WorldWideScience

Sample records for layer transition protuberance

  1. Separating semiconductor devices from substrate by etching graded composition release layer disposed between semiconductor devices and substrate including forming protuberances that reduce stiction

    Science.gov (United States)

    Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis

    2015-05-12

    A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.

  2. Boundary layer transition studies

    Science.gov (United States)

    Watmuff, Jonathan H.

    1995-02-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  3. Boundary layer transition studies

    Science.gov (United States)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  4. Transition in hypersonic boundary layers

    Science.gov (United States)

    Zhang, Chuanhong; Zhu, Yiding; Chen, Xi; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2015-10-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second-mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves, which triggers a fast transition to turbulence.

  5. Transition in hypersonic boundary layers

    Directory of Open Access Journals (Sweden)

    Chuanhong Zhang

    2015-10-01

    Full Text Available Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second-mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves, which triggers a fast transition to turbulence.

  6. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    Science.gov (United States)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  7. Applications of Hydrofoils with Leading Edge Protuberances

    Science.gov (United States)

    2012-03-30

    APPLICATIONS OF HYDROFOILS WITH LEADING EDGE PROTUBERANCES Final Technical Report for Office of Naval Research contract...To) 03/30/2012 Final Technical Report 01-08-2008 to 31-12-2011 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Applications of Hydrofoils with Leading...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The leading edge modified hydrofoils

  8. Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing

    Institute of Scientific and Technical Information of China (English)

    胡文蓉; 张仕栋; 王雅赟

    2014-01-01

    It is shown that the leading edge protuberances on the flippers of a humpback whale can significantly improve the hydrodynamic performance. The present study numerically investigates the flow control mechanisms of the leading edge protuberances on a static wing and a pitching wing. For static wings, the performance in both laminar flow and turbulent flow are studied in the context of the flow control mechanisms. It is shown that the protuberances have slight effects on the performance of static wings in laminar flow. Also, it could be deduced that non-uniform downwash does not delay the stall occurrence in either laminar flow or turbulent flow. In turbulent flow, the leading edge protuberances act in a manner similar to vortex generators, enhancing the momentum exchange within the boundary layer. Streamwise vortices do contribute to the delay of the stall occurrence. The normal vorticity component also plays an important role in delaying the stall occurrence. However, for the pitching wing, the effect of leading edge protuberances is negligible in turbulent flow. Detailed analysis of the flow field indicates that for the wing with the leading edge protuberances, the leading edge vortices become more complex, while the thrust jet and the vortices in the wake are not changed significantly by the leading edge protuberances.

  9. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  10. Morphological organization of the dorsal protuberance of Linepithema humile (Mayr, 1868) ant's larvae (Hymenoptera, Formicidae).

    Science.gov (United States)

    Bueno, Odair Correa; Mathias, Maria Izabel Camargo; Ortiz, Gabriela

    2011-06-01

    The Argentine ant Linepithema humile is an important invasive species because of the levels of infestation that it can reach; however, there is little information about its presence, histological organization, and function of the dorsal protuberance, which is found exclusively in their larvae. The objective of this study was to describe it in L. humile through scanning electron microscopy and transmission electron microscopy, bringing information about this structure. The epidermis of these larvae have cuticles covering the whole body, and is formed by a sequence of overlapping lamellas where the inner ones were thicker and presented lower electron density, whereas the outer ones were thinner and highly electron dense. Pores or pore-like channels were not observed. A thick and acellular region composed of granular material was found under the cuticular layer. Out of this region, the flattened epidermic cells formed an epithelial layer. For the dorsal protuberance region, these cells become prismatic, and similarly to the cuticle, presents significant thickening. These cells presented extended microvilli, as well as a great amount of lamellar rough endoplasmic reticulum. Under this epithelium was observed a concentration of fat body cells, more numerous in the dorsal protuberance region. This study indicated that the dorsal protuberance present in the first segment of L. humile larvae has apparently no secretory function because no pores were found. This fact allowed to conclude that in L. humile larvae the dorsal protuberance would have the function to make it easier for the worker ants to carry them within the colony. Copyright © 2010 Wiley-Liss, Inc.

  11. Magnetic phase transitions in layered intermetallic compounds

    Science.gov (United States)

    Mushnikov, N. V.; Gerasimov, E. G.; Rosenfeld, E. V.; Terent'ev, P. B.; Gaviko, V. S.

    2012-10-01

    Magnetic, magnetoelastic, and magnetotransport properties have been studied for the RMn2Si2 and RMn6Sn6 (R is a rare earth metal) intermetallic compounds with natural layered structure. The compounds exhibit wide variety of magnetic structures and magnetic phase transitions. Substitution of different R atoms allows us to modify the interatomic distances and interlayer exchange interactions thus providing the transition from antiferromagnetic to ferromagnetic state. Near the boundary of this transition the magnetic structures are very sensitive to the external field, temperature and pressure. The field-induced transitions are accompanied by considerable change in the sample size and resistivity. It has been shown that various magnetic structures and magnetic phase transitions observed in the layered compounds arise as a result of competition of the Mn-Mn and Mn-R exchange interactions.

  12. Comments on Hypersonic Boundary-Layer Transition

    Science.gov (United States)

    1990-09-01

    laver transition results from instabilities as described by linear stability theory, then the disturbance growth historias follow a prescribed...mechanism by which boundary-layer disturbance growth is generally initiated and establishes the initial distur- banca amplitude at the onset of disturbance

  13. Experimental study of flow separation control on a low- Re airfoil using leading-edge protuberance method

    Science.gov (United States)

    Zhang, M. M.; Wang, G. F.; Xu, J. Z.

    2014-04-01

    An experimental study of flow separation control on a low- Re c airfoil was presently investigated using a newly developed leading-edge protuberance method, motivated by the improvement in the hydrodynamics of the giant humpback whale through its pectoral flippers. Deploying this method, the control effectiveness of the airfoil aerodynamics was fully evaluated using a three-component force balance, leading to an effectively impaired stall phenomenon and great improvement in the performances within the wide post-stall angle range (22°-80°). To understand the flow physics behind, the vorticity field, velocity field and boundary layer flow field over the airfoil suction side were examined using a particle image velocimetry and an oil-flow surface visualization system. It was found that the leading-edge protuberance method, more like low-profile vortex generator, effectively modified the flow pattern of the airfoil boundary layer through the chordwise and spanwise evolutions of the interacting streamwise vortices generated by protuberances, where the separation of the turbulent boundary layer dominated within the stall region and the rather strong attachment of the laminar boundary layer still existed within the post-stall region. The characteristics to manipulate the flow separation mode of the original airfoil indicated the possibility to further optimize the control performance by reasonably designing the layout of the protuberances.

  14. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    N Vinod; Rama Govindarajan

    2005-03-01

    Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.

  15. Experimental studies on transitional separated boundary layers

    OpenAIRE

    Serna Serrano, José

    2013-01-01

    Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and...

  16. Large Eddy Simulation of Transitional Boundary Layer

    Science.gov (United States)

    Sayadi, Taraneh; Moin, Parviz

    2009-11-01

    A sixth order compact finite difference code is employed to investigate compressible Large Eddy Simulation (LES) of subharmonic transition of a spatially developing zero pressure gradient boundary layer, at Ma = 0.2. The computational domain extends from Rex= 10^5, where laminar blowing and suction excites the most unstable fundamental and sub-harmonic modes, to fully turbulent stage at Rex= 10.1x10^5. Numerical sponges are used in the neighborhood of external boundaries to provide non-reflective conditions. Our interest lies in the performance of the dynamic subgrid scale (SGS) model [1] in the transition process. It is observed that in early stages of transition the eddy viscosity is much smaller than the physical viscosity. As a result the amplitudes of selected harmonics are in very good agreement with the experimental data [2]. The model's contribution gradually increases during the last stages of transition process and the dynamic eddy viscosity becomes fully active and dominant in the turbulent region. Consistent with this trend the skin friction coefficient versus Rex diverges from its laminar profile and converges to the turbulent profile after an overshoot. 1. Moin P. et. al. Phys Fluids A, 3(11), 2746-2757, 1991. 2. Kachanov Yu. S. et. al. JFM, 138, 209-247, 1983.

  17. Role of animal pole protuberance and microtubules during meiosis in sea cucumber Apostichopus japonicus oocytes

    Science.gov (United States)

    Pang, Zhenguo; Chang, Yaqing; Sun, Huiling; Yu, Jiaping

    2010-05-01

    Fully grown oocytes of Apostichopus japonicus have a cytoplasmic protuberance where the oocyte attaches to the follicle. The protuberance and the oolamina located on the opposite side of the oocyte indicate the animal-vegetal axis. Two pre-meiotic centrosomes are anchored to the protuberance by microtubules between centrosomes and protuberance. After meiosis reinitiation induced by DTT solution, the germinal vesicle (GV) migrates towards the protuberance. The GV breaks down after it migrates to the oocyte membrane on the protuberance side. The protuberance then contracts back into the oocyte and the first polar body extrudes from the site of the former protuberance. The second polar body forms beneath the first. Thus the oocyte protuberance indicates the presumptive animal pole well before maturation of the oocyte.

  18. Influence of location-dependent protuberance damage on cell viability

    Institute of Scientific and Technical Information of China (English)

    YANG HaiFeng; ZHOU Ming; DI JianKe; ZHAO EnLan; YANG PeiFang; GONG AiHua; SUN XiangLan

    2009-01-01

    The influence of femtosecond laser-induced damages on viability of olfactory ensheathing cells (OECs) is investigated. Several cytokinetic processes including cellular damage, recovery and death are dis-cussed. Using femtosecond laser with the power of 100 μW and cutting speed of 2 μm/s, we cut the cellular protuberance with smaller diameter twice in different locations, and then observe the viability of the damaged cells. Under the same conditions, the root of protuberance with larger diameter is cut six times to observe changes of cellular shape. Whether the damage is located in the end, middle or root of protuberance with smaller diameter, the cell viability can recover within 3 h. When the damage is located in the root of protuberance with larger diameter, the damaged cell will die in the way of oncoais. Cytokinetic phenomena including intracellular high Ca2+ concentration, cellular morphologic change, recovery and oncosis are discussed. Meanwhile, high Ca2+ concentration is observed after femtosec-ond laser surgery. Therefore, femtosecond laser surgery is an important tool for establishing cell damage model and studying cytokinetics.

  19. Emitter space charge layer transit time in bipolar junction transistors

    Science.gov (United States)

    Rustagi, S. C.; Chattopadhyaya, S. K.

    1981-04-01

    The charge defined emitter space charge layer transit times of double diffused transistors have been calculated using a regional approach, and compared with the corresponding base transit times. The results obtained for emitter space-charge layer transit times have been discussed with reference to the capacitance analysis of Morgan and Smit (1960) for graded p-n junctions.

  20. Control of the Transitional Boundary Layer

    Science.gov (United States)

    Belson, Brandt A.

    This work makes advances in the delay of boundary layer transition from laminar to turbulent flow via feedback control. The applications include the reduction of drag over streamline bodies (e.g., airplane wings) and the decrease of mixing and heat transfer (e.g., over turbine blades in jet engines). A difficulty in many fields is designing feedback controllers for high-dimensional systems, be they experiments or high-fidelity simulations, because the required time and resources are too large. A cheaper alternative is to approximate the high-dimensional system with a reduced-order model and design a controller for the model. We implement several model reduction algorithms in "modred", an open source and publicly available library that is applicable to a wide range of problems. We use this library to study the role of sensors and actuators in feedback control of transition in the 2D boundary layer. Previous work uses a feedforward configuration in which the sensor is upstream of the actuator, but we show that the actuator-sensor pair is unsuitable for feedback control due to an inability to sense the exponentially-growing Tollmien-Schlichting waves. A new actuator-sensor pair is chosen that more directly affects and measures the TS waves, and as a result it is effective in a feedback configuration. Lastly, the feedback controller is shown to outperform feedforward controllers in the presence of unmodeled disturbances. Next, we focus on a specific type of actuator, the single dielectric barrier discharge (SDBD) plasma actuator. An array of these plasma actuators is oriented to produce stream-wise vorticity and thus directly cancel the structures with the largest transient growth (so-called stream-wise streaks). We design a feedback controller using only experimental data by first developing an empirical input-output quasi-steady model. Then, we design feedback controllers for the model such that the controllers perform well when applied to the experiment. Lastly, we

  1. Design and Implementation of the Boundary Layer Transition Flight Experiment on Space Shuttle Discovery

    Science.gov (United States)

    Spanos, Theodoros A.; Micklos, Ann

    2010-01-01

    In an effort to better the understanding of high speed aerodynamics, a series of flight experiments were installed on Space Shuttle Discovery during the STS-119 and STS-128 missions. This experiment, known as the Boundary Layer Transition Flight Experiment (BLTFE), provided the technical community with actual entry flight data from a known height protuberance at Mach numbers at and above Mach 15. Any such data above Mach 15 is irreproducible in a laboratory setting. Years of effort have been invested in obtaining this valuable data, and many obstacles had to be overcome in order to ensure the success of implementing an Orbiter modification. Many Space Shuttle systems were involved in the installation of appropriate components that revealed 'concurrent engineering' was a key integration tool. This allowed the coordination of all various parts and pieces which had to be sequenced appropriately and installed at the right time. Several issues encountered include Orbiter configuration and access, design requirements versus current layout, implementing the modification versus typical processing timelines, and optimizing the engineering design cycles and changes. Open lines of communication within the entire modification team were essential to project success as the team was spread out across the United States, from NASA Kennedy Space Center in Florida, to NASA Johnson Space Center in Texas, to Boeing Huntington Beach, California among others. The forum permits the discussion of processing concerns from the design phase to the implementation phase, which eventually saw the successful flights and data acquisition on STS-119 in March 2009 and on STS-128 in September 2009.

  2. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  3. Grain-boundary layering transitions and phonon engineering

    Science.gov (United States)

    Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2016-09-01

    We employ semi-grand canonical Monte Carlo simulation to investigate layering transitions at grain boundaries in a prototypical binary alloy. We demonstrate the existence of such transitions among various interfacial states and examine the role of elastic fields in dictating state equilibria. The results of these studies are summarized in the form of diagrams that highlight interfacial state coexistence in this system. Finally, we examine the impact of layering transitions on the phononic properties of the system, as given by the specific heat and, by extension, the thermal conductivity. Thus, it is suggested that by inducing interfacial layering transitions via changes in temperature or pressure, one can thereby engineer thermodynamic and transport properties in materials.

  4. DNS Study on Physics of Late Boundary Layer Transition

    CERN Document Server

    Liu, Chaoqun

    2014-01-01

    This paper serves as a review of our recent new DNS study on physics of late boundary layer transition. This includes mechanism of the large coherent vortex structure formation, small length scale generation and flow randomization. The widely spread concept vortex breakdown to turbulence,which was considered as the last stage of flow transition, is not observed and is found theoretically incorrect. The classical theory on boundary layer transition is challenged and we proposed a new theory with five steps, i.e. receptivity, linear instability, large vortex formation, small length scale generation, loss of symmetry and randomization to turbulence. We have also proposed a new theory about turbulence generation. The new theory shows that all small length scales (turbulence) are generated by shear layer instability which is produced by large vortex structure with multiple level vortex rings, multiple level sweeps and ejections, and multiple level negative and positive spikes near the laminar sub-layers.Therefore,...

  5. The Influence of Slight Protuberances in a Micro-Tube Reactor on Methane/Moist Air Catalytic Combustion

    Directory of Open Access Journals (Sweden)

    Ruirui Wang

    2016-05-01

    Full Text Available The combustion characteristics of methane/moist air in micro-tube reactors with different numbers and shapes of inner wall protuberances are investigated in this paper. The micro-reactor with one rectangular protuberance (six different sizes was studied firstly, and it is shown that reactions near the protuberance are mainly controlled by diffusion, which has little effect on the outlet temperature and methane conversion rate. The formation of cavities and recirculation zones in the vicinity of protuberances leads to a significant increase of the Arrhenius reaction rate of CH4 and gas velocity. Next, among the six different simulated conditions (0–5 rectangular protuberances, the micro-tube reactor with five rectangular protuberances shows the highest methane conversion rate. Finally, the effect of protuberance shape on methane/moist air catalytic combustion is confirmed, and it is found that the protuberance shape has a greater influence on methane conversion rate than the number of protuberances. The methane conversion rate in the micro-tube decreases progressively in the following order: five triangular slight protuberances > five rectangular protuberances > five trapezoidal protuberances > smooth tube. In all tests of methane/moist air combustion conditions, the micro-tube with five triangular protuberances has the peak efficiency and is therefore recommended for high efficiency reactors.

  6. Bypass transition and spot nucleation in boundary layers

    CERN Document Server

    Kreilos, Tobias; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S; Eckhardt, Bruno

    2016-01-01

    The spatio-temporal aspects of the transition to turbulence are considered in the case of a boundary layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly fitted from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  7. Bypass transition and spot nucleation in boundary layers

    Science.gov (United States)

    Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno

    2016-08-01

    The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  8. Analysis of differential infrared thermography for boundary layer transition detection

    Science.gov (United States)

    Gardner, A. D.; Eder, C.; Wolf, C. C.; Raffel, M.

    2017-09-01

    This paper presents an analysis of the differential infrared thermography (DIT) technique, a contactless method of measuring the unsteady movement of the boundary layer transition position on an unprepared surface. DIT has been shown to measure boundary layer transition positions which correlate well with those from other measurement methods. In this paper unsteady aerodynamics from a 2D URANS solution are used and the resulting wall temperatures computed. It is shown that the peak of the temperature difference signal correlates well with the boundary layer transition position, but that the start and end of boundary layer transition cannot be extracted. A small systematic time-lag cannot be reduced by using different surface materials, but the signal strength can be improved by reducing the heat capacity and heat transfer of the surface layer, for example by using a thin plastic coating. Reducing the image time separation used to produce the difference images reduces the time-lag and also the signal level, thus the optimum is when the signal to noise ratio is at the minimum which can be evaluated.

  9. Transition in Hypersonic Boundary Layers: Role of Dilatational Waves

    Science.gov (United States)

    Zhu, Yiding; Zhang, Chuanhong; Tang, Qing; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-El-Hak, Mohamed

    2015-11-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves. While the growing acoustic wave itself is rapidly annihilated due to its large and sharp dissipation peak that is enhanced by the bulk viscosity, the acoustically generated high-frequency vortical wave keeps growing and triggers a fast transition to turbulence.

  10. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  11. Transition in Hypersonic Boundary Layers: Role of Dilatational Waves

    CERN Document Server

    Zhu, Yiding; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2015-01-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second instability acoustic mode is the key modulator of the transition process. The second mode experiences a rapid growth and a very fast annihilation due to the effect of bulk viscosity. The second mode interacts strongly with the first vorticity mode to directly promote a fast growth of the latter and leads to immediate transition to turbulence.

  12. Flow visualization of swept wing boundary layer transition

    NARCIS (Netherlands)

    Serpieri, J.; Kotsonis, M.

    2015-01-01

    In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of

  13. Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines

    Science.gov (United States)

    LaGraff John E. (Editor); Ashpis, David E. (Editor)

    1998-01-01

    The volume contains materials presented at the Minnowbrook II - 1997 Workshop on Boundary Layer Transition in Turbomachines, held at Syracuse University Minnowbrook Conference Center, New York, on September 7-10, 1997. The workshop followed the informal format at the 1993 Minnowbrook I workshop, focusing on improving the understanding of late stage (final breakdown) boundary layer transition, with the engineering application of improving design codes for turbomachinery in mind. Among the physical mechanisms discussed were hydrodynamic instabilities, laminar to turbulent transition, bypass transition, turbulent spots, wake interaction with boundary layers, calmed regions, and separation, all in the context of flow in turbomachinery, particularly in compressors and high and low pressure turbines. Results from experiments, DNS, computation, modeling and theoretical analysis were presented. Abstracts and copies of viewgraphs, a specifically commissioned summation paper prepared after the workshop, and a transcript of the extensive working group reports and discussions are included in this volume. They provide recommendations for future research and clearly highlight the need for continued vigorous research in the technologically important area of transition in turbomachines.

  14. Heat transfer from impinging jets to a flat plate with conical and ring protuberances

    Science.gov (United States)

    Hrycak, P.

    1984-01-01

    An experimental investigation of heat transfer from round jets, impinging normally on a flat plate with exchangeable, heat transfer enhancing protuberances, has been carried out, and the pertinent literature surveyed, for Reynolds numbers ranging from 14,000 to 67,000, and nozzle diameters from 3.18 to 9.52 mm. The experimental data at the stagnation point indicated laminar flow, and a significant enhancement of heat transfer there, due to the introduction of the spike protuberance; the ring protuberance reduced the local heat flux somewhat. Data have also been correlated by means of dimensional analysis and compared with the conical flow theory.

  15. Phase Transitions in Layered Diguanidinium Hexachlorostannate(IV)

    DEFF Research Database (Denmark)

    Szafranski, Marek; Ståhl, Kenny

    2016-01-01

    structures of all phases are built of similar layers in which the tin hexachloride anions are connected to the guanidinium cations by N-H center dot center dot center dot Cl hydrogen bonds, forming a interact primarily by Coulombic forces between the ions from ap. double H-bonded sheets. The layers, neutral...... be realized when the crystal is cooled from phase I: the reverse transition occurs in the monoclinic phase III or in the monoclinic phase IV (space group C2/m), or in the phase V of space group PT. In all phases the layered structure of the crystal is preserved, while the arrangement of the layers......), indicate a great potential of this material for applications in solid-state cooling systems....

  16. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  17. Some characteristics of bypass transition in a heated boundary layer

    Science.gov (United States)

    Sohn, K. H.; Reshotko, E.; O'Brien, J. E.

    Experimental measurements of both mean and conditionally sampled characteristics of laminar, transitional and low Reynolds number turbulent boundary layers on a heated flat plate are presented. Measurements were obtained in air over a range of freestream turbulence intensities from 0.3 percent to 6 percent with a freestream velocity of 30.5 m/s and zero pressure gradient. Conditional sampling performed in the transitional boundary layers indicate the existence of a near-wall drop in intermittency, especially pronounced at low intermittencies. Nonturbulent intervals were observed to possess large levels of low-frequency unsteadiness, and turbulent intervals had peak intensities as much as 50 percent higher than were measured at fully turbulent stations. Heat transfer results were consistent with results of previous researches and Reynolds analogy factors were found to be well predicted by laminar and turbulent correlations which accounted for unheated starting length. A small dependence of the turbulent Reynolds analogy factors on freestream turbulence level was observed. Laminar boundary layer spectra indicated selective amplification of unstable frequencies. These instabilities appear to play a dominant role in the transition process only for the lowest freestream turbulence level studied, however.

  18. Aerothermodynamic Testing of Protuberances and Penetrations on the NASA Crew Exploration Vehicle Heat Shield in the NASA Langley 20-Inch Mach 6 Air Tunnel

    Science.gov (United States)

    Liechty, Derek S.

    2008-01-01

    An experimental wind tunnel program is being conducted in support of an Agency wide effort to develop a replacement for the Space Shuttle and to support the NASA s long-term objective of returning to the moon and then on to Mars. This paper documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle. Global heat transfer images and heat transfer distributions obtained using phosphor thermography were used to infer interference heating on the Crew Exploration Vehicle Cycle 1 heat shield from local protuberances and penetrations for both laminar and turbulent heating conditions. Test parametrics included free stream Reynolds numbers of 1.0x10(exp 6)/ft to 7.25x10(exp 6)/ft in Mach 6 air at a fixed angle-of-attack. Single arrays of discrete boundary layer trips were used to trip the boundary layer approaching the protuberances/penetrations to a turbulent state. Also, the effects of three compression pad diameters, two radial locations of compression pad/tension tie location, compression pad geometry, and rotational position of compression pad/tension tie were examined. The experimental data highlighted in this paper are to be used to validate CFD tools that will be used to generate the flight aerothermodynamic database. Heat transfer measurements will also assist in the determination of the most appropriate engineering methods that will be used to assess local flight environments associated with protuberances/penetrations of the CEV thermal protection system.

  19. Transitional boundary layers in low-Prandtl-number convection

    Science.gov (United States)

    Schumacher, Jörg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet D.

    2016-12-01

    The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough, the dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes, and an interior region away from the side walls. The latter is dominated by the shear of the large-scale circulation (LSC) roll, which fills the whole cell and continuously varies its orientation. The working fluid is liquid mercury or gallium at a Prandtl number Pr=0.021 for Rayleigh numbers 3 ×105≤Ra≤4 ×108 . The generated turbulent momentum transfer corresponds to macroscopic flow Reynolds numbers with 1.8 ×103≤Re≤4.6 ×104 . In highly resolved spectral element direct numerical simulations, we present the mean profiles of velocity, Reynolds stress, and temperature in inner viscous units and compare our findings with convection experiments and channel flow data. The complex three-dimensional and time-dependent structure of the LSC in the cell is compensated by a plane-by-plane symmetry transformation which aligns the horizontal velocity components and all its derivatives with the instantaneous orientation of the LSC. As a consequence, the torsion of the LSC is removed, and a streamwise direction in the shear flow can be defined. It is shown that the viscous boundary layers for the largest Rayleigh numbers are highly transitional and obey properties that are directly comparable to transitional channel flows at friction Reynolds numbers Reτ≲102 . The transitional character of the viscous boundary layer is also underlined by the strong enhancement of the fluctuations of the wall stress components with increasing Rayleigh number. An extrapolation of our analysis data suggests that the friction Reynolds number Reτ in the velocity boundary

  20. Thermal Transitions in Layer-by-Layer Assemblies Observed Using Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Sung, Choonghyun; Hearn, Katelin; Lutkenhaus, Jodie

    2014-03-01

    Layer-by-layer (LbL) assemblies have been of great interest due to their versatile functionality and ease of fabrication. Charge and mass transport in LbL assemblies have been studied for the application of electrochemical devices and ion-conducting membranes. However, there are limited studies on the effect of temperature and of thickness on charge transport in LbL assemblies. Some LbL assemblies are known to have a thermal transition similar to a glass transition when hydrated. Thus, electrochemical properties can be strongly influenced by temperature. In this presentation, we studied the electrochemical impedance spectra of layer-by-layer assemblies of poly(diallyldimethyl ammonium chloride) and poly(styrene sulfonate) as a function of temperature using the ferricyanide/ferrocyanide redox couple. The effect of assembly salt concentration, thickness, and outermost layer on electrochemical properties is studied. Modified Randles circuits were used to quantitatively analyze the impedance spectra. Temperature-dependent impedance data are discussed with respect to the structure and thermal properties of LbL assemblies.

  1. Turbulence Structure of the Unstable Atmospheric Surface Layer and Transition to the Outer Layer

    Science.gov (United States)

    McNaughton, K. G.

    We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, which then creates a second ejection that is similar to, but larger than, the first. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures. Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. In an extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to the fundamental hypothesis of Monin--Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and are severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer. When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surface layer, zs, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer. It is zs = u* 3ks, where u*s friction velocity, k is the von Káán constant and s is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer. This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower

  2. Liquid Exfoliation of Layered Transition Metal Dichalcogenides for Biological Applications.

    Science.gov (United States)

    Nguyen, Emily P; Daeneke, Torben; Zhuiykov, Serge; Kalantar-Zadeh, Kourosh

    2016-06-02

    Known to possess distinctive properties that differ greatly from their bulk form, layered two-dimensional materials have been extensively studied and incorporated into many versatile applications ranging from optoelectronics to sensors. For biomedical research, two-dimensional transition metal dichalcogenides (2D TMDs) have garnered much interest as they have been shown to exhibit relatively low toxicity, high stability in aqueous environments, and the ability to adhere to biological materials such as proteins. These materials are promising candidates, demonstrating potential applications in biosensing, cell imaging, diagnostics, and therapeutics. Preparation and exfoliation of 2D TMDs play an important part in these various applications as their properties are heavily dependent on the number of layers and lateral size. Described in this article are protocols for the liquid exfoliation of 2D TMDs from their bulk materials. Additional protocols are also provided for functionalizing or modifying the surface of the exfoliated 2D TMDs. © 2016 by John Wiley & Sons, Inc.

  3. Numerical investigations of hydrodynamic performance of hydrofoils with leading-edge protuberances

    Directory of Open Access Journals (Sweden)

    Chang Cai

    2015-06-01

    Full Text Available Leading-edge protuberances on airfoils or hydrofoils have been considered as a viable passive method for flow separation control recently. In this article, the hydrodynamic performance of a NACA 634-021 (baseline foil and two modified foils with leading-edge protuberances was numerically investigated using the Spalart–Allmaras turbulence model. It was found that modified foils performed worse than the baseline foil at pre-stall angles, while the lift coefficients at high angles of attack of the modified foils were increased. Both the deterioration of pre-stall and the improvement of post-stall performance were enhanced with larger amplitude of protuberance. Near-wall flow visualizations showed that the leading-edge protuberances worked in pairs at high angles of attack, producing different forms of streamwise vortices. An attached flow along some valley sections was observed, leading to a higher local lift coefficient at post-stall angles. The leading-edge protuberances were considered as sharing a similar mechanism as delta wings, increasing nonlinear lift at large angles of attack. The specific stall characteristics of this leading-edge modification could provide some guidelines for the design of some special hydrofoils or airfoils.

  4. Evolution of vortex-surface fields in transitional boundary layers

    Science.gov (United States)

    Yang, Yue; Zhao, Yaomin; Xiong, Shiying

    2016-11-01

    We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.

  5. Growth of transition metals on cerium tungstate model catalyst layers

    Science.gov (United States)

    Skála, T.; Tsud, N.; Stetsovych, V.; Mysliveček, J.; Matolín, V.

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed.

  6. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-12-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid.

  7. Electronic self-organization in layered transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, Tobias

    2015-10-30

    The interplay between different self-organized electronically ordered states and their relation to unconventional electronic properties like superconductivity constitutes one of the most exciting challenges of modern condensed matter physics. In the present thesis this issue is thoroughly investigated for the prototypical layered material 1T-TaS{sub 2} both experimentally and theoretically. At first the static charge density wave order in 1T-TaS{sub 2} is investigated as a function of pressure and temperature by means of X-ray diffraction. These data indeed reveal that the superconductivity in this material coexists with an inhomogeneous charge density wave on a macroscopic scale in real space. This result is fundamentally different from a previously proposed separation of superconducting and insulating regions in real space. Furthermore, the X-ray diffraction data uncover the important role of interlayer correlations in 1T-TaS{sub 2}. Based on the detailed insights into the charge density wave structure obtained by the X-ray diffraction experiments, density functional theory models are deduced in order to describe the electronic structure of 1T-TaS{sub 2} in the second part of this thesis. As opposed to most previous studies, these calculations take the three-dimensional character of the charge density wave into account. Indeed the electronic structure calculations uncover complex orbital textures, which are interwoven with the charge density wave order and cause dramatic differences in the electronic structure depending on the alignment of the orbitals between neighboring layers. Furthermore, it is demonstrated that these orbital-mediated effects provide a route to drive semiconductor-to-metal transitions with technologically pertinent gaps and on ultrafast timescales. These results are particularly relevant for the ongoing development of novel, miniaturized and ultrafast devices based on layered transition metal dichalcogenides. The discovery of orbital textures

  8. On the semimetal-insulator transition and Lifshitz transition in simulations of mono-layer graphene

    CERN Document Server

    Smith, Dominik; von Smekal, Lorenz

    2014-01-01

    We report on the status of ongoing Hybrid-Monte-Carlo simulations of the tight-binding model of mono-layer graphene. We present results concerning the semimetal-insulator phase transition, whereby two-body interactions are modeled by a partially screened Coulomb potential which takes into account screening by electrons in the lower $\\sigma$-orbitals. We obtain evidence that finite-size effects may still be present in the current estimate of the critical coupling strength $\\alpha_C$, which was previously extracted from simulations on lattice-sizes up to $N_x=N_y=18$. We also present preliminary results concerning the Neck-disrupting Lifshitz transition which occurs at finite Fermion-density in the limit of vanishing two-body interactions. A sign-problem is circumvented by using a spin-dependent chemical potential in our simulations.

  9. Turbulence transition in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M; Veble, Gregor; Duguet, Yohann; Schlatter, Philipp; Henningson, Dan S; Eckhardt, Bruno

    2015-01-01

    We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures loc...

  10. Prediction of Boundary Layer Transition Based on Modeling of Laminar Fluctuations Using RANS Approach

    Institute of Scientific and Technical Information of China (English)

    Reza; Taghavi; Z.; Mahmood; Salary; Amir; Kolaei

    2009-01-01

    This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...

  11. Characterizing the Effects of Convection on the Afternoon to Evening Boundary Layer Transition During Pecan 2015

    Science.gov (United States)

    2016-12-01

    transition afternoon-to-evening transition, field campaign PECAN 2015 convective boundary layer decay, multi- platform surface fluxes COARE COAMPS 15...tower, (2.83, 5.66, 11.32 and 16 meters), wind, virtual temperature, and water vapor density were sampled at 20 Hz intended for turbulence...Knupp, 2014: Multi- platform Observations Characterizing the Afternoon-to-Evening Transition of the Planetary Boundary Layer in Northern Alabama, USA

  12. Generation of calcium waves in living cells induced by 1 kHz femtosecond laser protuberance microsurgery

    Science.gov (United States)

    Zhou, M.; Zhao, E. L.; Yang, H. F.; Gong, A. H.; di, J. K.; Zhang, Z. J.

    2009-07-01

    We have demonstrated that intracellular calcium waves in a living olfactory ensheathing cell (OEC) can be induced by femtosecond laser surgery on cellular protuberance. In this paper, calcium wave generation mechanisms are further investigated using different culture mediums and protuberance diameters. The protuberances of living OECs are cut by home-made 1 kHz femtosecond laser surgery system with 130 fs pulsewidth and 800 nm wavelength, and the average power of 200 μW is chosen for stable and effective cell surgery. Whether the cells are cultured in mediums with Ca2+ or not, intracellular calcium waves can be induced after cell surgery. The generation of calcium waves is independent on the dimension of protuberance diameter. Based on these results, we analyze generation mechanisms of calcium wave and conclude that shockwave-induced mechanical force and laser-induced cytoskeleton depolymerization are two key factors.

  13. Roughness Induced Boundary Layer Transition in Incompressible Flow

    NARCIS (Netherlands)

    Ye, Q.; Schrijer, F.J.; Scarano, F.

    2015-01-01

    The fluid dynamics process leading to laminar-turbulent transition behind an isolated roughness element is investigated in the incompressible regime using particle image velocimetry. The study covers the effect of roughness size and geometry on the promotion of transition. The measurement domain cov

  14. Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film

    Energy Technology Data Exchange (ETDEWEB)

    Oubelkacem, A.; Essaoudi, I. [Laboratoire de Physique des Materiaux et Modelisation des Systemes, Unite Associee au CNRST, URAC: 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes (Morocco); Ainane, A., E-mail: ainane@pks.mpg.de [Laboratoire de Physique des Materiaux et Modelisation des Systemes, Unite Associee au CNRST, URAC: 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes (Morocco); Max-Planck-Institut fuer Physik Complexer Systeme, Noethnitzer Str. 38 D-01187 Dresden (Germany); Laboratoire de Physique des Milieux Denses (LPMD) Institut de Chimie, Physique et Materiaux (ICPM), 1 Bd. Arago, 57070, Metz (France); INFM-Dip. Fisica. Univ. Padova, via Marzolo 8, 54124 Padova (Italy); Saber, M. [Laboratoire de Physique des Materiaux et Modelisation des Systemes, Unite Associee au CNRST, URAC: 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes (Morocco); Max-Planck-Institut fuer Physik Complexer Systeme, Noethnitzer Str. 38 D-01187 Dresden (Germany); Dujardin, F. [Laboratoire de Physique des Milieux Denses (LPMD) Institut de Chimie, Physique et Materiaux (ICPM), 1 Bd. Arago, 57070, Metz (France)

    2011-10-31

    The transition properties of a ferroelectric thin film with seeding layers were studied using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions. The effect of interaction parameters for the seeding layer on the phase diagram was also examined. We calculated the critical temperature and the polarization of the ferroelectric thin film for different seeding layer structures. We found that the seeding layer can greatly increase the Curie temperature and the polarization.

  15. Characterization of Transition Metal Carbide Layers Synthesized by Thermo-reactive Diffusion Processes

    DEFF Research Database (Denmark)

    Laursen, Mads Brink; Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin

    2015-01-01

    Hard wear resistant surface layers of transition metal carbides can be produced by thermo-reactive diffusion processes where interstitial elements from a steel substrate together with external sources of transition metals (Ti, V, Cr etc.) form hard carbide and/or nitride layers at the steel surface...... electron microscopy, X-ray diffraction and Vickers hardness testing. The study shows that porosityfree, homogenous and very hard surface layers can be produced by thermo-reactive diffusion processes. The carbon availability of the substrate influences thickness of obtained layers, as Vanadis 6 tool steel...

  16. Physics of Transitional Shear Flows Instability and Laminar–Turbulent Transition in Incompressible Near-Wall Shear Layers

    CERN Document Server

    Boiko, Andrey V; Grek, Genrih R; Kozlov, Victor V

    2012-01-01

    Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at l...

  17. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction

    Science.gov (United States)

    Giepman, R. H. M.; Schrijer, F. F. J.; van Oudheusden, B. W.

    2015-06-01

    This study investigates the effects of boundary layer transition on an oblique shock wave reflection. The Mach number was 1.7, the unit Reynolds number was 35 × 106 m-1, and the pressure ratio over the interaction was 1.35. Particle image velocimetry is used as the main flow diagnostics tool, supported by oil-flow and Schlieren visualizations. At these conditions, the thickness of the laminar boundary layer is only 0.2 mm, and seeding proved to be problematic as practically no seeding was recorded in the lower 40 % of the boundary layer. The top 60 % could, however, still be resolved with good accuracy and is found to be in good agreement with the compressible Blasius solution. Due to the effects of turbulent mixing, the near-wall seeding deficiency disappears when the boundary layer transitions to a turbulent state. This allowed the seeding distribution to be used as an indicator for the state of the boundary layer, permitting to obtain an approximate intermittency distribution for the boundary layer transition region. This knowledge was then used for positioning the oblique shock wave in the laminar, transitional (50 % intermittency) or turbulent region of the boundary layer. Separation is only recorded for the laminar and transitional interactions. For the laminar interaction, a large separation bubble is found, with a streamwise length of 96. The incoming boundary layer is lifted over the separation bubble and remains in a laminar state up to the impingement point of the shock wave. After the shock, transition starts and a turbulent profile is reached approximately 80-90 downstream of the shock. Under the same shock conditions, the transitional interaction displays a smaller separation bubble (43), and transition is found to be accelerated over the separation bubble.

  18. Effects of mass addition on blunt-body boundary-layer transition and heat transfer

    Science.gov (United States)

    Kaattari, G. E.

    1978-01-01

    The model bodies tested at Mach number 7.32 were hemispheres, blunt cones, and spherical segments. The mass addition consisted of air ejected through porous forward surfaces of the models. The experimental data consisted of heat transfer measurements from which boundary layer transitions were deduced. The data verified various applicable boundary layer codes in the laminar and transitional flow regimes. Empirical heating rate data correlations were developed for the laminar and turbulent flow regimes.

  19. Effect of layered nanostructures on the linewidth of forbidden E2 transitions

    Science.gov (United States)

    Guzatov, D. V.; Klimov, V. V.

    2017-08-01

    In the framework of classical electrodynamics, analytical expressions are derived and investigated for the linewidth of forbidden E2 transitions in an atom (molecule) located near layered metal – dielectric nanostructures. It is shown that the radiation intensity at the forbidden transition during detection in the halfspace behind a layered nanostructure can significantly exceed the intensity during detection in the half-space where an atom (molecule) is located.

  20. Advances in Unsteady Boundary Layer Transition Research, Part I: Theory and Modeling

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research that deal with the unsteady boundary layer transition modeling and its validation. A new unsteady boundary layer transition model was developed based on a universal unsteady intermittency function. It accounts for the effects of periodic unsteady wake flow on the boundary layer transition. To establish the transition model, an inductive approach was implemented; the approach was based on the results of comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under a periodic unsteady wake flow, where the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  1. Geometry effect of isolated roughness on boundary layer transition investigated by tomographic PIV

    NARCIS (Netherlands)

    Ye, Q.; Schrijer, F.F.J.; Scarano, F.

    2015-01-01

    Transitional flow over isolated roughness elements is investigated in the incompressible flow regime using Tomographic PIV. Three different geometries are considered (micro-ramp, cylinder and square) with same height and span. Their effect on accelerating boundary layer transition is compared and di

  2. Holt film wall shear instrumentation for boundary layer transition research

    Science.gov (United States)

    Schneider, Steven P.

    1994-01-01

    Measurements of the performance of hot-film wall-shear sensors were performed to aid development of improved sensors. The effect of film size and substrate properties on the sensor performance was quantified through parametric studies carried out both electronically and in a shock tube. The results show that sensor frequency response increases with decreasing sensor size, while at the same time sensitivity decreases. Substrate effects were also studied, through parametric variation of thermal conductivity and heat capacity. Early studies used complex dual-layer substrates, while later studies were designed for both single-layer and dual-layer substrates. Sensor failures and funding limitations have precluded completion of the substrate thermal-property tests.

  3. Early Warning Signals for Regime Transition in the Stable Boundary Layer

    NARCIS (Netherlands)

    Hooijdonk, van I.G.S.; Moene, A.F.; Scheffer, M.; Clercx, H.J.H.; Wiel, van de B.J.H.

    2017-01-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically

  4. Boundary Layer Transition During the Orion Exploration Flight Test 1 (EFT-1)

    Science.gov (United States)

    Kirk, Lindsay C.

    2016-01-01

    Boundary layer transition was observed in the thermocouple data on the windside backshell of the Orion reentry capsule. Sensors along the windside centerline, as well as off-centerline, indicated transition late in the flight at approximately Mach 4 conditions. Transition progressed as expected, beginning at the sensors closest to the forward bay cover (FBC) and moving towards the heatshield. Sensors placed in off-centerline locations did not follow streamlines, so the progression of transition observed in these sensors is less intuitive. Future analysis will include comparisons to pre-flight predictions and expected transitional behavior will be investigated. Sensors located within the centerline and off-centerline launch abort system (LAS) attach well cavities on the FBC also showed indications of boundary layer transition. The transition within the centerline cavity was observed in the temperature traces prior to transition onset on the sensors upstream of the cavity. Transition behavior within the off centerline LAS attach well cavity will also be investigated. Heatshield thermocouples were placed within Avcoat plugs to attempt to capture transitional behavior as well as better understand the aerothermal environments. Thermocouples were placed in stacks of two or five vertically within the plugs, but the temperature data obtained at the sensors closest to the surface did not immediately indicate transitional behavior. Efforts to use the in depth thermocouple temperatures to reconstruct the surface heat flux are ongoing and any results showing the onset of boundary layer transition obtained from those reconstructions will also be included in this paper. Transition on additional features of interest, including compression pad ramps, will be included if it becomes available.

  5. Spin Transport in Single Layer Transition Metal Dichalcogenides

    Science.gov (United States)

    Phillips, Michael; Aji, Vivek

    Inversion symmetry breaking and strong spin orbit coupling in two dimensional transition metal dichalcogenides leads to interesting new phenomena such as the valley hall and spin hall effects. The nontrivial Berry curvature of the bands yields transverse spin currents in applied field. In this talk we characterize the spin transport in hole-doped systems. Due to the large spin-splitting, time-reversal invariance, and the large separation of hole pockets in momentum space, spin flip scattering involves inter-valley processes with large momentum. As such, one expects large spin life times and a large spin hall angle. We analyze the robustness of the phenomena to various scattering processes and explore the viability of transition metal dichalcogenides for spintronic applications. We acknowledge the support of the NSF via Grant NSF DMR-1506707.

  6. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    Science.gov (United States)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  7. Intercellular Pectic Protuberances in Asplenium: New Data on their Composition and Origin

    Science.gov (United States)

    Leroux, Olivier; Knox, J. Paul; Leroux, Frederic; Vrijdaghs, Alexander; Bellefroid, Elke; Borgonie, Gaëtan; Viane, Ronald L. L.

    2007-01-01

    Background and Aims Projections of cell wall material into the intercellular spaces between parenchymatic cells have been observed since the mid-19th century. Histochemical staining suggested that these intercellular protuberances are probably pectic in nature, but uncertainties about their origin, composition and biological function(s) have remained. Methods Using electron and light microscopy, including immunohistochemical methods, the structure and the presence of some major cell wall macromolecules in the intercellular pectic protuberances (IPPs) of the cortical parenchyma have been studied in a specimen of the Asplenium aethiopicum complex. Key Results IPPs contained pectic homogalacturonan, but no evidence for pectic rhamnogalacturonan-I or xylogalacturonan epitopes was obtained. Arabinogalactan-proteins and xylan were not detected in cell walls, middle lamellae or IPPs of the cortical parenchyma, whereas xyloglucan was only found in its cell walls. Extensin (hydroxyproline-rich glycoproteins) LM1 and JIM11 and JIM20 epitopes were detected specifically in IPPs but not in their adjacent cell walls or middle lamellae. Conclusions It is postulated that IPPs do not originate exclusively from the middle lamellae because extensins were only found in IPPs and not in surrounding cell walls, intercellular space linings or middle lamellae, and because IPPs and their adjacent cell walls are discontinuous. PMID:17881333

  8. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi

    Science.gov (United States)

    Baik, Sangyul; Kim, Da Wan; Park, Youngjin; Lee, Tae-Jin; Ho Bhang, Suk; Pang, Changhyun

    2017-06-01

    Adhesion strategies that rely on mechanical interlocking or molecular attractions between surfaces can suffer when coming into contact with liquids. Thus far, artificial wet and dry adhesives have included hierarchical mushroom-shaped or porous structures that allow suction or capillarity, supramolecular structures comprising nanoparticles, and chemistry-based attractants that use various protein polyelectrolytes. However, it is challenging to develop adhesives that are simple to make and also perform well—and repeatedly—under both wet and dry conditions, while avoiding non-chemical contamination on the adhered surfaces. Here we present an artificial, biologically inspired, reversible wet/dry adhesion system that is based on the dome-like protuberances found in the suction cups of octopi. To mimic the architecture of these protuberances, we use a simple, solution-based, air-trap technique that involves fabricating a patterned structure as a polymeric master, and using it to produce a reversed architecture, without any sophisticated chemical syntheses or surface modifications. The micrometre-scale domes in our artificial adhesive enhance the suction stress. This octopus-inspired system exhibits strong, reversible, highly repeatable adhesion to silicon wafers, glass, and rough skin surfaces under various conditions (dry, moist, under water and under oil). To demonstrate a potential application, we also used our adhesive to transport a large silicon wafer in air and under water without any resulting surface contamination.

  9. Advances in Unsteady Boundary Layer Transition Research, Part II: Experimental Verification

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research into the unsteady boundary layer transition modeling and its validation. This, Part II, deals with the results of an inductive approach based on comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under periodic unsteady wake flow, in which the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  10. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions.

    Science.gov (United States)

    Volino, Ralph John

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong (K = {nuover U_sp{infty} {2}}{dUinftyover dx} as high as 9times 10^{ -6}) acceleration. The high FSTI experiments are the main focus of the work. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. The high FSTI boundary layers undergo transition from a strongly disturbed non-turbulent state to a fully-turbulent state. Due to the stabilizing effect of strong acceleration, the transition zones are of extended length in spite of the high FSTI. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low FSTI, turbulent flow correlations, but remain well above laminar flow values. Mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. Turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. Turbulent transport is strongly suppressed below values in unaccelerated turbulent boundary layers. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Octant analysis shows a fundamental difference between transitional and fully-turbulent boundary layers. Transitional boundary layers are characterized by incomplete mixing compared to fully-turbulent boundary layers. Similar octant analysis results are observed in both low and high FSTI cases. Spectral analysis suggests that the non-turbulent zone of the high FSTI flow is dominated by large scale

  11. Influence of Transited Layer of Multilayer on X-ray Diffraction Intensity and Calculation of the Thickness

    Institute of Scientific and Technical Information of China (English)

    FENG Shimeng; YI Kui; ZHAO Qiang; TANG Zaosen; FAN Zhengxiou

    2000-01-01

    This paper integrates the roughness with the diffuse layer as a transited layer factor for study of influence of the practical interface on the X-ray diffraction intensity of multilayer. By the study of a simple model of transited layer presented in this paper, it is given a formula to describe the quantitative relation of the transited layer with the X-ray diffraction intensity. The calculated thickness of transited layer of Mo/Si multilayer is given, which is consisted with the values measured with the high resolution microscopy.

  12. Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study

    Science.gov (United States)

    van Hooijdonk, I. G. S.; Moene, A. F.; Scheffer, M.; Clercx, H. J. H.; van de Wiel, B. J. H.

    2017-02-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin-Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.

  13. Optical limiting of layered transition metal dichalcogenide semiconductors

    CERN Document Server

    Dong, Ningning; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun

    2015-01-01

    Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions.

  14. Estimation of the Unsteady Aerodynamic Load on Space Shuttle External Tank Protuberances from a Component Wind Tunnel Test

    Science.gov (United States)

    Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.

    2008-01-01

    At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.

  15. Multiscale Variability of the Tropopause Transition Layer During AMIE

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Richard H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Atmospheric Science; Birner, Thomas [Colorado State Univ., Fort Collins, CO (United States). Dept. of Atmospheric Science

    2016-11-28

    An investigation has been carried out of the influence of the Madden-Julian Oscillation on the tropical tropopause layer (TTL) using data from the ARM MJO Investigation Experiment (AMIE) during the period October-November 2011. A variety of data from the ARM Mobile Facility deployed during AMIE on Gan Island have been used in the study: 3-hourly atmospheric soundings, the Ka-band ARM Zenith Radar (KAZR) radar reflectivity fields, and the ARM PI-Product CombRet (Combined Retrieval, Microphysical Retrievals, and Heating Rates) produced by PNNL. Additional data used in the study are from CALIPSO, ERAi reanalyses, DYNAMO (Dynamics of the MJO) sounding network observations, the S-PolKa radar on Gan Island, and the DOE ARM sites at Manus and Nauru.

  16. HIFiRE-5 Boundary Layer Transition and HIFiRE-1 Shock Boundary Layer Interaction

    Science.gov (United States)

    2015-10-01

    scale sensor. These sensors typically have flat frequency response up to about 30–40% of their roughly 270–285 kHz resonant frequency.24 In addition to...kHz. These integration bounds ensure that the Kulite resonance at 295 kHz does not contribute to the reported RMS Pitot pressure. The various...the nosetip of the vehicle tripped transition for t᝻.5 seconds. For t>11.5 seconds, transition moved aft with time over the conical portion of the

  17. DNS of laminar-turbulent boundary layer transition induced by solid obstacles

    CERN Document Server

    Orlandi, Paolo; Bernardini, Matteo

    2015-01-01

    Results of numerical simulations obtained by a staggered finite difference scheme together with an efficient immersed boundary method are presented to understand the effects of the shape of three-dimensional obstacles on the transition of a boundary layer from a laminar to a turbulent regime. Fully resolved Direct Numerical Simulations (DNS), highlight that the closer to the obstacle the symmetry is disrupted the smaller is the transitional Reynolds number. It has been also found that the transition can not be related to the critical roughness Reynolds number used in the past. The simulations highlight the differences between wake and inflectional instabilities, proving that two-dimensional tripping devices are more efficient in promoting the transition. Simulations at high Reynolds number demonstrate that the reproduction of a real experiment with a solid obstacle at the inlet is an efficient tool to generate numerical data bases for understanding the physics of boundary layers. The quality of the numerical ...

  18. Heat transfer and fluid mechanics measurements in transitional boundary layers on convex-curved surfaces

    Science.gov (United States)

    Wang, T.; Simon, T. W.

    1987-01-01

    The test section of the present experiment to ascertain the effects of convex curvature and freestream turbulence on boundary layer momentum and heat transfer during natural transition provided a two-dimensional boundary layer flow on a uniformly heated curved surface, with bending to various curvature radii, R. Attention is given to results for the cases of R = infinity, 180 cm, and 90 cm, each with two freestream turbulence intensity levels. While the mild convex curvature of R = 180 cm delays transition, further bending to R = 90 cm leads to no signifucant further delay of transition. Cases with both curvature and higher freestream disturbance effects exhibit the latter's pronounced dominance. These data are pertinent to the development of transition prediction models for gas turbine blade design.

  19. On the influence of free-stream turbulence length scales on boundary-layer transition

    Science.gov (United States)

    Fransson, Jens; Shahinfar, Shahab

    2015-11-01

    A measurement campaign on the free-stream turbulence (FST) induced boundary layer transition has been carried out in the Minimum-Turbulence-Level wind tunnel at KTH. Previous numerical investigations where the turbulence intensity (Tu) has been kept constant, while the integral length scale (Λx) has been varied, have shown that the transition location is advanced for increasing Λx. The present measurement campaign has been carried out using hot-wire anemometry and consists of 42 unique FST conditions with thorough measurements throughout the transitional region. Unlike other extensive FST induced transition measurements the free-stream velocity was here kept constant for all cases, implying that the boundary layer scale is locked up to transition onset. Our measurements confirm previous results on the advancement of the transition location with increasing Λx for low to moderate Tu levels, but show the opposite effect for higher levels, i.e. a delay in the transition location for larger Λx, which to the knowledge of the present authors so far is unreported. In addition, the common belief that the FST length scales have a negligible effect on the transition location with regards to the Tu level does not seem to be fully true.

  20. Application of renormalization group theory to the large-eddy simulation of transitional boundary layers

    Science.gov (United States)

    Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.

    1990-01-01

    An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.

  1. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed. Then, two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field, and the spatial mode transition process was studied by direct numerical simulation (DNS) method.The mechanism of the transition process was analyzed. It was found that the change of the stability characteristics of the mean flow profile was the key issue. Furthermore, the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.

  2. First-order layering and critical wetting transitions in nonadditive hard-sphere mixtures.

    Science.gov (United States)

    Hopkins, Paul; Schmidt, Matthias

    2011-05-01

    Using fundamental-measure density functional theory we investigate entropic wetting in an asymmetric binary mixture of hard spheres with positive nonadditivity. We consider a general planar hard wall, where preferential adsorption is induced by a difference in closest approach of the different species and the wall. Close to bulk fluid-fluid coexistence, the phase rich in the minority component adsorbs either through a series of first-order layering transitions, where an increasing number of liquid layers adsorbs sequentially, or via a critical wetting transition, where a thick film grows continuously.

  3. Combined effect of the transition layer and interfacial coupling on the properties of ferroelectric bilayer film

    Institute of Scientific and Technical Information of China (English)

    Sun Pu-Nan; Cui Lian; Lü Tian-Quan

    2009-01-01

    Within the framework of modified Ginzburg-Landau-Devonshire phenomenological theory,a ferroelectric bilayer film with a transition layer within each constituent film and an interfacial coupling between two materials has been studied.Properties including the Curie temperature and the spontaneous polarization of a bilayer film composed of two equally thick ferroelectric constituent films are discussed.The results show that the combined effect of the transition layer and the interfacial coupling plays an important role in explaining the interesting behaviour of ferroelectric multilayer structures consisting of two ferroelectric materials.

  4. Measurement and Modeling of the Fluctuating Wall Pressure Field Beneath Transitional Boundary Layers

    Science.gov (United States)

    Snarski, Stephen R.

    2001-11-01

    Measurements have been performed to better understand the space-varying character of the fluctuating wall pressure field beneath a transitional boundary layer and to develop an appropriate model for the space-varying (nonhomogeneous) wavenumber-frequency wall pressure spectrum. Although a great deal is understood regarding the structure of the wall pressure field beneath turbulent boundary layers, the current understanding of the wall pressure field beneath the transitional boundary layer is incomplete. Overlooked have been critical issues concerning spatial variations in turbulence structure and the convection and decay of pressure producing disturbances—properties that define the character of the field and resulting form of the wavenumber-frequency spectrum. The experiments involve measurement of the space-time fluctuating wall pressure field across the transition region of a flat plate boundary layer by means of a 64-element linear array of hearing-aid microphones and hot wire velocity measurements in the adjacent laminar, transitional, and turbulent boundary layers. Because the field is nonhomogeneous, wavelet based transform methods are required to appropriately resolve the space-varying structure of the field and form of the nonhomogeneous wavenumber-frequency spectrum.

  5. Intercellular pectic protuberances in Hymenaea stigonocarpa (Fabaceae, Caesalpinioideae): occurrence and functional aspects.

    Science.gov (United States)

    Paiva, Elder Antônio Sousa; Machado, Sílvia Rodrigues

    2008-04-01

    A study of the anatomy and ultrastructural aspects of leaf mesophyll and floral nectaries of Hymenaea stigonocarpa Mart. ex Hayne revealed the presence of intercellular pectic protuberances (IPPs) linking adjacent cells in both the leaf palisade cells and the secretory parenchyma of the floral nectary. Samples of the middle third of the leaf blade and of floral nectaries in anthesis were collected, fixed, and processed using standard procedures for light, transmission, and scanning electron microscopies. The IPPs of palisade cells of the mesophyll and the secretory parenchyma cells of the floral nectary take the form of scalae or strands, respectively. No evidence of the specific synthesis of these structures was observed, and they are apparently formed by the separation of adjacent cells due to cell expansion, when intercellular spaces develop. The IPPs observed in H. stigonocarpa increase cellular contact and probably act in apoplastic transport.

  6. Numerical Investigation of Turbulent Natural Convection for a Cavity Having Sinusoidal Protuberances on a Vertical Wall

    Directory of Open Access Journals (Sweden)

    K Rahmani

    2013-01-01

    Full Text Available This work concerns the study of heat transfer by means of natural convection with fluids circulating in enclosures. These topics are largely studied both experimentally and numerically due to their wide industrial application in various fields such as nuclear energy, the heating and cooling of buildings, solar collectors, etc. A great deal of relevant research work consists in numerical simulations of natural convection mechanisms with laminar flows in closed cavities. In this context, the present study comes as a contribution in numerical form investigating the turbulent natural convection in vertical enclosure which presents sinusoidal protuberances on one of its vertical walls. Both the top and bottom of the enclosure are open to allow the fluid flow. The horizontal walls are supposed adiabatic. We are interested in determining for various amplitudes and periods. The influence of geometry on several factors such as: temperature, the number of local Nusselt, the turbulent kinetic energy k and its dissipation. Based on the Navier-Stokes equations and Boussinesq approximation, the equations were solved by the CFD technique using the Finite Volume Method In the case of enclosures having the form ratio equal to 0.6 (A=0.6. Given the steady conditions of heat flow on the vertical walls and the pressures at the entry and exit of the cavity, the results show that when we gradually increase the amplitudes of the protuberance wall (say a=0.005 m, a=0.010, a=0.015, a= 0.02, and a=0.025, the maximal temperature increases with the increase of amplitude. This is due to the rise of the heat transfer surface of the modified wall. Regarding heat transfer parameters, the results show that the number of local Nusselt varies relatively with the amplitudes. This explains that the modified wall is affected locally by a pure conduction. The results obtained in this study are in agreement with recent works of several authors.

  7. Coherent Structures in Transition of a Flat-Plate Boundary Layer at Ma=0.7

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ying; LI Xin-Liang; FU De-Xun; MA Yan-Wen

    2007-01-01

    @@ Direct numerical simulation (DNS) of a spatially evolving flat-plate boundary layer transition process at free stream Mach number 0.7 is performed. Tollmien-Schlichting (T-S) waves are added on the inlet boundary as the disturbances before transition. Typical coherent structures in the transition process are investigated based on the second invariant of velocity gradient tensor. The instantaneous shear stress and the mean velocity profile in the transition region are studied. In our view, the fact that the peak value of shear stress in the stress concentration area increases and exceeds a threshold value during the later stage of the transition process plays an important role in the laminar breakdown process.

  8. Experimental studies on the stability and transition of 3-dimensional boundary layers

    Science.gov (United States)

    Nitschke-Kowsky, P.

    1987-01-01

    Three-dimensional unstable boundary layers were investigated as to their characteristic instabilities, leading to turbulence. Standing cross-flow instabilities and traveling waves preceding the transition were visualized with the hydrogen bubble technique in the boundary layer above the wall of a swept cylinder. With the sublimation method and hot film technique, a model consisting of a swept flat plate with a pressure-inducing displacement body in the 1 m wind tunnel was studied. Standing waves and traveling waves in a broad frequency are observed. The boundary layer of this model is close to the assumptions of the theory.

  9. Layered transition metal carboxylates: efficient reusable heterogeneous catalyst for epoxidation of olefins.

    Science.gov (United States)

    Sen, Rupam; Bhunia, Susmita; Mal, Dasarath; Koner, Subratanath; Miyashita, Yoshitaro; Okamoto, Ken-Ichi

    2009-12-01

    Layered metal carboxylates [M(malonato)(H(2)O)(2)](n) (M = Ni(II) and Mn(II)) that have a claylike structure have been synthesized hydrothermally and characterized. The interlayer separation in these layered carboxylates is comparable to that of the intercalation distance of the naturally occurring clay materials or layered double hydroxides (LDHs). In this study, we have demonstrated that, instead of intercalating the metal complex into layers of the clay or LDH, layered transition metal carboxylates, [M(malonato)(H(2)O)(2)](n), as such can be used as a recyclable heterogeneous catalyst in olefin epoxidation reaction. Metal carboxylates [M(malonato)(H(2)O)(2)](n) exhibit excellent catalytic performance in olefin epoxidation reaction.

  10. Measured Boundary Layer Transition and Rotor Hover Performance at Model Scale

    Science.gov (United States)

    Overmeyer, Austin D.; Martin, Preston B.

    2017-01-01

    An experiment involving a Mach-scaled, 11:08 f t: diameter rotor was performed in hover during the summer of 2016 at NASA Langley Research Center. The experiment investigated the hover performance as a function of the laminar to turbulent transition state of the boundary layer, including both natural and fixed transition cases. The boundary layer transition locations were measured on both the upper and lower aerodynamic surfaces simultaneously. The measurements were enabled by recent advances in infrared sensor sensitivity and stability. The infrared thermography measurement technique was enhanced by a paintable blade surface heater, as well as a new high-sensitivity long wave infrared camera. The measured transition locations showed extensive amounts, x=c>0:90, of laminar flow on the lower surface at moderate to high thrust (CT=s > 0:068) for the full blade radius. The upper surface showed large amounts, x=c > 0:50, of laminar flow at the blade tip for low thrust (CT=s layer transition models in CFD and rotor design tools. The data is expected to be used as part of the AIAA Rotorcraft SimulationWorking Group

  11. a Monte Carlo Study of Carbon Monoxide Layers Adsorbed on Ionic Substrates:. Structures and Phase Transitions

    Science.gov (United States)

    Vu, Ngoc-Thanh; Jack, David B.

    We have studied the order-disorder phase transitions of carbon monoxide layers adsorbed on sodium chloride and lithium flouride substrates using the Metropolis Monte Carlo method. The simulations have been performed in the temperature range from 5 K to 60 K. At low temperature and monolayer coverage, both of these systems form ordered phases which disorder as the temperature is increased. The transition temperature (Tc) is between 30 K and 35 K for CO/NaCl, and from 40 K to 45 K for CO/LiF. Below Tc, both systems have an ordered p(2 × 1) type structure due to correlated azimuthal orientations. Above Tc, both systems undergo a phase transition to an azimuthally disordered p(1 × 1) structure, i.e. one with no preferred orientation in the surface plane. The heat capacity shows a characteristic divergence at the transition temperature. Coverages of less than a monolayer of the CO/NaCl system have also been studied. The CO molecules are found to aggregate and form islands with an ordered structure in the middle of the islands. These islands also undergo an order-disorder transition but at lower temperatures. Multilayer systems were found to destabilize the p(2 × 1) structure of the bottommost layer in favor of a p(1 × 1) structure with the upper layers adopting the bulk structure.

  12. Boundary-layer transition on blunt slender cones at Mach 10

    Science.gov (United States)

    Bell, R. L.

    1984-08-01

    Investigations of the effects of nose blunting on the location of boundary-layer transition on slender cones at supersonic or hypersonic speeds so back 25 years. For some time it was thought that the movement of the transition point was simply due to the reduction in local Reynolds number associated with the loss in total pressure through the bow shock. More recently, it has been shown that variations in the local transition Reynolds number also occur on a blunt cone and that both these effects must be taken into account in explaining the observed movement in transition along the cone frustum. The present investigation was carried out as a demonstration test for the development of a new capability in Hypervelocity Tunnel 9 at the Naval Surface Weapon Center. The objective of this development effort was to raise the Reynolds number at mach 10 from about 5 x 1000000 per foot to 20 x 1000000 per foot. This was done so that naturally turbulent boundary layers (i.e., without tripping) could be obtained on R/V models. Thus an investigation of boundary layer transition was an appropriate choice for the demonstration test.

  13. Transition to turbulence in strongly heated vertical natural convection boundary layers

    CERN Document Server

    De Larochelambert, Thierry

    2008-01-01

    The mechanisms governing the transition to turbulence in natural convection boundary layers along strongly heated vertical walls remain neither very clear nor well understood, because of the lack of experiments and the difficulties of physical modelling. Our measurements bring experimental data focusing on this transition in quiescent air along radiating and conducting plates in the whole range of 2000 to 8000 W/m\\^2 heating rate. The analysis of the time series obtained by sliding window cross-correlation thermoanemometry leads us to point out coherent turbulent structures on short heights throughout the thin boundary layer, which seem to be governed by heat transfer and time-microscales of turbulence through the inner sublayer. Physical interpretations are given to relate to the observed heat transfer correlation and these turbulence transition structures along with radiation and conduction.

  14. Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-layer structure

    CERN Document Server

    Dubinov, Alexander A; Aleshkin, Vladimir Ya; Ryzhii, Victor; Otsuji, Taiichi; Svintsov, Dmitry

    2016-01-01

    The optimization of laser resonators represents a crucial issue for the design of terahertz semiconductor lasers with high gain and low absorption loss. In this paper, we put forward and optimize the surface plasmonic metal waveguide geometry for the recently proposed terahertz injection laser based on resonant radiative transitions between tunnel-coupled grapheme layers. We find an optimal number of active graphene layer pairs corresponding to the maximum net modal gain. The maximum gain increases with frequency and can be as large as ~ 500 cm-1 at 8 THz, while the threshold length of laser resonator can be as small as ~ 50 mkm. Our findings substantiate the possibility of ultra-compact voltage-tunable graphene-based lasers operating at room temperature.

  15. Growth and electronic structure of single-layered transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Dendzik, Maciej

    2016-01-01

    The discovery of graphene has opened a novel research direction focused on the properties of 2D materials. Transition metal dichalcogenides (TMDCs) were quickly identified as important materials due to the great variety of electronic properties that they manifest – properties that are markedly...... different from graphene’s. For example, semiconducting TMDCs undergo an indirectdirect band gap transition when thinned to a single layer (SL); this results in greatly enhanced photoluminescence, making those materials attractive for applications in optoelectronics. Furthermore, metallic TMDCs can host...... TMDCs is directly studied with angle-resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy (XPS) techniques. Experimental results are compared with density-functional theory calculations (DFT), both for a free-standing layer and for a layer adsorbed on a metallic substrate...

  16. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

    Science.gov (United States)

    Tan, Qing-Hai; Zhang, Xin; Luo, Xiang-Dong; Zhang, Jun; Tan, Ping-Heng

    2017-03-01

    Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency ( 50 cm‑1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials. Project supported by the National Basic Research Program of China (No. 2016YFA0301200), the National Natural Science Foundation of China (Nos. 11225421, 11474277, 11434010, 61474067, 11604326, 11574305 and 51527901), and the National Young 1000 Talent Plan of China.

  17. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets

    Science.gov (United States)

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun

    2016-11-01

    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  18. Influence of Surface Transition Layers on Phase Transformation and Pyroelectric Properties of Ferroelectric Thin Film

    Institute of Scientific and Technical Information of China (English)

    SUN Pu-Nan; L(U) Tian-Quan; CHEN Hui; CAO Wen-Wu

    2008-01-01

    Taking into account surface transition layers (STLs), we study the phase transformation and pyroelectric properties of ferroelectric thin films by employing the transverse Ising model (TIM) in the framework of the mean field approximation. The distribution functions representing the intra-layer and inter-layer couplings between the two nearest neighbour pseudo-spins are introduced to characterize STLs. Compared with the results obtained by the traditional treatments for the thin films using only the single surface transition layer (SSL), it is shown that the STL model reflects a more realistic and comprehensive situation of films. The effects of various parameters on the phase transformation properties have shown that STL can make the Curie temperature of the film higher or lower than that of the corresponding bulk material, and the thickness of STL is a key factor influencing the film properties. For a film with definite thickness, there exists a critical STL thickness at which ferroelectricity will disappear when the intra-layer and inter-layer interactions are weak.

  19. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    KAUST Repository

    Anasori, Babak

    2016-02-24

    In this study, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M′2M′′C2 and M′2M′′2C3 – where M′ and M′′ are two different early transition metals, such as Mo, Cr, Ta, Nb, V, and Ti. The M′ atoms only occupy the outer layers and the M′′ atoms fill the middle layers. In other words, M′ atomic layers sandwich the middle M′′–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. This finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.

  20. Length Scale of Free Stream Turbulence and Its Impact on Bypass Transition in a Boundary Layer

    Directory of Open Access Journals (Sweden)

    J. Grzelak

    2017-01-01

    Full Text Available An experimental investigation was carried out to study the turbulent flow over a flat plate in a subsonic wind tunnel. The enhanced level of turbulence was generated by five wicker grids with square meshes, and different parameters (diameter of the grid rod d = 0.3 to 3 mm and the grid mesh size M = 1 to 30 mm. The velocity of the flow was measured by means of a 1D hot-wire probe, suitable for measurements in a boundary layer. The main aim of the investigation was to explore the influence of the free stream turbulence length scale on the onset of laminar-turbulent bypass transition in a boundary layer on a flat plate. For this purpose, several transition correlations were presented, including intensity and length scales of turbulence, both at the leading edge of a plate and at the onset of transition. The paper ends with an attempt to create a correlation, which takes into account a simultaneous impact of turbulence intensity and turbulence scale on the boundary layer transition. To assess the isotropy of turbulence, the skewness factor of the flow velocity distribution was determined. Also several longitudinal scales of turbulence were determined and compared (integral scale, dissipation scale, Taylor microscale and Kolmogorov scale for different grids and different velocities of the mean flow U = 4, 6, 10, 15, 20 m/s.

  1. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; FU Song

    2009-01-01

    Based on Reynolds-averaged Navier-Stokes approach, a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows. The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy, ωthe specific dissipation rate and the intermittency factor γ.The particular features of the model are that: 1) k includes the non-turbulent, as well as turbulent fluctuations; 2) a transport equation for the intermittency factor γis proposed here with a source term set to trigger the transition onset; 3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ,which are often cost-ineffective with the modern CFD (Computational Fluid Dynamics) methods; 4) in the fully turbulent region, the model retreats to the well-known k-ωSST (Shear Stress Transport) model. This model is validated with a number of available experiments on boundary layer transitions including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.

  2. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on Reynolds-averaged Navier-Stokes approach,a laminar-turbulence transition model is proposed in this study that takes into account the effects of different instability modes associated with the variations in Mach numbers of compressible boundary layer flows.The model is based on k-ω-γ three-equation eddy-viscosity concept with k representing the fluctuating kinetic energy,ωthe specific dissipation rate and the intermittency factorγ.The particular features of the model are that:1)k includes the non-turbulent,as well as turbulent fluctuations;2)a transport equation for the intermittency factorγis proposed here with a source term set to trigger the transition onset;3)through the introduction of a new length scale normal to wall,the present model employs the local variables only avoiding the use of the integral parameters,like the boundary layer thicknessδ,which are often cost-ineffective with the modern CFD(Computational Fluid Dynamics)methods;4)in the fully turbulent region,the model retreats to the well-known k-ωSST(Shear Stress Transport)model.This model is validated with a number of available experiments on boundary layer transitions including the incompressible,supersonic and hypersonic flows past flat plates,straight/flared cones at zero incidences,etc.It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition.

  3. Transition prediction for supersonic and hypersonic boundary layers on a cone with angle of attack

    Institute of Scientific and Technical Information of China (English)

    SU CaiHong; ZHOU Heng

    2009-01-01

    Transition prediction for boundary layers has always been one of the urgent problems waiting for a solution for the development of aero-space technology, yet there is no reliable and effective method due to the complexity of the problem. The eN method has been regarded as an effective method for the transition prediction of boundary layers. However, it heavily relies on experiment or experience. And in cases with three-dimensional base flow, for instance, the boundary layer on a cone with angle of attack, the result of its application is not satisfactory. The authors have found its cause and proposed the method for its improvement, which did yield the fairly satisfactory result for a given test case, and also did not rely so much on experiment or experience. However, before people can really apply this method to practical problems, more test cases have to be studied. In this paper, more test cases for the appli- cation of the improved eN method to problems of transition prediction of supersonic and hypersonic boundary layers on cones with angle of attack will be studied. The results are compared with those obtained by experiments and/or direct numerical simulations, confirming that the improved eN method is effective and reliable. We also find that there may be more than one ZARF for each meridian plane, and which one should be chosen for the eN method has been clarified.

  4. H i-to-H2 Transition Layers in the Star-forming Region W43

    Science.gov (United States)

    Bialy, Shmuel; Bihr, Simon; Beuther, Henrik; Henning, Thomas; Sternberg, Amiel

    2017-02-01

    The process of atomic-to-molecular (H i-to-H2) gas conversion is fundamental for molecular-cloud formation and star formation. 21 cm observations of the star-forming region W43 revealed extremely high H i column densities, of 120–180 {M}ȯ {{pc}}-2, a factor of 10–20 larger than predicted by H i-to-H2 transition theories. We analyze the observed H i with a theoretical model of the H i-to-H2 transition, and show that the discrepancy between theory and observation cannot be explained by the intense radiation in W43, nor be explained by variations of the assumed volume density or H2 formation rate coefficient. We show that the large observed H i columns are naturally explained by several (9–22) H i-to-H2 transition layers, superimposed along the sightlines of W43. We discuss other possible interpretations such as a non-steady-state scenario and inefficient dust absorption. The case of W43 suggests that H i thresholds reported in extragalactic observations are probably not associated with a single H i-to-H2 transition, but are rather a result of several transition layers (clouds) along the sightlines, beam-diluted with diffuse intercloud gas.

  5. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANGAn-Mei; XIEWen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matr/x. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  6. Chromatographic separation studies of penicillins, cephalosporins and carbapenems on transition-metal silicate modified silica layers.

    Science.gov (United States)

    Singh, Dhruv K; Maheshwari, Gunjan

    2012-01-01

    The chromatographic behavior of penicillins, cephalosporins and carbapenems has been studied on the thin layers of transition-metal ion (viz. Ni(2+)/Zn(2+)/Cu(2+)/Co(2+)) silicate modified silica. Transition-metal silicate (3.92%) and silica (96.08%) were found to be optimum and resulted in spherical-compact spots and improved resolution of the analytes. The effect of various mobile phases was also investigated. The chromatograms were visualized as yellow spots by placing in an I(2)-chamber. The method has been found to be reproducible and convenient for routine analysis.

  7. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANG An-Mei; XIE Wen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  8. Tunable indirect-direct transition of few-layer SnSe via interface engineering

    Science.gov (United States)

    Sirikumara, Hansika I.; Jayasekera, Thushari

    2017-10-01

    Tin selenide (SnSe) is one of the best thermoelectric materials reported to date. The possibility of growing few-layer SnSe helped boost the interest in this long-known, earth abundant material. Pristine SnSe in bulk, mono- and few-layer forms are reported to have indirect electronic bandgaps. Possible indirect-direct transition in SnSe is attractive for its optoelectronic-related applications. Based on the results from first principles density functional theory calculations, we carefully analyzed electronic band structures of bulk, and bilayer SnSe with various interlayer stackings. We report the possible stacking-dependent indirect-direct transition of bilayer SnSe. By further analysis, our results reveal that it is the directionality of interlayer interactions that determine the critical features of their electronic band structures. In fact, by engineering the interface stacking between layers, it is possible to achieve few-layer SnSe with direct electronic band gap. This study provides fundamental insights to design few-layer SnSe and SnSe heterostructures for electronic/optoelectronic applications, where the interface geometry plays a fundamental role in device performance.

  9. Observations of the Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System

    Science.gov (United States)

    Bonin, Timothy; Chilson, Phillip; Zielke, Brett; Fedorovich, Evgeni

    2013-01-01

    The evolution of the lower portion of the planetary boundary layer is investigated using the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial vehicle developed at the University of Oklahoma. The study focuses on the lowest 200 m of the atmosphere, where the most noticeable thermodynamic changes occur during the day. Between October 2010 and February 2011, a series of flights was conducted during the evening hours on several days to examine the vertical structure of the lower boundary layer. Data from a nearby Oklahoma Mesonet tower was used to supplement the vertical profiles of temperature, humidity, and pressure, which were collected approximately every 30 min, starting 2 h before sunset and continuing until dusk. From the profiles, sensible and latent heat fluxes were estimated. These fluxes were used to diagnose the portion of the boundary layer that was most affected by the early evening transition. During the transition period, a shallow cool and moist layer near the ground was formed, and as the evening progressed the cooling affected an increasingly shallower layer just above the surface.

  10. Synthesis and Characterization of Layered Double Hydroxides Containing Optically Active Transition Metal Ion

    Science.gov (United States)

    Tyagi, S. B.; Kharkwal, Aneeta; Nitu; Kharkwal, Mamta; Sharma, Raghunandan

    2017-01-01

    The acetate intercalated layered double hydroxides of Zn and Mn, have been synthesized by chimie douce method. The materials were characterized by XRD, TGA, CHN, IR, XPS, SEM-EDX and UV-visible spectroscopy. The photoluminescence properties was also studied. The optical properties of layered hydroxides are active transition metal ion dependent, particularly d1-10 system plays an important role. Simultaneously the role of host - guest orientation has been considered the basis of photoluminescence. Acetate ion can be exchanged with iodide and sulphate ions. The decomposed product resulted the pure phase Mn doped zinc oxide are also reported.

  11. A quiet flow Ludwieg tube for study of transition in compressible boundary layers: Design and feasibility

    Science.gov (United States)

    Schneider, Steven P.

    1991-01-01

    Laminar-turbulent transition in high speed boundary layers is a complicated problem which is still poorly understood, partly because of experimental ambiguities caused by operating in noisy wind tunnels. The NASA Langley experience with quiet tunnel design has been used to design a quiet flow tunnel which can be constructed less expensively. Fabrication techniques have been investigated, and inviscid, boundary layer, and stability computer codes have been adapted for use in the nozzle design. Construction of such a facility seems feasible, at a reasonable cost. Two facilities have been proposed: a large one, with a quiet flow region large enough to study the end of transition, and a smaller and less expensive one, capable of studying low Reynolds number issues such as receptivity. Funding for either facility remains to be obtained, although key facility elements have been obtained and are being integrated into the existing Purdue supersonic facilities.

  12. Streamwise Vortex Instability and Hypersonic Boundary-Layer Transition on the Hyper-2000

    Science.gov (United States)

    2003-12-01

    portions of the gap, of a depth more than an inch, were refilled with Orthocast Inc.’s Orthodontic Plaster. Twice the quoted amount of water was used...Hamilton II, H.H. X-33 Hypersonic Boundary-Layer Transition. Journal of Spacecraft and Rockets, 38(5):646-657, September-October 2001. [5...Palmer, G., Kontinos, D., and Sherman, B. Surface Heating Effects of X-33 Vehicle Thermal-Protection-System Panel Bowing. Journal of Spacecraft and

  13. On the structure of the extra-tropical transition layer from in-situ observations

    OpenAIRE

    Pisso, I.; Law, K. S.; Fierli, F.; P. H. Haynes; P. Hoor; Palazzi, E; F. Ravegnani; S. Viciani

    2012-01-01

    In-situ observations of atmospheric tracers from multiple measurement campaigns over the period 1994–2007 were combined to investigate the Extra-tropical Transition Layer (ExTL) region and the properties of large scale meridional transport. We used potential temperature, equivalent latitude and distance relative to the local dynamical tropopause as vertical coordinates to highlight the behaviour of trace gases in the tropopause region. Vertical coordinates based on constant PV surfaces...

  14. Transition Delay in Hypervelocity Boundary Layers By Means of CO2/Acoustic Instability Interaction

    Science.gov (United States)

    2014-12-16

    They also concluded that injection was destabilizing and proposed that using acoustic absorption by porous material downstream of the injection...with Combined Injection and Acoustic Absorptive Coating.” Final Report on EOARD GRANT No. FA8655-12-D-0003, Moscow Institute of Physics and Technology...AFRL-OSR-VA-TR-2015-0040 TRANSITION DELAY IN HYPERVELOCITY BOUNDARY LAYERS BY MEANS OF CO2/ ACOUSTIC INSTA Joseph Shepherd CALIFORNIA INSTITUTE OF

  15. On the design of airfoils in which the transition of the boundary layer is delayed

    Science.gov (United States)

    Tani, Itiro

    1952-01-01

    A method is presented for designing suitable thickness distributions and mean camber lines for airfoils permitting extensive chordwise laminar flow. Wind tunnel and flight tests confirming the existence of laminar flow; possible maintenance of laminar flow by area suction; and the effects of wind tunnel turbulence and surface roughness on the promotion of premature boundary layer transition are discussed. In addition, estimates of profile drag and scale effect on maximum lift of the derived airfoils are made.

  16. Boundary-layer transition prediction using a simplified correlation-based model

    Directory of Open Access Journals (Sweden)

    Xia Chenchao

    2016-02-01

    Full Text Available This paper describes a simplified transition model based on the recently developed correlation-based γ-Reθt transition model. The transport equation of transition momentum thickness Reynolds number is eliminated for simplicity, and new transition length function and critical Reynolds number correlation are proposed. The new model is implemented into an in-house computational fluid dynamics (CFD code and validated for low and high-speed flow cases, including the zero pressure flat plate, airfoils, hypersonic flat plate and double wedge. Comparisons between the simulation results and experimental data show that the boundary-layer transition phenomena can be reasonably illustrated by the new model, which gives rise to significant improvements over the fully laminar and fully turbulent results. Moreover, the new model has comparable features of accuracy and applicability when compared with the original γ-Reθt model. In the meantime, the newly proposed model takes only one transport equation of intermittency factor and requires fewer correlations, which simplifies the original model greatly. Further studies, especially on separation-induced transition flows, are required for the improvement of the new model.

  17. High-speed laminar-turbulent boundary layer transition induced by a discrete roughness element

    Science.gov (United States)

    Iyer, Prahladh; Mahesh, Krishnan

    2013-11-01

    Direct numerical simulation (DNS) is used to study laminar to turbulent transition induced by a discrete hemispherical roughness element in a high-speed laminar boundary layer. The simulations are performed under conditions matching the experiments of Danehy et al. (AIAA Paper 2009-394, 2009) for free-stream Mach numbers of 3.37, 5.26 and 8.23. It is observed that the Mach 8.23 flow remains laminar downstream of the roughness, while the lower Mach numbers undergo transition. The Mach 3.37 flow undergoes transition closer to the bump when compared with Mach 5.26, in agreement with experimental observations. Transition is accompanied by an increase in Cf and Ch (Stanton number). Even for the case that did not undergo transition (Mach 8.23), streamwise vortices induced by the roughness cause a significant rise in Cf until 20 D downstream. The mean van Driest transformed velocity and Reynolds stress for Mach 3.37 and 5.26 show good agreement with available data. A local Reynolds number based on the wall properties is seen to correlate with the onset of transition for the cases considered. Partially supported by NASA.

  18. Boundary-layer transition prediction using a simplified correlation-based model

    Institute of Scientific and Technical Information of China (English)

    Xia Chenchao; Chen Weifang

    2016-01-01

    This paper describes a simplified transition model based on the recently developed correlation-based c ? Reht transition model. The transport equation of transition momentum thick-ness Reynolds number is eliminated for simplicity, and new transition length function and critical Reynolds number correlation are proposed. The new model is implemented into an in-house com-putational fluid dynamics (CFD) code and validated for low and high-speed flow cases, including the zero pressure flat plate, airfoils, hypersonic flat plate and double wedge. Comparisons between the simulation results and experimental data show that the boundary-layer transition phenomena can be reasonably illustrated by the new model, which gives rise to significant improvements over the fully laminar and fully turbulent results. Moreover, the new model has comparable features of accuracy and applicability when compared with the original c ? Reht model. In the meantime, the newly proposed model takes only one transport equation of intermittency factor and requires fewer correlations, which simplifies the original model greatly. Further studies, especially on separation-induced transition flows, are required for the improvement of the new model.

  19. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2

    KAUST Repository

    Zhang, Chendong

    2015-09-21

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  20. Experiments on hypersonic boundary layer transition on blunt cones with acoustic-absorption coating

    Science.gov (United States)

    Shiplyuk, A.; Lukashevich, S.; Bountin, D.; Maslov, A.; Knaus, H.

    2012-01-01

    The laminar-turbulent transition is studied experimentally on a cone with an acoustic-absorption coating and with different nose bluntness in a high-speed flow. The acoustic-absorption coating is a felt metal sheet with a random microstructure. Experiments were carried out on a 1-meter length 7 degree cone at free-stream Mach number M = 8 and zero angle of attack. Locations of the laminar-turbulent transition are detected using heat flux distributions registered by calorimeter sensors. In addition, boundary layer pulsations are measured by means of ultrafast heat flux sensors. It is shown that the laminar-turbulent transition is caused by the second-mode instability, and the laminar run extends as the bluntness is increased. The porous coating effectively suppresses this instability for all tested bluntness values and 1.3-1.85 times extends the laminar run.

  1. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2.

    Science.gov (United States)

    Zhang, Chendong; Chen, Yuxuan; Johnson, Amber; Li, Ming-Yang; Li, Lain-Jong; Mende, Patrick C; Feenstra, Randall M; Shih, Chih-Kang

    2015-10-14

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe2 surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  2. The Research of Laminar-Turbulent Transition in Hypersonic Three-Dimensional Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    Marat A.GOLDFELD; Evgeniy V. ORLIK

    2005-01-01

    @@ The results of experimental investigation of laminar-turbulent transition in three-dimensional flow under the high continuous pressure gradient including the flow with local boundary layer separation are presented. The experimental studies were performed within the Mach number range from 4 to 6 and Reynolds number 10~60 ×106 1/m, the angles of attack were 00 and 50. The experiments were carried out on the three-dimensional convergent inlet model with and without sidewalls. The influence of artificial turbulator of boundary layer on transition and flow structure was studied. The conducted researches have shown that adverse pressure gradient increase hastens transition and leads to decrease of transition area length. If pressure gradient rises velocity profile fullness increases and profile transformation from laminar to turbulent occurs. As a result of it the decrease of separation area length occurs. The same effect was reached with Reynolds number increase. These results are compared with the data on two-dimensional model with longitudinal curvature.

  3. Experimental characterization of transition region in rotating-disk boundary layer

    Science.gov (United States)

    Siddiqui, M. E.; Mukund, V.; Scott, J.; Pier, B.

    2013-03-01

    The three-dimensional boundary layer due to a disk rotating in otherwise still fluid is well known for its sudden transition from a laminar to a turbulent regime, the location of which closely coincides with the onset of local absolute instability. The present experimental investigation focuses on the region around transition and analyses in detail the features that lead from the unperturbed boundary layer to a fully turbulent flow. Mean velocity profiles and high-resolution spectra are obtained by constant-temperature hot-wire anemometry. By carefully analysing these measurements, regions in the flow are identified that correspond to linear, weakly nonlinear, or turbulent dynamics. The frequency that dominates the flow prior to transition is explained in terms of spatial growth rates, derived from the exact linear dispersion relation. In the weakly nonlinear region, up to six clearly identifiable harmonic peaks are found. High-resolution spectra reveal the existence of discrete frequency components that are deemed to correspond to fluctuations stationary with respect to the disk surface. These discrete components are only found in the weakly nonlinear region. By systematically acquiring low- and high-resolution spectra over a range of narrowly spaced radial and axial positions, it is shown that while the transition from laminar to turbulent regimes occurs sharply at some distance from the disk surface, a complex weakly nonlinear region of considerable radial extent continues to prevail close to the disk surface.

  4. Conditionally-Sampled Turbulent and Nonturbulent Measurements of Entropy Generation Rate in the Transition Region of Boundary Layers

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; J. R. Wolf; K. P. Nolan; E. J. Walsh; R. J. Volino

    2006-05-01

    Conditionally-sampled boundary layer data for an accelerating transitional boundary layer have been analyzed to calculate the entropy generation rate in the transition region. By weighing the nondimensional dissipation coefficient for the laminar-conditioned-data and turbulent-conditioned-data with the intermittency factor the average entropy generation rate in the transition region can be determined and hence be compared to the time averaged data and correlations for steady laminar and turbulent flows. It is demonstrated that this method provides, for the first time, an accurate and detailed picture of the entropy generation rate during transition. The data used in this paper have been taken from detailed boundary layer measurements available in the literature. This paper provides, using an intermittency weighted approach, a methodology for predicting entropy generation in a transitional boundary layer.

  5. Conditionally-Sampled Turbulent and Non-turbulent Measurements of Entropy Generation Rate in the Transition Region of Boundary Layers

    Energy Technology Data Exchange (ETDEWEB)

    Edmond J. Walsh; Kevin P. Nolan; Donald M. McEligot; Ralph J. Volino; Adrian Bejan

    2007-05-01

    Conditionally-sampled boundary layer data for an accelerating transitional boundary layer have been analyzed to calculate the entropy generation rate in the transition region. By weighing the nondimensional dissipation coefficient for the laminar-conditioned-data and turbulent-conditioned-data with the intermittency factor the average entropy generation rate in the transition region can be determined and hence be compared to the time averaged data and correlations for steady laminar and turbulent flows. It is demonstrated that this method provides, for the first time, an accurate and detailed picture of the entropy generation rate during transition. The data used in this paper have been taken from detailed boundary layer measurements available in the literature. This paper provides, using an intermittency weighted approach, a methodology for predicting entropy generation in a transitional boundary layer.

  6. Carbonization and transition layer effects on 3C-SiC film residual stress

    Science.gov (United States)

    Anzalone, R.; Litrico, G.; Piluso, N.; Reitano, R.; Alberti, A.; Fiorenza, P.; Coffa, S.; La Via, F.

    2017-09-01

    In this work an extended study of the carbonization process of the silicon surface and of a low temperature transition layer in the temperature rump on the 3C-SiC epitaxial growth has been reported. It has been observed that increasing the C/H2 ratio the voids density decreases, the thickness of the carbonization layer and the density increase and the morphology improves. The low temperature transition layer, grown during the ramp between the carbonization step and the real growth process, produce a further reduction of the voids at the 3C-SiC/Si interface and a considerable reduction of the stress of the 3C-SiC film. This stress reduction is related to a large change of the film morphology. No effect of the interface silicon layer on the stress is observed. This study has shown the complex connection between the first steps of the 3C-SiC growth process and the properties of the film in term of stress and superficial morphology. The residual stress has important implications with regard to the processing (wafer bow) and quality of the epitaxy. Residual stress also changes the mechanical response and/or the resonant frequency of the thin-film structure and may degrade the performance in MEMS-based devices. Therefore, a better understanding of the stress relaxation mechanism could improve the performances of 3C-SiC devices and sensor technologies.

  7. Transitions metal dichalcogenides: Growth, fermiology studies, and few-layered transport properties

    Science.gov (United States)

    Rhodes, Daniel

    Transition metal dichalcogenides (TMDs or TMDCs) have garnered much interest recently due to their weakly layered structures, allowing for mechanical exfoliation down to a single atomic layer. As such, it is pertinent to re-examine the bulk properties of these materials in order to completely understand and predict what is happening in the few-layered limit. A large majority of these systems were first investigated in the 1950s and 1960s. As such, many of the current growth methods rely on these reports, making new growth techniques for lowering defects of importance as well. In this thesis, both topics are taken into consideration and discussed, though the latter remains to be investigated in much more detail and should be the work of future research efforts. (Abstract shortened by ProQuest.).

  8. Layering PLGA-based electrospun membranes and cell sheets for engineering cartilage-bone transition.

    Science.gov (United States)

    Mouthuy, P-A; El-Sherbini, Y; Cui, Z; Ye, H

    2016-04-01

    It is now widely acknowledged that implants that have been designed with an effort towards reconstructing the transition between tissues might improve their functionality and integration in vivo. This paper contributes to the development of improved treatment for articular cartilage repair by exploring the potential of the combination of electrospinning technology and cell sheet engineering to create cartilage tissue. Poly(lactic-co-glycolic acid) (PLGA) was used to create the electrospun membranes. The focus being on the cartilage-bone transition, collagen type I and hydroxyapatite (HA) were also added to the scaffolds to increase the histological biocompatibility. Human mesenchymal stem cells (hMSCs) were cultured in thermoresponsive dishes to allow non-enzymatic removal of an intact cell layer after reaching confluence. The tissue constructs were created by layering electrospun membranes with sheets of hMSCs and were cultured under chondrogenic conditions for up to 21 days. High viability was found to be maintained in the multilayered construct. Under chondrogenic conditions, reverse-transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry have shown high expression levels of collagen type X, a form of collagen typically found in the calcified zone of articular cartilage, suggesting an induction of chondrocyte hypertrophy in the PLGA-based scaffolds. To conclude, this paper suggests that layering electrospun scaffolds and cell sheets is an efficient approach for the engineering of tissue transitions, and in particular the cartilage-bone transition. The use of PLGA-based scaffold might be particularly useful for the bone-cartilage reconstruction, since the differentiated tissue constructs seem to show characteristics of calcified cartilage. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter.

    Science.gov (United States)

    Grey, Casey P; Newton, Scott T; Bowlin, Gary L; Haas, Thomas W; Simpson, David G

    2013-07-01

    We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z-axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = electrospinning fabricated with fibers of this type on opposing surfaces fracture and fail as unified, and mechanically integrated, structures. Gradient electrospinning also eliminates the anisotropic strain properties observed in scaffolds composed of highly aligned fibers. In burst testing, scaffolds composed of aligned fibers produced using gradient electrospinning exhibit superior material properties with respect to scaffolds composed of random or aligned fibers produced from a single polymer concentration or as bi-layered, laminated structures.

  10. Numerical Study on Mechanism of Small Vortex Generation in Boundary Layer Transition

    CERN Document Server

    Lu, Ping

    2014-01-01

    The small vortex generation is a key issue of the mechanism for late flow transition and turbulence generation. It was widely accepted that small length vortices were generated by large vortex breakdown. According to our recent DNS, we find that the hairpin vortex structure is very stable and never breaks down to small pieces. On the other hand, we recognize that there are strong positive spikes besides the ring neck in the spanwise direction. The strongly positive spikes are caused by second sweeps which are generated by perfectly circular and perpendicularly standing vortex rings. The second sweep brings energy from the invisid region downdraft to the bottom of the boundary layers, which generates high shear layers around the positive spikes.Since the high shear layer is not stable, all small length scales (turbulence) are generated around high shear layers especially near the wall surface (bottom of boundary layers). This happens near the ring neck in the streamwise direction and besides the original vorte...

  11. Nonlinear optimal control of bypass transition in a boundary layer flow

    Science.gov (United States)

    Xiao, Dandan; Papadakis, George

    2016-11-01

    Bypass transition is observed in a flat-plate boundary-layer flow when high levels of free stream turbulence are present. This scenario is characterized by the formation of streamwise elongated streaks inside the boundary layer, their break down into turbulent spots and eventually fully turbulent flow. In the current work, we perform DNS simulations of control of bypass transition in a zero-pressure-gradient boundary layer. A non-linear optimal control algorithm is developed that employs the direct-adjoint approach to minimise a quadratic cost function based on the deviation from the Blasius velocity profile. Using the Lagrange variational approach, the distribution of the blowing/suction control velocity is found by solving iteratively the non-linear Navier-Stokes and its adjoint equations in a forward/backward loop. The optimisation is performed over a finite time horizon during which the Lagrange functional is to be minimised. Large values of optimisation horizon result in instability of the adjoint equations. The results show that the controller is able to reduce the turbulent kinetic energy of the flow in the region where the objective function is defined and the velocity profile is seen to approach the Blasius solution. Significant drag reduction is also achieved.

  12. X-rays From Magnetic Flares In Cygnus X-1 The Role Of A Transition Layer

    CERN Document Server

    Nayakshin, S; Nayakshin, Sergei; Dove, James B.

    1998-01-01

    The spectrum of Seyfert 1 Galaxies is very similar to that of several Galactic Black Hole Candidates (GBHCs) in their hard state, suggestive that both classes of objects have similar physical processes. While it appears that an accretion disk corona (ADC) model, where the corona sandwiches the cold accretion disk, is capable of explaining the observations of Seyfert galaxies, recent work has shown that this model is problematic for GBHCs. To address the differences in the spectra of Seyferts and GBHCs, we consider the structure of the atmosphere of the accretion disk in a region near an active magnetic flare (we refer to this region as transition layer). We show that the transition layer is subject to a thermal instability. Due to the much higher ionizing X-ray flux in GBHCs, the only stable solution for the upper layer of the accretion disk is that in which it is highly ionized and is at the Compton temperature ($kT \\sim $ a few keV). Using numerical simulations for a slab geometry ADC, we show that the pres...

  13. A wavelet-based intermittency detection technique from PIV investigations in transitional boundary layers

    Science.gov (United States)

    Simoni, Daniele; Lengani, Davide; Guida, Roberto

    2016-09-01

    The transition process of the boundary layer growing over a flat plate with pressure gradient simulating the suction side of a low-pressure turbine blade and elevated free-stream turbulence intensity level has been analyzed by means of PIV and hot-wire measurements. A detailed view of the instantaneous flow field in the wall-normal plane highlights the physics characterizing the complex process leading to the formation of large-scale coherent structures during breaking down of the ordered motion of the flow, thus generating randomized oscillations (i.e., turbulent spots). This analysis gives the basis for the development of a new procedure aimed at determining the intermittency function describing (statistically) the transition process. To this end, a wavelet-based method has been employed for the identification of the large-scale structures created during the transition process. Successively, a probability density function of these events has been defined so that an intermittency function is deduced. This latter strictly corresponds to the intermittency function of the transitional flow computed trough a classic procedure based on hot-wire data. The agreement between the two procedures in the intermittency shape and spot production rate proves the capability of the method in providing the statistical representation of the transition process. The main advantages of the procedure here proposed concern with its applicability to PIV data; it does not require a threshold level to discriminate first- and/or second-order time-derivative of hot-wire time traces (that makes the method not influenced by the operator); and it provides a clear evidence of the connection between the flow physics and the statistical representation of transition based on theory of turbulent spot propagation.

  14. Metallic layered composite materials produced by explosion welding: Structure, properties, and structure of the transition zone

    Science.gov (United States)

    Mal'tseva, L. A.; Tyushlyaeva, D. S.; Mal'tseva, T. V.; Pastukhov, M. V.; Lozhkin, N. N.; Inyakin, D. V.; Marshuk, L. A.

    2014-10-01

    The structure, morphology, and microhardness of the transition zone in multilayer metallic composite joints are studied, and the cohesion strength of the plates to be joined, the mechanical properties of the formed composite materials, and fracture surfaces are analyzed. The materials to be joined are plates (0.1-1 mm thick) made of D16 aluminum alloy, high-strength maraging ZI90-VI (03Kh12N9K4M2YuT) steel, BrB2 beryllium bronze, and OT4-1 titanium alloy. Composite materials made of different materials are shown to be produced by explosion welding. The dependence of the interface shape (smooth or wavelike) on the physicomechanical properties of the materials to be joined is found. The formation of a wavelike interface is shown to result in the formation of intense-mixing regions in transition zones. Possible mechanisms of layer adhesion are discussed.

  15. Flat plate heat transfer for laminar transition and turbulent boundary layers using a shock tube

    Science.gov (United States)

    Brostmeyer, J. D.; Nagamatsu, H. T.

    1984-01-01

    Heat transfer results are presented for laminar, transition, and turbulent boundary layers for a Mach number of 0.12 with gas temperatures of 425 K and 1000 K over a flat plate at room temperature. The measurements were made in air for a Reynolds number range of 600 to 6 million. The heat transfer measurements were conducted in a 70-ft long, 4 in. diameter shock tube. Reflecting wedges were used to reflect the incident shock wave to produce a flow Mach number of 0.12 behind the reflected shock wave. Thin film platinum heat gages were mounted on the plate surface to measure the local heat flux. The laminar results for gas temperatures of 425 K to 1000 K agree well with theory. The turbulent results are also close to incompressible theory, with the 1000 K flow case being slightly higher. The transition results lie between the laminar and turbulent predictions.

  16. Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Yijun Chai

    2016-09-01

    Full Text Available Stress development is one of the significant factors leading to the failure of thermal barrier coating (TBC systems. In this work, stress development in the two phase mixed zone named phase transition layer (PTL, which grows between the thermally grown oxide (TGO and the bond coat (BC, is investigated by using two different homogenization models. A constitutive equation of the PTL based on the Reuss model is proposed to study the stresses in the PTL. The stresses computed with the proposed constitutive equation are compared with those obtained with Voigt model-based equation in detail. The stresses based on the Voigt model are slightly higher than those based on the Reuss model. Finally, a further study is carried out to explore the influence of phase transition proportions on the stress difference caused by homogenization models. Results show that the stress difference becomes more evident with the increase of the PTL thickness ratio in the TGO.

  17. DNS Study for the origin of the flow Randomization in Late Boundary Layer Transition

    CERN Document Server

    Thapa, Manoj; Liu, Chaoqun

    2014-01-01

    This paper is devoted to the investigation of the origin and mechanism of randomization in late boundary layer transition over a flat plate without pressure gradient. The flow randomization is a crucial phase before flow transition to the turbulent state. According to existing literatures, the randomization was caused by the big background noises and non-periodic spanwise boundary conditions. It was assumed that the large ring structure is affected by background noises first, and then the change of large ring structure affects the small length scales quickly, which directly leads to randomization and formation of turbulence. However, by careful analysis of our high order DNS results, we believe that the internal instability of multiple ring cycles structure is the main reason. What we observed is that randomization begins when the third cycle overlaps the first and second cycles. A significant asymmetric phenomenon is originated from the second cycle in the middle of both streamwise and spanwise directions. M...

  18. Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale

    Science.gov (United States)

    Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm

    2016-11-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.

  19. Emerging Energy Applications of Two-Dimensional Layered Transition Metal Dichalcogenides

    KAUST Repository

    Li, Henan

    2015-10-31

    Transition metal dichalcogenides (TMDCs) have attracted significant attention for their great potential in nano energy. TMDC layered materials represent a diverse and largely untapped source of 2D systems. High-quality TMDC layers with an appropriate size, variable thickness, superior electronic and optical properties can be produced by the exfoliation or vapour phase deposition method. Semiconducting TMDC monolayers have been demonstrated feasible for various energy related applications, where their electronic properties and uniquely high surface areas offer opportunities for various applications such as nano generators, green electronics, electrocatalytic hydrogen generation and energy storage. In this review, we start from the structure, properties and preparation, followed by detailed discussions on the development of TMDC-based nano energy applications. Graphical abstract The structure characterizations and preparative methods of 2D TMDCs have obtained significant progresses. Their recent advances for nano energy generation, solar harvesting, conversion and storage, and green electronics are reviewed.

  20. PHASE TRANSITION IN LAYERED PEROVSKITE LIKE MANGANATE Ca3Mn2O7 UNDER HIGH PRESSURE

    Institute of Scientific and Technical Information of China (English)

    J.L.ZHU; L.C.CHEN; R.C.YU; F.Y.LI; J.LIU; C.Q.JIN

    2001-01-01

    In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca3Mn2O7 under pressures up to 35 GPa have been Performed by using diamond anvil cell with synchrotron radiation.The results show that the structure of layered perovskite-like manganate Ca3Mn2O7 is unstable under pressure due to the easy compression of NaCl-type blocks.The structure of Ca3Mn2O7 underwent two phase transitions under pressures in the range of 0-35GPa.One was at about 1.3GPa with the crystal structure changing from tetragonalt go orthorhombic.The other was at about 9.5GPa with the crystal structure changing form orthorhombic back to another tetragonal.

  1. Turbulence vertical structure of the boundary layer during the afternoon transition

    Directory of Open Access Journals (Sweden)

    C. Darbieu

    2014-12-01

    Full Text Available We investigate the decay of planetary boundary layer (PBL turbulence in the afternoon, from the time the surface buoyancy flux starts to decrease until sunset. Dense observations of mean and turbulent parameters were acquired during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST field experiment by several meteorological surface stations, sounding balloons, radars, lidars, and two aircraft flying extensively during the afternoon transition. We analyzed a case study based on some of those observations and Large-Eddy Simulation (LES data focusing on the turbulent vertical structure throughout the afternoon transition. The decay of turbulence is quantified through the temporal and vertical evolution of (1 the turbulence kinetic energy (TKE, (2 the characteristic length scales of turbulence, (3 the shape of the turbulence spectra. A spectral analysis of LES data, airborne and surface measurements is performed in order to (1 characterize the variation of the turbulent decay with height and (2 study the distribution of turbulence over eddy size. This study points out the LES ability to reproduce the turbulence evolution throughout the afternoon. LES and observations agree that the afternoon transition can be divided in two phases: (1 a first phase during which the TKE decays with a low rate, with no significant change in turbulence characteristics, (2 a second phase characterized by a larger TKE decay rate and a change spectral shape, implying an evolution of eddy size distribution and energy cascade from low to high wavenumber. The changes observed either on TKE decay (during the first phase or on the vertical wind spectra shape (during the second phase of the afternoon transition occur first in the upper region of the PBL. The higher within the PBL, the stronger the spectra shape changes.

  2. NON-EQUILIBRIUM, NONLINEAR CRITICAL LAYERS IN LAMINAR-TURBULENT TRANSITION

    Institute of Scientific and Technical Information of China (English)

    WU Xuesong

    2004-01-01

    We describe some recent developments of high-Reynolds-number asymptotic theory for the nonlinear stage of laminar-turbulent transition in nearly parallel flows. The classic weakly nonlinear theory of Landau and Stuart is briefly revisited with the dual purposes of highlighting its fundamental ideas, which continue to underlie much of current theoretical thinking, as well as its difficulty in dealing with unbounded flows. We show that resolving such a difficulty requires an asymptotic approach based on the high-Reynolds-number assumption, which leads to a nonlinear critical-layer theory. Major recent results are reviewed with emphasis on the non-equilibrium effect. Future directions of investigation are indicated.

  3. Thermotropic phase transitions in model membranes of the outer skin layer based on ceramide 6

    Science.gov (United States)

    Gruzinov, A. Yu.; Kiselev, M. A.; Ermakova, E. V.; Zabelin, A. V.

    2014-01-01

    The lipid intercellular matrix stratum corneum of the outer skin layer is a multilayer membrane consisting of a complex mixture of different lipids: ceramides, fatty acids, cholesterol, and its derivatives. The basis of the multilayer membrane is the lipid bilayer, i.e., a two-dimensional liquid crystal. Currently, it is known that the main way of substance penetration through the skin is the lipid matrix. The complexity of the actual biological system does not allow reliable direct study of its properties; therefore, system modeling is often used. Phase transitions in the lipid system whose composition simulates the native lipid matrix are studied by the X-ray synchrotron radiation diffraction method.

  4. Flash-lamp annealing of Si-SiO/sub 2/ transition layer defects

    Energy Technology Data Exchange (ETDEWEB)

    Lysenko, V.S.; Zimenko, V.I.; Tyagulskii, I.P.; Osiyuk, I.N.; Snitko, O.V.; Sytenko, T.N. (AN Ukrainskoj SSR, Kiev. Inst. Poluprovodnikov)

    1985-02-16

    The rearrangement of ion implanted Si-SiO/sub 2/ interface resulting from flash-lamp annealing is studied by the method of C(U) characteristics at 300 K and 1 MHz and by the method of thermostimulated charge release (TSCR) which being applied in a temperature range of 4.2 to 80 K provides information about energy spectrum and concentration of local centers in the Si-to-SiO/sub 2/ transition layer of 1 to 10 nm thickness. The analysis of TSCR current curves enabled one to determine the activation energy of shallow traps and their integrated density.

  5. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  6. High-speed boundary layer transition induced by a discrete roughness element

    Science.gov (United States)

    Iyer, Prahladh; Mahesh, Krishnan

    2011-11-01

    The effect of a hemispherical bump on a Mach 3.37 laminar boundary layer is studied using DNS for three conditions with k / δ = 2.54, 0.25 and 0.125, where k is the roughness height. The simulation parameters are based on the experiment by Danehy et. al. (AIAA-2009-394). The flow downstream of the roughness is transitional for all the three conditions accompanied by a rise in skin friction and heat transfer. Upon interaction with the roughness element, the boundary layer separates to form a series of spanwise vortices upstream and a shear layer. These vortices wrap around the roughness to yield a system of streamwise vortices downstream. Perturbation of the shear layer due to the vortices results in the formation of hairpin-shaped vortices further downstream of the roughness. While hairpin vortices were observed in both the center plane and off-symmetry planes on either side for the smallest δ case, they were observed only in the center plane for the other cases. This work was supported by NASA under the hypersonics NRA program under grant NNX08AB33A.

  7. Interband transition in narrow gap InSb spherical layer quantum dot in the presence of electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, Marwan; Manaselyan, Aram; Sarkisyan, Hayk [Yereven State University, Yerevan (Armenia)

    2008-10-15

    We perform the theoretical investigation of interband dipole transitions in a narrow-gap InSb spherical layer quantum dot. We consider the transitions from the light hole and heavy hole states to the electron state of the conduction band. The dispersion law for electron and light hole is approximated using a two-band Kane model, while the heavy hole is described in the parabolic approximation. The effect of electric field on interband transitions is investigated.

  8. Multistep soft chemistry method for valence reduction in transition metal oxides with triangular (CdI2-type) layers.

    Science.gov (United States)

    Blakely, Colin K; Bruno, Shaun R; Poltavets, Viktor V

    2014-03-14

    Transition metal (M) oxides with MO2 triangular layers demonstrate a variety of physical properties depending on the metal oxidation states. In the known compounds, metal oxidation states are limited to either 3+ or mixed-valent 3+/4+. A multistep soft chemistry synthetic route for novel phases with M(2+/3+)O2 triangular layers is reported.

  9. Diagnostics of boundary layer transition by shear stress sensitive liquid crystals

    Science.gov (United States)

    Shapoval, E. S.

    2016-10-01

    Previous research indicates that the problem of boundary layer transition visualization on metal models in wind tunnels (WT) which is a fundamental question in experimental aerodynamics is not solved yet. In TsAGI together with Khristianovich Institute of Theoretical and Applied Mechanics (ITAM) a method of shear stress sensitive liquid crystals (LC) which allows flow visualization was proposed. This method allows testing several flow conditions in one wind tunnel run and does not need covering the investigated model with any special heat-insulating coating which spoils the model geometry. This coating is easily applied on the model surface by spray or even by brush. Its' thickness is about 40 micrometers and it does not spoil the surface quality. At first the coating obtains some definite color. Under shear stress the LC coating changes color and this change is proportional to shear stress. The whole process can be visually observed and during the tests it is recorded by camera. The findings of the research showed that it is possible to visualize boundary layer transition, flow separation, shock waves and the flow image on the whole. It is possible to predict that the proposed method of shear stress sensitive liquid crystals is a promise for future research.

  10. Phase transitions during formation of Ag nanoparticles on In{sub 2}S{sub 3} precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Fu, Yanpeng; Dittrich, Thomas; Sáez-Araoz, Rodrigo; Schmid, Martina; Hinrichs, Volker; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2015-09-01

    Phase transitions have been investigated for silver deposition onto In{sub 2}S{sub 3} precursor layers by spray chemical vapor deposition from a trimethylphosphine (hexafluoroacetylacetonato) silver (Ag(hfacac)(PMe{sub 3})) solution. The formation of Ag nanoparticles (Ag NPs) on top of the semiconductor layer set on concomitant with the formation of AgIn{sub 5}S{sub 8}. The increase of the diameter of Ag NPs was accompanied by the evolution of orthorhombic AgInS{sub 2}. The formation of Ag{sub 2}S at the interface between Ag NPs and the semiconductor layer was observed. Surface photovoltage spectroscopy indicated charge separation and electronic transitions in the ranges of corresponding band gaps. The phase transition approach is aimed to be applied for the formation of plasmonic nanostructures on top of extremely thin semiconducting layers. - Highlights: • Silver nanoparticles were deposited onto In{sub 2}S{sub 3} precursor layer by spray pyrolysis. • The silver nanoparticle size and density could be controlled by deposition time. • Phase transitions during deposition and material properties were investigated. • The layers still show semiconducting properties after phase transitions. • Plasmonic absorption enhancement has been demonstrated.

  11. Topological phase transition and quantum spin Hall edge states of antimony few layers

    Science.gov (United States)

    Kim, Sung Hwan; Jin, Kyung-Hwan; Park, Joonbum; Kim, Jun Sung; Jhi, Seung-Hoon; Yeom, Han Woong

    2016-09-01

    While two-dimensional (2D) topological insulators (TI’s) initiated the field of topological materials, only very few materials were discovered to date and the direct access to their quantum spin Hall edge states has been challenging due to material issues. Here, we introduce a new 2D TI material, Sb few layer films. Electronic structures of ultrathin Sb islands grown on Bi2Te2Se are investigated by scanning tunneling microscopy. The maps of local density of states clearly identify robust edge electronic states over the thickness of three bilayers in clear contrast to thinner islands. This indicates that topological edge states emerge through a 2D topological phase transition predicted between three and four bilayer films in recent theory. The non-trivial phase transition and edge states are confirmed for epitaxial films by extensive density-functional-theory calculations. This work provides an important material platform to exploit microscopic aspects of the quantum spin Hall phase and its quantum phase transition.

  12. Turbulent transitions in the stable boundary layer: Couette and Poiseuille flow

    Science.gov (United States)

    Holdsworth, Amber M.; Monahan, Adam H.

    2016-11-01

    The stable boundary layer (SBL) can be classified into two distinct regimes. The weakly stable regime (WSBL) which occurs in the presence of moderate to strong pressure gradients or cloudy skies and is characterized by continuous turbulent mixing, and the very stable regime (VSBL) which occurs in the presence of weak pressure gradients or clear skies and turbulence weakens to the point of collapse. Modelling and observational results indicate that transitions from the WSBL to the VSBL occur when the maximum sustainable heat flux (MSHF), or shear capacity, is exceeded. The collapse of turbulence in the SBL is investigated using a one dimensional model of Couette flow with a constant heat flux. We show that the MSHF framework for predicting turbulent collapse is qualitatively robust to the choice of turbulence parameterization and extend these earlier stability analyses by numerically determining the unstable modes along the unstable branch. To explore transitions between the VSBL and the WSBL we extend the model to include a horizontal pressure gradient and a surface radiation scheme. Analysis of the Poiseuille flow demonstrates how the idealized energy/momentum budget model with parameterized turbulence can reproduce the regime transitions present in atmospheric data. We acknowledge support from NSERC and the computing facilities of Westgrid and Compute Canada.

  13. DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers

    Science.gov (United States)

    Duan, L.; Choudhari, M.; Li, F.

    2014-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.

  14. Layered Post-Transition-Metal Dichalcogenides (X-M-M-X) and Their Properties.

    Science.gov (United States)

    Luxa, Jan; Wang, Yong; Sofer, Zdenek; Pumera, Martin

    2016-12-23

    A(III) B(VI) chalcogenides are an interesting group of layered semiconductors with several attractive properties, such as tunable band gaps and the formation of solid solutions. Unlike the typically sandwiched structure of transition-metal dichalcogenides, A(III) B(VI) layered chalcogenides with hexagonal symmetry are stacked through the X-M-M-X motif, in which M is gallium and indium, and X is sulfur, selenium, and tellurium. In view of the inadequate study of the electrochemical properties and great interest in layered materials towards energy-related research, herein the inherent electrochemistry of GaS, GaSe, GaTe, and InSe has been studied, as well as the exploration of their potential as hydrogen evolution reaction (HER) electrocatalysts. All four materials show redox peaks during cyclic voltammetry measurements. Furthermore, insights into catalysis of the HER are provided; these indicate the conductivity and number of active sites of the materials. All of these findings have important implications on their possible applications.

  15. Transition behavior of asymmetric polystyrene-b-poly(2-vinylpyridine) films: A stable hexagonally modulated layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Koo, Kyosung; Kim, Kyunginn; Ahn, Hyungju; Lee, Byeongdu; Park, Cheolmin; Ryu, Du Yeol

    2015-03-09

    The phase transitions in the films of an asymmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) were investigated by grazing incidence small-angle X-ray scattering (GISAXS) and transmission electron microscopy (TEM). Compared with the sequential transitions in the bulk, hexagonally perforated layer (HPL) – gyroid (GYR) – disorder (DIS) upon heating, the transitions in film geometry were dramatically changed with decreasing thickness due to the growing preferential interactions from substrate, resulting in a thickness-dependent transition diagram including four different morphologies of hexagonally modulated layer (HML), coexisting (HML and GYR), GYR, and DIS. Particularly in the films ≤10Lo, where Lo is d-spacing at 150 °C, a stable HML structure was identified even above the order-to-disorder transition (ODT) temperature of the bulk, which was attributed to the suppressed compositional fluctuations by the enhanced substrate interactions.

  16. The reliability of the improved eN method for the transition prediction of boundary layers on a flat plate

    Institute of Scientific and Technical Information of China (English)

    SU CaiHong

    2012-01-01

    The transition criterion in the improved eN method is that transition would occur whenever the velocity amplitude of disturbance reaches 1%-2% of the free stream velocity,while in the conventional eN method,the N factor is an empirical factor.In this paper the reliability of this key assumption in the improved eN method is checked by results of transition prediction by using the Parabolized Stability Equations (PSE).Transition locations of an incompressible boundary layer and a hypersonic boundary layer at Mach number 6 on a flat plate are predicted by both the improved eN method and the PSE method.Results from both methods agree fairly well with each other,implying that the transition criterion proposed in the improved eN method is reliable.

  17. Electroplating zinc transition layer for electroless nickel plating on AM60 magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-min; ZHOU Wan-qiu; HAN En-Hou

    2006-01-01

    Electroplating zinc coating as transition layer of electroless nickel plating on AM60 magnesium alloys was investigated. The zinc film can be deposited in a pyrophosphate bath at 50-60 ℃ under current density of 0.5-1.5 A/dm2. A new fore treatment technology was applied by acid cleaning with a solution containing molybdate and phosphorous acid, by alkaline cleaning in a bath containing molybdate and sodium hydroxide. The subsequent electroless plating was carried out in nickel sulfate bath. The SEM observation shows that the deposition is uniform and compact. The polarization curve measurements show that the corrosion potential of the zinc plating in 3.5% NaCl is about -1.3 V(vs SCE) which is noble than that of magnesium substrate. The zinc electroplating can be applied as the pretreatment process for electroless nickel plating on magnesium alloys.

  18. On the Nature of the Transition Between Roll and Cellular Organization in the Convective Boundary Layer

    Science.gov (United States)

    Salesky, Scott T.; Chamecki, Marcelo; Bou-Zeid, Elie

    2017-04-01

    Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10-20° of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of -z_i/L between zero (neutral) and 1041 (highly convective), where z_i is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the "roll factor," which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of -z_i/L; however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about -z_i/L ≈ 15-20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing -z_i/L. It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as -z_i/L increases.

  19. Numerical Scheme for the Pseudoparabolic Singularly Perturbed Initial-boundary Problem with Interior Transitional Layer

    Directory of Open Access Journals (Sweden)

    A. A. Bykov

    2016-01-01

    Full Text Available Evolution equations are derived for the contrasting-structure-type solution of the gen-eralized Kolmogorov–Petrovskii–Piskunov (GKPP equation with the small parameter with high order derivatives. The GKPP equation is a pseudoparabolic equation with third order derivatives. This equation describes numerous processes in physics, chemistry, biology, for example, magnetic field generation in a turbulent medium and the moving front for the carriers in semiconductors. The profile of the moving internal transitional layer (ITL is found, and an expression for drift speed of the ITL is derived. An adaptive mesh (AM algorithm for the numerical solution of the initial-boundary value problem for the GKPP equation is developed and rigorously substantiated. AM algorithm for the special point of the first kind is developed, in which drift speed of the ITL in the first order of the asymptotic expansion turns to zero. Sufficient conditions for ITL transitioning through the special point within finite time are formulated. AM algorithm for the special point of the second kind is developed, in which drift speed of the ITL in the first order formally turns to infinity. Substantiation of the AM method is given based on the method of differential inequalities. Upper and lower solutions are derived. The results of the numerical algorithm are presented.

  20. Resonant-Raman Intensities of N-layer Transition Metal Dichalcogenides from First Principles

    Science.gov (United States)

    Miranda, Henrique; Froehlicher, Guillaume; Lorchat, Ettienne; Fernique, François; Molina-Sánchez, Alejandro; Berciaud, Stéphane; Wirtz, Ludger

    Transition metal dichalcogenides (TMDs) have interesting optical and electronic properties that make them good candidates for nano-engineering applications. Raman spectroscopy provides information about the vibrational modes and optical spectrum at the same time: when the laser energy is close to an electronic transition, the intensity is increased due to resonance. We investigate these effects combining different ab initio methods: we obtain ground-state and vibrational properties from density functional theory and the optical absorption spectrum using GW corrections and the Bethe-Salpeter equation to account for the excitonic effects which are known to play an important role in TMDs. Using a quasi-static finite differences approach, we calculate the dielectric susceptibility for different light polarizations and different phonon modes in order to determine the Raman tensor of TMDs, in particular of multi-layer and bulk MoTe2. We explain recent experimental results for the splitting of high-frequency modes and deviations from the non-resonant Raman model. We also give a brief outlook on possible improvements of the methodology.

  1. Structural Phase Transition and Material Properties of Few-Layer Monochalcogenides

    Science.gov (United States)

    Mehboudi, Mehrshad; Fregoso, Benjamin M.; Yang, Yurong; Zhu, Wenjuan; van der Zande, Arend; Ferrer, Jaime; Bellaiche, L.; Kumar, Pradeep; Barraza-Lopez, Salvador

    2016-12-01

    GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a critical temperature Tc well below the melting point. Its consequences on material properties are studied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above Tc. As the in-plane lattice transforms from a rectangle into a square at Tc, the electronic, spin, optical, and piezoelectric properties dramatically depart from earlier predictions. Indeed, the Y and X points in the Brillouin zone become effectively equivalent at Tc, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at Tc. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement is drawn by theoretical predictions of giant piezoelectricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about 3 ×10-12 C /K m here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides.

  2. Nonlinear optimal control of bypass transition in a boundary layer flow

    Science.gov (United States)

    Xiao, Dandan; Papadakis, George

    2017-05-01

    The central aim of the paper is to apply and assess a nonlinear optimal control strategy to suppress bypass transition, due to bimodal interactions [T. A. Zaki and P. A. Durbin, "Mode interaction and the bypass route to transition," J. Fluid Mech. 531, 85 (2005)] in a zero-pressure-gradient boundary layer. To this end, a Lagrange variational formulation is employed that results in a set of adjoint equations. The optimal wall actuation (blowing and suction from a control slot) is found by solving iteratively the nonlinear Navier-Stokes and the adjoint equations in a forward/backward loop using direct numerical simulation. The optimization is performed in a finite time horizon. Large values of optimization horizon result in the instability of the adjoint equations. The control slot is located exactly in the region of transition. The results show that the control is able to significantly reduce the objective function, which is defined as the spatial and temporal integral of the quadratic deviation from the Blasius profile plus a term that quantifies the control cost. The physical mechanism with which the actuation interacts with the flow field is investigated and analysed in relation to the objective function employed. Examination of the joint probability density function shows that the control velocity is correlated with the streamwise velocity in the near wall region but this correlation is reduced as time elapses. The spanwise averaged velocity is distorted by the control action, resulting in a significant reduction of the skin friction coefficient. Results are presented with and without zero-net mass flow constraint of the actuation velocity. The skin friction coefficient drops below the laminar value if there is no mass constraint; it remains however larger than laminar when this constraint is imposed. Results are also compared with uniform blowing using the same time-average velocity obtained from the nonlinear optimal algorithm.

  3. Effects of Transition-Metal Mixing on Na Ordering and Kinetics in Layered P 2 Oxides

    Science.gov (United States)

    Zheng, Chen; Radhakrishnan, Balachandran; Chu, Iek-Heng; Wang, Zhenbin; Ong, Shyue Ping

    2017-06-01

    Layered P 2 oxides are promising cathode materials for rechargeable sodium-ion batteries. In this work, we systematically investigate the effects of transition-metal (TM) mixing on Na ordering and kinetics in the NaxCo1 -yMnyO2 model system using density-functional-theory (DFT) calculations. The DFT-predicted 0-K stability diagrams indicate that Co-Mn mixing reduces the energetic differences between Na orderings, which may account for the reduction of the number of phase transformations observed during the cycling of mixed-TM P 2 layered oxides compared to a single TM. Using ab initio molecular-dynamics simulations and nudged elastic-band calculations, we show that the TM composition at the Na(1) (face-sharing) site has a strong influence on the Na site energies, which in turn impacts the kinetics of Na diffusion towards the end of the charge. By employing a site-percolation model, we establish theoretical upper and lower bounds for TM concentrations based on their effect on Na(1) site energies, providing a framework to rationally tune mixed-TM compositions for optimal Na diffusion.

  4. Transition in oblique shock/boundary layer interactions at Mach 5.92

    Science.gov (United States)

    Dwivedi, Anubhav; Shrestha, Prakash; Hildebrand, Nathaniel; Nichols, J. W.; Jovanovic, M. R.; Candler, G. V.

    2016-11-01

    We use the compressible flow solver US3D to perform DNS of an oblique shock wave interacting with a laminar boundary layer over an adiabatic flat plate at Mach 5 . 92 . Simulations are repeated with different spanwise extents. The adverse pressure gradient created by the shock causes the boundary layer to separate, leading to the formation of a recirculation bubble downstream. We consider interactions of various strengths by varying the shock angle. A sufficiently strong interaction causes the flow to become 3 - D , unsteady and eventually transition to turbulence. We observe long streamwise streaks downstream of the reattachment point which eventually break into turbulence. In the present work, we characterize the spatio-temporal dynamics of the unsteady separation bubble and these streaks using Fourier analysis and Sparsity Promoting Dynamic Mode Decomposition. To investigate the origin of these streaks we also analyze the role of linear Görtler instability resulting from the curvature of the streamlines induced by the separation bubble. Supported by ONR, Grant No. N00014-15-1-2522.

  5. New Findings by High-Order DNS for Late Flow Transition in a Boundary Layer

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2011-01-01

    Full Text Available This paper serves as a summary of new discoveries by DNS for late stages of flow transition in a boundary layer. The widely spread concept “vortex breakdown” is found theoretically impossible and never happened in practice. The ring-like vortex is found the only form existing inside the flow field. The ring-like vortex formation is the result of the interaction between two pairs of counter-rotating primary and secondary streamwise vortices. Following the first Helmholtz vortex conservation law, the primary vortex tube rolls up and is stretched due to the velocity gradient. In order to maintain vorticity conservation, a bridge must be formed to link two Λ-vortex legs. The bridge finally develops as a new ring. This process keeps going on to form a multiple ring structure. The U-shaped vortices are not new but existing coherent vortex structure. Actually, the U-shaped vortex, which is a third level vortex, serves as a second neck to supply vorticity to the multiple rings. The small vortices can be found on the bottom of the boundary layer near the wall surface. It is believed that the small vortices, and thus turbulence, are generated by the interaction of positive spikes and other higher level vortices with the solid wall. The mechanism of formation of secondary vortex, second sweep, positive spike, high shear distribution, downdraft and updraft motion, and multiple ring-circle overlapping is also investigated.

  6. Study of Transition from Laminar to Turbulent Boundary Layer on a Tilted Flat Plate Using Heat Transfer Measurements

    Institute of Scientific and Technical Information of China (English)

    E.Sanz; C.Nicot; R.Point; F.Plaza

    2007-01-01

    The boundary layer transition over a flat tilted plate has been studied by means of heat transfer measurements. A heat flux sensor has been developed, in order to measure the efficiency of convective heat transfer for various types of surfaces or flows. Its operation at constant temperature allows direct and fast measurements of heat flux. The present paper reports the development of the sensor and presents its application to the study of transition in a boundary layer depending on the angle of incidence of the external flow. An exponential relationship between critical Reynolds number and pressure gradient parameter has been found.

  7. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer $SL-WSe_2$

    OpenAIRE

    Zhang, Chendong; CHEN, YUXUAN; Johnson, Amber; Li, Ming-Yang; Li, Lain-Jong; Mende, Patrick C.; Feenstra, Randall M.; Shih, Chih-Kang

    2014-01-01

    Understanding quasiparticle band structures of transition metal dichalcogenides (TMDs) is critical for technological advances of these materials for atomic layer electronics and photonics. Although theoretical calculations to date have shown qualitatively similar features, there exist subtle differences which can lead to important consequences in the device characteristics. For example, most calculations have shown that all single layer (SL) TMDs have direct band gaps, while some have shown t...

  8. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    Science.gov (United States)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  9. Defect-Induced Optoelectronic Response in Single-layer Group-VI Transition-Metal Dichalcogenides

    Science.gov (United States)

    Chow, Philippe K.

    The ever-evolving symbiosis between mankind and nanoelectronics-driven technology pushes the limits of its constituent materials, largely due to the dominance of undesirable hetero-interfacial physiochemical behavior at the few-nanometer length scale, which dominates over bulk material characteristics. Driven by such instabilities, research into two-dimensional (2D) van der Waals-layered materials (e.g. graphene, transition metal dichalcogenides (TMDCs), boron nitride), which have characteristically inert surface chemistry, has virtually exploded over the past few years. The discovery of an indirect- to direct-gap conversion in semiconducting group-VI TMDCs (e.g. MoS2) upon thinning to a single atomic layer provided the critical link between metallic and insulating 2D materials. While proof-of-concept demonstrations of single-layer TMDC-based devices for visible-range photodetection, light-emission and solar energy conversion have showed promising results, the exciting qualities are downplayed by poorly-understood defectinduced photocarrier traps, limiting the best-achieved external quantum efficiencies to approximately ~1%. This thesis explores the behavior of defects in atomically-thin TMDC layers in response to optical stimuli using a combination of steady-state photoluminescence, reflectance and Raman spectroscopy at room-temperature. By systematically varying the defect density using plasma-irradiation techniques, an unprecedented room-temperature defect-induced monolayer PL feature was discovered. High-resolution transmission electron microscopy correlated the defect-induced PL with plasma-generation of sulfur vacancy defects while reflectance measurements indicate defect-induced sub-bandgap light absorption. Excitation intensity-dependent PL measurements and exciton rate modeling further help elucidate the origin of the defect-induced PL response and highlights the role of non-radiative recombination on exciton conversion processes. The results in this

  10. Investigation of CeO2 Buffer Layer Effects on the Voltage Response of YBCO Transition-Edge Bolometers

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Nazifi, Rana; Wulff, Anders Christian

    2016-01-01

    The effect on the thermal parameters of superconducting transition-edge bolometers produced on a single crystalline SrTiO3 (STO) substrate with and without a CeO2 buffer layer was investigated. Metal-organic deposition was used to deposit the 20-nm CeO2 buffer layer, whereas RF magnetron sputtering...... responses, and the results were compared with that of simulations conducted by applying a one-dimensional thermophysical model. It was observed that adding the buffer layer to the structure of the bolometer results in an increased response at higher modulation frequencies. Results from simulations made...

  11. A new method for laminar boundary layer transition visualization in flight: Color changes in liquid crystal coatings

    Science.gov (United States)

    Holmes, B. J.; Gall, P. D.; Croom, C. C.; Manuel, G. S.; Kelliher, W. C.

    1986-01-01

    The visualization of laminar to turbulent boundary layer transition plays an important role in flight and wind-tunnel aerodynamic testing of aircraft wing and body surfaces. Visualization can help provide a more complete understanding of both transition location as well as transition modes; without visualization, the transition process can be very difficult to understand. In the past, the most valuable transition visualization methods for flight applications included sublimating chemicals and oil flows. Each method has advantages and limitations. In particular, sublimating chemicals are impractical to use in subsonic applications much above 20,000 feet because of the greatly reduced rates of sublimation at lower temperatures (less than -4 degrees Farenheit). Both oil flow and sublimating chemicals have the disadvantage of providing only one good data point per flight. Thus, for many important flight conditions, transition visualization has not been readily available. This paper discusses a new method for visualizing transition in flight by the use of liquid crystals. The new method overcomes the limitations of past techniques, and provides transition visualization capability throughout almost the entire altitude and speed ranges of virtually all subsonic aircraft flight envelopes. The method also has wide applicability for supersonic transition visualization in flight and for general use in wind tunnel research over wide subsonic and supersonic speed ranges.

  12. Role of Detuning in the Final Stage of Subharmonic Mode Transition in Boundary Layers

    Science.gov (United States)

    Corke, Thomas C.

    2007-01-01

    This work involves mechanisms for transition to turbulence in a Blasius boundary layer through resonant interactions between a plane Tollmien-Schlichting Wave and pairs of oblique waves with equal-but-opposite wave angles. When the frequency of the TS wave is exactly twice that of the oblique waves, we have a "tuned" subharmonic resonance. This leads to the enhanced growth of the oblique modes. Following this, other nonlinear interactions lead to the growth of other 3-D modes which are harmonically based, along with a 3-D mean flow distortion. In the final stage of this process, a gradual spectral filling occurs which we have traced to the growth of fundamental and subharmonic side-band modes. To simulate this with controlled inputs, we introduced the oblique wave pairs at the same conditions, but shifted the frequency of the plane TS mode (by as much as 12 percent) so that it was not exactly twice that of the 3-D modes. These "detuned" conditions also lead to the enhanced growth of the oblique modes, as well as discrete side-band modes which come about through sum and difference interactions. Other interactions quickly lead to a broad band of discrete modes. Of particular importance is the lowest difference frequency which produces a low frequency modulation similar to what has been seen in past experiments with natural 3-D mode input. Cross-bispectral analysis of time series allows us to trace the origin and development of the different modes. Following these leads to a scenario which we believe is more relevant to conditions of "natural" transitions, where low amplitude background disturbances either lead to the gradual detuning of exact fundamental/subharmonic resonance, or in which 3-D mode resonance is detuned from the onset. The results contrast the two conditions, and document the propensity of the 2-D/3-D mode interactions to become detuned.

  13. ATOMIC-FORCE MICROSCOPY IMAGING OF TRANSITION-METAL LAYERED COMPOUNDS - A 2-DIMENSIONAL STICK-SLIP SYSTEM

    NARCIS (Netherlands)

    Kerssemakers, J.W J; de Hosson, J.T.M.

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick-slip effects. In this letter, two models are presented to describe the observations due to stick-slip, i.e.,

  14. ATOMIC-FORCE MICROSCOPY IMAGING OF TRANSITION-METAL LAYERED COMPOUNDS - A 2-DIMENSIONAL STICK-SLIP SYSTEM

    NARCIS (Netherlands)

    Kerssemakers, J.W J; de Hosson, J.T.M.

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick-slip effects. In this letter, two models are presented to describe the observations due to stick-slip, i.e., eithe

  15. Atomic force microscopy imaging of transition metal layered compounds : A two-dimensional stick–slip system

    NARCIS (Netherlands)

    Kerssemakers, J.; Hosson, J.Th.M. De

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick–slip effects. In this letter, two models are presented to describe the observations due to stick–slip, i.e., eithe

  16. Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

    Science.gov (United States)

    Figiel, Łukasz; Dunne, Fionn P. E.; Buckley, C. Paul

    2010-01-01

    Layered-silicate nanoparticles offer a cost-effective reinforcement for thermoplastics. Computational modelling has been employed to study large deformations in layered-silicate/poly(ethylene terephthalate) (PET) nanocomposites near the glass transition, as would be experienced during industrial forming processes such as thermoforming or injection stretch blow moulding. Non-linear numerical modelling was applied, to predict the macroscopic large deformation behaviour, with morphology evolution and deformation occurring at the microscopic level, using the representative volume element (RVE) approach. A physically based elasto-viscoplastic constitutive model, describing the behaviour of the PET matrix within the RVE, was numerically implemented into a finite element solver (ABAQUS) using an UMAT subroutine. The implementation was designed to be robust, for accommodating large rotations and stretches of the matrix local to, and between, the nanoparticles. The nanocomposite morphology was reconstructed at the RVE level using a Monte-Carlo-based algorithm that placed straight, high-aspect ratio particles according to the specified orientation and volume fraction, with the assumption of periodicity. Computational experiments using this methodology enabled prediction of the strain-stiffening behaviour of the nanocomposite, observed experimentally, as functions of strain, strain rate, temperature and particle volume fraction. These results revealed the probable origins of the enhanced strain stiffening observed: (a) evolution of the morphology (through particle re-orientation) and (b) early onset of stress-induced pre-crystallization (and hence lock-up of viscous flow), triggered by the presence of particles. The computational model enabled prediction of the effects of process parameters (strain rate, temperature) on evolution of the morphology, and hence on the end-use properties.

  17. Synthesis, structure, and properties of a novel family of layered transition nitride compounds

    Science.gov (United States)

    Weil, Kenneth Scott

    The chemical properties of nitrogen present a number of difficulties in the synthesis of nitride compounds. Most of these compounds have small free energies of formation due in part to the strong triple bond of N2. Thus the standard solid state approach of synthesizing compounds from a mixture of their constituents at high reaction temperatures is generally precluded. A general alternative to solid state synthesis is the molecularly mixed precursor route. The primary advantage of this approach is the control of composition. This concept has been demonstrated in this study through the use of a nonaqueous, complexed co-precipitation technique to synthesize a number of new ternary nitride compounds, including the a new nitride phase, CrWN2, and four series of substitutional variations of this compound, as wen as twelve additional new compounds crystallizing in the layered dinitride, eta-nitride, and pi-nitride crystal structures. The layered nitride, CrWN2, is the focal point of this thesis. The details of its crystal and defect structure, synthesis, properties, and substitutional chemistry have been examined and discussed within. Briefly, this compound crystallizes in a trigonal structure and consists of alternating layers of chromium in octahedral coordination with nitrogen and tungsten in trigonal prismatic coordination with nitrogen. Microstructurally, the nitride frequently displays twinning and the formation of coherent rock salt structured intergrowth defects. As mentioned above, the layered nitride evolves from a co-precipitated precursor; a fine mixture of [Cr(NH3)6]Cl 2 and WOCl2·3NH3. Upon heat treatment in an ammonia atmosphere, the two transition metal complexes separately decompose into their non-complexed chloride state, i.e. CrCl2 and WOCl 2, before reacting with each other and the ambient ammonia atmosphere between 420°C and 570°C to form a glassy oxynitrochloride phase, CrWO 1.01N0.36Cl2.45. Around 600°C, this compound undergoes ammonolysis

  18. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage.

    Science.gov (United States)

    Wang, Hua; Feng, Hongbin; Li, Jinghong

    2014-06-12

    Being confronted with the energy crisis and environmental problems, the exploration of clean and renewable energy materials as well as their devices are urgently demanded. Two-dimensional (2D) atomically-thick materials, graphene and grpahene-like layered transition metal dichalcogenides (TMDs), have showed vast potential as novel energy materials due to their unique physicochemical properties. In this Review, we outline the typical application of graphene and grpahene-like TMDs in energy conversion and storage fields, and hope to promote the development of 2D TMDs in this field through the analysis and comparisons with the relatively natural graphene. First, a brief introduction of electronic structures and basic properties of graphene and TMDs are presented. Then, we summarize the exciting progress of these materials made in both energy conversion and storage field including solar cells, electrocatalysis, supercapacitors and lithium ions batteries. Finally, the prospects and further developments in these exciting fields of graphene and graphene-like TMDs materials are also suggested.

  19. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability

    KAUST Repository

    Li, Henan

    2017-07-06

    Recently there have been many research breakthroughs in two-dimensional (2D) materials including graphene, boron nitride (h-BN), black phosphors (BPs), and transition-metal dichalcogenides (TMDCs). The unique electrical, optical, and thermal properties in 2D materials are associated with their strictly defined low dimensionalities. These materials provide a wide range of basic building blocks for next-generation electronics. The chemical vapor deposition (CVD) technique has shown great promise to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches has also given rise to fascinating new physics, which could lead to exciting new applications. In this Review, we introduce the latest development of TMDC synthesis by CVD approaches and provide further insight for the controllable and reliable synthesis of atomically thin TMDCs. Understanding of the vapor-phase growth mechanism of 2D TMDCs could benefit the formation of complicated heterostructures and novel artificial 2D lattices.

  20. The improvement of the field emission properties from graphene films: Ti transition layer and annealing process

    Directory of Open Access Journals (Sweden)

    Jun Li

    2012-06-01

    Full Text Available Chemical-reduced graphene oxide (rGO films were deposited on titanium (Ti-coated silicon substrates by a simple electrophoretic deposition. The rGO films were annealed under argon atmosphere at different temperatures. The morphology and microstructure of the rGO films before and after annealing were characterized using scanning electron microscope, X-ray diffraction and Raman spectroscope. The field emission behaviors from these rGO films were investigated. The results show that, Ti-based transition layer can improve the stability of field emission from the rGO film, and the annealing at appropriate temperature is in favor of the field emission. Particularly, the rGO film displays an unexpected vacuum breakdown phenomenon at a relatively high current density. In addition, it is found that the field emission property of the rGO film is dependent on anode-sample distance and the film exhibits lower turn on field at larger anode-sample distance.

  1. Single-column model and large eddy simulation of the evening transition in the planetary boundary layer

    Science.gov (United States)

    Cuchiara, Gustavo; Rappenglück, Bernhard

    2016-04-01

    The transition from the convective boundary layer during the daytime to the stable stratified boundary layer during nighttime after sunset plays an important role in the transport and dispersion of atmospheric pollutants. However, our knowledge regarding this transition and its feedback on the structure of the subsequent nocturnal boundary layer is still restricted. This also prevents forecast models from accurate prediction of the onset and development of the nighttime boundary layer, which determines the redistribution of pollutants within the nocturnal surface layer and the residual layer aloft. In the present study, the well-known case of day 33 of the Wangara experiment is resimulated using the Weather Research and Forecasting (WRF) model in an idealized single-column mode to assess the performance of a frequently used planetary boundary layer (PBL) scheme, the Yonsei University (YSU) PBL scheme. These results are compared with two large eddy simulations (LES) for the same case study imposing different surface fluxes: one using previous surface fluxes calculated for the Wangara experiment and a second one using output from the WRF model. The results show a reasonable agreement of the PBL scheme in WRF with the LES. Overall, all the simulations presented a cold bias of ~3 Kelvin for the potential temperature and underestimation of the wind speed, especially after the transition to nighttime conditions (biases were up to 4 ms-1). Finally, an alternative set of eddy diffusivity equations was tested to represent the transition characteristics of a sunset period, with a stable layer below and a new parameterization for the convective decay regime typically observed in the RL aloft. This set of equations led to a gradual decrease of the eddy diffusivity, which replaces the instantaneous collapse of traditional diagnostics for eddy diffusivities. More appreciable changes were observed in air temperature, wind speed and specific humidity (up to 0.5 K, 0.6 ms-1, and 0

  2. Aerodynamic performance of an airfoil with a prescribed wall protuberance at low Reynolds numbers

    Science.gov (United States)

    Duque-Daza, Carlos; Mejia, Cristian; Camacho, Diego; Lockerby, Duncan

    2016-11-01

    Numerical simulations of flow around a modified NACA0012 airfoil, featuring a small surface perturbation on the upper wall, were performed at two low Reynolds numbers. The aerodynamic performance was examined under conditions of incompressible steady state flow. Simulations at different angles of attack (AOA) were performed: 0, 6, 9.25 and 12 degrees for Re =5000, and 6, 9.25 and 12 for Re =50000. The effect of the wall-perturbation was assessed in terms of changes of drag and lift coefficients, and alterations of the upper wall turbulent boundary layer. Examination of mean velocity profiles reveals that the wall perturbation promotes boundary-layer separation near the leading edge and increase of the skin friction drag. An arguably improvement of the effectiveness, i.e. ratio of lift to drag, was observed for the modified profile for Re = 5000, especially at AOA of 6 degrees. This effect seems to be caused by a double effect: boundary layer separation approaching the leading edge and an increase of the lift coefficient caused by the larger pressure drop on the upper surface. The effect of the perturbation was always negative for the airfoil operating at Re =50000, independently of AOA.

  3. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  4. Separation of transition and heavy metals using stationary phase gradients and thin layer chromatography.

    Science.gov (United States)

    Stegall, Stacy L; Ashraf, Kayesh M; Moye, Julie R; Higgins, Daniel A; Collinson, Maryanne M

    2016-05-13

    Stationary phase gradients for chelation thin layer chromatography (TLC) have been investigated as a tool to separate a mixture of metal ions. The gradient stationary phases were prepared using controlled rate infusion (CRI) from precursors containing mono-, bi-, and tri-dentate ligands, specifically 3-aminopropyltriethoxysilane, N-[3-(trimethoxysilyl)propyl] ethylenediamine, and N-[3-(trimethoxysilyl)propyl] diethylenetriamine. The presence and the extent of gradient formation were confirmed using N1s X-ray photoelectron spectroscopy (XPS). XPS results showed that the degree of modification was dependent on the aminosilane precursor, its concentration, and the rate of infusion. The separation of four transition and heavy metals (Co(2+), Pb(2+), Cu(2+), and Fe(3+)) on gradient and uniformly modified plates was compared using a mobile phase containing a stronger chelating agent, ethylenediaminetetraacetic acid (EDTA). The retention of the metal ions was manipulated by varying the surface concentration of the chelating ligands. The order of retention on unmodified plates and on plates modified with a monodentate ligand was Fe(3+)>Cu(2+)∼Pb(2+)∼Co(2+), while the order of retention on plates modified with bi- and tri-dentate ligands was Fe(3+)>Cu(2+)>Pb(2+)∼Co(2+). Fe(3+) and Cu(2+) were much more sensitive to the concentration of chelating ligand on the surface (displaying lower Rf values with increasing ligand concentration) than Pb(2+) and Co(2+). Complete separation was achieved using a high concentration of the tridentate ligand coupled with a longer time for modification, yielding a retention order of Fe(3+)>Cu(2+)>Co(2+)>Pb(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. On the structure of the extra-tropical transition layer from in-situ observations

    Directory of Open Access Journals (Sweden)

    I. Pisso

    2012-10-01

    Full Text Available In-situ observations of atmospheric tracers from multiple measurement campaigns over the period 1994–2007 were combined to investigate the Extra-tropical Transition Layer (ExTL region and the properties of large scale meridional transport. We used potential temperature, equivalent latitude and distance relative to the local dynamical tropopause as vertical coordinates to highlight the behaviour of trace gases in the tropopause region. Vertical coordinates based on constant PV surfaces allowed us to relate the dynamical definition of the tropopause with trace gases distributions and vertical gradients and hence analyse its latitudinal dependence and seasonal variability. Analysis of the available data provides a working definition of the upper limit of the ExTL based on the upper limit of the region of high vertical CO gradient in PV relative coordinates. A secondary local maximum in vertical O3 gradient can be used a proxy for the lower limit, although it is less clearly defined than that of CO. The sloping isopleths of CO and O3 mixing ratios and the CO mixing ratio gradient are consistent with isopleths in purely dynamical diagnostics such as χ30 d, the proportion of air masses in contact with the PBL within one month and underline the differences between the PV based and chemical tropopauses. The use of tropopause relative coordinates allows different seasons to be analysed together to produce climatological means. The weak dependence of dynamical diagnostics of transport on the absolute values of tracer concentrations makes them a suitable process-oriented tool to evaluate global chemical models and make Lagrangian comparisons.

  6. On the structure of the extra-tropical transition layer from in-situ observations

    Science.gov (United States)

    Pisso, I.; Law, K. S.; Fierli, F.; Haynes, P. H.; Hoor, P.; Palazzi, E.; Ravegnani, F.; Viciani, S.

    2012-10-01

    In-situ observations of atmospheric tracers from multiple measurement campaigns over the period 1994-2007 were combined to investigate the Extra-tropical Transition Layer (ExTL) region and the properties of large scale meridional transport. We used potential temperature, equivalent latitude and distance relative to the local dynamical tropopause as vertical coordinates to highlight the behaviour of trace gases in the tropopause region. Vertical coordinates based on constant PV surfaces allowed us to relate the dynamical definition of the tropopause with trace gases distributions and vertical gradients and hence analyse its latitudinal dependence and seasonal variability. Analysis of the available data provides a working definition of the upper limit of the ExTL based on the upper limit of the region of high vertical CO gradient in PV relative coordinates. A secondary local maximum in vertical O3 gradient can be used a proxy for the lower limit, although it is less clearly defined than that of CO. The sloping isopleths of CO and O3 mixing ratios and the CO mixing ratio gradient are consistent with isopleths in purely dynamical diagnostics such as χ30 d, the proportion of air masses in contact with the PBL within one month and underline the differences between the PV based and chemical tropopauses. The use of tropopause relative coordinates allows different seasons to be analysed together to produce climatological means. The weak dependence of dynamical diagnostics of transport on the absolute values of tracer concentrations makes them a suitable process-oriented tool to evaluate global chemical models and make Lagrangian comparisons.

  7. New chemistry for the growth of first-row transition metal films by atomic layer deposition

    Science.gov (United States)

    Klesko, Joseph Peter

    Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the low-temperature chemical reduction of most first-row transition metal cations to their zero-valent state is very challenging due to their negative electrochemical potentials. A lack of strongly-reducing coreagents has rendered the thermal ALD of metallic films an intractable problem for many elements. Additionally, several established ALD processes for metal films are plagued by low growth rates, impurity incorporation, poor nucleation, high surface roughness, or the need for hazardous coreagents. Finally, stoichiometric control of ternary films grown by ALD is rare, but increasingly important, with emerging applications for metal borate films in catalysis and lithium ion batteries. The research herein is focused toward the development of new ALD processes for the broader application of metal, metal oxide, and metal borate thin films to future nanoscale technologies. These processes display self-limited growth and support the facile nucleation of smooth, continuous, high-purity films. Bis(trimethylsilyl) six-membered rings are employed as strongly-reducing organic coreagents for the ALD of titanium and antimony metal films. Additionally, new processes are developed for the growth of high-purity, low-resistivity cobalt and nickel metal films by exploiting the

  8. Boundary-layer flow and power output in large wind farms during transition from neutral to stable conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2016-11-01

    In wind farms, power deficits are directly related to ambient turbulence levels. Power deficits will therefore increase during the transition from a daytime, conventionally neutral boundary layer (CNBL) to the stable boundary layer (SBL) at night. Besides turbulent decay, a multitude of effects occurs during this transition. For instance, low-level jets may cause strong winds at high elevations, while the velocity near the surface generally decreases. Consequently, Coriolis forces induce a change in wind direction, which alters the apparent wind-farm layout in streamwise direction. In this study, we perform LES of a large onshore wind farm in the late-afternoon transition from an equilibrium CNBL to a surface-cooled SBL. The results of two different cooling rates are compared with the wind-farm performance in the CNBL. The power output decrease during the transition, with faster decrease for stronger surface cooling. However, the initial decrease is dominated by the reduction in wind speed, and the relative power deficits do not increase. Further, considerable wake deflection occurs, and a spatially heterogeneous distribution of temperature and heat flux is observed. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  9. Appraisal of boundary layer trips for landing gear testing

    Science.gov (United States)

    McCarthy, Philip; Feltham, Graham; Ekmekci, Alis

    2013-11-01

    Dynamic similarity during scaled model testing is difficult to maintain. Forced boundary layer transition via a surface protuberance is a common method used to address this issue, however few guidelines exist for the effective tripping of complex geometries, such as aircraft landing gears. To address this shortcoming, preliminary wind tunnel tests were performed at Re = 500,000. Surface transition visualisation and pressure measurements show that zigzag type trips of a given size and location are effective at promoting transition, thus preventing the formation of laminar separation bubbles and increasing the effective Reynolds number from the critical regime to the supercritical regime. Extension of these experiments to include three additional tripping methods (wires, roughness strips, CADCUT dots) in a range of sizes, at Reynolds number of 200,000 and below, have been performed in a recirculating water channel. Analysis of surface pressure measurements and time resolved PIV for each trip device, size and location has established a set of recommendations for successful use of tripping for future, low Reynolds number landing gear testing.

  10. Variable Sweep Transition Flight Experiment (VSTFE)-Parametric Pressure Distribution Boundary Layer Stability Study and Wing Glove Design Task

    Science.gov (United States)

    Rozendaal, Rodger A.

    1986-01-01

    The Variable Sweep Transition Flight Experiment (VSTFE) was initiated to establish a boundary-layer transition data base for laminar flow wing design. For this experiment, full-span upper-surface gloves will be fitted to a variable sweep F-14 aircraft. The results of two initial tasks are documented: a parametric pressure distribution/boundary-layer stability study and the design of an upper-surface glove for Mach 0.8. The first task was conducted to provide a data base from which wing-glove pressure distributions could be selected for glove designs. Boundary-layer stability analyses were conducted on a set of pressure distributions for various wing sweep angles, Mach numbers, and Reynolds number in the range of those anticipated for the flight-test program. The design procedure for the Mach 0.8 glove is described, and boundary-layer stability calculations and pressure distributions are presented both at design and off-design conditions. Also included is the analysis of the clean-up glove (smoothed basic wing) that will be flight-tested initially and the analysis of a Mach 0.7 glove designed at the NASA Langley Research Center.

  11. Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2003-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26 and C14......H30 confined between smooth gold surfaces. In most cases we observe well defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n...... of lubricant layers. We find that with increasing alkane chain length, the transition from n to n-1 layers occurs at higher pressure, as expected based on the increasing wettability ~or spreading pressure with increasing chain length. Thus, the longer alkanes are better boundary lubricants than the shorter...

  12. The Effect of Backward-Facing Step Height on Instability Growth and Breakdown in Swept Wing Boundary-Layer Transition

    Science.gov (United States)

    Eppink, Jenna L.; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2015-01-01

    A low-speed experiment was performed on a swept at plate model with an imposed pressure gradient to determine the effect of a backward-facing step on transition in a stationary-cross flow dominated flow. Detailed hot-wire boundary-layer measurements were performed for three backward-facing step heights of approximately 36, 45, and 49% of the boundary-layer thickness at the step. These step heights correspond to a subcritical, nearly-critical, and critical case. Three leading-edge roughness configurations were tested to determine the effect of stationary-cross flow amplitude on transition. The step caused a local increase in amplitude of the stationary cross flow for the two larger step height cases, but farther downstream the amplitude decreased and remained below the baseline amplitude. The smallest step caused a slight local decrease in amplitude of the primary stationary cross flow mode, but the amplitude collapsed back to the baseline case far downstream of the step. The effect of the step on the amplitude of the primary cross flow mode increased with step height, however, the stationary cross flow amplitudes remained low and thus, stationary cross flow was not solely responsible for transition. Unsteady disturbances were present downstream of the step for all three step heights, and the amplitudes increased with increasing step height. The only exception is that the lower frequency (traveling crossflow-like) disturbance was not present in the lowest step height case. Positive and negative spikes in instantaneous velocity began to occur for the two larger step height cases and then grew in number and amplitude downstream of reattachment, eventually leading to transition. The number and amplitude of spikes varied depending on the step height and cross flow amplitude. Despite the low amplitude of the disturbances in the intermediate step height case, breakdown began to occur intermittently and the flow underwent a long transition region.

  13. Laser transit anemometer and Pitot probe comparative measurements in a sharp cone boundary layer at Mach 4

    Science.gov (United States)

    Hunter, W. W., Jr.; Ocheltree, S. L.; Russ, C. E., Jr.

    1991-01-01

    Laser transit anemometer (LTA) measurements of a 7 degree sharp cone boundary layer were conducted in the Air Force/AEDC Supersonic Tunnel A Mach 4 flow field. These measurements are compared with Pitot probe measurements and tricone theory provided by AEDC staff. Measurements were made both in laminar and turbulent boundary layers of the model. Comparison of LTA measurements with theory showed agreement to better than 1 percent for the laminar boundary layer cases. This level of agreement was obtained after small position corrections, 0.01 to 0.6 mm, were applied to the experimental data sets. Pitot probe data when compared with theory also showed small positioning errors. The Pitot data value was also limited due to probe interference with the flow near the model. The LTA turbulent boundary layer data indicated a power law dependence of 6.3 to 6.9. The LTA data was analyzed in the time (Tau) domain in which it was obtained and in the velocity domain. No significant differences were noted between Tau and velocity domain results except in one turbulent boundary layer case.

  14. Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition

    Institute of Scientific and Technical Information of China (English)

    Yong Zhao; Tianlin Wang; Zhi Zong

    2014-01-01

    As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.

  15. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition

    Science.gov (United States)

    Lei, T.; Engelbrecht, K.; Nielsen, K. K.; Neves Bez, H.; Bahl, C. R. H.

    2016-09-01

    Magnetocaloric materials (MCM) with a first order phase transition (FOPT) usually exhibit a large, although sharp, isothermal entropy change near their Curie temperature, compared to materials with a second order phase transition (SOPT). Experimental results of applying FOPT materials in recent magnetocaloric refrigerators (MCR) demonstrated the great potential for these materials, but a thorough study on the impact of the moderate adiabatic temperature change and strong temperature dependence of the magnetocaloric effect (MCE) is lacking. Besides, comparing active magnetic regenerators (AMR) using FOPT and SOPT materials is also of fundamental interest. We present modeling results of multi-layer AMRs using FOPT and SOPT materials based on a 1D numerical model. First the impact of isothermal entropy change, adiabatic temperature change and shape factor describing the temperature dependence of the MCE are quantified and analyzed by using artificially built magnetocaloric properties. Then, based on measured magnetocaloric properties of La(Fe,Mn,Si)13H y and Gd, an investigation on how to layer typical FOPT and SOPT materials with different temperature spans is carried out. Moreover, the sensitivity of variation in Curie temperature distribution for both groups of AMRs is investigated. Finally, a concept of mixing FOPT and SOPT materials is studied for improving the stability of layered AMRs with existing materials.

  16. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein;

    2016-01-01

    Magnetocaloric materials (MCM) with a first order phase transition (FOPT) usually exhibit a large, although sharp, isothermal entropy change near their Curie temperature, compared to materials with a second order phase transition (SOPT). Experimental results of applying FOPT materials in recent...... FOPT and SOPT materials is also of fundamental interest. We present modeling results of multi-layer AMRs using FOPT and SOPT materials based on a 1D numerical model. First the impact of isothermal entropy change, adiabatic temperature change and shape factor describing the temperature dependence...... magnetocaloric refrigerators (MCR) demonstrated the great potential for these materials, but a thorough study on the impact of the moderate adiabatic temperature change and strong temperature dependence of the magnetocaloric effect (MCE) is lacking. Besides, comparing active magnetic regenerators (AMR) using...

  17. An experimental study of the edge effect on transition of the rotating-disk boundary-layer flow

    Science.gov (United States)

    Imayama, Shintaro; Lingwood, R. J.; Alfredsson, P. Henrik

    2011-11-01

    Lingwood [J. Fluid Mech., 299, 17 (1995)] showed that the flow instability in the rotating-disk boundary layer is not only of convective nature but also that the flow becomes absolutely unstable. Furthermore, in the absence of bypass mechanisms, the absolute instability triggers nonlinearity and transition to turbulence at a fixed Reynolds number (Re). Healey [J. Fluid Mech., 663, 148 (2010)] suggested that the observed spread (albeit small) in transition Re in different experiments is an effect of the Re at the disk edge and provided a nonlinear model to take this effect into account. Here, we further investigate this problem experimentally with hot-wire measurements on a rotating polished glass disk with a diameter of 474 mm and a total imbalance and surface roughness less than 10 μm. To investigate the influence of the disk edge, we vary Re at the disk edge by changing the rotational speed and map the development of the disturbance velocity in the radial direction. Furthermore, the effect of a stationary annular plate around the edge of the rotating disk is also investigated. Our experiments show no effect of the disk edge Re on the stability and transition, however there was a shift of both the growth curve and the transition Re by about 10 units with and without the outer stationary plate, with the lower Re observed with the plate.

  18. Development of high performance fiber reinforced cement composites (HPFRCC for application as a transition layer of reinforced beams

    Directory of Open Access Journals (Sweden)

    V. J. Ferrari

    Full Text Available This study presents the development and behavior analysis of high performance fiber reinforced cement composites (HPFRCC. The describedmaterials were specifically developed for application as a transition layer: a repair layer that constitutes the stressed chord of reinforcedconcrete beams strengthened in flexure with carbon fiber reinforced polymers (CFRP. Nineteen different composites were produced by thehybridization process, varying the conventional short steel fiber and steel microfiber (manufactured exclusively for this research contentsto modify the microstructure of the material, thus enhancing the stress transfer process from the cement matrix to the fibers. To analyze theresponse to flexural loading, the composites underwent three point bending tests in notched prism specimens. The response of the materialwas obtained considering strength and tenacity parameters (flexural and fracture. There was evidence of high performance by the composites with a pseudo-hardening behavior.

  19. Phase transition in layered perovskite-like manganate Ca3Mn2O7 under high pressure

    Institute of Scientific and Technical Information of China (English)

    朱嘉林; 陈良辰; 禹日成; 李凤英; 刘景; 靳常青

    2002-01-01

    In situ high pressure energy dispersive X-ray diffraction measurements on the layered perovskite-like manganate Ca3Mn2O7 powder under pressures were performed by using the diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca3Mn2O7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca3Mn2O7 underwent two phase transitions under pressures in the range of 0-35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.

  20. Voltage-controllable colossal magnetocrystalline anisotropy in single-layer transition metal dichalcogenides

    Science.gov (United States)

    Sui, Xuelei; Hu, Tao; Wang, Jianfeng; Gu, Bing-Lin; Duan, Wenhui; Miao, Mao-sheng

    2017-07-01

    Materials with large magnetocrystalline anisotropy and strong electric field effects are highly needed to develop new types of memory devices based on electric field control of spin orientations. Instead of using modified transition metal films, we propose that certain monolayer transition metal dichalcogenides are the ideal candidate materials for this purpose. Using density functional calculations, we show that they exhibit not only a large magnetocrystalline anisotropy (MCA), but also colossal voltage modulation under an external field. Notably, in some materials such as CrSe2 and FeSe2, where spins show a strong preference for in-plane orientation, they can be switched to an out-of-plane direction. This effect is attributed to the large band character alteration that the transition metal d states undergo around the Fermi energy due to the electric field. We further demonstrate that strain can also greatly change MCA, and can help to improve the modulation efficiency when combined with an electric field.

  1. Comparison two different LES closure models of the transitional boundary layer flow

    Science.gov (United States)

    Ivanov, Dimitry; Chorny, Andrei

    2016-11-01

    The goal of the present research is to measure the velocity profile in the thin boundary layer of a flat plate at zero angle of attack. We consider a flow over a flat plate with a uniform velocity profile. The uniform velocity fluid hits the leading edge of the flat plate, and a laminar boundary layer begins to develop. The near-wall, subgrid-scale (SGS) model is used to perform Large Eddy Simulation (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. LES solver using Smagorinsky and the One-equation LES turbulence models. Results show that the normalized mean velocity profile is in good agreement with the universal law-of-the-wall and previous published data. In order to ensure the quality of the numerical results a convergence study was performed.

  2. Low-frequency Raman modes as fingerprints of layer stacking configurations of transition metal dichalcogenides

    Science.gov (United States)

    Liang, Liangbo; Puretzky, Alexander; Sumpter, Bobby; Meunier, Vincent; Geohegan, David; David B. Geohegan Team; Vincent Meunier Team

    The tunable optoelectronic properties of stacked two-dimensional (2D) crystal monolayers are determined by their stacking orientation, order, and atomic registry. Atomic-resolution Z-contrast scanning transmission electron microscopy (AR-Z-STEM) can be used to determine the exact atomic registration between different layers in few-layer 2D stacks; however, fast and relatively inexpensive optical characterization techniques are essential for rapid development of the field. Using two- and three-layer MoSe2 and WSe2 crystals synthesized by chemical vapor deposition, we show that the generally unexplored low-frequency (LF) Raman modes (vibrations can serve as fingerprints to characterize not only the number of layers, but also their stacking configurations [Puretzky and Liang et al, ACS Nano 2015, 9, 6333]. First-principles Raman calculations and group theory analysis corroborate the experimental assignments determined by AR-Z-STEM and show that the calculated LF mode fingerprints are related to the 2D crystal symmetries. Our combined experimental/theoretical work demonstrates the LF Raman modes potentially more effective than HF Raman modes to probe the layer stacking and interlayer interaction for 2D materials. The authors acknowledge support from Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory and the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility.

  3. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    Science.gov (United States)

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-10-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors.

  4. Analysis of the leading edge effects on the boundary layer transition

    Science.gov (United States)

    Chow, Pao-Liu

    1990-01-01

    A general theory of boundary layer control by surface heating is presented. Some analytical results for a simplified model, i.e., the optimal control of temperature fluctuations in a shear flow are described. The results may provide a clue to the effectiveness of the active feedback control of a boundary layer flow by wall heating. In a practical situation, the feedback control may not be feasible from the instrumentational point of view. In this case the vibrational control introduced in systems science can provide a useful alternative. This principle is briefly explained and applied to the control of an unstable wavepacket in a parallel shear flow.

  5. The effect of shadow fronts on dynamics of the surface layer during evening transitions

    Science.gov (United States)

    Pardyjak, E.; Hoch, S. W.; Jensen, D. D.; Gunawardena, N.; Di Sabatino, S.; Whiteman, C. D.; Leo, L.; Hocut, C. M.; Higgins, C. W.; Fernando, H. J.

    2013-12-01

    Two MATERHORN-X (Mountain Terrain Atmospheric Modeling and Observation Program) field campaigns were conducted at Dugway, UT, USA during the last year. An Autumn Campaign from 25 September - 21 October 2012 and a Spring Campaign from 1- 31 May 2013. A subset of the campaigns included dense observations along the East Slope of Granit Peak (40.096° N, -113.253° W). Observations included five multi-sonic anemometer eddy covariance towers (two with full energy budget stations), eleven small energy budget stations, fifteen automated weather stations, a distributed temperature sensing (DTS) system, hot-film anemometry, infrared camera surface temperature observations and up to three Doppler lidars. For this presentation, our analysis will focus on characterizing the response of mean wind and thermodynamics variables, as well as turbulence quantities during the evening transitions on East Slope. Previous observations have indicated that the dynamics of turbulence during evening transitions in steep mountainous terrain rapidly follows surface temperature changes associated with shadows produced by the local topography. The observations of flow transitions over the more moderate East Slope of Granite (~3-8%) indicate that wind shift direction and turbulence decay is not as tightly coupled to the shadow. Details of the transition response will be presented in the context of a new process model.

  6. UV light induced insulator-metal transition in ultra-thin ZnO/TiOx stacked layer grown by atomic layer deposition

    Science.gov (United States)

    Saha, D.; Misra, P.; Joshi, M. P.; Kukreja, L. M.

    2016-08-01

    In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1-7) of ZnO/TiOx layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O2 and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ˜ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality with long term reliability of ZnO based transparent

  7. High Co-doping promotes the transition of birnessite layer symmetry from orthogonal to hexagonal

    NARCIS (Netherlands)

    Yin, H.; Liu, Y.; Koopal, L.K.; Feng, X.; Chu, S.; Zhu, M.; Lui, F.

    2015-01-01

    Despite its presence in limited amounts, birnessite has a wide spread distribution and is often highly enriched in trace metals such as Co in diverse geological environments. This study investigated the effects of Co doping on the layer structure and properties of birnessites synthesized through the

  8. Interband magneto-optical transitions in a layer of semiconductor nano-rings

    NARCIS (Netherlands)

    Voskoboynikov, O.; Wijers, C.M.J.; Liu, J.L.; Lee, C.P.

    2005-01-01

    We have developed a quantitative theory of the collective electromagnetic response of layers of semiconductor nano-rings. The response can be controlled by means of an applied magnetic field through the optical Aharonov-Bohm effect and is ultimately required for the design of composite materials. We

  9. Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene

    Science.gov (United States)

    Ma, Yandong; Dai, Ying; Guo, Meng; Niu, Chengwang; Yu, Lin; Huang, Baibiao

    2011-05-01

    Recently, extensive experimental and theoretical studies on single layers of BN, GaN and graphene have stimulated enormous interest in exploring the properties of these sheets by decorating their surfaces. In the present work we discuss half-fluorinated single layers of BN, GaN and graphene, in the context of intercoupling between strain and magnetic property. First-principles calculations reveal that the energy difference between ferromagnetic and antiferromagnetic couplings increases significantly with strain increasing for half-fluorinated BN, GaN and graphene sheets. More surprisingly, the half-fluorinated BN and GaN sheets exhibit intriguing magnetic transitions between ferromagnetism and antiferromagnetism by applying strain, even giving rise to half-metal when the sheets are under compression of 6%. It is found that the magnetic coupling as well as the strain-dependent magnetic transition behavior arise from the combined effects of both through-bond and p-p direct interactions. Our work offers a new avenue to facilitate the design of controllable and tunable spin devices.

  10. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin

    2016-01-01

    In this work, we accurately measure the electrical properties of individual Fe30Co61Cu9/Cu multilayered nanowires using nanomanipulators in in situ scanning electron microscopy to reveal that interfacial transition layers are influential in determining their transport behaviors. We investigate the morphology, crystal structure and chemistry of the Fe30Co61Cu9/Cu multilayered nanowires to characterize them at the nanoscale. We also compare the transport properties of these multilayered nanowires to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed analysis of the electrical data reveals that interfacial transition layers influence the electrical properties of multilayered nanowires and are likely to have a strong impact on the life of nanodevices. This work contributes to a basic understanding of the electrical parameters of individual magnetic multilayered nanowires for their application as functional building blocks and interconnecting leads in nanodevices and nanoelectronics, and also provides a clear physical picture of a single multilayered nanowire which explains its electrical resistance and its source of giant magnetoresistance. © The Royal Society of Chemistry 2016.

  11. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    HAN Jian; JIANG Nan

    2008-01-01

    Experimental measurement of hypersonic boundary layer stability and transition on a sharp cone with a half angle of 5° is carried out at free-coming stream Mach number 6 in a hypersonic wind tunnel.Mean and fluctuation surface-thermal-flux characteristics of the hypersonic boundary layer flow are measured by Pt-thin-film thermocouple temperature sensors installed at 28 stations on the cone surface along longitudinal direction.At hypersonic speeds,the dominant flow instabilities demonstrate that the growth rate of the second mode tends to exceed that of the low-frequency mode.Wavelet-based cross-spectrum technique is introduced to obtain the multi-scale cross-spectral characteristics of the fluctuating signals in the frequency range of the second mode.Nonlinear interactions both of the second mode disturbance and the first mode disturbance axe demonstrated to be dominant instabilities in the initial stage of laminar-turbulence transition for hypersonic shear flow.

  12. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lv, Dongping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wei, Yi [Peking Univ., Beijing (China); Zheng, Jiaxin [Peking Univ., Beijing (China); Wang, Zhiguo [Univ. of Electronic Science and Technology of China, Chengdu (China); Kuppan, Saravanan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Jianguo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Langli [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Danny J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amine, Khalil [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Jun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xiao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pan, Feng [Peking Univ., Beijing (China); Chen, Guoying [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Jiguang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Chong M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  13. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    Science.gov (United States)

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; Ten Elshof, Johan E.

    2014-04-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis.

  14. Giant magneto-optical Raman effect in a layered transition metal compound.

    Science.gov (United States)

    Ji, Jianting; Zhang, Anmin; Fan, Jiahe; Li, Yuesheng; Wang, Xiaoqun; Zhang, Jiandi; Plummer, E W; Zhang, Qingming

    2016-03-01

    We report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique method to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications.

  15. Edge states as mediators of bypass transition in boundary-layer flows

    CERN Document Server

    Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Eckhardt, Bruno; Henningson, Dan S

    2016-01-01

    The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.

  16. Edge states as mediators of bypass transition in boundary-layer flows

    Science.gov (United States)

    Khapko, T.; Kreilos, T.; Schlatter, P.; Duguet, Y.; Eckhardt, B.; Henningson, D. S.

    2016-08-01

    The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.

  17. Multigrid mapping and box relaxation for simulation of the whole process of flow transition in 3-D boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Liu, Z. [Univ. of Colorado, Denver, CO (United States)

    1994-12-31

    A new multilevel technology was developed in this study which provides a successful numerical simulation for the whole process of flow transition in 3-D flat plate boundary layers, including linear growth, secondary instability, breakdown, and transition on a relatively coarse grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all employed for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent main roles of small eddies to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The computation also reproduced the K-type and C-type transition observed by laboratory experiments. The CPU cost for a typical case is around 2-9 CRAY-YMP hours.

  18. Three-Dimensional Structure of Boundary Layers in Transition to Turbulence

    Science.gov (United States)

    1989-03-01

    basic flows are boundary layers (flat plate, curved wall, Falkner-Skan, rotating disk, Falkner-Skan-Cook), plane and circular Couette and Poiseuille ...metric), the viscous normal shock, and the compressible plane Couette flow . The code and selected insert files have been distributed to students, various...that depend on a single independent variable 9, e.g. a stratified fluid with density p(U), 9 pointing opposite to gravity, circular Couette flow with

  19. Trip-Induced Transition Measurements in a Hypersonic Boundary Layer Using Molecular Tagging Velocimetry

    Science.gov (United States)

    Bathel, Brett F.; Danehy, Paul M.; Jones, Stephen B.; Johansen, Craig T.; Goyne, Christopher P.

    2013-01-01

    Measurements of mean streamwise velocity, fluctuating streamwise velocity, and instantaneous streamwise velocity profiles in a hypersonic boundary layer were obtained over a 10-degree half-angle wedge model. A laser-induced fluorescence-based molecular tagging velocimetry technique was used to make the measurements. The nominal edge Mach number was 4.2. Velocity profiles were measured both in an untripped boundary layer and in the wake of a 4-mm diameter cylindrical tripping element centered 75.4 mm downstream of the sharp leading edge. Three different trip heights were investigated: k = 0.53 mm, k = 1.0 mm and k = 2.0 mm. The laminar boundary layer thickness at the position of the measurements was approximately 1 mm, though the exact thickness was dependent on Reynolds number and wall temperature. All of the measurements were made starting from a streamwise location approximately 18 mm downstream of the tripping element. This measurement region continued approximately 30 mm in the streamwise direction. Additionally, measurements were made at several spanwise locations. An analysis of flow features show how the magnitude, spatial location, and spatial growth of streamwise velocity instabilities are affected by parameters such as the ratio of trip height to boundary layer thickness and roughness Reynolds number. The fluctuating component of streamwise velocity measured along the centerline of the model increased from approximately 75 m/s with no trip to +/-225 m/s with a 0.53-mm trip, and to +/-240 m/s with a 1-mm trip, while holding the freestream Reynolds number constant. These measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  20. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    Science.gov (United States)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-10-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  1. Edge states for the turbulence transition in the asymptotic suction boundary layer

    CERN Document Server

    Kreilos, Tobias; Schneider, Tobias M; Eckhardt, Bruno

    2013-01-01

    We demonstrate the existence of an exact invariant solution to the Navier-Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer we demonstrate that the periodic orbit emerges in a saddle-node infinite-period (SNIPER) bifurcation of two symmetry-related travelling wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwi...

  2. Ultrasonic absorption characteristics of porous carbon-carbon ceramics with random microstructure for passive hypersonic boundary layer transition control

    Science.gov (United States)

    Wagner, Alexander; Hannemann, Klaus; Kuhn, Markus

    2014-06-01

    Preceding studies in the high enthalpy shock tunnel Göttingen of the German Aerospace Center (DLR) revealed that carbon fibre reinforced carbon ceramic (C/C) surfaces can be utilized to damp hypersonic boundary layer instabilities leading to a delay of boundary layer transition onset. To assess the ultrasonic absorption properties of the material, a test rig was set up to measure the reflection coefficient at ambient pressures ranging from 0.1 × 105 to 1 × 105 Pa. For the first time, broadband ultrasonic sound transducers with resonance frequencies of up to 370 kHz were applied to directly cover the frequency range of interest with respect to the second-mode instabilities observed in previous experiments. The reflection of ultrasonic waves from three flat plate test samples with a porous layer thickness between 5 and 30 mm was investigated and compared to an ideally reflecting surface. C/C was found to absorb up to 19 % of the acoustic power transmitted towards the material. The absorption characteristics were investigated theoretically by means of the quasi-homogeneous absorber theory. The experimental results were found to be in good agreement with the theory.

  3. Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements

    Science.gov (United States)

    Ullmer, Dirk; Peschke, Philip; Terzis, Alexandros; Ott, Peter; Weigand, Bernhard

    2015-09-01

    This paper demonstrates that the impact of nanosecond pulsed dielectric barrier discharge (ns-DBD) actuators on the structure of the boundary layer can be investigated using quantitative convective heat transfer measurements. For the experiments, the flow over a flat plate with a C4 leading edge thickness distribution was examined at low speed incompressible flow (6.6-11.5 m s-1). An ns-DBD plasma actuator was mounted 5 mm downstream of the leading edge and several experiments were conducted giving particular emphasis on the effect of actuation frequency and the freestream velocity. Local heat transfer distributions were measured using the transient liquid crystal technique with and without plasma activated. As a result, any effect of plasma on the structure of the boundary layer is interpreted by local heat transfer coefficient distributions which are compared with laminar and turbulent boundary layer correlations. The heat transfer results, which are also confirmed by hot-wire measurements, show the considerable effect of the actuation frequency on the location of the transition point elucidating that liquid crystal thermography is a promising method for investigating plasma-flow interactions very close to the wall. Additionally, the hot-wire measurements indicate possible velocity oscillations in the near wall flow due to plasma activation.

  4. Pressure induced magneto-structural phase transitions in layered RMn2X2 compounds (invited)

    Science.gov (United States)

    Kennedy, Shane; Wang, Jianli; Campbell, Stewart; Hofmann, Michael; Dou, Shixue

    2014-05-01

    We have studied a range of pseudo-ternaries derived from the parent compound PrMn2Ge2, substituting for each constituent element with a smaller one to contract the lattice. This enables us to observe the magneto-elastic transitions that occur as the Mn-Mn nearest neighbour distance is reduced and to assess the role of Pr on the magnetism. Here, we report on the PrMn2Ge2-xSix, Pr1-xYxMn2Ge2, and PrMn2-xFexGe2 systems. The pressure produced by chemical substitution in these pseudo-ternaries is inherently non-uniform, with local pressure variations dependent on the local atomic distribution. We find that concentrated chemical substitution on the R or X site (e.g., in Pr0.5Y0.5Mn2Ge2 and PrMn2Ge0.8Si1.2) can produce a separation into two distinct magnetic phases, canted ferromagnetic and canted antiferromagnetic, with a commensurate phase gap in the crystalline lattice. This phase gap is a consequence of the combination of phase separation and spontaneous magnetostriction, which is positive on transition to the canted ferromagnetic phase and negative on transition to the canted antiferromagnetic phase. Our results show that co-existence of canted ferromagnetic and antiferromagnetic phases depends on chemical pressure from the rare earth and metalloid sites, on local lattice strain distributions and on applied magnetic field. We demonstrate that the effects of chemical pressure bear close resemblance to those of mechanical pressure on the parent compound.

  5. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography

    Science.gov (United States)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus

    2014-01-01

    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.

  6. Monotropic smectic A to double layer smectic C transition of biphenyl containing liquid crystal acetylene

    Institute of Scientific and Technical Information of China (English)

    Zhen Qiang Yu; Cai Zhen Zhu; Zhe Zhang; Jian Hong Liu; Jacky W.Y. Lam; Ben Zhong Tang

    2011-01-01

    5-[(4'-Heptoxy-4-biphenylyl)carbonyloxy]-l-pentyne (A-3, 7) was synthesized and the phase structures and transitions were investigated by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), polarized light microscopy (PLM) and the molecular packing in the crystal and liquid crystalline phases were simulated by molecular dynamic simulation. The results showed that the sample formed thermodynamically metastable SmA and SmC2 phases before crystallized during cooling and the crystal phase directly transformed into isotropic phase during heating.

  7. Topological Phase Transition in Layered GaS and GaSe

    KAUST Repository

    Zhu, Zhiyong

    2012-06-29

    By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimensional topological insulators. Band inversion can be induced by strain only, without considering any spin-orbit coupling. The latter, however, is indispensable for the formation of local band gaps at the crossing points of the inverted bands. Our study indicates that three-dimensional topological insulators can also be realized in materials which comprise light elements only.

  8. Free-path distribution and Knudsen-layer modeling for gaseous flows in the transition regime

    Science.gov (United States)

    To, Quy Dong; Léonard, Céline; Lauriat, Guy

    2015-02-01

    In this paper, we use molecular dynamics (MD) simulations to study the mean free path distribution of nonequilibrium gases in micronanochannel and to model the Knudsen (Kn) layer effect. It is found that the mean free path is significantly reduced near the wall and rather insensitive to flow types (Poiseuille or Couette). The Cercignani relation between the mean free path and the viscosity is adopted to capture the velocity behavior of the special zone in the framework of the extended Navier-Stokes (NS) equations. MD simulations of flows are carried out at different Kn numbers. Results are then compared with the theoretical model.

  9. Performance of Renormalization Group Algebraic Turbulence Model on Boundary Layer Transition Simulation

    Science.gov (United States)

    Ahn, Kyung H.

    1994-01-01

    The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.

  10. Intersubband Transitions of Si δ-Doped GaAs Layer for Different Donor Distribution Models

    Institute of Scientific and Technical Information of China (English)

    Emine OZTURK; Ismail SOKMEN

    2004-01-01

    @@ For different donor distribution types we theoretically investigate the intersubband transitions of single Si δ-doped GaAs structure as dependent on the applied electric field. The diffusion of donor impurities is taken into account in two different models: a triangular distribution and a non-uniform distribution. The electronic properties such as the effective δ-potential, the subband energies and the eigen-envelope wavefunctions have been calculated by solving the Schrodinger and Poisson equations self-consistently. Abrupt changes of the subband energy difference and the absorption peak are realized whenever the applied electric field reaches a certain value. These critical electric field values change dependent on the donor distribution model. The intersubband absorption spectrum shows that redshifts appear up to the critical electric field value for the (1-2) and (1-3) intersubband transitions.This spectrum also shows that blueshifts can occur when the electric fields are higher than certain values. These changing intersubband absorption peaks can be used in various infrared optical device applications.

  11. The Diurnal Temperature Cycle and Its Relation to Boundary-Layer Structure During the Morning Transition

    Science.gov (United States)

    Ketzler, G.

    2014-05-01

    The morning portion of the near-surface diurnal temperature cycle is analyzed in combination with heat-flux and vertical temperature-gradient data. During summer, mean diurnal cycles of temperature rates-of-change show periods that can be related to defined points of the morning transition (MT). The start of the MT is clearly marked with a temperature discontinuity, apparent even on individual days, while the end of the transition is apparent only when using averages over many days. The findings concerning the timing of the MT using temperature cycle analysis correspond well with studies using heat-flux measurements. Mean diurnal cycles of temperature rates-of-change for stations in different urban and valley positions show differences that can partly be explained by apparent effects of the surroundings. For the valley situation, the timing differences and their relation to station position in the valley are generally plausible, while urban effects on the diurnal cycle are apparent but less distinct, which may be due to the small number of stations used. The results indicate that warming already begins before heat-flux crossover, which is the current definition of the beginning of the MT. This definition should be extended to include the phase between the temperature rate-of-change crossover and heat-flux crossover, which represents the early part of the MT before warming reaches instrument level.

  12. Hydrogen-induced structural transition in single layer ReS2

    Science.gov (United States)

    Yagmurcukardes, M.; Bacaksiz, C.; Senger, R. T.; Sahin, H.

    2017-09-01

    By performing density functional theory-based calculations, we investigate how structural, electronic and mechanical properties of single layer ReS2 can be tuned upon hydrogenation of its surfaces. It is found that a stable, fully hydrogenated structure can be obtained by formation of strong S-H bonds. The optimized atomic structure of ReS2H2 is considerably different than that of the monolayer ReS2 which has a distorted-1T phase. By performing phonon dispersion calculations, we also predict that the Re2-dimerized 1T structure (called 1T {{}\\text{R{{\\text{e}}2}}} ) of the ReS2H2 is dynamically stable. Unlike the bare ReS2 the 1T {{}\\text{R{{\\text{e}}2}}} -ReS2H2 structure which is formed by breaking the Re4 clusters into separated Re2 dimers, is an indirect-gap semiconductor. Furthermore, mechanical properties of the 1T {{}\\text{R{{\\text{e}}2}}} phase in terms of elastic constants, in-plane stiffness (C) and Poisson ratio (ν) are investigated. It is found that full hydrogenation not only enhances the flexibility of the single layer ReS2 crystal but also increases anisotropy of the elastic constants.

  13. Evaluation of Warm-Rain Microphysical Parameterizations in Cloudy Boundary Layer Transitions

    Science.gov (United States)

    Nelson, K.; Mechem, D. B.

    2014-12-01

    Common warm-rain microphysical parameterizations used for marine boundary layer (MBL) clouds are either tuned for specific cloud types (e.g., the Khairoutdinov and Kogan 2000 parameterization, "KK2000") or are altogether ill-posed (Kessler 1969). An ideal microphysical parameterization should be "unified" in the sense of being suitable across MBL cloud regimes that include stratocumulus, cumulus rising into stratocumulus, and shallow trade cumulus. The recent parameterization of Kogan (2013, "K2013") was formulated for shallow cumulus but has been shown in a large-eddy simulation environment to work quite well for stratocumulus as well. We report on our efforts to implement and test this parameterization into a regional forecast model (NRL COAMPS). Results from K2013 and KK2000 are compared with the operational Kessler parameterization for a 5-day period of the VOCALS-REx field campaign, which took place over the southeast Pacific. We focus on both the relative performance of the three parameterizations and also on how they compare to the VOCALS-REx observations from the NOAA R/V Ronald H. Brown, in particular estimates of boundary-layer depth, liquid water path (LWP), cloud base, and area-mean precipitation rate obtained from C-band radar.

  14. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.

    Science.gov (United States)

    Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija

    2016-04-06

    Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.

  15. Flexural strengthening of reinforced concrete beams with carbon fibers reinforced polymer (CFRP sheet bonded to a transition layer of high performance cement-based composite

    Directory of Open Access Journals (Sweden)

    V. J. Ferrari

    Full Text Available Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP. This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

  16. An experimental study on laminar-turbulent transition at high free-stream turbulence in boundary layers with pressure gradients

    Directory of Open Access Journals (Sweden)

    Chernoray Valery

    2012-04-01

    Full Text Available We report here the results of a study on measurements and prediction of laminar-turbulent transition at high free-stream turbulence in boundary layers of the airfoil-like geometries with presence of the external pressure gradient changeover. The experiments are performed for a number of flow cases with different flow Reynolds number, turbulence intensity and pressure gradient distributions. The results were then compared to numerical calculations for same geometries and flow conditions. The experiments and computations are performed for the flow parameters which are typical for turbomachinery applications and the major idea of the current study is the validation of the turbulence model which can be used for such engineering applications.

  17. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.

    Science.gov (United States)

    Liu, Wen; Oh, Pilgun; Liu, Xien; Lee, Min-Joon; Cho, Woongrae; Chae, Sujong; Kim, Youngsik; Cho, Jaephil

    2015-04-07

    High energy-density lithium-ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni-rich, lithium transition-metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2 . However, for these Ni-rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed.

  18. Role of Deep Convection in Establishing the Isotopic Composition of Water Vapor in the Tropical Transition Layer

    Science.gov (United States)

    Smith, Jamison A.; Ackerman, Andrew S.; Jensen, Eric J.; Toon, Owen B.

    2006-01-01

    The transport of H2O and HDO within deep convection is investigated with 3-D large eddy simulations (LES) using bin microphysics. The lofting and sublimation of HDO-rich ice invalidate the Rayleigh fractionation model of isotopologue distribution within deep convection. Bootstrapping the correlation of the ratio of HDO to H2O (deltaD) to water vapor mixing ratio (q(sub v)) through a sequence of convective events produced non-Rayleigh correlations resembling observations. These results support two mechanisms for stratospheric entry. Deep convection can inject air with water vapor of stratospheric character directly into the tropical transition layer (TTL). Alternatively, moister air detraining from convection may be dehydrated via cirrus formation n the TTL to produce stratospheric water vapor. Significant production of subsaturated air in the TTL via convective dehydration is not observed in these simulations, nor is it necessary to resolve the stratospheric isotope paradox.

  19. Goos-Haenchen shifts of the reflected waves from the inhomogeneous slab with a positive and negative index transition layer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Hongmin; Zang, Taocheng; Sun, Jian; Pan, Tao; Xu, Guoding [Department of Physics, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2012-04-15

    Goos-Haenchen (GH) shifts of the reflected waves through a transition layer where both the dielectric permittivity {epsilon} and magnetic permeability {mu} change linearly from positive to negative values are investigated. Based on invariant imbedding approach and the stationary-phase method, the differential equations for the reflection and transmission coefficients are obtained. We demonstrate numerically the dependence of the shifts on the angle of incidence and the inhomogeneous slab's thickness. The results show that the GH shifts are sensitive to the angle of incidence in a specific thickness. Different thickness of media can result in the different dependences of the shifts on the angle of incidence. At the positions where {epsilon} or {mu} is zero, due to the resonant effect, the GH shifts can be greatly enhanced. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Role of Deep Convection in Establishing the Isotopic Composition of Water Vapor in the Tropical Transition Layer

    Science.gov (United States)

    Smith, Jamison A.; Ackerman, Andrew S.; Jensen, Eric J.; Toon, Owen B.

    2006-01-01

    The transport of H2O and HDO within deep convection is investigated with 3-D large eddy simulations (LES) using bin microphysics. The lofting and sublimation of HDO-rich ice invalidate the Rayleigh fractionation model of isotopologue distribution within deep convection. Bootstrapping the correlation of the ratio of HDO to H2O (deltaD) to water vapor mixing ratio (q(sub v)) through a sequence of convective events produced non-Rayleigh correlations resembling observations. These results support two mechanisms for stratospheric entry. Deep convection can inject air with water vapor of stratospheric character directly into the tropical transition layer (TTL). Alternatively, moister air detraining from convection may be dehydrated via cirrus formation n the TTL to produce stratospheric water vapor. Significant production of subsaturated air in the TTL via convective dehydration is not observed in these simulations, nor is it necessary to resolve the stratospheric isotope paradox.

  1. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te)

    Science.gov (United States)

    Fuh, Huei-Ru; Chang, Ching-Ray; Wang, Yin-Kuo; Evans, Richard F. L.; Chantrell, Roy W.; Jeng, Horng-Tay

    2016-01-01

    We present a newtype 2-dimensional (2D) magnetic semiconductor based on transition-metal dichalcogenides VX2 (X = S, Se and Te) via first-principles calculations. The obtained indirect band gaps of monolayer VS2, VSe2, and VTe2 given from the generalized gradient approximation (GGA) are respectively 0.05, 0.22, and 0.20 eV, all with integer magnetic moments of 1.0 μB. The GGA plus on-site Coulomb interaction U (GGA + U) enhances the exchange splittings and raises the energy gap up to 0.38~0.65 eV. By adopting the GW approximation, we obtain converged G0W0 gaps of 1.3, 1.2, and 0.7 eV for VS2, VSe2, and VTe2 monolayers, respectively. They agree very well with our calculated HSE gaps of 1.1, 1.2, and 0.6 eV, respectively. The gap sizes as well as the metal-insulator transitions are tunable by applying the in-plane strain and/or changing the number of stacking layers. The Monte Carlo simulations illustrate very high Curie-temperatures of 292, 472, and 553 K for VS2, VSe2, and VTe2 monolayers, respectively. They are nearly or well beyond the room temperature. Combining the semiconducting energy gap, the 100% spin polarized valence and conduction bands, the room temperature TC, and the in-plane magnetic anisotropy together in a single layer VX2, this newtype 2D magnetic semiconductor shows great potential in future spintronics. PMID:27601195

  2. Investigation of the boundary layer during the transition from volume to surface dominated H⁻ production at the BATMAN test facility.

    Science.gov (United States)

    Wimmer, C; Schiesko, L; Fantz, U

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 18 scale H(-) source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H(-) production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H(-) density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H(-) density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (j(H(-)), j(e)) exists with the Cs emission.

  3. Investigation of the boundary layer during the transition from volume to surface dominated H- production at the BATMAN test facility

    Science.gov (United States)

    Wimmer, C.; Schiesko, L.; Fantz, U.

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 1/8 scale H- source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H- production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H- density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H- density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH-, je) exists with the Cs emission.

  4. Temperature and electric field induced metal-insulator transition in atomic layer deposited VO2 thin films

    Science.gov (United States)

    Tadjer, Marko J.; Wheeler, Virginia D.; Downey, Brian P.; Robinson, Zachary R.; Meyer, David J.; Eddy, Charles R.; Kub, Fritz J.

    2017-10-01

    Amorphous vanadium oxide (VO2) films deposited by atomic layer deposition (ALD) were crystallized with an ex situ anneal at 660-670 °C for 1-2 h under a low oxygen pressure (10-4 to 10-5 Torr). Under these conditions the crystalline VO2 phase was maintained, while formation of the V2O5 phase was suppressed. Electrical transition from the insulator to the metallic phase was observed in the 37-60 °C range, with an ROFF/RON ratio of up to about 750 and ΔTC ≅ 7-10 °C. Lateral electric field applied across two-terminal device structures induced a reversible phase change, with a room temperature transition field of about 25 kV/cm in the VO2 sample processed with the 2 h long O2 anneal. Both the width and slope of the field induced MIT I-V hysteresis were dependent upon the VO2 crystalline quality.

  5. Design of Efficient Catalysts with Double Transition Metal Atoms on C2N Layer.

    Science.gov (United States)

    Li, Xiyu; Zhong, Wenhui; Cui, Peng; Li, Jun; Jiang, Jun

    2016-05-05

    Heterogeneous catalysis often involves molecular adsorptions to charged catalyst site and reactions triggered by catalyst charges. Here we use first-principles simulations to design oxygen reduction reaction (ORR) catalyst based on double transition metal (TM) atoms stably supported by 2D crystal C2N. It not only holds characters of low cost and high durability but also effectively accumulates surface polarization charges on TMs and later deliveries to adsorbed O2 molecule. The Co-Co, Ni-Ni, and Cu-Cu catalysts exhibit high adsorption energies and extremely low dissociation barriers for O2, as compared with their single-atom counterparts. Co-Co on C2N presents less than half the value of the reaction barrier of bulk Pt catalysts in the ORR rate-determining steps. These catalytic improvements are well explained by the dependences of charge polarization on various systems, which opens up a new strategy for optimizing TM catalytic performance with the least metal atoms on porous low-dimensional materials.

  6. Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis

    Science.gov (United States)

    Ciarletta, P.

    2014-12-01

    Soft materials can experience a mechanical instability when subjected to a finite compression, developing wrinkles which may eventually evolve into folds or creases. The possibility to control the wrinkling network morphology has recently found several applications in many developing fields, such as scaffolds for biomaterials, stretchable electronics and surface micro-fabrication. Albeit much is known of the pattern initiation at the linear stability order, the nonlinear effects driving the pattern selection in soft materials are still unknown. This work aims at investigating the nature of the elastic bifurcation undertaken by a growing soft layer subjected to a equi-biaxial strain. Considering a skin effect at the free surface, the instability thresholds are found to be controlled by a characteristic length, defined by the ratio between capillary energy and bulk elasticity. For the first time, a weakly nonlinear analysis of the wrinkling instability is performed here using the multiple-scale perturbation method applied to the incremental theory in finite elasticity. The Ginzburg-Landau equations are derived for different superposing linear modes. This study proves that a subcritical pitchfork bifurcation drives the observed wrinkle-to-fold transition in swelling gels experiments, favoring the emergence of hexagonal creased patterns, albeit quasi-hexagonal patterns might later emerge because of an expected symmetry break. Moreover, if the surface energy is somewhat comparable to the bulk elastic energy, it has the same stabilizing effect as for fluid instabilities, driving the formation of stable wrinkles, as observed in elastic bi-layered materials.

  7. XRR Analysis of the Transition Layer in SiO2 Thin Film Formed on Si Surface

    Science.gov (United States)

    Kurokawa, Akira; Odaka, Kenji; Fujimoto, Tosiyuki; Azuma, Yasushi

    To develop nanometric film thickness standard (FTSs), uniformity of silicon dioxide thin film were investigated by X-ray Reflectometry (XRR). The samples we investigated were thermally grown oxides (O2-Oxides) and ozone-formed oxide(Ozone-Oxide). The O2-oxide were grown on Si(100) substrate at 1000°C and at 700°C. The Ozone-Oxide was grown at 750°C with the highly concentrated ozone gas. With XRR method the bulk-layer density of oxide films were analyzed for; the O2-Oxide formed at 700°C (D700), the O2-Oxide formed at 1000°C(D1000), and the Ozone-Oxide formed at 750°C (Dozone750). We also analyzed the transition-layer density of the O2-Oxide formed at 700°C (DTL700). The results showed the relation was D1000DTL700. The result indicated that Ozone-Oxide is suitable to produce the FTSs which demands the homogeneous density in SiO2 thin film, and also indicated that the density of Ozone-Oxide corresponded to that of O2-Oxide with much higher substrate temperature.

  8. 3D spin-flop transition in enhanced 2D layered structure single crystalline TlCo2Se2

    Science.gov (United States)

    Jin, Z.; Xia, Z.-C.; Wei, M.; Yang, J.-H.; Chen, B.; Huang, S.; Shang, C.; Wu, H.; Zhang, X.-X.; Huang, J.-W.; Ouyang, Z.-W.

    2016-10-01

    The enhanced 2D layered structure single crystalline TlCo2Se2 has been successfully fabricated, which exhibits field-induced 3D spin-flop phase transitions. In the case of the magnetic field parallel to the c-axis (B//c), the applied magnetic field induces the evolution of the noncollinear helical magnetic coupling into a ferromagnetic (FM) state with all the magnetization of the Co ion parallel to the c-axis. A striking variation of the field-induced strain within the ab-plane is noticed in the magnetic field region of 20-30 T. In the case of the magnetic field perpendicular to the c-axis (B  ⊥  c), the inter-layer helical antiferromagnetic (AFM) coupling may transform to an initial canted AFM coupling, and then part of it transforms to an intermediate metamagnetic phase with the alignment of two-up-one-down Co magnetic moments and finally to an ultimate FM coupling in higher magnetic fields. The robust noncollinear AFM magnetic coupling is completely destroyed above 30 T. In combination with the measurements of magnetization, magnetoresistance and field-induced strain, a complete magnetic phase diagram of the TlCo2Se2 single crystal has been depicted, demonstrating complex magnetic structures even though the crystal geometry itself gives no indication of the magnetic frustration.

  9. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)

    Science.gov (United States)

    Halim, Joseph; Cook, Kevin M.; Naguib, Michael; Eklund, Per; Gogotsi, Yury; Rosen, Johanna; Barsoum, Michel W.

    2016-01-01

    In this work, a detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented for select MXenes-a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Herein we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi-layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti3C2Tx, Ti2CTx, Ti3CNTx, Nb2CTx and Nb4C3Tx, where T represents surface groups that this work attempts to quantify. In all the cases, the presence of three surface terminations, sbnd O, sbnd OH and sbnd F, in addition to OH-terminations relatively strongly bonded to H2O molecules, was confirmed. From XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications.

  10. Heterogeneous photocatalysis with transition metal modified layered titanates for solar hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Pilarski, Martin

    2016-09-05

    The objective of this work was the validation of Cu as a low priced co-catalyst material in comparison to the frequently used noble metal co-catalysts Rh, Au and Pt, as well as the evaluation of alternative sacrificial agents for photocatalytic H2 production. An effective conversion of glycerol was a primary aim of this work, due to its abundance as a coproduct of the bio fuel production. Furthermore, photocatalysts were prepared, which are capable to absorb light from the visible range of the light spectrum. The required band gap reduction was realized by cation doping. In the course of the cation doping process Cu{sup 2+}, Cr{sup 3+}, Fe{sup 3+} and Mn{sup 3+} cations were incorporated by a sol-gel synthesis route into the crystal lattice of the layered Cs{sub 0.68}Ti{sub 1.83}O{sub 4}, which was used as a photocatalyst material. The photocatalytic activity of the prepared photocatalysts was investigated in a self constructed test setup under the irradiation of a xenon arc lamp.

  11. Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into MoS2.

    Science.gov (United States)

    Shang, Shun-Li; Lindwall, Greta; Wang, Yi; Redwing, Joan M; Anderson, Tim; Liu, Zi-Kui

    2016-09-14

    Unprecedented interest has been spurred recently in two-dimensional (2D) layered transition metal dichalcogenides (TMDs) that possess tunable electronic and optical properties. However, synthesis of a wafer-scale TMD thin film with controlled layers and homogeneity remains highly challenging due mainly to the lack of thermodynamic and diffusion knowledge, which can be used to understand and design process conditions, but falls far behind the rapidly growing TMD field. Here, an integrated density functional theory (DFT) and calculation of phase diagram (CALPHAD) modeling approach is employed to provide thermodynamic insight into lateral versus vertical growth of the prototypical 2D material MoS2. Various DFT energies are predicted from the layer-dependent MoS2, 2D flake-size related mono- and bilayer MoS2, to Mo and S migrations with and without graphene and sapphire substrates, thus shedding light on the factors that control lateral versus vertical growth of 2D islands. For example, the monolayer MoS2 flake in a small 2D lateral size is thermodynamically favorable with respect to the bilayer counterpart, indicating the monolayer preference during the initial stage of nucleation; while the bilayer MoS2 flake becomes stable with increasing 2D lateral size. The critical 2D flake-size of phase stability between mono- and bilayer MoS2 is adjustable via the choice of substrate. In terms of DFT energies and CALPHAD modeling, the size dependent pressure-temperature-composition (P-T-x) growth windows are predicted for MoS2, indicating that the formation of MoS2 flake with reduced size appears in the middle but close to the lower T and higher P "Gas + MoS2" phase region. It further suggests that Mo diffusion is a controlling factor for MoS2 growth owing to its extremely low diffusivity compared to that of sulfur. Calculated MoS2 energies, Mo and S diffusivities, and size-dependent P-T-x growth windows are in good accord with available experiments, and the present data

  12. Two-dimensional percolation transition at finite temperature: Phase boundary for in-plane magnetism in films with two atomic layers of Fe on W(110)

    Science.gov (United States)

    Belanger, R.; Venus, D.

    2017-02-01

    A two-dimensional (2D) percolation transition in Fe/W(110) ultrathin magnetic films occurs when islands in the second atomic layer percolate and resolve a frustrated magnetic state to produce long-range in-plane ferromagnetic order. Novel measurements of percolation using the magnetic susceptibility χ (θ ) as the films are deposited at a constant temperature, allow the long-range percolation transition to be observed as a sharp peak consistent with a critical phase transition. The measurements are used to trace the paramagnetic-to-ferromagnetic phase boundary between the T =0 percolation magnetic transition and the thermal Curie magnetic transition of the undiluted film. A quantitative comparison to critical scaling theory is made by fitting the functional form of the phase boundary. The fitted parameters are then used in theoretical expressions for χ (T ) in the critical region of the paramagnetic state to provide an excellent, independent representation of the experimental measurements.

  13. Diagnosing the transition layer in the extra-tropical lowermost stratosphere using MLS O3 and MOPITT CO analyses

    Directory of Open Access Journals (Sweden)

    V.-H. Peuch

    2012-08-01

    Full Text Available The behavior of the Extra-tropical Transition Layer (ExTL in the lowermost stratosphere is investigated using a Chemistry Transport Model (CTM and analyses derived from assimilation of MLS (Microwave Limb Sounder O3 and MOPITT (Measurements Of Pollution In The Troposphere CO data. We use O3-CO correlations to quantify the effect of the assimilation on the height and depth of the ExTL. We firstly focus on a Stratosphere-Troposphere Exchange (STE case study which occurred on 15 August 2007 over the British Isles (50° N, 10° W. We also extend the study at the global scale for the month of August 2007. For the STE case study, MOPITT CO analyses have the capability to sharpen the ExTL distribution whereas MLS O3 analyses provide a tropospheric expansion of the ExTL distribution with its maximum close to the thermal tropopause. When MLS O3 and MOPITT CO analyses are used together, the ExTL shows more realistic results and matches the thermal tropopause. At global scale, MOPITT CO analyses still show a sharper chemical transition between stratosphere and troposphere than the free model run. MLS O3 analyses move the ExTL toward the troposphere and broaden it. When MLS O3 analyses and MOPITT CO analyses are used together the ExTL matches the thermal tropopause poleward of 50°. This study shows that data assimilation can help overcome the shortcomings associated with a relatively coarse model resolution. The ExTL spread is larger in the Northern Hemisphere than the Southern Hemisphere suggesting that mixing processes are more active in the UTLS in the Northern Hemisphere than in the Southern Hemisphere. This work opens perspectives for studying the seasonal variations of the ExTL at extra-tropical latitudes.

  14. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim [Univ. of Missouri, Kansas City, MO (United States)

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  15. Unconventional but tunable phase transition above the percolation threshold by two-layer conduction in electroless-deposited Au nanofeatures on silicon substrate.

    Science.gov (United States)

    Lee, Seung-Hoon; Shin, Muncheol; Hwang, Seongpil; Jang, Jae-Won

    2015-12-18

    Previous research has shown that disorder, dislocation, and carrier concentration are the main factors impacting transitions in the traditional metal-insulator transition (MIT) and metal-semiconductor transition (MST). In this study, it is demonstrated that a non-traditional metal-semiconductor transition governed by two-layer conduction is possible by tuning the conducting channel of one layer of the two-layer conduction system. By means of the electroless deposition method we produced Au nanofeatures (AuNFs) on p-type silicon (p-Si) as the two-layer conduction system, controlling AuNF coverage (Au%) below and above the percolation threshold (p c). Even when the AuNF coverage percentage is larger than p c, the resistivities of the AuNFs on p-Si show MST as the temperature increases. To demonstrate this finding, we present a conduction model based upon two predominant parallel conductions by AuNFs and p-Si in the present paper. In the results, we show how the temperature of the MST (T MST) is tuned from 145 to 232 K as Au% is changed from 82.7 to 54.3%.

  16. The influence of the gas-distributing grid diameter on the transition velocity and hydrodynamics of the bottom layer in circulating fluidized bed installations

    Science.gov (United States)

    Tuponogov, V. G.; Baskakov, A. P.

    2013-11-01

    The dependences of dimensionless fluidization velocities separating bubble, transition, and fast fluidization regimes on the properties of dispersed material for particles belonging to groups B and D (according to D. Geldart's classification) are presented. Correspondence between the considered dependences and experimental data obtained by different researchers and their correlation with critical fluidization velocities and particle terminal velocities are shown. The hydrodynamic mechanisms governing the saturation of fluidized bed with bubbles on reaching the transition fluidization velocity in installations having different sizes are considered. Factors due to which a bottom bubble layer disappears in narrow installations and is retained on large-diameter grids in an intense channel forming mode are explained. Experimental data are presented from which it is seen that the bubble layer hydrodynamics depends on the gas-distributing grid diameter and that this diameter has an insignificant influence on the fluidization velocity during the transition from a bubble to fast fluidization regime.

  17. Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time.

    Science.gov (United States)

    Pithan, Linus; Meister, Eduard; Jin, Chenyu; Weber, Christopher; Zykov, Anton; Sauer, Katrein; Brütting, Wolfgang; Riegler, Hans; Opitz, Andreas; Kowarik, Stefan

    2015-10-28

    We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C44H90) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.

  18. Thermally driven smoothening of molecular thin films: Structural transitions in n-alkane layers studied in real-time

    Energy Technology Data Exchange (ETDEWEB)

    Pithan, Linus; Weber, Christopher; Zykov, Anton; Sauer, Katrein; Opitz, Andreas; Kowarik, Stefan, E-mail: stefan.kowarik@physik.hu-berlin.de [Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Meister, Eduard; Brütting, Wolfgang [Institut für Physik, Universität Augsburg, 86135 Augsburg (Germany); Jin, Chenyu; Riegler, Hans [Max-Planck-Institut für Kolloid- und Grenzflächenforschung, 14476 Potsdam-Golm (Germany)

    2015-10-28

    We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C{sub 44}H{sub 90}) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 μm to 10 μm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.

  19. Influence of Dimensions of UHMW-PE Protuberances on Sliding Resistance and Normal Adhesion of Bangkok Clay Soil to Biomimetic Plates

    Institute of Scientific and Technical Information of China (English)

    P. Soni; V. M. Salokhe

    2006-01-01

    A number of investigations into application of polymers for macro-morphological modification of tool surface have been carried out. These researches, with extensive stress on convex or domed protuberations as one of the widely used construction units, have tried to harness benefits from using polymers in agriculture. Ultra high molecular weight polyethylene (UHMW-PE)has proved an emerging polymer in its application to reduce soil adhesion. This research was conducted to study the effect of shape (flat, semi-spherical, semi-oblate, semi short-prolate and semi long-prolate) and dimensions (base diameter and dome height) on sliding resistance and normal adhesion of biomimetic plates. To incorporate both shape and size, a dimensionless ratio of height to diameter (HDR) was introduced to characterize the effect of construction unit's physique. Experiments were conducted in Bangkok clay soil with dry (19.8% d.b.), sticky (36.9% d.b.) and flooded (60.1% d.b.) soil conditions respectively. Soil at sticky limit exhibited the highest sliding resistance (77.8 N) and normal adhesion (3 kPa to 7 kPa), whereas these values were 61.7 N and <0.2 kPa in dry, and 53.7 N and 0.5 kPa to 1.5 kPa in flooded soil conditions. Protuberances with HDR ≤ 0.5 lowered sliding resistance by 10% - 30% and the same reduced normal adhesion by 10% - 60%. The amount of reduction in both sliding resistance and normal adhesion was higher in flooded soil. Lighter normal loads obviously produced lesser resistance and adhesion.

  20. Analysis of fluid flow within the gap delimited by two coaxial vertical cylinders equipped with three sinusoidal protuberances; Analyse de l`ecoulement d`un fluide dans un espace delimite par deux cylindres coaxiaux verticaux munis de trois protuberances sinusoidales

    Energy Technology Data Exchange (ETDEWEB)

    Hadjadj, A.; Maamir, S.; Zeghmati, B.; Rondot, D. [Institut Universitaire de Technologie, 90 - Belfort (France)

    1997-12-31

    The results of an experimental study of fluid flow and heat transfer engendered within the annular gap between two concentric vertical cylinders are presented. The cylinders are equipped by three sinusoidal protuberances, two on the external surface of the inner cylinder and another one with small amplitude on the internal surface of the external cylinder. The experiments results, which included flow visualisation of the incense smoke and the measure of temperature by infrared thermography method are in good agreement with the theoretical results. (authors) 3 refs.

  1. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    Science.gov (United States)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  2. Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

    Science.gov (United States)

    Kořínek, R.; Mikulka, J.; Hřib, J.; Hudec, J.; Havel, L.; Bartušek, K.

    2017-02-01

    The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

  3. CONSTRUCTION TECHNIQUE OF SUPER HIGH CROSSBEAM TRANSITION LAYER IN HIGH-RISE BUILDING%高层超高大梁转换层施工技术

    Institute of Scientific and Technical Information of China (English)

    曹昕; 吴丽华

    2011-01-01

    南通市王府大厦地上2层为梁式转换层.转换层采用碗扣式整体脚手架作为支撑体系,由于转换层主梁均为框支梁,梁截面大,配筋层数及数量多,因此钢筋绑扎采取悬空绑扎方式.转换层主梁混凝土水化热引起的温差应力不能自由释放,通过在主梁内设循环水管降温系统以降低温差,在混凝土中加设杜拉纤维以增加混凝土韧性,保质保量地完成了施工.%The second floor overground of Wangfu Building in Nantong city is a beam-type transition layer. The transition layer adopts integral scaffold with buckle bowl as the supporting system. Suspension binding method is adopted to bind the steel bars, because all crossbeams on the transition layer are frame strutbeam, which has large cross-section area, many reinforcement layers and high quantity of steel reinforcement.The temperature stress caused by the crossbeam hydration heat on the transition layer can not be released freely, so circulating water pipe is set in the crossbeam to reduce the temperature difference and Dura fiber is added in the concrete to increase the roughness of concrete. The construction is successfully completed on schedule.

  4. Path transition of the western boundary current with a gap due to mesoscale eddies: a 1.5-layer, wind-driven experiment

    Science.gov (United States)

    Hu, Po; Hou, Yijun

    2010-03-01

    Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.

  5. Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness

    Science.gov (United States)

    Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.

    2017-01-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10h was used as the approaching flow, and a line source of passive tracer was placed 2h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.

  6. Parallel data-driven decomposition algorithm for large-scale datasets: with application to transitional boundary layers

    Science.gov (United States)

    Sayadi, Taraneh; Schmid, Peter J.

    2016-10-01

    Many fluid flows of engineering interest, though very complex in appearance, can be approximated by low-order models governed by a few modes, able to capture the dominant behavior (dynamics) of the system. This feature has fueled the development of various methodologies aimed at extracting dominant coherent structures from the flow. Some of the more general techniques are based on data-driven decompositions, most of which rely on performing a singular value decomposition (SVD) on a formulated snapshot (data) matrix. The amount of experimentally or numerically generated data expands as more detailed experimental measurements and increased computational resources become readily available. Consequently, the data matrix to be processed will consist of far more rows than columns, resulting in a so-called tall-and-skinny (TS) matrix. Ultimately, the SVD of such a TS data matrix can no longer be performed on a single processor, and parallel algorithms are necessary. The present study employs the parallel TSQR algorithm of (Demmel et al. in SIAM J Sci Comput 34(1):206-239, 2012), which is further used as a basis of the underlying parallel SVD. This algorithm is shown to scale well on machines with a large number of processors and, therefore, allows the decomposition of very large datasets. In addition, the simplicity of its implementation and the minimum required communication makes it suitable for integration in existing numerical solvers and data decomposition techniques. Examples that demonstrate the capabilities of highly parallel data decomposition algorithms include transitional processes in compressible boundary layers without and with induced flow separation.

  7. Achieving high capacity and rate capability in layered lithium transition metal oxide cathodes for lithium-ion batteries

    Science.gov (United States)

    Ahn, Juhyeon; Susanto, Dieky; Noh, Jae-Kyo; Ali, Ghulam; Cho, Byung Won; Chung, Kyung Yoon; Kim, Jong Hak; Oh, Si Hyoung

    2017-08-01

    In this study, we target to find a new composition for a layered mixed metal oxide, which has a high structural stability and a good electrochemical performance. Our strategy is to alter the transition metal composition focusing on the relative amounts of redox active Ni and Co to the inactive Mn, based on highly-stabilized LiNi1/3Co1/3Mn1/3O2. X-ray absorption near-edge structure and X-ray diffraction analyses show that the degree of cation disorder decreases on increasing the ratio of Ni and Co to Mn, by the presence of Ni3+, suggesting that slightly higher Ni and Co contents lead to improved structural stability. Electrochemical studies demonstrate that LiNi0.4Co0.4Mn0.2O2 cathodes exhibit considerable improvements in both the reversible capacity and the rate capabilities at a voltage range of 2.5-4.6 V. In situ XRD measurements reveal that LiNi0.4Co0.4Mn0.2O2 maintains a single-phase and undergoes lesser structural variations compared to controlled compositions during a delithiation process up to 4.6 V, while achieving a high reversible capacity over 200 mAh g-1. As a result, LiNi0.4Co0.4Mn0.2O2 experiences fewer structural degradations during electrochemical cycling, which explains the excellent long-term cycling performance.

  8. An Application of CFD to Guide Forced Boundary-Layer Transition for Low-Speed Tests of a Hybrid Wing-Body Configuration

    Science.gov (United States)

    Luckring, James M.; Deere, Karen A.; Childs, Robert E.; Stremel, Paul M.; Long, Kurtis R.

    2016-01-01

    A hybrid transition trip-dot sizing and placement test technique was developed in support of recent experimental research on a hybrid wing-body configuration under study for the NASA Environmentally Responsible Aviation project. The approach combines traditional methods with Computational Fluid Dynamics. The application had three-dimensional boundary layers that were simulated with either fully turbulent or transitional flow models using established Reynolds-Averaged Navier-Stokes methods. Trip strip effectiveness was verified experimentally using infrared thermography during a low-speed wind tunnel test. Although the work was performed on one specific configuration, the process was based on fundamental flow physics and could be applicable to other configurations.

  9. Layer number controllability of transition-metal dichalcogenides and the establishment of hetero-structures by using sulfurization of thin transition metal films

    Science.gov (United States)

    Chen, Kuan-Chao; Chu, Tung-Wei; Wu, Chong-Rong; Lee, Si-Chen; Lin, Shih-Yen

    2017-02-01

    Large-area and uniform MoS2 films are fabricated by using sulfurization of pre-deposited molybdenum (Mo) films. One- and three-layer MoS2 films are obtained by sulfurizing 0.5 and 1.0 nm Mo films, respectively. The results have demonstrated the good layer number controllability of this growth technique down to single-layer MoS2. By sequential sulfurization of 0.5 nm W, 0.5 nm Mo and 0.5 nm W under the same condition, three layers of the WS2/MoS2/WS2 hetero-structure are established, which has demonstrated the potential of this growth technique for the establishment of 2D crystal hetero-structures.

  10. Path transition of the western boundary current with a gap due to mesoscale eddies: a 1.5-layer, wind-driven experiment

    Institute of Scientific and Technical Information of China (English)

    胡珀; 侯一筠

    2010-01-01

    Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background fl...

  11. Effect of NO annealing on charge traps in oxide insulator and transition layer for 4H-SiC metal-oxide-semiconductor devices

    Science.gov (United States)

    Jia, Yifan; Lv, Hongliang; Niu, Yingxi; Li, Ling; Song, Qingwen; Tang, Xiaoyan; Li, Chengzhan; Zhao, Yanli; Xiao, Li; Wang, Liangyong; Tang, Guangming; Zhang, Yimen; Zhang, Yuming

    2016-09-01

    The effect of nitric oxide (NO) annealing on charge traps in the oxide insulator and transition layer in n-type 4H-SiC metal-oxide-semiconductor (MOS) devices has been investigated using the time-dependent bias stress (TDBS), capacitance-voltage (C-V), and secondary ion mass spectroscopy (SIMS). It is revealed that two main categories of charge traps, near interface oxide traps (Nniot) and oxide traps (Not), have different responses to the TDBS and C-V characteristics in NO-annealed and Ar-annealed samples. The Nniot are mainly responsible for the hysteresis occurring in the bidirectional C-V characteristics, which are very close to the semiconductor interface and can readily exchange charges with the inner semiconductor. However, Not is mainly responsible for the TDBS induced C-V shifts. Electrons tunneling into the Not are hardly released quickly when suffering TDBS, resulting in the problem of the threshold voltage stability. Compared with the Ar-annealed sample, Nniot can be significantly suppressed by the NO annealing, but there is little improvement of Not. SIMS results demonstrate that the Nniot are distributed within the transition layer, which correlated with the existence of the excess silicon. During the NO annealing process, the excess Si atoms incorporate into nitrogen in the transition layer, allowing better relaxation of the interface strain and effectively reducing the width of the transition layer and the density of Nniot. Project supported by the National Natural Science Foundation of China (Grant Nos. 61404098 and 61274079), the Doctoral Fund of Ministry of Education of China (Grant No. 20130203120017), the National Key Basic Research Program of China (Grant No. 2015CB759600), the National Grid Science & Technology Project, China (Grant No. SGRI-WD-71-14-018), and the Key Specific Project in the National Science & Technology Program, China (Grant Nos. 2013ZX02305002-002 and 2015CB759600).

  12. Infrared Images of Boundary Layer Transition on the D8 Transport Configuration in the LaRC 14- by 22-Foot Subsonic Tunnel

    Science.gov (United States)

    Mason, Michelle L.; Gatlin, Gregory M.

    2015-01-01

    Grit, trip tape, or trip dots are routinely applied on the leading-edge regions of the fuselage, wings, tails or nacelles of wind tunnel models to trip the flow from laminar to turbulent. The thickness of the model's boundary layer is calculated for nominal conditions in the wind tunnel test to determine the effective size of the trip dots, but the flow over the model may not transition as intended for runs with different flow conditions. Temperature gradients measured with an infrared camera can be used to detect laminar to turbulent boundary layer transition on a wind tunnel model. This non-intrusive technique was used in the NASA Langley 14- by 22-Foot Subsonic Tunnel to visualize the behavior of the flow over a D8 transport configuration model. As the flow through the wind tunnel either increased to or decreased from the run conditions, a sufficient temperature difference existed between the air and the model to visualize the transition location (due to different heat transfer rates through the laminar and the turbulent boundary layers) for several runs in this test. Transition phenomena were visible without active temperature control in the atmospheric wind tunnel, whether the air was cooler than the model or vice-versa. However, when the temperature of the model relative to the air was purposely changed, the ability to detect transition in the infrared images was enhanced. Flow characteristics such as a wing root horseshoe vortex or the presence of fore-body vortical flows also were observed in the infrared images. The images of flow features obtained for this study demonstrate the usefulness of current infrared technology in subsonic wind tunnel tests.

  13. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack——with the improvement of e~N method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The problem of transition prediction for hypersonic boundary layers over a sharp cone has been studied in this work. The Mach number of the oncoming flow is 6, the cone half-angle is 5o,and the angle of attack is 1o. The conventional eN method is used, but the transition location so obtained is obviously incorrect. The reason is that in the conventional method, only the amplifying waves are taken into account, while in fact, for different meridians the decay processes of the disturbances before they begin to grow are different. Based on our own previous work, new interpretation and essential improvement for the eN method are proposed. Not only the amplification process but also the decay process is considered. The location, where by linear stability theory, the amplitude of disturbance wave is amplified from its initial small value to 1%, is considered to be the transition location. The new result for transition prediction thus obtained is found to be fairly satisfactory. It is also indicated that for the calculation of base flow, boundary layer equations can be used for a small angle of attack. Its computational cost is much smaller than those for DNS.

  14. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack--with the improvement of eN method

    Institute of Scientific and Technical Information of China (English)

    SU CaiHong; ZHOU Heng

    2009-01-01

    The problem of transition prediction for hypersonic boundary layers over a sharp cone has been stud-ied in this work. The Mach number of the oncoming flow is 6, the cone half-angle is 5Ω, and the angle of attack is 1Ω. The conventional eN method is used, but the transition location so obtained is obviously incorrect. The reason is that in the conventional method, only the amplifying waves are taken into ac-count, while in fact, for different meridians the decay processes of the disturbances before they begin to grow are different. Based on our own previous work, new interpretation and essential improvement for the eN method are proposed. Not only the amplification process but also the decay process is con-sidered. The location, where by linear stability theory, the amplitude of disturbance wave is amplified from its initial small value to 1%, is considered to be the transition location. The new result for transi-tion prediction thus obtained is found to be fairly satisfactory. It is also indicated that for the calculation of base flow, boundary layer equations can be used for a small angle of attack. Its computational cost is much smaller than those for DNS.

  15. Influence of thin AlAs layer insertion on intersubband optical transitions in GaAs/AlGaAs quantum- well structures

    Science.gov (United States)

    Liu, Dongfeng; Wang, Everett X.; Guo, Kangxian

    2017-02-01

    In this work, we demonstrate the thin AlAs layer insertion into GaAs/AlGaAs quantum well (QW) structures and its influence in energy transition in the frequency range of mid-infrared. To realize the more accurate calculation, the graded interface model of QW structures is integrated into our self-consistent solving of Schrodinger and Poisson equations to obtain the energy level and envelope wave functions of QW. We find the thin AlAs layer inserted at various positions in the well can obviously tune intersubband optical transitions. The corresponding tuning range can be 50 meV. We find that the thicker AlAs layer (2 monolayers) can provide wider tuning range and larger oscillator strength between subbands 1 and 3, compared with the thinner one (1 monolayer). Our results suggest that thin semiconductor layer may be an idea optimization design for the quantum well terahertz lasers which are based on optical pumping with mid-infrared lasers.

  16. Naval Hydrodynamics Symposium (12th) on Boundary Layer Stability and Transition Ship Boundary Layers and Propeller Hull Interaction Cavitation Geophysical Fluid Dynamics.

    Science.gov (United States)

    1979-01-01

    InKminc ’rini, Kyushu Pressure Resistance and Its Appliication . J. of Uni versity, 31, No. 4. APPENDIX Let us examine the definite integral in Eqs. (74...evaporates to form a layer of cold ocean which can unambiguously be associated with gas, predominantly methane , which would be lighter "diffusive" interfaces...and where a one-dimensional than the air above it except that it is much colder. interpretation seems appropriate. The regularity Since methane , and

  17. Direct numerical simulation of K-type and H-type transitions to turbulence in a low Mach number flat plate boundary layer

    Science.gov (United States)

    Sayadi, Taraneh; Hamman, Curtis; Moin, Parviz

    2011-11-01

    Transition to turbulence via spatially evolving secondary instabilities in compressible, zero-pressure-gradient flat plate boundary layers is numerically simulated for both the Klebanoff K-type and Herbert H-type disturbances. The objective of this work is to evaluate the universality of the breakdown process between different routes through transition in wall-bounded shear flows. Each localized linear disturbance is amplified through weak non-linear instability that grows into lambda-vortices and then hairpin-shaped eddies with harmonic wavelength, which become less organized in the late-transitional regime once a fully populated spanwise turbulent energy spectrum is established. For the H-type transition, the computational domain extends from Rex =105 , where laminar blowing and suction excites the most unstable fundamental and a pair of oblique waves, to fully turbulent stage at Rex = 10 . 6 ×105 . The computational domain for the K-type transition extends to Rex = 9 . 6 ×105 . The computational algorithm employs fourth-order central differences with non-reflective numerical sponges along the external boundaries. For each case, the Mach number is 0.2. Supported by the PSAAP program of DoE, ANL and LLNL.

  18. Electromodulation spectroscopy of direct optical transitions in Ge1-xSnx layers under hydrostatic pressure and built-in strain

    Science.gov (United States)

    Dybała, F.; Żelazna, K.; Maczko, H.; Gladysiewicz, M.; Misiewicz, J.; Kudrawiec, R.; Lin, H.; Chen, R.; Shang, C.; Huo, Y.; Kamins, T. I.; Harris, J. S.

    2016-06-01

    Unstrained Ge1-xSnx layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge0.97Sn0.03 layers with built-in compressive (ɛ = -0.5%) and tensile (ɛ = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge1-xSnx layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, which is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge1-xSnx alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge0.97Sn0.03 with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge1-xSnx layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.

  19. Stereo Particle Image Velocimetry Measurements of Transition Downstream of a Forward-Facing Step in a Swept-Wing Boundary Layer

    Science.gov (United States)

    Eppink, Jenna L.

    2017-01-01

    Stereo particle image velocimetry measurements were performed downstream of a forward-facing step in a stationary-crossflow dominated flow. Three different step heights were studied with the same leading-edge roughness configuration to determine the effect of the step on the evolution of the stationary-crossflow. Above the critical step height, which is approximately 68% of the boundary-layer thickness at the step, the step caused a significant increase in the growth of the stationary crossflow. For the largest step height studied (68%), premature transition occurred shortly downstream of the step. The stationary crossflow amplitude only reached approximately 7% of U(sub e) in this case, which suggests that transition does not occur via the high-frequency secondary instabilities typically associated with stationary crossflow transition. The next largest step of 60% delta still caused a significant impact on the growth of the stationary crossflow downstream of the step, but the amplitude eventually returned to that of the baseline case, and the transition front remained the same. The smallest step height (56%) only caused a small increase in the stationary crossflow amplitude and no change in the transition front. A final case was studied in which the roughness on the leading edge of the model was enhanced for the lowest step height case to determine the impact of the stationary crossflow amplitude on transition. The stationary crossflow amplitude was increased by approximately four times, which resulted in premature transition for this step height. However, some notable differences were observed in the behavior of the stationary crossflow mode, which indicate that the interaction mechanism which results in the increased growth of the stationary crossflow downstream of the step may be different in this case compared to the larger step heights.

  20. Technologies for deposition of transition metal oxide thin films: application as functional layers in “Smart windows” and photocatalytic systems

    Science.gov (United States)

    Gesheva, K.; Ivanova, T.; Bodurov, G.; Szilágyi, I. M.; Justh, N.; Kéri, O.; Boyadjiev, S.; Nagy, D.; Aleksandrova, M.

    2016-02-01

    “Smart windows” are envisaged for future low-energy, high-efficient architectural buildings, as well as for the car industry. By switching from coloured to fully bleached state, these windows regulate the energy of solar flux entering the interior. Functional layers in these devices are the transition metals oxides. The materials (transitional metal oxides) used in smart windows can be also applied as photoelectrodes in water splitting photocells for hydrogen production or as photocatalytic materials for self-cleaning surfaces, waste water treatment and pollution removal. Solar energy utilization is recently in the main scope of numerous world research laboratories and energy organizations, working on protection against conventional fuel exhaustion. The paper presents results from research on transition metal oxide thin films, fabricated by different methods - atomic layer deposition, atmospheric pressure chemical vapour deposition, physical vapour deposition, and wet chemical methods, suitable for flowthrough production process. The lower price of the chemical deposition processes is especially important when the method is related to large-scale glazing applications. Conclusions are derived about which processes are recently considered as most prospective, related to electrochromic materials and devices manufacturing.

  1. Roles of blocking layer and anode bias in processes of impurity-band transition and transport for GaAs-based blocked-impurity-band detectors

    Science.gov (United States)

    Wang, Xiaodong; Wang, Bingbing; Chen, Xiaoyao; Chen, Yulu; Hou, Liwei; Xie, Wei; Pan, Ming

    2016-11-01

    Recently, GaAs-based BIB detector has attracted a lot of attention in the area of THz photovoltaic detection due to potential application values in security check and drug inspection. However, the physical mechanisms involving in carrier transition and transport are still unclear due to the poor material quality and immature processing technique. In this paper, the dark current and THz response characteristics have thus been numerically studied for GaAs-based blocked-impurity-band (BIB) detectors. The key parameters and physical models are constructed by simultaneously considering carrier freeze-out and impurity-band broadening effects. Roles of blocking layer and anode bias in processes of impurity-band transition and transport are intensively investigated, and the results can be well explained by numerical models. It is demonstrated that the effective electric field for the detector is only located in the absorbing layer, and can determine to a large extent the magnitude of the dark current and THz response. While the blocking layer not only can suppress dark current but also can attenuate responsivity due to its electric-field modulation effect.

  2. Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2016-05-01

    Full Text Available The effects of transition metals on the hydrophobicity of nano–structured layered double hydroxides (LDHs and the compatibility of LDHs/ethylene vinyl acetate (EVA composites have seldom been reported. NiMgAl–LDHs slightly surface–modified with stearate and doped with transition metal cations (Mn2+, Co2+, Cu2+, Zn2+ are investigated. Compared to the pure EVA, not only were the maximal degradation–rate temperatures (Tmax of the ethylene–based chains enhanced, but also the smoke production rate (SPR and the production rate of CO (COP were sharply decreased for all the composites. Most importantly, a new flame retardant mechanism was found, namely the peak heat release rate (pk-HRR time, which directly depends on the peak production rate of CO2 (pk-CO2 time for EVA and all composites by cone calorimeter test. Moreover, the Mn–doped LDH S–NiMgAl–Mn shows more uniform dispersion and better interfacial compatibility in the EVA matrix. The cone calorimetric residue of S–NiMgAl–Mn/EVA has the intumescent char layer and the compact metal oxide layer. Therefore, S–NiMgAl–Mn/EVA shows the lowest pk-HRR and the longest pk-HRR time among all the composites.

  3. Semiconductor-metal and semiconductor-magnetic half-metal phase transitions in layered SrAgSeF phases doped with oxygen and nitrogen

    Science.gov (United States)

    Bannikov, V. V.; Ivanovskii, A. L.

    2012-11-01

    Results of ab initio band calculations for a layered nonmagnetic SrAgSeF semiconductors consisting of [SrF]/[AgSe] alternating blocks show that the partial O → F substitution leads to a semiconductormetal phase transition due to "metallization" of the [AgSe] bocks. The oxygen-doped SrAgSeF1 - x O x phase possesses a metal/semiconductor periodic structure formed by alternating [AgSe] and [SrF1 - x O x ] blocks, respectively. On the contrary, the partial N → F substitution induces a semiconductor-magnetic half-metal phase transition. The resulting SrAgSeF1 - x N x system may be of interest as a new material for spintronics.

  4. The Design and Use of a Temperature-Compensated Hot-Film Anemometer System for Boundary-Layer Flow Transition Detection on Supersonic Aircraft

    Science.gov (United States)

    Chiles, Harry R.

    1988-01-01

    An airborne temperature-compensated hot-film anemometer system has been designed, fabricated, and used to obtain in-flight airfoil boundary-layer flow transition data by the NASA Ames-Dryden Flight Research Facility. Salient features of the anemometer include near constant sensitivity over the full flight envelope, installation without coaxial wiring, low-noise outputs, and self-contained signal conditioning with dynamic and steady-state outputs. The small size, low-power dissipation, and modular design make the anemometer suitable for use in modern high-performance research aircraft. Design of the temperature-compensated hot-film anemometer and its use for flow transition detection on a laminar flow flight research project are described. Also presented are data gathered in flight which is representative of the temperature-compensated hot-film anemometer operation at subsonic, transonic, and supersonic flight conditions.

  5. Thickness dependent Curie temperature and power-law behavior of layering transitions in ferromagnetic classical and quantum thin films described by Ising, XY and Heisenberg models

    Energy Technology Data Exchange (ETDEWEB)

    Yüksel, Yusuf, E-mail: yusuf.yuksel@deu.edu.tr; Akıncı, Ümit

    2015-04-01

    Ferromagnetic–paramagnetic phase transitions in classical and quantum thin films have been studied up to 50 mono-layers using effective field theory with two-site cluster approximation. Variation of the Curie temperature as a function of film thickness has been examined. The relative shift of the Curie temperature from the corresponding bulk value has been investigated in terms of the shift exponent λ. We have found that shift exponent λ clearly depends on the strength of the ferromagnetic exchange coupling of the surface. Moreover, we have not observed any significant difference between classical and quantum exponents for a particular model.

  6. Wind-farms in shallow conventionally neutral boundary layers: effects of transition and gravity waves on energy budget

    Science.gov (United States)

    Meyers, Johan; Allaerts, Dries

    2016-11-01

    Conventionally neutral boundary layers (CNBL) often arise in offshore conditions. In these situations the neutral boundary layer is capped by a strong inversion layer and a stably stratified free atmosphere aloft. We use large-eddy simulations to investigate the interaction between a CNBL and a large wind farm. Following the approach of Allaerts & Meyers (2015), a set of equilibrium CNBLs are produced in a precursor simulation, with a height of approx. 300, 500, and 1000m, respectively. These are used at the inlet of a large wind-farm with a fetch of 15 km, and 20 rows of turbines. We find that above the farm, an internal boundary layer (IBL) develops. For the two lower CNBL cases, the IBL growth is stopped by the overlying capping inversion. Moreover, the upward displacement of the CNBL excites gravity waves in the inversion layer and the free atmosphere above. For the lower CNBL cases, these waves induce significant pressure gradients in the farm. A detailed energy budget analysis of the CNBL is further presented. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  7. Effects of Blade Boundary Layer Transition and Daytime Atmospheric Turbulence on Wind Turbine Performance Analyzed with Blade-Resolved Simulation and Field Data

    Science.gov (United States)

    Nandi, Tarak Nath

    Relevant to utility scale wind turbine functioning and reliability, the present work focuses on enhancing our understanding of wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and rotating blades of a GE 1.5 MW wind turbine using a unique data set from a GE field experiment and computer simulations at two levels of fidelity. Previous studies have shown that the stability state of the lower troposphere has a major impact on the coherent structure of the turbulence eddies, with corresponding differences in wind turbine loading response. In this study, time-resolved aerodynamic data measured locally at the leading edge and trailing edge of three outer blade sections on a GE 1.5 MW wind turbine blade and high-frequency SCADA generator power data from a daytime field campaign are combined with computer simulations that mimic the GE wind turbine within a numerically generated atmospheric boundary layer (ABL) flow field which is a close approximation of the atmospheric turbulence experienced by the wind turbine in the field campaign. By combining the experimental and numerical data sets, this study describes the time-response characteristics of the local loadings on the blade sections in response to nonsteady nonuniform energetic atmospheric turbulence eddies within a daytime ABL which have spatial scale commensurate with that of the turbine blade length. This study is the first of its kind where actuator line and blade boundary layer resolved CFD studies of a wind turbine field campaign are performed with the motivation to validate the numerical predictions with the experimental data set, and emphasis is given on understanding the influence of the laminar to turbulent transition process on the blade loadings. The experimental and actuator line method data sets identify three important response time scales quantified at the blade location: advective passage of energy-dominant eddies (≈25 - 50 s), blade rotation (1P

  8. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    Directory of Open Access Journals (Sweden)

    Xue Zhong

    Full Text Available The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL, on which multilayer coatings can incorporate silver nanoparticles (AgNP using chitosan (CS and hyaluronic acid (HA via a layer-by-layer (LbL self-assembly technique.In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethylphosphine (TCEP to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates.The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration.The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections

  9. Hydration layer dynamics and association mechanisms of food and antifreeze proteins : A Molecular Dynamics and Transition Path Sampling study

    NARCIS (Netherlands)

    Brotzakis, Z.F.

    2017-01-01

    By the time the reader reads this line, billions of protein association events just occurred in our body, such as the ones regulating cell communication, signaling pathways, or in initiating a self-assembly processes, such as tissue fabrication, etc. The timescale of such transitions is slow, compar

  10. Dependence of energy levels and optical transitions on layer thicknesses in InSe/GaSe superlattices

    Science.gov (United States)

    Erkoç, Şakir; Katırcıoğlu, Şenay

    1998-01-01

    We have investigated the dependence of energy levels and optical transition matrix elements in InSe/GaSe superlattices on well and/or barrier widths. Self-consistent-field calculations have been performed within the effective-mass theory approximation.

  11. Hydration layer dynamics and association mechanisms of food and antifreeze proteins : A Molecular Dynamics and Transition Path Sampling study

    NARCIS (Netherlands)

    Brotzakis, Z.F.

    2017-01-01

    By the time the reader reads this line, billions of protein association events just occurred in our body, such as the ones regulating cell communication, signaling pathways, or in initiating a self-assembly processes, such as tissue fabrication, etc. The timescale of such transitions is slow, compar

  12. Tuning the field-induced magnetic transition in a layered cobalt phosphonate by reversible dehydration-hydration process.

    Science.gov (United States)

    Yang, Ting-Hai; Liao, Yi; Zheng, Li-Min; Dinnebier, Robert E; Su, Yan-Hui; Ma, Jing

    2009-06-07

    A layered cobalt phosphonate, Co(2-pmp)(H(2)O)(2) (1) (2-pmpH(2) = 2-pyridylmethylphosphonic acid) is reported, which provides the first example of metamagnetic cobalt system that shows reversible changes in both structures and magnetic behaviors upon dehydration-hydration process.

  13. Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer.

    Directory of Open Access Journals (Sweden)

    Takeru Honda

    2011-07-01

    Full Text Available Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg²⁺ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg²⁺ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state. In contrast, for lower Mg²⁺ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state. It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input.

  14. 转换层结构设计和施工中若干问题的分析%ANALYSIS ON SEVERAL PROBLEMS IN STRUCTURAL DESIGN AND CONSTRUCTION OF TRANSITION LAYER

    Institute of Scientific and Technical Information of China (English)

    张秀华

    2012-01-01

    Cross section size design of transition component is introduced during design of transition layer structure, and construction experiences are given in formwork supporting, steel bar installation, concrete pouring and curing during construction of transition layer structure.%介绍了转换层结构设计时转换构件截面尺寸设计,以及转换层结构施工时,模板支设、钢筋安装和混凝土浇筑及养护的施工经验.

  15. Layered crust-mantle transition zone below a large crustal intrusion in the Norwegian-Danish basin

    DEFF Research Database (Denmark)

    Sandrin, Alessandro; Nielsen, Lars; Thybo, Hans

    2009-01-01

    the lowermost crust (7.7 km/s) and the uppermost mantle (7.9-8.0 km/s). The seismic data show a "ringing" Moho below the western part of the intrusion. The coda trailing the main PmP reflection is about 1.0 s long and is composed of 4-5 wavelets. We demonstrate that this feature may be explained by a layered...

  16. Controlling the defects and transition layer in SiO2 films grown on 4H-SiC via direct plasma-assisted oxidation

    Science.gov (United States)

    Kim, Dae-Kyoung; Jeong, Kwang-Sik; Kang, Yu-Seon; Kang, Hang-Kyu; Cho, Sang W.; Kim, Sang-Ok; Suh, Dongchan; Kim, Sunjung; Cho, Mann-Ho

    2016-10-01

    The structural stability and electrical performance of SiO2 grown on SiC via direct plasma-assisted oxidation were investigated. To investigate the changes in the electronic structure and electrical characteristics caused by the interfacial reaction between the SiO2 film (thickness ~5 nm) and SiC, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, and electrical measurements were performed. The SiO2 films grown via direct plasma-assisted oxidation at room temperature for 300s exhibited significantly decreased concentrations of silicon oxycarbides (SiOxCy) in the transition layer compared to that of conventionally grown (i.e., thermally grown) SiO2 films. Moreover, the plasma-assisted SiO2 films exhibited enhanced electrical characteristics, such as reduced frequency dispersion, hysteresis, and interface trap density (Dit ≈ 1011 cm‑2 · eV‑1). In particular, stress induced leakage current (SILC) characteristics showed that the generation of defect states can be dramatically suppressed in metal oxide semiconductor (MOS) structures with plasma-assisted oxide layer due to the formation of stable Si-O bonds and the reduced concentrations of SiOxCy species defect states in the transition layer. That is, energetically stable interfacial states of high quality SiO2 on SiC can be obtained by the controlling the formation of SiOxCy through the highly reactive direct plasma-assisted oxidation process.

  17. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    Science.gov (United States)

    Onai, Teruaki; Hirai, Mitsuhiro

    2010-10-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (GM1)-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16×105 N/m2 by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without GM1, the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing GM1 shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of GM1 is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of GM1 in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  18. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Onai, Teruaki; Hirai, Mitsuhiro, E-mail: mhirai@fs.aramaki.gunma-u.ac.j [Department of Physics, Gunma University, Maebashi 371-8510 (Japan)

    2010-10-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (G{sub M1})-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16x10{sup 5} N/m{sup 2} by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without G{sub M1}, the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing G{sub M1} shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of G{sub M1} is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of G{sub M1} in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  19. Ni And Co Segregations On Selective Surface Facets And Rational Design Of Layered Lithium Transition-metal Oxide Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zheng, Jiaxin; Wang, Zhiguo; Teng, Gaofeng; Kuppan, Saravanan; Xiao, Jie; Chen, Guoying; Pan, Feng; Zhang, Jiguang; Wang, Chong M.

    2016-05-05

    The chemical processes occurring on the surface of cathode materials during battery cycling play a crucial role in determining battery’s performance. However, our understanding on such surface chemistry is far from clear due to the complexity of redox chemistry during battery charge/discharge. In this work, through intensive aberration corrected STEM investigation on eight layered oxide cathode materials, we report two important findings on the pristine oxides. First, Ni and Co show strong plane selectivity when building up their respective surface segregation layers (SSL). Specifically, Ni-SSL is exclusively developed on (200)m facet in Li-Mn-rich oxides (monoclinic C2/m symmetry) and (012)h facet in Mn-Ni equally rich oxides (hexagonal R-3m symmetry), while Co-SSL has a strong preference to (20-2)m plane with minimal Co-SSL also developed on some other planes in LMR cathodes. Structurally, Ni-SSLs tend to form spinel-like lattice while Co-SSLs are in a rock-salt-like structure. Secondly, by increasing Ni concentration in these layered oxides, Ni and Co SSLs can be suppressed and even eliminated. Our findings indicate that Ni and Co SSLs are tunable through controlling particle morphology and oxide composition, which opens up a new way for future rational design and synthesis of cathode materials.

  20. Probing the Structure and Kinematics of the transition Layer between the Magellanic Stream and the Halo in HI

    CERN Document Server

    Nigra, Lou; Gallagher, John S; Wood, Kenneth; Nidever, David; Majewski, Steven

    2012-01-01

    The Magellanic Stream (MS) is a nearby laboratory for studying the fate of cool gas streams injected into a gaseous galactic halo. We investigate properties of the boundary layer between the cool MS gas and the hot Milky Way halo with 21 cm HI observations of a relatively isolated cloud having circular projection in the northern MS. Through averaging and modeling techniques, our observations obtained with the Robert C. Byrd Green Bank Telescope (GBT), reach unprecedented 3\\sigma\\ sensitivity of ~10^17/cm^2, while retaining the telescope's 9.1' resolution in the essential radial dimension. We find an envelope of diffuse neutral gas with FWHM of 60 km/s, associated in velocity with the cloud core having FWHM of 20 km/s, extending to 3.5 times the core radius with a neutral mass seven times that of the core. We show that the envelope is too extended to represent a conduction-dominated layer between the core and the halo. Its observed properties are better explained by a turbulent mixing layer driven by hydrodyna...

  1. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries.

    Science.gov (United States)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M; David, Lamuel A; Sefat, Athena S; Wood, David L; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-05-26

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/-1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.

  2. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries

    Science.gov (United States)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-05-01

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/-1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.

  3. Immiscibility of Fluid Phases at Magmatic-hydrothermal Transition: Formation of Various PGE-sulfide Mineralization for Layered Basic Intrusions

    Science.gov (United States)

    Zhitova, L.; Borisenko, A.; Morgunov, K.; Zhukova, I.

    2007-12-01

    Fluid inclusions in quartz of the Merensky Reef (Bushveld Complex, South Africa) and the Chineisky Pluton (Transbaikal Region, Russia) were studied using cryometry, microthermometry, Raman-spectroscopy, LA ICP- MS, scanning electronic microscopy, gas-chromatography and isotopic methods. This allowed us to document some examples of fluid phase separation resulting in formation of different types of PGE-sulfide mineralization for layered basic intrusions. The results obtained show at least three generations of fluid separated from boiling residual alumosilicate intercumulus liquid of the Merensky Reef. The earliest fluid phase composed of homogenous high-dense methane and nitrogen gas mixture was identified in primary gas and co-existing anomalous fluid inclusions from symplectitic quartz. The next generation, heterophase fluid, composed of brines containing a free low-dense (mostly of carbon dioxide) gas phase, was observed in primary multiphase and coexisting gas-rich inclusions of miarolitic quartz crystals. The latest generation was also a heterophase fluid (low salinity water-salt solution and free low-dense methane gas phase) found in primary water-salt and syngenetic gas inclusions from peripheral zones of miarolitic quartz crystals. For the Chineisky Pluton reduced endocontact magmatogene fluids changed to oxidized low salinity hydrothermal fluids in exocontact zone. This resulted in formation of sulfide-PGE enrichment marginal zones of intrusion. The results obtained give us a possibility to suggest that: 1) Fluid phase separation is a typical feature of magmatogene fluids for layered basic intrusions. 2) Reduced fluids can extract and transport substantial PGE and sulfide concentrations. 3) Oxidation of reduced fluids is one of the most important geochemical barriers causing abundant PGE minerals and sulfides precipitation. This in turn results in both formation of PGE reefs or enriched contact zones of layered basic intrusions. This work was supported by

  4. Numerical simulations of contrail-to-cirrus transition – Part 2: Impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth

    Directory of Open Access Journals (Sweden)

    S. Unterstrasser

    2010-02-01

    Full Text Available Simulations of contrail-to-cirrus transition were performed with an LES model. In Part 1 the impact of relative humidity, temperature and vertical wind shear was explored in a detailed parametric study. Here, we study atmospheric parameters like stratification and depth of the supersaturated layer and processes which may affect the contrail evolution. We consider contrails in various radiation scenarios herein defined by the season, time of day and the presence of lower-level cloudiness which controls the radiance incident on the contrail layer. Under suitable conditions, controlled by the radiation scenario and stratification, radiative heating lifts the contrail-cirrus and prolongs its lifetime. The potential of contrail-driven secondary nucleation is investigated. We consider homogeneous nucleation and heterogeneous nucleation of preactivated soot cores released from sublimated contrail ice crystals. In our model the contrail dynamics triggered by radiative heating does not suffice to force homogeneous freezing of ambient liquid aerosol particles. Furthermore, our model results suggest that heterogeneous nucleation of preactivated soot cores is unimportant. Contrail evolution is not controlled by the depth of the supersaturated layer as long as it exceeds roughly 500 m. Deep fallstreaks however need thicker layers. A variation of the initial ice crystal number is effective during the whole evolution of a contrail. A cut of the soot particle emission by two orders of magnitude can reduce the contrail timescale by one hour and the optical thickness by a factor of 5. Hence future engines with lower soot particle emissions could potentially lead to a reduction of the climate impact of aviation.

  5. NiMn/FeNi exchange biasing systems-magnetic and structural characteristics after short annealing close to the phase transition point of the AFM layer

    Energy Technology Data Exchange (ETDEWEB)

    Groudeva-Zotova, S. E-mail: s.zotova@ifw-dresden.de; Elefant, D.; Kaltofen, R.; Thomas, J.; Schneider, C.M

    2004-07-01

    This work addresses the issue of acceleration of the long post-deposition annealing procedures typically used for obtaining the antiferromagnetic (AFM) state of the pinning film in NiMn-based spin-valve systems. It presents results on exchange biasing (EB) bi-layers NiMn(50 nm)/Ni{sub 19}Fe{sub 81}(5 nm) grown on a permalloy seed layer after annealing for a very short time at temperatures in the vicinity of the phase transition of the NiMn film. Both the magnetic and the structural characteristics measured after the short annealing procedure reveal clear differences between the samples annealed below and above a specific temperature T* which is lower than the phase transition temperature in the equilibrium NiMn phase diagram. The absence of an EB in the samples short annealed at T{sub an}T* and the saturation found in H{sub EB} for T{sub an}{>=}375 deg. C are connected with the existence of a dominant stable face centered tetragonal (FCT) AFM NiMn phase. This shows that for the investigated sputter-deposited NiMn pinning films a specific temperature T* exists above which a fast FCC implies FCT (paramagnetic implies AFM) phase transition occurs. The unidirectional EB effect surprisingly found in samples cooled without magnetic field can be explained with a two-step generation model: (i) the formation of specific magnetic anisotropy in the as-deposited permalloy films strongly depending on the phase composition of the NiMn pinning film, on its surface morphology and the stresses in the AFM/FM interface, respectively, and (ii) recording ('burning in') of the existing magnetic anisotropy through the described fast paramagnetic implies AFM phase transition.

  6. Theory of the magnetic and metal-insulator transitions in RNiO3 bulk and layered structures.

    Science.gov (United States)

    Lau, Bayo; Millis, Andrew J

    2013-03-22

    A slave rotor--Hartree-Fock formalism is presented for studying the properties of the p-d model describing perovskite transition metal oxides, and a flexible and efficient numerical formalism is developed for its solution. The methodology is shown to yield, within a unified formulation, the significant aspects of the rare-earth nickelate phase diagram, including the paramagnetic metal state observed for the LaNiO3 and the correct ground-state magnetic order of insulating compounds. It is then used to elucidate ground state changes occurring as morphology is varied from bulk to strained and unstrained thin-film form. For ultrathin films, epitaxial strain and charge transfer to the apical out-of-plane oxygen sites are shown to have significant impact on the phase diagram.

  7. Theory of the magnetic and metal-insulator transitions in RNiO3 bulk and layered

    Science.gov (United States)

    Lau, Bayo; Millis, Andrew J.

    2013-03-01

    A slave rotor-Hartree Fock formalism is presented for studying the properties of the p-d model describing perovskite transition metal oxides, and a flexible and efficient numerical formalism is developed for its solution. The methodology is shown to yield, within an unified formulation, the significant aspects of the rare earth nickelate phase diagram, including the paramagnetic metal state observed for the LaNiO3 and the correct ground-state magnetic order of insulating compounds. It is then used to elucidate ground state changes occurring as morphology is varied from bulk to strained and un-strained thin-film form. For ultrathin films, epitaxial strain and charge-transfer to the apical out-of-plane oxygen sites are shown to have significant impact on the phase diagram. This effort is supported by US National Science Foundation under grant NSF-DMR-1006282

  8. Theory of the Magnetic and Metal-Insulator Transitions in RNiO3 Bulk and Layered Structures

    Science.gov (United States)

    Lau, Bayo; Millis, Andrew J.

    2013-03-01

    A slave rotor—Hartree-Fock formalism is presented for studying the properties of the p-d model describing perovskite transition metal oxides, and a flexible and efficient numerical formalism is developed for its solution. The methodology is shown to yield, within a unified formulation, the significant aspects of the rare-earth nickelate phase diagram, including the paramagnetic metal state observed for the LaNiO3 and the correct ground-state magnetic order of insulating compounds. It is then used to elucidate ground state changes occurring as morphology is varied from bulk to strained and unstrained thin-film form. For ultrathin films, epitaxial strain and charge transfer to the apical out-of-plane oxygen sites are shown to have significant impact on the phase diagram.

  9. Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm

    Science.gov (United States)

    Montgomery, M. T.; Wang, Z.; Dunkerton, T. J.

    2010-11-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together

  10. Al capping layers for nondestructive x-ray photoelectron spectroscopy analyses of transition-metal nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, Grzegorz, E-mail: grzgr@ifm.liu.se; Hultman, Lars [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Petrov, Ivan [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping, Sweden and Materials Science Department and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Greene, J. E. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Science Department and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801(United States); Department of Physics, University of Illinois, Urbana, Illinois 61801 (United States)

    2015-09-15

    X-ray photoelectron spectroscopy (XPS) compositional analyses of materials that have been air exposed typically require ion etching in order to remove contaminated surface layers. However, the etching step can lead to changes in sample surface and near-surface compositions due to preferential elemental sputter ejection and forward recoil implantation; this is a particular problem for metal/gas compounds and alloys such as nitrides and oxides. Here, the authors use TiN as a model system and compare XPS analysis results from three sets of polycrystalline TiN/Si(001) films deposited by reactive magnetron sputtering in a separate vacuum chamber. The films are either (1) air-exposed for ≤10 min prior to insertion into the ultrahigh-vacuum (UHV) XPS system; (2) air-exposed and subject to ion etching, using different ion energies and beam incidence angles, in the XPS chamber prior to analysis; or (3) Al-capped in-situ in the deposition system prior to air-exposure and loading into the XPS instrument. The authors show that thin, 1.5–6.0 nm, Al capping layers provide effective barriers to oxidation and contamination of TiN surfaces, thus allowing nondestructive acquisition of high-resolution core-level spectra representative of clean samples, and, hence, correct bonding assignments. The Ti 2p and N 1s satellite features, which are sensitive to ion bombardment, exhibit high intensities comparable to those obtained from single-crystal TiN/MgO(001) films grown and analyzed in-situ in a UHV XPS system and there is no indication of Al/TiN interfacial reactions. XPS-determined N/Ti concentrations acquired from Al/TiN samples agree very well with Rutherford backscattering and elastic recoil analysis results while ion-etched air-exposed samples exhibit strong N loss due to preferential resputtering. The intensities and shapes of the Ti 2p and N 1s core level signals from Al/TiN/Si(001) samples do not change following long-term (up to 70 days) exposure to ambient conditions

  11. Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm

    Directory of Open Access Journals (Sweden)

    M. T. Montgomery

    2010-11-01

    Full Text Available Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i a region of cyclonic vorticity and weak deformation by the resolved flow, (ii containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii confinement of mesoscale vortex aggregation, (iv a predominantly convective type of heating profile, and (v maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm".

    Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km, intermediate (9 km and high resolution (3.1 km simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave

  12. Intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm

    Directory of Open Access Journals (Sweden)

    T. J. Dunkerton

    2009-12-01

    Full Text Available Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis that typifies the trade wind belt. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i a region of cyclonic vorticity and weak deformation by the resolved flow, (ii containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii confinement of mesoscale vortex aggregation, (iv a predominantly convective type of heating profile, and (v maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm".

    Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the problem of the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km and high resolution (3.1 km simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a vorticity dominant region with minimal strain/shear deformation within the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together.

  13. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wissink, Jan G. [School of Engineering and Design, Howell Building, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: jan.wissink@brunel.ac.uk; Rodi, Wolfgang [Institute for Hydromechanics, University of Karlsruhe, Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2009-10-15

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  14. Core-level X-ray photoemission spectral shift through the successive phase transitions in layered TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ishizu, Takahiko [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Mimura, Kojiro [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan)], E-mail: mimura@ms.osakafu-u.ac.jp; Shim, Yong Gu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Wakita, Kazuki [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, Narashino 275-0016 (Japan); Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Science, Baku, AZ-1143 (Azerbaijan); Taguchi, Yukihiro; Ichikawa, Kouichi [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan)

    2008-12-31

    Temperature-dependent change in core-level electronic structures of the layered semiconductor-ferroelectric TlInS{sub 2} with incommensurate phase has been investigated by means of X-ray photoemission spectroscopy. The temperature dependence of the relative peak position for each core level (Tl 4f, In 3d and S 2p) is found to differ very much in the regions bordering each other at the normal-incommensurate phase transition point of 218 K. The obtained data suggest that the charge distribution in TlInS{sub 2} dramatically changes upon passing from the normal phase (T > 218 K) to the spatially modulated incommensurate phase (T < 218 K)

  15. A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution

    Science.gov (United States)

    El Mofid, Wassima; Ivanov, Svetlozar; Konkin, Alexander; Bund, Andreas

    2014-12-01

    The method of self-combustion synthesis was applied to prepare double Al- and Fe-substituted LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2 (NMCAF) and non-substituted LiNi0.6Mn0.2Co0.2O2 (NMC-3:1:1) cathode materials for lithium ion batteries. The novel NMCAF structure obtained by simultaneous cationic substitution showed an improved capacity and high stability during electrochemical cycling. X-ray diffraction patterns proved that both materials have a layered α-NaFeO2 type structure with a good hexagonal ordering. It was found that NMCAF has increased a and c lattice parameters due to a structural expansion caused by Al and Fe ion substitution. Rietveld refinement analysis revealed a significant decrease of the cationic mixing after the metal substitution, suggesting a structural stabilization. Electron paramagnetic resonance (EPR) spectroscopy showed that Al and Fe substitution markedly influenced the EPR spectrum of NMC-(3:1:1). The EPR spectral lines of both materials are attributed to Mn4+ and Ni2+ present in the structure. The change in the Ni2+ line after the metal substitution suggests a redistribution of the Ni ions in the structure, which can be related to the diminished cation mixing in the NMCAF. The improved electrochemical behavior of NMCAF is closely connected to the stabilization of the layered structure and the reduction of the cation mixing after metal substitution.

  16. A magnetic boundary layer creating a quasi-cylindrical substructure within a propagating flux rope leading to a plasma beta transition

    CERN Document Server

    Savani, Neel P; Shiota, D; Linton, M G; Kusano, K; Lugaz, N; Rouillard, A P

    2013-01-01

    We present a 2.5D MHD simulation of a magnetic flux rope (FR) propagating in the heliosphere and investigate the cause of the observed sharp plasma beta transition. Specifically, we consider a strong internal magnetic field and an explosive fast start, such that the plasma beta is significantly lower in the FR than the sheath region that is formed ahead. This leads to an unusual FR morphology in the first stage of propagation, while the more traditional view (e.g. from space weather simulations like Enlil) of a `pancake' shaped FR is observed as it approaches 1 AU. We investigate how an equipartition line, defined by a magnetic Weber number, surrounding a core region of a propagating FR can demarcate a boundary layer where there is a sharp transition in the plasma beta. The substructure affects the distribution of toroidal flux, with the majority of the flux remaining in a small core region which maintains a quasi-cylindrical structure. Quantitatively, we investigate a locus of points where the kinetic energy...

  17. Impact of the Interplanetary Magnetic Field rotation from North to South on the Alfven Transition Layer: 3D Global PIC Simulation

    Science.gov (United States)

    Cai, DongSheng; Lembege, Bertrand; Nishikawa, Ken-ichi

    2017-04-01

    Using a global 3D PIC simulation, the solar-terrestrial magnetosphere interaction has been analyzed focusing on the 3D magnetic cusp region. Our recent global simulation results (Cai et al., JGR 2015) have reproduced the main features of the magnetic cusp under a northward IMF configuration comparing with the three-year statistical observations of Cluster satellites (Lavraud et al., JGR, 2005). One of the most important features found in our simulation is the existence of the Alfven Transition Layer (ATL) where Alfven Mach number is nearly zero almost adjacent to the upper stagnant exterior cusp (SEC). Its width measured near the SEC within the meridian plane varies from 1 to 4 Re. From the magnetosheath to SEC, the plasma flows transit from super to sub-Alfvenic regime. Striking features observed in the simulation is the unique depleted funnel shape ATL starting from the high altitude dusk to low altitude dawn above the magnetic cusp in a northward IMF. Both the ion and electron flux enter and spiral into the cups region through this depleted ATL with possibly a curvature drift. Varying IMF from north to south through dusk-dawn direction, this ATL persists although it drastically shrinks. Especially, in the southward IMF, the ion flux enters into the cusp region through the complicated ATL and bounce back to the magnetosheath. ATL can help us to investigate the complex structures of the magnetic cusp.

  18. Transition from parabolic to ring-shaped valence band maximum in few-layer GaS, GaSe, and InSe

    Science.gov (United States)

    Rybkovskiy, Dmitry V.; Osadchy, Alexander V.; Obraztsova, Elena D.

    2014-12-01

    By performing first-principles electronic structure calculations in frames of density functional theory we study the dependence of the valence band shape on the thickness of few-layer III-VI crystals (GaS, GaSe, and InSe). We estimate the critical thickness of transition from the bulklike parabolic to the ring-shaped valence band. Direct supercell calculations show that the ring-shaped extremum of the valence band appears in β -GaS and β -GaSe at a thickness below 6 tetralayers (˜4.6 nm ) and 8 tetralayers (˜6.4 nm ), respectively. Zone-folding calculations estimate the β -InSe critical thickness to be equal to 28 tetralayers (˜24.0 nm ). The origin of the ring-shaped valence band maximum can be understood in terms of k.p theory, which provides a link between the curvature of the energy bands and the distance between them. We explain the dependence of the band shape on the thickness, as well as the transition between two types of extremes, by the k -dependent orbital composition of the topmost valence band. We show that in the vicinity of critical thickness the effective mass of holes in III-VI compounds depends strongly on the number of tetralayers.

  19. RECONNECTION-DRIVEN DOUBLE LAYERS IN THE STRATIFIED PLASMA OF THE SOLAR TRANSITION REGION: SUPPLY OF HOT PLASMA INTO THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra [Department of Electrical and Computer Engineering University of Alabama, Huntsville, AL 35899 (United States)

    2015-09-01

    A novel mechanism for the supply of hot plasma into the corona from the chromosphere is suggested here; the mechanism involves collisionless magnetic reconnection (CMR) in the transition region (TR) followed by double layer (DL) formation in the enhanced expansion of the chromospheric cold plasma mixed with CMR-heated hot electrons. It is well known that (i) the CMR produces energetic electrons and (ii) DLs naturally form in expanding dense plasmas containing a minor population of hot electrons. We apply these plasma physics facts to the dynamics of stratified plasma in the TR. In the TR where densities fall below ∼10{sup 16} m{sup −3}, all collisional mean-free paths, electron–ion, ion–neutral, and electron–neutral, become long enough to render plasma collisionless at kinetic scale lengths, making CMR and DL formation possible. The DLs accelerate the chromospheric cold ions to energies comparable to the energy of the hot electrons. When the upflowing energized ions neutralized by the escaping hot electrons thermalize, the resulting hot tenuous plasma supplies an energy flux ∼3 × 10{sup 5} erg cm{sup −2} s{sup −1} = 3 × 10{sup 2} J m{sup −2} s{sup −1} into the corona. The CMR–DL mechanism introduces sudden transitions in the TR as microstructures in both density and energy. The global transition in the TR could be a fractal structure containing such microscopic features. If not impossible, it is difficult to measure such microstructures, but it seems that the coronal heating begins in the nearly collisionless TR by CMR and DL formation.

  20. Transition of interface oxide layer from porous Mg(OH)2 to dense MgO induced by polyaniline and corrosion resistance of Mg alloy therefrom

    Science.gov (United States)

    Luo, Yizhong; Sun, Yang; Lv, Jinlong; Wang, Xianhong; Li, Ji; Wang, Fosong

    2015-02-01

    The feasibility of polyaniline emeraldine base (EB) for enhancing long-term corrosion resistance of magnesium alloy (AZ91D Mg alloy) was confirmed, since the complex impedance of Mg alloy protected by EB/epoxy resin (ER) composite coating with 10 wt% EB loading maintained around 2 GΩ cm2 even after 80 day exposure in 0.5 M NaCl solution, while that of pure ER coated analogue decreased to 0.17 MΩ cm2 only after 31 days. The improvement in corrosion resistance was attributed to the transition of interface layer from porous Mg(OH)2 dominated one underneath pure ER coating to dense MgO dominated one underneath EB/ER coating, induced by the redox interaction of EB with Mg alloy. When the EB loading in EB/ER coating increased from 0 to 10 wt%, the relative XPS peak area ratio of MgO to Mg(OH)2 increased from 0.78 to 1.18, indicating that EB behaved as effective corrosion inhibitor causing the transformation of oxide layer from porous Mg(OH)2 to dense MgO.

  1. Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany)]. E-mail: kumarp@rhrk.uni-kl.de; Kupich, M. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany); Grunsky, D. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany); Schroeder, B. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany)

    2006-04-20

    The electronic and structural properties of p-type microcrystalline silicon films prepared near the microcrystalline to amorphous ({mu}c-amorphous) transition by hot-wire chemical vapor deposition are studied. Silane is used as a source gas while H{sub 2} as diluent and trimethylboron (TMB) and boron trifluoride (BF{sub 3}) as doping gases. Increasing TMB concentration from 0.01% to 5% favors the amorphous growth whereas for BF{sub 3} the crystalline fraction remains constant. The dark conductivity ({sigma} {sub d}) of {mu}c-Si:H p-layers remains approximately constant for TMB 1-5% at constant crystalline fraction X {sub c}. This dark conductivity behavior is attributed to the decrease in doping efficiency with increasing TMB concentration. The best initial efficiency obtained for a 400 nm amorphous pin solar cell with optimized {mu}c-Si:H p-layer is 7.7% (V {sub oc} = 874 mV, J {sub sc} = 12.91 mA/cm{sup 2}, FF = 68%)

  2. Boundary Layer Transition and Trip Effectiveness on an Apollo Capsule in the JAXA High Enthalpy Shock Tunnel (HIEST) Facility

    Science.gov (United States)

    Kirk, Lindsay C.; Lillard, Randolph P.; Olejniczak, Joseph; Tanno, Hideyuki

    2015-01-01

    Computational assessments were performed to size boundary layer trips for a scaled Apollo capsule model in the High Enthalpy Shock Tunnel (HIEST) facility at the JAXA Kakuda Space Center in Japan. For stagnation conditions between 2 MJ/kg and 20 MJ/kg and between 10 MPa and 60 MPa, the appropriate trips were determined to be between 0.2 mm and 1.3 mm high, which provided kappa/delta values on the heatshield from 0.15 to 2.25. The tripped configuration consisted of an insert with a series of diamond shaped trips along the heatshield downstream of the stagnation point. Surface heat flux measurements were obtained on a capsule with a 250 mm diameter, 6.4% scale model, and pressure measurements were taken at axial stations along the nozzle walls. At low enthalpy conditions, the computational predictions agree favorably to the test data along the heatshield centerline. However, agreement becomes less favorable as the enthalpy increases conditions. The measured surface heat flux on the heatshield from the HIEST facility was under-predicted by the computations in these cases. Both smooth and tripped configurations were tested for comparison, and a post-test computational analysis showed that kappa/delta values based on the as-measured stagnation conditions ranged between 0.5 and 1.2. Tripped configurations for both 0.6 mm and 0.8 mm trip heights were able to effectively trip the flow to fully turbulent for a range of freestream conditions.

  3. Monitoring of permafrost condition based on longitudinal conductivity of the transition layer%基于过渡层的纵向电导率冻土特征监测

    Institute of Scientific and Technical Information of China (English)

    Vladimir N.Efremov

    2014-01-01

    实验研究结果是应用过渡层的纵向电导对多年冻土环境进行监测而获取。过渡层在地下电导率剖面位于季节融化层以下。这一层在冷冻状态下具有不同的温度值,电阻率和厚度。过渡层纵向导电的季节变化比季节融化层更重要。因此,它们可用于监测地面的建筑物和工程多年冻土地基条件,过渡层的纵向电导值可由无线电阻抗测深资料确定。%The results of experimental research of possibility to apply transition layer longitudinal con-ductivity for monitoring of permafrost condition are presented .The transition layer is a layer in subsurface conductivity section located below the seasonally thawed layer .This layer is in frozen state and has var-ying values of temperature , electrical resistivity and thickness .Seasonal variations in longitudinal con-ductivity of the transition layer are more significant than those of the seasonally thawed layer .Therefore , they can be used for monitoring the condition of permafrost foundations of buildings and engineering con -structions from the ground surface .Longitudinal conductivity values of the transition layer can be deter-mined by interpretation of radioimpedance sounding data .

  4. 基于修正边界层转捩的翼型气动特性研究%Investigation of airfoil aerodynamic performance based on corrected boundary-layer transition

    Institute of Scientific and Technical Information of China (English)

    张瑞民; 于金玲

    2013-01-01

    Boundary layer transition is an important factor to determine the airfoil flow field characteristics. Therefore,it is of significance to study the boundary layer transition in aeronautical engineering. From the physical characteristics of the transition flow,the Wilcox transition mode in the k-ω SST two-equation turbulence model was corrected with the introduction of the intermittent function. And thus the flow characteristics and aerodynamic performance of the traditional NACA0012 airfoil were studied and compared to the test results and to the results with original boundary layer transition. The results show that the transition position can be predicted by the modified model with certain accuracy and the prediction accuracy of airfoil drag characteristics has been improved to some extent by considering boundary layer transition.%边界层转捩是决定翼型流场特性的重要因素,因此在航空工程中开展边界层转捩研究具有重要意义.从转捩流动的物理特征出发,引人间歇函数对k-ω SST两方程湍流模型的Wilcox转捩模式进行了修正,进而对传统的NACA0012翼型的流场特性和气动性能进行了研究,并与原始边界层转捩的计算结果以及试验结果进行了比较.研究表明,改进后的模型对转捩位置具有较好的预测能力;在采用修正边界层转捩模型的情况下,翼型的阻力预测精度有了一定程度的提高.

  5. Transitional Boundary Layers Under the Influence of High Free Stream Turbulence, Intensive Wall Cooling and High Pressure Gradients in Hot Gas Circulation. Ph.D. Thesis - Technische Hochschule, Karlsruhe, 1985

    Science.gov (United States)

    Rued, Klaus

    1987-01-01

    The requirements for fundamental experimental studies of the influence of free stream turbulence, pressure gradients and wall cooling are discussed. Under turbine-like free stream conditions, comprehensive tests of transitional boundary layers with laminar, reversing and turbulent flow increments were performed to decouple the effects of the parameters and to determine the effects during mutual interaction.

  6. Towards understanding the rate capability of layered transition metal oxides LiNiyMnyCo1-2yO2

    Science.gov (United States)

    Li, Zheng; Ban, Chunmei; Chernova, Natasha A.; Wu, Zhuangchun; Upreti, Shailesh; Dillon, Anne; Whittingham, M. Stanley

    2014-12-01

    This work attempts to understand the rate capability of layered transition metal oxides LiNiyMnyCo1-2yO2 (0.33 ≤ y ≤ 0.5). The rate capability of LiNiyMnyCo1-2yO2 increase with increasing Co in the compounds and with increasing amount of carbon additives in the electrodes. The lithium diffusion coefficients and electronic conductivities of LixNiyMnyCo1-2yO2 are investigated and compared. The 333 compound has higher diffusivity and electronic conductivity and thus better rate performance than 550. Chemical diffusion coefficients for both delithiation and lithiation of LixNiyMnyCo1-2yO2 investigated by GITT and PITT experiments are calculated to be around 10-10 cm2 s-1, lower than that of LixCoO2. The electronic conductivity of LixNiyMnyCo1-2yO2 is inferior compared to LixCoO2 at same temperature and delithiation stage. However, the LixNiyMnyCo1-2yO2 are able to deliver 55%-80% of theoretical capacity at 5 C with good electronic wiring in the composite electrode that make them very promising candidates for electric propulsion in terms of rate capability.

  7. Infrared Transition Moment Orientational Analysis on the Structural Organization of the Distinct Molecular Subunits in Thin Layers of a High Mobility n-Type Copolymer.

    Science.gov (United States)

    Anton, Arthur Markus; Steyrleuthner, Robert; Kossack, Wilhelm; Neher, Dieter; Kremer, Friedrich

    2015-05-13

    The IR-based method of infrared transition moment orientational analysis (IR-TMOA) is employed to unravel molecular order in thin layers of the semiconducting polymer poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (P(NDI2OD-T2)). Structure-specific vibrational bands are analyzed in dependence on polarization and inclination of the sample with respect to the optical axis. By that the molecular order parameter tensor for the respective molecular moieties with regard to the sample coordinate system is deduced. Making use of the specificity of the IR spectral range, we are able to determine separately the orientation of atomistic planes defined through the naphthalenediimide (NDI) and bithiophene (T2) units relative to the substrate, and hence, relative to each other. A pronounced solvent effect is observed: While chlorobenzene causes the T2 planes to align preferentially parallel to the substrate at an angle of 29°, using a 1:1 chloronaphthalene:xylene mixture results in a reorientation of the T2 units from a face on into an edge on arrangement. In contrast the NDI unit remains unaffected. Additionally, for both solvents evidence is observed for the aggregation of chains in accord with recently published results obtained by UV-vis absorption spectroscopy.

  8. Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions

    Science.gov (United States)

    Kasnatscheew, Johannes; Evertz, Marco; Streipert, Benjamin; Wagner, Ralf; Nowak, Sascha; Cekic Laskovic, Isidora; Winter, Martin

    2017-08-01

    Increasing the specific energy of a lithium ion battery and maintaining its cycle life is a predominant goal and major challenge for electrochemical energy storage applications. Focusing on the positive electrode as the specific energy bottleneck, cycle life characteristics of promising layered oxide type active materials (LiMO2) has been thoroughly investigated. Comparing the variety of LiMO2 compositions, it could be shown that the ;Ni-rich; (Ni ≥ 60% for M in LiMO2) electrodes expectably revealed best performance compromises between specific energy and cycle life at 20 °C, but only LiNi0.6Mn0.2Co0.2O2 (NMC622) could also maintain sufficient cycle performance at elevated temperatures. Focusing on NMC622, it could be demonstrated that the applied electrochemical conditions (charge capacity, delithiation amount) in the formation cycles significantly influence the subsequent cycling performance. Moreover, the insignificant transition metal dissolution, demonstrated by means of total X-ray fluorescence (TXRF) technique, and unchanged lithiation degree in the discharged state, determined by the measurement of the Li+ content by means of the inductively coupled plasma optical emission spectroscopy (ICP-OES) technique, pointed to a delithiation (charge) hindrance capacity fade mechanism. Considering these insights, thoughtful modifications of the electrochemical charge conditions could significantly prolong the cycle life.

  9. Amorphous-crystalline transition layers formation during quenching of Fe61 Co7 Zr10 Mo5 W2B15 melt

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    New Fe-based multicomponent amorphous alloys have been developed recently based on empirical rulesfor large glass forming ability(GFA). In the present investigation, the master alloy ingot with the nominal composi-tion of Fe61 Co7 Zr10 Mo5 W2 B15 (mole fraction, %) was prepared by arc-melting under Ti-gettered Ar atmosphere.The Fe-based buttons with different transverse cross sections were fabricated by arc-melting method, and the d 2.5mm Fe-based rods were manufactured by injection technique. Characterization of the ingots and the parameters asso-ciated with the thermal stability were carried out by X-ray diffractometry(XRD) and high temperature differential scan-ning calorimeter(DSC), respectively. The interval of the supercooled liquid region is 39 K for the Fe-based alloy. The GFAof Fe-based alloys is relatively lower, to the buttons obtained are all crystallized. The Fe-based rod exhibites a high Vickershardness up to HV 1 329. In addition, an amorphous-crystalline transition layers are observed in the rod. This transitionzone is caused by unhomogeneous temperature distribution and relatively lower GFA for Fe-based alloys.

  10. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    Science.gov (United States)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-02-01

    We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN's) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N2 atmosphere. For XPS measurements, layers are either (i) Ar+ ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These spectra-modifying effects of Ar+ ion bombardment increase with increasing the metal atom mass due to an increasing nitrogen-to-metal sputter yield ratio. The superior quality of the XPS spectra obtained in a non-destructive way from capped TMN films is evident from that numerous metal peaks, including Ti 2p, V 2p, Zr 3d, and Hf 4f, exhibit pronounced satellite features, in agreement with previously published spectra from layers grown and analyzed in situ. In addition, the N/metal concentration ratios are found to be 25-90% higher than those obtained from the corresponding ion-etched surfaces, and in most cases agree very well with the RBS and ToF-E ERDA values. The N 1 s BE:s extracted from

  11. The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots

    Directory of Open Access Journals (Sweden)

    Mohammadreza Shahzadeh

    2014-06-01

    Full Text Available The authors report on the impact of wetting layer thickness and quantum dot size on the electronic and optical properties of dome-shaped InAs/GaAs quantum dots (QDs with strained potential. Two wetting layer thicknesses of 0.5 and 2.0 nm were compared. A strong size dependence of P-to-S transition energy, transition dipole moment, oscillator strength, and linear and third-order nonlinear susceptibilities were concluded. The P-to-S transition dipole moment was shown to be purely in-plane polarization. The linear and nonlinear absorption and dispersion showed a red shift when the wetting layer thickness was increased. Our results revealed that the nonlinear susceptibility is much more sensitive to QD size compared to the linear susceptibility. An interpretation of the results was presented based on the probability density of finding the electron inside the dot and wetting layer. The results are in good agreement with previously reported experimental data.

  12. X-ray study of the charge-density-wave transition in single-layer TiSe2

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xin-Yue; Hong, Hawoong; Chen, Peng; Chiang, T. -C.

    2017-05-01

    Synchrotron x-ray studies of single-layer TiSe2 reveal displacements of the Ti and Se atoms as a function of temperature. The measurements, with a high sensitivity of 0.001 Å, show a (2x2) charge density wave (CDW) structure at temperatures below a critical temperature of TC1 = 233 K. The temperature dependence follows a BCS-like second-order mean-field behavior. A fivelayer TiSe2 film also exhibits a CDW transition of the same character but at a lower transition temperature of TC5 = 204 K, which is the same as that for bulk TiSe2. The results demonstrate that lattice distortion is an integral part of the CDW transition that must also involve renormalization of the electronic structure.

  13. Effects of electrode properties on transition limit to big-arcs in combustion gas plasma boundary layer. Nensho gas plasma kyokaisonai deno daidenryu kyodai arc hassei genkai ni oyobosu denkyoku bussei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, K.; Okumura, Y. (Tokyo Institute of Technology, Tokyo (Japan)); Kokumai, M.; Yoshikawa, N. (Toyohashi University of Technology, Aichi (Japan))

    1994-05-25

    The effect of physical properties of electrode on the transition from micro-arc to big-arc in the boundary layer of combustion gas plasma such as MHD power generation, the method for preventing the occurrence of big-arc at the electrode surface side, and the possibility of small dispersion of micro-arc are experimentally investigated. The critical current for transition from micro-arc to big-arc is mainly determined by the main part temperature. It is also affected by the electrode properties. This is due to the change in arc shape caused by the heat transfer to the electrode surface and the melting and evaporation of the electrode. In the case of electrode which is likely to give rise to the abrupt gushing of metal vapor, the transition from micro-arc to big-arc is likely to occur because the boundary layer is easily broken as the momentum of the gushing vapor directed rectangularly to the electrode surface which is generating the micro-arc is large. For the prevention of transition from micro-arc to big-arc even at a large current density, it is important to select the electrode material which is characterized by high thermal conductivity, high boiling point, and high latent heat of evaporation. 17 refs., 15 figs., 1 tab.

  14. Effects of the embedding kinetics on the surface nano-morphology of nano-grained Au and Ag films on PS and PMMA layers annealed above the glass transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F.; Grimaldi, M.G. [Dipartimento di Fisica ed Astronomia, Universita di Catania, Catania (Italy); MATIS IMM-CNR, Catania (Italy); Torrisi, V.; Marletta, G. [University of Catania, CSGI, Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Department of Chemical Sciences, Catania (Italy)

    2012-06-15

    The morphology evolution of nano-grained Ag and Au films deposited on polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric layers were studied, using the atomic force microscopy technique, when annealed above the polymers glass transition temperature. The main effects on the morphology changes were identified with those concerning the embedding kinetics of the Ag and Au nanoparticles in the PS or PMMA layers. The embedding process of the nanoparticles follows as a consequence of the long-range mobility of the polymeric chains above the glass transition temperature. In particular, the dependence of the nanoparticles mean height and surface density on the annealing time at various temperatures was quantified. The analyses of these behaviors allowed us: (1) to distinguish the overall embedding process in a first stage in which a thin wetting layer of the polymer coats the nanoparticles followed by a true embedding process of the nanoparticles into the polymer layer; (2) to evaluate the characteristic coating time for the Ag and Au nanoparticles in the PS and PMMA in the first stage; (3) to evaluate the characteristic embedding velocity for the Ag and Au nanoparticles in the PS and PMMA in the second stage; (4) to derive the activation energies for the embedding process of the Ag and Au nanoparticles in PS and PMMA; (5) to identify the embedding statistics of the Ag and Au nanoparticles in PS and PMMA with a ''failure'' Weibull statistics. (orig.)

  15. The influence of the relative thermal expansion and electric permittivity on phase transitions in the perovskite-type bidimensional layered NH3(CH2)3NH3CdBr4 compound

    Science.gov (United States)

    Staśkiewicz, Beata; Staśkiewicz, Anna

    2017-07-01

    Hydrothermal method has been used to synthesized the layered hybrid compound NH3(CH2)3NH3CdBr4 of perovskite architecture. Structural, dielectric and dilatometric properties of the compound have been analyzed. Negative thermal expansion (NTE) effect in the direction perpendicular to the perovskite plane as well as an unusual phase sequence have been reported based on X-ray diffraction analysis. Electric permittivity measurements evidenced the phase transitions at Tc1=326/328 K and Tc2=368/369 K. Relative linear expansion measurements almost confirmed these temperatures of phase transitions. Anomalies of electric permittivity and expansion behavior connected with the phase transitions are detected at practically the same temperatures as those observed earlier in differential scanning calorimetry (DSC), infrared (IR), far infrared (FIR) and Raman spectroscopy studies. Mechanism of the phase transitions is explained. Relative linear expansion study was prototype to estimate critical exponent value β for continuous phase transition at Tc1. It has been inferred that there is a strong interplay between the distortion of the inorganic network, those hydrogen bonds and the intermolecular interactions of the organic component.

  16. Effects of wall cooling and angle of attack on boundary layer transition on sharp cones at free stream Mach 7.4

    Science.gov (United States)

    Mateer, G. G.

    1972-01-01

    Tests were conducted on 5 deg and 15 deg half-angle sharp cones at wall-to-total-temperature ratios of 0.08 to 0.4, and angles of attack from 0 deg to 20 deg. The results indicate that (1) transition Reynolds numbers decrease with decreasing temperature ratio, (2) local transition Reynolds numbers decrease from the windward to the leeward side of the model, and (3) transition data on the windward ray of cones can be correlated in terms of the crossflow velocity gradient, momentum thickness Reynolds number, local Mach number, and cone half-angle.

  17. Atomic layer etchings of transition metal dichalcogenides with post healing procedures: equivalent selective etching of 2D crystal hetero-structures

    Science.gov (United States)

    Chen, Kuan-Chao; Chu, Tung-Wei; Wu, Chong-Rong; Lee, Si-Chen; Lin, Shih-Yen

    2017-09-01

    The atomic layer etchings of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are demonstrated in this paper. By using the oxygen plasma etching and the following re-sulfurization procedures, a mono-layer MoS2 sample with an enhanced photoluminescence intensity is obtained from the sample originally with bi-layer MoS2, which suggests that atomic layer etching of MoS2 can be achieved and the following re-sulfurization procedure can recover the partially oxidized MoS2 remained on the substrate back to a complete MoS2 film. By repeating oxygen plasma etchings and a final re-sulfurization procedure, multi-layer WS2 can be selectively etched off from the WS2/MoS2 hetero-structure. A top-gate WS2/MoS2 hetero-structure transistor is fabricated with source/drain electrodes contacted directly to the MoS2 channel by using the repeated atomic layer etching technique. The results have revealed that the equivalent selective etching effect for 2D crystal hetero-structures can be achieved by repeating the atomic layer etching procedure, which is an important step for the device fabrication of 2D crystal hetero-structures.

  18. Magnetic phase transitions and magnetocaloric effect in layered intermetallic La0.75Sm0.25Mn2Si2 compound

    Science.gov (United States)

    Mushnikov, N. V.; Gerasimov, E. G.; Terentev, P. B.; Gaviko, V. S.; Yazovskikh, K. A.; Aliev, A. M.

    2017-10-01

    Magnetic and magnetothermal properties have been studied for the La0.75Sm0.25Mn2Si2 compound which has the spontaneous first-order antiferromagnetic to ferromagnetic (AF-F) transition at a temperature of 160 K. The transition is accompanied by the anisotropic lattice distortion. Isothermal entropy change has been estimated for different magnetic states using the heat capacity and magnetization data. Direct measurements of the adiabatic temperature change have been performed in the fields applied both along the easy c-axis and in the basal plane of a quasi-single crystal. Near the transition temperature, the AF-F transition can be realized in low magnetic fields, which makes such compounds attractive for magnetoelastic and magnetothermal applications.

  19. Enhancement of band-to-band tunneling in mono-layer transition metal dichalcogenides two-dimensional materials by vacancy defects

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiang-Wei; Li, Shu-Shen [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Gong, Jian [School of Physics Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Xu, Nuo [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Zhang, Jinfeng; Hao, Yue [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-01-13

    The band-to-band tunneling of monolayer transition metal dichalcogenides nano-junction is investigated using atomistic ab initio quantum transport simulations. From the simulation, it is found that the transition metal vacancy defect in the two-dimensional MX{sub 2} (M = Mo,W; X = S,Se) band-to-band tunneling diode can dramatically boost the on-state current up to 10 times while maintaining the device sub-threshold swing. The performance enhancement mechanism is discussed in detail by examining partial density of states of the system. It is found that the transition metal vacancy induces band-gap states, which reduce the effective length of the tunneling transition region.

  20. A General Method for Constructing Two-Dimensional Layered Mesoporous Mono- and Binary-Transition-Metal Nitride/Graphene as an Ultra-Efficient Support to Enhance Its Catalytic Activity and Durability for Electrocatalytic Application.

    Science.gov (United States)

    Liu, Baocang; Huo, Lili; Si, Rui; Liu, Jian; Zhang, Jun

    2016-07-27

    We constructed a series of two-dimensional (2D) layered mesoporous mono- and binary-transition-metal nitride/graphene nanocomposites (TMN/G, TM = Ti, Cr, W, Mo, TiCr, TiW, and TiMo) via an efficient and versatile nanocasting strategy for the first time. The 2D layered mesoporous TMN/G is constituted of small TMN nanoparticles composited with graphene nanosheets and has a large surface area with high porosity. Through decoration with well-dispersed Pt nanoparticles, 2D layered mesoporous Pt/TMN/G catalysts can be obtained that display excellent catalytic activity and stability for methanol electro-oxidation reactions (MOR) and oxygen reduction reactions (ORR) in both acidic and alkaline media. The 2D layered mesoporous binary-Pt/TMN/G catalysts possess catalytic activity superior to that of mono-Pt/TMN/G, graphene free Pt/TMN, Pt/G, and Pt/C catalysts. Encouragingly, the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst exhibits the best electrocatalytic performance for both MOR and ORR. The outstanding electrocatalytic performance of the Pt/Ti0.5Cr0.5N/G catalyst is rooted in its large surface area, high porosity, strong interaction among Pt, Ti0.5Cr0.5N, and graphene, an excellent electron transfer property facilitated by N-doped graphene, and the small size of Pt and Ti0.5Cr0.5N nanocrystals. The outstanding catalytic performance provides the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst with a wide range of application prospects in direct methanol fuel cells in both acidic and alkaline media. The synthetic method may be available for constructing other 2D layered mesoporous metal nitrides, carbides, and phosphides.

  1. The Mechanism of Abrupt Transition between Theta and Hyper-Excitable Spiking Activity in Medial Entorhinal Cortex Layer II Stellate Cells

    Science.gov (United States)

    Kispersky, Tilman; White, John A.; Rotstein, Horacio G.

    2010-01-01

    Recent studies have shown that stellate cells (SCs) of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic) conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis), we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. ‘In vitro’ experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current. PMID

  2. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.

    Directory of Open Access Journals (Sweden)

    Tilman Kispersky

    Full Text Available Recent studies have shown that stellate cells (SCs of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis, we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. 'In vitro' experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current.

  3. Effect of ceramic fiber transition layer on the asymmetric filtration membrane of silicon carbide%陶瓷纤维过渡层对碳化硅非对称过滤膜的影响

    Institute of Scientific and Technical Information of China (English)

    孙扬善; 邓湘云; 王依山; 王传方; 张小龙; 杨学良; 刘佳; 邵健; 杨洁

    2014-01-01

    研究了由莫来石纤维和硅酸铝纤维组成的陶瓷纤维过渡层对高温气体过滤用碳化硅非对称过滤膜的成膜和过滤压降的影响。利用 SEM测试了陶瓷纤维过渡层的表面形貌以及非对称过滤膜侧面的形貌。厚度约为60μm 的陶瓷纤维过渡层介于支撑体和过滤膜之间,有效阻止了小粒径的过滤膜颗粒进入支撑体孔隙而减小了过滤膜的实际厚度,进而降低了过滤膜的过滤压降。同时陶瓷纤维过渡层还大大提高了成膜过程中过滤膜的均匀性和完整性。%The influence of ceramic fiber transition layer composed of mullite fibers and aluminosilicate fibers on the filter pressure drop and deposition of silicon carbide asymmetric filtration membrane used for high-tempera-ture gas filtration were investigated.The surface morphology of the transition layer of ceramic fiber and the side morphology of the asymmetric filter membrane were tested by SEM.The thickness of ceramic fiber transition layer about 60μm between the support and the filtration membrane,which effectively prevent the small particle size of the particles to enter the pores of the supporting body and the actual thickness of the filtration membrane was reduced,thereby reducing the filter pressure drop of the filtration membrane.Ceramic fiber transition layer also greatly improved the uniformity and integrity of the filtration membranes in the film-forming process.

  4. Antiferro-ferromagnetic transition in ultrathin Ni(OH)2 layer grown on graphene surface and observation of interlayer exchange coupling in Ni(OH)2/graphene/Ni(OH)2 nanostructures

    Science.gov (United States)

    Bhattacharya, Shatabda; Mathan Kumar, E.; Thapa, Ranjit; Saha, Shyamal K.

    2017-01-01

    The major limitation of using graphene as a potential spacer element in interlayer exchange coupling (IEC) might be due to destruction of ferromagnetism as a result of the charge transfer effect at the interface if a transition metal based ferromagnetic layer is grown on the graphene surface. To overcome this problem, we have used the antiferromagnetic Ni(OH)2 layer grown on the graphene surface to convert it ferromagnetic due to the charge transfer effect. By growing thin layers of Ni(OH)2 on both sides of the graphene surface, strong antiferromagnetic IEC with ultra-low coercivity (7 Oe) is observed. By lowering the nickel content, an ultrathin layer of Ni(OH)2 is grown on either side of graphene and shows complete ferromagnetism with a giant coercivity of 4154 Oe. Ab initio calculations have been done to substantiate this kind of charge transfer effect at the interface of Ni(OH)2 and graphene. Magnetotransport of the composite material is also investigated to understand the role of IEC in transport properties.

  5. Results of Experimental Investigations to Determine External Tank Protuberance Loads Using a 0.03-Scale Model of the Space Shuttle Launch Configuration (Model 47-OTS) in the NASA/ARC Unitary Plan Wind Tunnel, Volume 2

    Science.gov (United States)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA19OA/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA19OA) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA19OB). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline; (2) GO2 pressure line; (3) LO2 antigeyser line; (4) GH2 pressure line; (5) LH2 tank cable tray; (6) LO2 tank cable tray; (7) Bipod; (8) ET/SRB cable tray; and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above; 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements; Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures; and Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  6. Results of experimental investigations to determine external tank protuberance loads using a 0.03-scale model of the Space Shuttle launch configuration (model 47-OTS) in the NASA/ARC unitary plan wind tunnel, volume 1

    Science.gov (United States)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA190A/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA190A) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA190B). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline, (2) GO2 pressure line, (3) LO2 antigeyser line, (4) GH2 pressure line, (5) LH2 tank cable tray, (6) LO2 tank cable tray, (7) Bipod, (8) ET/SRB cable tray, and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: (1) Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above. (2) 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements. (3) Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures. (4) Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  7. Quantum size effects in layered VX{sub 2} (X = S, Se) materials: Manifestation of metal to semimetal or semiconductor transition

    Energy Technology Data Exchange (ETDEWEB)

    Wasey, A. H. M. Abdul; Chakrabarty, Soubhik; Das, G. P., E-mail: msgpd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2015-02-14

    Most of the two dimensional (2D) transition metal dichalcogenides (TMDC) are nonmagnetic in pristine form. However, 2D pristine VX{sub 2} (X = S, Se, Te) materials are found to be ferromagnetic. Using spin polarized density functional theory (DFT) calculations, we have studied the electronic, magnetic, and surface properties of this class of materials in both trigonal prismatic H- and octahedral T-phase. Our calculations reveal that they exhibit materially different properties in those two polymorphs. Most importantly, detailed investigation of electronic structure explored the quantum size effect in H-phase of these materials thereby leading to metal to semimetal (H-VS{sub 2}) or semiconductor (H-VSe{sub 2}) transition when downsizing from bilayer to corresponding monolayer.

  8. Structural and magnetic phase transitions in Ca0.73Le0.27FeAs2 with electron-overdoped FeAs layers

    Science.gov (United States)

    Jiang, Shan; Liu, Chang; Cao, Huibo; Birol, Turan; Allred, Jared M.; Tian, Wei; Liu, Lian; Cho, Kyuil; Krogstad, Matthew J.; Ma, Jie; Taddei, Keith M.; Tanatar, Makariy A.; Hoesch, Moritz; Prozorov, Ruslan; Rosenkranz, Stephan; Uemura, Yasutomo J.; Kotliar, Gabriel; Ni, Ni

    2016-02-01

    We report a study of the Ca0.73La0.27FeAs2 single crystals. We unravel a monoclinic to triclinic phase transition at 58 K, and a paramagnetic to stripe antiferromagnetic phase transition at 54 K, below which spins order 45∘ away from the stripe direction. Furthermore, we demonstrate this material is substantially structurally untwinned at ambient pressure with the formation of spin rotation walls (S walls). Finally, in addition to the central-hole and corner-electron Fermi pockets usually appearing in Fe pnictide superconductors, angle-resolved photoemission measurements resolve a fermiology where an extra electron pocket of mainly As chain character exists at the Brillouin zone edge.

  9. Conformation of ceramide 6 molecules and chain-flip transitions in the lipid matrix of the outermost layer of mammalian skin, the stratum corneum

    Science.gov (United States)

    Kiselev, M. A.

    2007-05-01

    Neutron diffraction from oriented multilamellar model stratum corneum (SC) membranes provides information on the internal nanostructure and hydration of the lipid bilayer. The main distinguishing feature of model SC membranes based on ceramide 6 is the extremely small intermembrane space (1 Å). The role of the fully extended (FE) conformation of ceramide 6 molecules in the organization of the nanostructure of the lipid matrix is discussed. The FE conformation gives rise to extremely strong intermembrane attractions (armature reinforcement), which tighten the adjacent bilayers to form steric contacts. Chain-flip transitions in the conformation of ceramide molecules account for structural alterations in native and model SC membranes upon their hydration.

  10. Phase transitions and critical properties of the frustrated Heisenberg model on a layer triangular lattice with next-to-nearest-neighbor interactions

    Energy Technology Data Exchange (ETDEWEB)

    Murtazaev, A. K.; Ramazanov, M. K., E-mail: sheikh77@mail.ru; Badiev, V. K. [Russian Academy of Sciences, Institute of Physics, Dagestan Scientific Center (Russian Federation)

    2012-08-15

    The critical behavior of the three-dimensional antiferromagnetic Heisenberg model with nearest-neighbor (J) and next-to-nearest-neighbor (J{sub 1}) interactions is studied by the replica Monte Carlo method. The first-order phase transition and pseudouniversal critical behavior of this model are established for a small lattice in the interval R = vertical bar J{sub 1}/J vertical bar = 0-0.115. A complete set of the main static magnetic and chiral critical indices is calculated in this interval using the finite-dimensional scaling theory.

  11. The structural transition from epitaxial Fe/Pt multilayers to an ordered FePt film using low energy ion beam sputtering deposition with no buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chih-Hao, E-mail: chlee@mx.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yu-Sheng [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Liu, Li-Jung [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Huang, J.C.A. [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    An epitaxial L1{sub 0} FePt thin film grown from an [Fe(10 Å)/Pt(10 Å)]{sub 15} multilayer with the orientation of (001) was prepared by an ion beam sputtering deposition method without buffer layer. From the measurement data of X-ray diffraction and X-ray reflectivity, the multilayer structure was totally disappeared and a uniform FePt alloy thin film was formed at temperatures higher than 600 °C. For the as-deposited thin film grown at 100 °C, the multilayer already possesses an epitaxial structure. The epitaxial relation is FePt(001)[100]//MgO(001)[100] and this epitaxial relation persists after sequential high temperature annealing. An epitaxial L1{sub 0} ordered FePt(001) film with order parameter of 0.95 was obtained when the annealing temperature reached 650 °C. The ordered FePt(001) thin film has a perpendicular magnetic anisotropy with a squareness of 0.95 ± 0.03 on the magnetic hysteresis loop. This experiment demonstrates that the low energy ion beam sputtering deposition will preserve the epitaxial relation with no buffer layer between multilayer and substrate. - Highlights: • The Fe/Pt films using ion sputtering deposition with no buffer layer is epitaxial. • Multilayer structure was totally disappeared at temperatures higher than 600 °C. • Order parameter reach 0.95 after annealing at 650 °C. • Interfacial epitaxial FePt alloy already formed at 100 °C.

  12. Structural phase transitions and ferroelastic properties of perovskite-type layered (CH3NH3)2CdCl4

    Science.gov (United States)

    Ran Lim, Ae; Wan Kim, Seung; Lak Joo, Yong

    2017-06-01

    Herein, we perform a structural characterization of (CH3NH3)2CdCl4 by 1H and 13C magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectrometry, discussing the geometry around CH3NH3 cations. 1H MAS NMR determined two sets of protons in hydrogen-bonded CH3NH3 groups, exhibiting large T1ρ (L) and small T1ρ (S) values corresponding to long and short C-H/N-H bonds, respectively. The spin-lattice relaxation time of 113Cd in CdCl6 octahedra is shown to exhibit an anomaly near 283 K (TC2) due to the occurrence of a phase transition that is not governed by changes in the motion of CH3NH3 groups but is accompanied by the corresponding changes for Cd in CdCl6 units. The observed domain pattern corresponds to an exchange of a- and c-axes of the orthorhombic structure, with the resulting domain orientations viewed as the main reason for the occurrence of phase transitions, and changes in CdCl6 group motion observed by 113Cd NMR.

  13. Dermatofibrosarcoma protuberance of the breast: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doo Kyung; Jung, Yong Sik; Yim, Hyunee [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    2004-07-01

    Dermatofibrosarcoma protuberans is a rare cutaneous soft tissue neoplasm with the potential for intermediate malignancy, and is characterized by local invasion and recurrence. It can occur at almost any site, but usually arises in the trunk and extremities. Dermatofibrosarcoma protuberans mimicking a primary breast lesion has not previously been reported in Korea. We report on the case of a 28-year-old female patient with dermatofibrosarcoma protuberans on one of her breasts, which is a very unusual site.

  14. PREFACE: INERA Workshop: Transition Metal Oxide Thin Films-functional Layers in "Smart windows" and Water Splitting Devices. Parallel session of the 18th International School on Condensed Matter Physics

    Science.gov (United States)

    2014-11-01

    The Special issue presents the papers for the INERA Workshop entitled "Transition Metal Oxides as Functional Layers in Smart windows and Water Splitting Devices", which was held in Varna, St. Konstantin and Elena, Bulgaria, from the 4th-6th September 2014. The Workshop is organized within the context of the INERA "Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures", FP7 Project REGPOT 316309 program, European project of the Institute of Solid State Physics at the Bulgarian Academy of Sciences. There were 42 participants at the workshop, 16 from Sweden, Germany, Romania and Hungary, 11 invited lecturers, and 28 young participants. There were researchers present from prestigious European laboratories which are leaders in the field of transition metal oxide thin film technologies. The event contributed to training young researchers in innovative thin film technologies, as well as thin films characterization techniques. The topics of the Workshop cover the field of technology and investigation of thin oxide films as functional layers in "Smart windows" and "Water splitting" devices. The topics are related to the application of novel technologies for the preparation of transition metal oxide films and the modification of chromogenic properties towards the improvement of electrochromic and termochromic device parameters for possible industrial deployment. The Workshop addressed the following topics: Metal oxide films-functional layers in energy efficient devices; Photocatalysts and chemical sensing; Novel thin film technologies and applications; Methods of thin films characterizations; From the 37 abstracts sent, 21 manuscripts were written and later refereed. We appreciate the comments from all the referees, and we are grateful for their valuable contributions. Guest Editors: Assoc. Prof. Dr.Tatyana Ivanova Prof. DSc Kostadinka Gesheva Prof. DSc Hassan Chamatti Assoc. Prof. Dr. Georgi Popkirov Workshop Organizing Committee Prof

  15. Stereo Particle Image Velocimetry Measurements of Transition Downstream of a Backward-Facing Step in a Swept-Wing Boundary Layer

    Science.gov (United States)

    Eppink, Jenna L.; Yao, Chung-Sheng

    2017-01-01

    Stereo particle image velocimetry measurements were performed downstream of a backward-facing step in a stationary-cross flow dominated flow. The PIV measurements exhibit excellent quantitative and qualitative agreement with the previously acquired hotwire data. Instantaneous PIV snapshots reveal new information about the nature and cause of the \\spikes" that occurred prior to breakdown in both the hotwire and PIV data. The PIV snapshots show that the events occur simultaneously across multiple stationary cross flow wavelengths, indicating that this is not simply a local event, but is likely caused by the 2D Tollmien-Schlichting instability that is introduced by the step. While the TS instability is a 2D instability, it is also modulated in the spanwise direction due to interactions with the stationary cross flow, as are the other unsteady disturbances present. Because of this modulation, the "spike" events cause an instantaneous increase of the spanwise modulation of the streamwise and spanwise velocity initially caused by the stationary cross flow. Breakdown appears to be caused by this instantaneous modulation, possibly due to a high-frequency secondary instability similar to a traveling-cross flow breakdown scenario. These results further illuminate the respective roles of the stationary cross flow and unsteady disturbances in transition downstream of a backward-facing step.

  16. Developmental changes in electrophysiological properties and a transition from electrical to chemical coupling between excitatory layer 4 neurons in the rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Fliza eValiullina

    2016-01-01

    Full Text Available During development, sensory systems switch from an immature to an adult mode of function along with the emergence of the active cortical states. Here, we used patch-clamp recordings from neocortical slices in vitro to characterize the developmental changes in the basic electrophysiological properties of excitatory L4 neurons and their connectivity before and after the developmental switch, which occurs in the rat barrel cortex in vivo at postnatal day P8. Prior to the switch, L4 neurons had lower resting membrane potentials, higher input resistance, lower membrane capacity, as well as action potentials (APs with smaller amplitudes, longer durations and higher AP thresholds compared to the neurons after the switch. A sustained firing pattern also emerged around the switch. Dual patch-clamp recordings from L4 neurons revealed that recurrent connections between L4 excitatory cells do not exist before and develop rapidly across the switch. In contrast, electrical coupling between these neurons waned around the switch. We suggest that maturation of electrophysiological features, particularly acquisition of a sustained firing pattern, and a transition from the immature electrical to mature chemical synaptic coupling between excitatory L4 neurons, contributes to the developmental switch in the cortical mode of function.

  17. Hydrogen peroxide in the marine atmospheric boundary layer during the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange experiment in the eastern subtropical North Atlantic

    Science.gov (United States)

    Martin, Daniel; Tsivou, Maria; Bonsang, Bernard; Abonnel, Christian; Carsey, Thomas; Springer-Young, Margie; Pszenny, Alex; Suhre, Karsten

    1997-03-01

    Gas phase H2O2 was measured in surface air on the NOAA ship Malcolm Baldrige from June 8 to 27, 1992 (Julian days 160-179), during the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange experiment in the eastern subtropical North Atlantic region. Average H2O2 mixing ratios observed were 0.63±0.28 ppbv, ranging between detection limit and 1.5 ppbv. For the entire experiment, only weak or no correlation was found between H2O2 mixing ratio and meteorological parameters (pressure, temperature, humidity, or UV radiation flux) as well as with tracers of continental air masses (CO, black carbon, radon). The average daily H2O2 cycle for the entire period exhibits a maximum of 0.8±0.3 ppbv near sunset and a minimum of 0.4±0.2 ppbv 4-5 hours after sunrise. Several clear H2O2 diurnal variations have been observed, from which a first-order removal rate of about 1×10-5 s-1 for H2O2 can be inferred from nighttime measurements. This rate compares well with those deduced from measurements taken at Cape Grim (Tasmania, 41°S) and during the Soviet-American Gas and Aerosol III experiment (equatorial Pacific Ocean).

  18. Oxygen-reducing catalyst layer

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O' Neill, David G. (Lake Elmo, MN)

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  19. Subharmonic Route to Boundary-Layer Transition - Critical Layer Nonlinearity

    Science.gov (United States)

    Mankbadi, Reda R.

    1991-01-01

    The linear and nonlinear dynamics of a triad of initially linear stability waves comprising a single plane wave at fundamental frequency and two symmetric oblique waves with half the frequency and streamwise wave number of the plane wave are presented. Analysis is performed for the initial nonlinear development of the waves where the order of the oblique waves' amplitude is equal to or less than that of the plane wave. Results show that the fundamental basically follows the linear theory, while the subharmonic follows an exponential-of-an-exponential growth.

  20. Group 6 Layered Transition-Metal Dichalcogenides in Lab-on-a-Chip Devices: 1T-Phase WS2 for Microfluidics Non-Enzymatic Detection of Hydrogen Peroxide.

    Science.gov (United States)

    Toh, Rou Jun; Mayorga-Martinez, Carmen C; Han, Jongyoon; Sofer, Zdenek; Pumera, Martin

    2017-05-02

    Two-dimensional (2D) layered transition-metal dichalcogenides (TMDs) have been placed in the spotlight for their advantageous properties for catalytic and sensing applications. However, little work is done to explore and exploit them in enhancing the performance of analytical lab-on-a-chip (LOC) devices. In this work, we demonstrate a simple, sensitive, and low-cost fabrication of electrochemical LOC microfluidic devices to be used for enzymatic detection. We integrated four t-BuLi exfoliated, group 6 TMD materials (MoS2, MoSe2, WS2, and WSe2) within the LOC devices by the drop-casting method and compared their performance for H2O2 detection. The 1T-phase WS2-based LOC device outperformed the rest of the TMD materials and exhibited a wide range of linear response (20 nM to 20 μM and 100 μM to 2 mM), low detection limit (2.0 nM), and good selectivity for applications in real sample analysis. This work may facilitate the expanded use of electrochemical LOC microfluidics, with its easier integrability, for applications in the field of biodiagnostics and sensing.

  1. Chemical solution seed layer for rabits tapes

    Science.gov (United States)

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  2. Towards Natural Transition in Compressible Boundary Layers

    Science.gov (United States)

    2016-06-29

    modal analysis performed established definitely the existence of tuned fundamental and subharmonic resonance of H-type and K-type in the packet...comparison of actual growth rates would be a much more definite evidence for conclusion, but this was never shown in the literature, except in the...with µ∗∞, c ∗ p and γ the reference dynamic viscosity, the specific heat and the ideal gas constant. Temperature and internal energy are related by: e

  3. Towards Natural Transition in Compressible Boundary Layers

    Science.gov (United States)

    2016-06-29

    UNIT NUMBER 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 16. SECURITY CLASSIFICATION OF: 19b. TELEPHONE NUMBER (Include area code) The public reporting...30-09-2011 to 29-03-2016, with Dr. James M. Fillerup serving as program manager. In this project, a DNS code was developed to investigate problems on...8 1.3.1 DNS simulations of wave packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Objectives of this

  4. Measurements of entropy-layer instabilities over cone-ogive-cylinders at Mach 6

    OpenAIRE

    Greenwood, Roger T

    2014-01-01

    Predicting the onset of boundary layer transition is critical in hypersonic flight. To improve transition prediction methods, it is necessary to understand the underlying instability mechanisms that cause transition. Entropy-layer instabilities are of particular interest in the design of blunt reentry vehicles and other blunt supersonic and hypersonic vehicles. Entropy-layer instabilities from outside the boundary layer may enter the boundary layer and have a significant effect on transition....

  5. Aspects of Transition in Turbomachines

    Science.gov (United States)

    Hodson, H. P.

    2007-01-01

    This talk provides a description of several types of transition encountered in turbomachines. It is based largely on personal experience of the detection of transition in turbomachines. Examples are taken from axial compressors, axial turbines and radial turbines. The illustrations are concerned with transition in steady and unsteady boundary layers that develop under the influence of two-dimensional and three-dimensional flow fields.

  6. 低雷诺数涡轮叶片边界层转捩及分离特性测量%Measurement of the Transition and Separation for Turbine Blade Boundary Layer with Low-Reynolds Number

    Institute of Scientific and Technical Information of China (English)

    乔渭阳; 赵磊; 罗华玲; 伊进宝; 张军胜

    2012-01-01

    低雷诺数工作条件下涡轮流场特征及其控制设计,是航空发动机低压涡轮部件设计的难点和重点。针对低雷诺数涡轮叶栅流场开展了实验研究工作,利用油流显示、表面静压、边界层压力探针等测量手段研究了涡轮叶片边界层的分离和转捩。结果表明雷诺数降低导致了流动损失的增大,且存在一个临界雷诺数。当雷诺数小于临界雷诺数时,发生在吸力面的流动分离是开式的层流分离泡,不会再附与叶片;当雷诺数大于临界雷诺数时,分离流会在尾缘前重新附着于叶片吸力面,形成闭式分离泡。随着雷诺数的减小,出口尾迹变宽,出口流动损失、出口速度亏损和出口气流角偏离增大,尾迹中心向吸力面方向移动。%The flow field characteristics and its control under Low-Reynolds numbers work condition are essential for the Aero-Engine Low Pressure Turbine design. An experimental investigation was conducted on the turbine cascade flow field with the low - Reynolds numbers. The separation and transition of the boundary layer on the suction side of turbine blade were in- vestigated with the special oil flow display, surface static pressure holes, and boundary layer pressure probe. The detailed measurement results for the turbine cascade outflow field and blade surface boundary layer were presented. The results show that the flow losses increase with the decrease of Reynolds number, and a critical Reynolds number is in existence. When the Reynolds number is less than this critical value, the flow separation occurs on the suction surface with an open laminar separa- tion bubble, and flow can not reattach. When the Reynolds number is larger than the critical value, the separated flow reat- taches before the blade trailing and a closed separation bubble is formed. As the Reynolds number decreases, the exit wake is broadened, while exit flow loss and exit velocity deficit, as well

  7. Nonmixing layers

    Science.gov (United States)

    Gaillard, Pierre; Giovangigli, Vincent; Matuszewski, Lionel

    2016-12-01

    We investigate the impact of nonideal diffusion on the structure of supercritical cryogenic binary mixing layers. This situation is typical of liquid fuel injection in high-pressure rocket engines. Nonideal diffusion has a dramatic impact in the neighborhood of chemical thermodynamic stability limits where the components become quasi-immiscible and ultimately form a nonmixing layer. Numerical simulations are performed for mixing layers of H2 and N2 at a pressure of 100 atm and temperature around 120-150 K near chemical thermodynamic stability limits.

  8. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries

    Science.gov (United States)

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-01

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g-1 and 380 mA h g-1 are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  9. Layered kagome spin ice

    Science.gov (United States)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  10. Reflective article having a sacrificial cathodic layer

    Energy Technology Data Exchange (ETDEWEB)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.; Rearick, Brian K.; Medwick, Paul A.; McCamy, James W.

    2017-09-12

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.

  11. Railroad Lines, This Layer contains railway features including railroads, rail yards, and public transit rail lines., Published in 1996, 1:100000 (1in=8333ft) scale, Atlanta Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Railroad Lines dataset, published at 1:100000 (1in=8333ft) scale, was produced all or in part from Other information as of 1996. It is described as 'This Layer...

  12. Transitions in turbulent rotating convection

    Science.gov (United States)

    Rajaei, Hadi; Alards, Kim; Kunnen, Rudie; Toschi, Federico; Clercx, Herman; Fluid Dynamics Lab Team

    2015-11-01

    This study aims to explore the flow transition from one state to the other in rotating Rayleigh-Bènard convection using Lagrangian acceleration statistics. 3D particle tracking velocimetry (3D-PTV) is employed in a water-filled cylindrical tank of equal height and diameter. The measurements are performed at the center and close to the top plate at a Rayleigh number Ra = 1.28e9 and Prandtl number Pr = 6.7 for different rotation rates. In parallel, direct numerical simulation (DNS) has been performed to provide detailed information on the boundary layers. We report the acceleration pdfs for different rotation rates and show how the transition from weakly to strongly rotating Rayleigh-Bènard affects the acceleration pdfs in the bulk and boundary layers. We observe that the shapes of the acceleration PDFs as well as the isotropy in the cell center are largely unaffected while crossing the transition point. However, acceleration pdfs at the top show a clear change at the transition point. Using acceleration pdfs and DNS data, we show that the transition between turbulent states is actually a boundary layer transition between Prandtl-Blasius type (typical of non-rotating convection) and Ekman type.

  13. Instabilities of flows and transition to turbulence

    CERN Document Server

    Sengupta, Tapan K

    2012-01-01

    Introduction to Instability and TransitionIntroductionWhat Is Instability?Temporal and Spatial InstabilitySome Instability MechanismsComputing Transitional and Turbulent FlowsFluid Dynamical EquationsSome Equilibrium Solutions of the Basic EquationBoundary Layer TheoryControl Volume Analysis of Boundary LayersNumerical Solution of the Thin Shear Layer (TSL) EquationLaminar Mixing LayerPlane Laminar JetIssues of Computing Space-Time Dependent FlowsWave Interaction: Group Velocity and Energy FluxIssues of Space-Time Scale Resolution of FlowsTemporal Scales in Turbulent FlowsComputing Time-Averag

  14. Phase transitions

    CERN Document Server

    Solé, Ricard V

    2011-01-01

    Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation o

  15. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  16. The structural and magnetic phase transitions in Ca{sub 0.73}La{sub 0.27}FeAs{sub 2} with electron overdoped FeAs layers.

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shan; Liu, Chang; Cao, H.; Birol, Turan; Allred, Jared M.; Tian, Wei; Liu, Lian; Cho, Kyuil; Krogstad, Matthew J.; Ma, Jie; Taddei, Keith M.; Rosenkranz, Stephan

    2016-02-26

    We report a study of the Ca0.73La0.27FeAs2 single crystals. We unravel a monoclinic to triclinic phase transition at 58 K, and a paramagnetic to stripe antiferromagnetic (AFM) phase transition at 54 K, below which spins order 45° away from the stripe direction. Furthermore, we demonstrate this material is substantially structurally untwinned at ambient pressure with the formation of spin rotation walls (S-walls). Finally, in addition to the central-hole and corner-electron Fermi pockets usually appearing in FPS, angle-resolved photoemission (ARPES) measurements resolve a Fermiology where an extra electron pocket of mainly As chain character exists at the Brillouin zone edge.

  17. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  18. Overview of stability and transition in external aerodynamics

    NARCIS (Netherlands)

    Henkes, R.A.W.M.; Van Ingen, J.L.

    1998-01-01

    The boundary layer along the fuselage, wings and tailplanes of aircraft will usually be laminar at the leading edge and will become unstable further downstream. Once the boundary layer has become unstable it will undergo transition to turbulence. Stability and transition can be considered as one of

  19. γ-Reθ模式应用于高速边界层转捩的研究%γ-Reθ model research for high-speed boundary layer transition

    Institute of Scientific and Technical Information of China (English)

    孔维萱; 阎超; 赵瑞

    2013-01-01

    应用γ-Reθ转捩模式对超声速、高超声速边界层转捩进行数值模拟.γ-Reθ模式通过求解关于当地雷诺数和间歇因子两个输运方程给出转捩起始位置和转捩区长度等信息.本文对马赫数3.5至7范围内的四种算例进行计算,研究了来流雷诺数、攻角变化和头部钝化半径等关键参数的变化对γ-Reθ模式预测流动转捩性能的影响.给出了壁面摩擦阻力系数、热流值与实验值的对比以及壁面附近间歇因子等值线分布等计算结果.γ-Reθ模式能够正确预测攻角和钝化半径变化时转捩位置和流动参数的变化趋势;在较大雷诺数时计算结果与实验值吻合很好.γ-Reθ模式对于超声速或高超声速边界层转捩的模拟仍需修正和改进.%This study evaluates the application of Menter's γ-Reθt transition model with a RANS solver for transition prediction on super-sonic and hypersonic flows.The transition onset position and transition length are approached by utilizing two transport equations for local Reynolds number and intermittency.The present work expands upon the transition prediction methodology by validating the model against wide range of Reynolds number, three-dimensional flows in the form of cones at angle of attack and bluntness effects.Test cases including Mach 3.5 cone with free stream unit Reynolds numbers from 2.8E7 to 7.8E7, Mach 5.91 flared cone and cone with 0 to 4deg angle of attack and Mach 7.16 cone with 3 nose radius have been performed.Comparisons for skin-friction coefficient and heat transfer with experimental data are presented.Results show that this model predicts the correct trends with respect to angle of attack and bluntness effects.It is found that the agreement between simulation and measurements varies better from small Reynolds number to large cases and .However there still are few limits in this very model in predicting supersonic or hypersonic transition process.

  20. Tessellations & Transitions.

    Science.gov (United States)

    Cassidy, Joan

    1998-01-01

    Describes two sixth-grade lessons on the work of M. C. Escher: (1) the first lesson instructs students on tessellations, or tiles that interlock in a repeated pattern; (2) the second lesson explores Escher's drawings of transitions from two- to three-dimensional space. (DSK)

  1. Presidential Transitions

    Science.gov (United States)

    2006-06-09

    Morton Mintz and Stuart Auerbach, “Ford Solicits Suggestions on No. 2 Man,” Washington Post, Aug. 11, 1974, p. A1. 64 Fred Austin, “Ford Begins Move...representatives of the federal departments and agencies to ensure a smooth transition. Management and organizational issues should be CRS-23 105 Carl Brauer

  2. Formation mechanism of bimetal composite layer between LCS and HCCI

    Directory of Open Access Journals (Sweden)

    Yong-chang Zhu

    2016-11-01

    Full Text Available A low carbon steel (LCS/high chromium white cast iron (HCCI bimetal wear plate about 20 mm in thickness was prepared by liquid-liquid bimetal composite casting technology to substitute for the welding wear plate. A clear and distinguishable composite layer between the LCS and the HCCI was detected with SEM, and the composition and phase were analyzed through EDS and XRD. The composite layer was composed of three sublayers from the LCS to the HCCI: pearlite transition layer, composite layer, and HCCI transition layer. The Vickers hardness from the pearlite transition layer to the HCCI transition layer was 360 HV to 855 HV. The austenite grows as dendrites between the composite layer and the HCCI transition layer under constitutional undercooling. A large amount of C and Cr, and a small amount of Si and Mn dissolve in the matrix. Granular Cr7C3 is uniformly distributed. Due to the solute redistribution at the solid-liquid interface, the primary austenite grows from planar to cellular and finally to the distinct dendrite crystals. The dendrite crystals have an obvious growth direction perpendicular to the composite layer.

  3. Altitude transitions in energy climbs

    Science.gov (United States)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1982-01-01

    The aircraft energy-climb trajectory for configurations with a sharp transonic drag rise is well known to possess two branches in the altitude/Mach-number plane. Transition in altitude between the two branches occurs instantaneously, a 'corner' in the minimum-time solution obtained with the energy-state model. If the initial and final values of altitude do not lie on the energy-climb trajectory, then additional jumps (crude approximations to dives and zooms) are required at the initial and terminal points. With a singular-perturbation approach, a 'boundary-layer' correction is obtained for each altitude jump, the transonic jump being a so-called 'internal' boundary layer, different in character from the initial and terminal layers. The determination of this internal boundary layer is examined and some computational results for an example presented.

  4. Sustainable Transition

    DEFF Research Database (Denmark)

    2014-01-01

    What. The chapter addresses designing for sustainability as interventions in socio-technical systems and social practices of users and communities. It calls for reflexive design practices challenging dominant regimes and shaping alternative design spaces. The specific case is the reconfiguration...... of agendas/vision, technologies, actors and institutions in the emergent design of an urban mobility system based on an electric car sharing system. Why. Designing for sustainability is a fundamental challenge for future design practices; designers have to obtain an ability to contribute to sustainable...... transition processes. Where. Addresses design processes aimed at sustainable transition enacted in complex social settings, socio-technical systems involving many different actors and agendas. How. The chapter outlines a conceptual and analytic framework for a reflexive design practice for sustainability...

  5. Transition Operators

    CERN Document Server

    Alcock-Zeilinger, Judith

    2016-01-01

    In this paper, we give a generic algorithm of the transition operators between Hermitian Young projection operators corresponding to equivalent irreducible representations of SU(N), using the compact expressions of Hermitian Young projection operators derived in a companion paper. We show that the Hermitian Young projection operators together with their transition operators constitute a fully orthogonal basis for the algebra of invariants of $V^{\\otimes m}$ that exhibits a systematically simplified multiplication table. We discuss the full algebra of invariants over $V^{\\otimes 3}$ and $V^{\\otimes 4}$ as explicit examples. In our presentation we make use of various standard concepts such as Young projection operators, Clebsch-Gordan operators, and invariants (in birdtrack notation). We tie these perspectives together and use them to shed light on each other.

  6. Boundary layer control of rotating convection systems.

    Science.gov (United States)

    King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M

    2009-01-15

    Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.

  7. Prediction of bypass transition with differential Reynolds stress models

    NARCIS (Netherlands)

    Westin, K.J.A.; Henkes, R.A.W.M.

    1998-01-01

    Boundary layer transition induced by high levels of free stream turbulence (FSl), so called bypass transition, can not be predicted with conventional stability calculations (e.g. the en-method). The use of turbulence models for transition prediction has shown some success for this type of flows, and

  8. Two-dimensional heterospectral correlation analysis of the redox-induced conformational transition in cytochrome c using surface-enhanced Raman and infrared absorption spectroscopies on a two-layer gold surface.

    Science.gov (United States)

    Zou, Changji; Larisika, Melanie; Nagy, Gabor; Srajer, Johannes; Oostenbrink, Chris; Chen, Xiaodong; Knoll, Wolfgang; Liedberg, Bo; Nowak, Christoph

    2013-08-22

    The heme protein cytochrome c adsorbed to a two-layer gold surface modified with a self-assembled monolayer of 2-mercaptoethanol was analyzed using a two-dimensional (2D) heterospectral correlation analysis that combined surface-enhanced infrared absorption spectroscopy (SEIRAS) and surface-enhanced Raman spectroscopy (SERS). Stepwise increasing electric potentials were applied to alter the redox state of the protein and to induce conformational changes within the protein backbone. We demonstrate herein that 2D heterospectral correlation analysis is a particularly suitable and useful technique for the study of heme-containing proteins as the two spectroscopies address different portions of the protein. Thus, by correlating SERS and SEIRAS data in a 2D plot, we can obtain a deeper understanding of the conformational changes occurring at the redox center and in the supporting protein backbone during the electron transfer process. The correlation analyses are complemented by molecular dynamics calculations to explore the intramolecular interactions.

  9. Conformational Transitions

    Science.gov (United States)

    Czerminski, Ryszard; Roitberg, Adrian; Choi, Chyung; Ulitsky, Alexander; Elber, Ron

    1991-10-01

    Two computational approaches to study plausible conformations of biological molecules and the transitions between them are presented and discussed. The first approach is a new search algorithm which enhances the sampling of alternative conformers using a mean field approximation. It is argued and demonstrated that the mean field approximation has a small effect on the location of the minima. The method is a combination of the LES protocol (Locally Enhanced Sampling) and simulated annealing. The LES method was used in the past to study the diffusion pathways of ligands from buried active sites in myoglobin and leghemoglobin to the exterior of the protein. The present formulation of LES and its implementation in a Molecular Dynamics program is described. An application for side chain placement in a tetrapeptide is presented. The computational effort associated with conformational searches using LES grows only linearly with the number of degrees of freedom, whereas in the exact case the computational effort grows exponentially. Such saving is of course associated with a mean field approximation. The second branch of studies pertains to the calculation of reaction paths in large and flexible biological systems. An extensive mapping of minima and barriers for two different tetrapeptides is calculated from the known minima and barriers of alanine tetrapeptide which we calculated recently.1 The tetrapeptides are useful models for the formation of secondary structure elements since they are the shortest possible polymers of this type which can still form a complete helical turn. The tetrapeptides are isobutyryl-val(χ1=60)-ala-ala and isobutyryl-val(χ1=-60)-ala-ala. Properties of the hundreds of minima and of the hundreds intervening barriers are discussed. Estimates for thermal transition times between the many conformers (and times to explore the complete phase space) are calculated and compared. It is suggested that the most significant effect of the side chain size is

  10. Rapid transitions

    Energy Technology Data Exchange (ETDEWEB)

    Hamrin, J.G.

    1980-01-01

    Solar energy programs are entering a critical transitional period as we move from the initial marketing of solar technologies into a phase of widespread commercialization. We face the dual challenge of trying to get enough solar systems in place fast enough to prove solar is a viable alternative, while trying to ensure the systems are designed and installed properly, proving the energy savings as promised. This is a period of both great opportunity and high risk as the field becomes crowded with new solar cheerleaders and supporters but seldom enough competent players. The status of existing and proposed programs for the accelerated commercialization of solar energy in California is described.

  11. Transit space

    DEFF Research Database (Denmark)

    Raahauge, Kirsten Marie

    2008-01-01

    This article deals with representations of one specific city, Århus, Denmark, especially its central district. The analysis is based on anthropological fieldwork conducted in Skåde Bakker and Fedet, two well-off neighborhoods. The overall purpose of the project is to study perceptions of space...... and the interaction of cultural, social, and spatial organizations, as seen from the point of view of people living in Skåde Bakker and Fedet. The focus is on the city dwellers’ representations of the central district of Århus with specific reference to the concept of transit space. When applied to various Århusian...

  12. Calorimetric investigation of phase transitions in the layered antiferromagnetic molecule-based material {l_brace}N(n-C{sub 5}H{sub 11}){sub 4}[Mn{sup II}Fe{sup III}(ox){sub 3}]{r_brace}{sub {infinity}}(ox=oxalato)

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, A. E-mail: ashis62@rediffmail.com; Miyazaki, Y.; Sorai, M

    2004-09-01

    Heat capacity studies of the layered molecule-based magnetic material {l_brace}N(n-C{sub 5}H{sub 11}){sub 4}[Mn{sup II}Fe{sup III}(ox){sub 3}]{r_brace}{sub {infinity}} (ox=oxalato) have been made in the 2-280 K range. Two distinct heat capacity anomalies were detected at 27.1 K (T{sub N}) and 226 K corresponding to magnetic and structural phase transitions, respectively, along with a hump around 23 K. The magnetic heat capacities above T{sub N} can be well represented by S=5/2 two-dimensional antiferromagnetic Heisenberg model of a honeycomb lattice with intralayer exchange interaction J/k{sub B}=-3.3 K. Application of spin-wave theory indicated the existence of a very weak interlayer magnetic interaction below T{sub N}. The anomaly at 27.1 K is due to the antiferromagnetic transition, in conformity with the magnetic results reported earlier. The hump around 23 K might be associated with the existing uncompensated magnetic moments. The estimated magnetic entropy (33.22 J K{sup -1} mol{sup -1}) is close to the expected magnetic entropy (R ln (6x6)=29.80 J K{sup -1} mol{sup -1}) for the spin multiplicity of high spin Mn{sup II} and Fe{sup III} ions. The heat capacity anomaly at 226 K may be assigned to a structural phase transition of order-disorder type due to increasing conformational change of the n-C{sub 5}H{sub 11} chains in the organic cation.

  13. Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    Science.gov (United States)

    2015-03-26

    Transition MM Metamaterial MO Molecular Orbital MRAM Magnetic Random Access Memory MTFET Mott Transition Field-effect Transistor NA Numerical...including ultra-fast electronic memory, optical switches and filters, and active layers in terahertz metamaterials , among others. The physical mechanisms...modulators, radio frequency (RF) electrical switches, tunable layers on terahertz 3 metamaterials , and high performance bimorph layers for

  14. Method for forming a barrier layer

    Energy Technology Data Exchange (ETDEWEB)

    Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palo Alto, CA)

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  15. Magnetism in layered Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, Paul C.

    2008-07-01

    In this thesis, the magnetism of the layered Ruthenates has been studied by means of different neutron scattering techniques. Magnetic correlations in the single-layer Ruthenates of the series Ca{sub 2-x}Sr{sub x}RuO{sub 4} have been investigated as function of Sr-concentration (x=0.2 and 0.62), temperature and magnetic field. These inelastic neutron scattering studies demonstrate the coexistence of ferromagnetic paramagnon scattering with antiferromagnetic fluctuations at incommensurate wave vectors. The temperature dependence of the amplitudes and energies of both types of excitations indicate the proximity to magnetic instabilities; their competition seems to determine the complex behavior of these materials. In Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4}, which shows a metamagnetic transition, the ferromagnetic fluctuations are strongly suppressed at low temperature, but appear at higher temperature or application of a magnetic field. In the high-field phase of Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4} above the metamagnetic transition, a ferromagnetic magnon dominates the excitation spectrum. Polarized neutron scattering revealed the existence of a very broad signal around the zone centre, in addition to the well-known incommensurate excitations at Q=(0.3,0.3,0) in the unconventional superconductor Sr{sub 2}RuO{sub 4}. With this additional contribution, it is possible to set up a general model for the Q-dependent magnetic susceptibility, which is well consistent with the results of other measurement methods that do not resolve the Q-dependence. Upon doping with Ti, the incommensurate fluctuations are enhanced, in particular near the critical concentration for the onset of magnetic order, but no divergence down to very low temperature is observed. In the bilayer Ti-doped Ca{sub 3}Ru{sub 2}O{sub 7}, the existence of magnetic order with a propagation vector of about ((1)/(4),(1)/(4),0) has been discovered and characterized in detail. Above and below T{sub N}, excitations at this

  16. Innovation in Layer-by-Layer Assembly.

    Science.gov (United States)

    Richardson, Joseph J; Cui, Jiwei; Björnmalm, Mattias; Braunger, Julia A; Ejima, Hirotaka; Caruso, Frank

    2016-12-14

    Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.

  17. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness...

  18. Leidenfrost Vapor Layer Stabilization on Superhydrophobic Surfaces

    Science.gov (United States)

    Vakarelski, Ivan; Patankar, Neelesh; Marston, Jeremy; Chan, Derek; Thoroddsen, Sigurdur

    2012-11-01

    We have performed experiments to investigate the influence of the wettability of a superheated metallic sphere on the stability of a thin vapor layer during the cooling of a sphere immersed in water. For high enough sphere temperatures, a continuous vapor layer (Leidenfrost regime) is observed on the surface of non-superhydrophobic spheres, but below a critical sphere temperature the layer becomes unstable and explosively switches to nuclear boiling regime. In contrast, when the sphere surface is textured and superhydrophobic, the vapor layer is stable and gradually relaxes to the sphere surface until the complete cooling of the sphere, thus avoiding the nuclear boiling transition altogether. This finding could help in the development of heat exchange devices and of vapor layer based drag reducing technologies.

  19. Layered-structural monoclinic–orthorhombic perovskite La{sub 2}Ti{sub 2}O{sub 7} to orthorhombic LaTiO{sub 3} phase transition and their microstructure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, G., E-mail: manuel.herrera@enp.unam.mx [Colegio de Física, ENP P7, “Ezequiel A. Chávez”, Universidad Nacional Autónoma de 3México, 15810 México D. F. (Mexico); Departamento de Química Inorgánica, Universidad de Valencia, 46100 Burjasot, Valencia (Spain); Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 México D. F. (Mexico); Jiménez-Mier, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 México D. F. (Mexico); Chavira, E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, 04510 México D. F. (Mexico)

    2014-03-01

    The layered-structural ceramics, such as lanthanum titanate (La{sub 2}Ti{sub 2}O{sub 7}), have been known for their good temperature and low dielectric loss at microwave frequencies that make them good candidate materials for high frequency applications. However, few studies have been conducted on the synthesis optimization by sol gel reaction, in particular by acrylamide polymerization route. The interest in La{sub 2}Ti{sub 2}O{sub 7} ceramic has been greatly increased recently due to the effect of oriented grains. This anisotropy of the microstructure leads to anisotropy in dielectric, electrical and mechanical properties. In this study, grain oriented lanthanum titanate was produced by the sol–gel acrylamide polymerization route. The characterizations of the samples were achieved by thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). X-ray diffraction indicates that the formation of monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} nanocrystals is a necessary first step to obtain orthorhombic LaTiO{sub 3} nanocomposites (with space group Pbnm). In this work we identified that the monoclinic perovskite La{sub 2}Ti{sub 2}O{sub 7} with space group P2{sub 1} transforms its structure into one with the orthorhombic space group Cmc2{sub 1} at approximately 1073 K. The microstructure associated consisted of flaky monoclinic La{sub 2}Ti{sub 2}O{sub 7} nanocomposites in comparison with round-shaped LaTiO{sub 3} nanocomposites. - Highlights: • The flaky-like La{sub 2}Ti{sub 2}O{sub 7} compound was synthesized by sol–gel acrylamide route. • Simultaneous monitoring of the DTA and XRD with temperature was performed. • Phase transformation characterization of La{sub 2}Ti{sub 2}O{sub 7} has been carried out. • The variation of the La{sub 2}Ti{sub 2}O{sub 7} and LaTiO{sub 3} grain morphology has been compared.

  20. Numerical simulation of transition in wall-bounded shear flows

    Science.gov (United States)

    Kleiser, Leonhard; Zang, Thomas A.

    1991-01-01

    The current status of numerical simulation techniques for the transition to turbulence in incompressible channel and boundary-layer flows is surveyed, and typical results are presented graphically. The focus is on direct numerical simulations based on the full nonlinear time-dependent Navier-Stokes equations without empirical closure assumptions for prescribed initial and boundary conditions. Topics addressed include the vibrating ribbon problem, space and time discretization, initial and boundary conditions, alternative methods based on the triple-deck approximation, two-dimensional channel and boundary-layer flows, three-dimensional boundary layers, wave packets and turbulent spots, compressible flows, transition control, and transition modeling.

  1. An ensemble perspective on multi-layer networks

    CERN Document Server

    Wider, Nicolas; Scholtes, Ingo; Schweitzer, Frank

    2015-01-01

    We study properties of multi-layered, interconnected networks from an ensemble perspective, i.e. we analyze ensembles of multi-layer networks that share similar aggregate characteristics. Using a diffusive process that evolves on a multi-layer network, we analyze how the speed of diffusion depends on the aggregate characteristics of both intra- and inter-layer connectivity. Through a block-matrix model representing the distinct layers, we construct transition matrices of random walkers on multi-layer networks, and estimate expected properties of multi-layer networks using a mean-field approach. In addition, we quantify and explore conditions on the link topology that allow to estimate the ensemble average by only considering aggregate statistics of the layers. Our approach can be used when only partial information is available, like it is usually the case for real-world multi-layer complex systems.

  2. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  3. 采用长细管法进行脉动压力转捩探测的实验研究%Experimental study on pressure fluctuation sensor-based diagnostic for boundary layer transition with long-fine tubing system

    Institute of Scientific and Technical Information of China (English)

    高永卫; 黄鹏; 朱奇亮; 梁撑刚

    2014-01-01

    Low speed flow transition zone of boundary layer can be detected by means of pres-sure fluctuation measurement over the surface of the test model.It is convenient that fluctuation pressure transducers are arranged outside the model through long-fine tubing system.The distor-tion of pressure signal caused by the tubing system should be recognized.Under the static condi-tion(V= 0m/s),the authors measured a series of sound signals over an airfoil model surface through the tubing system.The sound signal source come from a speaker actuated by a signal generation.The model chord length is 0.8m and the model span is 1.6m in length.The tubes are about 1.2m long and their inner diameters are 0.8mm.The tubing system has proved to be able to transmit the characteristics of the surface pressure fluctuation for the transition detection.Un-der the condition of section flow velocity V= 30m/s,signals of the surface pressure fluctuation transmitted along the chord of the model were measured and the boundary layer transition zones were located.This experiment was conducted in NF-3 low-speed wind tunnel of Northwestern Polytechnical University.The authors suggest that the pressure fluctuation transition diagnostic method with long-fine tubing system is promising and further researches should be carried out.%为了简便地使用测量模型表面脉动压力特征的方法探测边界层转捩位置,需要研究脉动压力传感器接在传统测压模型外的适用性,即通过长细管将模型表面的脉动压力信号传递到脉动压力传感器上的方式是否可得到转捩的特征信号。首先采用信号发生器驱动扬声器,在无风条件下,测量了长细管对不同频率声压信号的传递损失情况。证明了所采用的长细管系统具有合适的工作频带。然后在西北工业大学NF-3低速风洞二元实验段、实验风速为30m/s的条件下,对弦长为800mm、展长为1.6m的翼型模型沿弦向进行了脉动压力信

  4. Light inhibits gravity-regulated peg formation and asymmetric mRNA accumulation of auxin-inducible CsIAA1 in the cortex of the transition zone in cucumber seedlings

    Science.gov (United States)

    Fujii, Nobuharu; Saito, Yuko; Miyazawa, Yutaka; Takahashi, Hideyuki

    When cucumber seedlings are grown horizontally, a specialized protuberance, termed the peg, develops on the lower side of the transition zone between the hypocotyl and the root. Gravimorphogenesis regulates the lateral positioning of the peg in the transition zone and it has been suggested that auxin plays an important role in peg formation in cucumber seedlings. Here, we found that light inhibited auxin-regulated peg formation. In the transition zone of horizontally positioned cucumber seedlings grown in the dark, we detected an asymmetric accumulation of mRNA from the auxin-inducible gene CsIAA1 in the epidermis and cortex. However, in seedlings grown under illumination, this asymmetry was greatly reduced. In dark- and light-grown seedlings, application of 10 -3 M indole-3-acetic acid induced peg formation on both the lower and upper sides of the transition zone. These results suggest that light inhibits peg formation via modification of auxin distribution and/or levels in the transition zone of cucumber seedlings.

  5. Buffer layers for REBCO films for use in superconducting devices

    Science.gov (United States)

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  6. Transition to Adulthood

    Science.gov (United States)

    ... Quick summary of transition IDEA’s definition of transition services Considering the definition Students at the heart of planning their transition ... fix that! Keep reading… Back to top IDEA’s Definition of Transition Services Any discussion of transition services must begin with ...

  7. High-Fidelity Aerodynamic Design with Transition Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to combine a new sweep/taper integrated-boundary-layer (IBL) code that includes transition...

  8. Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times

    NARCIS (Netherlands)

    Alexandrov, N.A.; Marinova, K.G.; Gurkov, T.D.; Danov, K.D.; Kralchevsky, P.A.; Stoyanov, S.D.; Blijdenstein, T.B.J.; Arnaudov, L.N.; Pelan, E.G.; Lips, A.

    2012-01-01

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is

  9. Wetting transition on patterned surfaces: transition states and energy barriers.

    Science.gov (United States)

    Ren, Weiqing

    2014-03-18

    We study the wetting transition on microstructured hydrophobic surfaces. We use the string method [J. Chem. Phys. 2007, 126, 164103; J. Chem. Phys. 2013, 138, 134105] to accurately compute the transition states, the energy barriers, and the minimum energy paths for the wetting transition from the Cassie-Baxter state to the Wenzel state. Numerical results are obtained for the wetting of a hydrophobic surface textured with a square lattice of pillars. It is found that the wetting of the solid substrate occurs via infiltration of the liquid in a single groove, followed by lateral propagation of the liquid front. The propagation of the liquid front proceeds in a stepwise manner, and a zipping mechanism is observed during the infiltration of each layer. The minimum energy path for the wetting transition goes through a sequence of intermediate metastable states, whose wetted areas reflect the microstructure of the patterned surface. We also study the dependence of the energy barrier on the drop size and the gap between the pillars.

  10. Layer-by-layer thinning of MoSe2 by soft and reactive plasma etching

    Science.gov (United States)

    Sha, Yunfei; Xiao, Shaoqing; Zhang, Xiumei; Qin, Fang; Gu, Xiaofeng

    2017-07-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe2) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe2 can be changed from the indirect band gap to the direct band gap when MoSe2 changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe2 layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe2 nanaosheets down to monolayer by using SF6 + N2 plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe2 layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO2 substrate and the remaining MoSe2 layers. By adjusting the etching rates we can achieve complete MoSe2 removal and any disired number of MoSe2 layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  11. PyTransit: Transit light curve modeling

    Science.gov (United States)

    Parviainen, Hannu

    2015-05-01

    PyTransit implements optimized versions of the Giménez and Mandel & Agol transit models for exoplanet transit light-curves. The two models are implemented natively in Fortran with OpenMP parallelization, and are accessed by an object-oriented python interface. PyTransit facilitates the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations. It offers efficient model evaluation for multicolour observations and transmission spectroscopy, built-in supersampling to account for extended exposure times, and routines to calculate the projected planet-to-star distance for circular and eccentric orbits, transit durations, and more.

  12. VSWI Wetlands Advisory Layer

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset represents the DEC Wetlands Program's Advisory layer. This layer makes the most up-to-date, non-jurisdictional, wetlands mapping avaiable to the public...

  13. Basic Ozone Layer Science

    Science.gov (United States)

    Learn about the ozone layer and how human activities deplete it. This page provides information on the chemical processes that lead to ozone layer depletion, and scientists' efforts to understand them.

  14. Ozone Layer Protection

    Science.gov (United States)

    ... Search Search Ozone Layer Protection Share Facebook Twitter Google+ Pinterest Contact Us Ozone Layer Protection Welcome to ... Managing Refrigerant Emissions Stationary Refrigeration and Air Conditioning Car and Other Mobile Air Conditioning GreenChill Partnership Responsible ...

  15. Stripline/Microstrip Transition in Multilayer Circuit Board

    Science.gov (United States)

    Epp, Larry; Khan, Abdur

    2005-01-01

    A stripline-to-microstrip transition has been incorporated into a multilayer circuit board that supports a distributed solid-state microwave power amplifier, for the purpose of coupling the microwave signal from a buried-layer stripline to a top-layer microstrip. The design of the transition could be adapted to multilayer circuit boards in such products as cellular telephones (for connecting between circuit-board signal lines and antennas), transmitters for Earth/satellite communication systems, and computer mother boards (if processor speeds increase into the range of tens of gigahertz). The transition is designed to satisfy the following requirements in addition to the basic coupling requirement described above: (1) The transition must traverse multiple layers, including intermediate layers that contain DC circuitry. (2) The transition must work at a frequency of 32 GHz with low loss and low reflection. (3) The power delivered by the transition to top-layer microstrip must be split equally in opposite directions along the microstrip. Referring to the figure, this amounts to a requirement that when power is supplied to input port 1, equal amounts of power flow through output ports 2 and 3. (4) The signal-line via that is necessarily a part of such a transition must not be what is known in the art as a blind via; that is, it must span the entire thickness of the circuit board.

  16. The glass transition in irreversibly adsorbed polymer layers

    OpenAIRE

    Infantas Melendez, Leslie

    2012-01-01

    En este proyecto investigamos la transición vitrea de capas de polímeros irreversiblemente absorbidas, conocidas como Guiselin brushes. Las muestras han sido preparadas por la técnica spincoating donde se ha puesto soluciones de poliestireno en tolueno sobre óxido de silicio; los filmes resultantes son sometidos a diferentes tiempos de templado y temperaturas. Sucesivamente, las cadenas no absorbidas son retiradas con el disolvente más adecuado utilizado en el spincoating. Determinamos la ...

  17. Experimental Studies of Transitional Boundary Layer Shock Wave Interactions

    Science.gov (United States)

    2006-12-01

    experimental program is carried out in the Mach 5 blow down wind tunnel located at the High-Speed Wind Tunnel Laboratory at the Pickle Research Campus...used the same laser and camera setup, as described above. For PIV the flow was seeded in the stagnation chamber with titanium -dioxide particles that

  18. Numerical Simulation of Transition in Hypersonic Boundary Layers

    Science.gov (United States)

    2011-02-01

    the figures of this chapter are digitized from Mack, 1969) show the real and imaginary part of the complex eigen- value crph,x + ic i ph,x as a...research comunity about first-mode and second-mode un- stable regions. As discussed for figure 4.10b, both regions are not always a result of two

  19. Redox Liquid Phase Exfoliation of Layered Transition Metal Dichalcogenides (Postprint)

    Science.gov (United States)

    2016-12-29

    affords unique opportunities for chemical sensing, catalysis, spintronics, single-photon emission , infrared optics, nanocomposites, coatings, and printable...thickness (black dotted line). Similar shifts are seen in NbSe2, MoSe2, as well as new low -dimensional modes appearing in MoSe2 and WSe2. These data...exfoliation as a function of CHP addition. Constant amounts of NaBH4 were added (400 µmol). Initially, low loading ratios of CHP (0.1:1, 1:1) give low

  20. Boundary-Layer Bypass Transition Over Large Scale Bodies

    Science.gov (United States)

    2016-12-16

    U2 = − 1 Ũ2b ∂P ∂ΦL + 1 RL ∂2U ∂Ψ2L , (3.13) ∂P ∂ΨL = 0, (3.14) Here U and V are the velocity components of the inner mean flow. Since the inner...2 ) =   Ũ ∂∂Φ ( u2 +v2+w2 2 ) Ũ ∂∂Ψ ( u2 +v2+w2 2 ) ∂ ∂z ( u2 +v2+w2 2 )   V×∇×V = Ũ2 det   1 1 1 u v w 1 Ũ [ ∂w ∂Ψ − ∂∂z...form is Φ) : ∂u ∂t + Ũ ∂ ∂Φ ( u2 + v2 + w2 2 ) − Ũ2 { v [ ∂ ∂Φ ( v Ũ ) − ∂ ∂Ψ ( u Ũ )] − w Ũ

  1. Electric fields and double layers in plasmas

    Science.gov (United States)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  2. Stability and transition of attachment-line flow

    NARCIS (Netherlands)

    Heeg, R.

    1998-01-01

    Moving vehicles, such as submarines and airplanes, are surrounded by a thin boundary layer in which the relative uid velocity drops rapidly to zero close to the solid walls of the vehicle. The transition of such boundary layers from laminar into turbulent flow is an interesting phenomenon. Moreover,

  3. Stability and transition of attachment-line flow

    NARCIS (Netherlands)

    Heeg, Ruerd Sybren

    1998-01-01

    Moving vehicles, such as submarines and airplanes, are surrounded by a thin boundary layer in which the relative uid velocity drops rapidly to zero close to the solid walls of the vehicle. The transition of such boundary layers from laminar into turbulent flow is an interesting phenomenon. Moreover

  4. Equinoctial transitions in the ionosphere and thermosphere

    Directory of Open Access Journals (Sweden)

    A. V. Mikhailov

    Full Text Available Equinoctial summer/winter transitions in the parameters of the F2-region are analyzed using ground-based ionosonde and incoherent scatter observations. Average transition from one type of diurnal NmF2 variation to another takes 20–25 days, but cases of very fast (6–10 days transitions are observed as well. Strong day-time NmF2 deviations of both signs from the monthly median, not related to geomagnetic activity, are revealed for the transition periods. Both longitudinal and latitudinal variations take place for the amplitude of such quiet time NmF2 deviations. The summer-type diurnal NmF2 variation during the transition period is characterized by decreased atomic oxygen concentration [O] and a small equatorward thermospheric wind compared to winter-type days with strong poleward wind and increased [O]. Molecular N2 and O2 concentrations remain practically unchanged in such day-to-day transitions. The main cause of the F2-layer variations during the transition periods is the change of atomic oxygen abundance in the thermosphere related to changes of global thermospheric circulation. A possible relationship with an equinoctial transition of atomic oxygen at the E-region heights is discussed.

    Key words. Atmospheric composition and structure (thermosphere – composition and chemistry – Ionosphere (ionosphere- atmosphere interactions; ionospheric disturbances

  5. Alternating layers of plutonium and lead or indium as surrogate for plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Sven P, E-mail: srudin@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-03-15

    Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

  6. Alternating layers of plutonium and lead or indium as surrogate for plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Sven Peter [Los Alamos National Laboratory

    2009-01-01

    Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

  7. Numerical study of the superconductor-insulator transition in double-layer graphene driven by disorder∗%双层石墨烯材料中无序导致超导-绝缘体相变的数值研究

    Institute of Scientific and Technical Information of China (English)

    何龙; 宋筠

    2013-01-01

      本文利用一种新的数值方法研究了在较大的双层石墨烯样品中杂质的无序效应对超导态特性的影响。采用核多项式方法(Kernel Polynomial Method)来自洽求解双层石墨烯系统的Bogoliubov-de-Gennes (BdG)方程,从而得到了由无序效应所引起的超导序参量的空间涨落精确解。进一步,计算了系统处于超导态时的态密度、光电导和广义逆参与率(inverse participation ratio)等物理量,并发现随着无序强度的不断增大态密度中的能隙被完全抑制,同时光电导的Drude权重也迅速减小并最终降为零,这表明双层石墨烯中的低能电子态发生了安德森局域化,系统因而发生了由无序效应诱导的超导-绝缘体相变。%The kernel polynomial method is employed to study the disorder effects of impurities on the superconductivity of double-layer graphene. The Bogoliubov-de-Gennes equations are solved self-consistently by the kernel polynomial method, and the spatial fluc-tuations of the superconducting order parameters caused by disorder are obtained. Furthermore, we calculate the density of states, the optical conductivity and the general inverse participation ratio, and we find that the energy gap in the density of states can be constrained by increasing disorder, accompanied with the disappearance of the Drude weight in optical conductivity. We also find that the electron states are Anderson localized by disorder and the superconductor-insulator transition happens in double-layer graphene.

  8. A flow control study of a supersonic mixing layer via NPLS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow control of a supersonic mixing layer was studied in a supersonic mixing layer wind tunnel with convective Mach number (Mc) at 0.5. The passive control of the mixing layer was achieved by perturbation tapes on the trailing edge of the splitter plate. The control effects of 2D and 3D perturbation tapes with different sizes were compared. The mixing layer was visualized via NPLS,and the transient fine structures were identifiable in NPLS images,which were used to analyze the effects of flow control. The results show that the 2D tapes can enhance the 2D characteristic of the mixing layer,delaying mixing layer transition; and the 3D tapes can enhance the 3D characteristic of the mixing layer,advancing mixing layer transition. 3D structures of the mixing layer were visualized,and the H-type Λ vortexes were found with 3D tapes control.

  9. Mixing and Transition Control Studied

    Science.gov (United States)

    1996-01-01

    Considerable progress in understanding nonlinear phenomena in both unbounded and wallbounded shear flow transition has been made through the use of a combination of high- Reynolds-number asymptotic and numerical methods. The objective of this continuing work is to fully understand the nonlinear dynamics so that ultimately (1) an effective means of mixing and transition control can be developed and (2) the source terms in the aeroacoustic noise problem can be modeled more accurately. Two important aspects of the work are that (1) the disturbances evolve from strictly linear instability waves on weakly nonparallel mean flows so that the proper upstream conditions are applied in the nonlinear or wave-interaction streamwise region and (2) the asymptotic formulations lead to parabolic problems so that the question of proper out-flow boundary conditions--still a research issue for direct numerical simulations of convectively unstable shear flows--does not arise. Composite expansion techniques are used to obtain solutions that account for both mean-flow-evolution and nonlinear effects. A previously derived theory for the amplitude evolution of a two-dimensional instability wave in an incompressible mixing layer (which is in quantitative agreement with available experimental data for the first nonlinear saturation stage for a plane-jet shear layer, a circular-jet shear layer, and a mixing layer behind a splitter plate) have been extended to include a wave-interaction stage with a three-dimensional subharmonic. The ultimate wave interaction effects can either give rise to explosive growth or an equilibrium solution, both of which are intimately associated with the nonlinear self-interaction of the three dimensional component. The extended theory is being evaluated numerically. In contrast to the mixing-layer situation, earlier comparisons of theoretical predictions based on asymptotic methods and experiments in wall-bounded shear-flow transition have been somewhat lacking

  10. Ti35合金在沸腾硝酸中钝化膜及过渡层形成及组成分析%Passive Film and Transition Layer on Ti35 Alloy after Exposure to Boiling Nitric Acid Solution

    Institute of Scientific and Technical Information of China (English)

    郭荻子; 杨英丽; 赵彬; 赵恒章; 吴金平; 苏航标

    2015-01-01

    The composition and phase constitution of the passive film and the transition layer on Ti35 alloy after immersion corrosion test in 8 mol/L boiling nitric acid were investigated.By using atomic force microscope(AFM), scanning electron microscopy ( SEM) , X ray diffractometer ( XRD) and X ray photoelectron spectroscopy ( XPS) , the corrosion behavior and the structure of the oxide film of Ti35 corrosion samples were investigated.The results show that Ta atoms preferentially react with nitrate.The passive film consists of TiO2 and Ta2 O5 , and the evolution of these oxides is step by step.And corrosion resistance to nitric acid of titanium alloy can effectively improve by adding element Ta.%研究了Ti35合金在8 mol/L 沸腾浓硝酸中腐蚀240 h后表面钝化膜及过渡层的相结构。采用扫描电子显微镜(SEM)、原子力显微镜(AFM)、 X射线衍射(XRD)和X射线光电子能谱(XPS)对Ti35合金腐蚀后样品的钝化膜和过渡层形貌、相结构等进行分析。研究结果表明, Ta原子优先与硝酸反应,钝化膜最终产物TiO2和Ta2 O5是通过逐步的化学反应形成的, Ta元素的加入能有效改善钛合金的耐硝酸腐蚀性能。

  11. Piezoelectric Resonator with Two Layers

    Science.gov (United States)

    Stephanou, Philip J. (Inventor); Black, Justin P. (Inventor)

    2013-01-01

    A piezoelectric resonator device includes: a top electrode layer with a patterned structure, a top piezoelectric layer adjacent to the top layer, a middle metal layer adjacent to the top piezoelectric layer opposite the top layer, a bottom piezoelectric layer adjacent to the middle layer opposite the top piezoelectric layer, and a bottom electrode layer with a patterned structure and adjacent to the bottom piezoelectric layer opposite the middle layer. The top layer includes a first plurality of electrodes inter-digitated with a second plurality of electrodes. A first one of the electrodes in the top layer and a first one of the electrodes in the bottom layer are coupled to a first contact, and a second one of the electrodes in the top layer and a second one of the electrodes in the bottom layer are coupled to a second contact.

  12. Effect of grain orientations of Cu seed layers on the growth of -oriented nanotwinned Cu

    National Research Council Canada - National Science Library

    Liu, Chien-Min; Lin, Han-Wen; Lu, Chia-Ling; Chen, Chih

    2014-01-01

    .... It is found that densely-packed nanotwinned Cu (nt-Cu) can be grown by pulsed electroplating on the strong -oriented Cu seed layer without a randomly-oriented transition layer between the nt-Cu and the Cu seed layer...

  13. The densification of layered polar firn

    Science.gov (United States)

    HöRhold, M. W.; Kipfstuhl, S.; Wilhelms, F.; Freitag, J.; Frenzel, A.

    2011-03-01

    High-resolution density profiles of 16 firn cores from Greenland and Antarctica are investigated in order to improve our understanding of the densification of layered polar firn. A vertical resolution of 1-5 mm enables us to study the detailed densification processes and the evolution of the layering and the resulting variability in density with increasing depth. The densification of layered firn is important for the process of air enclosure in ice and is connected with the observed formation of a nondiffusive zone. Our findings show the following. (1) Mean density profiles, obtained from high-resolution measurements, only partly show clear transitions in densification rate at densities of 550, 730, or 820-840 kg/m3, as they are commonly used in literature. (2) The density variability, induced by the layering, shows a similar pattern at all sites: high variabilities at the surface, a rapid drop to a relative minimum in variability at mean density of 600-650 kg/m3, followed by a second relative maximum. (3) This leads to increased variability at densities of the firn-ice transition for most of the sites. (4) The variability at the surface decreases with increasing mean annual temperature and accumulation rate, whereas the variability at the firn-ice transition increases. We can exclude a change in local climate conditions as an explanation for the density variability since the firn cores in this study cover a broad range in mean annual temperature, accumulation rate, and age. Overall, high-resolution density profiles deliver a more complex picture of compaction of polar firn as a layered granular medium than has been obtained from mean density profiles in the past.

  14. Building biomedical materials layer-by-layer

    Directory of Open Access Journals (Sweden)

    Paula T. Hammond

    2012-05-01

    Full Text Available In this materials perspective, the promise of water based layer-by-layer (LbL assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and nucleic acids, is examined. Specific advantages of the use of LbL assembly versus traditional polymeric blend encapsulation are discussed. Examples are provided to present potential new directions. Translational opportunities are discussed to examine the impact and potential for true biomedical translation using rapid assembly methods, and applications are discussed with high need and medical return.

  15. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  16. Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide.

    Science.gov (United States)

    Wu, Weikang; Zhang, Leining; Liu, Sida; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2016-03-01

    We report theoretical evidence of a liquid-liquid phase transition (LLPT) in liquid silicon carbide under nanoslit confinement. The LLPT is characterized by layering transitions induced by confinement and pressure, accompanying the rapid change in density. During the layering transition, the proportional distribution of tetracoordinated and pentacoordinated structures exhibits remarkable change. The tricoordinated structures lead to the microphase separation between silicon (with the dominant tricoordinated, tetracoordinated, and pentacoordinated structures) and carbon (with the dominant tricoordinated structures) in the layer close to the walls. A strong layer separation between silicon atoms and carbon atoms is induced by strong wall-liquid forces. Importantly, the pressure confinement phase diagram with negative slopes for LLPT lines indicates that, under high pressure, the LLPT is mainly confinement-induced, but under low pressure, it becomes dominantly pressure-induced.

  17. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  18. Microstructure of Ni / WC Surface Composite Layer on Gray Iron Substrate

    Institute of Scientific and Technical Information of China (English)

    YANG Guirong; SONG Wenming; MA Ying; LU Jinjun; HAO Yuan; LI Yuandong; WANG Haitang

    2011-01-01

    The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μrn which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macrohardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV 1000.

  19. Near-optimal energy transitions for energy-state trajectories of hypersonic aircraft

    Science.gov (United States)

    Ardema, M. D.; Bowles, J. V.; Terjesen, E. J.; Whittaker, T.

    1992-01-01

    A problem of the instantaneous energy transition that occurs in energy-state approximation is considered. The transitions are modeled as a sequence of two load-factor bounded paths (either climb-dive or dive-climb). The boundary-layer equations associated with the energy-state dynamic model are analyzed to determine the precise location of the transition.

  20. The Managerial Transition.

    Science.gov (United States)

    Kneeland, Steven J.

    1980-01-01

    Having identified the problem of managerial transition in a previous article (CE 510 277), the author outlines a strategy for change which includes performance appraisal, definition of the management structure, and counselling for the individual in transition. (SK)

  1. Public Transit Stations

    Data.gov (United States)

    Department of Homeland Security — fixed rail transit stations within the Continental United States, Alaska, Hawaii, the District of Columbia, and Puerto Rico. The modes of transit that are serviced...

  2. Transitivity of Preferences

    Science.gov (United States)

    Regenwetter, Michel; Dana, Jason; Davis-Stober, Clintin P.

    2011-01-01

    Transitivity of preferences is a fundamental principle shared by most major contemporary rational, prescriptive, and descriptive models of decision making. To have transitive preferences, a person, group, or society that prefers choice option "x" to "y" and "y" to "z" must prefer "x" to "z". Any claim of empirical violations of transitivity by…

  3. Berry phase transition in twisted bilayer graphene

    Science.gov (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  4. Peculiarities of neutron waveguides with thin Gd layer

    CERN Document Server

    Khaydukov, Yu; Progliado, V; Ustinov, V; Nikitenko, Yu; Keller, T; Aksenov, V; Keimer, B

    2015-01-01

    Peculiarities of the formation of a neutron enhanced standing wave in the structure with a thin highly absorbing layer of gadolinium are considered in the article. An analogue of the poisoning effect well known in reactor physics was found. The effect is stronger for the Nb/Gd/Nb system. Despite of this effect, for a Nb/Gd bilayer and a Nb/Gd/Nb trilayer placed between Al2O3 substrate and Cu layer, it is shown theoretically and experimentally that one order of magnitude enhancement of neutron density is possible in the vicinity of the Gd layer. This enhancement makes it possible to study domain formation in the Gd layer under transition of the Nb layer(s) into the superconducting state (cryptoferromagnetic phase).

  5. Boundary layers interactions in the plane parallel incompressible flows

    CERN Document Server

    Nguyen, Toan

    2011-01-01

    We study the inviscid limit problem of the incompressible flows in the presence of both impermeable regular boundaries and a hypersurface transversal to the boundary across which the inviscid flow has a discontinuity jump. In the former case, boundary layers have been introduced by Prandtl as correctors near the boundary between the inviscid and viscous flows. In the latter case, the viscosity smoothes out the discontinuity jump by creating a transition layer which has the same amplitude and thickness as the Prandtl layer. In the neighborhood of the intersection of the impermeable boundary and of the hypersurface, interactions between the boundary and the transition layers must then be considered. In this paper, we initiate a mathematical study of this interaction and carry out a strong convergence in the inviscid limit for the case of the plane parallel flows introduced by Di Perna and Majda in \\cite{DM}.

  6. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  7. Transitive spaces of operators

    CERN Document Server

    Davidson, K R; Radjavi, H

    2007-01-01

    We investigate algebraic and topological transitivity and, more generally, k-transitivity for linear spaces of operators. In finite dimensions, we determine minimal dimensions of k-transitive spaces for every k, and find relations between the degree of transitivity of a product or tensor product on the one hand and those of the factors on the other. We present counterexamples to some natural conjectures. Some infinite dimensional analogues are discussed. A simple proof is given of Arveson's result on the weak-operator density of transitive spaces that are masa bimodules.

  8. Transition Theory – Sustainable Transition of Socio-Technical Systems

    DEFF Research Database (Denmark)

    Søndergård, Bent; Holm, Jesper; Stauning, Inger

    2015-01-01

    Theories of transition management, transition studies and social practise theory Applied to studies of hosuing and construction......Theories of transition management, transition studies and social practise theory Applied to studies of hosuing and construction...

  9. The present and future state of the Antarctic firn layer

    OpenAIRE

    2014-01-01

    Firn is the transitional product between fresh snow and glacier ice and acts as a boundary between the atmosphere and the glacier ice of the Antarctic Ice Sheet (AIS). Spatiotemporal variations in firn layer characteristics are therefore important to consider when assessing the mass balance of the AIS. In this thesis, a firn densification model, forced with a realistic climate, is used to examine contemporary (1979-2012) and future (2000-2200) variations in the Antarctic firn layer. Currently...

  10. The Equatorial Ekman Layer

    CERN Document Server

    Marcotte, Florence; Soward, Andrew

    2016-01-01

    The steady incompressible viscous flow in the wide gap between spheres rotating about a common axis at slightly different rates (small Ekman number E) has a long and celebrated history. The problem is relevant to the dynamics of geophysical and planetary core flows, for which, in the case of electrically conducting fluids, the possible operation of a dynamo is of considerable interest. A comprehensive asymptotic study, in the limit E<<1, was undertaken by Stewartson (J. Fluid Mech. 1966, vol. 26, pp. 131-144). The mainstream flow, exterior to the E^{1/2} Ekman layers on the inner/outer boundaries and the shear layer on the inner sphere tangent cylinder C, is geostrophic. Stewartson identified a complicated nested layer structure on C, which comprises relatively thick quasi-geostrophic E^{2/7} (inside C) and E^{1/4} (outside C) layers. They embed a thinner E^{1/3} ageostrophic shear layer (on C), which merges with the inner sphere Ekman layer to form the E^{2/5} Equatorial Ekman layer of axial length E^{...

  11. The Application of Layer Theory to Design: The Control Layer

    Science.gov (United States)

    Gibbons, Andrew S.; Langton, Matthew B.

    2016-01-01

    A theory of design layers proposed by Gibbons ("An Architectural Approach to Instructional Design." Routledge, New York, 2014) asserts that each layer of an instructional design is related to a body of theory closely associated with the concerns of that particular layer. This study focuses on one layer, the control layer, examining…

  12. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  13. Alpha models and boundary-layer turbulence

    Science.gov (United States)

    Cheskidov, Alexey

    We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of the skin-friction coefficient in the turbulent boundary layer. The two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free stream turbulence intensity. A one-parameter sub-family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers.

  14. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  15. Structured luminescence conversion layer

    Science.gov (United States)

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  16. Layered circle packings

    Directory of Open Access Journals (Sweden)

    David Dennis

    2005-01-01

    Full Text Available Given a bounded sequence of integers {d0,d1,d2,…}, 6≤dn≤M, there is an associated abstract triangulation created by building up layers of vertices so that vertices on the nth layer have degree dn. This triangulation can be realized via a circle packing which fills either the Euclidean or the hyperbolic plane. We give necessary and sufficient conditions to determine the type of the packing given the defining sequence {dn}.

  17. Unusual phase transition in a natural heterostructure of iron pnictides and vanadium oxides

    Science.gov (United States)

    Ok, Jong Mok; Baek, S.-H.; Eom, Man Jin; Hoch, C.; Kremer, R. K.; Kim, Dong-Hwan; Chang, Chun-Fu; Ko, Kyung-Tae; Park, Sang-Youn; Ji, Sung Dae; Büchner, B.; Park, Jae-Hoon; Shim, J. H.; Mazin, I. I.; Kim, Jun Sung

    We report the unusual phase transition in Sr2VO3FeAs single crystal, where the Mott-insulating vanadium oxides and the high-Tc superconducting iron pnictides form a natural heterostructure. Clear evidence of the phase transition at T0 = 155 K was observed in the iron pnictide layer, not in the vanadium oxide layer, using bulk and NMR measurements. Neither magnetic ordering with sufficient spin moment nor symmetry change in the crystal structure has been detected at T0. At Tmag ~ 45 K, far below T0, magnetic transition occurs in the iron pnictide layer, while the vanadium oxide layer remains nonmagnetic at low temperatures. The complex evolution of various phases in Sr2VO3FeAs is drastically distinct from the phase transitions found in other iron pnictides or vanadium oxides, highlighting the importance of the additional interlayer coupling between the layers. Equal contribution, corresponding author.

  18. Transition delay using control theory.

    Science.gov (United States)

    Bagheri, S; Henningson, D S

    2011-04-13

    This review gives an account of recent research efforts to use feedback control for the delay of laminar-turbulent transition in wall-bounded shear flows. The emphasis is on reducing the growth of small-amplitude disturbances in the boundary layer using numerical simulations and a linear control approach. Starting with the application of classical control theory to two-dimensional perturbations developing in spatially invariant flows, flow control based on control theory has progressed towards more realistic three-dimensional, spatially inhomogeneous flow configurations with localized sensing/actuation. The development of low-dimensional models of the Navier-Stokes equations has played a key role in this progress. Moreover, shortcomings and future challenges, as well as recent experimental advances in this multi-disciplinary field, are discussed.

  19. Gravitationally induced quantum transitions

    Science.gov (United States)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  20. Gravitationally induced quantum transitions

    CERN Document Server

    Landry, A

    2016-01-01

    In this letter, we calculate the probability for resonantly induced transitions in quantum states due to time dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultra cold neutrons (UCN), which are organized according to the energy levels of the Schr\\"odinger equation in the presence of the earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency $\\omega$. The driving force is created by oscillating a macroscopic mass in the neighbourhood of the system of neutrons. The neutrons decay in 880 seconds while the probability of transitions increase as $t^2$. Hence the optimal strategy is to drive the system for 2 lifetimes. The transition amplitude then is of the order of $1.06\\times 10^{-5}$ hence with a million ultra cold neutrons, one should be able to observe transitions.

  1. Predictability of Critical Transitions

    CERN Document Server

    Zhang, Xiaozhu; Hallerberg, Sarah

    2015-01-01

    Critical transitions in multistable systems have been discussed as models for a variety of phenomena ranging from the extinctions of species to socio-economic changes and climate transitions between ice-ages and warm-ages. From bifurcation theory we can expect certain critical transitions to be preceded by a decreased recovery from external perturbations. The consequences of this critical slowing down have been observed as an increase in variance and autocorrelation prior to the transition. However especially in the presence of noise it is not clear, whether these changes in observation variables are statistically relevant such that they could be used as indicators for critical transitions. In this contribution we investigate the predictability of critical transitions in conceptual models. We study the the quadratic integrate-and-fire model and the van der Pol model, under the influence of external noise. We focus especially on the statistical analysis of the success of predictions and the overall predictabil...

  2. The Microstructure and Properties of Diffusion Layer of Spray Aluminum

    Institute of Scientific and Technical Information of China (English)

    YE Hong; YAN Zhonglin; SUN Zhifu

    2005-01-01

    After diffusion processing of thermal spraying, aluminum on 20 # steel is discussed in this article. Variations of microstructure, composition as well as microhardness and corrosion resistance of diffusion layer of spray aluminum were explored by means of X- ray diffraction, scanning electron microscopy (SEM) and electron probe microanalysis ( EPMA ). The result shows that the diffusion layer of spray aluminum consists of η phase ( Fe2 Al5 ), ζ phase ( FeAl2 ), β1 phase ( Fe3Al ), β1 phase ( Fe3 Al ) and α phase from surface to substrate. There are balanced transitions between phases. The layer has extra high hardncss and corrosion resistance.

  3. Turning Forbidden Transitions into Dominant Transitions

    CERN Document Server

    Rivera, Nicholas; Soljacic, Marin

    2016-01-01

    Surface phonon polaritons are hybrid modes of photons and optical phonons that can propagate on the surface of a polar dielectric. In this work, we show that the precise combination of confinement and bandwidth offered by surface phonon polaritons allows for the ability to take forbidden transitions and turn them into the primary means by which an electron emits light. We show that high-order multipolar transitions and two-photon emission processes can be over an order of magnitude faster than competing dipole transitions, as opposed to being as much as eight to ten orders of magnitude slower in free space. Our results have direct implications for the design of fundamentally new types of emitters in the mid and far IR: ones which prefer to change their angular momentum by large amounts and also ones that prefer to emit a relatively broad spectrum of entangled photons - potentially allowing for new sources of both single and multiple photons.

  4. Transit Benefit Program Data -

    Data.gov (United States)

    Department of Transportation — This data set contains information about any US government agency participating in the transit benefits program, funding agreements, individual participating Federal...

  5. Instabilities of uniform filtration flows with phase transition

    Science.gov (United States)

    Il'Ichev, A. T.; Tsypkin, G. G.

    2008-10-01

    New mechanisms of instability are described for vertical flows with phase transition through horizontally extended two-dimensional regions of a porous medium. A plane surface of phase transition becomes unstable at an infinitely large wavenumber and at zero wavenumber. In the latter case, the unstable flow undergoes reversible subcritical bifurcations leading to the development of secondary flows (which may not be horizontally uniform). The evolution of subcritical modes near the instability threshold is governed by the Kolmogorov-Petrovskii-Piskunov equation. Two examples of flow through a porous medium are considered. One is the unstable flow across a water-bearing layer above a layer that carries a vapor-air mixture under isothermal conditions in the presence of capillary forces at the phase transition interface. The other is the vertical flow with phase transition in a high-temperature geothermal reservoir consisting of two high-permeability regions separated by a low-permeability stratum.

  6. The Electrical Conductivity of Post-Perovskite in Earth's D" Layer

    National Research Council Canada - National Science Library

    Kenji Ohta; Suzue Onoda; Kei Hirose; Ryosuke Sinmyo; Katsuya Shimizu; Nagayoshi Sata; Yasuo Ohishi; Akira Yasuhara

    2008-01-01

    Recent discovery of a phase transition from perovskite to post-perovskite suggests that the physical properties of Earth's lowermost mantle, called the D" layer, may be different from those of the overlying mantle...

  7. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  8. TWO-LAYER MODEL DESCRIPTION OF POLYMER THIN FILM DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    Dong-dong Peng; Ran-xing Nancy Li; Chi-hang Lam; Ophelia K.C.Tsui

    2013-01-01

    Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca.100 nm.It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk.In this paper,we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining,bulk-like layer in the film.Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide,where divergent thickness dependences are observed.

  9. VARIOUS REGIMES OF CHARGE-DENSITY WAVES IN LAYERED COMPOUNDS

    NARCIS (Netherlands)

    Bakel, G.P.E.M. van; Hosson, J.Th.M. De

    1992-01-01

    In this paper we have subjected different layered transition-metal dichalcogenides to scanning tunneling microscopy to reveal the electronic charge distribution associated with the charge-density-wave (CDW) part of the superstructure, in addition to the atomic corrugation. The observations presented

  10. Quantized layer growth at liquid-crystal surfaces

    DEFF Research Database (Denmark)

    Ocko, B. M.; Braslau, A.; Pershan, P. S.

    1986-01-01

    of the specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...

  11. The present and future state of the Antarctic firn layer

    NARCIS (Netherlands)

    Ligtenberg, S.R.M.

    2014-01-01

    Firn is the transitional product between fresh snow and glacier ice and acts as a boundary between the atmosphere and the glacier ice of the Antarctic Ice Sheet (AIS). Spatiotemporal variations in firn layer characteristics are therefore important to consider when assessing the mass balance of the A

  12. Magnetic transition in Co/(Gd-Co) multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V. [Ural State University, Lenin Ave. 51, Ekaterinburg 620083 (Russian Federation); UPV/EHU, Dpto. de Electricidad y Electronica, Universidad del Pais Vasco, P.O. Box 644, Bilbao 48080 (Spain)], E-mail: andrey.svalov@ehu.es; Fernandez, A. [Dpto. de Fisica, Universidad de Oviedo, Avenida Calvo Sotelo s/n, Oviedo 33007 (Spain); Barandiaran, J.M. [UPV/EHU, Dpto. de Electricidad y Electronica, Universidad del Pais Vasco, P.O. Box 644, Bilbao 48080 (Spain); Vas' kovskiy, V.O. [Ural State University, Lenin Ave. 51, Ekaterinburg 620083 (Russian Federation); Orue, I. [SGIKER, Servicio Generale de medidas magneticas, Universidad del Pais Vasco, Bilbao 48080 (Spain); Tejedor, M. [Dpto. de Fisica, Universidad de Oviedo, Avenida Calvo Sotelo s/n, Oviedo 33007 (Spain); Kurlyandskaya, G.V. [UPV/EHU, Dpto. de Electricidad y Electronica, Universidad del Pais Vasco, P.O. Box 644, Bilbao 48080 (Spain)

    2008-10-15

    [Co/Gd{sub 0.36}Co{sub 0.64}]{sub 4}/Co multilayers with Co termination layer have been prepared by rf sputtering. They form macroscopic ferrimagnets with a compensation temperature (T{sub comp}) determined by the thickness ratio of the layers. In low fields the magnetization of Co and Gd-Co layers are along the axis of the applied field. Increasing field makes the moments of both the Co and Gd-Co layers deviate from the axis of the field giving rise to a transition into a twisted state. These magnetic transitions were studied by vibrating sample magnetometer (VSM), magneto-optic Kerr effect and magnetoresistance measurements at various temperatures. The nucleation and evolution of surface- and bulk-twisted magnetic states were also observed in these multilayers.

  13. Buckling transition of nematic gels in confined geometry

    OpenAIRE

    Meng, Guangnan; Meyer, Robert B.

    2009-01-01

    A spontaneous buckling transition in thin layers of monodomain nematic liquid crystalline gel was observed by polarized light microscopy. The coupling between the orientational ordering of liquid crystalline solvent and the translational ordering of crosslinked polymer backbones inside the nematic gel contributes to such buckling transition. As the nematic mesogens become more ordered when the gel is cooled down from a higher gelation temperature, the polymeric backbones tend to elongate alon...

  14. Seismic and Gravitational Studies of Melting in the Mantle’s Thermal Boundary Layers

    Science.gov (United States)

    2007-06-01

    1993a]). However, the transition from layer 2c to layer 3 (commonly identified as the transition from sheeted dikes to gabbros formed by crystallization...except the region of interest (in our case. the core-inaiitle boundary). The lack of real- world heterogeneity and attenuation in the upper mantle...structures is to be of use in understanding CMB structure in the real world , the collection and creative exploitation of 2-D and 3-D array data sets with

  15. The Ozone Layer and Metered Dose Inhalers

    Directory of Open Access Journals (Sweden)

    Louis-Philippe Boulet

    1998-01-01

    Full Text Available The stratospheric ozone layer plays a crucial role in protecting living organisms against ultraviolet radiation. Chlorofluorocarbons (CFC contained in metered-dose inhalers (MDIs contribute to ozone depletion and in accordance with the Montreal Protocol on Substances That Deplete the Ozone Layer established 10 years ago, phase-out strageies have been developed worldwide for this category of agents. Alternatives to CFC-containing inhalers have been developed, such as powder inhalers and those using hydrofluoroalkanes (HFAs as propellants, which have been shown to be as safe and effective as CFC-containing inhalers and even offer interesting advantages over older inhalers. The transition to non-CFC MDIs requires a major effort to make the new products available and to ensure adequate comparision with the previous ones. It also requires a harmonization of actions taken by industry, government, licencing bodies and patients or health professional associations to ensure adequate information and education to the public and respiratory care providers.

  16. Structure and Properties of Vacuum Arc Single-Layer and Multiperiod Two-Layer Nitride Coatings Based on Ti(Al:Si Layers

    Directory of Open Access Journals (Sweden)

    V.M. Beresnev

    2017-02-01

    Full Text Available The paper provides an analysis of impact of deposition conditions on structural and phase state and thermal stability of vacuum arc coatings based on Ti(Al:Si layers. We studied single-phase single-layer coatings, and multiperiod bilayer coatings with second phase nitride interlayers of one of the following three metals: Mo, Cr or Zr. It was established that hexagonal and cubic lattices may form in the coatings when transition to the cubic lattice occurs with Al content of about 25 at. %. Presence of second nanoscale (7-8 nm layers in bilayer multiperiod compositions, which consist of one nitride from CrNx, MoNx or ZrNx group, does not change the type of lattice in [Ti(Al:Si]Nx layers. Also, an fcc lattice with a strong or weak texture [111] forms in CrNx and ZrNx layers, while crystallites with hexagonal lattice form in MoNx layers. High-temperature annealing at 700 °С during 40 minutes leads to a significant (by 23 % or up to Н  47.56 GPa increase in microhardness of coating of the [Ti(Al]Nx/ZrNy system due to formation of a nano-size structure with an average size of crystallites of 3.6 nm in [Ti(Al]Nx layers, and 6.3 nm in ZrNx layers.

  17. Superfluid Boundary Layer

    Science.gov (United States)

    Stagg, G. W.; Parker, N. G.; Barenghi, C. F.

    2017-03-01

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  18. Layered Systems Engineering Engines

    Science.gov (United States)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  19. A new algebraic transition model based on stress length function

    Science.gov (United States)

    Xiao, Meng-Juan; She, Zhen-Su

    2016-11-01

    Transition, as one of the two biggest challenges in turbulence research, is of critical importance for engineering application. For decades, the fundamental research seems to be unable to capture the quantitative details in real transition process. On the other hand, numerous empirical parameters in engineering transition models provide no unified description of the transition under varying physical conditions. Recently, we proposed a symmetry-based approach to canonical wall turbulence based on stress length function, which is here extended to describe the transition via a new algebraic transition model. With a multi-layer analytic form of the stress length function in both the streamwise and wall normal directions, the new model gives rise to accurate description of the mean field and friction coefficient, comparing with both the experimental and DNS results at different inlet conditions. Different types of transition process, such as the transition with varying incoming turbulence intensities or that with blow and suck disturbance, are described by only two or three model parameters, each of which has their own specific physical interpretation. Thus, the model enables one to extract physical information from both experimental and DNS data to reproduce the transition process, which may prelude to a new class of generalized transition model for engineering applications.

  20. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    Ellen Clarke

    2014-04-01

    An `evolutionary transition in individuality’ or `major transition’ is a transformation in the hierarchical level at which natural selection operates on a population. In this article I give an abstract (i.e. level-neutral and substrate-neutral) articulation of the transition process in order to precisely understand how such processes can happen, especially how they can get started.

  1. Transition Texture Synthesis

    Institute of Scientific and Technical Information of China (English)

    Yueh-Yi Lai; Wen-Kai Tai

    2008-01-01

    Synthesis of transition textures is essential for displaying visually acceptable appearances on a terrain. This investigation presents a modified method for synthesizing the transition texture to be tiled on a terrain. All transition pattern types are recognized for a number of input textures. The proposed modified patch-based sampling texture synthesis approach, using the extra feature map of the input source and target textures for patch matching, can synthesize any transition texture on a succession pattern by initializing the output texture using a portion of the source texture enclosed in a transition cut. The transition boundary is further enhanced to improve the visual effect by tracing out the integral texture elements. Either the Game of Life model or Wang tiles method are exploited to present a good-looking profile of successions on a terrain for tiling transition textures. Experimental results indicate that the proposed method requires few input textures, yet synthesizes numerous tileable transition textures, which are useful for obtaining a vivid appearance of a terrain.

  2. Matter in transition

    Science.gov (United States)

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-04-01

    We explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU( N) require Weierstrass models that cannot be realized from the standard SU( N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.

  3. Growth of oriented rare-earth-transition-metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, E.E.; Sowers, C.H.; Bader, S.D. [Argonne National Lab., IL (United States); Wu, X.Z. [Argonne National Lab., IL (United States)]|[Northern Illinois Univ., DeKalb, IL (United States)

    1996-04-01

    Rare-earth-transition-metal thin films are successfully grown by magnetron sputtering onto single-crystal MgO substrates with epitaxial W buffer layers. The use of epitaxial W buffer layers allows oriented single-phase films to be grown. Sm-Co films grown onto W(100), have strong in-plane anisotropy and coercivities exceeding 5 T at 5 K whereas Fe-Sm films have strong perpendicular anisotropy and are magnetically soft.

  4. Reinforcing the mineral layer

    Energy Technology Data Exchange (ETDEWEB)

    Pishchulin, V.V.; Kuntsevich, V.I.; Seryy, A.M.; Shirokov, A.P.

    1980-05-15

    A way of reinforcing the mineral layer includes drilling holes and putting in anchors that are longer than the width of the layer strip being extracted. It also includes shortening the anchors as the strip is mined and reinforcing the remaining part of the anchor in the mouth of the hole. To increase the productivity and safety of the work, the anchors are shortened by cutting them as the strip is mined and are reinforced through wedging. The device for doing this has auxilliary lengthwise grooves in the shaft located along its length at an interval equal to the width of the band being extracted.

  5. Electroactive functional hybrid layered nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Destri, Giovanni Li; Torrisi, Vanna; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN) - University of Catania and CSGI - Catania (Italy)

    2012-07-11

    Two methodologies to build new nanostructured hybrid layered nanocomposites are presented. The first one involves the preparation of hybrid metal/polymer nanolayers (NLs) by combining two monolayer preparation techniques: Horizontal Precipitation Langmuir Blodgett method (HP-ML), for copolymer monolayers and sputter deposition technique, for Au NLs deposition. The second methodology is aimed to prepare regular arrays of nanopores, with diameter ranging between 40-100 nm, in ultra-thin films of electroactive polymers, to obtain embedded regular arrays of nanopores filled by a further electroactive organic component. The produced hybrid MLs have been characterized by means of X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Grazing Incidence X-ray Diffraction (GI-XRD). In the first case, current-voltage (I-V) measurements demonstrate that the multilayers exhibit a bipolar conduction behaviour (electrons and holes carriers), with a peculiar transition in the nature of the majority carriers (from holes to electrons) above a threshold number of bilayers. In the second case, it is found that the degree of pore filling, as well as the polymer crystallinity can be easily modulated, prompting the tuning of the photoresponse of the nanocomposites.

  6. Transition radiation by neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ioannisian, A.N., E-mail: ara.ioannisyan@cern.ch [Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Institute for Theoretical Physics and Modeling, 375036 Yerevan (Armenia); Ioannisian, D.A. [Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); Institute for Theoretical Physics and Modeling, 375036 Yerevan (Armenia); Physics Department, Yerevan State University, 1 Alex Manoogian (Armenia); Kazarian, N.A. [Institute for Theoretical Physics and Modeling, 375036 Yerevan (Armenia)

    2011-08-19

    We calculate the transition radiation process {nu}{yields}{nu}{gamma} at an interface of two media. The neutrinos are taken to be with only standard-model couplings. The medium fulfills the dual purpose of inducing an effective neutrino-photon vertex and of modifying the photon dispersion relation. The transition radiation occurs when at least one of those quantities have different values in different media. The neutrino mass is ignored due to its negligible contribution. We present a result for the probability of the transition radiation which is both accurate and analytic. For E{sub {nu}=}1 MeV neutrino crossing polyethylene-vacuum interface the transition radiation probability is about 10{sup -39} and the energy intensity is about 10{sup -34} eV. At the surface of the neutron stars the transition radiation probability may be {approx}10{sup -20}. Our result is by the three orders of magnitude larger than those of previous calculations.

  7. Transition radiation by neutrinos

    Science.gov (United States)

    Ioannisian, A. N.; Ioannisian, D. A.; Kazarian, N. A.

    2011-08-01

    We calculate the transition radiation process ν→νγ at an interface of two media. The neutrinos are taken to be with only standard-model couplings. The medium fulfills the dual purpose of inducing an effective neutrino-photon vertex and of modifying the photon dispersion relation. The transition radiation occurs when at least one of those quantities have different values in different media. The neutrino mass is ignored due to its negligible contribution. We present a result for the probability of the transition radiation which is both accurate and analytic. For Eν=1 MeV neutrino crossing polyethylene-vacuum interface the transition radiation probability is about 10 and the energy intensity is about 10 eV. At the surface of the neutron stars the transition radiation probability may be ˜10. Our result is by the three orders of magnitude larger than those of previous calculations.

  8. Instability of Vertical Current Transport in Layered Structures

    Science.gov (United States)

    Wang, Jiannong

    2000-03-01

    Many interesting phenomena related to interface electronic structure of layered structures have been found, including stable sawtooth-like current-voltage characteristic, unstable current self-oscillations, and chaos in the vertical electron transport. While many studies of current self-oscillation have been focused on the effect of changing the carrier concentration, we show that a transverse magnetic field and the sample temperature can also control the transition from stable to unstable current transport. We show that the unstable current self-oscillation is due to the generation of a limit cycle around an unstable steady state solution which, in turn, is due to the negative differential resistance (NDR) existed at layer interfaces. This new insight both generalizes and unifies our understanding of the instability in current transport through layer structures. We also show that a dynamic dc voltage band emerges in the transition from stable to unstable current transport.

  9. Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations

    Science.gov (United States)

    Murray, Gabriel; Gandhi, Farhan

    2010-04-01

    Morphing aerospace structures could benefit from the ability of structural elements to transition from a stiff load-bearing state to a relatively compliant state that can undergo large deformation at low actuation cost. The present paper focuses on multi-layered beams with controllable flexural stiffness—comprising polymer layers affixed to the surfaces of a base beam and cover layers, in turn, affixed to the surfaces of the polymer layers. Heating the polymer through the glass transition reduces its shear modulus, decouples the cover layers from the base beam and reduces the overall flexural stiffness. Although the stiffness and actuation force required to bend the beam reduce, the energy required to heat the polymer layer must also be considered. Results show that for beams with low slenderness ratios, relatively thick polymer layers, and cover layers whose extensional stiffness is high, the decoupling of the cover layers through softening of the polymer layers can result in flexural stiffness reductions of over 95%. The energy savings are also highest for these configurations, and will increase as the deformation of the beam increases. The decoupling of the cover layers from the base beam through the softening of the polymer reduces the axial strains in the cover layers significantly; otherwise material failure would prevent large deformation. Results show that when the polymer layer is stiff, the cover layers are the dominant contributors to the total energy in the beam, and the energy in the polymer layers is predominantly axial strain energy. When the polymer layers are softened the energy in the cover layers is a small contributor to the total energy which is dominated by energy in the base beam and shear strain energy in the polymer layer.

  10. Prediction and Analysis of the Nonsteady Transition and Separation Processes on an Oscillating Wind Turbine Airfoil using the \\gamma-Re_\\theta Transition Model.

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh

    2016-01-04

    This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.

  11. Improved electron transport layer

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides: a method of preparing a coating ink for forming a zinc oxide electron transport layer, comprising mixing zinc acetate and a wetting agent in water or methanol; a coating ink comprising zinc acetate and a wetting agent in aqueous solution or methanolic solution...

  12. Physical layer network coding

    DEFF Research Database (Denmark)

    Fukui, Hironori; Popovski, Petar; Yomo, Hiroyuki

    2014-01-01

    Physical layer network coding (PLNC) has been proposed to improve throughput of the two-way relay channel, where two nodes communicate with each other, being assisted by a relay node. Most of the works related to PLNC are focused on a simple three-node model and they do not take into account...

  13. Layer-Cake Earth

    Science.gov (United States)

    Tedford, Rebecca; Warny, Sophie

    2006-01-01

    In this article, the authors offer a safe, fun, effective way to introduce geology concepts to elementary school children of all ages: "coring" layer cakes. This activity introduces the concepts and challenges that geologists face and at the same time strengthens students' inferential, observational, and problem-solving skills. It also addresses…

  14. EHD lubricating layer

    Energy Technology Data Exchange (ETDEWEB)

    Shvarts, I.A.

    1978-01-01

    The simplest model of an EHD lubricating layer consists of a unipolarly charged nonconducting viscous fluid between two parallel or slightly inclined nonconducting plates. The performance of such a layer is analyzed here on the basis of the fundamental EHD equations, with a plane-parallel approximation of the flow of a thin layer under a variable upper boundary. The results of the solution indicate that the bearing capacity of such a layer between parallel plates does not depend on the viscosity of the fluid, but is proportional to the energy density of the electric field in vacuum. With the plates not parallel, the bearing capacity depends on the mobility and the diffusion of the charged fluid particles. In either case the energy of the electric field can be made to compensate for the energy dissipation due to viscous friction, and in this case or with overcompensation such as EHD bearing becomes an EHD generator. Most valuable for practical applications are fluids with a high dielectric permittivity, such as ammonia and hydrogen chloride at cryogenic temperatures. 5 references, 1 figure.

  15. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  16. Phase transitions in pure and dilute thin ferromagnetic films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1983-10-01

    The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.

  17. Hydrogeologic unit flow characterization using transition probability geostatistics.

    Science.gov (United States)

    Jones, Norman L; Walker, Justin R; Carle, Steven F

    2005-01-01

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has some advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upward sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids and/or grids with nonuniform cell thicknesses.

  18. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W.; Neuhaus, J. [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  19. Variational Transition State Theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, Donald G. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-09-29

    This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.

  20. Anomalous radiative transitions

    CERN Document Server

    Ishikawa, Kenzo; Tobita, Yutaka

    2014-01-01

    Anomalous transitions involving photons derived by many-body interaction of the form, $\\partial_{\\mu} G^{\\mu}$, in the standard model are studied. This does not affect the equation of motion in the bulk, but makes wave functions modified, and causes the unusual transition characterized by the time-independent probability. In the transition probability at a time-interval T expressed generally in the form $P=T \\Gamma_0 +P^{(d)}$, now with $\\Gamma_0=0, P^{(d)} \