects varied with plant species and leaf type. Therefore, it is important to consider fire intensity and vegetation community when using a prescribed fire for ecosystem management.

  18. Leaf appearance rate and final main stem leaf number as affected by temperature and photoperiod in cereals grown in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Ezio Riggi

    2017-09-01

    Full Text Available In the present study, a two-year field trial was carried out with the aim to evaluate daylength and air temperature effects on leaf appearance and related rates in two durum wheat (Triticum durum Desf., two bread wheat (Triticum aestivum L. and two barley (Hordeum vulgare L. cultivars, using six different sowing dates (SD. Significant effects of SD on final main stem leaf number (FLN, thermal leaf appearance rate (TLAR, daily leaf appearance rate (DLAR and phyllochron (PhL were found. Cultivars resulted inversely correlated to mean air temperature in the interval emergence - fifth leaf full expansion (E-V. Linear response of leaf number over days after sowing was shown for all SD and cultivars, with R2 higher than 0.95. FLN linearly decreased from the first to the last SD for durum wheat, while more variable behaviour was observed in bread wheat. TLAR and DLAR showed a linear increment of the rate from the first to the last SD in durum wheat, while did not for bread wheat and barley. PhL in durum wheat decreased from the first to the last SD. Barley and bread wheat showed the highest values on those SDs which did not reach flowering. The increase of TLAR was affected by photoperiod and photothermal units in durum wheat, while by temperatures only in barley and bread wheat. Present results might find practical application in the improvement of phenology simulation models for durum wheat, bread wheat and barley grown in Mediterranean area in absence of water and nutrient stress.

  19. Nutrient and Coliform Loading (NCL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of available fecal coliform bacteria, fecal streptococci bacteria, and nutrient loading data. Loading for contaminants other than fecal coliform...

  20. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics

    Science.gov (United States)

    Marcé, R.; Armengol, J.

    2009-07-01

    discharge range. This implies that both small and larger streams may be impacted by human activities in terms of nutrient retention capacity, suggesting that larger rivers located in human populated areas can exert considerable influence on phosphorus exports from watersheds. The role of biological activity in this efficiency loss showed by nutrient enriched streams remained uncertain, because the phosphorus mass transfer coefficient did not show consistent relationships with streamflow and phosphorus concentration in water. The heterogeneity of the compiled data and the possible role of additional inorganic processes on phosphorus in-stream dynamics may explain this. We suggest that more research on phosphorus dynamics at the reach scale is needed, specially in large, human impacted watercourses.

  1. Herbivores and nutrients control grassland plant diversity via light limitation

    Science.gov (United States)

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  2. [Diagnoses of rice nitrogen status based on characteristics of scanning leaf].

    Science.gov (United States)

    Zhu, Jin-Xia; Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Zhu-Lu; Han, Ning; Wang, Ke

    2009-08-01

    In the present research, the scanner was adopted as the digital image sensor, and a new method to diagnose the status of rice based on image processing technology was established. The main results are as follows: (1) According to the analysis of relations between leaf percentage nitrogen contents and color parameter, the sensitive color parameters were abstracted as B, b, b/(r+g), b/r and b/g. The leaf position (vertical spatial variation) effects on leaf chlorophyll contents were investigated, and the third fully expanded leaf was selected as the diagnosis leaf. (2) Field ground data such as ASD were collected simultaneously. Then study on the relationships between scanned leaf color characteristics and hyperspectral was carried out. The results indicated that the diagnosis of nitrogen status based on the scanned color characteristic is able to partly reflect the hyperspectral properties. (3) The leaf color and shape features were intergrated and the model of diagnosing the status of rice was established with calculated at YIQ color system. The distinct accuracy of nitrogen status was as follows: N0: 74.9%; N1 : 52%; N2 : 84.7%; N3 : 75%. The preliminary study showed that the methodology has been proved successful in this study and provides the potential to monitor nitrogen status in a cost-effective and accurate way based on the scanned digital image. Although, some confusion exists, with rapidly increasing resolution of digital platform and development of digital image technology, it will be more convenient for larger farms that can afford to use mechanized systems for site-specific nutrient management. Moreover, deeper theory research and practice experiment should be needed in the future.

  3. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  4. Nutrient imbalance in Norway spruce

    International Nuclear Information System (INIS)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  5. Nutrient imbalance in Norway spruce

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  6. Morphological variation in leaf dissection of Rheum palmatum complex (Polygonaceae.

    Directory of Open Access Journals (Sweden)

    Xu-Mei Wang

    Full Text Available AIMS: Rheum palmatum complex comprises all taxa within section Palmata in the genus Rheum, including R. officinale, R. palmatum, R. tanguticum, R. tanguticum var. liupanshanense and R. laciniatum. The identification of the taxa in section Palmata is based primarily on the degree of leaf blade dissection and the shape of the lobes; however, difficulties in species identification may arise from their significant variation. The aim of this study is to analyze the patterns of variation in leaf blade characteristics within and among populations through population-based sampling covering the entire distribution range of R. palmatum complex. METHODS: Samples were taken from 2340 leaves from 780 individuals and 44 populations representing the four species, and the degree of leaf blade dissection and the shape of the lobe were measured to yield a set of quantitative data. Furthermore, those data were statistically analyzed. IMPORTANT FINDINGS: The statistical analysis showed that the degree of leaf blade dissection is continuous from lobed to parted, and the shape of the lobe is also continuous from broadly triangular to lanceolate both within and between populations. We suggested that taxa in section Palmata should be considered as one species. Based on the research on the R. palmatum complex, we considered that the quantitative characteristics were greatly influenced by the environment. Therefore, it is not reliable to delimitate the species according to the continuously quantitative vegetative characteristics.

  7. Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome.

    Science.gov (United States)

    Daleo, Pedro; Alberti, Juan; Jumpponen, Ari; Veach, Allison; Ialonardi, Florencia; Iribarne, Oscar; Silliman, Brian

    2018-06-01

    Microbial community assembly is affected by a combination of forces that act simultaneously, but the mechanisms underpinning their relative influences remain elusive. This gap strongly limits our ability to predict human impacts on microbial communities and the processes they regulate. Here, we experimentally demonstrate that increased salinity stress, food web alteration and nutrient loading interact to drive outcomes in salt marsh fungal leaf communities. Both salinity stress and food web alterations drove communities to deterministically diverge, resulting in distinct fungal communities. Increased nutrient loads, nevertheless, partially suppressed the influence of other factors as determinants of fungal assembly. Using a null model approach, we found that increased nutrient loads enhanced the relative importance of stochastic over deterministic divergent processes; without increased nutrient loads, samples from different treatments showed a relatively (deterministic) divergent community assembly whereas increased nutrient loads drove the system to more stochastic assemblies, suppressing the effect of other treatments. These results demonstrate that common anthropogenic modifications can interact to control fungal community assembly. Furthermore, our results suggest that when the environmental conditions are spatially heterogeneous (as in our case, caused by specific combinations of experimental treatments), increased stochasticity caused by greater nutrient inputs can reduce the importance of deterministic filters that otherwise caused divergence, thus driving to microbial community homogenization. © 2018 by the Ecological Society of America.

  8. Substrates with green manure compost and leaf application of biofertilizer on seedlings of yellow passion fruit plants

    Directory of Open Access Journals (Sweden)

    Cristiane Muniz Barbosa Barros

    2013-12-01

    Full Text Available Substrates and fertilization are fundamental for seedling production, which well nourished can produce earlier and are more resistant to stresses. Animal manures are often used in non-industrialized substrates with good results, but their costs are increasing. Other residues may be used for plant nutrition, in substrates or in leaf fertilization. The aim of this work was to evaluate substrates prepared with green manure composts and the leaf application of biofertilizer on the formation of yellow passion fruit seedlings. A greenhouse experiment was conducted between December 2009 and February 2010, with a split-plot random block design. Plots received or not leaf application of supermagro biofertilizer. Subplots consisted of different substrates: soil; soil + cattle manure; soil + cattle manure composted with black oats straw; soil + cattle manure composted with ryegrass straw; soil + cattle manure composted with turnip straw; and soil + cattle manure composted with vetch straw. There were three dates of leaf fertilization: 10, 25 and 40 days after emergence (DAE. At 50 DAE plants were collected for evaluation of growth and accumulation of biomass and nutrients: N, P, K, Ca, Mg, Cu, Mn and Zn. Data were submitted to analysis of variance and means compared by Tukey test. The substrate soil + cattle manure promoted higher stem diameter, plant height, leaf area, root length and volume and nutrient accumulation. Among substrates with green manure composts, those prepared with black oats and turnip straw outranked the others. The use of leaf biofertilizer showed diverse results on seedling formation, being beneficial when combined to substrates with black oats composted straw, and prejudicial when combined to soil + cattle manure and soil + turnip composted straw substrates. The accumulation of nutrients by the seedlings occurred in the following order: K>Ca>N>Mg>P>Zn>Cu=Mn.

  9. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Directory of Open Access Journals (Sweden)

    Tess Nahanni Grainger

    Full Text Available Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest

  10. Healthy Snacks: Using Nutrient Profiling to Evaluate the Nutrient-Density of Common Snacks in the United States.

    Science.gov (United States)

    Hess, Julie M; Slavin, Joanne L

    2017-09-01

    To quantify and compare the nutrient-density of commonly consumed snacks using two nutrient-density measures, Nutrient Rich Foods Indices 9.3 (NRF 9.3) and 15.3 (NRF 15.3). Identify commonly consumed categories of snacks and individual snack foods, calculate NRF 9.3 and 15.3 scores, rank snacks by category and by individual food based on nutrient density, compare and contrast scores generated by the two NRF Indices. NRF 9.3 and 15.3 scores. Averages and standard deviations of nutrient-density scores for each snack category. Vegetables and coffee/tea received the highest category scores on both indices. Cakes/cookies/pastries and sweets had the lowest category scores. NRF 9.3 scores for individual snacks ranged from -46 (soda) to 524 (coffee). NRF 15.3 scores ranged from -45 (soda) to 736 (coffee). If added to food labels, NRF scores could help consumers identify more nutritious choices. The differences between NRF 9.3 and 15.3 scores generated for the same foods and the limitations of these indices highlight the need for careful consideration of which nutrient-density measure to include on food labels as well as consumer education. © 2017 Institute of Food Technologists®.

  11. Nutrient resorption efficiency of cocoa plantson lowl and of Alluvial plain

    Directory of Open Access Journals (Sweden)

    Rudy Erwiyono

    2011-05-01

    Full Text Available Observation on nutrient retranslocation of cocoa plants has been carried out in Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institute (ICCRI in Jember in order to assess its efficiency to have better understanding on the loss of nutrients through cocoa litterfall relatively intensive during dry season, better utilization of the plant litters, and further more efficient plant management. Nutrient retranslocation assessment has been conducted for macro nutrients in terms of N, P, and K that have been observed on four clones of cocoa planted in 2004, that are KW 163, KW 162, KKM 22, and KW 165 in the plot with Tectona grandis shading trees and plot with Cassia surithensis shading trees, with five replicates. The plots of observation overlaid on Alluvial plain 45 m asl. and D type rainfall. The results showed that nutrient contents in senescence leaves with yellow colour and then falling significantly lower than those of mature leaves with green colour adjacent to it. Reductions of N, P, and K contents during leaf senescence occured significantly on KW 163, KW 162, and KKM 22 clones, whereas on KW 165 clone significant reduction only happened to phosphorus. Mature leaves of cocoa with green colour contained average nitrogen, phosphorus, and kalium at 13.0, 1.6, and 13.5 mg/g- respectively. Whereas senescing leaves with yellow colour then defoliating contained average nitrogen, phosphorus, and kalium at 9.5, 0.9, and 10.0 mg/g, respectively. This reduction of nutrient contents was caused by nutrient retranslocation mechanism of the plants. Nitrogen, phosphorus, and kalium retranslocated by cocoa plants in rainy season are as much as 3.60, 0.70, and 3.39 mg/g, or 27%, 42%, and 24%, respectively. In other words nutrient retranslocation efficiency of cocoa plants for N, P, and K is in the following order: P>N>K. Among the clones, KKM 22 clone retranslocated P and K most efficiently; whereas for N, KW 162 clone retranslocated it

  12. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Zheng, Chunmiao; Yang, Jinzhong; Zhang, Yan; Zhang, Meng; Qi, Zhanhui; Xiao, Kai; Zhang, Xiaolang

    2018-03-01

    As an important nutrient source for coastal waters, submarine groundwater discharge (SGD) has long been largely ignored in Daya Bay, China. In this study, we estimate the fluxes of SGD and associated nutrients into this region using a 224Ra mass balance model and assess the contribution/importance of nutrients by SGD, benthic sediments, local rivers, and atmospheric deposition. The results of 224Ra mass balance show that the estimated SGD ranges from (2.76 ± 1.43) × 106 m3/d to (1.03 ± 0.53) × 107 m3/d with an average of (6.32 ± 2.42) × 106 m3/d, about 16 times the total discharge rate of local rivers. The nutrient loading from SGD is estimated to be (1.05-1.99) × 105 mol/d for NO3-N, (4.04-12.16) × 103 mol/d for DIP, and (3.54-11.35) × 105 mol/d for Si. Among these considered nutrient sources, we find that SGD is the primary source for Si and NO3-N, contributing 68% and 42% of all considered sources, respectively. The atmospheric NO3-N flux is comparable to that from SGD. The local rivers are the most important source for DIP, contributing 75% of all considered sources. SGD with high N:P ratio (NO3-N/DIP) of 37.0 delivers not only a large quantity of nutrients, but also changes nutrient structure in coastal water. Based on a DIP budget, primary productivity is evaluated to be 54-73 mg C/m2 d, in which SGD accounts for approximately 30% of total production. This study indicates that SGD is a key source of nutrients to coastal waters and may cause an obvious change of primary production and nutrient structure in Daya Bay.

  13. Leveraging multiple datasets for deep leaf counting

    OpenAIRE

    Dobrescu, Andrei; Giuffrida, Mario Valerio; Tsaftaris, Sotirios A

    2017-01-01

    The number of leaves a plant has is one of the key traits (phenotypes) describing its development and growth. Here, we propose an automated, deep learning based approach for counting leaves in model rosette plants. While state-of-the-art results on leaf counting with deep learning methods have recently been reported, they obtain the count as a result of leaf segmentation and thus require per-leaf (instance) segmentation to train the models (a rather strong annotation). Instead, our method tre...

  14. How well can spectroscopy predict leaf morphological traits in the seasonal neotropical savannas?

    Science.gov (United States)

    Streher, A. S.; McGill, B.; Morellato, P.; Silva, T. S. F.

    2017-12-01

    Variations in foliar morphological traits, quantified as leaf mass per area (LMA, g m-2) and leaf dry matter content (LDMC, g g-1), correspond to a tradeoff between investments in leaf construction costs and leaf life span. Leaf spectroscopy, the acquisition of reflected radiation along contiguous narrow spectral bands from leaves, has shown the potential to link leaf optical properties with a range of foliar traits. However, our knowledge is still limited on how well leaf traits from plants with different life forms and deciduousness strategies can be predicted from spectroscopy. To understand the relationships between leaf traits and optical properties, we investigated: 1) What are the spectral regions associated with leaf morphological traits? 2) How generalizable an optical trait model is across different life forms and leaf strategies? Five locations across cerrado and campo rupestre vegetation in Brazil were sampled during the growing season in 2017. Triplicate mature sun leaves were harvested from plants encompassing different life forms (grasses, perennial herbs, shrubs and trees), comprising 1650 individuals growing over a wide range of environmental conditions. For each individual, we determined LDMC and LMA, and took 30 spectral leaf measurements from 400 to 2500nm, using a spectrometer. We used the Random Forests (RF) algorithm to predict both morphological traits from leaf reflectance, and performed feature selection with a backward stepwise method, progressively removing variables with small importance at each iteration. Model performance was evaluated by using 10-fold cross-validation. LDMC values ranged from 0.12 to 0.67 g g-1, while LMA varied between 41.78 and 562 g m-2. The spectral bands that best explained trait variation were found within the SWIR, around 1397 nm for LDMC, and 2279 nm for LMA. Our general model explained 55.28% of LDMC variance and 55.64% of LMA variation, and the mean RMSE for the predicted values were 0.004 g g-1 and 36.99 g

  15. [Effects of mixed decomposition of Populus simonii and other tree species leaf litters on soil properties in Loess Plateau].

    Science.gov (United States)

    Li, Qian; Liu, Zeng-Wen; Du, Liang-Zhen

    2012-03-01

    In this study, the leaf litters of Populus simonii and other 11 tree species were put into soil separately or in mixture after grinding, and incubated in laboratory to analyze the effects of their decomposition on soil properties and the interactions between the litters decomposition. The decomposition of each kind of the leaf litters in soil increased the soil urease, dehydrogenase, and phosphatase activities and the soil organic matter and available N contents markedly, but had greater differences in the effects on the soil available P content and CEC. The decomposition of the leaf litters of Caragana microphylla and of Amorpha fruticosa showed obvious effects in improving soil properties. The decomposition of the mixed leaf litters of P. simonii and Pinus tabulaeformis, Platycladus orientalis, Robinia pseudoacacia, or Ulmus pumila showed interactive promotion effects on the abundance of soil microbes, and that of the mixed leaf litters of P. simonii and P. orientalis or C. microphylla showed interactive promotion effects on the soil organic matter, available P, and available K contents and soil CEC but interactive inhibition effects on the activities of most of the soil enzymes tested. The decomposition of the mixed leaf litters of P. simonii and Larix principis-rupprechtii showed interactive promotion effects on the activities of most of the soil enzymes and soil nutrient contents, while that of the mixed leaf litters of P. simonii and P. sylvestris var. mongolica showed interactive inhibition effects. Overall, the decomposition of the mixed leaf litters of P. simo- nii and U. pumila, P. tabulaeformis, L. principis-rupprechtii, or R. pseudoacacia could improve soil quality, but the mixed leaf litters of P. simonii and P. orientalis, C. microphylla, P. sylvestris var. mongolica, Hippophae rhamnoides, or A. fruticosa showed an interactive inhibition effect during their decomposition.

  16. Leaf sequencing algorithms for segmented multileaf collimation

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Palta, Jatinder; Ranka, Sanjay

    2003-01-01

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves

  17. Leaf sequencing algorithms for segmented multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2003-02-07

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.

  18. Nutritional disorder of lettuce cv. Veronica in nutrient solution with suppressed macronutrients

    Directory of Open Access Journals (Sweden)

    Thiago Batista Firmato de Almeida

    2011-06-01

    Full Text Available Lettuce is the most popular of the leafy vegetables. It is known worldwide and its consumption occurs mainly in the natural form. The objective was to evaluate the effect of macronutrient omission on the growth and nutritional status of the lettuce cv. Veronica, and to describe the visual symptoms of nutritional deficiency. The treatments complete consisted of the solution and the individual omission of N, P, K, Ca, Mg and S, under a completely randomized design with three replications. Plants were grown in Hoagland & Arnon, in pots (8L. At 56 days after transplant we evaluated plant height, leaf number, leaf area, SPAD index, dry matter of shoots, roots and whole plant, levels of macronutrients in shoots and roots, and the nature of nutritional disorders. The omission of nutrients affected the growth variables. The nutrients found in lettuce plants from nutrient solution and the complete omission in the shoot were, respectively, N= 23.2 to 9.5, P= 5.4 to 1.3, K= 58,9 to 3.2, Ca= 12.1 to 3.6, Mg= 5.5 to 0.7 and S= 3.2 to 1.5g.kg-1. The omission of macronutrients caused quality losses, since it affected the nutrition of the vegetables and this resulted in morphological changes, reflected as symptoms of deficiency for each nutrient.

  19. APORTE DE SERAPILHEIRA E NUTRIENTES EM UMA ÁREA DE CAATINGA

    Directory of Open Access Journals (Sweden)

    Alan Cauê de Holanda

    2017-01-01

    Full Text Available Caatinga is one of the Brazilian biomes where the highest degradation rates are recorded. It is associated mainly to the removal of vegetation for energy production and practice of subsistence agriculture, causing interference in nutrient cycling. The aim of the study was to quantify and chemically analyze litter deposition in a fragment of Caatinga, located in the municipality of Pombal, Paraíba (PB state. It was collected monthly for 12 months, and separated into different fractions (leaves, reproductive structures, branches and miscellaneous, all litter deposited on collectors of 1.0 m2, distributed systematically. The nutrients analyzed were N, P, K, Ca and Mg. The annual litter was of 3785.67 kg ha -1 , predominantly composed of leaf fraction with 70.2%, followed by the fraction reproductive structures with 18.3%. The nutrient content in the leaf litter followed the order Ca> N> K> Mg> P. The nutrient content in the fractions vary according to time and there is evidence of their relationship with the rainfall. The deposition of litter coincided with the seasonal period of Caatinga.

  20. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation.

    Science.gov (United States)

    Tao, Jun; Ma, Yi-Cheng; Yang, Zhong-Shan; Zou, Cheng-Gang; Zhang, Ke-Qin

    2016-05-01

    Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms.

  1. Photodegradation of Leaf Litter in Water-Limited Ecosystems

    Science.gov (United States)

    Cory, R. M.; Powers, H.; McDowell, N.; Rahn, T.

    2008-12-01

    The longstanding view of terrestrial decomposition holds that heterotrophic respiration drives release of CO2, but recent studies, such as Austin and Vivanco (2006) have shown that in water-limited environments, photochemical decomposition of leaf litter may be equally or more effective than microbial decomposition. Although initial studies have concluded that photochemical degradation can be important in some environments, it has been difficult to quantify and the oxidative mechanisms involved remain unknown. Thus, the objectives of our study were to (1) quantify the CO2 emitted during photochemical degradation of leaf litter and (2) use the stable isotopic signatures of evolved CO2 to elucidate pathways of production. Emitted CO2 and its isotopic signature were measured using a tunable diode laser (TDL) to assess the pool of photochemically-labile plant matter (δ13C-CO2) in a given sample and to assess the source of the oxygen (δ18O-CO2). We quantified the photochemical release of CO2 and its isotopic signature from dried leaf litter of 10 tree and grass species prevalent in major biotic zones of New Mexico. The cumulative CO2 released upon exposure of 0.1-0.3 g of dried leaf litter to three hours of simulated sunlight ranged from 8-25 mg CO2-C g-1 dried litter, corresponding to 1-2% mass loss. Generally, the δ13C-CO2 was more depleted (4-7 ± 2 per mil) than the average δ13C of the respective leaf litter sample. The δ18O-CO2 evolved is approximately equal to δ18O of atmospheric O2, suggesting that the oxidation mechanism involves direct reaction with atmospheric O2.

  2. Effect of Addition of Moringa Leaf By-Product (Leaf-Waste) on ...

    African Journals Online (AJOL)

    The effects of incorporation of Moringa leaf fibre (a by-product of leaf processing which contains 24% Crude Fibre by dry weight at 0, 5 and 10 % substitution of wheat flour in cookies was investigated. Three products containing wheat flour: Moringa leaf fibre ratios of 100:0, 95:5, and 90:10 respectively were prepared, and a ...

  3. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2017-01-01

    Specific leaf area (SLA), which is defined as the leaf area per unit of dry leaf mass is an important component when assessing functional diversity and plays a key role in ecosystem modeling, linking plant carbon and water cycles as well as quantifying plant physiological processes. However, studies

  4. Leaf size and leaf display of thirty-eight tropical tree species

    NARCIS (Netherlands)

    Poorter, L.; Rozendaal, D.M.A.

    2008-01-01

    Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We

  5. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  6. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies.

    Science.gov (United States)

    Pierce, Simon; Brusa, Guido; Sartori, Matteo; Cerabolini, Bruno E L

    2012-04-01

    Hydrophytes generally exhibit highly acquisitive leaf economics. However, a range of growth forms is evident, from small, free-floating and rapidly growing Lemniden to large, broad-leaved Nymphaeiden, denoting variability in adaptive strategies. Traits used to classify adaptive strategies in terrestrial species, such as canopy height, are not applicable to hydrophytes. We hypothesize that hydrophyte leaf size traits and economics exhibit sufficient overlap with terrestrial species to allow a common classification of plant functional types, sensu Grime's CSR theory. Leaf morpho-functional traits were measured for 61 species from 47 water bodies in lowland continental, sub-alpine and alpine bioclimatic zones in southern Europe and compared against the full leaf economics spectrum and leaf size range of terrestrial herbs, and between hydrophyte growth forms. Hydrophytes differed in the ranges and mean values of traits compared with herbs, but principal components analysis (PCA) demonstrated that both groups shared axes of trait variability: PCA1 encompassed size variation (area and mass), and PCA2 ranged from relatively dense, carbon-rich leaves to nitrogen-rich leaves of high specific leaf area (SLA). Most growth forms exhibited trait syndromes directly equivalent to herbs classified as R adapted, although Nymphaeiden ranged between C and SR adaptation. Our findings support the hypothesis that hydrophyte adaptive strategy variation reflects fundamental trade-offs in economics and size that govern all plants, and that hydrophyte adaptive strategies can be directly compared with terrestrial species by combining leaf economics and size traits.

  7. Trait-abundance relation in response to nutrient addition in a Tibetan alpine meadow: The importance of species trade-off in resource conservation and acquisition.

    Science.gov (United States)

    Liu, Huiying; Li, Ying; Ren, Fei; Lin, Li; Zhu, Wenyan; He, Jin-Sheng; Niu, Kechang

    2017-12-01

    In competition-dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait-abundance relations in the line of species trade-off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade-off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height-SRA was found in NP-fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade-off in nutrient acquisition and resource conservation was a key driver of SRA in competition-dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and

  8. Surface-water nutrient conditions and sources in the United States Pacific Northwest

    Science.gov (United States)

    Wise, D.R.; Johnson, H.M.

    2011-01-01

    The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.

  9. TOR Signaling and Nutrient Sensing.

    Science.gov (United States)

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.

  10. Effect of decapitation and nutrient applications on shoot branching, yield, and accumulation of secondary metabolites in leaves of Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Pal, Probir Kumar; Prasad, Ramdeen; Pathania, Vijaylata

    2013-11-15

    The axillary buds of stevia (Stevia rebaudiana Bertoni) often remain dormant for a long time and sometimes remain dormant permanently until the plants enter into the reproductive stage. The present study was conducted to ascertain whether decapitation and foliar fertilization enhance the productivity and quality of stevia through breaking the apical dominance and increasing physiological activities. Ten treatment combinations comprising two cultural operations (non-decapitation and decapitation) and five foliar spray treatments (water spray control, KNO3 @ 5.0gL(-1), Ca(NO3)2 @ 4.06gL(-1), CuSO4·5H2O 2.0gL(-1) and (NH4)6Mo7O24 @ 1.0gL(-1)) were applied. The decapitation of apical buds of stevia increased the branches and increased dry leaf yield by 13 and 17% compared with non-decapitation during 2010 and 2011, respectively, without affecting quality. Foliar application of nutrient solutions also exerted a considerable effect on growth parameters, yield attributes and chlorophyll content, and significantly (P=0.05) higher dry leaf yield ranging from 8 to 26% over the control. Among the foliar spray treatments, KNO3 @ 5.0gL(-1) and Ca (NO3)2 4.06gL(-1) were found most effective in dry leaf yield. Thus, the decapitation of apical buds and foliar application of KNO3 and Ca (NO3)2 could enhance the productivity of stevia through improving the growth of axillary buds and physiological activities. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Nutrient supply of plants in aquaponic systems

    OpenAIRE

    Bittsánszky, András; Uzinger, Nikolett; Gyulai, Gábor; Mathis, Alex; Junge, Ranka; Villarroel, Morris; Kotzen, Benzion; Komives, Tamas

    2016-01-01

    In this preliminary article we present data on plant nutrient concentrations in aquaponic systems, and compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in aquaponic system are significantly lower for most nutrients, compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels than “standard” hydroponic solutions. This is especially true for green leafy...

  12. Increased Sporulation of Vesicular-Arbuscular Mycorrhizal Fungi by Manipulation of Nutrient Regimens †

    OpenAIRE

    Douds, David D.; Schenck, N. C.

    1990-01-01

    Adjustment of pot culture nutrient solutions increased root colonization and sporulation of vesicular-arbuscular mycorrhizal (VAM) fungi. Paspalum notatum Flugge and VAM fungi were grown in a sandy soil low in N and available P. Hoagland nutrient solution without P enhanced sporulation in soil and root colonization of Acaulospora longula, Scutellospora heterogama, Gigaspora margarita, and a wide range of other VAM fungi over levels produced by a tap water control or nutrient solutions contain...

  13. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Piyush Pandey

    2017-08-01

    Full Text Available Image-based high-throughput plant phenotyping in greenhouse has the potential to relieve the bottleneck currently presented by phenotypic scoring which limits the throughput of gene discovery and crop improvement efforts. Numerous studies have employed automated RGB imaging to characterize biomass and growth of agronomically important crops. The objective of this study was to investigate the utility of hyperspectral imaging for quantifying chemical properties of maize and soybean plants in vivo. These properties included leaf water content, as well as concentrations of macronutrients nitrogen (N, phosphorus (P, potassium (K, magnesium (Mg, calcium (Ca, and sulfur (S, and micronutrients sodium (Na, iron (Fe, manganese (Mn, boron (B, copper (Cu, and zinc (Zn. Hyperspectral images were collected from 60 maize and 60 soybean plants, each subjected to varying levels of either water deficit or nutrient limitation stress with the goal of creating a wide range of variation in the chemical properties of plant leaves. Plants were imaged on an automated conveyor belt system using a hyperspectral imager with a spectral range from 550 to 1,700 nm. Images were processed to extract reflectance spectrum from each plant and partial least squares regression models were developed to correlate spectral data with chemical data. Among all the chemical properties investigated, water content was predicted with the highest accuracy [R2 = 0.93 and RPD (Ratio of Performance to Deviation = 3.8]. All macronutrients were also quantified satisfactorily (R2 from 0.69 to 0.92, RPD from 1.62 to 3.62, with N predicted best followed by P, K, and S. The micronutrients group showed lower prediction accuracy (R2 from 0.19 to 0.86, RPD from 1.09 to 2.69 than the macronutrient groups. Cu and Zn were best predicted, followed by Fe and Mn. Na and B were the only two properties that hyperspectral imaging was not able to quantify satisfactorily (R2 < 0.3 and RPD < 1.2. This study suggested

  14. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging.

    Science.gov (United States)

    Pandey, Piyush; Ge, Yufeng; Stoerger, Vincent; Schnable, James C

    2017-01-01

    Image-based high-throughput plant phenotyping in greenhouse has the potential to relieve the bottleneck currently presented by phenotypic scoring which limits the throughput of gene discovery and crop improvement efforts. Numerous studies have employed automated RGB imaging to characterize biomass and growth of agronomically important crops. The objective of this study was to investigate the utility of hyperspectral imaging for quantifying chemical properties of maize and soybean plants in vivo . These properties included leaf water content, as well as concentrations of macronutrients nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), and sulfur (S), and micronutrients sodium (Na), iron (Fe), manganese (Mn), boron (B), copper (Cu), and zinc (Zn). Hyperspectral images were collected from 60 maize and 60 soybean plants, each subjected to varying levels of either water deficit or nutrient limitation stress with the goal of creating a wide range of variation in the chemical properties of plant leaves. Plants were imaged on an automated conveyor belt system using a hyperspectral imager with a spectral range from 550 to 1,700 nm. Images were processed to extract reflectance spectrum from each plant and partial least squares regression models were developed to correlate spectral data with chemical data. Among all the chemical properties investigated, water content was predicted with the highest accuracy [ R 2 = 0.93 and RPD (Ratio of Performance to Deviation) = 3.8]. All macronutrients were also quantified satisfactorily ( R 2 from 0.69 to 0.92, RPD from 1.62 to 3.62), with N predicted best followed by P, K, and S. The micronutrients group showed lower prediction accuracy ( R 2 from 0.19 to 0.86, RPD from 1.09 to 2.69) than the macronutrient groups. Cu and Zn were best predicted, followed by Fe and Mn. Na and B were the only two properties that hyperspectral imaging was not able to quantify satisfactorily ( R 2 plant chemical traits. Future

  15. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging

    Science.gov (United States)

    Pandey, Piyush; Ge, Yufeng; Stoerger, Vincent; Schnable, James C.

    2017-01-01

    Image-based high-throughput plant phenotyping in greenhouse has the potential to relieve the bottleneck currently presented by phenotypic scoring which limits the throughput of gene discovery and crop improvement efforts. Numerous studies have employed automated RGB imaging to characterize biomass and growth of agronomically important crops. The objective of this study was to investigate the utility of hyperspectral imaging for quantifying chemical properties of maize and soybean plants in vivo. These properties included leaf water content, as well as concentrations of macronutrients nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), and sulfur (S), and micronutrients sodium (Na), iron (Fe), manganese (Mn), boron (B), copper (Cu), and zinc (Zn). Hyperspectral images were collected from 60 maize and 60 soybean plants, each subjected to varying levels of either water deficit or nutrient limitation stress with the goal of creating a wide range of variation in the chemical properties of plant leaves. Plants were imaged on an automated conveyor belt system using a hyperspectral imager with a spectral range from 550 to 1,700 nm. Images were processed to extract reflectance spectrum from each plant and partial least squares regression models were developed to correlate spectral data with chemical data. Among all the chemical properties investigated, water content was predicted with the highest accuracy [R2 = 0.93 and RPD (Ratio of Performance to Deviation) = 3.8]. All macronutrients were also quantified satisfactorily (R2 from 0.69 to 0.92, RPD from 1.62 to 3.62), with N predicted best followed by P, K, and S. The micronutrients group showed lower prediction accuracy (R2 from 0.19 to 0.86, RPD from 1.09 to 2.69) than the macronutrient groups. Cu and Zn were best predicted, followed by Fe and Mn. Na and B were the only two properties that hyperspectral imaging was not able to quantify satisfactorily (R2 designing experiments to vary plant nutrients

  16. The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza.

    Directory of Open Access Journals (Sweden)

    Shuai Li

    Full Text Available Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L. Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their

  17. Two Inexpensive and Non-destructive Techniques to Correct for Smaller-Than-Gasket Leaf Area in Gas Exchange Measurements

    Directory of Open Access Journals (Sweden)

    Andreas M. Savvides

    2018-04-01

    Full Text Available The development of technology, like the widely-used off-the-shelf portable photosynthesis systems, for the quantification of leaf gas exchange rates and chlorophyll fluorescence offered photosynthesis research a massive boost. Gas exchange parameters in such photosynthesis systems are calculated as gas exchange rates per unit leaf area. In small chambers (<10 cm2, the leaf area used by the system for these calculations is actually the internal gasket area (AG, provided that the leaf covers the entire AG. In this study, we present two inexpensive and non-destructive techniques that can be used to easily quantify the enclosed leaf area (AL of plant species with leaves of surface area much smaller than the AG, such as that of cereal crops. The AL of the cereal crop species studied has been measured using a standard image-based approach (iAL and estimated using a leaf width-based approach (wAL. iAL and wAL did not show any significant differences between them in maize, barley, hard and soft wheat. Similar results were obtained when the wAL was tested in comparison with iAL in different positions along the leaf in all species studied. The quantification of AL and the subsequent correction of leaf gas exchange parameters for AL provided a precise quantification of net photosynthesis and stomatal conductance especially with decreasing AL. This study provides two practical, inexpensive and non-destructive solutions to researchers dealing with photosynthesis measurements on small-leaf plant species. The image-based technique can be widely used for quantifying AL in many plant species despite their leaf shape. The leaf width-based technique can be securely used for quantifying AL in cereal crop species such as maize, wheat and barley along the leaf. Both techniques can be used for a wide range of gasket shapes and sizes with minor technique-specific adjustments.

  18. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  19. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  20. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  1. Factors Affecting Leaf Selection by Foregut-fermenting Proboscis Monkeys: New Insight from in vitro Digestibility and Toughness of Leaves

    Science.gov (United States)

    Matsuda, Ikki; Clauss, Marcus; Tuuga, Augustine; Sugau, John; Hanya, Goro; Yumoto, Takakazu; Bernard, Henry; Hummel, Jürgen

    2017-01-01

    Free-living animals must make dietary choices in terms of chemical and physical properties, depending on their digestive physiology and availability of food resources. Here we comprehensively evaluated the dietary choices of proboscis monkeys (Nasalis larvatus) consuming young leaves. We analysed the data for leaf toughness and digestibility measured by an in vitro gas production method, in addition to previously reported data on nutrient composition. Leaf toughness, in general, negatively correlated with the crude protein content, one of the most important nutritional factors affecting food selection by leaf-eating primates. This result suggests that leaf toughness assessed by oral sensation might be a proximate cue for its protein content. We confirmed the importance of the leaf chemical properties in terms of preference shown by N. larvatus; leaves with high protein content and low neutral detergent fibre levels were preferred to those of the common plant species. We also found that these preferred leaves were less tough and more digestible than the alternatives. Our in vitro results also suggested that N. larvatus were little affected by secondary plant compounds. However, the spatial distribution pattern of plant species was the strongest factor explaining the selection of the preferred leaf species. PMID:28211530

  2. Growth, leaf traits and litter decomposition of roadside hybrid aspen (Populus tremula L. x P. tremuloides Michx.) clones

    International Nuclear Information System (INIS)

    Nikula, Suvi; Manninen, Sirkku; Vapaavuori, Elina; Pulkkinen, Pertti

    2011-01-01

    Road traffic contributes considerably to ground-level air pollution and is therefore likely to affect roadside ecosystems. Differences in growth and leaf traits among 13 hybrid aspen (Populus tremula x P. tremuloides) clones were studied in relation to distance from a motorway. The trees sampled were growing 15 and 30 m from a motorway and at a background rural site in southern Finland. Litter decomposition was also measured at both the roadside and rural sites. Height and diameter growth rate and specific leaf area were lowest, and epicuticular wax amount highest in trees growing 15 m from the motorway. Although no significant distance x clone interactions were detected, clone-based analyses indicated differences in genotypic responses to motorway proximity. Leaf N concentration did not differ with distance from the motorway for any of the clones. Leaf litter decomposition was only temporarily retarded in the roadside environment, suggesting minor effects on nutrient cycling. - Highlights: → Roadside hybrid aspen displayed xeromorphic leaf traits and reduction in growth rate. → These responses were limited to trees close to the motorway and only to some clones. → Leaf litter decomposition was only temporarily retarded in the roadside environment. - Hybrid aspen had more xeromorphic leaves, displayed reduced growth, and showed retarded litter decomposition at an early stage in the roadside environment.

  3. Theoretical analysis of radiation field penumbra from a multi leaf collimator

    International Nuclear Information System (INIS)

    Li Shidong; Boyer, Arthur; Findley, David; Mok, Ed

    1996-01-01

    of the leaf end radius to 5 cm. Therefore, the light field edge and the point-source radiation fluence edge are displaced from each other by less than 0.5 mm for all leaf positions. However, calculations for a different MLC geometry, an upper-jaw-replacement MLC without secondary collimation, predict a tripling of the displacements. Conclusion: The observed penumbra of 2 mm-4 mm for the MLC leaf end is not due primarily to the shape of the leaf end, but rather is due to other factors such as the extra focal scatter. This explains the observed similarity of the MLC penumbra to focused collimator jaw penumbra. Coincidence of the light field with the radiation field is theoretically predicted (and experimentally observed) throughout the range of motion of the leaves to be within 0.5 mm. The calibration of the leaf position must account for the nonlinear relation between the physical location of the leaf (as determined by an encoder) and the true position of the light and radiation field edges. This investigation was supported in part by PHS grant number CA43840 awarded by the National Cancer Institute

  4. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*

    Science.gov (United States)

    Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang

    2017-01-01

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839

  5. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.

    Science.gov (United States)

    Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

  6. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  7. 7 CFR 29.3528 - Leaf surface.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...

  8. Estimation of leaf area in tropical maize

    NARCIS (Netherlands)

    Elings, A.

    2000-01-01

    Leaf area development of six tropical maize cultivars grown in 1995 and 1996 in several tropical environments in Mexico (both favourable and moisture-and N-limited) was observed and analysed. First, the validity of a bell-shaped curve describing the area of individual leaves as a function of leaf

  9. Chromosome-damaging effect of betel leaf.

    Science.gov (United States)

    Sadasivan, G; Rani, G; Kumari, C K

    1978-05-01

    The chewing of betel leaf with other ingredients is a widespread addiction in India. The chromosome damaging effect was studied in human leukocyte cultures. There was an increase in the frequency of chromatid aberrations when the leaf extract was added to cultures.

  10. ANXIOLYTIC ACTIVITY OF OCIMUM SANCTUM LEAF EXTRACT

    OpenAIRE

    Chattopadhyay, R.R.

    1994-01-01

    The anxiolytic activity of Ocimum sanctum leaf extract was studied in mice. O.sanctum leaf extract produced significant anxiolytic activity in plus – maze and open field behaviour test models. The effect was compared with diazepam, a standard antianxiety drug.

  11. 7 CFR 29.2530 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of...

  12. 7 CFR 29.2278 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ...

  13. 7 CFR 29.2277 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  14. 7 CFR 29.2529 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  15. Nutrient-enhancement of Matooke banana for improved nutrient ...

    African Journals Online (AJOL)

    A total of 173 PLHIVregistered with Rakai Health Science Project were chosen and interviewed using structured questionnaires to determine the current contribution of banana to the household food security. Nutrient intake data were collected using Gibson s 24-hour recall method and food frequency questionnaires.

  16. Red Guava Leaf Harvesting Impact on Flavonoid Optimation in Different Growth Phases

    Directory of Open Access Journals (Sweden)

    MUNIF GHULAMAHDI

    2011-06-01

    Full Text Available Harvesting process is a critical time to identify the quality of raw material for traditional medicine. The time and harvesting techniques, drying process after harvesting, and processing to make the simplicia, are the crucial role to make the good quality of the natural product. On the other hand, there is a lack of general understanding and appreciation about the processes involved in governing shoot and tree growth and development, i.e. red guava. The research objective was to evaluate the influence of leaf harvesting and growth phases on red guava for flavonoid production as antioxidant. Randomized factorial block design in time were laid out with two factors and followed by Duncan’s multiple range test. The treatments were the amount of leaf harvested on tertiary branches (0, 25, 50, and 100% and growth phases of the plant (vegetative and generative. Leaf harvesting 25% on tertiary branches significantly increased the leaf number (766.3 tree-1 and the number of new quarternary branches, decreasing leaf area index (LAI and leaf dry weight at the end of the experiment (22 weeks of observation/WO. The highest leaf dry weight (156.94 g tree-1 and LAI (0.47 was found in harvesting 25% tertiary branches. Harvesting 100% leaf on tertiary branches in vegetative phase significantly produced the lowest flavonoid production (7.82 g tree-1. The result suggested that flavonoid production from red guava leaves should be done by harvesting 50% leaf on tertiary branches in generative phase can be used to produce the highest flavonoid (89.90 g tree-1.

  17. Leaching Test Relationships, Laboratory-to-Field Comparisons and Recommendations for Leaching Evaluation using the Leaching Environmental Assessment Framework (LEAF)

    Science.gov (United States)

    This report presents examples of the relationships between the results of laboratory leaching tests, as defined by the Leaching Environmental Assessment Framework (LEAF) or analogous international test methods, and leaching of constituents from a broad range of materials under di...

  18. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  19. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  20. A sensitive hydrogen peroxide sensor based on leaf-like silver

    International Nuclear Information System (INIS)

    Meng, Zuchao; Zhang, Mingyin; Zhang, Hongfang; Zheng, Jianbin

    2014-01-01

    A novel non-enzymatic hydrogen peroxide sensor based on leaf-like silver was constructed. The leaf-like silver was synthesized on the surface of L-cysteine (L-cys) by electrodeposition. Scanning electron microscopy and electrochemical techniques were used to characterize the leaf-like silver nanoparticles. The sensor showed high electrocatalytic activity towards the reduction of hydrogen peroxide. A wide linear range of 2.5–1.5 mM with a low detection limit of 0.7 µM was obtained. Excellent electrocatalytic activity, large surface-to-volume ratio and efficient electron transport properties of leaf-like silver have enabled stable and highly sensitive performance for the non-enzymatic hydrogen peroxide sensor. (paper)

  1. Sapwood area - leaf area relationships for coast redwood

    OpenAIRE

    Stancioiu, P T; O'Hara, K L

    2005-01-01

    Coast redwood (Sequoia sempervirens (D. Don) Endl.) trees in different canopy strata and crown positions were sampled to develop relationships between sapwood cross-sectional area and projected leaf area. Sampling occurred during the summers of 2000 and 2001 and covered tree heights ranging from 7.7 to 45.2 m and diameters at breast height ranging from 9.4 to 92.7 cm. Foliage morphology varied greatly and was stratified into five types based on needle type (sun or shade) and twig color. A str...

  2. Nutrient fluxes from coastal California catchments with suburban development

    Science.gov (United States)

    Melack, J. M.; Leydecker, A.; Beighley, E.; Robinson, T.; Coombs, S.

    2005-12-01

    Numerous streams originate in the mountains fringing California's coast and transport nutrients into coastal waters. In central California, these streams traverse catchments with land covers including chaparral, grazed grasslands, orchards, industrial agriculture and suburban and urban development. Fluvial nutrient concentrations and fluxes vary as a function of these land covers and as a function of considerable fluctuations in rainfall. As part of a long-term investigation of mobilization and fluvial transport of nutrients in catchments bordering the Santa Barbara Channel we have intensively sampled nutrient concentrations and measured discharge during storm and base flows in multiple catchments and subcatchments. Volume-weighted mean concentrations of nitrate generally ranged from 5 to 25 micromolar in undeveloped areas, increased to about 100 micromolar for suburban and most agricultural catchments, and were in excess of 1000 micromolar in catchments with greenhouse-based agriculture. Phosphate concentrations ranged from 2 to 20 micromolar among the catchments. These data are used to examine the premise that the suburbanized portion of the catchments is the primary source of nutrients to the streams.

  3. Towards a unified model for leaf trait and trait-environment relationships

    Science.gov (United States)

    Wang, H.; Harrison, S. P.; Prentice, I. C.; Peng, C.; Yang, Y.

    2016-12-01

    A widely accepted core set of leaf traits describes key aspects of plant function including the coupling among carbon, nitrogen and water cycles at the leaf, plant and ecosystem scales. Our current research focuses on two questions: (1) what dimensions of correlated variation among traits apply across all vascular plants irrespective of environment; (2) how, and to what extent, can variations in community mean values of leaf traits be predicted along environmental gradients? Based on a large quantitative trait data set covering the major environmental gradients across China, we are tackling these questions via two complementary approaches: multivariate analysis of trait-trait, trait-site, and trait-environment relationships, and the development of conceptual models and testable hypotheses for the dependencies of each trait on other traits and/or specific environmental predictors. Preliminary multivariate analyses suggest the existence of at least two independent axes of variation in leaf traits, and show robust relationships between trait syndromes and growing-season climate variables. A minimal conceptual model then considers nitrogen per unit leaf area (Narea) as a function of leaf mass per unit area (LMA) and carboxylation capacity (Vcmax); LMA as a function of irradiance, temperature and water and/or nutrient stress; Vcmax as a function of irradiance, temperature and the long-term ci:ca ratio (indexed by δ13C); and the ci:ca ratio as a function of vapour pressure deficit, temperature and atmospheric pressure. Each of these dependencies has support from observations, pointing the way towards a comprehensive set of equations to predict community-mean values of core traits in next-generation terrestrial ecosystem models.

  4. Antibiotic mixture effects on growth of the leaf-shredding stream detritivore Gammarus fossarum.

    Science.gov (United States)

    Bundschuh, Mirco; Hahn, Torsten; Gessner, Mark O; Schulz, Ralf

    2017-05-01

    Pharmaceuticals contribute greatly to human and animal health. Given their specific biological targets, pharmaceuticals pose a significant environmental risk by affecting organisms and ecosystem processes, including leaf-litter decomposition. Although litter decomposition is a central process in forest streams, the consequences of exposure to pharmaceuticals remain poorly known. The present study assessed the impact of antibiotics as an important class of pharmaceuticals on the growth of the leaf-shredding amphipod Gammarus fossarum over 24 days. Exposure scenarios involved an antibiotic mixture (i.e. sulfamethoxazole, trimethoprim, erythromycin-H 2 O, roxithromycin, clarithromycin) at 0, 2 and 200 µg/L to assess impacts resulting from exposure to both water and food. The antibiotics had no effect on either leaf-associated fungal biomass or bacterial abundance. However, modification of leaf quality (e.g. through shifts in leaf-associated microbial communities) may have triggered faster growth of gammarids (assessed in terms of body mass gain) at the low antibiotic concentration relative to the control. At 200 µg/L, however, gammarid growth was not stimulated. This outcome might be due to a modified ability of the gut microflora to assimilate nutrients and carbon. Furthermore, the observed lack of increases in the diameter of the gammarids' peduncles, despite an increase in gammarid mass, suggests antibiotic-induced effects in the moulting cycle. Although the processes responsible for the observed effects have not yet been identified, these results suggest a potential role of food-quality, gammarid gut microflora and alteration in the moulting cycle in mediating impacts of antibiotics on these detritivores and the leaf decomposition process in streams.

  5. Antimicrobial activity of Piper nigrum L. and Cassia didymobotyra L. leaf extract on selected food borne pathogens

    Directory of Open Access Journals (Sweden)

    Mohd. Sayeed Akthar

    2014-09-01

    /mL, while, it was found at concentration of 50.0 mg/mL for petroleum ether and aqueous leaf extract of P. nigrum and C. didymobotyra. However, the MIC of methanol leaf extracts of P. nigrum and ethanol and methanol leaf extracts P. nigrum and C. didymobotyra for Aspergillus spp. was recorded at concentration of 12.5 mg/mL, while, the MIC concentration ranged from 25.0-50.0 mg/ mL for other tested solvent leaf extract of P. nigrum and C. didymobotyra. Conclusions: This study suggests that test plants could be potential candidates for developing the new antimicrobial drugs against the wide range of pathogenic bacteria and fungal strains.

  6. Leaf temperature and transpiration of rice plants in relation to short-wave radiation and wind speed

    International Nuclear Information System (INIS)

    Ito, D.; Haseba, T.

    1984-01-01

    Leaf temperature and transpiration amount of rice plants were measured in a steady environment in a laboratory and in field situations. The plants set in Wagner pots were used. Experiments were carried out at the tillering and booting stages, and on the date of maturity. Measured leaf temperatures and transpiration rates were analyzed in connection with incident short-wave radiation on a leaf and wind speed measured simultaneously.Instantaneous supplying and turning-off of steady artificial light caused cyclic changes in leaf temperature and transpiration. Leaf temperature dropped in feeble illumination compared with the steady temperature in the preceeding dark.On the date of maturity, a rice plant leaf was warmer than the air, even in feeble light. Then, the leaf-air temperature difference and transpiration rate showed approximately linear increases with short-wave radiation intensity. On the same date, an increase in wind speed produced a decrease in leaf-air temperature difference, i.e., leaf temperature dropped, and an increase in transpiration rate. The rates of both changes in leaf temperature and transpiration rate were fairly large in a range of wind speed below about 1m/s.For rice plants growing favorably from the tillering stage through the booting stage, the leaves were considerably cooler than the air, even in an intense light and/or solar radiation. The leaf temperature showed the lowest value at short-wave radiations between 0.15 and 0.20ly/min, at above which the leaf temperature rised with an increase in short-wave radiation until it approached the air temperature. Transpiration rate of rice plants increased rapidly with an increase in short-wave radiation ranging below 0.2 or 0.3ly/min, at above which the increase in transpiration rate slowed.The relationships between leaf temperature and/or transpiration rate and wind speed and/or incident short-wave radiation (solar radiation) which were obtained experimentally, supported the relationships

  7. Nutrient composition of climbing and prostrate vegetable cowpea ...

    African Journals Online (AJOL)

    The study evaluated the nutrient content of different accessions of two vegetable cowpea genotypes. The mineral content of the vegetable cowpea accessions were high. Potassium content of the accessions of the climbing genotype “Akidi enu” ranged from 1.25 to 1.52% with a mean value of 1.43 ± 0.13% while in the ...

  8. Accumulative capabilities of essential nutrient elements in organs of ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... Cu > Mn > Zn > B. In conclusion, the ACs for essential nutrient elements differed, with the ... and Fe were quantified using Perkin Elmer Atomic Absorption .... vitamin C, protein and fat ranging from 249.6 to 266 .... Boron determination in plant tissues by ... Accumulation of cadmium and selected elements.

  9. Performance test of nutrient control equipment for hydroponic plants

    Science.gov (United States)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  10. Nutrient Composition and Weight Evaluation of some Newly ...

    African Journals Online (AJOL)

    The average weight ranged between 28.2 in improved white dent to 29.8 in improved yellow dent. The yellow dent variety will be particularly useful in improving level of micronutrient intake. The Journal of Food Technology in Africa Volume 7 No.1, 2002, pp. 27-29. KEY WORDS: Nutrient composition, white dent, yellow dent ...

  11. Organic and free-range egg production

    OpenAIRE

    Hammershøj, M.

    2011-01-01

    This chapter includes information on the development of the free range and the organic egg production and their market shares in different countries. Consumer behaviour is investigated particularly in relation to the price and availability of non-cage eggs. Regulations on the production of free range and organic eggs and their present and future impact are examined. Nutrient supply, animal welfare, productivity, safety and environmental impact of the types of egg production are covered with a...

  12. Importance of the method of leaf area measurement to the interpretation of gas exchange of complex shoots

    Science.gov (United States)

    W. K. Smith; A. W. Schoettle; M. Cui

    1991-01-01

    Net CO(2) uptake in full sunlight, total leaf area (TLA), projected leaf area of detached leaves (PLA), and the silhouette area of attached leaves in their natural orientation to the sun at midday on June 1 (SLA) were measured for sun shoots of six conifer species. Among species, TLA/SLA ranged between 5.2 and 10.0 (x bar = 7.3), TLA/PLA ranged between 2.5 and 2.9 (x...

  13. Regulating nutrient allocation in plants

    Science.gov (United States)

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  14. Nutrients for the aging eye

    Directory of Open Access Journals (Sweden)

    Rasmussen HM

    2013-06-01

    Full Text Available Helen M Rasmussen,1 Elizabeth J Johnson2 1Educational Studies, Lesley University, Cambridge, MA, USA; 2Carotenoid and Health Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA Abstract: The incidence of age-related eye diseases is expected to rise with the aging of the population. Oxidation and inflammation are implicated in the etiology of these diseases. There is evidence that dietary antioxidants and anti-inflammatories may provide benefit in decreasing the risk of age-related eye disease. Nutrients of interest are vitamins C and E, β-carotene, zinc, lutein, zeaxanthin, and the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. While a recent survey finds that among the baby boomers (45–65 years old, vision is the most important of the five senses, well over half of those surveyed were not aware of the important nutrients that play a key role in eye health. This is evident from a national survey that finds that intake of these key nutrients from dietary sources is below the recommendations or guidelines. Therefore, it is important to educate this population and to create an awareness of the nutrients and foods of particular interest in the prevention of age-related eye disease. Keywords: nutrition, aging, eye health

  15. Nutrient resorption from seagrass leaves

    NARCIS (Netherlands)

    Stapel, J.; Hemminga, M.A.

    1997-01-01

    The resorption of nutrients (C, N and P) from senescent leaves of six seagrass species from nine different locations in tropical (Indonesia and Kenya), Mediterranean (Spain) and temperate (The Netherlands) regions has been investigated. Resorption was quantitatively assessed by calculating the

  16. Recycling nutrients in algae biorefinery

    NARCIS (Netherlands)

    Garcia Alba, Laura; Vos, M.P.; Torri, C.; Fabbri, D.; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2013-01-01

    Algal fuel cells: Repeated nutrient recycling is demonstrated by reusing the aqueous phase obtained from the hydrothermal liquefaction (HTL) of microalgae. This is achieved, for the first time, by performing a complete set of four continuous growth–HTL cycles. Results show similar growth rates in

  17. Nutrient Management in Pine Forests

    Science.gov (United States)

    Allan E. Tiarks

    1999-01-01

    Coastal plain soils are naturally low in fertility and many pine stands will give an economic response to fertilization, especially phosphorus. Maintaining the nutrients that are on the site by limiting displacement of logging slash during and after the harvest can be important in maintaining the productivity of the site and reducing the amount of fertilizer required...

  18. Studies on the methods of inorganic nutrient application in coconut

    International Nuclear Information System (INIS)

    Dwivedi, R.S.; Ray, P.K.; Ninan, S.

    1981-01-01

    Using carrier free 32 P, tagged single superphosphate and 86 Rb, the efficiency of different methods of plant injection and soil placement techniques for fertilizer applications was examined. In the plant injection techniques the radioactivity was fed to the palms through growing roots tips, cut ends of roots, stem injection and leaf axils. The application of radioactivity through the cut ends of roots was most efficient since 32 P was detected in 10 m tall palms, four hours after application. In stem, leaf axil and growing roots tips injection the 32 P was detected after 8, 12 and 18 h. Out of four methods of soil application, the quickest recovery of 32 P in the palms was detected after 7 days of placement when applied by the hole method. The 32 P activity in the palms through circular trenches, strips and basin methods was recorded after 8, 8 and 11 days of application respectively. The accumulation of 86 Rb was significantly higher than 32 P. With plant injection technique the accumulation of activity was found to be significantly higher than with soil placement methods. The rate of radioactivity absorption was 10 to 60 time faster in the former technique as compared to that of the latter. The application of radioactivity through cut ends of roots and circular trench methods, were found to be better and may recommended for nutrient application in coconut. (orig.)

  19. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora

    OpenAIRE

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C. Berny Mier y; Mooney, Kailen A.; Moreira, Xoaquín

    2018-01-01

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any ...

  20. Effects of fertilization and rootstock on nutrient status and fruit set in sour cherry Prunus cerasus 'Stevnsbaer'

    DEFF Research Database (Denmark)

    Jensen, N. L.; Toldam-Andersen, Torben; Dencker, Ivar Blücher

    2007-01-01

    The purpose of this experiment was to investigate the effects of two potassium fertilization treatments on fruit set and flower bud, flower and bract leaf nutrient concentrations in Prunus cerasus 'Stevnsbaer' on Prunus avium and 'Colt' rootstocks. Single applications of KNO3 or KCl were applied ...

  1. Nutrient requirements, leaf tissue standards, and new options for fertigation of northern highbush blueberry

    Science.gov (United States)

    The differences between fertigation and granular fertilizer were compared using different sources of N fertilizer during the first 5 years of fruit production in northern highbush blueberry (Vaccinium corymbosum). Soil pH was slightly lower with granular fertilizers than with fertigation. However, l...

  2. Leaf Litter Decomposition and Nutrient Dynamics in Four Southern Forested Floodplain Communities

    Science.gov (United States)

    Terrell T. Baker; B. Graeme Lockaby; William H. Conner; Calvin E. Meier; John A. Stanturf

    2001-01-01

    Decomposition of site-specific litter mixtures was monitored for 100 wk in four Roodplaht communities: (i) a mixed oak community along the Cache River in central Arkansas, (ii) a sweetgum (Liquidambar styraciflua L.)-cherrybark oak (Quercus falcata var. pagodaefolia Ell.) community along Iatt Creek in...

  3. Assessing the ratio of leaf carbon to nitrogen in winter wheat and spring barley based on hyperspectral data

    Science.gov (United States)

    Xu, Xin-gang; Gu, Xiao-he; Song, Xiao-yu; Xu, Bo; Yu, Hai-yang; Yang, Gui-jun; Feng, Hai-kuan

    2016-10-01

    The metabolic status of carbon (C) and nitrogen (N) as two essential elements of crop plants has significant influence on the ultimate formation of yield and quality in crop production. The ratio of carbon to nitrogen (C/N) from crop leaves, defined as ratio of LCC (leaf carbon concentration) to LNC (leaf nitrogen concentration), is an important index that can be used to diagnose the balance between carbon and nitrogen, nutrient status, growth vigor and disease resistance in crop plants. Thus, it is very significant for effectively evaluating crop growth in field to monitor changes of leaf C/N quickly and accurately. In this study, some typical indices aimed at N estimation and chlorophyll evaluation were tested to assess leaf C/N in winter wheat and spring barley. The multi-temporal hyperspectral measurements from the flag-leaf, anthesis, filling, and milk-ripe stages were used to extract these selected spectral indices to estimate leaf C/N in wheat and barley. The analyses showed that some tested indices such as MTCI, MCARI/OSAVI2, and R-M had the better performance of assessing C/N for both of crops. Besides, a mathematic algorithm, Branch-and-Bound (BB) method was coupled with the spectral indices to assess leaf C/N in wheat and barley, and yielded the R2 values of 0.795 for winter wheat, R2 of 0.727 for spring barley, 0.788 for both crops combined. It demonstrates that using hyperspectral data has a good potential for remote assessment of leaf C/N in crops.

  4. SOIL EXCHANGEABLE ALUMINUM INFLUENCING THE GROWTH AND LEAF TISSUE MACRONUTRIENTS CONTENT OF CASTOR PLANTS

    Directory of Open Access Journals (Sweden)

    ROSIANE DE LOURDES SILVA DE LIMA

    2014-01-01

    Full Text Available Three castor ( Ricinus communis genotypes were studied regarding tolerance to high exchange factorial distribution of five doses of exchangeable aluminum added to the soil (0, 0.15, 0.30, 0.60, and 1.20 cmol c dm - 3 and three castor genotypes (BRS Nordestina, BRS Paraguaçu, and Lyra. The plants were raised in pots in a greenhouse. At 53 days after emergence, data were taken on plant height, leaf area, dry mass of shoot and root, and leaf tissue content of macronutrients. The most sensitive genotype was the cv. BRS Nordestina, in which the shoot and root dry weight in the highest aluminum content were reduced to 12.9% and 16.2% of the control treatment, respectively. The most tolerant genotype was the hybrid Lyra, in which the shoot and root dry weight in the maximum content of aluminum were reduced to 43.5% and 42.7% of the control treatment, respectively.The increased exchangeable aluminum affected the leaf nutrient content, and the intensity of the response was different among cultivars. The aluminum toxicity increased N, Ca, and Mg contents and reduced on P, K, and S contents. The cv. BRS Nordestina had a drastic shoot dry weight reduction associated with an intense increment in the N leaf content. Thus, the N increment was caused by a concentration effect caused by the limited growth.

  5. Growth, morphometrics and nutrient content of farmed eastern oysters, Crassostrea virginica (Gmelin), in New Hampshire, USA

    Science.gov (United States)

    When harvested, oysters represent a removal from the ecosystem of nutrients such as nitrogen (N)and carbon (C). A number of factors potentially affect nutrient content, but a quantitative understanding across the geographical range of the eastern oysters is lacking. This study wa...

  6. The Concentration of Nutrients in Tissues of Plantation-Grown Eastern Cottonwood (Populus deltoides Bart.)

    Science.gov (United States)

    M. G. Shelton; L. E. Nelson; G. L. Switzer; B. G. Blackmon

    1981-01-01

    Nutrient concentrations were determined for 10 tissues from each of 24 cottonwood trees that ranged in age from four to 16 years. Highest concentrations occurred in the most physiologically active tissues; i.e., stemtips, current branches and foliage. Tree age had little influence on the variation in nutrient concentration of tissues. Some differences in concentrations...

  7. Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides.

    Science.gov (United States)

    Zhou, Jian; Dong, Bi-Cheng; Alpert, Peter; Li, Hong-Li; Zhang, Ming-Xiang; Lei, Guang-Chun; Yu, Fei-Hai

    2012-03-01

    Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity. Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken. Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio. Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.

  8. Context-dependent effects of nutrient loading on the coral-algal mutualism.

    Science.gov (United States)

    Shantz, Andrew A; Burkepile, Deron E

    2014-07-01

    Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.

  9. Monitoring TASCC Injections Using A Field-Ready Wet Chemistry Nutrient Autoanalyzer

    Science.gov (United States)

    Snyder, L. E.; Herstand, M. R.; Bowden, W. B.

    2011-12-01

    Quantification of nutrient cycling and transport (spiraling) in stream systems is a fundamental component of stream ecology. Additions of isotopic tracer and bulk inorganic nutrient to streams have been frequently used to evaluate nutrient transfer between ecosystem compartments and nutrient uptake estimation, respectively. The Tracer Addition for Spiraling Curve Characterization (TASCC) methodology of Covino et al. (2010) instantaneously and simultaneously adds conservative and biologically active tracers to a stream system to quantify nutrient uptake metrics. In this method, comparing the ratio of mass of nutrient and conservative solute recovered in each sample throughout a breakthrough curve to that of the injectate, a distribution of spiraling metrics is calculated across a range of nutrient concentrations. This distribution across concentrations allows for both a robust estimation of ambient spiraling parameters by regression techniques, and comparison with uptake kinetic models. We tested a unique sampling strategy for TASCC injections in which samples were taken manually throughout the nutrient breakthrough curves while, simultaneously, continuously monitoring with a field-ready wet chemistry autoanalyzer. The autoanalyzer was programmed to measure concentrations of nitrate, phosphate and ammonium at the rate of one measurement per second throughout each experiment. Utilization of an autoanalyzer in the field during the experiment results in the return of several thousand additional nutrient data points when compared with manual sampling. This technique, then, allows for a deeper understanding and more statistically robust estimation of stream nutrient spiraling parameters.

  10. Leaf Protein and Mineral Concentrations across the "Miracle Tree" Genus Moringa.

    Science.gov (United States)

    Olson, Mark E; Sankaran, Renuka P; Fahey, Jed W; Grusak, Michael A; Odee, David; Nouman, Wasif

    2016-01-01

    The moringa tree Moringa oleifera is a fast-growing, drought-resistant tree cultivated across the lowland dry tropics worldwide for its nutritious leaves. Despite its nutritious reputation, there has been no systematic survey of the variation in leaf nutritional quality across M. oleifera grown worldwide, or of the other species of the genus. To guide informed use of moringa, we surveyed protein, macro-, and micro- nutrients across 67 common garden samples of 12 Moringa taxa, including 23 samples of M. oleifera. Moringa oleifera, M. concanensis, M. stenopetala, an M. concanensis X oleifera hybrid, and M. longituba were highest in protein, with M. ruspoliana having the highest calcium levels. A protein-dry leaf mass tradeoff may preclude certain breeding possibilities, e.g. maximally high protein with large leaflets. These findings identify clear priorities and limitations for improved moringa varieties with traits such as high protein, calcium, or ease of preparation.

  11. Leaf Protein and Mineral Concentrations across the “Miracle Tree” Genus Moringa

    Science.gov (United States)

    Sankaran, Renuka P.; Fahey, Jed W.; Grusak, Michael A.; Odee, David; Nouman, Wasif

    2016-01-01

    The moringa tree Moringa oleifera is a fast-growing, drought-resistant tree cultivated across the lowland dry tropics worldwide for its nutritious leaves. Despite its nutritious reputation, there has been no systematic survey of the variation in leaf nutritional quality across M. oleifera grown worldwide, or of the other species of the genus. To guide informed use of moringa, we surveyed protein, macro-, and micro- nutrients across 67 common garden samples of 12 Moringa taxa, including 23 samples of M. oleifera. Moringa oleifera, M. concanensis, M. stenopetala, an M. concanensis X oleifera hybrid, and M. longituba were highest in protein, with M. ruspoliana having the highest calcium levels. A protein-dry leaf mass tradeoff may preclude certain breeding possibilities, e.g. maximally high protein with large leaflets. These findings identify clear priorities and limitations for improved moringa varieties with traits such as high protein, calcium, or ease of preparation. PMID:27459315

  12. FEASIBILITY STUDY OF ANAEROBIC DIGESTION OF OCIMUM SANCTUM LEAF WASTE GENERATED FROM SANCTUM SANCTORUM

    Directory of Open Access Journals (Sweden)

    Korla Swapnavahini

    2010-02-01

    Full Text Available The waste originated in temples is presently piled up at one place and then disposed off in water bodies or dumped on land to decay, leading to water and soil pollution. The present work aims to determine the biogas yield and nutrient reduction potential of Ocimum sanctum (basil leaf waste obtained from temples. Laboratory scale digesters of 2.5 L capacity were used and fed with basil leaf waste, which was digested in a batch reactor for a retention period of 30 days at room temperature. Preliminary results indicate that the process is effective in reducing the pollution potential of the basil waste. The process removed up to 73% and 42% of total solids and BOD, respectively, along with biogas production.

  13. Leaf Protein and Mineral Concentrations across the "Miracle Tree" Genus Moringa.

    Directory of Open Access Journals (Sweden)

    Mark E Olson

    Full Text Available The moringa tree Moringa oleifera is a fast-growing, drought-resistant tree cultivated across the lowland dry tropics worldwide for its nutritious leaves. Despite its nutritious reputation, there has been no systematic survey of the variation in leaf nutritional quality across M. oleifera grown worldwide, or of the other species of the genus. To guide informed use of moringa, we surveyed protein, macro-, and micro- nutrients across 67 common garden samples of 12 Moringa taxa, including 23 samples of M. oleifera. Moringa oleifera, M. concanensis, M. stenopetala, an M. concanensis X oleifera hybrid, and M. longituba were highest in protein, with M. ruspoliana having the highest calcium levels. A protein-dry leaf mass tradeoff may preclude certain breeding possibilities, e.g. maximally high protein with large leaflets. These findings identify clear priorities and limitations for improved moringa varieties with traits such as high protein, calcium, or ease of preparation.

  14. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2013-09-01

    Full Text Available During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  15. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Science.gov (United States)

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  16. Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material.

    Directory of Open Access Journals (Sweden)

    John Hamblin

    Full Text Available Reduced levels of leaf chlorophyll content per unit leaf area in crops may be of advantage in the search for higher yields. Possible reasons include better light distribution in the crop canopy and less photochemical damage to leaves absorbing more light energy than required for maximum photosynthesis. Reduced chlorophyll may also reduce the heat load at the top of canopy, reducing water requirements to cool leaves. Chloroplasts are nutrient rich and reducing their number may increase available nutrients for growth and development. To determine whether this hypothesis has any validity in spring wheat requires an understanding of genotypic differences in leaf chlorophyll content per unit area in diverse germplasm. This was measured with a SPAD 502 as SPAD units. The study was conducted in series of environments involving up to 28 genotypes, mainly spring wheat. In general, substantial and repeatable genotypic variation was observed. Consistent SPAD readings were recorded for different sampling positions on leaves, between different leaves on single plant, between different plants of the same genotype, and between different genotypes grown in the same or different environments. Plant nutrition affected SPAD units in nutrient poor environments. Wheat genotypes DBW 10 and Transfer were identified as having consistent and contrasting high and low average SPAD readings of 52 and 32 units, respectively, and a methodology to allow selection in segregating populations has been developed.

  17. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  18. Thriving at the limit: Differential reproductive performance in range-edge populations of a Mediterranean sclerophyll (Olea europaea)

    Science.gov (United States)

    Granado-Yela, Carlos; Balaguer, Luis; García-Verdugo, Carlos; Carrillo, Katty; Méndez, Marcos

    2013-10-01

    Peripheral populations are often lumped together on the assumption of thriving in marginal habitats where reproductive performance is compromised. We have tested this hypothesis in peripheral populations of wild olive tree (Olea europaea L.) presumably limited by different factors at the westernmost limit of the species range. Additionally, we hypothesized that differences in reproductive outcome among populations are better explained by site-specific environmental conditions (PAR, soil water, soil nutrients, air humidity and air temperature) than by differences in phenotypic traits (tree size and leaf traits). To test these hypotheses, we assessed the number of flowering trees, the flowering intensity, fruit set and seed viability in eight populations for three consecutive years. Our findings provided sufficient evidence to reject the first hypothesis. Peripheral populations that occur under oceanic conditions, resembling the Tertiary subtropical climate, consistently presented higher values for all components of reproductive performance than those at the thermal and rainfall tolerance limits. In support of our second hypothesis, the variation in reproductive performance among populations was primarily accounted for by local environmental conditions. Leaf traits, however, also explained reproductive variation but to a lesser extent. Finally, we found that small changes in tree size may cause large differences in reproductive performance. This close relationship between tree size and reproductive performance suggests that any impact on population size structure would likely jeopardize persistence and expansion at the range edge. Our results suggest that reproductive performance of wild olive trees was not shaped by the population geographic position within the species range, but by the interaction between local environment, as the main driver, and individual phenotypic traits.

  19. Assessment of nutrient retention by Natete wetland Kampala, Uganda

    Science.gov (United States)

    Kanyiginya, V.; Kansiime, F.; Kimwaga, R.; Mashauri, D. A.

    Natete wetland which is located in a suburb of Kampala city in Uganda is dominated by C yperus papyrus and covers an area of approximately 1 km 2. The wetland receives wastewater and runoff from Natete town which do not have a wastewater treatment facility. The main objective of this study was to assess nutrient retention of Natete wetland and specifically to: determine the wastewater flow patterns in the wetland; estimate the nutrient loads into and out of the wetland; determine the nutrient retention by soil, plants and water column in the wetland; and assess the above and belowground biomass density of the dominant vegetation. Soil, water and plant samples were taken at 50 m intervals along two transects cut through the wetland; soil and water samples were taken at 10 cm just below the surface. Physico-chemical parameters namely pH, electrical conductivity and temperature were measured in situ. Water samples were analyzed in the laboratory for ammonium-nitrogen, nitrate-nitrogen, total nitrogen, orthophosphate and total phosphorus. Electrical conductivity ranged between 113 μS/cm and 530 μS/cm and the wastewater flow was concentrated on the eastern side of the wetland. pH varied between 6 and 7, temperature ranged from 19 °C to 24 °C. NH 4-N, NO 3-N, and TN concentrations were retained by 21%, 98%, and 35% respectively. Phosphorus concentration was higher at the outlet of the wetland possibly due to release from sediments and leaching. Nutrient loads were higher at the inlet (12,614 ± 394 kgN/day and 778 ± 159 kgP/day) than the outlet (2368 ± 425 kgN/day and 216 ± 56 kgP/day) indicating retention by the wetland. Plants stored most nutrients compared to soil and water. The belowground biomass of papyrus vegetation in the wetland was higher (1288.4 ± 8.3 gDW/m 2) than the aboveground biomass (1019.7 ± 13.8 gDW/m 2). Plant uptake is one of the important routes of nutrient retention in Natete wetland. It is recommended that harvesting papyrus can be an

  20. Soil nutrient assessment for urban ecosystems in Hubei, China.

    Directory of Open Access Journals (Sweden)

    Zhi-Guo Li

    Full Text Available Recent urban landscape vegetation surveys conducted in many cities in China identified numerous plant nutrient deficiencies, especially in newly developed cities. Soil nutrients and soil nutrient management in the cities of Hubei province have not received adequate attention to date. The aims of this study were to characterize the available nutrients of urban soils from nine cities in Hubei province, China, and to assess how soil nutrient status is related to land use type and topography. Soil nutrients were measured in 405 sites from 1,215 soil samples collected from four land use types (park, institutional [including government building grounds, municipal party grounds, university grounds, and garden city institutes], residential, and roadside verges and three topographies (mountainous [142-425 m a.s.l], hilly [66-112 m a.s.l], and plain [26-30 m a.s.l]. Chemical analyses showed that urban soils in Hubei had high pH and lower soil organic matter, available nitrogen (N, available phosphorus (P, and available boron (B concentrations than natural soils. Nutrient concentrations were significantly different among land use types, with the roadside and residential areas having greater concentrations of calcium (Ca, sulfur (S, copper (Cu, manganese (Mn, and zinc (Zn that were not deficient against the recommended ranges. Topographic comparisons showed statistically significant effects for 8 of the 11 chemical variables (p < 0.05. Concentrations of N, Ca, Mg, S, Cu, and Mn in plain cities were greater than those in mountainous cities and show a negative correlation with city elevation. These results provide data on urban soils characteristics in land use types and topography, and deliver significant information for city planners and policy makers.

  1. An Outbreak of Foxglove Leaf Poisoning

    Directory of Open Access Journals (Sweden)

    Chun-Chi Lin

    2010-02-01

    Full Text Available Comfrey (Symphytum officinale leaves resemble those of foxglove (Digitalis purpurea when the plant is not in bloom and, therefore, cardiac glycoside poisoning may occur when people confuse foxglove with comfrey. We report an outbreak of foxglove leaf poisoning following the use of alleged “comfrey” herbal tea. Nine patients were involved and initially presented with nausea, vomiting, diarrhea and dizziness. Significant cardiotoxicity developed later among the 3 patients who also had mild hyperkalemia. Peak serum digoxin concentration measured by immunoassay was elevated in all patients and ranged from 4.4 ng/mL to 139.5 ng/mL. Patients with severe cardiotoxicity were treated with temporary cardiac pacing. Moreover, 40–80 mg of digoxin-specific antibody therapy was given without any effect. All patients recovered uneventfully. Our report highlights the potential risk of misidentification of herbs; in this case, D. purpurea was mistaken for S. officinale. Physicians should be aware that cardiac glycoside poisoning could arise from such misidentification. Public education about the toxicity of D. purpurea poisoning may reduce the risk of misidentification and subsequent poisoning.

  2. An outbreak of foxglove leaf poisoning.

    Science.gov (United States)

    Lin, Chun-Chi; Yang, Chen-Chang; Phua, Dong-Haur; Deng, Jou-Fang; Lu, Li-Hua

    2010-02-01

    Comfrey (Symphytum officinale) leaves resemble those of foxglove (Digitalis purpurea) when the plant is not in bloom and, therefore, cardiac glycoside poisoning may occur when people confuse foxglove with comfrey. We report an outbreak of foxglove leaf poisoning following the use of alleged "comfrey" herbal tea. Nine patients were involved and initially presented with nausea, vomiting, diarrhea and dizziness. Significant cardiotoxicity developed later among the 3 patients who also had mild hyperkalemia. Peak serum digoxin concentration measured by immunoassay was elevated in all patients and ranged from 4.4 ng/mL to 139.5 ng/mL. Patients with severe cardiotoxicity were treated with temporary cardiac pacing. Moreover, 40-80 mg of digoxin-specific antibody therapy was given without any effect. All patients recovered uneventfully. Our report highlights the potential risk of misidentification of herbs; in this case, D. purpurea was mistaken for S. officinale. Physicians should be aware that cardiac glycoside poisoning could arise from such misidentification. Public education about the toxicity of D. purpurea poisoning may reduce the risk of misidentification and subsequent poisoning. Copyright 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  3. Nutrient discharge from China’s aquaculture industry and associated environmental impacts

    Science.gov (United States)

    Zhang, Ying; Bleeker, Albert; Liu, Junguo

    2015-04-01

    China’s aquaculture industry accounts for the largest share of the world’s fishery production, and provides a principal source of protein for the nation’s booming population. However, the environmental effects of the nutrient loadings produced by this industry have not been systematically studied or reviewed. Few quantitative estimates exist for nutrient discharge from aquaculture and the resultant nutrient enrichment in waters and sediments. In this paper, we evaluate nutrient discharge from aquacultural systems into aquatic ecosystems and the resulting nutrient enrichment of water and sediments, based on data from 330 cases in 51 peer-reviewed publications. Nitrogen use efficiency ranged from 11.7% to 27.7%, whereas phosphorus use efficiency ranged from 8.7% to 21.2%. In 2010, aquacultural nutrient discharges into Chinese aquatic ecosystems included 1044 Gg total nitrogen (184 Gg N from mariculture; 860 Gg N freshwater culture) and 173 Gg total phosphorus (22 Gg P from mariculture; 151 Gg P from freshwater culture). Water bodies and sediments showed high levels of nutrient enrichment, especially in closed pond systems. However, this does not mean that open aquacultural systems have smaller nutrient losses. Improvement of feed efficiency in cage systems and retention of nutrients in closed systems will therefore be necessary. Strategies to increase nutrient recycling, such as integrated multi-trophic aquaculture, and social measures, such as subsidies, should be increased in the future. We recommend the recycling of nutrients in water and sediments by hybrid agricultural-aquacultural systems and the adoption of nutrient use efficiency as an indicator at farm or regional level for the sustainable development of aquaculture; such indicators; together with water quality indicators, can be used to guide evaluations of technological, policy, and economic approaches to improve the sustainability of Chinese aquaculture.

  4. Nutrient management for rice production

    International Nuclear Information System (INIS)

    Khan, A.R.; Chandra, D.; Nanda, P.; Singh, S.S.; Singh, S.R.; Ghorai, A.K.

    2002-06-01

    The nutrient removed by the crops far exceeds the amounts replenished through fertilizer, causing a much greater strain on the native soil reserves. The situation is further aggravated in countries like India, where sub-optimal fertilizer used by the farmers is a common phenomenon rather than an exception. The total consumption of nutrients of all crops in India, even though reached 15 million tons in 1997, remains much below the estimated nutrient removal of 25 million tons (Swarup and Goneshamurthy, 1998). The gap between nutrient removal supplied through fertilizer has widened further in 2000 to 34 million tons of plant nutrients from the soil against an estimated fertilizer availability of 18 million tons (Singh and Dwivedi, 1996). Nitrogen is the nutrient which limits the most the rice production worldwide. In Asia, where more than 90 percent of the world's rice is produced, about 60 percent of the N fertilizer consumed is used on rice (Stangel and De Dutta, 1985). Conjunctive use of organic material along with fertilizer has been proved an efficient source of nitrogen. Organic residue recycling is becoming an increasingly important aspect of environmentally sound sustainable agriculture. Returning residues like green manure to the soil is necessary for maintaining soil organic matter, which is important for favourable soil structure, soil water retention and soil microbial flora and fauna activities. Use of organic manures in conjunction or as an alternative to chemical fertilizer is receiving attention. Green manure, addition to some extent, helps not only in enhancing the yield but also in improving the physical and chemical nature of soils. The excessive application of chemical fertilizers made it imperative that a part of inorganic fertilizer may be substituted with the recycling of organic wastes. Organic manure has been recorded to enhance the efficiency and reduce the requirement of chemical fertilizers. Partial nitrogen substitution through organic

  5. Cellular and molecular aspects of quinoa leaf senescence.

    Science.gov (United States)

    López-Fernández, María Paula; Burrieza, Hernán Pablo; Rizzo, Axel Joel; Martínez-Tosar, Leandro Julián; Maldonado, Sara

    2015-09-01

    During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves. Published by Elsevier Ireland Ltd.

  6. Optimal allocation of leaf epidermal area for gas exchange.

    Science.gov (United States)

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.

  7. Nutrient supply of plants in aquaponic systems

    Directory of Open Access Journals (Sweden)

    Andras Bittsanszky

    2016-10-01

    Full Text Available In this preliminary article we present data on plant nutrient concentrations in aquaponics systems, and we compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in the aquaponics system are significantly lower for most nutrients compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels compared to “standard” hydroponic solutions. This is especially true for green leafy vegetables that rarely need additional nutritional supplementation. It is concluded that in the highly complex system of aquaponics, special care has to be taken, via continuous monitoring of the chemical composition of the circulating water, to provide adequate concentrations and ratios of nutrients, and especially for the potentially toxic component, ammonium. If certain plants require nutrient supplementation, we consider that one based on organic substances would be most beneficial. However, protocols for the application of such nutrient amendments still need to be developed.

  8. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan; Duarte, Carlos M.; Irigoien, Xabier

    2016-01-01

    Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week

  9. The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences

    Directory of Open Access Journals (Sweden)

    Judith Sitters

    2017-04-01

    Full Text Available It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N and phosphorus (P recycled through herbivore release (i.e., waste N:P are mainly determined by the stoichiometric composition of the herbivore's food (food N:P and its body nutrient content (body N:P. Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C:N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

  10. Nutrient retranslocation in forest species in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Murilo Rezende Machado

    2016-01-01

    Full Text Available Internal retranslocation is an important mechanism for nutrient conservation in plants, which depends on different factors. However, there are little data about this subject, especially on tropical forest species. This study aimed to evaluate the macronutrient retranslocation dynamic and the influence of ecological (P: pioneer x NP: non-pioneer and phenological (ND: non-deciduous x D: semideciduous / deciduous characteristics on the macronutrient content of leaves of five tree species on monospecific plantations in the Brazilian Amazon: Acacia mangium Willd., Parkia decussata Ducke, Dipteryx odorata (Aublet Willd., Jacaranda copaia (Aubl. D. Don and Swietenia macrophylla King. Photosynthetically active green leaves and senescent leaves (leaf litter were collected. Retranslocation was estimated through an equation proposed by Attiwill, Guthrie and Leuning (1978. The pioneer species presented higher foliar contents of N; the non-pioneer species presented higher contents of K, Ca and S; and the results were inconclusive for P and Mg. The deciduous species presented higher foliar contents of K and of P, whereas the foliar contents of N, Ca, Mg and S were virtually identical between the phenological groups. The internal retranslocation of foliar nutrients in pioneer and non-deciduous species was higher than that of non-pioneer and deciduous species.

  11. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    Science.gov (United States)

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by

  12. Leaf Physiological and Morphological Responses to Shade in Grass-Stage Seedlings and Young Trees of Longleaf Pine

    Directory of Open Access Journals (Sweden)

    Lisa J. Samuelson

    2012-08-01

    Full Text Available Longleaf pine has been classified as very shade intolerant but leaf physiological plasticity to light is not well understood, especially given longleaf pine’s persistent seedling grass stage. We examined leaf morphological and physiological responses to light in one-year-old grass-stage seedlings and young trees ranging in height from 4.6 m to 6.3 m to test the hypothesis that young longleaf pine would demonstrate leaf phenotypic plasticity to light environment. Seedlings were grown in a greenhouse under ambient levels of photosynthetically active radiation (PAR or a 50% reduction in ambient PAR and whole branches of trees were shaded to provide a 50% reduction in ambient PAR. In seedlings, shading reduced leaf mass per unit area (LMA, the light compensation point, and leaf dark respiration (RD, and increased the ratio of light-saturated photosynthesis to RD and chlorophyll b and total chlorophyll expressed per unit leaf dry weight. In trees, shading reduced LMA, increased chlorophyll a, chlorophyll b and total chlorophyll on a leaf dry weight basis, and increased allocation of total foliar nitrogen to chlorophyll nitrogen. Changes in leaf morphological and physiological traits indicate a degree of shade tolerance that may have implications for even and uneven-aged management of longleaf pine.

  13. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    Science.gov (United States)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  14. Phylogenetic Distribution of Leaf Spectra and Optically Derived Functional Traits in the American Oaks

    Science.gov (United States)

    Cavender-Bares, J.; Meireles, J. E.; Couture, J. J.; Kaproth, M.; Townsend, P. A.

    2015-12-01

    Detecting functional traits of species, genotypes and phylogenetic lineages is critical in monitoring functional biodiversity remotely. We examined the phylogenetic distribution of leaf spectra across the American Oaks for 35 species under greenhouse conditions as well as genetic variation in leaf spectra across Central American populations of a single species grown in common gardens in Honduras. We found significant phylogenetic signal in the leaf spectra (Blomberg's K > 1.0), indicating similarity in spectra among close relatives. Across species, full range leaf spectra were used in a Partial Least Squares Discriminant Analysis (PLS-DA) that allowed species calibration (kappa statistic = 0.55). Validation of the model used to detect species (kappa statistic = 0.4) indicated reasonably good detection of individual species within the same the genus. Among four populations from Belize, Costa Rica, Honduras, and Mexico within a single species (Quercus oleoides), leaf spectra were also able to differentiate populations. Ordination of population-level data using dissimilarities of predicted foliar traits, including leaf mass per area (LMA), lignin content, fiber content, chlorophyll a+b, and C:N ratio in genotypes in either watered or unwatered conditions showed significant differentiation among populations and treatments. These results provide promise for remote detection and differentiation of plant functional traits among plant phylogenetic lineages and genotypes, even among closely related populations and species.

  15. Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

    Science.gov (United States)

    Royer, Dana L.; Meyerson, Laura A.; Robertson, Kevin M.; Adams, Jonathan M.

    2009-01-01

    Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables. PMID:19893620

  16. Determination of dew absorption by coffee plant through deuterium concentrations in leaf water

    Energy Technology Data Exchange (ETDEWEB)

    Leopoldo, P R [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil); Salati, E; Matsui, E [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    1975-12-01

    The effect of dew falling on leaves on the water metabolism of the coffee plant (Coffea arabica) is examined. The use of natural stable isotopes variations in plant physiological studies is demonstrated. Water extracted from leaf samples is analysed by mass spectrometry. Analyses of deuterium concentrations in water extracted from plant leaves, dew and nutrient solutions are made. Determination of changes in deuterium concentration in the water of leaves from plants exposed to dew, compared with leaves not exposed to dew, is carried out. Results show that during daytime there is an enrichment in deuterium in water contained in the leaves, while at night the opposite occurs.

  17. Determination of dew absorption by coffee plant through deuterium concentrations in leaf water

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Salati, E.; Matsui, E.

    1975-01-01

    The effect of dew falling on leaves on the water metabolism of the coffee plant (Coffea arabica) is examined. The use of natural stable isotopes variations in plant physiological studies is demonstrated. Water extracted from leaf samples is analysed by mass spectrometry. Analyses of deuterium concentrations in water extracted from plant leaves, dew and nutrient solutions are made. Determination of changes in deuterium concentration in the water of leaves from plants exposed to dew, compared with leaves not exposed to dew, is carried out. Results show that during daytime there is an enrichment in deuterium in water contained in the leaves, while at night the opposite occurs [pt

  18. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich

    2016-02-01

    Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.

  19. Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies.

    Science.gov (United States)

    Saura-Mas, S; Lloret, F

    2007-03-01

    Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to determine whether there is co-variation between species regenerative types and functional attributes related to water use. An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities.

  20. Automated nutrient analyses in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  1. Composição mineral da folha em abacaxizeiro: efeito da parte da folha analisada Mineral composition of the leaf in pineapple: effect of the part of the analysed leaf

    Directory of Open Access Journals (Sweden)

    SUSANA CRISTINE SIEBENEICHLER

    2002-04-01

    Full Text Available A padronização da amostragem para a análise foliar em abacaxizeiros é importante para a obtenção de resultados confiáveis. Neste aspecto, este trabalho visa a esclarecer a variação da composição mineral da folha de abacaxi, em plantas desenvolvidas em solo arenoso, sem irrigação. As folhas foram coletadas, limpas e divididas em 4 porções: aclorofilada, basal, mediana e apical. Após a secagem, as amostras foram pesadas, submetidas à digestão e analisadas pela metodologia adequada a cada nutriente. Uma grande variação no teor dos nutrientes foi encontrada ao longo da folha de abacaxi. Uma comparação confiável pode ser estabelecida entre as análises feitas com a folha inteira e a porção clorofilada da folha; o mesmo já não pode ser dito para a porção aclorofilada. Assim, este trabalho vem confirmar a necessidade da padronização da amostragem.The standardization of the sampling for foliar analysis in pineapple is important to obtain reliable results. In this aspect this work seeks to identify the variation of the mineral composition of pineapple leaf, in plants developed in sandy soil, without irrigation. The leaves were collected, cleaned and divided in 4 parts: non-chlorophyllated, basal, medium and apical. After the drying, the samples were weighted, digested, and analyzed by the appropriate methodology for each nutrient. A great variation in the concentration of the nutrients was found along the pineapple leaf. A reliable comparison of the analysis can be established between the whole leaf and the chlorophyllated portion of the leaf; the same does not apply to the non-chlorophyllated portion of the same leaf. This paper confirms the need of the standardization of leaf sampling for mineral composition evaluation.

  2. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    In both these wastewaters nutrients were not added. A simple formula is introduced to calculate nutrient requirements based on removal efficiency and observed biomass yield coefficient. Key Words: Olive mill wastewater; anaerobic treatment; aerobic treatment; sequencing batch reactor; biomass yield; nutrient requirement.

  3. Nutrient quality of fast food kids meals

    Science.gov (United States)

    Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...

  4. Nutrient surpluses on integrated arable farms

    NARCIS (Netherlands)

    Schröder, J.J.; Asperen, van P.; Dongen, van G.J.M.; Wijnands, F.G.

    1996-01-01

    From 1990 to 1993 nutrient fluxes were monitored on 38 private arable farms that had adopted farming strategies aiming at reduced nutrient inputs and substitution of mineral fertilizers by organic fertilizers. The nutrient surplus was defined as the difference between inputs (including inputs

  5. 7 CFR 30.31 - Classification of leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  6. What Is a Leaf? An Online Tutorial and Tests

    Science.gov (United States)

    Burrows, Geoffrey

    2008-01-01

    A leaf is a fundamental unit in botany and understanding what constitutes a leaf is fundamental to many plant science activities. My observations and subsequent testing indicated that many students could not confidently and consistently recognise a leaf from a leaflet, or recognise basic leaf arrangements and the various types of compound or…

  7. Effects of some growth regulating applications on leaf yield, raw ...

    African Journals Online (AJOL)

    This study investigated the effects of repetitive applications of herbagreen (HG), humic acid (HA), combined foliar fertilizer (CFF) and HG+CFF performed in the Müsküle grape variety grafted on 5 BB rootstock on fresh or pickled leaf size and leaf raw cellulose content. HA application increased leaf area and leaf water ...

  8. Leaf, stem bark and fruit anatomy of zanthoxylum armatum dc. (rutaceae)

    International Nuclear Information System (INIS)

    Barkatullah, A.; Ibrar, M.; Jelani, G.; Ahmad, I.

    2014-01-01

    Zanthoxylum armatum DC. (Rutaceae) is an important medicinal plant. The present study deals with anatomical exploration of the leaf, stem bark and fruit of this plant. Leaf of Z. armatum is bifacial, compound and punctate with glabrous surfaces having a single layer of epidermis and palisade mesophyll. The leaf has a Palisade ratio ranged from 6.00 to 9.00 (8.2 +- 0.32). Vein islets and vein termination number were 14-21 (16.8 +- 0.64) and 17-21 (19.1 +- 0.43) per mm2 respectively. The vein-islets were quite distinct with squaresh, elongated, polygonal or irregular in shape bounding many forked and unforked vascular branches. Adaxial surface of Z. armatum leaf midrib was planoconvex while the abaxial surface was semicircular in appearance. The diagnostic feature of the leaf was the complete absence of any kind of trichomes or any other appendages. The leaf showed prominent oil cavities. Nine types of stomata with different frequencies and other dimensions were observed. Brachparatetracytic stomata was the most frequent stoma (80%) followed by actinostephanocytic (40%) and then straucytic and brachyparacytic (30%) each. Hemiparacytic and stomatal cluster were the rarely occurring stomata (10% each) present on the lower epidermis of the leaf. Stomatal cluster, which is considered to be a special leaf epidermal feature and reported only in few genera of vascular plants, was also recorded in this plant. Bark and fruit anatomy of Z. armatum showed different tissue arrangement. The seed was non endospermic and contains an elongated embryo. The present study will be helpful in the phylogeny and taxonomic description of this important medicinal plant. (author)

  9. Spectral Quantitation Of Hydroponic Nutrients

    Science.gov (United States)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  10. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    Science.gov (United States)

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Growth and Nutrient Use Efficiencies of Yams (Dioscorea spp. Grown in Two Contrasting Soils of West Africa

    Directory of Open Access Journals (Sweden)

    Lucien N'Guessan Diby

    2011-01-01

    Full Text Available Fertilization is an important management strategy of yams (Dioscorea spp. especially when grown in degraded soils. A field study evaluated the leaf numbers, leaf area indices, crop growth, yields, and nitrogen (N and potassium (K use efficiencies of D. alata and D. rotundata in Côte d'Ivoire when grown in two contrasting soils with and without fertilizer. D. alata had a lower number of leaves per vine, although leaf area indices were higher, and the leaves were retained for a longer period than in D. rotundata. In all situations, the yields of D. alata were significantly higher, and fertilizers promoted growth of shoots, roots, tubers, and, thus, final yields especially in the low fertile savanna soil. The beneficial impact of fertilizer on yields was significantly lower in the fertile forest soils. The nutrient use agronomic efficiencies indicated the impact of both N and K in promoting yields especially under nonfertilized conditions.

  12. Rhizosphere priming: a nutrient perspective

    Directory of Open Access Journals (Sweden)

    Feike Auke Dijkstra

    2013-07-01

    Full Text Available Rhizosphere priming is the change in decomposition of soil organic matter (SOM caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P limited. Under P limitation, rhizodeposition may be used for mobilisation of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils.

  13. PHARMACOGNOSITIC STUDIES OF THE LEAF AND STEMBARK ...

    African Journals Online (AJOL)

    PHARMACOGNOSITIC STUDIES OF THE LEAF AND STEMBARK OF STEGANOTAENIA ARALIACEAE HOCHST. Z Mohammed, M Shok, EM Abdurahman. Abstract. Microscopical investigation of the powdered leaves and stembark of Steganotaenia araliaceae (family Umbelliferae) shows the presence of anisocytic ...

  14. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  15. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Science.gov (United States)

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  16. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses

    NARCIS (Netherlands)

    Zhao, Zhanqing; Bai, Zhaohai; Wei, Sha; Ma, Wenqi; Wang, Mengru; Kroeze, Carolien; Ma, Lin

    2017-01-01

    Years of poor nutrient management practices in the agriculture industry in the North China Plain have led to large losses of nutrients to the environment, causing severe ecological consequences. Analyzing farm nutrient flows is urgently needed in order to reduce nutrient losses. A farm-level

  17. Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply.

    Science.gov (United States)

    Gulis, Vladislav; Kuehn, Kevin A; Schoettle, Louie N; Leach, Desiree; Benstead, Jonathan P; Rosemond, Amy D

    2017-12-01

    Aquatic fungi mediate important energy and nutrient transfers in freshwater ecosystems, a role potentially altered by widespread eutrophication. We studied the effects of dissolved nitrogen (N) and phosphorus (P) concentrations and ratios on fungal stoichiometry, elemental homeostasis, nutrient uptake and growth rate in two experiments that used (1) liquid media and a relatively recalcitrant carbon (C) source and (2) fungi grown on leaf litter in microcosms. Two monospecific fungal cultures and a multi-species assemblage were assessed in each experiment. Combining a radioactive tracer to estimate fungal production (C accrual) with N and P uptake measurements provided an ecologically relevant estimate of mean fungal C:N:P of 107:9:1 in litter-associated fungi, similar to the 92:9:1 obtained from liquid cultures. Aquatic fungi were found to be relatively homeostatic with respect to their C:N ratio (~11:1), but non-homeostatic with respect to C:P and N:P. Dissolved N greatly affected fungal growth rate and production, with little effect on C:nutrient stoichiometry. Conversely, dissolved P did not affect fungal growth and production but controlled biomass C:P and N:P, probably via luxury P uptake and storage. The ability of fungi to immobilize and store excess P may alter nutrient flow through aquatic food webs and affect ecosystem functioning.

  18. Seasonal amounts of nutrients in Western cherry fruit fly (Diptera: Tephritidae) and their relation to nutrient availability on cherry plant surfaces.

    Science.gov (United States)

    Yee, Wee L; Chapman, Peter S

    2008-10-01

    Relatively little is known about the nutritional ecology of fruit flies in the genus Rhagoletis. In this study, nutrient amounts in male and female western cherry fruit fly, Rhagoletis indifferens Curran, and availability of nitrogen and sugar on surfaces of leaves, fruit, and extrafloral nectaries (EFNs) of sweet cherry trees, were determined from late May to late June 2005 and of sugar from EFNs from mid-May to late June 2007 in Washington state. Protein amounts in male and female flies did not differ over the season. Nitrogen was present on leaves, fruit, and EFNs during the sampling period, but amounts on leaves and fruit were lower in late May than the rest of the season. Sugar amounts in flies did not differ over the season. Sugar was present on leaf, fruit, and EFN surfaces all season, but amounts on all three were lower in late May than later in the season. Fructose and glucose were the predominant sugars on all plant surfaces, but sucrose was also present in nectar from EFNs. In outdoor and field cage experiments in 2004 and 2006, more flies survived when cherry branches with leaves and fruit were present than absent. Results suggest that R. indifferens maintains stable protein and sugar levels throughout the season because sufficient amounts of nutrients are found in cherry trees during this time and that increases in nutrient availability caused by ripening and damaged cherries later in the season do not result in increased amounts of nutrients in flies.

  19. Agronomic Biofortification of Amaranthus dubius with Macro Nutrients and Vitamin A

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby; Mahalakshmi, R.; Rajeswari, S.

    2017-08-01

    Agronomic biofortification of Amaranthus dubius with carbohydrates, proteins and Vitamin A using Spirulina platensis is reported in the present preliminary study. S. platensis was applied basally to field and its influence on germination, concentration of proteins, carbohydrates, chlorophyll, carotenoids and antioxidant activity of leaves were assessed in CO1 variety of A. dubius. Biofortification of the nutrients were evaluated on 5th and 20th day. Germination was optimum at 0.005 % of S. platensis as a fertilizer and the agronomic fortifying agent. Germination in control was 82 % and 95 % in 0.005 % of S. platensis fortification. The concentration of total chlorophyll in control and biofortified leaf on 20th day were 85.6 mg/g and 325 mg/g of dried leaf. The concentration of proteins was 71.93 mg/g and 450 mg/g on 20th day in control and fortified leaves. S. platensis applied field produced leaves fortified with 1.27 % of vitamin A aldehyde. Antioxidant activity of control leaf was 34.85 % and it was significantly increased in fortified leaves to 87 %. Thus the study confirms the fortification of leaf with proteins, carbohydrates and vitamin A.

  20. Different growing conditions affect nutrient content, fruit yield and growth in strawberry

    International Nuclear Information System (INIS)

    Demirsory, L.; Demirsoy, H.; Balci, G.

    2011-01-01

    This study aimed to determine the effects of organic and conventional growing on contents of some nutrient elements, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), and manganese (Mn), yield and some growth parameters such as leaf area, petiole length, petiole diameter, crown number, crow n diameter, leaf, root dry weight in 'Sweet Charlie' and 'Camarosa' strawberry cultivars. This study consisted of two strawberry cultivars ('Camarosa' and 'Sweet Charlie'), two growing systems (organic and conventional growing) and two different mulches (black and floating sheet). There was significant difference among treatments in terms of P, K, and Mn content in root and Fe content in leaf and yield and some growth parameters. The best treatment in terms of yield and growth parameters was conventional growing with black plastic in 'Camarosa' while the best treatments were organic growing with floating sheet and black plastic in 'Sweet Charlie' in terms of P, K in root and organic growing with floating sheet in 'Sweet Charlie' in terms of Fe in leaf. (author)

  1. Assessing Nutrient Intake and Nutrient Status of HIV Seropositive Patients Attending Clinic at Chulaimbo Sub-District Hospital, Kenya

    Directory of Open Access Journals (Sweden)

    Agatha Christine Onyango

    2012-01-01

    Full Text Available Background. Nutritional status is an important determinant of HIV outcomes. Objective. To assess the nutrient intake and nutrient status of HIV seropositive patients attending an AIDS outpatient clinic, to improve the nutritional management of HIV-infected patients. Design. Prospective cohort study. Setting. Comprehensive care clinic in Chulaimbo Sub-District Hospital, Kenya. Subjects. 497 HIV sero-positive adults attending the clinic. Main Outcome Measures. Evaluation of nutrient intake using 24-hour recall, food frequency checklist, and nutrient status using biochemical assessment indicators (haemoglobin, creatinine, serum glutamate pyruvate (SGPT and mean corpuscular volume (MCV. Results. Among the 497 patients recruited (M : F sex ratio: 1.4, mean age: 39 years ± 10.5 y, Generally there was inadequate nutrient intake reported among the HIV patients, except iron (10.49 ± 3.49 mg. All the biochemical assessment indicators were within normal range except for haemoglobin 11.2 g/dL (11.4 ± 2.60 male and 11.2 ± 4.25 female. Conclusions. Given its high frequency, malnutrition should be prevented, detected, monitored, and treated from the early stages of HIV infection among patients attending AIDS clinics in order to improve survival and quality of life.

  2. Industrious leaf cutter ants and their carbon footprints

    Science.gov (United States)

    Swanson, A. C.; Dierick, D.; Trahan, N. A.; Allen, M. F.; Schwendenmann, L.; Harmon, T. C.; Oberbauer, S. F.; Fernandez Bou, A. S.; Zelikova, T. J.

    2017-12-01

    Leaf cutter ants (LCA) are considered ecosystem engineers in Neotropical forest ecosystems because they alter physical and environmental conditions for other organisms. LCA excavate large underground nests, maintaining intricate tunnels and fungal and waste chambers, and they continuously bring in vast amounts of fresh leaf material. In order to understand their ecosystem-wide impacts, we set out to determine whether their engineering activities fundamentally alter soil structure, soil nutrient pools, and gas fluxes in a wet tropical rainforest in Costa Rica. To directly compare LCA nest to non-nest sites, we utilized embedded sensor arrays with series of soil moisture, CO2, O2, and temperature sensors placed at four soil depths and automated minirhizotrons (AMR) to measure root and hyphal production and turnover. We also collected soils for biogeochemical analyses and measured soil CO2 fluxes and carbon isotope ratios of below-ground CO2 for two years. Our measurements confirmed that LCA alter their soil environment to regulate internal soil CO2 concentrations, moisture, and temperature, increasing O2 concentrations in the process. There were marked differences in soil structure inside nests relative to non-nests and these were associated with increased root and hyphal production and turnover in nests. Soil C, N, P, and their respective degrading enzymes were highly variable among sites and between nests and controls but N and P increased with soil depth and were generally higher in nests than controls. Contrary to our expectations, C mineralization rates were lower in nests but CO2 fluxes were high from nest vents and similar to non-nests elsewhere. At the system scale, LCA appear to fundamentally change the soil environment inside their nests and create spatial heterogeneity in biogeochemical processes and root and hyphal growth, influencing the overall C balance of Neotropical forests.

  3. Wind increases leaf water use efficiency.