WorldWideScience

Sample records for late-type giant stars

  1. Spectroscopy of late type giant stars

    Science.gov (United States)

    Spaenhauer, A.; Thevenin, F.

    1984-06-01

    An attempt to calibrate broadband RGU colors of late type giant stars in terms of the physical parameters of the objects is reported. The parameters comprise the effective temperature, surface gravity and global metal abundance with respect to the sun. A selection of 21 giant star candidates in the Basel fields Plaut 1, Centaurus III and near HD 95540 were examined to obtain a two color plot. Attention is focused on the G-R color range 1.5-2.15 mag, i.e., spectral types K0-K5. A relationship between R and the metallicity is quantified and shown to have a correlation coefficient of 0.93. No correlation is found between metallicity and gravity or R and the effective temperature.

  2. Rapidly rotating single late-type giants: New FK Comae stars?

    Science.gov (United States)

    Fekel, Francis C.

    1986-01-01

    A group of rapidly rotating single late-type giants was found from surveys of chromospherically active stars. These stars have V sin I's ranging from 6 to 46 km/sec, modest ultraviolet emission line fluxes, and strong H alpha absorption lines. Although certainly chromospherically active, their characteristics are much less extreme than those of FK Com and one or two other similar systems. One possible explanation for the newly identified systems is that they have evolved from stars similar to FK Com. The chromospheric activity and rotation of single giant stars like FK Com would be expected to decrease with time as they do in single dwarfs. Alternatively, this newly identified group may have evolved from single rapidly rotating A, or early F stars.

  3. IUE and Einstein survey of late-type giant and supergiant stars and the dividing line

    Science.gov (United States)

    Haisch, Bernhard M.; Bookbinder, Jay A.; Maggio, A.; Vaiana, G. S.; Bennett, Jeffrey O.

    1990-01-01

    Results are presented on an IUE UV survey of 255 late-type G, K, and M stars, complementing the Maggio et al. (1990) Einstein X-ray survey of 380 late-type stars. The large data sample of X-ray and UV detections make it possible to examine the activity relationship between the X-ray and the UV emissions. The results confirm previous finding of a trend involving a steeply-dropping upper envelope of the transition region line fluxes, f(line)/f(V), as the dividing line is approached. This suggests that a sharp decrease in maximum activity accompanies the advancing spectral type, with the dividing line corresponding to this steep gradient region. The results confirm the rotation-activity connection for stars in this region of the H-R diagram.

  4. Effective temperatures of late-type stars: The field giants from K0 to M6

    International Nuclear Information System (INIS)

    Ridgway, S.T.; Joyce, R.R.; White, N.M.; Wing, R.F.

    1980-01-01

    Angular diameters from lunar occultation are combined with infrared photometry to determine effective temperatures, T/sub eff/, for K0--M6 giants. The relation between T/sub eff/ and color temperature, MK spectral type, V--K color, and I (104) --L color are derived. The principal result is a general increase in T/sub eff/ for the cooler spectral types compared to previous calibrations. Throughout the temperature range studied, we obtain excellent agreement with recent model atmosphere computations

  5. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    Science.gov (United States)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  6. Late-type components of slow novae and symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia); Royal Observatory, Edinburgh (UK))

    1980-08-01

    It is argued that the various types of symbiotic stars and the slow novae are the same phenomena exhibiting a range of associated time-scales, the slow novae being of intermediate speed. Evidence is summarized showing that both types of object contain normal M giants or mira variables. This fact is at odds with currently fashionable single-star models for slow novae, according to which the M star is totally disrupted before the outburst. Spectral types of the late-type components are presented for nearly 80 symbiotic stars and slow novae, derived from 2 ..mu..m spectroscopy. It is found that both the intensity of the emission spectrum and the electron density of the gas are functions of the spectral type of the late-type star. Explanations for these correlations are given. On the assumption that the late-type components are normal giants, spectroscopic parallaxes are determined; credible distances are derived which indicate that the known symbiotic stars have been sampled as far afield as the Galactic Centre. Hydrogen shell flashes on a white dwarf accreting gas from the late-type components offer an attractive explanation of the phenomena of slow novae and symbiotic stars, and such models are discussed in the concluding section.

  7. Magnetic fields in starspots on late-type giants

    International Nuclear Information System (INIS)

    Jahn, K.

    1985-01-01

    Computations of models of magnetic starspots on cool active giants show that the value of the magnetic intensity in spots is generally of the order of one kilogauss, although in larger spots the field can be as weak as a few hundred gauss. It is also argued, that spots on giants qualitatively differ from those on late-type dwarfs, since they cannot be too large. The largest individual spots can cover at most about one percent of a stellar hemisphere. This is in a very good agreement with earlier suggestions based on observations of spotted giants. The assumption that spots are the regions of the strongest magnetic field allows to discuss recent attempts of detection of the magnetic field on late-type giants. Polarimetric measurements most probably cannot be successful, due to a small field strength and a complex topology of the field. It is shown that even if a whole surface was covered by spots with relatively strong field, the resulting not longitudinal field would be as weak as a few gauss. Also methods independent of polarimetric measurements, based on the analysis of Zeeman broadening, generally are not sensitive enough to detect the magnetic field on giants, even in spots. λ And is discussed as an example. The comparison of models of spots computed for that stars with photometric observations suggests, that a dark region on λ And consists of hundreds of small spots (each of them smaller than about 0.1% of the hemisphere), in which the magnetic intensity cannot exceed about 900 gauss, and most probably is even smaller. 23 refs., 4 figs., 4 tabs. (author)

  8. Einstein Observatory coronal temperatures of late-type stars

    Science.gov (United States)

    Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.

  9. Spicular downflows in late-type giant coronae

    International Nuclear Information System (INIS)

    Wallenhorst, S.G.

    1980-01-01

    Models of the coronae of late-type stars are considered, under the assumption that the dominant coronal energy loss is not conduction, as is usually assumed, but rather the losses due to hot spicular material falling back onto the chromosphere. This assumption is used to estimated the increase in stellar mass-loss rate which should occur when stars evolve across the so-called Supersonic Transition Locus (STL). For a constant downward number flux, this increase is estimate to be about one order of magnitude. Energy-balance models are then considered for spicule-dominated coronae, under the additional assumption that the energy input flux to the corona is constant over a star's post-main sequence evolution; this assumption is found to be consistent with observed red giant mass-loss rates. A sequence of models is constructed which enables the various coronal parameters to be estimated for different masses and radii. The models yield results similar to those of the minimum flux coronal theory of A.G. Hearn; these similarities, along with the validity of the minimum flux technique, are discussed. It is shown that several criticisms of the minimum flux method, due to Antiochos and Underwood (1978) and Van Tend (1979), are valid for minimum flux models in which spicular downflow is neglected, but are satisfied by the models considered below. Solutions which precisely satisfy the constant-flux assumption are not found to exist for solar mass stars. Under the assumption that the minimum flux theory is correct, and using a downflow number flux derived from the energy-balance model, the jump in mass-loss rate at the STL is reevaluated. In this more rigorous case, the jump is found to be only about a factor of three. It is concluded that large increases in mass-loss rate are not to be expected as stars evolve across this transition locus

  10. On the late-type components of slow novae and symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1980-01-01

    It is argued that the various types of symbiotic stars and the slow novae are the same phenomena exhibiting a range of associated time-scales, the slow novae being of intermediate speed. Evidence is summarized showing that both types of object contain normal M giants or mira variables. This fact is at odds with currently fashionable single-star models for slow novae, according to which the M star is totally disrupted before the outburst. Spectral types of the late-type components are presented for nearly 80 symbiotic stars and slow novae, derived from 2 μm spectroscopy. It is found that both the intensity of the emission spectrum and the electron density of the gas are functions of the spectral type of the late-type star. Explanations for these correlations are given. On the assumption that the late-type components are normal giants, spectroscopic parallaxes are determined; credible distances are derived which indicate that the known symbiotic stars have been sampled as far afield as the Galactic Centre. Hydrogen shell flashes on a white dwarf accreting gas from the late-type components offer an attractive explanation of the phenomena of slow novae and symbiotic stars, and such models are discussed in the concluding section. (author)

  11. Activity in X-ray-selected late-type stars

    International Nuclear Information System (INIS)

    Takalo, L.O.; Nousek, J.A.

    1988-01-01

    A spectroscopic study has been conducted of nine X-ray bright late-type stars selected from two Einstein X-ray surveys: the Columbia Astrophysical Laboratory Survey (five stars) and the CFA Medium Sensitivity Survey (MSS; four stars). Spectral classes were determined and radial and V sin(i) velocities were measured for the stars. Four of the Columbia Survey stars were found to be new RS CVn-type binaries. The fifth Columbia survey star was found to be an active G dwarf star without evidence for binarity. None of the four MSS stars were found to be either binaries or optically active stars. Activity in these stars was assessed by measuring the excess emission in H-alpha and the Ca II IRT (8498, 8542) lines in comparison with inactive stars of similar spectral types. A correlation was found between X-ray luminosity and V sin(i) and H-alpha line excess. The measured excess line emission in H-alpha was also correlated with V sin(i) but not with the IRT line excess. 36 references

  12. Structure of the atmosphere of late-type stars

    International Nuclear Information System (INIS)

    Straume, Ya.I.

    1976-01-01

    A method of calculation of model atmospheres of late-type stars is described. The model atmospheres have been constructed for effective temperature Tsub(e)=2500, 3000, 3500, 4000, 4500 and 5785 K at solar chemical composition and surface gravities log g = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 based on LTE and a plane-parallel horizontally homogeneous structure. Opacity due to H, H - and H 2 - was taken into account. The equation of state includes 10 metals and H 2 , H 2 - and H 2 + molecules. The results are compared with those published elsewhere. A satisfactory agreement is obtained for Tsub(e) > 3000 K

  13. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  14. Technetium in late-type stars. I. Observations

    International Nuclear Information System (INIS)

    Little-Marenin, I.R.; Little, S.J.

    1979-01-01

    An analysis of about 90 spectra (11 or 13A/mm) of nonvariable and variable (mostly Mira variables) M, MS, S, CS, and C stars for the presence of the radioactive element technetium (T/sub 1/2/approx. =2 x 10 5 y) suggests that Tc is most often present at certain variability periods. Stars with no Tc I lines in their spectra can be found at most periods (P-bar=234/sup d/), whereas stars with Tc I lines have periods in most cases in excess of 300 days (P-bar=330/sup d/ +- 83/sup d/). Interpreting our data in terms of kinematic studies by Feast (1963) suggests that the stars with Tc are Pop I and that variables without Tc are largely Pop II type stars

  15. Observations on the variability of linear polarization in late-type dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Huovelin, J.; Linnaluoto, S.; Tuominen, I.; Virtanen, H.

    1989-04-01

    Broadband (UBV) linear polarimetric observations of a sample of late-type (F7-K5) dwarfs are reported. The observations include ten stars and extend over a maximum of 20 nights. Seven stars show significant temporal variability of polarization, which could be interpreted as rotational modulation due to slowly varying magnetic regions. Magnetic intensification in saturated Zeeman sensitive absorption lines is suggested as the dominant effect connecting linear polarization with magnetic activity in the most active single late-type dwarfs, while the wavelength dependence in the less active stars could also be due to a combination of Rayleigh and Thomson scattering.

  16. Magnetic confinement, Alfven wave reflection, and the origins of X-ray and mass-loss 'dividing lines' for late-type giants and supergiants

    Science.gov (United States)

    Rosner, R.; An, C.-H.; Musielak, Z. E.; Moore, R. L.; Suess, S. T.

    1991-01-01

    A simple qualitative model for the origin of the coronal and mass-loss dividing lines separating late-type giants and supergiants with and without hot, X-ray-emitting corona, and with and without significant mass loss is discussed. The basic physical effects considered are the necessity of magnetic confinement for hot coronal material on the surface of such stars and the large reflection efficiency for Alfven waves in cool exponential atmospheres. The model assumes that the magnetic field geometry of these stars changes across the observed 'dividing lines' from being mostly closed on the high effective temperature side to being mostly open on the low effective temperature side.

  17. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J.H.M.M.; Snowden, S.L. (Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany, F.R.) Wisconsin Univ., Madison (USA))

    1990-09-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law. 41 refs.

  18. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    Science.gov (United States)

    Schmitt, J. H. M. M.; Snowden, S. L.

    1990-01-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law.

  19. Near infrared multicolor photometry of late type stars with the balloon borne astronomical telescope BAT-1

    International Nuclear Information System (INIS)

    Kodaira, Keiichi; Tanaka, Wataru; Nakada, Yoshikazu; Watanabe, Tetsuya; Onaka, Takashi

    1979-01-01

    A new star follower has been developed for observing the near infrared emission of late type stars. The sensor of the follower consists of a semicircular rotating sector and a photomultiplier. The practical accuracy of the angle of tracing was about 1 minute. A photometer was installed at the focus point of the main telescope. The infrared photometer consists of a filter turret, a chopper, an infrared detector and a synchronous amplifier. Five flights of balloons were made since September 13, 1974. The height of the flights was about 25 km. The type of observed spectra ranges from A0 to M6. The results of analysis was compared with the atmospheric model by Tsuji. The physical parameters, such as effective temperature, logarithm of surface gravity and velocity of turbulent flow, of late type stars (K5 - M6) were determined. (Kato, T.)

  20. First detection of nonflare microwave emissions from the coronae of single late-type dwarf stars

    Science.gov (United States)

    Gary, D. E.; Linsky, J. L.

    1981-01-01

    Results are presented of a search for nonflare microwave radiation from the coronae of nearby late-type dwarf stars comparable to the sun: single stars without evidence for either a large wind or circumstellar envelope. The observing program consisted of flux measurements of six stars over a 24-h period with the VLA in the C configuration at a wavelength of 6 cm with 50 MHz bandwidth. Positive detections at 6 cm were made for Chi 1 Ori (0.6 mJy) and the flare star UV Cet (1.55 mJy), and upper limits were obtained for the stars Pi 1 UMa, Xi Boo A, 70 Oph A and Epsilon Eri. It is suggested that Chi 1 Ori, and possibly UV Cet, represent the first detected members of a new class of radio sources which are driven by gyroresonance emission, i.e. cyclotron emission from nonrelativistic Maxwellian electrons.

  1. Microwave emission from the coronae of late-type dwarf stars

    Science.gov (United States)

    Linsky, J. L.; Gary, D. E.

    1983-01-01

    VLA microwave observations of 14 late-type dwarf and subgiant stars and binary systems are examined. In this extensive set of observations, four sources at 6 cm (Chi-1 Ori, UV Cet, YY Gem, and Wolf 630AB) were detected and low upper limits for the remaining stars were found. The microwave luminosities of the nondetected F-K dwarfs are as small as 0.01 those of the dMe stars. The detected emission is slowly variable in all cases and is consistent with gyroresonant emission from thermal electrons spiraling in magnetic fields of about 300 gauss if the source sizes are as large as R/R(asterisk) = 3-4. This would correspond to magnetic fields that are probably in the range 0.001-0.0001 gauss at the photospheric level. An alternative mechanism is gyrosynchrotron emission from a relatively small number of electrons with effective temperature.

  2. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    Science.gov (United States)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  3. A Spectroscopic Orbit for the Late-type Be Star β CMi

    Energy Technology Data Exchange (ETDEWEB)

    Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.; Bjorkman, J. E.; Bjorkman, K. S.; Morrison, Nancy D.; Bratcher, Allison D.; Greco, Jennifer J.; Hardegree-Ullman, Kevin K.; Lembryk, Ludwik; Oswald, Wayne L.; Trucks, Jesica L. [Ritter Observatory, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606-3390 (United States); Carciofi, Alex C. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, SP 05508-900 (Brazil); Klement, Robert [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago (Chile); Wang, Luqian, E-mail: noel.richardson@UToledo.edu [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2017-02-10

    The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the H α line with a period of 170 days and an amplitude of 2.25 km s{sup −1}, consistent with a low-mass binary companion ( M ≈ 0.42 M {sub ⊙}). We then compared small changes in the violet-to-red peak height changes ( V / R ) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.

  4. Magnetic cycles and rotation periods of late-type stars from photometric time series

    Science.gov (United States)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  5. IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS

    International Nuclear Information System (INIS)

    Schneider, Adam; Song, Inseok; Melis, Carl; Zuckerman, B.; Bessell, Mike

    2012-01-01

    It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age ∼<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics—namely, Hα emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess—the first unambiguous evidence of a dusty circumstellar disk—around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.

  6. Relation between radio luminosity and rotation for late-type stars

    International Nuclear Information System (INIS)

    Stewart, R.T.; Innis, J.L.; Slee, O.B.; Nelson, G.J.; Wright, A.E.

    1988-01-01

    A relation is found between peak radio luminosities measured at 8 GHz and the rotational velocity of 51 late-type F, G, and K stars (including the sun). The sample includes both single stars and active components of close binary systems, with equatorial surface velocities ranging from 1 to 100 km/s. A gyrosynchrotron source model originally developed to explain solar microwave bursts could explain the relation. The main parameter depending on rotation rate is the filling factor, i.e., the fraction of the stellar surface and corona occupied by intense magnetic fields. As the rotation speed increases, the scale size of the coronal structures emitting microwave gyrosynchrotron radiation increases, and there is a corresponding increase in the area of the surface covered by intense starspot magnetic fields. However, the peak magnetic field of the starspots probably does not increase significantly above observed sunspot values. 47 references

  7. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    Science.gov (United States)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  8. Microwave emission from the coronae of late-type dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Linsky, J.L.; Gary, D.E.

    1983-11-15

    We present VLA microwave observatios of 14 late-type dwarf and subgiant stars ad binary systems. In this extensive set of observations we detected four sources at 6 cm (chi/sup 1/ Ori, UV Cet, YY Gem, and Wolf 630AB) and found low upper limits for the remaining stars. The microwave luminosities of the nondetected F--K dwarfs are as small as 10/sup -2/ those of the dMe stars. The detected emission is slowly variable in all cases and is consistent with gyroresonant emission from thermal electrons spiralig in magnetic fields of about 300 gauss if the source sizes are as large as R/R/sub asterisk/roughly-equal3--4. This would correspond to magnetic fields that are probably in the range 10/sup 3/--10/sup 4/ gauss at the photospheric level. These photospheric field strengths are somewhat larger than have been observed so far in G--K dwarfs. An alternative mechanism is gyrosynchrotron emission from a relatively small number of electrons (only 10/sup -3/ the number of ambient electrons) with effective temperature, T/sub eff/>10/sup 8/ K. This mechanism is consistent with much smaller and presumably more realistic source sizes. Observations of YY gem dMle+dMle) at a number of phase are consistent with maximum but variable microwave flux at the same phase as miximum plage and central meridian passage of a large starspot of the secondary star. If confirmed by subsequent observations, this provides the first direct evidence that the emission process is magnetic in character on dMe stars.

  9. New method for metal-abundance determination in late-type stars

    International Nuclear Information System (INIS)

    Campbell, B.

    1978-01-01

    An empirical technique has been developed for deriving heavy-element abundances from near-infrared blends of weak metallic lines. It is applicable to G and K stars of population I and II and is independent of gravity and microturbulence. A feature of the method is that it gives abundances for ''super-metal-rich'' giants consistent with high-dispersion analyses. The technique may be applicable to abundance problems in galaxies. It is also shown that precision colorimetry unaffected by sky transparency changes is possible with a diode array spectrometer

  10. Observed departures from LTE ionization equilibrium in late-type giants

    International Nuclear Information System (INIS)

    Ramsey, L.W.

    1977-01-01

    Photoelectric scans of the Ca I line at 6572 A and the forbidden Ca II transition at 7323 A are studied in the K giant α Tau, the M supergiant α Ori, and the M giants β And, α Cet, μ Gem, and β Peg. The relative strengths of these lines are shown to be indicative of the ratio of the relative number densities of the neutral and ionized species in the photosphere. The analysis indicates an overionization relative to LTE in qualitative agreement with the theoretical calculations of Auman and Woodrow for the K and M giants. The M supergiant α Ori exhibits a large over-ionization relative to LTE

  11. VizieR Online Data Catalog: Surface gravity determination in late-type stars (Morel+, 2012)

    Science.gov (United States)

    Morel, T.; Miglio, A.

    2012-06-01

    The frequency of maximum oscillation power measured in dwarfs and giants exhibiting solar-like pulsations provides a precise, and potentially accurate, inference of the stellar surface gravity. An extensive comparison for about 40 well-studied pulsating stars with gravities derived using classical methods (ionization balance, pressure-sensitive spectral features or location with respect to evolutionary tracks) supports the validity of this technique and reveals an overall remarkable agreement with mean differences not exceeding 0.05dex (although with a dispersion of up to ~0.2dex). It is argued that interpolation in theoretical isochrones may be the most precise way of estimating the gravity by traditional means in nearby dwarfs. Attention is drawn to the usefulness of seismic targets as benchmarks in the context of large-scale surveys. (1 data file).

  12. The Local ISM and its Interaction with the Winds of Nearby Late-type Stars

    Science.gov (United States)

    Wood, Brian E.; Linsky, Jeffrey L.

    1998-01-01

    the collision is supersonic and that there should therefore be a bow shock outside the heliopause in the upwind direction. Finally, we estimate stellar wind pressures (P sub wind) from the measured hydrogen-wall column densities. These estimates represent the first empirical measurements of wind properties for late-type main-sequence stars. The wind pressures appear to be correlated with stellar X-ray surface fluxes, F(x), in a manner consistent with the relation P(wind) varies as F(x)(exp -1/2), a relation that is also consistent with the variations of P(sub wind) and F(sub x) observed during the solar activity cycle. If this relation can in fact be generalized to solar-like stars, as is suggested by our data, then it is possible to estimate stellar wind properties simply by measuring stellar X-rays. One implication of this is that stellar wind pressures and mass-loss rates are then predicted to increase with time, since F(sub x) is known to decrease with stellar age.

  13. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    Science.gov (United States)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  14. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  15. Evidence for Different Disk Mass Distributions between Early- and Late-type Be Stars in the BeSOS Survey

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, C.; Kanaan, S.; Curé, M. [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso. Av. Gran Bretana 1111, Valparaíso (Chile); Jones, C. E.; Sigut, T. A. A. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-06-10

    The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {sub ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.

  16. A magnetic study of spotted UV Ceti flare stars and related late-type dwarfs

    Science.gov (United States)

    Vogt, S. S.

    1980-09-01

    A multichannel photoelectric Zeeman analyzer has been used to investigate the magnetic nature of the spotted UV Ceti flare stars. Magnetic observations were obtained on a sample of 19 program objects, of which 5 were currently spotted dKe-dMe stars, 7 were normal dK-dM stars, 7 were UV Ceti flare stars, and 1 was a possible post-T Tauri star. Contrary to most previously published observations and theoretical expectations, no magnetic fields were detected on any of these objects from either the absorption lines or the H-alpha emission line down to an observational uncertainty level of 100-160 gauss (standard deviation).

  17. Radial-velocity measures and the existence of astrophysical binaries in late-type dwarf stars

    Science.gov (United States)

    Bopp, B. W.; Meredith, R.

    1986-01-01

    Radial velocities with errors of 1-2 km/s are presented based on CCD scans obtained with the Kitt Peak National Observatory coude feed telescope between 1982 and 1985 of 48 dK-M stars that lack Balmer emission. Comparison with Gliese's (1969) values shows only two stars to be spectroscopic binary candidates with small velocity amplitudes. No evidence for any short period (less than 10 days) binaries is found, supporting the conclusions of Young et al. (1986) that there are no astrophysical binaries among these chromosherically inactive dM stars.

  18. 8-13 μm spectra of very late type Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Aitken, D.K.; Barlow, M.J.; Roche, P.F.; Spenser, P.M.

    1980-01-01

    8 to 13 μm spectra are presented of the late Wolf-Rayet stars, Ve 2-45 (WC9), CRL 2104 (WC8), He 2-113 (WC10) and CPD-56 0 8032 (WC10). Both WC10 stars show the unidentified feature at 11.25 μm and one of them that at 8.6 μm; their spectra resemble those of some planetary nebulae. These features are absent in the WC8/9 stars, whose spectra, together with their infrared photometric data, can be understood in terms of approximately 900 K blackbody spectra subject to some interstellar silicate absorption and with a small excess beyond 10 μm, perhaps due to SiC grains. The WC10 objects are characterized by much lower dust temperatures and their evolutionary status appears to be very different from that of the WC8/9 stars. (author)

  19. Ca II H and K emission from late-type stars

    International Nuclear Information System (INIS)

    Middlekoop, F.

    1982-01-01

    This thesis is based on a study of the Ca II H and K emission features of late main-sequence stars. In Chapter II it is shown that rotation periods can be determined from a modulation in the Ca II H and K signal for many stars in a broad range of spectral types. In Chapter III it is shown that a clear correlation exists between Ca II H and K emission and rotational velocity in active main-sequence stars. There is an indication for a (probably colour-dependent) critical velocity at which the Ca II H and K emission suddenly drops. Chapter IV discusses the dependence of Ca II H and K emission on the rotation rate for evolved stars. (Auth./C.F.)

  20. OGLE-2008-BLG-355Lb: A massive planet around a late-type star

    Energy Technology Data Exchange (ETDEWEB)

    Koshimoto, N.; Sumi, T.; Fukagawa, M.; Shibai, H. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland (New Zealand); Rattenbury, N.; Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Abe, F.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, 464-8601 (Japan); Fukui, A. [Okayama Astrophysical Observatory, National Astronomical Observatory, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Muraki, Y. [Department of Physics, Konan University, Nishiokamoto 8-9-1, Kobe 658-8501 (Japan); Ohnishi, K. [Nagano National College of Technology, Nagano 381-8550 (Japan); Saito, To. [Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; and others

    2014-06-20

    We report the discovery of a massive planet, OGLE-2008-BLG-355Lb. The light curve analysis indicates a planet:host mass ratio of q = 0.0118 ± 0.0006 at a separation of 0.877 ± 0.010 Einstein radii. We do not measure a significant microlensing parallax signal and do not have high angular resolution images that could detect the planetary host star. Therefore, we do not have a direct measurement of the host star mass. A Bayesian analysis, assuming that all host stars have equal probability to host a planet with the measured mass ratio, implies a host star mass of M{sub h}=0.37{sub −0.17}{sup +0.30} M{sub ⊙} and a companion of mass M{sub P}=4.6{sub −2.2}{sup +3.7}M{sub J}, at a projected separation of r{sub ⊥}=1.70{sub −0.30}{sup +0.29} AU. The implied distance to the planetary system is D {sub L} = 6.8 ± 1.1 kpc. A planetary system with the properties preferred by the Bayesian analysis may be a challenge to the core accretion model of planet formation, as the core accretion model predicts that massive planets are far more likely to form around more massive host stars. This core accretion model prediction is not consistent with our Bayesian prior of an equal probability of host stars of all masses to host a planet with the measured mass ratio. Thus, if the core accretion model prediction is right, we should expect that follow-up high angular resolution observations will detect a host star with a mass in the upper part of the range allowed by the Bayesian analysis. That is, the host would probably be a K or G dwarf.

  1. Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars

    Science.gov (United States)

    Menzhevitski, V. S.; Shimanskaya, N. N.; Shimansky, V. V.; Kudryavtsev, D. O.

    2014-04-01

    We study the effect of the photoionization cross sections for the ground state of Al I on the inferred aluminium abundance in stellar atmospheres. We match the theoretical and observed line profiles of the resonance λλ 3944.01, 3961.52 Å and subordinate λλ 6696.03, 6698.68 Å doublets in high-resolution spectra of the metal-poor solar-type stars HD22879 and HD201889. We determine the parameters of these stars from their photometric and spectroscopic data. Our computations show that the profiles can be matched and a single aluminium abundance inferred simultaneously from both groups of spectral lines only with low photoionization cross sections (about 10-12 Mb). Larger cross sections (about 58-65 Mb) make such fits impossible. We therefore conclude that small photoionization cross sections should be preferred for the determination of aluminium abundances in metal-poor stars. We redetermine the aluminium abundances in the atmospheres of halo stars. The resulting abundances prove to be lower by 0.1-0.15 dex than our earlier determinations which does not affect the conclusions based on our earlier estimates. In particular, the NLTE [Al/Fe]-[Fe/H] dependence, on the whole, agrees only qualitatively with the results of theoretical predictions. Therefore further refinement of the theory of nuclear synthesis of aluminium in the process of the chemical evolution of the Galaxy remains a task of current importance.

  2. Magnetic braking in young late-type stars. The effect of polar spots

    Science.gov (United States)

    Aibéo, A.; Ferreira, J. M.; Lima, J. J. G.

    2007-10-01

    Context: The existence of rapidly rotating cool stars in young clusters implies a reduction of angular momentum loss rate for a certain period of the star's early life. Recently, the concentration of magnetic flux near the poles of these stars has been proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. Aims: In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. Methods: We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. Results: From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfvén radii and larger braking rates than a smoother field distribution. Conclusions: From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.

  3. Stellar model chromospheres. VI - Empirical estimates of the chromospheric radiative losses of late-type stars

    Science.gov (United States)

    Linsky, J. L.; Ayres, T. R.

    1978-01-01

    A method is developed for estimating the nonradiative heating of stellar chromospheres by measuring the net radiative losses in strong Fraunhofer line cores. This method is applied to observations of the Mg II resonance lines in a sample of 32 stars including the sun. At most a small dependence of chromospheric nonradiative heating on stellar surface gravity is found, which is contrary to the large effect predicted by recent calculations based on acoustic-heating theories.

  4. Gravity darkening in late-type stars. I. The Coriolis effect

    Science.gov (United States)

    Raynaud, R.; Rieutord, M.; Petitdemange, L.; Gastine, T.; Putigny, B.

    2018-02-01

    Context. Recent interferometric data have been used to constrain the brightness distribution at the surface of nearby stars, in particular the so-called gravity darkening that makes fast rotating stars brighter at their poles than at their equator. However, good models of gravity darkening are missing for stars that posses a convective envelope. Aim. In order to better understand how rotation affects the heat transfer in stellar convective envelopes, we focus on the heat flux distribution in latitude at the outer surface of numerical models. Methods: We carry out a systematic parameter study of three-dimensional, direct numerical simulations of anelastic convection in rotating spherical shells. As a first step, we neglect the centrifugal acceleration and retain only the Coriolis force. The fluid instability is driven by a fixed entropy drop between the inner and outer boundaries where stress-free boundary conditions are applied for the velocity field. Restricting our investigations to hydrodynamical models with a thermal Prandtl number fixed to unity, we consider both thick and thin (solar-like) shells, and vary the stratification over three orders of magnitude. We measure the heat transfer efficiency in terms of the Nusselt number, defined as the output luminosity normalised by the conductive state luminosity. Results: We report diverse Nusselt number profiles in latitude, ranging from brighter (usually at the onset of convection) to darker equator and uniform profiles. We find that the variations of the surface brightness are mainly controlled by the surface value of the local Rossby number: when the Coriolis force dominates the dynamics, the heat flux is weakened in the equatorial region by the zonal wind and enhanced at the poles by convective motions inside the tangent cylinder. In the presence of a strong background density stratification however, as expected in real stars, the increase of the local Rossby number in the outer layers leads to uniformisation of

  5. Spectra of late type dwarf stars of known abundance for stellar population models

    Science.gov (United States)

    Oconnell, R. W.

    1990-01-01

    The project consisted of two parts. The first was to obtain new low-dispersion, long-wavelength, high S/N IUE spectra of F-G-K dwarf stars with previously determined abundances, temperatures, and gravities. To insure high quality, the spectra are either trailed, or multiple exposures are taken within the large aperture. Second, the spectra are assembled into a library which combines the new data with existing IUE Archive data to yield mean spectral energy distributions for each important type of star. My principal responsibility is the construction and maintenance of this UV spectral library. It covers the spectral range 1200-3200A and is maintained in two parts: a version including complete wavelength coverage at the full spectral resolution of the Low Resolution cameras; and a selected bandpass version, consisting of the mean flux in pre-selected 20A bands. These bands are centered on spectral features or continuum regions of special utility - e.g. the C IV lambda 1550 or Mg II lambda 2800 feature. In the middle-UV region, special emphasis is given to those features (including continuum 'breaks') which are most useful in the study of F-G-K star spectra in the integrated light of old stellar populations.

  6. Circumstellar H2O maser emission associated with four late-type stars

    International Nuclear Information System (INIS)

    Johnston, K.J.; Spencer, J.H.; Bowers, P.F.

    1985-01-01

    The positions and structure of H2O maser associated with four long-period stars were measured using the VLA, and the results are discussed. The four stars observed were: RX Boo; R Aq1; RR Aq1; and NML Cyg. The spatial resolution of the VLA measurements was 0.07 arcsec. The H2O maser emission features appear as unresolved knots distributed over an area of no more than 0.4 arcsec. The velocity and spatial characteristics of the maser regions in R Aq1 and RR Aq1 were found to change considerably over time. The estimated sizes of the H2O maser emission were 8 x 10 to the 14th for RX Boo, R Aq1, and RR Aq1. The supergiant star NML Cyg had the largest maser region (10 to the 16th) which is comparable to that of VY CMa. The positional accuracy for individual maser features ranged between 0.03 and 0.09 arcsec. However, the precise location of the maser emission relative to the stellar photocenter did not fit the velocity and spatial distributions of the emission and therefore may be inappropriate as a standard for comparisons of stellar reference frames. 20 references

  7. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  8. Kepler Asteroseismology of Red-giant Stars

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J.

    2012-01-01

    The Kepler mission, launched in March 2009, has revolutionized asteroseismology, providing detailed observations of thousands of stars. This has allowed in-depth analyses of stars ranging from compact hot subdwarfs to red giants, and including the detection of solar-like oscillations in hundreds ...

  9. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  10. Infrared studies of asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Willems, F.J.

    1987-01-01

    In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs

  11. STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.

    2009-01-01

    The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ∼ 0.008 (0.6 x solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ∼ 0.004. Masses of AGB stars that produce C-rich dust are in the range

  12. Infrared Spectroscopy of the Late-Type Star in the Neutron Star X-ray Symbiotic System 4U 1700+24 = V934 Herculis

    Science.gov (United States)

    Hinkle, Kenneth; Fekel, Francis; Joyce, Richard; Mikolajewska, Joanna; Galan, Cezary

    2018-01-01

    V934 Her = 4U 1700+24 is a previously known M giant - neutron star X-ray symbiotic system. Employing newly measured optical and infrared radial velocities spanning 29 years plus the extensive set of velocities in the literature, we have computed the orbit of the M III in that system. We determine an orbital period of 4391 days or 12.0 yr, far longer than the 404 day orbit commonly cited in the literature. In addition to the 12.0 yr orbital period we find a shorter period of 420 days, similar to that previously found. Instead of orbital motion, we attribute this shorter period to a long secondary pulsation (LSP) period in the SRb variable M3 III. The orbit is seen nearly pole on explaining why X-ray pulsations associated with the neutron star have not been detected. Arguments are made that this orientation supports a pulsation origin for LSP. We also measure CNO and Fe peak abundances of the M giant. Basic properties of the M giant are derived. We discuss the possible evolutionary paths this system has taken to get to its current state.

  13. Ultracool Subdwarfs: Metal-poor Stars and Brown Dwarfs Extending into the Late-type M, L and T Dwarf Regimes

    OpenAIRE

    Burgasser, Adam J.; Kirkpatrick, J. Davy; Lepine, Sebastien

    2004-01-01

    Recent discoveries from red optical proper motion and wide-field near-infrared surveys have uncovered a new population of ultracool subdwarfs -- metal-poor stars and brown dwarfs extending into the late-type M, L and possibly T spectral classes. These objects are among the first low-mass stars and brown dwarfs formed in the Galaxy, and are valuable tracers of metallicity effects in low-temperature atmospheres. Here we review the spectral, photometric, and kinematic properties of recent discov...

  14. SPECTRAL TYPING OF LATE-TYPE STELLAR COMPANIONS TO YOUNG STARS FROM LOW-DISPERSION NEAR-INFRARED INTEGRAL FIELD UNIT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Lewis C.; Beichman, Charles A.; Burruss, Rick; Ligon, E. Robert; Lockhart, Thomas G.; Roberts, Jennifer E.; Shao, Michael [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Rice, Emily L.; Brenner, Douglas; Oppenheimer, Ben R. [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Crepp, Justin R.; Dekany, Richard G.; Hillenbrand, Lynne A.; Hinkley, Sasha [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); King, David; Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Metchev, Stanimir [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi, E-mail: lewis.c.roberts@jpl.nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2012-07-15

    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R {approx} 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.

  15. Are coronae of late type stars made of solar-like structures? The Fx-HR diagram and the pressure-temperature correlation

    OpenAIRE

    Peres, G.; Orlando, S.; Reale, F.

    2004-01-01

    We show that stellar coronae can be composed of X-ray emitting structures like those in the solar corona, using a large set of ROSAT/PSPC observations of late-type-stars, and a large set of solar X-ray data collected with Yohkoh/SXT. We have considered data on the solar corona at various phases of the cycle and various kinds of X-ray coronal structures, from flares to the background corona. The surface flux (F_x) vs. spectral hardness ratio (HR) diagram is a fundamental tool for our study. We...

  16. Giant Black Hole Rips Apart Star

    Science.gov (United States)

    2004-02-01

    Thanks to two orbiting X-ray observatories, astronomers have the first strong evidence of a supermassive black hole ripping apart a star and consuming a portion of it. The event, captured by NASA's Chandra and ESA's XMM-Newton X-ray Observatories, had long been predicted by theory, but never confirmed. Astronomers believe a doomed star came too close to a giant black hole after being thrown off course by a close encounter with another star. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information about how these black holes grow and affect surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, leader of the international team of researchers. "This unlucky star just wandered into the wrong neighborhood." While other observations have hinted stars are destroyed by black holes (events known as "stellar tidal disruptions"), these new results are the first strong evidence. Evidence already exists for supermassive black holes in many galaxies, but looking for tidal disruptions represents a completely independent way to search for black holes. Observations like these are urgently needed to determine how quickly black holes can grow by swallowing neighboring stars. Animation of Star Ripped Apart by Giant Black Hole Star Ripped Apart by Giant Black Hole Observations with Chandra and XMM-Newton, combined with earlier images from the German Roentgen satellite, detected a powerful X-ray outburst from the center of the galaxy RX J1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees Celsius before being swallowed by the black hole. The energy liberated in the process

  17. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  18. Theoretical basal Ca II fluxes for late-type stars: results from magnetic wave models with time-dependent ionization and multi-level radiation treatments

    Science.gov (United States)

    Fawzy, Diaa E.; Stȩpień, K.

    2018-03-01

    In the current study we present ab initio numerical computations of the generation and propagation of longitudinal waves in magnetic flux tubes embedded in the atmospheres of late-type stars. The interaction between convective turbulence and the magnetic structure is computed and the obtained longitudinal wave energy flux is used in a self-consistent manner to excite the small-scale magnetic flux tubes. In the current study we reduce the number of assumptions made in our previous studies by considering the full magnetic wave energy fluxes and spectra as well as time-dependent ionization (TDI) of hydrogen, employing multi-level Ca II atomic models, and taking into account departures from local thermodynamic equilibrium. Our models employ the recently confirmed value of the mixing-length parameter α=1.8. Regions with strong magnetic fields (magnetic filling factors of up to 50%) are also considered in the current study. The computed Ca II emission fluxes show a strong dependence on the magnetic filling factors, and the effect of time-dependent ionization (TDI) turns out to be very important in the atmospheres of late-type stars heated by acoustic and magnetic waves. The emitted Ca II fluxes with TDI included into the model are decreased by factors that range from 1.4 to 5.5 for G0V and M0V stars, respectively, compared to models that do not consider TDI. The results of our computations are compared with observations. Excellent agreement between the observed and predicted basal flux is obtained. The predicted trend of Ca II emission flux with magnetic filling factor and stellar surface temperature also agrees well with the observations but the calculated maximum fluxes for stars of different spectral types are about two times lower than observations. Though the longitudinal MHD waves considered here are important for chromosphere heating in high activity stars, additional heating mechanism(s) are apparently present.

  19. Star bursts and giant HII regions

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1990-01-01

    Massive star formation bursts occur in a variety of galactic environments and can temporarily dominate the light output of a galaxy even when a relatively small proportion of its mass is involved. Inferences about their ages, the IMF and its dependence on chemical composition are still somewhat wobbly owing to an excess of unknowns, but certain things can be deduced from emission spectra of associated H II regions when due regard is paid to the effects of chemical composition and ionization parameter: In particular, largest ionization parameters and effective temperatures of exciting stars, at any given oxygen abundance, are anti-correlated with the abundance, and the second effect suggests an increasing proportion of more massive stars at lower abundances, although this is not yet satisfactorily quantified. A new blue compact galaxies could be very young, but it is equally possible that there is an older population of low surface brightness. Some giant H II regions may be self-polluted with nitrogen and helium due to winds from massive stars in the associated burst. (orig.)

  20. Giant black hole rips star apart

    Science.gov (United States)

    2004-02-01

    Astronomers believe that a doomed star came too close to a giant black hole after a close encounter with another star threw it off course. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information on how these black holes grow and affect the surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Dr Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, who led the international team of researchers. "This unlucky star just wandered into the wrong neighbourhood." While other observations have hinted that stars are destroyed by black holes (events known as ‘stellar tidal disruptions’), these new results are the first strong evidence. Observations with XMM-Newton and Chandra, combined with earlier images from the German Roentgensatellite (ROSAT), detected a powerful X-ray outburst from the centre of the galaxy RXJ1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees before being swallowed by the black hole. The energy liberated in this process is equivalent to that of a supernova. "Now, with all of the data in hand, we have the smoking gun proof that this spectacular event has occurred," said co-author Prof. Guenther Hasinger, also of MPE. The black hole in the centre of RX J1242-11 is estimated to have a mass about 100 million times that of the Sun. By contrast, the destroyed star probably had a mass about equal to that of the Sun, making it a lopsided battle of gravity. "This is the ultimate ‘David versus Goliath’ battle, but here David loses," said Hasinger. The astronomers estimated that about one hundredth of the mass of the star was ultimately consumed, or accreted, by the black hole. This small

  1. A non-LTE study of neutral calcium in late-type stars with special reference to Pollux

    International Nuclear Information System (INIS)

    Drake, J.J.; Texas Univ., Austin, TX

    1991-01-01

    Detailed simultaneous radiative transfer-statistical equilibrium calculations have been undertaken for neutral calcium using model stellar atmospheres corresponding to a variety of late spectral types. The results are used to investigate non-LTE effects and trends with differing stellar parameters, and to estimate the likely influence of departures from LTE on model atmosphere analyses. The behaviour of individual Ca I atomic levels and lines are discussed in connection with calculations carried out for a model atmosphere corresponding to the KO III giant Pollux (β Gem). (author)

  2. THEY MIGHT BE GIANTS: LUMINOSITY CLASS, PLANET OCCURRENCE, AND PLANET-METALLICITY RELATION OF THE COOLEST KEPLER TARGET STARS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Lepine, Sebastien, E-mail: amann@ifa.hawaii.edu [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2012-07-01

    We estimate the stellar parameters of late K- and early M-type Kepler target stars. We obtain medium-resolution visible spectra of 382 stars with K{sub P} - J > 2 ({approx_equal}K5 and later spectral type). We determine luminosity class by comparing the strength of gravity-sensitive indices (CaH, K I, Ca II, and Na I) to their strength in a sample of stars of known luminosity class. We find that giants constitute 96% {+-} 1% of the bright (K{sub P} < 14) Kepler target stars, and 7% {+-} 3% of dim (K{sub P} > 14) stars, significantly higher than fractions based on the stellar parameters quoted in the Kepler Input Catalog (KIC). The KIC effective temperatures are systematically (110{sup +15}{sub -35} K) higher than temperatures we determine from fitting our spectra to PHOENIX stellar models. Through Monte Carlo simulations of the Kepler exoplanet candidate population, we find a planet occurrence of 0.36 {+-} 0.08 when giant stars are properly removed, somewhat higher than when a KIC log g > 4 criterion is used (0.27 {+-} 0.05). Last, we show that there is no significant difference in g - r color (a probe of metallicity) between late-type Kepler stars with transiting Earth-to-Neptune-size exoplanet candidates and dwarf stars with no detected transits. We show that a previous claimed offset between these two populations is most likely an artifact of including a large number of misidentified giants.

  3. Method to estimate the effective temperatures of late-type giants using line-depth ratios in the wavelength range 0.97-1.32 μm

    Science.gov (United States)

    Taniguchi, Daisuke; Matsunaga, Noriyuki; Kobayashi, Naoto; Fukue, Kei; Hamano, Satoshi; Ikeda, Yuji; Kawakita, Hideyo; Kondo, Sohei; Sameshima, Hiroaki; Yasui, Chikako

    2018-02-01

    The effective temperature, one of the most fundamental atmospheric parameters of a star, can be estimated using various methods; here, we focus on a method using line-depth ratios (LDRs). This method combines low- and high-excitation lines and makes use of relations between LDRs of these line pairs and the effective temperature. It has an advantage, for example, of being minimally affected by interstellar reddening, which changes stellar colours. We report 81 relations between LDRs and effective temperature established with high-resolution, λ/Δλ ∼ 28 000, spectra of nine G- to M-type giants in the Y and J bands. Our analysis gives the first comprehensive set of LDR relations for this wavelength range. The combination of all these relations can be used to determine the effective temperatures of stars that have 3700 < Teff < 5400 K and -0.5 < [Fe/H] < +0.3 dex, to a precision of ±10 K in the best cases.

  4. THE UVJ SELECTION OF QUIESCENT AND STAR-FORMING GALAXIES: SEPARATING EARLY- AND LATE-TYPE GALAXIES AND ISOLATING EDGE-ON SPIRALS

    International Nuclear Information System (INIS)

    Patel, Shannon G.; Franx, Marijn; Holden, Bradford P.; Illingworth, Garth D.; Kelson, Daniel D.; Van der Wel, Arjen

    2012-01-01

    We utilize for the first time Hubble Space Telescope Advanced Camera for Surveys imaging to examine the structural properties of galaxies in the rest-frame U – V versus V – J diagram (i.e., the UVJ diagram) using a sample at 0.6 ☉ >10.25). The use of the UVJ diagram as a tool to distinguish quiescent galaxies from star-forming galaxies (SFGs) is becoming more common due to its ability to separate red quiescent galaxies from reddened SFGs. Quiescent galaxies occupy a small and distinct region of UVJ color space and we find most of them to have concentrated profiles with high Sérsic indices (n > 2.5) and smooth structure characteristic of early-type systems. SFGs populate a broad but well-defined sequence of UVJ colors and are comprised of objects with a mix of Sérsic indices. Interestingly, most UVJ-selected SFGs with high Sérsic indices also display structure due to dust and star formation typical of the n < 2.5 SFGs and late-type systems. Finally, we find that the position of an SFG on the sequence of UVJ colors is determined to a large degree by the mass of the galaxy and its inclination. Systems that are closer to edge-on generally display redder colors and lower [O II]λ3727 luminosity per unit mass as a consequence of the reddening due to dust within the disks. We conclude that the two main features seen in UVJ color space correspond closely to the traditional morphological classes of early- and late-type galaxies.

  5. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada)

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ∼13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ≥M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr{sup –1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ≥M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  6. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NARCIS (Netherlands)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).

  7. Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars

    Science.gov (United States)

    Alonso, E. Díez; Hernández, J. I. González; Suárez Gómez, S. L.; Aguado, D. S.; González Gutiérrez, C.; Suárez Mascareño, A.; Cabrera-Lavers, A.; González-Nuevo, J.; Toledo-Padrón, B.; Gracia, J.; de Cos Juez, F. J.; Rebolo, R.

    2018-06-01

    We present two new planetary systems found around cool dwarf stars with data from the K2 mission. The first system was found in K2-XX1 (EPIC 248545986), characterized in this work as M3.0V and observed in the 14th campaign of K2. It consists of three Earth-size transiting planets with radii of 1.1, 1.0 and 1.1 R⊕, showing a compact configuration with orbital periods of 5.24, 7.78 and 10.1 days, close to 2:3:4 resonance. The second was found in K2-XX2 (EPIC 249801827), characterized in this work as M0.5V and observed in the 15th campaign. It consists of two transiting super-Earths with radii 2.0 and 1.8 R⊕ and orbital periods of 6.03 and 20.5 days. The equilibrium temperatures of the atmospheres of these planets are estimated to be in the range of 380-600 K and the amplitudes of signals in transmission spectroscopy are estimated at ˜ 10 ppm.

  8. A search for lithium-rich giant stars

    International Nuclear Information System (INIS)

    Brown, J.A.; Sneden, C.; Lambert, D.L.; Dutchover, E. Jr.

    1989-01-01

    Lithium abundances or upper limits have been determined for 644 bright G-K giant stars selected from the DDO photometric catalog. Two of these giants possess surface lithium abundances approaching the cosmic value of the interstellar medium and young main-sequence stars, and eight more giants have Li contents far in excess of standard predictions. At least some of these Li-rich giants are shown to be evolved to the stage of having convectively mixed envelopes, either from the direct evidence of low surface carbon isotope ratios, or from the indirect evidence of their H-R diagram positions. Suggestions are given for the unique conditions that might have allowed these stars to produce or accrete new lithium for their surface layers, or simply to preserve from destruction their initial lithium contents. The lithium abundance of the remaining stars demonstrates that giants only very rarely meet the expectations of standard first dredge-up theories; the average extra Li destruction required is about 1.5 dex. The evolutionary states of these giants and their average masses are discussed briefly, and the Li distribution of the giants is compared to predictions of Galactic chemical evolution. 110 refs

  9. Rotational studies of late-type stars. II. Ages of solar-type stars and the rotational history of the sun

    International Nuclear Information System (INIS)

    Soderblom, D.R.

    1983-01-01

    In the first part of this investigation, age indicators for solar-type stars are discussed. A Li abundance-age calibration is derived; it indicates that 1 M/sub sun/ stars have lost as much as 80% of their initial Li before reaching the main sequence. The e-folding time for Li depletion on the main sequence is 1 1/4 Gyr. The distribution of Li abundances for 1 M/sub sun/ stars is consistent with a uniform initial Li abundance for all stars

  10. Violet and visual flux problems in red giant stars

    International Nuclear Information System (INIS)

    Faulkner, D.R.

    1989-01-01

    Red giant stars are sites of many astrophysically interesting processes and are important links to late stages of stellar evolution and the chemical history of the galaxy. Much of what is known about stars comes from their spectra, which are formed in the outer layers (atmospheres). Unfortunately the low temperatures in red giant atmospheres promote the formation of many molecules, and the resultant complexity of the spectra has slowed progress in obtaining good models of these objects and leaves many unanswered questions. Several of these problems are investigated. Spectra of red giants provide a natural classification according to composition: M stars are oxygen rich, C stars are carbon rich, while S stars are intermediate. One long standing problem with C stars has been the explanation of the severe lack of energy flux in the violet and near ultraviolet part of their spectrum, generally attributed to an unusual opacity. Results show that one source, SiC, is untenable, while the case for the other, C3, is severely weakened. Synthetic spectra from atmospheric models are compared to spectra of TX Psc, a C star, to show that the contribution of thousands of atomic lines are probably responsible for the violet and ultraviolet flux deficiency. The agreement between the synthetic spectra and observations is very good. K and M type stars also have a violet flux deficiency, though it is less severe than with carbon stars

  11. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  12. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    DEFF Research Database (Denmark)

    Amarsi, A. M.; Lind, K.; Asplund, M.

    2016-01-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D...

  13. Carbon isotope ratios in field Population II giant stars

    International Nuclear Information System (INIS)

    Sneden, C.; Pilachowski, C.A.; Vandenberg, D.A.; Kitt Peak National Observatory, Tucson, AZ; Victoria Univ., Canada)

    1986-01-01

    Carbon isotope ratios have been derived from high-resolution spectra of the CH G-band in 15 very metal-poor Population II giant stars and two similar dwarf stars. Many of the giants possess very low C-12/C-13 ratios, some approaching the CN cycle equilibrium value. The metal-poor dwarfs do not have detectable CH-13 features; thus the low carbon isotope ratios in the giants probably are due to their internal evolutions. These results strongly support the idea that at least part of the anomalously low C/N values in Population II giants arises from very efficient mixing of their envelopes into the CN cycle burning layers. Detailed calculations of the expected CNO surface abundances in Population II giants in different evolutionary states have been performed. These computations demonstrate that the observed carbon isotope ratios cannot be produced during the first dredge-up mixing phases in low-mass, low metal abundance stars. Numerical experiments show that theoretical and observational results can be brought into agreement with artificially induced extra mixing. An agent to provoke this additional mixing has not been identified with certainty yet, although internal stellar rotation is a promising candidate. 63 references

  14. FLUORINE ABUNDANCES IN GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; DomInguez, I.; Cunha, K.; Hinkle, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Eriksson, K.; Wahlin, R.; Gialanella, L.; Imbriani, G.; Straniero, O.

    2010-01-01

    An analysis of the fluorine abundance in Galactic asymptotic giant branch (AGB) carbon stars (24 N-type, 5 SC-type, and 5 J-type) is presented. This study uses the state-of-the-art carbon-rich atmosphere models and improved atomic and molecular line lists in the 2.3 μm region. Significantly lower F abundances are obtained in comparison to previous studies in the literature. This difference is mainly due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low-mass AGB stars, solving the long-standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.

  15. Dwarf Star Erupts in Giant Flare

    Science.gov (United States)

    2005-01-01

    This movie taken by NASA'S Galaxy Evolution Explorer shows one of the largest flares, or star eruptions, ever recorded at ultraviolet wavelengths. The star, called GJ 3685A, just happened to be in the Galaxy Evolution Explorer's field of view while the telescope was busy observing galaxies. As the movie demonstrates, the seemingly serene star suddenly exploded once, then even more intensely a second time, pouring out in total about one million times more energy than a typical flare from our Sun. The second blast of light constituted an increase in brightness by a factor of at least 10,000. Flares are huge explosions of energy stemming from a single location on a star's surface. They are caused by the brief destruction of a star's magnetic fields. Many types of stars experience them, though old, small, rapidly rotating 'red dwarfs' like GJ 3685A tend to flare more frequently and dramatically. These stars, called flare stars, can experience powerful eruptions as often as every few hours. Younger stars, in general, also erupt more often. One of the reasons astronomers study flare stars is to gain a better picture and history of flare events taking place on the Sun. A preliminary analysis of the GJ 3685A flare shows that the mechanisms underlying stellar eruptions may be more complex than previously believed. Evidence for the two most popular flare theories was found. Though this movie has been sped up (the actual flare lasted about 20 minutes), time-resolved data exist for each one-hundredth of a second. These observations were taken at 2 p.m. Pacific time, April 24, 2004. In the still image, the time sequence starts in the upper left panel, continues in the upper right, then moves to the lower left and ends in the lower right. The circular and linear features that appear below and to the right of GJ 3685A during the flare event are detector artifacts caused by the extreme brightness of the flare.

  16. Observations of red-giant variable stars by Aboriginal Australians

    Science.gov (United States)

    Hamacher, Duane W.

    2018-04-01

    Aboriginal Australians carefully observe the properties and positions of stars, including both overt and subtle changes in their brightness, for subsistence and social application. These observations are encoded in oral tradition. I examine two Aboriginal oral traditions from South Australia that describe the periodic changing brightness in three pulsating, red-giant variable stars: Betelgeuse (Alpha Orionis), Aldebaran (Alpha Tauri), and Antares (Alpha Scorpii). The Australian Aboriginal accounts stand as the only known descriptions of pulsating variable stars in any Indigenous oral tradition in the world. Researchers examining these oral traditions over the last century, including anthropologists and astronomers, missed the description of these stars as being variable in nature as the ethnographic record contained several misidentifications of stars and celestial objects. Arguably, ethnographers working on Indigenous Knowledge Systems should have academic training in both the natural and social sciences.

  17. Surface Compositions of Red Giant Stars in Globular Clusters

    Science.gov (United States)

    Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian

    2018-01-01

    Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of

  18. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M ≤ 3 M sun ), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M sun . Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) ≡ log ε(Li) ≅ 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and 12 C/ 13 C ratios) can be explained. This requires generally moderate efficiencies (M-dot -6 M sun yr -1 ) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12 C/ 13 C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K-M giants. This misleading appearance is induced by biases in the data, namely: (1) the difficulty

  19. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  20. FLUORINE IN ASYMPTOTIC GIANT BRANCH CARBON STARS REVISITED

    International Nuclear Information System (INIS)

    Abia, C.; Dominguez, I.; Recio-Blanco, A.; De Laverny, P.; Cristallo, S.; Straniero, O.

    2009-01-01

    A re-analysis of the fluorine abundance in three Galactic asymptotic giant branch (AGB) carbon stars (TX Psc, AQ Sgr, and R Scl) has been performed from the molecular HF (1-0) R9 line at 2.3358 μm. High resolution (R ∼ 50,000) and high signal-to-noise spectra obtained with the CRIRES spectrograph and the VLT telescope or from the NOAO archive (for TX Psc) have been used. Our abundance analysis uses the latest generation of MARCS model atmospheres for cool carbon-rich stars. Using spectral synthesis in local thermodynamic equilibrium, we derive for these stars fluorine abundances that are systematically lower by ∼0.8 dex in average with respect to the sole previous estimates by Jorissen et al. The possible reasons of this discrepancy are explored. We conclude that the difference may rely on the blending with C-bearing molecules (CN and C 2 ) that were not properly taken into account in the former study. The new F abundances are in better agreement with the prediction of full network stellar models of low-mass AGB stars. These models also reproduce the s-process elements distribution in the sampled stars. This result, if confirmed in a larger sample of AGB stars, might alleviate the current difficulty to explain the largest [F/O] ratios found by Jorissen et al. In particular, it may not be necessary to search for alternative nuclear chains affecting the production of F in AGB stars.

  1. Ultrabass Sounds of the Giant Star xi Hya

    Science.gov (United States)

    2002-05-01

    First Observations of Solar-type Oscillations in a Star Very Different from the Sun Summary About 30 years ago, astronomers realised that the Sun resonates like a giant musical instrument with well-defined periods (frequencies). It forms a sort of large, spherical organ pipe. The energy that excites these sound waves comes from the turbulent region just below the Sun's visible surface. Observations of the solar sound waves (known as " helioseismology ") have resulted in enormous progress in the exploration of the interior of the Sun, otherwise hidden from view. As is the case on Earth, seismic techniques can be applied and the detailed interpretation of the observed oscillation periods has provided quite accurate information about the structure and motions inside the Sun, our central star. It has now also become possible to apply this technique to some solar-type stars. The first observations concerned the northern star eta Bootis (cf. ESO PR 16/94 ). Last year, extensive and much more accurate observations with the 1.2-m Swiss telescope at the ESO La Silla Observatory proved that Alpha Centauri , a solar "twin", behaves very much like the Sun (cf. ESO PR 15/01 ), and that some of the periods are quite similar to those in the Sun. These new observational data were of a superb quality, and that study marked a true break-through in the new research field of " asteroseismology " (seismology of the stars) for solar-type stars. But what about other types of stars, for instance those that are much larger than the Sun? Based on an extremely intensive observing project with the same telescope, an international group of astronomers [1] has found that the giant star xi Hya ("xi" is the small greek letter [2]; "Hya" is an abbreviation of "Hydrae") behaves like a giant sub-ultra-bass instrument . This star is located in the constellation Hydra (the Water-Monster) at a distance of 130 light-years, it has a radius about 10 times that of the Sun and its luminosity is about 60

  2. SPECTROSCOPIC AND INTERFEROMETRIC MEASUREMENTS OF NINE K GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Döllinger, Michaela P. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Guenther, Eike W.; Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Hrudkovu, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain); Belle, Gerard T. van, E-mail: ellyn.baines@nrl.navy.mil [Lowell Observatory, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  3. Wolf-Rayet stars associated to giant regions of star formation

    International Nuclear Information System (INIS)

    D'Odorico, S.; Rosa, M.

    1982-01-01

    Data on Wolf-Rayet (WR) stars in extragalactic H II regions and emission line galaxies are presented and discussed. The sample is still limited and inhomogeneous but two important points appear to be already established: a) The WR stars are more numerous than the blue supergiants at least in same phase of the evolution of the stellar clusters which ionize the giant H II regions, b) When the WR stars are detected, two cases are apparently observed, one in which only WN, the other in which both WN and WC, are present. (Auth.)

  4. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    NARCIS (Netherlands)

    Bedding, T.R.; Mosser, B.; Huber, D.; Montalbán, J.; Beck, P.; Christensen-Dalsgaard, J.; Elsworth, Y.P.; García, R.A.; Miglio, A.; Stello, D.; White, T.R.; de Ridder, J.; Hekker, S.; Aerts, C.; Barban, C.; Belkacem, K.; Broomhall, A.M.; Brown, T.M.; Buzasi, D.L.; Carrier, F.; Chaplin, W.J.; Di Mauro, M.P.; Dupret, M.-A.; Frandsen, S.; Gilliland, R.L.; Goupil, M.J.; Jenkins, J.M.; Kallinger, T.; Kawaler, S.; Kjeldsen, H.; Mathur, S.; Noels, A.; Silva Aguirre, V.; Ventura, P.

    2011-01-01

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties

  5. Evolution of viscous discs. 3. Giant discs in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [Oxford Univ. (UK). Dept. of Astrophysics; Pringle, J E [Cambridge Univ. (UK). Inst. of Astronomy

    1982-10-01

    The structure of time-dependent accretion discs in giant binaries with separation of the order of 10/sup 13/ cm is examined. Radiative ..cap alpha..-viscosity discs with ..cap alpha.. of order unity accreting on to main-sequence stars at accretion rates which generate luminosities greater than a giant companion decay on time-scales of the same order as the binary period, unlike those in dwarf nova binaries which decay on time-scales 100 times longer than the binary period. This results from the lower gravitational potential and consequent larger disc thickness (relative to the radius) of luminous 'giant' discs accreting at high accretion rates. The eruptions of the symbiotic binary C I Cygni are modelled by an ..cap alpha.. = 1 disc with outer radius 8.5 x 10/sup 12/ cm and a sequence of five mass-transfer bursts at rates between 1.5 x 10/sup 21/ and 4 x 10/sup 22/g s/sup -1/.

  6. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    International Nuclear Information System (INIS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-01-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  7. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    Science.gov (United States)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  8. RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS

    International Nuclear Information System (INIS)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M.

    2016-01-01

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M ⊙ and 120 M ⊙ , we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M ⊙ while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s −1 wind with a mass loss rate that begins around 0.1 M ⊙  yr −1 and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M ⊙ and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult

  9. RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M., E-mail: kashi@astro.umn.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE. Minneapolis, MN 55455 (United States)

    2016-01-20

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M{sub ⊙} and 120 M{sub ⊙}, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M{sub ⊙} while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s{sup −1} wind with a mass loss rate that begins around 0.1 M{sub ⊙} yr{sup −1} and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M{sub ⊙} and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  10. A STAR IN THE M31 GIANT STREAM: THE HIGHEST NEGATIVE STELLAR VELOCITY KNOWN

    International Nuclear Information System (INIS)

    Caldwell, Nelson; Kenyon, Scott J.; Morrison, Heather; Harding, Paul; Schiavon, Ricardo; Rose, James A.

    2010-01-01

    We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of -780 km s -1 . Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-main-sequence close binary, a symbiotic nova, or less likely, a post-asymptotic giant branch star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity.

  11. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    Science.gov (United States)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-04-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  12. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

    NARCIS (Netherlands)

    Beck, P.G.; Montalban, J.; Kallinger, T.; De Ridder, J.; Aerts, C.; García, R.A.; Hekker, S.; Dupret, M.-A.; Mosser, B.; Eggenberger, P.; Stello, D.; Elsworth, Y.; Frandsen, S.; Carrier, F.; Hillen, M.; Gruberbauer, M.; Christensen-Dalsgaard, J.; Miglio, A.; Valentini, M.; Bedding, T.R.; Kjeldsen, H.; Girouard, F.R.; Hall, J.R.; Ibrahim, K.A.

    2012-01-01

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars

  13. A New Test of Copper and Zinc Abundances in Late-type Stars Using Ultraviolet Cu II and Zn II Lines

    Science.gov (United States)

    Roederer, Ian U.; Barklem, Paul S.

    2018-04-01

    We present new abundances derived from Cu I, Cu II, Zn I, and Zn II lines in six warm (5766 ≤ {T}eff} ≤ 6427 K), metal-poor (‑2.50 ≤ [Fe/H] ≤ ‑0.95) dwarf and subgiant (3.64 ≤ log g ≤ 4.44) stars. These abundances are derived from archival high-resolution ultraviolet spectra from the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and ground-based optical spectra from several observatories. Ionized Cu and Zn are the majority species, and abundances derived from Cu II and Zn II lines should be largely insensitive to departures from local thermodynamic equilibrium (LTE). We find good agreement between the [Zn/H] ratios derived separately from Zn I and Zn II lines, suggesting that departures from LTE are, at most, minimal (≲0.1 dex). We find that the [Cu/H] ratios derived from Cu II lines are 0.36 ± 0.06 dex larger than those derived from Cu I lines in the most metal-poor stars ([Fe/H] McDonald Observatory of the University of Texas at Austin.

  14. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    Science.gov (United States)

    Javadi, A.; van Loon, J. Th

    2017-06-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].

  15. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    International Nuclear Information System (INIS)

    Javadi, A; Van Loon, J Th

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1–4] and disc of M33 [5–8]. (paper)

  16. Dying Stars Indicate Lots of Dark Matter in Giant Galaxy

    Science.gov (United States)

    1994-04-01

    Very difficult and time-consuming observations performed with the ESO 3.5-metre New Technology Telescope (NTT) in November 1993 by an international team of astronomers [1], indicate that up to 90 percent of the matter in a distant giant galaxy may be of a kind that cannot be seen by normal telescopes. The astronomers were able to observe the individual motions of 37 extremely faint Planetary Nebulae [2] in the outskirts of the giant elliptical galaxy NGC 1399 that is located at the centre of the southern Fornax cluster of galaxies, at a distance of about 50 million light-years. The mass of the galaxy can be inferred from these motions: the faster they are, the more massive is the galaxy. Surprisingly, the total mass of NGC 1399 found from these new measurements is about ten times as large as the combined mass of the stars and nebulae seen in this galaxy. These new results also have important implications for the current ideas about the formation of giant galaxies. GIANT GALAXIES Galaxies are the basic building blocks of the Universe. Some look like spinning spirals, like our own Milky Way galaxy, with its several hundreds of billions of stars in a flat, rotating disk. Some galaxies lead a comparatively quiet life, others are violent and explosive. But perhaps the most enigmatic of them all are the largest ones, the giant elliptical galaxies. They are huge collections of stars and hot gas, 100 times brighter than the Milky Way and in many of them, the hot gas is a powerful emitter of radio waves and X-rays. The giant galaxies are mostly found at the centres of vast clusters of hundreds or thousands of smaller galaxies, like swarms of bees about the central hive. How did these great galaxies form at the centres of their clusters? Astronomers who make computer simulations of the early Universe believe they know the answer. In their simulations, they see these giant galaxies forming by gradual aggregation of small clumps of matter falling towards the centre, thereby

  17. Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy

    Science.gov (United States)

    2000-07-01

    been necessary to detect a few distant novae [3]. VLT observations of NGC 1316 in the Fornax Cluster ESO PR Photo 18a/00 ESO PR Photo 18a/00 [Preview - JPEG: 400 x 448 pix - 28k] [Normal - JPEG: 800 x 895 pix - 136k] [Full-Res - JPEG: 1941 x 2172 pix - 904k] Caption : Colour composite photo of the central area of NGC 1316 , a giant elliptical galaxy in the Fornax cluster of galaxies. Many dark dust clouds and lanes are visible. Some of the star-like objects in the field are globular clusters of stars that belong to the galaxy. It is based on CCD exposures, obtained with the 8.2-m VLT/ANTU telescope and the FORS-1 multi-mode instrument through B (blue), V (green-yellow) and I (here rendered as red) filters, respectively. The "pyramids" above and below the bright centre of the galaxy and the vertical lines at some of the brighter stars are caused by overexposure ("CCD bleeding"). The field measures 6.8 x 6.8 arcmin 2 , with 0.2 arcsec/pixel. The image quality of this composite is about 0.9 arcsec. North is up and East is left. NGC 1316 is a giant "dusty" galaxy ( PR Photo 18a/00 ), located in the Fornax cluster seen in the southern constellation of that name ("The Oven"). This galaxy is of special interest in connection with current attempts to establish an accurate distance scale in the Universe. In 1980 and 1981, NGC 1316 was the host of two supernovae of type Ia , a class of object that is widely used as a "cosmological standard candle" to determine the distance to very distant galaxies, cf. ESO PR 21/98. A precise measurement of the distance to NGC 1316 may therefore provide an independent calibration of the intrinsic brightness of these supernovae. The new observations were performed during 8 nights distributed over the period from January 9 to 19, 2000. They were made in service mode at the 8.2-m VLT/ANTU telescope with the FORS-1 multi-mode instrument, using a 2k x 2k CCD camera with 0.2 arcsec pixels and a field of 6.8 x 6.8 arcmin 2. The exposures lasted 20 min

  18. MIDCOURSE SPACE EXPERIMENT VERSUS IRAS TWO-COLOR DIAGRAMS AND THE CIRCUMSTELLAR ENVELOPE-SEQUENCE OF OXYGEN-RICH LATE-TYPE STARS

    International Nuclear Information System (INIS)

    Sjouwerman, Lorant O.; Capen, Stephanie M.; Claussen, Mark J.

    2009-01-01

    We present Midcourse Space Experiment (MSX) two-color diagrams that can be used to characterize circumstellar environments of sources with good quality MSX colors in terms of IRAS color regions for oxygen-rich stars. With these diagrams, we aim to provide a new tool that can be used to study circumstellar environments and to improve detection rates for targeted surveys for circumstellar maser emission similar to the IRAS two-color diagram. This new tool is especially useful for regions in the sky where IRAS was confused, in particular in the Galactic plane and bulge region. Unfortunately, using MSX colors alone does not allow one to distinguish between carbon-rich and oxygen-rich objects. An application of this tool on 86 GHz SiO masers shows that for this type of masers an instantaneous detection rate of 60% to 80% can be achieved if target sources are selected according to MSX color (region). Our investigations may have revealed an error in the MSX point source catalog version 2.3. That is, the photometry of the 21.3 μm (MSX E filter) band for most weak 8.28 μm (or MSX A filter) band sources seems off by about a factor 2 (0.5-1 mag too bright).

  19. Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield

    Science.gov (United States)

    Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.

    2018-05-01

    Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard

  20. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    DEFF Research Database (Denmark)

    Bedding, Timothy R.; Mosser, Benoit; Huber, Daniel

    2011-01-01

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include...... uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell....... Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high...

  1. Modelling the Galactic bar using OGLE-II red clump giant stars

    NARCIS (Netherlands)

    Rattenbury, Nicholas J.; Mao, Shude; Sumi, Takahiro; Smith, Martin C.

    2007-01-01

    Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is

  2. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    Science.gov (United States)

    Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.

    2016-05-01

    Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar

  3. High-resolution spectra of stars in globular clusters. VI - Oxygen-deficient red giant stars in M13

    International Nuclear Information System (INIS)

    Brown, J.A.; Wallerstein, G.; Oke, J.B.

    1991-01-01

    From high-resolution, high signal-to-noise spectra, abundances of carbon, nitrogen, and oxygen and the C-12/C-13 ratio for five red giants in M13, including star II-67, which has previously been reported to be deficient in oxygen have been determined. Three of the five stars exhibit substantial oxygen deficiencies; O/Fe values range from +0.5 to less than about 0.3. The sum of the CNO nuclides is the same for all stars, which is interpreted as evidence that mixing of CNO-cycled material into the envelope is the cause of the variations in oxygen abundance. 41 refs

  4. Mass loss by stars at the stage of the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Y.L.

    1986-01-01

    For a given initial stellar mass function, star formation function, and initial chemical composition, distributions have been constructed for stars of the asymptotic giant branch by luminosity, and for white dwarfs by mass, by calculating the approximate evolution of a large number of stars. Variants are calculated with different assumptions about the mass loss in the asymptotic branch. Theory can be reconciled with observation only if it is assumed that at this stage there is also a still large mass loss in addition to the stellar wind and the ejection of a planetary nebula shell. This provides the explanation for the absence in the Magellanic clouds of carbon stars with M /sub bol/ 1.0M /sub ./. The degenerate carbon-oxygen nuclei of stars evolving along the asymptotic giant branch cannot attain the Chandrasekhar limit on account of the great mass loss by the stars. The luminosity of stars of the asymptotic giant branch in the globular clusters of the Magellanic Clouds is a good indicator of the age of the clusters

  5. THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION

    International Nuclear Information System (INIS)

    MacLeod, Morgan; Guillochon, James; Ramirez-Ruiz, Enrico

    2012-01-01

    Sun-like stars are thought to be regularly disrupted by supermassive black holes (SMBHs) within galactic nuclei. Yet, as stars evolve off the main sequence their vulnerability to tidal disruption increases drastically as they develop a bifurcated structure consisting of a dense core and a tenuous envelope. Here we present the first hydrodynamic simulations of the tidal disruption of giant stars and show that the core has a substantial influence on the star's ability to survive the encounter. Stars with more massive cores retain large fractions of their envelope mass, even in deep encounters. Accretion flares resulting from the disruption of giant stars should last for tens to hundreds of years. Their characteristic signature in transient searches would not be the t –5/3 decay typically associated with tidal disruption events, but a correlated rise over many orders of magnitude in brightness on timescales of months to years. We calculate the relative disruption rates of stars of varying evolutionary stages in typical galactic centers, then use our results to produce Monte Carlo realizations of the expected flaring event populations. We find that the demographics of tidal disruption flares are strongly dependent on both stellar and black hole mass, especially near the limiting SMBH mass scale of ∼10 8 M ☉ . At this black hole mass, we predict a sharp transition in the SMBH flaring diet beyond which all observable disruptions arise from evolved stars, accompanied by a dramatic cutoff in the overall tidal disruption flaring rate. Black holes less massive than this limiting mass scale will show observable flares from both main-sequence and evolved stars, with giants contributing up to 10% of the event rate. The relative fractions of stars disrupted at different evolutionary states can constrain the properties and distributions of stars in galactic nuclei other than our own.

  6. Modules for Experiments in Stellar Astrophysics (MESA): Giant Planets, Oscillations, Rotation, and Massive Stars

    OpenAIRE

    Paxton, Bill; Cantiello, Matteo; Arras, Phil; Bildsten, Lars; Brown, Edward F.; Dotter, Aaron; Mankovich, Christopher; Montgomery, M. H.; Stello, Dennis; Timmes, F. X.; Townsend, Richard

    2013-01-01

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA Star. Improvements in MESA Star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiab...

  7. New red giant star in the Kepler open cluster NGC 6819

    Science.gov (United States)

    Komucyeya, E.; Abedigamba, O. P.; Jurua, E.; Anguma, S. K.

    2018-05-01

    A recent study indicated that 39 red giant stars showing solar-like oscillations were discovered in the field of Kepleropen cluster NGC 6819. The study was based on photometric distance estimates of 27 stars out of the 39. Using photometric method alone may not be adequate to confirm the membership of these stars. The stars were not previously known in literature to belong to the open cluster NGC 6819. In this study, Kepler data was used to study the membership of the 27 stars. A plot of apparent magnitude as a function of the large frequency separation, supplemented with the proper motion and radial velocity values from literature revealed KIC 5112840 to lie on the same plane with the well known members of the cluster. Echelle diagram was constructed, and the median gravity-mode period spacings (ΔP) calculated for KIC 5112840. A value of ΔP = 66.3 s was obtained, thus placing the red giant star KIC 5112840 on the Red Giant Branch stage of evolution. Our evolutionary status result using the approach in this paper is in agreement with what is in the available literature.

  8. Giants of eclipse the ζ [Zeta] Aurigae stars and other binary systems

    CERN Document Server

    Griffin, Elizabeth

    2015-01-01

    The zeta Aurigae stars are the rare but illustrious sub-group of binary stars that undergo the dramatic phenomenon of "chromospheric eclipse". This book provides detailed descriptions of the ten known systems, illustrates them richly with examples of new spectra, and places them in the context of stellar structure and evolution. Comprised of a large cool giant plus a small hot dwarf, these key eclipsing binaries reveal fascinating changes in their spectra very close to total eclipse, when the hot star shines through differing heights of the "chromosphere", or outer atmosphere, of the giant star. The phenomenon provides astrophysics with the means of analyzing the outer atmosphere of a giant star and how that material is shed into space. The physics of these critical events can be explained qualitatively, but it is more challenging to extract hard facts from the observations, and tough to model the chromosphere in any detail. The book offers current thinking on mechanisms for heating a star's chromosphere an...

  9. A hot Saturn on an eccentric orbit around the giant star K2-132

    Science.gov (United States)

    Jones, M. I.; Brahm, R.; Espinoza, N.; Jordán, A.; Rojas, F.; Rabus, M.; Drass, H.; Zapata, A.; Soto, M. G.; Jenkins, J. S.; Vučković, M.; Ciceri, S.; Sarkis, P.

    2018-06-01

    Although the majority of radial velocity detected planets have been found orbiting solar-type stars, a fraction of them have been discovered around giant stars. These planetary systems have revealed different orbital properties when compared to solar-type star companions. In particular, radial velocity surveys have shown that there is a lack of giant planets in close-in orbits around giant stars, in contrast to the known population of hot Jupiters orbiting solar-type stars. It has been theorized that the reason for this distinctive feature in the semimajor axis distribution is the result of the stellar evolution and/or that it is due to the effect of a different formation/evolution scenario for planets around intermediate-mass stars. However, in the past few years a handful of transiting short-period planets (P ≲ 10 days) have been found around giant stars, thanks to the high-precision photometric data obtained initially by the Kepler mission, and later by its two-wheel extension K2. These new discoveries have allowed us for the first time to study the orbital properties and physical parameters of these intriguing and elusive substellar companions. In this paper we report on an independent discovery of a transiting planet in field 10 of the K2 mission, also reported recently by Grunblatt et al. (2017, AJ, 154, 254). The host star has recently evolved to the giant phase, and has the following atmospheric parameters: Teff = 4878 ± 70 K, log g = 3.289 ± 0.004, and [Fe/H] = -0.11 ± 0.05 dex. The main orbital parameters of K2-132 b, obtained with all the available data for the system are: P = 9.1708 ± 0.0025 d, e = 0.290 ± 0.049, Mp = 0.495 ± 0.007 MJ and Rp = 1.089 ± 0.006 RJ. This is the fifth known planet orbiting any giant star with a K2-132 b a very interesting object. Tables of the photometry and of the radial velocities are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  10. Detailed Study of the Internal Structure of a Red-giant Star Observed with Kepler

    DEFF Research Database (Denmark)

    Di Mauro, M. P.; Ventura, R.; Cardini, D.

    2012-01-01

    We study the internal structure and evolutionary state of KIC 4351319, a red-giant star observed with the Kepler satellite. The use of 25 individual oscillation frequencies, together with the accurate atmospheric data provided by ground-based spectroscopic observations, allowed us to estimate the...

  11. VLT/FLAMES spectroscopy of red giant branch stars in the Carina dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K. A.; Shetrone, M. D.; Irwin, M. J.; de Boer, T. J. L.; Starkenburg, E.; Salvadori, S.

    Context. The ages of individual red giant branch stars can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the first dredge-up). This means that they

  12. Young α-enriched giant stars in the solar neighbourhood

    DEFF Research Database (Denmark)

    Martig, Marie; Rix, Hans-Walter; Aguirre, Victor Silva

    2015-01-01

    We derive age constraints for 1639 red giants in the APOKASC sample for which seismic parameters from Kepler, as well as effective temperatures, metallicities and [alpha/Fe] values from APOGEE DR12 (Apache Point Observatory Galactic Evolution Experiment Data Release 12) are available. We investig...

  13. The K giant stars from the LAMOST survey data. I. Identification, metallicity, and distance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Deng, Li-Cai; Li, Jing; Gao, Shuang; Yang, Fan; Xu, Yan; Zhang, Yue-Yang; Xin, Yu; Wu, Yue [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road 20A, Beijing 100012 (China); Carlin, Jeffrey L.; Newberg, Heidi Jo [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Smith, Martin C. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Xue, Xiang-Xiang [Max Planck Institute for Astronomy, Königstuhl 17, Heidelberg D-69117 (Germany); Jin, Ge, E-mail: liuchao@nao.cas.cn [University of Science and Technology of China, Hefei 230026 (China)

    2014-08-01

    We present a support vector machine classifier to identify the K giant stars from the LAMOST survey directly using their spectral line features. The completeness of the identification is about 75% for tests based on LAMOST stellar parameters. The contamination in the identified K giant sample is lower than 2.5%. Applying the classification method to about two million LAMOST spectra observed during the pilot survey and the first year survey, we select 298,036 K giant candidates. The metallicities of the sample are also estimated with an uncertainty of 0.13 ∼ 0.29 dex based on the equivalent widths of Mg{sub b} and iron lines. A Bayesian method is then developed to estimate the posterior probability of the distance for the K giant stars, based on the estimated metallicity and 2MASS photometry. The synthetic isochrone-based distance estimates have been calibrated using 7 globular clusters with a wide range of metallicities. The uncertainty of the estimated distance modulus at K = 11 mag, which is the median brightness of the K giant sample, is about 0.6 mag, corresponding to ∼30% in distance. As a scientific verification case, the trailing arm of the Sagittarius stream is clearly identified with the selected K giant sample. Moreover, at about 80 kpc from the Sun, we use our K giant stars to confirm a detection of stream members near the apo-center of the trailing tail. These rediscoveries of the features of the Sagittarius stream illustrate the potential of the LAMOST survey for detecting substructures in the halo of the Milky Way.

  14. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    International Nuclear Information System (INIS)

    Liu, Chao; Wu, Yue; Deng, Li-Cai; Wang, Liang; Wang, Wei; Li, Guang-Wei; Fang, Min; Fu, Jian-Ning; Hou, Yong-Hui; Zhang, Yong

    2015-01-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surface gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data

  15. ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Wu, Yue; Deng, Li-Cai; Wang, Liang; Wang, Wei; Li, Guang-Wei [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20 A Datun Road, Beijing 100012 (China); Fang, Min [Departamento de Física Teórica, Facultad de Ciencias, Universidad Autonóma de Madrid, E-28049 Cantoblanco, Madrid (Spain); Fu, Jian-Ning [Department of Astronomy, Beijing Normal University, 19 Avenue Xinjiekouwai, Beijing 100875 (China); Hou, Yong-Hui; Zhang, Yong, E-mail: liuchao@nao.cas.cn [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)

    2015-07-01

    Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surface gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data.

  16. On the observational characteristics of lithium-enhanced giant stars in comparison with normal red giants†

    Science.gov (United States)

    Takeda, Yoichi; Tajitsu, Akito

    2017-08-01

    While lithium is generally deficient in the atmosphere of evolved giant stars because of the efficient mixing-induced dilution, a small fraction of red giants show unusually strong Li lines indicative of conspicuous abundance excess. With the aim of shedding light on the origin of these peculiar stars, we carried out a spectroscopic study on the observational characteristics of 20 selected bright giants already known to be Li-rich from past studies, in comparison with the reference sample of a large number of normal late G-early K giants. Special attention was paid to clarifying any difference between the two samples from a comprehensive point of view (i.e., with respect to stellar parameters, rotation, activity, kinematic properties, 6Li/7Li ratio, and the abundances of Li, Be, C, O, Na, S, and Zn). Our sample stars are roughly divided into a “bump/clump group” and a “luminous group” according to their positions on the HR diagram. Regarding the former group [1.5 ≲ log (L/L⊙) ≲ 2 and M ∼ 1.5-3 M⊙], Li-enriched giants and normal giants appear practically similar in almost all respects except for Li, suggesting that surface Li enhancement in this group may be a transient episode which normal giants undergo at certain evolutionary stages in their lifetime. Meanwhile, those Li-rich giants belonging to the latter group [log (L/L⊙) ∼ 3 and M ∼ 3-5 M⊙] appear more anomalous in the sense that they tend to show higher rotation as well as higher activity, and that their elemental abundances (especially those derived from high-excitation lines) are apt to show apparent overabundances, though this might be due to a spurious effect reflecting the difficulty of abundance derivation in stars of higher rotation and activity. Our analysis confirmed considerable Be deficiency as well as absence of 6Li as the general characteristics of Li-rich giants under study, which implies that engulfment of planets is rather unlikely for the origin of Li-enrichment.

  17. High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6681

    Energy Technology Data Exchange (ETDEWEB)

    O’Malley, Erin M.; Chaboyer, Brian [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03784 (United States); Knaizev, Alexei [South African Astronomical Observatory, Cape Town (South Africa); McWilliam, Andrew [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-09-01

    We obtain high-resolution spectra of nine red giant branch stars in NGC 6681 and perform the first detailed abundance analysis of stars in this cluster. We confirm cluster membership for these stars based on consistent radial velocities of 214.5 ± 3.7 km s{sup −1} and find a mean [Fe/H] = −1.63 ± 0.07 dex and [ α /Fe] = 0.42 ± 0.11 dex. Additionally, we confirm the existence of a Na–O anti-correlation in NGC 6681 and identify two populations of stars with unique abundance trends. With the use of HST photometry from Sarajedini et al. and Piotto et al. we are able to identify these two populations as discrete sequences in the cluster CMD. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences in these populations, these results do help put constraints on possible polluter candidates.

  18. GLOBULAR AND OPEN CLUSTERS OBSERVED BY SDSS/SEGUE: THE GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Heather L.; Ma, Zhibo; Connor, Thomas; Schechtman-Rook, Andrew; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Clem, James L. [Department of Physics, Grove City College, 100 Campus Dr., Grove City, PA 16127 (United States); An, Deokkeun [Department of Science Education, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Casagrande, Luca [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia IL 60510 (United States); Beers, Timothy C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46656 (United States); Johnson, Jennifer A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Schneider, Donald P., E-mail: hlm5@case.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-15

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from T{sub eff} to g–r for giants of near solar abundance, using IRFM T{sub eff} measures of stars with good ugriz  and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.

  19. Chromosphere of K giant stars. Geometrical extent and spatial structure detection

    Science.gov (United States)

    Berio, P.; Merle, T.; Thévenin, F.; Bonneau, D.; Mourard, D.; Chesneau, O.; Delaa, O.; Ligi, R.; Nardetto, N.; Perraut, K.; Pichon, B.; Stee, P.; Tallon-Bosc, I.; Clausse, J. M.; Spang, A.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2011-11-01

    Context. Interferometers provide accurate diameter measurements of stars by analyzing both the continuum and the lines formed in photospheres and chromospheres. Tests of the geometrical extent of the chromospheres are therefore possible by comparing the estimated radius in the continuum of the photosphere and the estimated radii in chromospheric lines. Aims: We aim to constrain the geometrical extent of the chromosphere of non-binary K giant stars and detect any spatial structures in the chromosphere. Methods: We performed observations with the CHARA interferometer and the VEGA beam combiner at optical wavelengths. We observed seven non-binary K giant stars (β and η Cet, δ Crt, ρ Boo, β Oph, 109 Her, and ι Cep). We measured the ratio of the radii of the photosphere to the chromosphere using the interferometric measurements in the Hα and the Ca II infrared triplet line cores. For β Cet, spectro-interferometric observations are compared to a non-local thermal equilibrium (NLTE) semi-empirical model atmosphere including a chromosphere. The NLTE computations provide line intensities and contribution functions that indicate the relative locations where the line cores are formed and can constrain the size of the limb-darkened disk of the stars with chromospheres. We measured the angular diameter of seven K giant stars and deduced their fundamental parameters: effective temperatures, radii, luminosities, and masses. We determined the geometrical extent of the chromosphere for four giant stars (β and η Cet, δ Crt and ρ Boo). Results: The chromosphere extents obtained range between 16% to 47% of the stellar radius. The NLTE computations confirm that the Ca II/849 nm line core is deeper in the chromosphere of β Cet than either of the Ca II/854 nm and Ca II/866 nm line cores. We present a modified version of a semi-empirical model atmosphere derived by fitting the Ca II triplet line cores of this star. In four of our targets, we also detect the signature of a

  20. Extra-mixing in red giant stars: Challenges for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Palmerini, Sara; Maiorca, Enrico, E-mail: sara.pamerini@fisica.unipg.i [I.N.F.N. sezione di Perugia Dipartimento di Fisica Universita degli Studi di Perugia, via Pascoli, 06123, Perugia (Italy)

    2010-01-01

    The existence of extra-mixing phenomena has been often invoked as a possible solution for the Li-abundance puzzle in low-mass red giant stars. In particular, [1] have shown that extra-mixing phenomena induced by stellar magnetic fields can justify the surface Li enrichment as well as its depletion in low mass giants. In the framework of this model, we test here how sensitive is the Li production to the reaction rate for the {sup 7}Be electron capture, in order to establish whether the presence of intense magnetic fields can alter the Li yield.

  1. EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS: SUBSTRUCTURE IN THE LOCAL HALO AS SEEN IN THE GRID GIANT STAR SURVEY INCLUDING EXTENDED TIDAL DEBRIS FROM ωCENTAURI

    International Nuclear Information System (INIS)

    Majewski, Steven R.; Nidever, David L.; Damke, Guillermo J.; Patterson, Richard J.; García Pérez, Ana E.; Smith, Verne V.; Kunkel, William E.; Bizyaev, Dmitry

    2012-01-01

    We present the latitude-normalized radial velocity (v b ) distribution of 3318 subsolar metallicity, V ∼ b sequences. One sequence in the fourth Galactic quadrant lies within the l-v b space expected to contain tidal debris from the 'star cluster' ωCentauri. Not only does ωCen lie precisely in this l-v b sequence, but the positions and v b of member stars match those of N-body simulations of tidally disrupting dwarf galaxies on orbits ending with ωCen's current position and space motion. But the ultimate proof that we have very likely found extended parts of the ωCen tidal stream comes from echelle spectroscopy of a subsample of the stars that reveals a very particular chemical abundance signature known to occur only in ωCen. The newly discovered ωCen debris accounts for almost all fourth Galactic quadrant retrograde stars in the southern GGSS, which suggests ωCen is a dominant contributor of retrograde giant stars in the inner Galaxy.

  2. Mass and age of red giant branch stars observed with LAMOST and Kepler

    Science.gov (United States)

    Wu, Yaqian; Xiang, Maosheng; Bi, Shaolan; Liu, Xiaowei; Yu, Jie; Hon, Marc; Sharma, Sanjib; Li, Tanda; Huang, Yang; Liu, Kang; Zhang, Xianfei; Li, Yaguang; Ge, Zhishuai; Tian, Zhijia; Zhang, Jinghua; Zhang, Jianwei

    2018-04-01

    Obtaining accurate and precise masses and ages for large numbers of giant stars is of great importance for unraveling the assemblage history of the Galaxy. In this paper, we estimate masses and ages of 6940 red giant branch (RGB) stars with asteroseismic parameters deduced from Kepler photometry and stellar atmospheric parameters derived from LAMOST spectra. The typical uncertainties of mass is a few per cent, and that of age is ˜20 per cent. The sample stars reveal two separate sequences in the age-[α/Fe] relation - a high-α sequence with stars older than ˜8 Gyr and a low-α sequence composed of stars with ages ranging from younger than 1 Gyr to older than 11 Gyr. We further investigate the feasibility of deducing ages and masses directly from LAMOST spectra with a machine learning method based on kernel based principal component analysis, taking a sub-sample of these RGB stars as a training data set. We demonstrate that ages thus derived achieve an accuracy of ˜24 per cent. We also explored the feasibility of estimating ages and masses based on the spectroscopically measured carbon and nitrogen abundances. The results are quite satisfactory and significantly improved compared to the previous studies.

  3. MULTIPLE OUTFLOWS IN THE GIANT ERUPTION OF A MASSIVE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, Roberta M.; Gordon, Michael S.; Jones, Terry J. [Minnesota Institute for Astrophysics, 116 Church St. SE, University of Minnesota, Minneapolis, MN 55455 (United States); Martin, John C., E-mail: roberta@umn.edu [University of Illinois Springfield, Springfield, IL 62703 (United States)

    2016-08-01

    The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of ≈−14 mag. It was quickly realized that it was not a true supernova, but another example of a nonterminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of −400, −1100, and −1600 km s{sup −1}. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for 3 months past maximum, the post-maximum formation of a cool, dense wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of −8.3 mag and a dust temperature of 780 K. If it is the progenitor, it is above the AGB limit, unlike the intermediate-luminosity red transients. The three P Cygni profiles could be due to ejecta from the current eruption, the wind of the progenitor, or previous mass-loss events. We suggest that they were all formed as part of the same high-mass-loss event and are due to material ejected at different velocities or energies. We also suggest that multiple outflows during giant eruptions may be more common than reported.

  4. Gravity mode offset and properties of the evanescent zone in red-giant stars

    Science.gov (United States)

    Hekker, S.; Elsworth, Y.; Angelou, G. C.

    2018-03-01

    Context. The wealth of asteroseismic data for red-giant stars and the precision with which these data have been observed over the last decade calls for investigations to further understand the internal structures of these stars. Aim. The aim of this work is to validate a method to measure the underlying period spacing, coupling term, and mode offset of pure gravity modes that are present in the deep interiors of red-giant stars. We subsequently investigate the physical conditions of the evanescent zone between the gravity mode cavity and the pressure mode cavity. Methods: We implement an alternative mathematical description compared to what is used in the literature to analyse observational data and to extract the underlying physical parameters that determine the frequencies of mixed modes. This description takes the radial order of the modes explicitly into account, which reduces its sensitivity to aliases. Additionally, and for the first time, this method allows us to constrain the gravity mode offset ɛg for red-giant stars. Results: We find that this alternative mathematical description allows us to determine the period spacing ΔΠ and the coupling term q for the dipole modes within a few percent of values found in the literature. Additionally, we find that ɛg varies on a star-by-star basis and should not be kept fixed in the analysis. Furthermore, we find that the coupling factor is logarithmically related to the physical width of the evanescent region normalised by the radius at which the evanescent zone is located. Finally, the local density contrast at the edge of the core of red-giant branch models shows a tentative correlation with the offset ɛg. Conclusions: We are continuing to exploit the full potential of the mixed modes to investigate the internal structures of red-giant stars; in this case we focus on the evanescent zone. It remains, however, important to perform comparisons between observations and models with great care as the methods employed

  5. HST images of dark giants as dark matter: Part.I The black cocoon stars of Carina Nebula region

    International Nuclear Information System (INIS)

    Celis, S.L.

    2001-01-01

    In an evolutionary scenario, the existence of isolated dark giant objects known as Post M latest spectral type stars (1) (or black cocoon stars) are in the last stage of their life and, as extremely advanced old age objects, they cease to be stars. The photographic images of Carina nebula taken by the Hubble Space Telescope (HST) have been used to detect the post M-Iatest stars as dark silhouettes. The luminosity attenuation equation of M late stars (1), A = αS 3 , points out the baryonic dark matter envelopes the oldest red giants that produce earlier dark giants. This equation says that when the red giant star finishes to produce baryonic dark matter, the central star is extinguishing and transforms into dark giants and dusty globules that disperse cool gaseous matter into the interstellar space. These old dark objects have a size from 400 to 600 astronomical units (AU). The advanced dark giants, the dusty dark giants, might not contain a star within the molecular cloud that envelops it. In this case, the dark giants might produce the smaller and less massive dark globules of the Thackeray's globules type (less than 4 solar masses) where, Reupurth et al. (2) found that these globules are now in an advanced stage of disintegration and they found no evidence of star formation in any of these objects. The high-resolution of the Hubble images allows: The observation of isolated dark giants, dusty globules with central dark giants, the observation of partial eclipses or transiting of giant stars and the estimation of linear and angular diameters (ionised cocoons) of giant stellar objects. The dark giants of the image are identified them as objects with observed angular diameter. The large quantity of dark giants in a small sector of the sky suggests that they are densely populated (population stars III) and ubiquitous in the galactic disc. They can be located in isolated form or associated in dense Conglomerations of dark giants. At the same time, conglomerates of

  6. Turbulence and the Li abundance in main sequence and giant stars

    International Nuclear Information System (INIS)

    Charbonneau, P.; Michaud, G.

    1990-01-01

    Calculations of Li burning via turbulent transport are conducted to determine the extent to which observed Li abundances in first ascent giants constrain the various turbulence parameterizations used to model the main-sequence surface Li abundance evolution. A full time-dependent solution to the transport equation is performed, including nuclear reaction terms and evolutionary effects. It is found that turbulence can lead to the extreme Li underabundances observed in giants of M67 and NGC 752. Consideration is given to the possibility of using observations of Li abundances to discriminate between turbulent particle transport and meridional circulation transport. Numerical solutions of the turbulent diffusion coefficient of Vauclair (1988) is used to model the Hyades Li abundance gap. The astrophysical implications of the results for main-sequence and giant stars are discussed. 36 refs

  7. The pillars of creation giant molecular clouds, star formation, and cosmic recycling

    CERN Document Server

    Beech, Martin

    2017-01-01

    This book explores the mechanics of star formation, the process by which matter pulls together and creates new structures. Written for science enthusiasts, the author presents an accessible explanation of how stars are born from the interstellar medium and giant molecular clouds. Stars produce the chemicals that lead to life, and it is they that have enabled the conditions for planets to form and life to emerge. Although the Big Bang provided the spark of initiation, the primordial universe that it sired was born hopelessly sterile. It is only through the continued recycling of the interstellar medium, star formation, and stellar evolution that the universe has been animated beyond a chaotic mess of elementary atomic particles, radiation, dark matter, dark energy, and expanding spacetime. Using the Milky Way and the Eagle Nebula in particular as case studies, Beech follows every step of this amazing process. .

  8. A Search for Giant Planet Companions to T Tauri Stars

    Science.gov (United States)

    2012-12-20

    detection – stars: pre-main sequence – techniques: radial velocities Online-only material: color figures 1. INTRODUCTION The discovery of over 760...exoplanets8 in the past twenty years has revealed that planetary systems are common and diverse. Pulsar planets (Wolszczan 1994), hot Jupiters (Mayor... discoveries , the processes underlying planet formation remain unclear. Lacking direct observational inputs, theorists must deduce formation mechanisms from

  9. A photometric study of the giant red variable stars with small amplitudes

    International Nuclear Information System (INIS)

    Wisse, P.N.J.

    1979-01-01

    Three colour UBV observations of southern semiregular and irregular red variable stars are presented. Well covered light and colour curves have been obtained for ca. 40 stars. In most cases the observations span more than one cycle. A short description is given for all individual variables. The observations are accurate enough to reveal many minor irregularities in the light variation. The SRb and Lb variables define a narrow curved strip in the (U-B) - (B-V) diagram. This strip has been called the Locus of Red Variables (LRV). The (U-B) of the variables is about 0.5 magnitudes bluer than that of the K III giants. (Auth.)

  10. Survival of a brown dwarf after engulfment by a red giant star.

    Science.gov (United States)

    Maxted, P F L; Napiwotzki, R; Dobbie, P D; Burleigh, M R

    2006-08-03

    Many sub-stellar companions (usually planets but also some brown dwarfs) orbit solar-type stars. These stars can engulf their sub-stellar companions when they become red giants. This interaction may explain several outstanding problems in astrophysics but it is unclear under what conditions a low mass companion will evaporate, survive the interaction unchanged or gain mass. Observational tests of models for this interaction have been hampered by a lack of positively identified remnants-that is, white dwarf stars with close, sub-stellar companions. The companion to the pre-white dwarf AA Doradus may be a brown dwarf, but the uncertain history of this star and the extreme luminosity difference between the components make it difficult to interpret the observations or to put strong constraints on the models. The magnetic white dwarf SDSS J121209.31 + 013627.7 may have a close brown dwarf companion but little is known about this binary at present. Here we report the discovery of a brown dwarf in a short period orbit around a white dwarf. The properties of both stars in this binary can be directly observed and show that the brown dwarf was engulfed by a red giant but that this had little effect on it.

  11. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    Science.gov (United States)

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  12. A high false positive rate for Kepler planetary candidates of giant stars using asterodensity profiling

    International Nuclear Information System (INIS)

    Sliski, David H.; Kipping, David M.

    2014-01-01

    Asterodensity profiling (AP) is a relatively new technique for studying transit light curves. By comparing the mean stellar density derived from the transit light curve to that found through an independent method, AP provides information on several useful properties such as orbital eccentricity and blended light. We present an AP survey of 41 Kepler Objects of Interest (KOIs), with a single transiting candidate, for which the target star's mean stellar density has been measured using asteroseismology. The ensemble distribution of the AP measurements for the 31 dwarf stars in our sample shows excellent agreement with the spread expected if the KOIs were genuine and have realistic eccentricities. In contrast, the same test for the 10 giants in our sample reveals significant incompatibility at >4σ confidence. While extreme eccentricities could be invoked, this hypothesis requires four of the KOIs to contact their host star at periastron passage, including the recently claimed confirmation of Kepler-91b. After carefully examining several hypotheses, we conclude that the most plausible explanation is that the transiting objects orbit a different star to that measured with asteroseismology—cases we define as false-positives. Based on the AP distribution, we estimate a false-positive rate (FPR) for Kepler's giant stars with a single transiting object of FPR ≅ 70% ± 30%.

  13. Mapping of the extinction in Giant Molecular Clouds using optical star counts

    OpenAIRE

    Cambresy, L.

    1999-01-01

    This paper presents large scale extinction maps of most nearby Giant Molecular Clouds of the Galaxy (Lupus, rho-Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca, Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina) derived from a star count method using an adaptive grid and a wavelet decomposition applied to the optical data provided by the USNO-Precision Measuring Machine. The distribution of the extinction in the clouds leads to estimate their total...

  14. Chemical analysis of eight giant stars of the globular cluster NGC 6366

    Science.gov (United States)

    Puls, Arthur A.; Alves-Brito, Alan; Campos, Fabíola; Dias, Bruno; Barbuy, Beatriz

    2018-05-01

    The metal-rich Galactic globular cluster NGC 6366 is the fifth closest to the Sun. Despite its interest, it has received scarce attention, and little is known about its internal structure. Its kinematics suggests a link to the halo, but its metallicity indicates otherwise. We present a detailed chemical analysis of eight giant stars of NGC 6366, using high-resolution and high-quality spectra (R > 40 000, S/N > 60) obtained at the VLT (8.2 m) and CFHT (3.6 m) telescopes. We attempted to characterize its chemistry and to search for evidence of multiple stellar populations. The atmospheric parameters were derived using the method of excitation and ionization equilibrium of Fe I and Fe II lines and from those atmospheric parameters we calculated the abundances for other elements and found that none of the elements measured presents star-to-star variation greater than the uncertainties. We compared the derived abundances with those of other globular clusters and field stars available in the literature. We determined a mean [Fe/H] = -0.60 ± 0.03 for NGC 6366 and found some similarity of this object with M 71, another inner halo globular cluster. The Na-O anticorrelation extension is short and no star-to-star variation in Al is found. The presence of second generation stars is not evident in NGC 6366.

  15. FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?

    Energy Technology Data Exchange (ETDEWEB)

    Jönsson, H.; Ryde, N. [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden); Harper, G. M. [School of Physics, Trinity College, Dublin 2 (Ireland); Richter, M. J. [Physics Department, University of California, Davis, CA 95616 (United States); Hinkle, K. H., E-mail: henrikj@astro.lu.se [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)

    2014-07-10

    The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ν nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 μm vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μm. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μm HF lines to determine the possible contribution of the ν process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic.

  16. FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?

    International Nuclear Information System (INIS)

    Jönsson, H.; Ryde, N.; Harper, G. M.; Richter, M. J.; Hinkle, K. H.

    2014-01-01

    The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ν nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 μm vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μm. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μm HF lines to determine the possible contribution of the ν process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic

  17. Obscured asymptotic giant branch stars in the Magellanic Clouds .2. Near-infrared and mid-infrared counterparts

    NARCIS (Netherlands)

    Zijlstra, AA; Loup, C; Waters, LBFM; Whitelock, PA; vanLoon, JT; Guglielmo, F

    1996-01-01

    We have carried out an infrared search for obscured asymptotic giant branch (AGB) stars in the Magellanic Clouds. Fields were observed in the vicinity of IRAS sources with colours and flux densities consistent with such a classification. The survey uncovered a number of obscured AGE stars as well as

  18. 'Where's the flux' star: Exocomets, or Giant Impact?

    Science.gov (United States)

    Meng, Huan; Boyajian, Tabetha; Kennedy, Grant; Lisse, Carey; Marengo, Massimo; Wright, Jason; Wyatt, Mark

    2015-12-01

    The discovery of an unusual stellar light curve in the Kepler data of KIC 8462852 has sparked a media frenzy about 'alien megastructures' orbiting that star. Behind the public's excitement about 'aliens,' there is however a true science story: KIC 8462852 offers us a unique window to observe, in real time, the rare cataclysmic events happening in a mature extrasolar planetary system. After analysis of the existing constraints of the system, two possible models stand out as the plausible explanations for the light curve anomaly: immediate aftermath of a large planetary or planetesimal impact, or apparitions of a family of comets or comet fragments. The two plausible models predict very different IR evolution over the years following the transit events, providing a good diagnostic to distinguish them. With shallow mapping of the Kepler field in January 2015, Spitzer/IRAC has found KIC 8462852 with a marginal excess at 4.5 micron. Here, we propose to monitor KIC 8462852 on a regular basis to identify and track its IR excess evolution with deeper images and more accurate photometry.

  19. THE ASTROSPHERE OF THE ASYMPTOTIC GIANT BRANCH STAR IRC+10216

    International Nuclear Information System (INIS)

    Sahai, Raghvendra; Chronopoulos, Christopher K.

    2010-01-01

    We have discovered a very extended shock structure (i.e., with a diameter of about 24') surrounding the well-known carbon star IRC+10216 in ultraviolet images taken with the Galaxy Evolution Explorer satellite. We conclude that this structure results from the interaction of IRC+10216's molecular wind with the interstellar medium (ISM), as it moves through the latter. All important structural features expected from theoretical models of such interactions are identified: the termination shock, the astrosheath, the astropause, the bow shock, and an astrotail (with vortices). The extent of the astropause provides new lower limits to the envelope age (69,000 years) and mass (1.4 M sun , for a mass-loss rate of 2 x 10 -5 M sun yr -1 ). From the termination-shock standoff distance, we find that IRC+10216 is moving at a speed of about ∼>91 km s -1 (1 cm -3 /n ISM ) 1/2 through the surrounding ISM.

  20. Lithium abundances and metallicities in stars near the main-sequence turnoff and a giant in M67

    International Nuclear Information System (INIS)

    Garcia Lopez, R.J.; Rebolo, R.; Beckman, J.E.

    1988-01-01

    The iron abundance of seven stars near the main-sequence (MS) turnoff and a giant in M67 are spectroscopically derived, and the results are discussed. The resulting mean iron abundance of the turnoff stars is (Fe/H) = 0.04 + or - 0.04. Taken together with previous determinations for younger clusters, this shows that there has been relatively little change of the iron abundance in the solar neighborhood during the last 5 Gyr. Lithium was detected in one unevolved star and marginally in the giant, while in the other MS stars only upper limits were found. The considerable differences in Li abundances for stars with similar surface temperature imply that there is at least one parameter affecting Li depletion apart from stellar mass and metallicity. Nonsimultaneous star formation in the cluster cloud explain the scatter in lithium abundances. 50 references

  1. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    Science.gov (United States)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  2. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-01-01

    Fluorine ( 19 F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 μm in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  3. The astrosphere of the asymptotic giant branch star CIT 6

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Raghvendra [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Mack-Crane, Galen P., E-mail: sahai@jpl.nasa.gov [Department of Physics, Occidental College, Los Angeles, CA 90041 (United States)

    2014-10-01

    We have discovered two extended half-ring structures in a far-ultraviolet image taken with the GALEX satellite of the well-known mass-losing carbon star CIT 6 (RW LMi). The northern (southern) ring is brighter (fainter) with a diameter of ∼15' (∼18'). These structures most likely represent the astrosphere resulting from the shock interaction of CIT 6's molecular wind with the warm interstellar medium (ISM), as it moves through the latter. These data provide a direct estimate of the size of CIT 6's circumstellar envelope that is a factor ∼20 larger than previous estimates based on CO millimeter-wave line data. We find that CIT 6 has been undergoing heavy mass-loss for at least 93,000 yr and the total envelope mass is 0.29 M {sub ☉} or larger, assuming a constant mass-loss rate of 3.2 × 10{sup –6} M {sub ☉} yr{sup –1}. Assuming that the shock front has reached a steady state and CIT 6's motion relative to the ISM is in the sky plane, we measure the termination-shock standoff distance directly from the image and find that CIT 6 is moving at a speed of about ≳39 (0.17 cm{sup –3}/n {sub ISM}){sup 1/2} km s{sup –1} through the ISM around it. However, comparisons with published numerical simulations and analytical modeling shows that CIT 6's forward shock (the northern ring) departs from the parabolic shape expected in steady state. We discuss several possible explanations for this departureþ.

  4. The Structure of the Nearby Giant Star-Forming Region 30 Doradus

    Science.gov (United States)

    Pellegrini, Eric; Baldwin, Jack; Hanson, Margaret; Ferland, Gary; Troland, Thomas

    2007-08-01

    The rates of star formation and chemical evolution are controlled in part by the interaction of stellar radiation and winds with the remnant molecular gas from which the stars have formed. We are carrying out a detailed, panchromatic study of these processes in the two nearest giant star-forming regions, 30 Doradus and NGC 3603, as an aide in understanding the nature of Giant Extragalactic H II Regions, starbursts, and Ultra-Luminous IR Galaxies. We recently completed our observations of NGC 3603. Here we request 2 nights on the Blanco telescope to obtain a dense grid of optical long-slit spectra criss- crossing 30 Dor. These will cover the [S II] doublet (to measure N_e) and also [O III], H(beta), [O I], H(alpha) and [N II] to measure the ionization mechanism and ionization parameter, at ~3800 different spots in the nebula. We also request 3 nights on SOAR to take K-band long slit spectra covering H^+ Br(gamma) and several H_2 lines across three representative edge-on ionization fronts in 30 Dor. The IR spectra will be taken in locations also covered by the optical spectra, and will tell us about the structure, pressure support and heating mechanisms in the photo-dissociation regions (PDRs) at these points. Either half of this project can stand on its own, but both parts together will permit the PI to complete his PhD thesis.

  5. INTERNAL ROTATION OF THE RED-GIANT STAR KIC 4448777 BY MEANS OF ASTEROSEISMIC INVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Di Mauro, M. P.; Cardini, D. [INAF, IAPS Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy); Ventura, R.; Paternò, L. [INAF, Astrophysical Observatory of Catania, Catania (Italy); Stello, D. [Sydney Institute for Astronomy, School of Physics, University of Sydney (Australia); Christensen-Dalsgaard, J.; Hekker, S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Dziembowski, W. A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Beck, P. G.; De Smedt, K.; Tkachenko, A. [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven (Belgium); Bloemen, S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Davies, G. R.; Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Univ. Paris Diderot, IRFU/Sap, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Elsworth, Y. [School of Physics and Astronomy, University of Birmingham (United Kingdom); Mosser, B. [LESIA, PSL Research University, CNRS, Universitè Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, Meudon Cedex (France)

    2016-01-20

    We study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from Kepler observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure to extract the rotational splittings from the power spectrum. We find not only that the core rotates from a minimum of 8 to a maximum of 17 times faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al.), but we also estimate the variation of the angular velocity within the helium core with a spatial resolution of 0.001R and verify the hypothesis of a sharp discontinuity in the inner stellar rotation. The results show that the entire core rotates rigidly and provide evidence for an angular velocity gradient around the base of the hydrogen-burning shell; however, we do not succeed in characterizing the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of 68 ± 22 nHz. We conclude that a set of data that includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.

  6. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    Science.gov (United States)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-03-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  7. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host.

    Science.gov (United States)

    Gaudi, B Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; D'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; Kielkopf, John F; Manner, Mark; Matt, Kyle; Narita, Norio; Oberst, Thomas E; Reed, Phillip A; Scarpetta, Gaetano; Stephens, Denice C; Yeigh, Rex R; Zambelli, Roberto; Fulton, B J; Howard, Andrew W; James, David J; Penny, Matthew; Bayliss, Daniel; Curtis, Ivan A; DePoy, D L; Esquerdo, Gilbert A; Gould, Andrew; Joner, Michael D; Kuhn, Rudolf B; Labadie-Bartz, Jonathan; Lund, Michael B; Marshall, Jennifer L; McLeod, Kim K; Pogge, Richard W; Relles, Howard; Stockdale, Christopher; Tan, T G; Trueblood, Mark; Trueblood, Patricia

    2017-06-22

    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300-10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated-traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.

  8. THE INCIDENCE OF NON-SPHERICAL CIRCUMSTELLAR ENVELOPES IN ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Politano, Michael; Taam, Ronald E.

    2011-01-01

    The relative occurrence of asymmetric structures in the circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars in detached binary star systems is studied based on a population synthesis method. The effects of envelope shaping by the gravitational interaction of the companion on an outflowing stellar wind are incorporated using previously derived empirical fits to numerical simulations. It is shown that significant asymmetries in the CSE, characterized by a ratio of the density in the equatorial direction relative to the polar direction, can exceed 10 for AGB stars characterized by luminosities in the range of 1000-10, 000 L sun in systems with orbital separations of 3-30 AU and mass ratios of 0.25-1. The incidence of such systems relative to a present-day field population of AGB stars (single + binary) is estimated to be 1%-6%, depending upon input parameter choices. For more modest density contrasts exceeding a factor of two, the incidence increases to 4%-15%. With the advent of future high-resolution molecular line studies of CSEs with the Atacama Large Millimeter Array, it is anticipated that the number of AGB stars exhibiting detectable asymmetries will significantly increase.

  9. ON THE NEED FOR DEEP-MIXING IN ASYMPTOTIC GIANT BRANCH STARS OF LOW MASS

    International Nuclear Information System (INIS)

    Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Abia, C.; Straniero, O.; Gallino, R.; Cognata, M. La

    2010-01-01

    The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the 26 Al/ 27 Al ratio in presolar grains of circumstellar origin. Non-convective mixing, occurring during both red giant branch (RGB) and asymptotic giant branch (AGB) stages, is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low-mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the 26 Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of Population I stars above about 1.2 M sun , this consumes 3 He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.

  10. The UK Infrared Telescope M33 monitoring project - I. Variable red giant stars in the central square kiloparsec

    Science.gov (United States)

    Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi

    2011-02-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.

  11. Chemical Abundances of Red Giant Stars in the Globular Cluster M107 (NGC 6171)

    Science.gov (United States)

    O'Connell, Julia E.; Johnson, Christian I.; Pilachowski, Catherine A.; Burks, Geoffrey

    2011-10-01

    We present chemical abundances of Al and several Fe-Peak and neutron-capture elements for 13 red giant branch stars in the Galactic globular cluster NGC 6171 (M107). The abundances were determined using equivalent width and spectrum synthesis analyses of moderate-resolution ( R ˜ 15,000), moderate signal-to-noise ratio ( ˜ 80) spectra obtained with the WIYN telescope and Hydra multifiber spectrograph. A comparison between photometric and spectroscopic effective temperature estimates seems to indicate that a reddening value of E(B - V) = 0.46 may be more appropriate for this cluster than the more commonly used value of E(B - V) = 0.33. Similarly, we found that a distance modulus of (m - M)V ≈ 13.7 provided reasonable surface gravity estimates for the stars in our sample. Our spectroscopic analysis finds M107 to be moderately metal-poor with = -0.93 and also exhibits a small star-to-star metallicity dispersion (σ = 0.04). These results are consistent with previous photometric and spectroscopic studies. Aluminum appears to be moderately enhanced in all program stars ( = +0.39, σ = 0.11). The relatively small star-to-star scatter in [Al/Fe] differs from the trend found in more metal-poor globular clusters, and is more similar to what is found in clusters with [Fe/H] ≳ -1. The cluster also appears to be moderately r-process-enriched with = +0.32 (σ = 0.17).

  12. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    Science.gov (United States)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  13. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    Energy Technology Data Exchange (ETDEWEB)

    Gaidos, Eric [Department of Geology and Geophysics, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Mann, Andrew W.; Howard, Andrew W., E-mail: gaidos@hawaii.edu [Institute for Astronomy, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States)

    2013-07-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M{sub Sun} and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% {+-} 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% {+-} 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  14. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    International Nuclear Information System (INIS)

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Howard, Andrew W.

    2013-01-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M ☉ and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% ± 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% ± 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  15. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  16. HUBBLE SPACE TELESCOPE CONSTRAINTS ON THE WINDS AND ASTROSPHERES OF RED GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Müller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Harper, Graham M., E-mail: brian.wood@nrl.navy.mil [CASA, University of Colorado, Boulder, CO 80309-0389 (United States)

    2016-10-01

    We report on an ultraviolet spectroscopic survey of red giants observed by the Hubble Space Telescope , focusing on spectra of the Mg ii h and k lines near 2800 Å in order to study stellar chromospheric emission, winds, and astrospheric absorption. We focus on spectral types between K2 III and M5 III, a spectral type range with stars that are noncoronal, but possessing strong, chromospheric winds. We find a very tight relation between Mg ii surface flux and photospheric temperature, supporting the notion that all K2-M5 III stars are emitting at a basal flux level. Wind velocities ( V {sub w} ) are generally found to decrease with spectral type, with V {sub w} decreasing from ∼40 km s{sup −1} at K2 III to ∼20 km s{sup −1} at M5 III. We find two new detections of astrospheric absorption, for σ Pup (K5 III) and γ Eri (M1 III). This absorption signature had previously only been detected for α Tau (K5 III). For the three astrospheric detections, the temperature of the wind after the termination shock (TS) correlates with V {sub w} , but is lower than predicted by the Rankine–Hugoniot shock jump conditions, consistent with the idea that red giant TSs are radiative shocks rather than simple hydrodynamic shocks. A full hydrodynamic simulation of the γ Eri astrosphere is provided to explore this further.

  17. First detection of rotational CO line emission in a red giant branch star

    Science.gov (United States)

    Groenewegen, M. A. T.

    2014-01-01

    Context. For stars with initial masses below ~1 M⊙, the mass loss during the first red giant branch (RGB) phase dominates mass loss in the later asymptotic giant branch (AGB) phase. Nevertheless, mass loss on the RGB is still often parameterised by a simple Reimers law in stellar evolution models. Aims: To try to detect CO thermal emission in a small sample of nearby RGB stars with reliable Hipparcos parallaxes that were shown to have infrared excess in an earlier paper. Methods: A sample of five stars was observed in the CO J = 2-1 and J = 3-2 lines with the IRAM and APEX telescopes. Results: One star, the one with the largest mass-loss rate based on the previous analysis of the spectral energy distribution, was detected. The expansion velocity is unexpectedly large at 12 km s-1. The line profile and intensity are compared to the predictions from a molecular line emission code. The standard model predicts a double-peaked profile, while the observations indicate a flatter profile. A model that does fit the data has a much smaller CO envelope (by a factor of 3), and a CO abundance that is two times larger and/or a larger mass-loss rate than the standard model. This could indicate that the phase of large mass loss has only recently started. Conclusions: The detection of CO in an RGB star with a luminosity of only ~1300 L⊙ and a mass-loss rate as low as a few 10-9M⊙ yr-1 is important and the results also raise new questions. However, ALMA observations are required in order to study the mass-loss process of RGB stars in more detail, both for reasons of sensitivity (6 h of integration in superior weather at IRAM were needed to get a 4σ detection in the object with the largest detection probability), and spatial resolution (to determine the size of the CO envelope). Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme ID 091.D-0073 (ESO time) and 091.F-9322 (Swedish time). Based on observations with the Atacama

  18. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements

    Science.gov (United States)

    Höfner, Susanne; Olofsson, Hans

    2018-01-01

    As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made

  19. Modeling of Red Giant and AGB Stars Atmospheres: Constraints from VLTI and HST Observations

    Science.gov (United States)

    Rau, Gioia

    2018-04-01

    The chemical enrichment of the Universe is considerably affected by the contributions of low-to-intermediate mass stars through the mass-loss provided via their stellar winds. First, we will present our investigation in the near-IR with VLTI/GRAVITY (Wittkowski, Rau, et al., in prep.). Our aim was to verify at different epochs the model-predicted variability of the visibility spectra. We use CODEX model atmospheres, as well as best-fit 3D radiation hydrodynamic simulations (e.g. Freytag et al., 2017), for comparison with the observations. Our preliminary results on R Peg suggest a decreasing contribution by extended CO layers as the star transitions from maximum to minimum phase. Second, we will show a preliminary modeling of UV spectra obtained with HST/GHRS that contain chromospheric emission lines of, e.g., Mg II and Fe II. Via Sobolev with Exact Integration (SEI) modeling, we determined for the two M-giant stars γ Cru and µ Gem the characteristics of their winds (turbulence, acceleration, and opacity), and their average global mass-loss rates (Rau, Carpenter et al., in prep.). Finally, we briefly discuss the impact of instruments on board JWST in progressing this investigation.

  20. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    International Nuclear Information System (INIS)

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-01-01

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a δ-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the

  1. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Martins, F.; Bournaud, F.; Monier, R.; Reylé, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and

  2. CCD Parallaxes for 309 Late-type Dwarfs and Subdwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Dahn, Conard C.; Harris, Hugh C.; Subasavage, John P.; Ables, Harold D.; Guetter, Harry H.; Harris, Fred H.; Luginbuhl, Christian B.; Monet, Alice B.; Monet, David G.; Munn, Jeffrey A.; Pier, Jeffrey R.; Stone, Ronald C.; Vrba, Frederick J.; Walker, Richard L.; Tilleman, Trudy M. [US Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Road, Flagstaff, AZ 86005-8521 (United States); Canzian, Blaise J. [L-3 Communications/Brashear, 615 Epsilon Drive, Pittsburgh, PA 15238-2807 (United States); Henden, Arne H. [AAVSO, Cambridge, MA 02138 (United States); Leggett, S. K. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Levine, Stephen E., E-mail: jsubasavage@nofs.navy.mil [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001-4499 (United States)

    2017-10-01

    New, updated, and/or revised CCD parallaxes determined with the Strand Astrometric Reflector at the Naval Observatory Flagstaff Station are presented. Included are results for 309 late-type dwarf and subdwarf stars observed over the 30+ years that the program operated. For 124 of the stars, parallax determinations from other investigators have already appeared in the literature and we compare the different results. Also included here are new or updated VI photometry on the Johnson–Kron-Cousins system for all but a few of the faintest targets. Together with 2MASS JHK{sub s} near-infrared photometry, a sample of absolute magnitude versus color and color versus color diagrams are constructed. Because large proper motion was a prime criterion for targeting the stars, the majority turn out to be either M-type subdwarfs or late M-type dwarfs. The sample also includes 50 dwarf or subdwarf L-type stars, and four T dwarfs. Possible halo subdwarfs are identified in the sample based on tangential velocity, subluminosity, and spectral type. Residuals from the solutions for parallax and proper motion for several stars show evidence of astrometric perturbations.

  3. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    Science.gov (United States)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  4. THE ASYMPTOTIC GIANT BRANCH AND THE TIP OF THE RED GIANT BRANCH AS PROBES OF STAR FORMATION HISTORY: THE NEARBY DWARF IRREGULAR GALAXY KKH 98

    International Nuclear Information System (INIS)

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D. C.; Girardi, Leo; Dolphin, A.

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D = 2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (near-IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR-bright stars reaching over 1 mag below the tip of the RGB. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the red clump and the main-sequence turnoff for 0.5 Gyr old populations. Compared to the optical color-magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate-age (0.5-5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10 -4 M sun yr -1 ) for much of cosmic time. Except for the youngest main-sequence populations (age <0.1 Gyr), which are typically fainter than the AO data flux limit, the SFH estimated from the 592 IR-bright stars is a reasonable match to that derived from the much larger optical data set. Differences between the optical- and IR-derived SFHs for 0.1-1 Gyr populations suggest that current stellar evolution models may be overproducing the AGB by as much as a factor of 3 in this galaxy. At the depth of the AO data, the IR-luminous stars are not crowded. Therefore, these techniques can potentially be used to determine the stellar populations of galaxies at significantly further distances.

  5. The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars

    Science.gov (United States)

    Kalirai, Jason S.; Marigo, Paola; Tremblay, Pier-Emmanuel

    2014-02-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ⊙. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ⊙. Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ⊙. At larger masses, the core-mass growth decreases steadily to ~10% at M initial = 3.4 M ⊙, after which there is a small hint of a upturn out to M initial = 3.8 M ⊙. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ~ 3 Myr and E = 1.2 × 1010 L ⊙ yr for M initial ~ 2 M ⊙ (t ~ 2 Myr

  6. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola

    2014-01-01

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M initial = 2.8-3.8 M ☉ . We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M initial = 1.6 and 2.0 M ☉ . Over this range of initial masses, stellar evolutionary models for metallicity Z initial = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M initial = 1.6 to 2.0 M ☉ . At larger masses, the core-mass growth decreases steadily to ∼10% at M initial = 3.4 M ☉ , after which there is a small hint of a upturn out to M initial = 3.8 M ☉ . These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t ∼ 3 Myr and E = 1.2 × 10 10 L ☉ yr for M initial ∼ 2 M

  7. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marigo, Paola, E-mail: jkalirai@stsci.edu, E-mail: paola.marigo@unipd.it, E-mail: ptremblay@lsw.uni-heidelberg.de [Department of Physics and Astronomy, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy)

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ☉}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ☉}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ☉}. At larger masses, the core-mass growth decreases steadily to ∼10% at M {sub initial} = 3.4 M {sub ☉}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ☉}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t

  8. THE INTERACTION OF ASYMPTOTIC GIANT BRANCH STARS WITH THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, Cantoblanco 28049 Madrid (Spain); Manchado, Arturo [Instituto de Astrofisica de Canarias, Via Lactea S/N, E-38200 La Laguna, Tenerife (Spain); Garcia-Segura, Guillermo, E-mail: eva.villaver@uam.es, E-mail: amt@ll.iac.es, E-mail: ggs@astrosen.unam.mx [Instituto de Astronomia-UNAM, Apartado postal 877, Ensenada, 22800 Baja California (Mexico)

    2012-04-01

    We study the hydrodynamical behavior of the gas expelled by moving asymptotic giant branch stars interacting with the interstellar medium (ISM). Our models follow the wind modulations prescribed by stellar evolution calculations, and we cover a range of expected relative velocities (10-100 km s{sup -1}), ISM densities (between 0.01 and 1 cm{sup -3}), and stellar progenitor masses (1 and 3.5 M{sub Sun }). We show how and when bow shocks and cometary-like structures form, and in which regime the shells are subject to instabilities. Finally, we analyze the results of the simulations in terms of the different kinematical stellar populations expected in the Galaxy.

  9. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    International Nuclear Information System (INIS)

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Foreman-Mackey, Daniel

    2015-01-01

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M Jup planet orbiting a red giant star

  10. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  11. Modelling the ionosphere of gas-giant exoplanets irradiated by low-mass stars

    Science.gov (United States)

    Chadney, J.; Galand, M.; Unruh, Y.; Koskinen, T.; Sanz-Forcada, J.

    2015-10-01

    The composition and structure of the upper atmosphere of Extrasolar Giant Planets (EGPs) are affected by the high-energy spectrum of the host star from soft X-rays to Extreme UltraViolet (EUV) (0.1-10 nm). This emission depends on the activity level of the star, which is primarily determined by its age [1]. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages. XUV spectra for these stars are constructed using a coronal model [2]. These spectra are used to drive both a thermospheric [3] and an ionospheric model, providing densities of neutral and ion species. Ionisation is included through photo-ionisation and electronimpact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model [4]. Planets orbiting far from the star are found to undergo Jeans escape, whereas close-orbiting planets undergo hydrodynamic escape. The critical orbital distance of transition between the two regimes is dependent on the level of stellar activity. We also find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected (eps Eri, AD Leo, AU Mic) are dominated by the long-lived H+ ion. In addition, planets in the Jeans escape regime also have a layer in which H3 + is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3 + undergo significant diurnal variations, their peak value being determined by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and their value is determined by the level of stellar EUV flux. The H3 + peak in EGPs in the hydrodynamic escape regime under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g., hydrocarbons, water). Infrared emissions from H3 + shall also be discussed, as well as the impact of stellar

  12. The star-forming content of the W3 giant molecular cloud

    Science.gov (United States)

    Moore, T. J. T.; Bretherton, D. E.; Fujiyoshi, T.; Ridge, N. A.; Allsopp, J.; Hoare, M. G.; Lumsden, S. L.; Richer, J. S.

    2007-08-01

    We have surveyed a ˜0.9 square degree area of the W3 giant molecular cloud (GMC) and star-forming region in the 850-μm continuum, using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps were detected with a mass range from around 13 to 2500 M⊙. Part of the W3 GMC is subject to an interaction with the H ii region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-μm traced structures is significantly altered by this interaction, being around 5-13 per cent in the undisturbed cloud but ˜25-37 per cent in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.

  13. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    Science.gov (United States)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  14. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  15. X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets

    Science.gov (United States)

    Skinner, Stephen

    A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.

  16. Dense gas and star formation in individual Giant Molecular Clouds in M31

    Science.gov (United States)

    Viaene, S.; Forbrich, J.; Fritz, J.

    2018-04-01

    Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.

  17. Eyes in the sky. Interactions between asymptotic giant branch star winds and the interstellar magnetic field

    Science.gov (United States)

    van Marle, A. J.; Cox, N. L. J.; Decin, L.

    2014-10-01

    Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the

  18. Infrared spectroscopy of symbiotic stars and the nature of their cool components

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Gallagher, J.S.

    1983-01-01

    We present low-resolution 2--4 μm spectroscopy of a small sample of symbiotic stars, in an effort to determine if the giant components of these systems fill their Roche Lobes. A [2.35]-[2.2] color index measures the strength of the CO absorption band and provides a useful discriminant of luminosity class among single M-type giants which separates normal giants from supergiants at the same spectral type. Although interpretation of symbiotic spectra is complicated somewhat by their binary nature, our results suggest the late-type components in these systems range from normal red giants to bright asymptotic giants. The possible presence of non-Roche Lobe filling, low-luminosity giants in some symbiotic stars cannot be understood within the framework of existing theories for these interesting objects, and thus may provide important information for understanding mass transfer in binary systems

  19. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    Science.gov (United States)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  20. POSSIBLE ORIGIN OF THE G2 CLOUD FROM THE TIDAL DISRUPTION OF A KNOWN GIANT STAR BY SGR A*

    International Nuclear Information System (INIS)

    Guillochon, James; Loeb, Abraham; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The discovery of the gas cloud G2 on a near-radial orbit about Sgr A* has prompted much speculation on its origin. In this Letter, we propose that G2 formed out of the debris stream produced by the removal of mass from the outer envelope of a nearby giant star. We perform hydrodynamical simulations of the returning tidal debris stream with cooling and find that the stream condenses into clumps that fall periodically onto Sgr A*. We propose that one of these clumps is the observed G2 cloud, with the rest of the stream being detectable at lower Brγ emissivity along a trajectory that would trace from G2 to the star that was partially disrupted. By simultaneously fitting the orbits of S2, G2, and ∼2000 candidate stars, and by fixing the orbital plane of each candidate star to G2 (as is expected for a tidal disruption), we find that several stars have orbits that are compatible with the notion that one of them was tidally disrupted to produce G2. If one of these stars were indeed disrupted, it last encountered Sgr A* hundreds of years ago and has likely encountered Sgr A* repeatedly. However, while these stars are compatible with the giant disruption scenario given their measured positions and proper motions, their radial velocities are currently unknown. If one of these stars' radial velocity is measured to be compatible with a disruptive orbit, it would strongly suggest that its disruption produced G2

  1. Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Marigo, Paola [Department of Physics and Astronomy G. Galilei, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Girardi, Léo; Gullieuszik, Marco [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Aringer, Bernhard [Department of Astrophysics, University of Vienna, Turkenschanzstraße 17, A-1180 Wien (Austria)

    2014-07-20

    The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

  2. Zeeman-Doppler Imaging of active late-type stars

    OpenAIRE

    Kopf, Markus

    2009-01-01

    Stellare Magnetfelder spielen eine wichtige Rolle bei der Entstehung und Entwicklung von Sternen. Leider entziehen sie sich aber, aufgrund ihrer großen Entfernung zur Erde, einer direkten Beobachtung. Dies gilt zumindest für derzeitige und in naher Zukunft zur Verfügung stehende Instrumente. Um aber beispielsweise zu verstehen, ob Magnetfelder durch einen Dynamoprozess generiert werden oder Überbleibsel der Sternentstehung sind, ist es zwingend erforderlich, die Oberflächenstruktur und die ze...

  3. REVISITING THE MICROLENSING EVENT OGLE 2012-BLG-0026: A SOLAR MASS STAR WITH TWO COLD GIANT PLANETS

    International Nuclear Information System (INIS)

    Beaulieu, J.-P.; Batista, V.; Marquette, J.-B.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 ± 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H -band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of a ∼4–9 Gyr lens star of M lens = 1.06 ± 0.05 M ⊙ at a distance of D lens = 4.0 ± 0.3 kpc, orbited by two giant planets of 0.145 ± 0.008 M Jup and 0.86 ± 0.06 M Jup , with projected separations of 4.0 ± 0.5 au and 4.8 ± 0.7 au, respectively. Because the lens is brighter than the source star by 16 ± 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8–10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  4. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets

    Science.gov (United States)

    Beaulieu, J.-P.; Bennett, D. P.; Batista, V.; Fukui, A.; Marquette, J.-B.; Brillant, S.; Cole, A. A.; Rogers, L. A.; Sumi, T.; Abe, F.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of an approximately 4-9 Gyr lens star of M(sub lens) = 1.06 +/- 0.05 solar mass at a distance of D(sub lens) = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M(sub Jup) and 0.86 +/- 0.06 M(sub Jup), with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  5. A white dwarf companion to the main-sequence star 4 Omicron(1) Orionis and the binary hypothesis for the origin of peculiar red giants

    Science.gov (United States)

    Ake, Thomas B.; Johnson, Hollis R.

    1988-01-01

    Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.

  6. Peak Bagging of red giant stars observed by Kepler: first results with a new method based on Bayesian nested sampling

    Science.gov (United States)

    Corsaro, Enrico; De Ridder, Joris

    2015-09-01

    The peak bagging analysis, namely the fitting and identification of single oscillation modes in stars' power spectra, coupled to the very high-quality light curves of red giant stars observed by Kepler, can play a crucial role for studying stellar oscillations of different flavor with an unprecedented level of detail. A thorough study of stellar oscillations would thus allow for deeper testing of stellar structure models and new insights in stellar evolution theory. However, peak bagging inferences are in general very challenging problems due to the large number of observed oscillation modes, hence of free parameters that can be involved in the fitting models. Efficiency and robustness in performing the analysis is what may be needed to proceed further. For this purpose, we developed a new code implementing the Nested Sampling Monte Carlo (NSMC) algorithm, a powerful statistical method well suited for Bayesian analyses of complex problems. In this talk we show the peak bagging of a sample of high signal-to-noise red giant stars by exploiting recent Kepler datasets and a new criterion for the detection of an oscillation mode based on the computation of the Bayesian evidence. Preliminary results for frequencies and lifetimes for single oscillation modes, together with acoustic glitches, are therefore presented.

  7. Su Lyncis, a Hard X-Ray Bright M Giant: Clues Point to a Large Hidden Population of Symbiotic Stars

    Science.gov (United States)

    Mukai, K.; Luna, G. J. M.; Cusumano, G.; Segreto, A.; Munari, U.; Sokoloski, J. L.; Lucy, A. B.; Nelson, T.; Nunez, N. E.

    2016-01-01

    Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain a more reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favor of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.

  8. Search for Exoplanets around Northern Circumpolar Stars. II. The Detection of Radial Velocity Variations in M Giant Stars HD 36384, HD 52030, and HD 208742

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong-Cheol; Jeong, Gwanghui; Han, Inwoo; Lee, Sang-Min; Kim, Kang-Min [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Park, Myeong-Gu; Oh, Hyeong-Il [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Mkrtichian, David E. [National Astronomical Research Institute of Thailand, Chiang Mai 50200 (Thailand); Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg (TLS), Sternwarte 5, D-07778 Tautenburg (Germany); Gu, Shenghong; Bai, Jinming, E-mail: bclee@kasi.re.kr [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-07-20

    We present the detection of long-period RV variations in HD 36384, HD 52030, and HD 208742 by using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) for the precise radial velocity (RV) survey of about 200 northern circumpolar stars. Analyses of RV data, chromospheric activity indicators, and bisector variations spanning about five years suggest that the RV variations are compatible with planet or brown dwarf companions in Keplerian motion. However, HD 36384 shows photometric variations with a period very close to that of RV variations as well as amplitude variations in the weighted wavelet Z-transform (WWZ) analysis, which argues that the RV variations in HD 36384 are from the stellar pulsations. Assuming that the companion hypothesis is correct, HD 52030 hosts a companion with minimum mass 13.3 M {sub Jup} orbiting in 484 days at a distance of 1.2 au. HD 208742 hosts a companion of 14.0 M {sub Jup} at 1.5 au with a period of 602 days. All stars are located at the asymptotic giant branch (AGB) stage on the H–R diagram after undergoing the helium flash and leaving the giant clump.With stellar radii of 53.0 R {sub ⊙} and 57.2 R {sub ⊙} for HD 52030 and HD 208742, respectively, these stars may be the largest yet, in terms of stellar radius, found to host substellar companions. However, given possible RV amplitude variations and the fact that these are highly evolved stars, the planet hypothesis is not yet certain.

  9. On the Onset of Secondary Stellar Generations in Giant Star-forming Regions and Massive Star Clusters

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan; Wünsch, Richard; Tenorio-Tagle, G.

    2014-01-01

    Roč. 792, č. 2 (2014), 105/1-105/10 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : galaxies: ISM * star clusters: general * galaxies: star formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.993, year: 2014

  10. Livermore Lab's giant laser system will bring star power to Earth

    International Nuclear Information System (INIS)

    Moses, E.

    2010-01-01

    last summer and fall, successfully delivering a world-record level of ultraviolet laser energy - more than 1.2 million joules - to a target. The experiments also demonstrated the target drive and target capsule conditions required to achieve fusion ignition. When ignition experiments begin later this year, NIF's lasers will create temperatures and pressures in the hydrogen target that exist only in the cores of stars and giant planets and inside thermonuclear weapons. As a key component of the National Nuclear Security Administration's Stockpile Stewardship Program, NIF will offer the means for sustaining a safe, secure and reliable U.S. nuclear deterrent without nuclear testing. NIF is uniquely capable of providing the experimental data needed to develop and validate computer models that will enable scientists to assess the continuing viability of the nation's nuclear stockpile. Along with this vital national security mission, success at NIF also offers the possibility of groundbreaking scientific discoveries in a wide variety of disciplines ranging from hydrodynamics to astrophysics. As a unique facility in the world that can create the conditions that exist in supernovas and in the cores of giant planets, NIF will help unlock the secrets of the cosmos and inspire the next generation of scientists. It is NIF's third mission, energy security that has been generating the most excitement in the news media and the international scientific community. The reasons are obvious: global energy demand, driven by population growth and the aspirations of the developing world, already is straining the planet's existing energy resources. Global need for electricity is expected to double from its current level of about two trillion watts (TW) to four TW by 2030 and could reach eight to ten TW by the end of the century. As many as 10,000 new billion-watt power plants will have to be built to keep up with this demand. Meeting this pressing need will require a sustainable carbon

  11. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Honig, Z. N.; Reid, M. J.

    2015-01-01

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others

  12. VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T.J.L.; Hill, V.; Tolstoy, E.; Irwin, M.J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; François, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.

    2014-01-01

    Context. Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Aims.

  13. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    International Nuclear Information System (INIS)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C.; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Gilliland, Ronald L.; Horch, Elliott P.

    2013-01-01

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m Kp = 11.6, T eff = 5576 K, M * = 0.98 M ☉ ). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R ⊕ , based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M ⊕ (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars

  14. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Johnson, John Asher [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Campante, Tiago L.; Chaplin, William J.; Davies, Guy R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, Mikkel N. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Fischer, Debra A. [Astronomy Department, Yale University, New Haven, CT (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  15. THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?

    International Nuclear Information System (INIS)

    Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A.; Srinivasan, S.; Riebel, D.; McDonald, I.; Van Loon, J. Th.; Clayton, G. C.; Sloan, G. C.

    2012-01-01

    We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 μm excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) × 10 –7 M ☉ yr –1 of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least ( –3 M ☉ of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.

  16. New asteroseismic scaling relations based on the Hayashi track relation applied to red giant branch stars in NGC 6791 and NGC 6819

    International Nuclear Information System (INIS)

    Wu, T.; Li, Y.; Hekker, S.

    2014-01-01

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (√(T eff )∼g p R q ) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν max (frequency of maximum oscillation power). The Δν and ν max values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν max , with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν max relation for red giant branch stars.

  17. Peak Bagging of red giant stars observed by Kepler: first results with a new method based on Bayesian nested sampling

    Directory of Open Access Journals (Sweden)

    Corsaro Enrico

    2015-01-01

    Full Text Available The peak bagging analysis, namely the fitting and identification of single oscillation modes in stars’ power spectra, coupled to the very high-quality light curves of red giant stars observed by Kepler, can play a crucial role for studying stellar oscillations of different flavor with an unprecedented level of detail. A thorough study of stellar oscillations would thus allow for deeper testing of stellar structure models and new insights in stellar evolution theory. However, peak bagging inferences are in general very challenging problems due to the large number of observed oscillation modes, hence of free parameters that can be involved in the fitting models. Efficiency and robustness in performing the analysis is what may be needed to proceed further. For this purpose, we developed a new code implementing the Nested Sampling Monte Carlo (NSMC algorithm, a powerful statistical method well suited for Bayesian analyses of complex problems. In this talk we show the peak bagging of a sample of high signal-to-noise red giant stars by exploiting recent Kepler datasets and a new criterion for the detection of an oscillation mode based on the computation of the Bayesian evidence. Preliminary results for frequencies and lifetimes for single oscillation modes, together with acoustic glitches, are therefore presented.

  18. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES. II. THE FRUITY DATABASE

    International Nuclear Information System (INIS)

    Cristallo, S.; Domínguez, I.; Abia, C.; Piersanti, L.; Straniero, O.; Gallino, R.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-01-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables and Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 ≤M/M ☉ ≤ 3.0 and metallicities 1 × 10 –3 ≤ Z ≤ 2 × 10 –2 , is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  19. Evolution, Nucleosynthesis, and Yields of Low-mass Asymptotic Giant Branch Stars at Different Metallicities. II. The FRUITY Database

    Science.gov (United States)

    Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-12-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables & Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 3.0 and metallicities 1 × 10-3 <= Z <= 2 × 10-2, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  20. STAR FORMATION IN DISK GALAXIES. II. THE EFFECT OF STAR FORMATION AND PHOTOELECTRIC HEATING ON THE FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.

    2011-01-01

    We investigate the effect of star formation and diffuse photoelectric heating on the properties of giant molecular clouds (GMCs) formed in high-resolution (∼ H,c >100 cm -3 are identified as GMCs. Between 1000 and 1500 clouds are created in the simulations with masses M>10 5 M sun and 180-240 with masses M>10 6 M sun in agreement with estimates of the Milky Way's population. We find that the effect of photoelectric heating is to suppress the fragmentation of the interstellar medium, resulting in a filamentary structure in the warm gas surrounding clouds. This environment suppresses the formation of a retrograde rotating cloud population, with 88% of the clouds rotating prograde with respect to the galaxy after 300 Myr. The diffuse heating also reduces the initial star formation rate (SFR), slowing the conversation of gas into stars. We therefore conclude that the interstellar environment plays an important role in the GMC evolution. Our clouds live between 0 and 20 Myr with a high infant mortality (t' < 3 Myr) due to cloud mergers and star formation. Other properties, including distributions of mass, size, and surface density, agree well with observations. Collisions between our clouds are common, occurring at a rate of ∼ 1/4 of the orbital period. It is not clear whether such collisions trigger or suppress star formation at our current resolution. Our SFR is a factor of 10 higher than observations in local galaxies. This is likely due to the absence of localized feedback in our models.

  1. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  2. Modeling UV Radiation Feedback from Massive Stars. II. Dispersal of Star-forming Giant Molecular Clouds by Photoionization and Radiation Pressure

    Science.gov (United States)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.

    2018-05-01

    UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.

  3. Formation of massive stars in OB associations and giant molecular clouds

    International Nuclear Information System (INIS)

    Lada, C.J.

    1980-01-01

    Certain interesting patterns are being perceived in the morphology of the regions which have recently produced massive OB stars. In particular, current evidence seems to favour the notion that the formation of massive stars takes place at the edges and not the centres of large molecular cloud complexes. It is this aspect of the observations that is discussed in the present paper. The phenomena described here will pertain to massive stars only. Specifically, stars with spectral types earlier than B3 will be considered since it is usually only these stars that produce sufficient havoc (e.g., maser sources, CO bright spots, H II regions) to noticeably affect their early environments. The corresponding phenomena for lower mass stars could be entirely different. A review is first presented of what has been learned about the OB star formation process from studies of the visible OB stars themselves. Then, newly derived information pertaining to the most recent episodes of OB star birth in galactic molecular clouds is discussed. Finally, a short discussion of the significance of the results and their implications for possible star formation mechanisms will be made. (U.K.)

  4. Herschel/HIFI Observations of IRC+10216: Water Vapor in the Inner Envelope of a Carbon-rich Asymptotic Giant Branch Star

    NARCIS (Netherlands)

    Neufeld, D. A.; González-Alfonso, E.; Melnick, G.; Szczerba, R.; Schmidt, M.; Decin, L.; de Koter, A.; Schöier, F. L.; Cernicharo, J.

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch

  5. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints - The open cluster NGC 6633 and field stars-

    Science.gov (United States)

    Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit

    2015-08-01

    The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.

  6. FUNDAMENTAL PARAMETERS OF THE EXOPLANET HOST K GIANT STAR {iota} DRACONIS FROM THE CHARA ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); McAlister, Harold A.; Ten Brummelaar, Theo A.; Turner, Nils H.; Sturmann, Judit; Sturmann, Laszlo; Goldfinger, P. J.; Farrington, Christopher D. [Center for High Angular Resolution Astronomy, Georgia State University, P.O. Box 3969, Atlanta, GA 30302-3969 (United States); Ridgway, Stephen T., E-mail: ellyn.baines@nrl.navy.mil [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States)

    2011-12-20

    We measured the angular diameter of the exoplanet host star {iota} Dra with Georgia State University's Center for High Angular Resolution Astronomy Array interferometer and, using the star's parallax and photometry from the literature, calculated its physical radius and effective temperature. We then combined our results with stellar oscillation frequencies from Zechmeister et al. and orbital elements from Kane et al. to determine the masses for the star and exoplanet. Our value for the central star's mass is 1.82 {+-} 0.23 M{sub Sun }, which means the exoplanet's minimum mass is 12.6 {+-} 1.1 M{sub Jupiter}. Using our new effective temperature, we recalculated the habitable zone for the system, though it is well outside the star-planet separation.

  7. Seismic probing of the first dredge-up event through the eccentric red-giant and red-giant spectroscopic binary KIC 9163796. How different are red-giant stars with a mass ratio of 1.015?

    Science.gov (United States)

    Beck, P. G.; Kallinger, T.; Pavlovski, K.; Palacios, A.; Tkachenko, A.; Mathis, S.; García, R. A.; Corsaro, E.; Johnston, C.; Mosser, B.; Ceillier, T.; do Nascimento, J.-D.; Raskin, G.

    2018-04-01

    Context. Binaries in double-lined spectroscopic systems (SB2) provide a homogeneous set of stars. Differences of parameters, such as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed differences are determined by the difference in stellar mass between the two components. The mass ratio can be determined with much higher accuracy than the actual stellar mass. Aim. In this work, we aim to study the eccentric binary system KIC 9163796, whose two components are very close in mass and both are low-luminosity red-giant stars. Methods: We analysed four years of Kepler space photometry and we obtained high-resolution spectroscopy with the Hermes instrument. The orbital elements and the spectra of both components were determined using spectral disentangling methods. The effective temperatures, and metallicities were extracted from disentangled spectra of the two stars. Mass and radius of the primary were determined through asteroseismology. The surface rotation period of the primary is determined from the Kepler light curve. From representative theoretical models of the star, we derived the internal rotational gradient, while for a grid of models, the measured lithium abundance is compared with theoretical predictions. Results: From seismology the primary of KIC 9163796 is a star of 1.39 ± 0.06 M⊙, while the spectroscopic mass ratio between both components can be determined with much higher precision by spectral disentangling to be 1.015 ± 0.005. With such mass and a difference in effective temperature of 600 K from spectroscopy, the secondary and primary are, respectively, in the early and advanced stage of the first dredge-up event on the red-giant branch. The period of the primary's surface rotation resembles the orbital period within ten days. The radial rotational gradient between the surface and core in KIC 9163796 is found to be 6.9-1.0+2.0. This is a low value but not exceptional if

  8. The distribution of stars around the Milky Way's central black hole. II. Diffuse light from sub-giants and dwarfs

    Science.gov (United States)

    Schödel, R.; Gallego-Cano, E.; Dong, H.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.

    2018-01-01

    Context. This is the second of three papers that search for the predicted stellar cusp around the Milky Way's central black hole, Sagittarius A*, with new data and methods. Aims: We aim to infer the distribution of the faintest stellar population currently accessible through observations around Sagittarius A*. Methods: We used adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through optimised PSF fitting we removed the light from all detected stars above a given magnitude limit. Subsequently we analysed the remaining, diffuse light density. Systematic uncertainties were constrained by the use of data from different observing epochs and obtained with different filters. We show that it is necessary to correct for the diffuse emission from the mini-spiral, which would otherwise lead to a systematically biased light density profile. We used a Paschen α map obtained with the Hubble Space Telescope for this purpose. Results: The azimuthally averaged diffuse surface light density profile within a projected distance of R ≲ 0.5 pc from Sagittarius A* can be described consistently by a single power law with an exponent of Γ = 0.26 ± 0.02stat ± 0.05sys, similar to what has been found for the surface number density of faint stars in Paper I. Conclusions: The analysed diffuse light arises from sub-giant and main-sequence stars with Ks ≈ 19-22 with masses of 0.8-1.5 M⊙. These stars can be old enough to be dynamically relaxed. The observed power-law profile and its slope are consistent with the existence of a relaxed stellar cusp around the Milky Way's central black hole. We find that a Nuker law provides an adequate description of the nuclear cluster's intrinsic shape (assuming spherical symmetry). The 3D power-law slope near Sgr A* is γ = 1.13 ± 0.03model ± 0.05sys. The stellar density decreases more steeply beyond a break radius of about 3 pc, which corresponds roughly to the radius of influence of the

  9. THE S{sup 4}G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    Energy Technology Data Exchange (ETDEWEB)

    Meidt, Sharon E.; Schinnerer, Eva [Max-Planck-Institut fuer Astronomie/Koenigstuhl 17, D-69117 Heidelberg (Germany); Munoz-Mateos, Juan-Carlos; Kim, Taehyun [National Radio Astronomy Observatory, Charlottesville, VA (United States); Holwerda, Benne [European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noordwijk (Netherlands); Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menendez-Delmestre, Karin; Seibert, Mark [The Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); Knapen, Johan H. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Bosma, Albert; Athanassoula, E. [Laboratoire d' Astrophysique de Marseille (LAM), Marseille (France); Hinz, Joannah L. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Regan, Michael [Space Telescope Science Institute, Baltimore, MD (United States); De Paz, Armando Gil [Departamento de Astrofisica, Universidad Complutense Madrid, Madrid (Spain); Mizusawa, Trisha [Spitzer Science Center, Pasadena, CA (United States); Gadotti, Dimitri A. [European Southern Observatory, Santiago (Chile); Laurikainen, Eija; Salo, Heikki [Astronomy Division, Department of Physical Sciences, University of Oulu, Oulu (Finland); and others

    2012-04-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters-each the analogue of a {approx}1 Gyr old post-starburst galaxy-has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average {approx}0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from {approx}70%, as predicted in the latest generation of synthesis models, to {approx}35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  10. THE S4G PERSPECTIVE ON CIRCUMSTELLAR DUST EXTINCTION OF ASYMPTOTIC GIANT BRANCH STARS IN M100

    International Nuclear Information System (INIS)

    Meidt, Sharon E.; Schinnerer, Eva; Muñoz-Mateos, Juan-Carlos; Kim, Taehyun; Holwerda, Benne; Ho, Luis C.; Madore, Barry F.; Sheth, Kartik; Menéndez-Delmestre, Karín; Seibert, Mark; Knapen, Johan H.; Bosma, Albert; Athanassoula, E.; Hinz, Joannah L.; Regan, Michael; De Paz, Armando Gil; Mizusawa, Trisha; Gadotti, Dimitri A.; Laurikainen, Eija; Salo, Heikki

    2012-01-01

    We examine the effect of circumstellar dust extinction on the near-IR (NIR) contribution of asymptotic giant branch (AGB) stars in intermediate-age clusters throughout the disk of M100. For our sample of 17 AGB-dominated clusters we extract optical-to-mid-IR spectral energy distributions (SEDs) and find that NIR brightness is coupled to the mid-IR dust emission in such a way that a significant reduction of AGB light, of up to 1 mag in the K band, follows from extinction by the dust shell formed during this stage. Since the dust optical depth varies with AGB chemistry (C-rich or O-rich), our results suggest that the contribution of AGB stars to the flux from their host clusters will be closely linked to the metallicity and the progenitor mass of the AGB star, to which dust chemistry and mass-loss rate are sensitive. Our sample of clusters—each the analogue of a ∼1 Gyr old post-starburst galaxy—has implications within the context of mass and age estimation via SED modeling at high-z: we find that the average ∼0.5 mag extinction estimated here may be sufficient to reduce the AGB contribution in the (rest-frame) K band from ∼70%, as predicted in the latest generation of synthesis models, to ∼35%. Our technique for selecting AGB-dominated clusters in nearby galaxies promises to be effective for discriminating the uncertainties associated with AGB stars in intermediate-age populations that plague age and mass estimation in high-z galaxies.

  11. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Indebetouw, R.; Marengo, M.; Sloan, G. C.

    2010-01-01

    We model multi-wavelength broadband UBVIJHK s and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with γ of -3.5, a min of 0.01 μm, and a 0 of 0.1 μm to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be ∼5100 L sun and ∼36,000 L sun , respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of ∼3 M sun and ∼7 M sun . This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius ∼17 and ∼52 times the stellar radius, respectively, with dust temperatures there of

  12. The Sleeping Monster: NuSTAR Observations of SGR 1806-20, 11 Years After the Giant Flare

    Science.gov (United States)

    Younes, George; Baring, Matthew G.; Kouveliotou, Chryssa; Harding, Alice; Donovan, Sophia; Göğüş, Ersin; Kaspi, Victoria; Granot, Jonathan

    2017-12-01

    We report the analysis of five Nuclear Spectroscopic Telescope Array (NuSTAR) observations of SGR 1806-20 spread over a year from 2015 April to 2016 April, more than 11 years following its giant flare (GF) of 2004. The source spin frequency during the NuSTAR observations follows a linear trend with a frequency derivative \\dot{ν }=(-1.25+/- 0.03)× {10}-12 Hz s-1, implying a surface dipole equatorial magnetic field B≈ 7.7× {10}14 G. Thus, SGR 1806-20 has finally returned to its historical minimum torque level measured between 1993 and 1998. The source showed strong timing noise for at least 12 years starting in 2000, with \\dot{ν } increasing one order of magnitude between 2005 and 2011, following its 2004 major bursting episode and GF. SGR 1806-20 has not shown strong transient activity since 2009, and we do not find short bursts in the NuSTAR data. The pulse profile is complex with a pulsed fraction of ˜ 8 % with no indication of energy dependence. The NuSTAR spectra are well fit with an absorbed blackbody, {kT}=0.62+/- 0.06 {keV}, plus a power law, {{Γ }}=1.33+/- 0.03. We find no evidence for variability among the five observations, indicating that SGR 1806-20 has reached a persistent and potentially its quiescent X-ray flux level after its 2004 major bursting episode. Extrapolating the NuSTAR model to lower energies, we find that the 0.5-10 keV flux decay follows an exponential form with a characteristic timescale τ =543+/- 75 days. Interestingly, the NuSTAR flux in this energy range is a factor of ˜2 weaker than the long-term average measured between 1993 and 2003, a behavior also exhibited in SGR 1900+14. We discuss our findings in the context of the magnetar model.

  13. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanović, Tamara; Cheng, Roseanne M. [Center for Relativistic Astrophysics, School of Physics, Georgia Tech, Atlanta, GA 30332 (United States); Amaro-Seoane, Pau, E-mail: tamarab@gatech.edu, E-mail: rcheng@gatech.edu, E-mail: Pau.Amaro-Seoane@aei.mpg.de [Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany)

    2014-06-20

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  14. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    International Nuclear Information System (INIS)

    Bogdanović, Tamara; Cheng, Roseanne M.; Amaro-Seoane, Pau

    2014-01-01

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  15. Exploring halo substructure with giant stars. XIV. The nature of the Triangulum-Andromeda stellar features

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, Allyson A.; Johnston, Kathryn V. [Department of Astronomy, Columbia University, Mail Code 5246, New York, NY 10027 (United States); Majewski, Steven R.; Damke, Guillermo; Richardson, Whitney; Beaton, Rachael [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Rocha-Pinto, Helio J., E-mail: asheffield@astro.columbia.edu, E-mail: kvj@astro.columbia.edu, E-mail: srm4n@virginia.edu, E-mail: gjd3r@virginia.edu, E-mail: wwr2u@virginia.edu, E-mail: rlb9n@virginia.edu, E-mail: helio@astro.ufrj.br [Observatório do Valongo, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2014-09-20

    As large-scale stellar surveys have become available over the past decade, the ability to detect and characterize substructures in the Galaxy has increased dramatically. These surveys have revealed the Triangulum-Andromeda (TriAnd) region to be rich with substructures in the distance range 20-30 kpc, and the relation of these features to each other, if any, remains unclear. An exploration using Two Micron All Sky Survey (2MASS) photometry reveals not only the faint sequence in M giants detected by Rocha-Pinto et al. spanning the range 100° < l < 160° and –50° < b < –15°, but, in addition, a second, brighter and more densely populated sequence. These sequences are likely associated with the distinct main sequences (MSs) discovered (and labeled TriAnd1 and TriAnd2) by Martin et al. in an optical survey in the direction of M31, where TriAnd2 is the optical counterpart of the fainter red giant branch (RGB)/asymptotic giant branch sequence of Rocha-Pinto et al. Here, the age, distance, and metallicity ranges for TriAnd1 and TriAnd2 are estimated by simultaneously fitting isochrones to the 2MASS RGB tracks and the optical MS/MS turn-off features. The two populations are clearly distinct in age and distance: the brighter sequence (TriAnd1) is younger (6-10 Gyr) and closer (distance of ∼15-21 kpc), whereas the fainter sequence (TriAnd2) is older (10-12 Gyr) and at an estimated distance of ∼24-32 kpc. A comparison with simulations demonstrates that the differences and similarities between TriAnd1 and TriAnd2 can simultaneously be explained if they represent debris originating from the disruption of the same dwarf galaxy, but torn off during two distinct pericentric passages.

  16. Mass loss from red giants - A simple evolutionary model for NGC 7027

    Science.gov (United States)

    Jura, M.

    1984-01-01

    NGC 7027 is a young planetary nebula with the remnants of a red giant circumstellar envelope surrounding the central, ionized region. By comparing the outer molecular envelope with the inner ionized material, it is argued that the mass loss rate has decreased by at least a factor of 3, and more probably by about a factor of 10, during the past 1000 years. From this result, it is argued that the luminosity of the central star has also decreased substantially during the same time, consistent with models for the rapid evolution of stars just after they evolve off the asymptotic giant branch. In this picture, the distance to NGC 7027 is less than 1300 pc. NGC 7027 was the last (and best) example of a star where apparently the momentum in the outflowing mass /M(dot)v/ is considerably greater than the momentum in the radiation field (L/c). With the above description of this object, the evidence is now strong that quite often the mass lost from late-type giants is ultimately driven to infinity by radiation pressure on grains. If M(dot)v is as large as L/c for asymptotic branch stars, then it is expected that the total amount of mass lost during this stage of evolution is of the same magnitude as the initial mass of the star, and therefore this mass loss can profoundly affect the star's ultimate fate.

  17. Oxygen isotopic abundances in the atmospheres of seven red giant stars

    International Nuclear Information System (INIS)

    Harris, M.J.; Lambert, D.L.

    1984-01-01

    Abundances ratios of the oxygen isotopes have been measured in α Tau, β And, μ Gem, α Her, β Peg, γ Dra, and α Boo. In all the stars the 16 O/ 18 O ratios are similar; the mean value is 475, which is consistent with the solar system value 16 O/ 18 O = 490. The 16 O/ 17 O ratios range from approx.1000 for β Peg and α Boo to 16 O/ 17 O = 160 for β And

  18. Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence

    Science.gov (United States)

    Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Christie, Duncan; Li, Qi

    2018-05-01

    We investigate collisions between giant molecular clouds (GMCs) as potential generators of their internal turbulence. Using magnetohydrodynamic (MHD) simulations of self-gravitating, magnetized, turbulent GMCs, we compare kinematic and dynamic properties of dense gas structures formed when such clouds collide compared to those that form in non-colliding clouds as self-gravity overwhelms decaying turbulence. We explore the nature of turbulence in these structures via distribution functions of density, velocity dispersions, virial parameters, and momentum injection. We find that the dense clumps formed from GMC collisions have higher effective Mach number, greater overall velocity dispersions, sustain near-virial equilibrium states for longer times, and are the conduit for the injection of turbulent momentum into high density gas at high rates.

  19. AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS

    International Nuclear Information System (INIS)

    West, Andrew A.; Weisenburger, Kolby L.; Irwin, Jonathan; Charbonneau, David; Dittmann, Jason; Berta-Thompson, Zachory K.; Pineda, J. Sebastian

    2015-01-01

    Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one to longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population

  20. AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    West, Andrew A.; Weisenburger, Kolby L. [Department of Astronomy, Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States); Irwin, Jonathan; Charbonneau, David; Dittmann, Jason [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Berta-Thompson, Zachory K. [MIT, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Ave., Bldg. 37, Cambridge, MA 02139 (United States); Pineda, J. Sebastian, E-mail: aawest@bu.edu [California Institute of Technology, Department of Astronomy, 1200 E. California Ave, Pasadena, CA 91125 (United States)

    2015-10-10

    Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one to longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.

  1. Constraining stellar physics from red-giant stars in binaries – stellar rotation, mixing processes and stellar activity

    Directory of Open Access Journals (Sweden)

    Beck P. G.

    2017-01-01

    Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC 9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.

  2. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  3. The WISSH quasars project. II. Giant star nurseries in hyper-luminous quasars

    Science.gov (United States)

    Duras, F.; Bongiorno, A.; Piconcelli, E.; Bianchi, S.; Pappalardo, C.; Valiante, R.; Bischetti, M.; Feruglio, C.; Martocchia, S.; Schneider, R.; Vietri, G.; Vignali, C.; Zappacosta, L.; La Franca, F.; Fiore, F.

    2017-08-01

    Context. Studying the coupling between the energy output produced by the central quasar and the host galaxy is fundamental to fully understand galaxy evolution. Quasar feedback is indeed supposed to dramatically affect the galaxy properties by depositing large amounts of energy and momentum into the interstellar medium (ISM). Aims: In order to gain further insights on this process, we study the spectral energy distributions (SEDs) of sources at the brightest end of the quasar luminosity function, for which the feedback mechanism is assumed to be at its maximum, given their high efficiency in driving powerful outflows. Methods: We modelled the rest-frame UV-to-far-IR SEDs of 16 WISE-SDSS Selected Hyper-luminous (WISSH) quasars at 1.8 code to account for the contribution of the quasar-related emission to the far-IR fluxes. Results: Most SEDs are well described by a standard combination of accretion disc plus torus and cold dust emission. However, about 30% of SEDs require an additional emission component in the near-IR, with temperatures peaking at 750 K, which indicates that a hotter dust component is present in these powerful quasars. We measure extreme values of both AGN bolometric luminosity (LBOL > 1047 erg/s) and star formation rate (up to 2000 M⊙/yr) based on the quasar-corrected, IR luminosity of the host galaxy. A new relation between quasar and star formation luminosity is derived (LSF ∝ L0.73QSO) by combining several Herschel-detected quasar samples from z 0 to 4. WISSH quasars have masses ( 108M⊙) and temperatures ( 50 K) of cold dust in agreement with those found for other high-z IR luminous quasars. Conclusions: Thanks to their extreme nuclear and star formation luminosities, the WISSH quasars are ideal targets to shed light on the feedback mechanism and its effect on the evolution of their host galaxies, as well as on the merger-induced scenario that is commonly assumed to explain these exceptional luminosities. Future observations will be

  4. Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star

    DEFF Research Database (Denmark)

    Beck, P.G.; Bedding, Timothy R.; Mosser, Benoit

    2011-01-01

    Stellar interiors are inaccessible through direct observations. For this reason, helioseismologists made use of the Sun’s acoustic oscillation modes to tune models of its structure. The quest to detect modes that probe the solar core has been ongoing for decades. We report the detection of mixed...... modes penetrating all the way to the core of an evolved star from 320 days of observations with the Kepler satellite. The period spacings of these mixed modes are directly dependent on the density gradient between the core region and the convective envelope....

  5. Nonequilibrium iron oxide formation in some low-mass post-asymptotic giant branch stars

    Science.gov (United States)

    Rietmeijer, Frans J. M.

    1992-01-01

    Using experimental evidence that under highly oxidizing conditions gamma-Fe2O3 (maghemite) and Fe3O4 display refractory behavior, it is proposed that very low C/O ratios, that could be unique to evolving AGB stars, induce nonequilibrium formation of ferromagnetic iron oxide grains along with chondritic dust. The oxides are preferentially fractionated from chondritic dust in the stellar magnetic field which could account for the observed extreme iron underabundance in their photosphere. A search for the 1-2.5-micron IR absorption feature, or for diagnostic magnetite and maghemite IR absorption features, could show the validity of the model proposed.

  6. Random forest classification of stars in the Galactic Centre

    Science.gov (United States)

    Plewa, P. M.

    2018-05-01

    Near-infrared high-angular resolution imaging observations of the Milky Way's nuclear star cluster have revealed all luminous members of the existing stellar population within the central parsec. Generally, these stars are either evolved late-type giants or massive young, early-type stars. We revisit the problem of stellar classification based on intermediate-band photometry in the K band, with the primary aim of identifying faint early-type candidate stars in the extended vicinity of the central massive black hole. A random forest classifier, trained on a subsample of spectroscopically identified stars, performs similarly well as competitive methods (F1 = 0.85), without involving any model of stellar spectral energy distributions. Advantages of using such a machine-trained classifier are a minimum of required calibration effort, a predictive accuracy expected to improve as more training data become available, and the ease of application to future, larger data sets. By applying this classifier to archive data, we are also able to reproduce the results of previous studies of the spatial distribution and the K-band luminosity function of both the early- and late-type stars.

  7. Probing the clumpy winds of giant stars with high mass X-ray binaries

    Science.gov (United States)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  8. The Comparative Observational Study of Timescale of Feedback by Bar Structure in Late-type Galaxies

    Science.gov (United States)

    Woong-bae Woong-bae Zee, Galaxy; Yoon, Suk-jin

    2018-01-01

    We investigate star formation activities of ~400 barred and ~1400 unbarred faced-on late-type galaxies from the SDSS DR13. We find that gas-poor and barred galaxies are considerably show enhanced high central star formation activities, while there is no difference among gas-rich barred and unbarred galaxies regardless of their HI gas content. This seems counter-intuitive given that gas contents simply represent the total star formation rate of galaxies and suggests that there is a time delation between the central gas migration/consumption through bar structures and the enhancement of star formation activity at the centre. We analysed the distribution of the stellar population of specific galaxies with MaNGA (Mapping Nearby Galaxies at APO) IFU survey among the total samples. The gas-poor and barred galaxies show the flatter gradient in metallicity and age with respect to the stellar mass than other types of galaxies, in that their centre is more metal-rich and younger. There is an age difference, about 5-6 Gyrs, between centrally star-forming gas-poor barred galaxies and gas-rich galaxies and this value is a plausible candidate of the longevity of bar feedback. The results indicate that the gas migration/mixing driven by bar structure plays a significant role in the evolution of galaxies in a specific of timescale.

  9. Extensions of the Wilson-Bappu effect among very luminous stars

    International Nuclear Information System (INIS)

    Stencel, R.E.

    1978-01-01

    Wilson and Bappu (1957) published their observational correlation of Msub(v) and the logarithm of the full width at half maximum of the CaII K-line central emission for G, K and M stars. The accuracy makes the approach valuable for late-type supergiants since other methods suffer from comparable errors. However, for F through M supergiants (Ia, O), circumstellar absorption obscures the chromospheric K-line core emission and excludes such objects from the Wilson-Bappu correlation. The author reports on a new class of emission lines in late-type giant and supergiant spectra that exhibit Msub(v) correlated widths, yet are detectable among the brightest stars. (Auth.)

  10. RADIAL VELOCITIES FROM VLT-KMOS SPECTRA OF GIANT STARS IN THE GLOBULAR CLUSTER NGC 6388

    International Nuclear Information System (INIS)

    Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Origlia, L.; Valenti, E.; Cirasuolo, M.

    2015-01-01

    We present new radial velocity measurements for 82 stars, members of the Galactic globular cluster (GC) NGC 6388, obtained from ESO-VLT K-band Multi Object Spectrograph (KMOS) spectra acquired during the instrument Science Verification. The accuracy of the wavelength calibration is discussed and a number of tests of the KMOS response are presented. The cluster systemic velocity obtained (81.3 ± 1.5 km s –1 ) is in very good agreement with previous determinations. While a hint of ordered rotation is found between 9'' and 20'' from the cluster center, where the distribution of radial velocities is clearly bimodal, more data are needed before drawing any firm conclusions. The acquired sample of radial velocities has also been used to determine the cluster velocity dispersion (VD) profile between ∼9'' and 70'', supplementing previous measurements at r < 2'' and r > 60'' obtained with ESO-SINFONI and ESO-FLAMES spectroscopy, respectively. The new portion of the VD profile nicely matches the previous ones, better defining the knee of the distribution. The present work clearly shows the effectiveness of a deployable integral field unit in measuring the radial velocities of individual stars for determining the VD profile of Galactic GCs. It represents the pilot project for an ongoing large program with KMOS and FLAMES at the ESO-VLT, aimed at determining the next generation of VD and rotation profiles for a representative sample of GCs

  11. Applicability of the Fourier convolution theorem to the analysis of late-type stellar spectra

    International Nuclear Information System (INIS)

    Bruning, D.H.

    1981-01-01

    Solar flux and intensity measurements were obtained at Sacramento Peak Observatory to test the validity of the Fourier convolution method as a means of analyzing the spectral line shapes of late-type stars. Analysis of six iron lines near 6200A shows that, in general, the convolution method is not a suitable approximation for the calculation of the flux profile. The convolution method does reasonably reproduce the line shape for some lines which appear not to vary across the disk of the sun, but does not properly calculate the central line depth of these lines. Even if a central depth correction could be found, it is difficult to predict, especially for stars other than the sun, which lines have nearly constant shapes and could be used with the convolution method. Therefore, explicit disk integrations are promoted as the only reliable method of spectral line analysis for late-type stars. Several methods of performing the disk integration are investigated. Although the Abt (1957) prescription appears suitable for the limited case studied, methods using annuli of equal area, equal flux, or equal width (Soberblom, 1980) are considered better models. The model that is the easiest to use and most efficient computationally is the equal area model. Model atmosphere calculations yield values for the microturbulence and macroturbulence similar to those derived by observers. Since the depth dependence of the microturbulence is ignored in the calculations, the intensity profiles at disk center and the limb do not match the observed intensity profiles with only one set of velocity parameters. Use of these incorrectly calculated intensity profiles in the integration procedure to obtain the flux profile leads to incorrect estimates of the solar macroturbulence

  12. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  13. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-01-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  14. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    Science.gov (United States)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  15. Evolution of Late-type Galaxies in a Cluster Environment: Effects of High-speed Multiple Encounters with Early-type Galaxies

    Science.gov (United States)

    Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong

    2018-04-01

    Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.

  16. A NON-LTE STUDY OF SILICON ABUNDANCES IN GIANT STARS FROM THE Si i INFRARED LINES IN THE zJ -BAND

    International Nuclear Information System (INIS)

    Tan, Kefeng; Shi, Jianrong; Zhao, Gang; Takada-Hidai, Masahide; Takeda, Yoichi

    2016-01-01

    We investigate the feasibility of Si i infrared (IR) lines as Si abundance indicators for giant stars. We find that Si abundances obtained from the Si i IR lines based on the local thermodynamic equilibrium (LTE) analysis show large line-to-line scatter (mean value of 0.13 dex), and are higher than those from the optical lines. However, when non-LTE effects are taken into account, the line-to-line scatter reduces significantly (mean value of 0.06 dex), and the Si abundances are consistent with those from the optical lines. The typical average non-LTE correction of [Si/Fe] for our sample stars is about −0.35 dex. Our results demonstrate that the Si i IR lines could be reliable abundance indicators, provided that the non-LTE effects are properly taken into account.

  17. Infrared studies of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1982-01-01

    Infrared photometry and spectroscopy of symbiotic stars is reviewed. It is shown that at wavelengths beyond 1 μm these systems are generally dominated by the cool star's photosphere and, indeed, are indistinguishable from ordinary late-type giants. About 25% of symbiotic stars exhibit additional emission due to circumstellar dust. Most of the dusty systems probably involve Mira variables, the dust forming in the atmospheres of the Miras. In a few cases the dust is much cooler and the cool component hotter; the dust must then form in distant gas shielded from the hot component, perhaps by an accretion disk. Spectroscopy at 2 μm can be used to spectral type the cool components, even in the presence of some dust emission. Distances may thereby be estimated, though with some uncertainty. Spectroscopy at longer wavelengths reveals information about the dust itself. In most cases this dust appears to include silicate grains, which form in the oxygen-rich envelope of an M star. In the case of HD 33036, however, different emission features are found which suggest a carbon-rich environment. (Auth.)

  18. Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations

    Science.gov (United States)

    Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T.

    2014-02-01

    Context. The evolution of planetary systems is intimately linked to the evolution of their host stars. Our understanding of the whole planetary evolution process is based on the wide planet diversity observed so far. Only a few tens of planets have been discovered orbiting stars ascending the red giant branch. Although several theories have been proposed, the question of how planets die remains open owing to the small number statistics, making it clear that the sample of planets around post-main sequence stars needs to be enlarged. Aims: In this work we study the giant star Kepler-91 (KOI-2133) in order to determine the nature of a transiting companion. This system was detected by the Kepler Space Telescope, which identified small dims in its light curve with a period of 6.246580 ± 0.000082 days. However, its planetary confirmation is needed due to the large pixel size of the Kepler camera, which can hide other stellar configurations able to mimic planet-like transit events. Methods: We analysed Kepler photometry to 1) re-calculate transit parameters; 2) study the light-curve modulations; and 3) to perform an asteroseismic analysis (accurate stellar parameter determination) by identifying solar-like oscillations on the periodogram. We also used a high-resolution and high signal-to-noise ratio spectrum obtained with the Calar Alto Fiber-fed Échelle spectrograph (CAFE) to measure stellar properties. Additionally, false-positive scenarios were rejected by obtaining high-resolution images with the AstraLux lucky imaging camera on the 2.2 m telescope at the Calar Alto Observatory. Results: We confirm the planetary nature of the object transiting the star Kepler-91 by deriving a mass of Mp=0.88+0.17-0.33 MJup and a planetary radius of Rp=1.384+0.011-0.054 RJup. Asteroseismic analysis produces a stellar radius of R⋆ = 6.30 ± 0.16 R⊙ and a mass of M⋆ = 1.31 ± 0.10 M⊙. We find that its eccentric orbit (e=0.066+0.013-0.017) is just 1.32+0.07-0.22 R⋆ away from

  19. Submm Observations of Massive Star Formation in the Giant Molecular Cloud NGC 6334 : Gas Kinematics with Radiative Transfer Models

    Science.gov (United States)

    Zernickel, A.

    2015-05-01

    Context. How massive stars (M>8 Ms) form and how they accrete gas is still an open research field, but it is known that their influence on the interstellar medium (ISM) is immense. Star formation involves the gravitational collapse of gas from scales of giant molecular clouds (GMCs) down to dense hot molecular cores (HMCs). Thus, it is important to understand the mass flows and kinematics in the ISM. Aims. This dissertation focuses on the detailed study of the region NGC 6334, located in the Galaxy at a distance of 1.7 kpc. It is aimed to trace the gas velocities in the filamentary, massive star-forming region NGC 6334 at several scales and to explain its dynamics. For that purpose, different scales are examined from 0.01-10 pc to collect information about the density, molecular abundance, temperature and velocity, and consequently to gain insights about the physio-chemical conditions of molecular clouds. The two embedded massive protostellar clusters NGC 6334I and I(N), which are at different stages of development, were selected to determine their infall velocities and mass accretion rates. Methods. This astronomical source was surveyed by a combination of different observatories, namely with the Submillimeter Array (SMA), the single-dish telescope Atacama Pathfinder Experiment (APEX), and the Herschel Space Observatory (HSO). It was mapped with APEX in carbon monoxide (13CO and C18O, J=2-1) at 220.4 GHz to study the filamentary structure and turbulent kinematics on the largest scales of 10 pc. The spectral line profiles are decomposed by Gaussian fitting and a dendrogram algorithm is applied to distinguish velocity-coherent structures and to derive statistical properties. The velocity gradient method is used to derive mass flow rates. The main filament was mapped with APEX in hydrogen cyanide (HCN) and oxomethylium (HCO+, J=3-2) at 267.6 GHz to trace the dense gas. To reproduce the position- velocity diagram (PVD), a cylindrical model with the radiative transfer

  20. Observations of 40-70 micron bands of ice in IRAS 09371 + 1212 and other stars

    Science.gov (United States)

    Omont, A.; Forveille, T.; Moseley, S. H.; Glaccum, W. J.; Harvey, P. M.; Likkel, L.; Loewenstein, R. F.; Lisse, C. M.

    1990-01-01

    IRAS 09371 + 1212 is still an absolutely unique object. This M giant star, with circumstellar CO and a spectacular bipolar nebula, displays unique IRAS FIR colors which had been attributed to strong emission in the 40-70-micron bands of ice, as subsequently supported by the observation of a strong 3.1-micron absorption band. The results of the KAO observations have confirmed its unusual nature: the far-infrared bands of ice are by far the strongest known. Its dust temperature, 50 K or less, is by far the lowest known for a late-type circumstellar envelope.

  1. THE CONTRIBUTION OF X-RAY BINARIES TO THE EVOLUTION OF LATE-TYPE GALAXIES: EVOLUTIONARY POPULATION SYNTHESIS SIMULATIONS

    International Nuclear Information System (INIS)

    Zuo Zhaoyu; Li Xiangdong

    2011-01-01

    X-ray studies of normal late-type galaxies have shown that non-nuclear X-ray emission is typically dominated by X-ray binaries and provides a useful measure of star formation activity. We have modeled the X-ray evolution of late-type galaxies over the ∼14 Gyr of cosmic history, with an evolutionary population synthesis code developed by Hurley et al. Our calculations reveal a decrease in the X-ray luminosity-to-mass ratio L X /M with time, in agreement with observations. We show that this decrease is a natural consequence of stellar and binary evolution and the mass accumulating process in galaxies. The X-ray-to-optical luminosity ratio L X /L B is found to be fairly constant (around ∼10 30 erg s -1 L -1 B,sun ) and insensitive to the star formation history in the galaxies. The nearly constant value of L X /L B is in conflict with the observed increase in L X /L B from z = 0 to 1.4. The discrepancy may be caused by intense obscured star formation activity that leads to a nonlinear relationship between X-ray and B-band emission.

  2. Water in stars: expected and unexpected

    Science.gov (United States)

    Tsuji, T.; Aoki, W.; Ohnaka, K.

    1999-03-01

    We have confirmed the presence of water in the early M giant α Cet (M1.5III) and supergiant KK Per (M2Iab) by the highest resolution grating mode of SWS, but this result is quite unexpected from present model atmospheres. In late M giant and supergiant stars, water observed originates partly in the photosphere as expected by the model atmospheres, but ISO SWS has revealed that the 2.7 mic\\ absorption bands appear to be somewhat stronger than predicted while 6.5 mic\\ bands weaker, indicating the contamination by an emission component. In the mid-infrared region extending to 45 mic, pure rotation lines of hho\\ appear as distinct emission on the high resolution SWS spectra of 30g Her (M7III) and S Per (M4-7Ia), along with the dust emission at 10, 13, 20 mic\\ and a new unidentified feature at 30 mic. Thus, together with the dust, water contributes to the thermal balance of the outer atmosphere already in the mid-infrared. The excitation temperature of hho\\ gas is estimated to be 500 - 1000 K. In view of this result for late M (super)giants, unexpected water observed in early M (super)giants should also be of non-photospheric in origin. Thus, ISO has finally established the presence of a new component of the outer atmosphere - a warm molecular envelope - in red giant and supergiant stars from early to late types. Such a rather warm molecular envelope will be a site of various activities such as chemical reactions, dust formation, mass-outflow etc.

  3. Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67

    Science.gov (United States)

    Souto, Diogo; Cunha, Katia; Smith, Verne V.; Allende Prieto, C.; García-Hernández, D. A.; Pinsonneault, Marc; Holzer, Parker; Frinchaboy, Peter; Holtzman, Jon; Johnson, J. A.; Jönsson, Henrik; Majewski, Steven R.; Shetrone, Matthew; Sobeck, Jennifer; Stringfellow, Guy; Teske, Johanna; Zamora, Olga; Zasowski, Gail; Carrera, Ricardo; Stassun, Keivan; Fernandez-Trincado, J. G.; Villanova, Sandro; Minniti, Dante; Santana, Felipe

    2018-04-01

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5–1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05–0.20 dex) are found across the different evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67.

  4. Establishing the accuracy of asteroseismic mass and radius estimates of giant stars - I. Three eclipsing systems at [Fe/H] ˜ -0.3 and the need for a large high-precision sample

    Science.gov (United States)

    Brogaard, K.; Hansen, C. J.; Miglio, A.; Slumstrup, D.; Frandsen, S.; Jessen-Hansen, J.; Lund, M. N.; Bossini, D.; Thygesen, A.; Davies, G. R.; Chaplin, W. J.; Arentoft, T.; Bruntt, H.; Grundahl, F.; Handberg, R.

    2018-05-01

    We aim to establish and improve the accuracy level of asteroseismic estimates of mass, radius, and age of giant stars. This can be achieved by measuring independent, accurate, and precise masses, radii, effective temperatures and metallicities of long period eclipsing binary stars with a red giant component that displays solar-like oscillations. We measured precise properties of the three eclipsing binary systems KIC 7037405, KIC 9540226, and KIC 9970396 and estimated their ages be 5.3 ± 0.5, 3.1 ± 0.6, and 4.8 ± 0.5 Gyr. The measurements of the giant stars were compared to corresponding measurements of mass, radius, and age using asteroseismic scaling relations and grid modelling. We found that asteroseismic scaling relations without corrections to Δν systematically overestimate the masses of the three red giants by 11.7 per cent, 13.7 per cent, and 18.9 per cent, respectively. However, by applying theoretical correction factors fΔν according to Rodrigues et al. (2017), we reached general agreement between dynamical and asteroseismic mass estimates, and no indications of systematic differences at the precision level of the asteroseismic measurements. The larger sample investigated by Gaulme et al. (2016) showed a much more complicated situation, where some stars show agreement between the dynamical and corrected asteroseismic measures while others suggest significant overestimates of the asteroseismic measures. We found no simple explanation for this, but indications of several potential problems, some theoretical, others observational. Therefore, an extension of the present precision study to a larger sample of eclipsing systems is crucial for establishing and improving the accuracy of asteroseismology of giant stars.

  5. Astrophysical reaction rate for the neutron-generator reaction 13C(alpha,n)16O in asymptotic giant branch stars.

    Science.gov (United States)

    Johnson, E D; Rogachev, G V; Mukhamedzhanov, A M; Baby, L T; Brown, S; Cluff, W T; Crisp, A M; Diffenderfer, E; Goldberg, V Z; Green, B W; Hinners, T; Hoffman, C R; Kemper, K W; Momotyuk, O; Peplowski, P; Pipidis, A; Reynolds, R; Roeder, B T

    2006-11-10

    The reaction 13C(alpha,n) is considered to be the main source of neutrons for the s process in asymptotic giant branch stars. At low energies, the cross section is dominated by the 1/2+ 6.356 MeV subthreshold resonance in (17)O whose contribution at stellar temperatures is uncertain by a factor of 10. In this work, we performed the most precise determination of the low-energy astrophysical S factor using the indirect asymptotic normalization (ANC) technique. The alpha-particle ANC for the subthreshold state has been measured using the sub-Coulomb alpha-transfer reaction ((6)Li,d). Using the determined ANC, we calculated S(0), which turns out to be an order of magnitude smaller than in the nuclear astrophysics compilation of reaction rates.

  6. Planets around the evolved stars 24 Boötis and γ Libra: A 30 d-period planet and a double giant-planet system in possible 7:3 MMR

    Science.gov (United States)

    Takarada, Takuya; Sato, Bun'ei; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Izumiura, Hideyuki; Kambe, Eiji; Takeda, Yoichi; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu; Kokubo, Eiichiro; Ida, Shigeru

    2018-05-01

    We report the detection of planets around two evolved giant stars from radial velocity measurements at Okayama Astrophysical observatory. 24 Boo (G3 IV) has a mass of 0.99 M_{⊙}, a radius of 10.64 R_{⊙}, and a metallicity of [Fe/H] = -0.77. The star hosts one planet with a minimum mass of 0.91 MJup and an orbital period of 30.35 d. The planet has one of the shortest orbital periods among those ever found around evolved stars using radial-velocity methods. The stellar radial velocities show additional periodicity with 150 d, which can probably be attributed to stellar activity. The star is one of the lowest-metallicity stars orbited by planets currently known. γ Lib (K0 III) is also a metal-poor giant with a mass of 1.47 M_{⊙}, a radius of 11.1 R_{⊙}, and [Fe/H] = -0.30. The star hosts two planets with minimum masses of 1.02 MJup and 4.58 MJup, and periods of 415 d and 964 d, respectively. The star has the second-lowest metallicity among the giant stars hosting more than two planets. Dynamical stability analysis for the γ Lib system sets the minimum orbital inclination angle to be about 70° and suggests that the planets are in 7:3 mean-motion resonance, though the current best-fitting orbits for the radial-velocity data are not totally regular.

  7. Stellar and Planetary Parameters for K2 's Late-type Dwarf Systems from C1 to C5

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Arturo O. [Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Crossfield, Ian J. M.; Peacock, Sarah [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721 (United States); Schlieder, Joshua E. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Dressing, Courtney D. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Obermeier, Christian [Max Planck Institut für Astronomie, Heidelberg (Germany); Livingston, John; Petigura, Erik A. [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033 (Japan); Ciceri, Simona [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Beichman, Charles A. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lépine, Sébastien [Department of Physics and Astronomy, Georgia State University, 25 Park Pl NE #605, Atlanta, GA 30303 (United States); Aller, Kimberly M. [Institute for Astronomy, University of Hawai’i at Mānoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Chance, Quadry A. [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85719 (United States); Howard, Andrew W. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Werner, Michael W. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)

    2017-03-01

    The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory’s New Technology Telescope, we obtained R ≈ 1000 J -, H -, and K -band (0.95–2.52 μ m) spectra of 34 late-type K2 planet and candidate planet host systems and 12 bright K4–M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R {sub ⊙} (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet’s radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2 . We find a median planet radius and an equilibrium temperature of approximately 3 R {sub ⊕} and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.

  8. HERSCHEL /HIFI OBSERVATIONS OF IRC+10216: WATER VAPOR IN THE INNER ENVELOPE OF A CARBON-RICH ASYMPTOTIC GIANT BRANCH STAR

    International Nuclear Information System (INIS)

    Neufeld, David A.; Gonzalez-Alfonso, Eduardo; Melnick, Gary J.; Szczerba, Ryszard; Schmidt, Miroslaw; Decin, Leen; De Koter, Alex; Schoeier, Fredrik; Cernicharo, Jose

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (≤few x 10 14 cm) from the star, confirming recent results reported by Decin et al. from observations with Herschel's PACS and SPIRE instruments. This finding definitively rules out the hypothesis that the observed water results from the vaporization of small icy objects in circular orbits. The origin of water within the dense C-rich envelope of IRC+10216 remains poorly understood. We derive upper limits on the H 17 2 O/H 16 2 O and H 18 2 O/H 16 2 O isotopic abundance ratios of ∼5 x 10 -3 (3σ), providing additional constraints on models for the origin of the water vapor in IRC+10216.

  9. NITROGEN ISOTOPES IN ASYMPTOTIC GIANT BRANCH CARBON STARS AND PRESOLAR SiC GRAINS: A CHALLENGE FOR STELLAR NUCLEOSYNTHESIS

    International Nuclear Information System (INIS)

    Hedrosa, R. P.; Abia, C.; Domínguez, I.; Palmerini, S.; Busso, M.; Cristallo, S.; Straniero, O.; Plez, B.

    2013-01-01

    Isotopic ratios of C, N, Si, and trace heavy elements in presolar SiC grains from meteorites provide crucial constraints to nucleosynthesis. A long-debated issue is the origin of the so-called A+B grains, as of yet no stellar progenitor thus far has been clearly identified on observational grounds. We report the first spectroscopic measurements of 14 N/ 15 N ratios in Galactic carbon stars of different spectral types and show that J- and some SC-type stars might produce A+B grains, even for 15 N enrichments previously attributed to novae. We also show that most mainstream grains are compatible with the composition of N-type stars, but in some cases might also descend from SC stars. From a theoretical point of view, no astrophysical scenario can explain the C and N isotopic ratios of SC-, J-, and N-type carbon stars together, as well as those of many grains produced by them. This poses urgent questions to stellar physics.

  10. Monitoring survey of pulsating giant stars in the Local Group galaxies: survey description, science goals, target selection

    International Nuclear Information System (INIS)

    Saremi, E; Abedi, A; Javadi, A; Khosroshahi, H; Molaei Nezhad, A; Van Loon, J Th; Bamber, J; Hashemi, S A; Nikzat, F

    2017-01-01

    The population of nearby dwarf galaxies in the Local Group constitutes a complete galactic environment, perfect suited for studying the connection between stellar populations and galaxy evolution. In this study, we are conducting an optical monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify long period variable stars (LPVs). These stars are at the end points of their evolution and therefore their luminosity can be directly translated into their birth masses; this enables us to reconstruct the star formation history. By the end of the monitoring survey, we will have performed observations over ten epochs, spaced approximately three months apart, and identified long-period, dust-producing AGB stars; five epochs of data have been obtained already. LPVs are also the main source of dust; in combination with Spitzer Space Telescope images at mid-IR wavelengths we will quantify the mass loss, and provide a detailed map of the mass feedback into the interstellar medium. We will also use the amplitudes in different optical passbands to determine the radius variations of the stars, and relate this to their mass loss. (paper)

  11. Monitoring survey of pulsating giant stars in the Local Group galaxies: survey description, science goals, target selection

    Science.gov (United States)

    Saremi, E.; Javadi, A.; van Loon, J. Th; Khosroshahi, H.; Abedi, A.; Bamber, J.; Hashemi, S. A.; Nikzat, F.; Molaei Nezhad, A.

    2017-06-01

    The population of nearby dwarf galaxies in the Local Group constitutes a complete galactic environment, perfect suited for studying the connection between stellar populations and galaxy evolution. In this study, we are conducting an optical monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify long period variable stars (LPVs). These stars are at the end points of their evolution and therefore their luminosity can be directly translated into their birth masses; this enables us to reconstruct the star formation history. By the end of the monitoring survey, we will have performed observations over ten epochs, spaced approximately three months apart, and identified long-period, dust-producing AGB stars; five epochs of data have been obtained already. LPVs are also the main source of dust; in combination with Spitzer Space Telescope images at mid-IR wavelengths we will quantify the mass loss, and provide a detailed map of the mass feedback into the interstellar medium. We will also use the amplitudes in different optical passbands to determine the radius variations of the stars, and relate this to their mass loss.

  12. Unusual Metals in Galactic Center Stars

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    Far from the galactic suburbs where the Sun resides, a cluster of stars in the nucleus of the Milky Way orbits a supermassive black hole. Can chemical abundance measurements help us understand the formation history of the galactic center nuclear star cluster?Studying Stellar PopulationsMetallicity distributions for stars in the inner two degrees of the Milky Way (blue) and the central parsec (orange). [Do et al. 2018]While many galaxies host nuclear star clusters, most are too distant for us to study in detail; only in the Milky Way can we resolve individual stars within one parsec of a supermassive black hole. The nucleus of our galaxy is an exotic and dangerous place, and its not yet clear how these stars came to be where they are were they siphoned off from other parts of the galaxy, or did they form in place, in an environment rocked by tidal forces?Studying the chemical abundances of stars provides a way to separate distinct stellar populations and discern when and where these stars formed. Previous studies using medium-resolution spectroscopy have revealed that many stars within the central parsec of our galaxy have very high metallicities possibly higher than any other region of the Milky Way. Can high-resolution spectroscopy tell us more about this unusual population of stars?Spectral Lines on DisplayTuan Do (University of California, Los Angeles, Galactic Center Group) and collaborators performed high-resolution spectroscopic observations of two late-type giant starslocated half a parsec from the Milky Ways supermassive black hole.Comparison of the observed spectra of the two galactic center stars (black) with synthetic spectra with low (blue) and high (orange) [Sc/Fe] values. Click to enlarge. [Do et al. 2018]In order to constrain the metallicities of these stars, Do and collaborators compared the observed spectra to a grid of synthetic spectra and used a spectral synthesis technique to determine the abundances of individual elements. They found that

  13. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf spheroidal galaxy?

    Science.gov (United States)

    Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S.

    2015-07-01

    Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is suspected that the Sgr dSph has lost a number of globular clusters (GC). Many Galactic GC are thought to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed owing to chemical similarities, others exist whose chemical composition has never been investigated. Aims: NGC 5053 and NGC 5634 are two of these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. Methods: We analyze high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal-poor Sgr dSph main body population. Results: We derive a metallicity of [Fe ii/H] = -2.26 ± 0.10 for NGC 5053, and of [Fe i/H] = -1.99 ± 0.075 and -1.97 ± 0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal-poor globular clusters in the MW. Both clusters display an α enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. Conclusions: The chemistry of the Sgr dSph main body populations is similar to that of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system. Appendix A is available in electronic form at http

  14. Using the CaII triplet to trace abundance variations in individual red giant branch stars in three nearby galaxies

    NARCIS (Netherlands)

    Tolstoy, E; Irwin, MJ; Cole, AA; Pasquini, L; Gilmozzi, R; Gallagher, JS

    2001-01-01

    Spectroscopic abundance determinations for stars spanning a Hubble time in age are necessary in order to determine unambiguously the evolutionary histories of galaxies. Using FORS I in multi-object spectroscopy mode on ANTU (UT1) at the ESO VLT on Paranal, we have obtained near-infrared spectra from

  15. Super-solar Metallicity Stars in the Galactic Center Nuclear Star Cluster: Unusual Sc, V, and Y Abundances

    Science.gov (United States)

    Do, Tuan; Kerzendorf, Wolfgang; Konopacky, Quinn; Marcinik, Joseph M.; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.

    2018-03-01

    We present adaptive-optics assisted near-infrared high-spectral-resolution observations of late-type giants in the nuclear star cluster of the Milky Way. The metallicity and elemental abundance measurements of these stars offer us an opportunity to understand the formation and evolution of the nuclear star cluster. In addition, their proximity to the supermassive black hole (∼0.5 pc) offers a unique probe of the star formation and chemical enrichment in this extreme environment. We observed two stars identified by medium spectral-resolution observations as potentially having very high metallicities. We use spectral-template fitting with the PHOENIX grid and Bayesian inference to simultaneously constrain the overall metallicity, [M/H], alpha-element abundance [α/Fe], effective temperature, and surface gravity of these stars. We find that one of the stars has very high metallicity ([M/H] > 0.6) and the other is slightly above solar metallicity. Both Galactic center stars have lines from scandium (Sc), vanadium (V), and yttrium (Y) that are much stronger than allowed by the PHOENIX grid. We find, using the spectral synthesis code Spectroscopy Made Easy, that [Sc/Fe] may be an order of magnitude above solar. For comparison, we also observed an empirical calibrator in NGC 6791, the highest metallicity cluster known ([M/H] ∼ 0.4). Most lines are well matched between the calibrator and the Galactic center stars, except for Sc, V, and Y, which confirms that their abundances must be anomalously high in these stars. These unusual abundances, which may be a unique signature of nuclear star clusters, offer an opportunity to test models of chemical enrichment in this region.

  16. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  17. Mining the HST "Advanced Spectral Library (ASTRAL)": The Evolution of Winds from non-coronal to hybrid giant stars

    Science.gov (United States)

    Nielsen, Krister E.; Carpenter, Ken G.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The HST/STIS treasury program ASTRAL enables investigations of the character and dynamics of the wind and chromosphere of cool stars, using high quality spectral data. This paper shows how the wind features change with spectral class by comparing the non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem). In particular we study the intrinsic strength variation of the numerous FeII profiles observed in the near-ultraviolet HST spectrum that are sensitive to the wind opacity, turbulence and flow velocity. The FeII relative emission strength and wavelengths shifts between the absorption and emission components reflects the acceleration of the wind from the base of the chromosphere. We present the analysis of the outflowing wind characteristics when transitioning from the cool non-coronal objects toward the warmer objects with chromospheric emission from significantly hotter environments.

  18. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  19. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    Science.gov (United States)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  20. DISCOVERY OF LOW-METALLICITY STARS IN THE CENTRAL PARSEC OF THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Kerzendorf, Wolfgang; Støstad, Morten [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Winsor, Nathan [Grenfell Campus—Memorial University of Newfoundland, St. John’s, NL A1B 3X9 (Canada); Morris, Mark R.; Ghez, Andrea M. [UCLA Galactic Center Group, Physics and Astronomy Department, UCLA, Los Angeles, CA 90095-1547 (United States); Lu, Jessica R., E-mail: tdo@astro.ucla.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI (United States)

    2015-08-20

    We present a metallicity analysis of 83 late-type giants within the central 1 pc of the Milky Way. K-band spectroscopy of these stars was obtained with the medium spectral resolution integral-field spectrograph NIFS on Gemini North using laser-guided star adaptive optics. Using spectral template fitting with the MARCS synthetic spectral grid, we find that there is a large variation in the metallicity, with stars ranging from [M/H] < −1.0 to above solar metallicity. About 6% of the stars have [M/H] < −0.5. This result is in contrast to previous observations with smaller samples that show stars at the Galactic center having approximately solar metallicity with only small variations. Our current measurement uncertainties are dominated by systematics in the model, especially at [M/H] > 0, where there are stellar lines not represented in the model. However, the conclusion that there are low-metallicity stars, as well as large variations in metallicity, is robust. The metallicity may be an indicator of the origin of these stars. The low-metallicity population is consistent with that of globular clusters in the Milky Way, but their small fraction likely means that globular cluster infall is not the dominant mechanism for forming the Milky Way nuclear star cluster. The majority of stars are at or above solar metallicity, which suggests they were formed closer to the Galactic center or from the disk. In addition, our results indicate that it will be important for star formation history analyses using red giants at the Galactic center to consider the effect of varying metallicity.

  1. The helium line formation in late-type stars: Pt. 1

    International Nuclear Information System (INIS)

    Batalha, C.C.; De La Reza, R.

    1989-01-01

    The formation of helium lines and continua in an atmospheric model representing the medium quiet sun has been investigated considering principally the influence of: (i) changes in the temperature gradient at Transition Region (TR); (ii) the coronal radiation and (iii) the overlapping of He II Lyα at 304 A and the continuum radiation of He I at λ≤504 A. By diminishing the thermal gradient in the Transition Region a large part of the helium observations are reproduced. This is the case for the He II resonance λ304 line which is collisionally controlled and is formed at 1.0 x 10 5 K, and the He I resonance line at 584 A which is also collisionally controlled but is formed at deeper layers with a mean temperature of 2.5 x 10 4 K. The He II continuum at 228 A as well as the Lβ line at 256 A can be adjusted to observations if a characteristic solar coronal flux is incident on the optimized Transition Region. (author)

  2. ON IRON MONOXIDE NANOPARTICLES AS A CARRIER OF THE MYSTERIOUS 21 μm EMISSION FEATURE IN POST-ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Li, Aigen; Jiang, B. W.; Liu, J. M.

    2013-01-01

    A prominent mysterious emission feature peaking at ∼20.1 μm—historically known as the '21 μm' feature—is seen in over two dozen Galactic and Magellanic Cloud carbon-rich, post-asymptotic giant branch (post-AGB) stars. The nature of its carrier remains unknown since the first detection of the 21 μm feature in 1989. Over a dozen materials have been suggested as possible carrier candidates. However, none of them has been accepted: they either require too much material (compared to what is available in the circumstellar shells around these post-AGB stars), or exhibit additional emission features that are not seen in these 21 μm sources. Recently, iron monoxide (FeO) nanoparticles seem to be a promising carrier candidate as Fe is an abundant element and FeO emits exclusively at ∼21 μm. In this work, using the proto-typical protoplanetary nebula HD 56126 as a test case, we examine FeO nanoparticles as a carrier for the 21 μm feature by modeling their infrared emission, with FeO being stochastically heated by single stellar photons. We find that FeO emits too broad a 21 μm feature to explain that observed and the Fe abundance required to be locked up in FeO exceeds what is available in HD 56126. We therefore conclude that FeO nanoparticles are not likely to be responsible for the 21 μm feature

  3. THE LAST GASP OF GAS GIANT PLANET FORMATION: A SPITZER STUDY OF THE 5 Myr OLD CLUSTER NGC 2362

    International Nuclear Information System (INIS)

    Currie, Thayne; Lada, Charles J.; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.; Plavchan, Peter

    2009-01-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm and Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ ≥ 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical 'transition disks') and 'homologously depleted' disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these 'evolved primordial disks' greatly outnumber primordial disks, our results undermine standard arguments in favor of a ∼ 5 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 10 5 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ∼10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (∼>1.4 M sun ) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer

  4. There Are (super)Giants in the Sky: Searching for Misidentified Massive Stars in Algorithmically-Selected Quasar Catalogs

    Science.gov (United States)

    Dorn-Wallenstein, Trevor Z.; Levesque, Emily

    2017-11-01

    Thanks to incredible advances in instrumentation, surveys like the Sloan Digital Sky Survey have been able to find and catalog billions of objects, ranging from local M dwarfs to distant quasars. Machine learning algorithms have greatly aided in the effort to classify these objects; however, there are regimes where these algorithms fail, where interesting oddities may be found. We present here an X-ray bright quasar misidentified as a red supergiant/X-ray binary, and a subsequent search of the SDSS quasar catalog for X-ray bright stars misidentified as quasars.

  5. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-01-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  6. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  7. Red giants seismology

    Science.gov (United States)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  8. Faint-Source-Star Planetary Microlensing: The Discovery of the Cold Gas-Giant Planet OGLE-2014-BLG-0676Lb

    Science.gov (United States)

    Rattenbury, N. J.; Bennett, D. P.; Sumi, T.; Koshimoto, N.; Bond, I. A.; Udalski, A.; Shvartzvald, Y.; Maoz, D.; Jorgensen, U. G.; Barry, R.; hide

    2016-01-01

    We report the discovery of a planet OGLE-2014-BLG-0676Lb via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNETLas Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and -FUN. All analyses of the light-curve data favoura lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 +/- 0.13) 10(exp -3). Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09(+1.02/-1.12) MJ planet orbiting a 0.62(+0.20/-0.22) solar mass host star at a deprojected orbital separation of 4.40(+2.16/-1.46) au. The distance to the lens system is 2.22(+0.96/-0.83) kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discover redusing gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.

  9. STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Tan, Jonathan C.

    2009-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of three-dimensional adaptive mesh refinement numerical simulations that follow both the global evolution on scales of ∼20 kpc and resolve down to scales ∼ H ≥ 100 cm -3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ∼140 Myr a large fraction of the gas in the disk has fragmented into clouds with masses ∼10 6 M sun and a mass spectrum similar to that of Galactic GMCs. The disk settles into a quasi-steady-state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ∼1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This helps to keep clouds only moderately gravitationally bound, with virial parameters of order unity. Many other observed GMC properties, such as mass surface density, angular momentum, velocity dispersion, and vertical distribution, can be accounted for in this simple model with no stellar feedback.

  10. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  11. THE CONVERSION OF LATE-TYPE INTO EARLY-TYPE DWARF GALAXIES BY RAM-PRESSURE STRIPPING IN THE FORNAX CLUSTER

    International Nuclear Information System (INIS)

    De Rijcke, S.; Van Hese, E.; Buyle, P.

    2010-01-01

    We put to the test the hypothesis that the Fornax cluster dwarf galaxies are mostly a relatively recently acquired population, of which the star-forming, late-type members are converted into quiescent, early-type ones by ram-pressure stripping while being on orbits that plunge inside the inner few hundred kiloparsecs of the cluster. We construct dynamical models with different anisotropy profiles for the dwarf galaxy population and show that only extremely radially anisotropic orbital distributions are in agreement with the available morphological, positional, and kinematical data, especially with the radially increasing late-to-early-type ratio. This corroborates the idea that the Fornax cluster dwarfs are an infall population and that environmental factors, in this case ram-pressure stripping, play a prominent role in converting late-type dwarfs into early-type ones.

  12. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  13. Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    Science.gov (United States)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.

    2016-09-01

    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focused on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  14. METALLICITIES, AGE-METALLICITY RELATIONSHIPS, AND KINEMATICS OF RED GIANT BRANCH STARS IN THE OUTER DISK OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Carrera, R.; Gallart, C.; Aparicio, A.; Hardy, E.

    2011-01-01

    The outer disk of the Large Magellanic Cloud (LMC) is studied in order to unveil clues about its formation and evolution. Complementing our previous studies in innermost fields (3 kpc ∼< R ∼< 7 kpc), we obtained deep color-magnitude diagrams in six fields with galactocentric distances from 5.2 kpc to 9.2 kpc and different azimuths. The comparison with isochrones shows that while the oldest population is approximately coeval in all fields, the age of the youngest populations increases with increasing radius. This agrees with the results obtained in the innermost fields. Low-resolution spectroscopy in the infrared Ca II triplet region has been obtained for about 150 stars near the tip of the red giant branch in the same fields. Radial velocities and stellar metallicities have been obtained from these spectra. The metallicity distribution of each field has been analyzed together with those previously studied. The metal content of the most metal-poor objects, which are also the oldest according to the derived age-metallicity relationships, is similar in all fields independently of the galactocentric distance. However, while the metallicity of the most metal-rich objects measured, which are the youngest ones, remains constant in the inner 6 kpc, it decreases with increasing radius from there on. The same is true for the mean metallicity. According to the derived age-metallicity relationships, which are consistent with being the same in all fields, this result may be interpreted as an outside-in formation scheme in opposition with the inside-out scenario predicted by ΛCDM cosmology for a galaxy like the LMC. The analysis of the radial velocities of our sample of giants shows that they follow a rotational cold disk kinematics. The velocity dispersion increases as metallicity decreases indicating that the most metal-poor/oldest objects are distributed in a thicker disk than the most metal-rich/youngest ones in agreement with the findings in other disks such as that of

  15. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    International Nuclear Information System (INIS)

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Kraus, Adam

    2013-01-01

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6σ confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  16. TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822 (United States); Kraus, Adam [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States)

    2013-06-10

    It has been shown that F, G, and early K dwarf hosts of Neptune-sized planets are not preferentially metal-rich. However, it is less clear whether the same holds for late K and M dwarf planet hosts. We report metallicities of Kepler targets and candidate transiting planet hosts with effective temperatures below 4500 K. We use new metallicity calibrations to determine [Fe/H] from visible and near-infrared spectra. We find that the metallicity distribution of late K and M dwarfs monitored by Kepler is consistent with that of the solar neighborhood. Further, we show that hosts of Earth- to Neptune-sized planets have metallicities consistent with those lacking detected planets and rule out a previously claimed 0.2 dex offset between the two distributions at 6{sigma} confidence. We also demonstrate that the metallicities of late K and M dwarfs hosting multiple detected planets are consistent with those lacking detected planets. Our results indicate that multiple terrestrial and Neptune-sized planets can form around late K and M dwarfs with metallicities as low as 0.25 solar. The presence of Neptune-sized planets orbiting such low-metallicity M dwarfs suggests that accreting planets collect most or all of the solids from the disk and that the potential cores of giant planets can readily form around M dwarfs. The paucity of giant planets around M dwarfs compared to solar-type stars must be due to relatively rapid disk evaporation or a slower rate of planet accretion, rather than insufficient solids to form a core.

  17. Photometry of Southern Hemisphere red dwarf stars

    Science.gov (United States)

    Weistrop, D.

    1980-01-01

    Results are presented for a photometric investigation of a spectroscopically selected sample of red dwarf stars in the Southern Hemisphere. Absolute magnitudes and distances for the stars are estimated from broadband red colors. Three stars which may be subluminous are identified, as are several stars which may be within 25 pc. The tangential velocity and velocity dispersion of the sample are similar to values found in other studies of nearby late-type stars.

  18. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  19. IRAS 17423-1755 (HEN 3-1475) REVISITED: AN O-RICH HIGH-MASS POST-ASYMPTOTIC GIANT BRANCH STAR

    International Nuclear Information System (INIS)

    Manteiga, M.; GarcIa-Hernandez, D. A.; Manchado, A.; Ulla, A.; GarcIa-Lario, P.

    2011-01-01

    The high-resolution (R ∼ 600) Spitzer/IRS spectrum of the bipolar protoplanetary nebula (PN) IRAS 17423-1755 is presented in order to clarify the dominant chemistry (C-rich versus O-rich) of its circumstellar envelope as well as to constrain its evolutionary stage. The high-quality Spitzer/IRS spectrum shows weak 9.7 μm absorption from amorphous silicates. This confirms for the first time the O-rich nature of IRAS 17423-1755 in contradiction to a previous C-rich classification, which was based on the wrong identification of the strong 3.1 μm absorption feature seen in the Infrared Space Observatory spectrum as due to acetylene (C 2 H 2 ). The high-resolution Spitzer/IRS spectrum displays a complete lack of C-rich mid-IR features such as molecular absorption features (e.g., 13.7 μm C 2 H 2 , 14.0 μm HCN, etc.) or the classical polycyclic aromatic hydrocarbon infrared emission bands. Thus, the strong 3.1 μm absorption band toward IRAS 17423-1755 has to be identified as water ice. In addition, an [Ne II] nebular emission line at 12.8 μm is clearly detected, indicating that the ionization of its central region may be already started. The spectral energy distribution in the infrared (∼2-200 μm) and other observational properties of IRAS 17423-1755 are discussed in comparison with the similar post-asymptotic giant branch (AGB) objects IRAS 19343+2926 and IRAS 17393-2727. We conclude that IRAS 17423-1755 is an O-rich high-mass post-AGB object that represents a link between OH/IR stars with extreme outflows and highly bipolar PN.

  20. On the necessity of composition-dependent low-temperature opacity in models of metal-poor asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Constantino, Thomas; Campbell, Simon; Lattanzio, John [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria 3800 (Australia); Gil-Pons, Pilar, E-mail: thomas.constantino@monash.edu [Department of Applied Physics, Polytechnic University of Catalonia, 08860 Barcelona (Spain)

    2014-03-20

    The vital importance of composition-dependent low-temperature opacity in low-mass (M ≤ 3 M {sub ☉}) asymptotic giant branch (AGB) stellar models of metallicity Z ≥ 0.001 has recently been demonstrated. Its significance to more metal-poor, intermediate-mass (M ≥ 2.5 M {sub ☉}) models has yet to be investigated. We show that its inclusion in lower-metallicity models ([Fe/H] ≤–2) is essential and that there exists no threshold metallicity below which composition-dependent molecular opacity may be neglected. We find it to be crucial in all intermediate-mass models investigated ([Fe/H] ≤–2 and 2.5 ≤ M/M {sub ☉} ≤ 5), because of the evolution of the surface chemistry, including the orders of magnitude increase in the abundance of molecule-forming species. Its effect on these models mirrors that previously reported for higher-metallicity models—increase in radius, decrease in T {sub eff}, faster mass loss, shorter thermally pulsing AGB lifetime, reduced enrichment in third dredge-up products (by a factor of 3-10), and an increase in the mass limit for hot bottom burning. We show that the evolution of low-metallicity models with composition-dependent low-temperature opacity is relatively independent of initial metal abundance because its contribution to the opacity is far outweighed by changes resulting from dredge-up. Our results imply a significant reduction in the expected number of nitrogen-enhanced metal-poor stars, which may help explain their observed paucity. We note that these findings are partially a product of the macrophysics adopted in our models, in particular, the Vassiliadis and Wood mass loss rate which is strongly dependent on radius.

  1. SALT reveals the barium central star of the planetary nebula Hen 2-39

    Science.gov (United States)

    Miszalski, B.; Boffin, H. M. J.; Jones, D.; Karakas, A. I.; Köppen, J.; Tyndall, A. A.; Mohamed, S. S.; Rodríguez-Gil, P.; Santander-García, M.

    2013-12-01

    Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars are surrounded by planetary nebulae (PNe), ejected soon after the wind accretion of polluted material when the WD was in its preceding asymptotic giant branch (AGB) phase. Such systems are rare but powerful laboratories for studying AGB nucleosynthesis as we can measure the chemical abundances of both the polluted star and the nebula ejected by the polluter. Here, we present evidence for a barium star in the PN Hen 2-39 (PN G283.8-04.2) as one of only a few known systems. The polluted giant is very similar to that found in WeBo 1 (PN G135.6+01.0). It is a cool (Teff = 4250 ± 150 K) giant enhanced in carbon ([C/H] = 0.42 ± 0.02 dex) and barium ([Ba/Fe] = 1.50 ± 0.25 dex). A spectral type of C-R3 C24 nominally places Hen 2-39 amongst the peculiar early R-type carbon stars; however, the barium enhancement and likely binary status mean that it is more likely to be a barium star with similar properties, rather than a true member of this class. An AGB star model of initial mass 1.8 M⊙ and a relatively large carbon pocket size can reproduce the observed abundances well, provided mass is transferred in a highly conservative way from the AGB star to the polluted star (e.g. wind Roche lobe overflow). It also shows signs of chromospheric activity and photometric variability with a possible rotation period of ˜5.5 d likely induced by wind accretion. The nebula exhibits an apparent ring morphology in keeping with the other PNe around barium stars (WeBo 1 and A 70) and shows a high degree of ionization implying the presence of an invisible hot pre-WD companion that will require confirmation with UV observations. In contrast to A 70, the nebular chemical abundance pattern is consistent with non-Type I PNe, in keeping with the

  2. THE ENVIRONMENTAL DEPENDENCE OF THE FRACTION OF 'UNCONVENTIONAL' GALAXIES: RED LATE TYPES AND BLUE EARLY TYPES

    International Nuclear Information System (INIS)

    Deng Xinfa; He Jizhou; Wu Ping; Ding Yingping

    2009-01-01

    From the Main galaxy sample of the Sloan Digital Sky Survey Data Release 6, we construct two volume-limited samples with the luminosity -20.0 ≤ M r ≤ -18.5 and -22.40 ≤ M r ≤ -20.16, respectively, to explore the environmental dependence of the fraction of 'unconventional' galaxies: red late types and blue early types. We use the density estimator within the distance to the fifth nearest neighbor, and construct two samples at both extremes of density and perform comparative studies between them for each volume-limited sample. Results of two volume-limited samples show the same conclusions: the fraction of red late-type galaxies rises considerably with increasing local density, and that one of the blue early-type galaxies declines substantially with increasing local density. In addition, we note that bluer galaxies preferentially are late types, but the red galaxies are not dominated by early types.

  3. The GAPS Programme with HARPS-N at TNG. XV. A substellar companion around a K giant star identified with quasi-simultaneous HARPS-N and GIANO measurements

    Science.gov (United States)

    González-Álvarez, E.; Affer, L.; Micela, G.; Maldonado, J.; Carleo, I.; Damasso, M.; D'Orazi, V.; Lanza, A. F.; Biazzo, K.; Poretti, E.; Gratton, R.; Sozzetti, A.; Desidera, S.; Sanna, N.; Harutyunyan, A.; Massi, F.; Oliva, E.; Claudi, R.; Cosentino, R.; Covino, E.; Maggio, A.; Masiero, S.; Molinari, E.; Pagano, I.; Piotto, G.; Smareglia, R.; Benatti, S.; Bonomo, A. S.; Borsa, F.; Esposito, M.; Giacobbe, P.; Malavolta, L.; Martinez-Fiorenzano, A.; Nascimbeni, V.; Pedani, M.; Rainer, M.; Scandariato, G.

    2017-10-01

    Context. Identification of planetary companions of giant stars is made difficult because of the astrophysical noise, that may produce radial velocity variations similar to those induced by a companion. On the other hand any stellar signal is wavelength dependent, while signals due to a companion are achromatic. Aims: Our goal is to determine the origin of the Doppler periodic variations observed in the thick disk K giant star TYC 4282-605-1 by HARPS-N at the Telescopio Nazionale Galileo (TNG) and verify if they can be due to the presence of a substellar companion. Methods: Several methods have been used to exclude the stellar origin of the observed signal including detailed analysis of activity indicators and bisector and the analysis of the photometric light curve. Finally we have conducted an observational campaign to monitor the near infrared (NIR) radial velocity with GIANO at the TNG in order to verify whether the NIR amplitude variations are comparable with those observed in the visible. Results: Both optical and NIR radial velocities show consistent variations with a period at 101 days and similar amplitude, pointing to the presence of a companion orbiting the target. The main orbital properties obtained for our giant star with a derived mass of M = 0.97 ± 0.03M⊙ are MPsini = 10.78 ± 0.12MJ; P = 101.54 ± 0.05 days; e = 0.28 ± 0.01 and a = 0.422 ± 0.009 AU. The chemical analysis shows a significant enrichment in the abundance of Na I, Mg I, Al I and Si I while the rest of analyzed elements are consistent with the solar value demonstrating that the chemical composition corresponds with an old K giant (age = 10.1 Gyr) belonging to local thick disk. Conclusions: We conclude that the substellar companion hypothesis for this K giant is the best explanation for the observed periodic radial velocity variation. This study also shows the high potential of multi-wavelength radial velocity observations for the validation of planet candidates. Based on

  4. Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646

    Science.gov (United States)

    Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay

    2016-11-01

    We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.

  5. PROSPECTING IN LATE-TYPE DWARFS: A CALIBRATION OF INFRARED AND VISIBLE SPECTROSCOPIC METALLICITIES OF LATE K AND M DWARFS SPANNING 1.5 dex

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Andrew W.; Hilton, Eric J. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Brewer, John M. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawai' i, 1680 East-West Road, Honolulu, HI 96822 (United States); Lepine, Sebastien [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2013-02-01

    Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late K and M dwarfs from moderate resolution (1300 < R < 2000) visible and infrared spectra. We select a sample of 112 wide binary systems that contain a late-type companion to a solar-type primary star. Our sample includes 62 primary stars with previously published metallicities, as well as 50 stars with metallicities determined from our own observations. We use our sample to empirically determine which features in the spectrum of the companion are best correlated with the metallicity of the primary. We find {approx_equal}120 features in K and M dwarf spectra that are useful for predicting metallicity. We derive metallicity calibrations for different wavelength ranges, and show that it is possible to get metallicities reliable to <0.10 dex using either visible, J-, H-, or K-band spectra. We find that the most accurate metallicities derived from visible spectra requires the use of different calibrations for early-type (K5.5-M2) and late-type (M2-M6) dwarfs. Our calibrations are applicable to dwarfs with metallicities of -1.04 < [Fe/H] <+0.56 and spectral types from K7 to M5. Lastly, we use our sample of wide binaries to test and refine existing calibrations to determine M dwarf metallicities. We find that the {zeta} parameter, which measures the ratio of TiO can CaH bands, is correlated with [Fe/H] for super-solar metallicities, and {zeta} does not always correctly identify metal-poor M dwarfs. We also find that existing calibrations in the K and H bands are quite reliable for stars with [Fe/H] >-0.5, but are less useful

  6. Carbon Stars T. Lloyd Evans

    Indian Academy of Sciences (India)

    that the features used in estimating luminosities of ordinary giant stars are just those whose abundance ... This difference between the spectral energy distributions (SEDs) of CH stars and the. J stars, which belong to .... that the first group was binaries, as for the CH stars of the solar vicinity, while those of the second group ...

  7. Flares on a Bp Star

    Science.gov (United States)

    Mullan, D. J.

    2009-09-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  8. FLARES ON A Bp STAR

    International Nuclear Information System (INIS)

    Mullan, D. J.

    2009-01-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  9. Absorption-line strengths of 18 late-type spiral galaxies observed with SAURON

    NARCIS (Netherlands)

    Ganda, Katia; Peletier, Reynier F.; McDermid, Richard M.; Falcon-Barroso, Jesus; de Zeeuw, P. T.; Bacon, Roland; Cappellari, Michele; Davies, Roger L.; Emsellem, Eric; Krajnovic, Davor; Kuntschner, Harald; Sarzi, Marc; van de Ven, Glenn

    2007-01-01

    We present absorption line strength maps for a sample of 18 Sb-Sd galaxies observed using the integral-field spectrograph SAURON operating at the William Herschel Telescope on La Palma, as part of a project devoted to the investigation of the kinematics and stellar populations of late-type spirals,

  10. The sdB pulsating star V391 Peg and its putative giant planet revisited after 13 years of time-series photometric data

    Science.gov (United States)

    Silvotti, R.; Schuh, S.; Kim, S.-L.; Lutz, R.; Reed, M.; Benatti, S.; Janulis, R.; Lanteri, L.; Østensen, R.; Marsh, T. R.; Dhillon, V. S.; Paparo, M.; Molnar, L.

    2018-04-01

    V391 Peg (alias HS 2201+2610) is a subdwarf B (sdB) pulsating star that shows both p- and g-modes. By studying the arrival times of the p-mode maxima and minima through the O-C method, in a previous article the presence of a planet was inferred with an orbital period of 3.2 years and a minimum mass of 3.2 MJup. Here we present an updated O-C analysis using a larger data set of 1066 h of photometric time series ( 2.5× larger in terms of the number of data points), which covers the period between 1999 and 2012 (compared with 1999-2006 of the previous analysis). Up to the end of 2008, the new O-C diagram of the main pulsation frequency (f1) is compatible with (and improves) the previous two-component solution representing the long-term variation of the pulsation period (parabolic component) and the giant planet (sine wave component). Since 2009, the O-C trend of f1 changes, and the time derivative of the pulsation period (p.) passes from positive to negative; the reason of this change of regime is not clear and could be related to nonlinear interactions between different pulsation modes. With the new data, the O-C diagram of the secondary pulsation frequency (f2) continues to show two components (parabola and sine wave), like in the previous analysis. Various solutions are proposed to fit the O-C diagrams of f1 and f2, but in all of them, the sinusoidal components of f1 and f2 differ or at least agree less well than before. The nice agreement found previously was a coincidence due to various small effects that are carefully analyzed. Now, with a larger dataset, the presence of a planet is more uncertain and would require confirmation with an independent method. The new data allow us to improve the measurement of p. for f1 and f2: using only the data up to the end of 2008, we obtain p.1 = (1.34 ± 0.04) × 10-12 and p.2 = (1.62 ± 0.22) × 10-12. The long-term variation of the two main pulsation periods (and the change of sign of p.1) is visible also in direct

  11. The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies

    Science.gov (United States)

    McGaugh, Stacy S.; Schombert, James M.; Lelli, Federico

    2017-12-01

    We explore the star-forming properties of late-type, low surface brightness (LSB) galaxies. The star-forming main sequence ({SFR}-{M}* ) of LSB dwarfs has a steep slope, indistinguishable from unity (1.04 ± 0.06). They form a distinct sequence from more massive spirals, which exhibit a shallower slope. The break occurs around {M}* ≈ {10}10 {M}⊙ , and can also be seen in the gas mass—stellar mass plane. The global Kennicutt-Schmidt law ({SFR}-{M}g) has a slope of 1.47 ± 0.11 without the break seen in the main sequence. There is an ample supply of gas in LSB galaxies, which have gas depletion times well in excess of a Hubble time, and often tens of Hubble times. Only ˜ 3 % of this cold gas needs be in the form of molecular gas to sustain the observed star formation. In analogy with the faint, long-lived stars of the lower stellar main sequence, it may be appropriate to consider the main sequence of star-forming galaxies to be defined by thriving dwarfs (with {M}* {10}10 {M}⊙ ) are weary giants that constitute more of a turn-off population.

  12. Migration of accreting giant planets

    Science.gov (United States)

    Robert, C.; Crida, A.; Lega, E.; Méheut, H.

    2017-09-01

    Giant planets forming in protoplanetary disks migrate relative to their host star. By repelling the gas in their vicinity, they form gaps in the disk's structure. If they are effectively locked in their gap, it follows that their migration rate is governed by the accretion of the disk itself onto the star, in a so-called type II fashion. Recent results showed however that a locking mechanism was still lacking, and was required to understand how giant planets may survive their disk. We propose that planetary accretion may play this part, and help reach this slow migration regime.

  13. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  14. Ruptured Aortic Aneurysm From Late Type II Endoleak Treated by Transarterial Embolization

    International Nuclear Information System (INIS)

    Gunasekaran, Senthil; Funaki, Brian; Lorenz, Jonathan

    2013-01-01

    Endoleak is the most common complication after endovascular aneurysm repair. The most common type of endoleak, a type II endoleak, typically follows a benign course and is only treated when associated with increasing aneurysm size. In this case report, we describe a ruptured abdominal aortic aneurysm due to a late, type II endoleak occurring 10 years after endovascular aneurysm repair that was successfully treated by transarterial embolization.

  15. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  16. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  17. ON THE POSSIBLE EXISTENCE OF SHORT-PERIOD g-MODE INSTABILITIES POWERED BY NUCLEAR-BURNING SHELLS IN POST-ASYMPTOTIC GIANT BRANCH H-DEFICIENT (PG1159-TYPE) STARS

    International Nuclear Information System (INIS)

    Corsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Gonzalez Perez, J. M.; Kepler, S. O.

    2009-01-01

    We present a pulsational stability analysis of hot post-asymptotic giant branch (AGB) H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars, through the thermally pulsing AGB phase and born-again episode. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the log T eff -log g diagram characterized by short-period g-modes excited by the ε-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long-period g-modes destabilized by the classical κ-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. As a natural application of our results, we study the particular case of VV 47, a pulsating planetary nebula nucleus (PG1159 type) that is particularly interesting because it has been reported to exhibit a rich and complex pulsation spectrum including a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ-mechanism, while the observed short-period branch below ∼300 s could correspond to modes triggered by the He-burning shell through the ε-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period g-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ-mechanism and the ε-mechanism of mode driving are simultaneously operating.

  18. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    Optical and infrared spectrophotometry is presented of the high-excitation emission-line star H1-36. The presence of a variable M giant is established: H1-36 may therefore be classified as a symbiotic star. The observations are interpreted in terms of the usual binary model for symbiotic stars, namely that an unseen star is heated by accretion of gas from its companion M giant. (author)

  19. Light curve analysis of the late type binary V523 Cassiopeiae

    Directory of Open Access Journals (Sweden)

    Latković O.

    2009-01-01

    Full Text Available We present the analysis of V and R light curves of the late type contact binary V523 Cas for the season of 2006. These observations make part of the monitoring program aimed at studying the long-term light curve variability in this system. Our results confirm that the system is in an over contact configuration, and include a bright spot in the neck region of the cooler and larger primary. We compare these results with the previous solution, obtained for the season 2005 dataset and discuss the differences.

  20. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [California Institute of Technology, 1200 E. California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zhang, Andrew J. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States); Hong, Jerry [Palo Alto High School, 50 Embarcadero Road, Palo Alto, CA, 94301 (United States); Guo, Michelle [Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Guo, Rachel [Irvington High School, 41800 Blacow Road, Fremont, CA 94538 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão Rio de Janeiro (Brazil)

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  1. Halo star streams in the solar neighborhood

    NARCIS (Netherlands)

    Kepley, Amanda A.; Morrison, Heather L.; Helmi, Amina; Kinman, T. D.; Van Duyne, Jeffrey; Martin, John C.; Harding, Paul; Norris, John E.; Freeman, Kenneth C.

    2007-01-01

    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample ( 231 stars) includes red giants, RR Lyrae variable stars, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was

  2. INTERNAL EXTINCTION IN THE SLOAN DIGITAL SKY SURVEY LATE-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Cho, Jungyeon; Park, Changbom

    2009-01-01

    We study internal extinction of late-type galaxies in the Sloan Digital Sky Survey. We find that the degree of internal extinction depends on both the concentration index c and K s -band absolute magnitude M K . We give simple fitting functions for internal extinction. In particular, we present analytic formulae giving the extinction-corrected magnitudes from the observed optical parameters. For example, the extinction-corrected r-band absolute magnitude can be obtained by M r,0 =-20.77 +(-1+√(1+4Δ(M r,obs +20.77+4.93Δ)))/2Δ, where Δ = 0.236{1.35(c - 2.48) 2 - 1.14} log(a/b), c = R 90 /R 50 is the the concentration index, and a/b is the isophotal axis ratio of the 25 mag arcsec -2 isophote in the i band. The 1σ error in M r,0 is 0.21 log(a/b). Late-type galaxies with very different inclinations are found to trace almost the same sequence in the (u - r)-M r diagram when our prescriptions for extinction correction are applied. We also find that (u - r) color can be a third independent parameter that determines the degree of internal extinction.

  3. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  4. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. V. A Massive Jupiter orbiting the very-low-metallicity giant star BD+03 2562 and a possible planet around HD 103485

    Science.gov (United States)

    Villaver, E.; Niedzielski, A.; Wolszczan, A.; Nowak, G.; Kowalik, K.; Adamów, M.; Maciejewski, G.; Deka-Szymankiewicz, B.; Maldonado, J.

    2017-10-01

    planetary companions, they represent systems orbiting very evolved stars with very low metallicities, a challenge to the conditions required for the formation of massive giant gas planets. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  5. The magnetic strip(s) in the advanced phases of stellar evolution. Theoretical convective turnover timescale and Rossby number for low- and intermediate-mass stars up to the AGB at various metallicities

    Science.gov (United States)

    Charbonnel, C.; Decressin, T.; Lagarde, N.; Gallet, F.; Palacios, A.; Aurière, M.; Konstantinova-Antova, R.; Mathis, S.; Anderson, R. I.; Dintrans, B.

    2017-09-01

    Context. Recent spectropolarimetric observations of otherwise ordinary (in terms e.g. of surface rotation and chemical properties) G, K, and M giants have revealed localized magnetic strips in the Hertzsprung-Russell diagram coincident with the regions where the first dredge-up and core helium burning occur. Aims: We seek to understand the origin of magnetic fields in such late-type giant stars, which is currently unexplained. In analogy with late-type dwarf stars, we focus primarily on parameters known to influence the generation of magnetic fields in the outer convective envelope. Methods: We compute the classical dynamo parameters along the evolutionary tracks of low- and intermediate-mass stars at various metallicities using stellar models that have been extensively tested by spectroscopic and asteroseismic observations. Specifically, these include convective turnover timescales and convective Rossby numbers, computed from the pre-main sequence (PMS) to the tip of the red giant branch (RGB) or the early asymptotic giant branch (AGB) phase. To investigate the effects of the very extended outer convective envelope, we compute these parameters both for the entire convective envelope and locally, that is, at different depths within the envelope. We also compute the turnover timescales and corresponding Rossby numbers for the convective cores of intermediate-mass stars on the main sequence. Results: Our models show that the Rossby number of the convective envelope becomes lower than unity in the well-delimited locations of the Hertzsprung-Russell diagram where magnetic fields have indeed been detected. Conclusions: We show that α - Ω dynamo processes might not be continuously operating, but that they are favored in the stellar convective envelope at two specific moments along the evolution tracks, that is, during the first dredge-up at the base of the RGB and during central helium burning in the helium-burning phase and early-AGB. This general behavior can explain

  6. Rapid formation of gas giants, ice giants and super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A P [DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)], E-mail: boss@dtm.ciw.edu

    2008-08-15

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more.

  7. Rapid formation of gas giants, ice giants and super-Earths

    International Nuclear Information System (INIS)

    Boss, A P

    2008-01-01

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more

  8. Properties of the cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leedyarv, L.

    1986-01-01

    The basic physical parameters of the cold components of symbiotic stars and comparison red giants have been determined from the data of infrared photometry by means of the Blackwell-Shallis method. It is found that the cold components of the symbiotic stars do not differ from normal red giants of the asymptotic branch. The masses of the cold components of the symbiotic stars are close to 3M. The red components of the symbiotic stars do not fill their Roche lobes. Among the cold components of the symbiotic stars, there are approximately ten times as many carbon stars as among the red giants in the neighborhood of the Sun

  9. Photometric Variability of Four Coronally Active Stars J. C. Pandey ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    ray surveys with the Einstein and the ROSAT observatories and found to be associated with bright late- type stars. Many of these stars have not been studied in detail for their chromospheric and coronal activity, and their nature is not fully ...

  10. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  11. Giant Low Surface Brightness Galaxies

    Science.gov (United States)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  12. The ESO Nearby Abell Cluster Survey. VI. Spatial distribution and kinematics of early- and late-type galaxies

    Science.gov (United States)

    de Theije, P. A. M.; Katgert, P.

    1999-01-01

    Analysis of the data obtained in the ESO Nearby Abell Cluster Survey (ENACS) has shown that the space distribution and kinematics of galaxies with detectable emission lines in their spectra differ significantly from those of galaxies without emission lines. This result, and details of the kinematics, were considered as support for the idea that at least the spirals with emission lines are on orbits that are not isotropic. This might indicate that this subset of late-type galaxies either has `first approach'-orbits towards the dense core of their respective clusters, or has orbits that `avoid' the core. The galaxies with emission lines are essentially all late-type galaxies. On the other hand, the emission-line galaxies represent only about a third of the late-type galaxies, the majority of which do not show detectable emission lines. The galaxies without emission lines are therefore a mix of early- and late-type galaxies. In this paper we attempt to separate early- and late-type galaxies, and we study possible differences in distribution and kinematics of the two galaxy classes. For only about 10% of the galaxies in the ENACS, the morphology is known from imaging. Here, we describe our classification on the basis of the ENACS spectrum. The significant information in each spectrum is compressed into 15 Principal Components, which are used as input for an Artificial Neural Network. The latter is `trained' with 150 of the 270 galaxies for which a morphological type is available from Dressler, and subsequently used to classify each galaxy. This yields a classification for two-thirds of the ENACS galaxies. The Artificial Neural Network has two output classes: early-type (E+S0) and late-type (S+I) galaxies. We do not distinguish E and S0 galaxies, because these cannot be separated very robustly on the basis of the spectrum. The success rate of the classification is estimated from the sample of 120 galaxies with Dressler morphologies which were not used to train the ANN

  13. Giant Chancroid

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar

    1980-01-01

    Full Text Available A case of giant chancroid following rupture of inguinal bubo and having systemic symptoms is described. Response with sulfa and streptomycin combination was excellent and the lesion healed completely in 3 weeks. Early diagnosis and treatment of chancroid will prevent this debilitating complication.

  14. Giant microelectronics

    International Nuclear Information System (INIS)

    Della Sala, D.; Privato, C.; Di Lazzaro, P.; Fortunato, G.

    1999-01-01

    Giant microelectronics, on which the technology of flat liquid-crystal screens is based, is an example of fruitful interaction among independently-developed technologies, in this case thin film micro devices and laser applications. It typifies the interdisciplinary approach needed to produce innovations in microelectronics [it

  15. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  16. Understanding young stars - A history

    International Nuclear Information System (INIS)

    Stahler, S.W.

    1988-01-01

    The history of pre-main-sequence theory is briefly reviewed. The paper of Henyey et al. (1955) is seen as an important transitional work, one which abandoned previous simplifying assumptions yet failed to incorporate newer insights into the surface structure of late-type stars. The subsequent work of Hayashi and his contemporaries is outlined, with an emphasis on the underlying physical principles. Finally, the recent impact of protostar theory is discussed, and speculations are offered on future developments. 56 references

  17. Infrared photometry and polarimetry of cool stars

    Energy Technology Data Exchange (ETDEWEB)

    Khozov, G V; Khudyakova, T N; Larionov, V M; Larionova, L V

    1978-01-01

    The results of infrared observations made in 1975 are given. Brightness and polarization variations of stars in R,I,H,K bands during 1969-1975 are presented in tables. The dependence of the degree of polarization on I-K is obtained. The dependence is an evidence of the existence of a universal mechanism responsible for the polarization variations of late-type stars. 2 figures, 13 tables.

  18. Nursery of Giants

    Science.gov (United States)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. This image is a large-scale mosaic assembled from individual photographs obtained with the InfraRed Array Camera (IRAC) aboard Spitzer. The image covers an area about two times that of a full moon. The mosaic is a composite of images obtained at mid-infrared wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of 10,000 light-years. Protruding out from DR21 toward the bottom left of the image is a gaseous outflow (green), containing both carbon monoxide and molecular hydrogen. Data from the Spitzer spectrograph, which breaks light into its constituent individual wavelengths, indicate the presence of hot steam formed as the outflow heats the surrounding molecular gas. Outflows are physical signatures of processes that create supersonic beams, or jets, of gas. They are usually accompanied by discs of material around the new star, which likely contain the materials from which future planetary systems are formed. Additional newborn stars, depicted in green, can be seen surrounding the DR21 region

  19. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    Science.gov (United States)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O II]λλ3726, 3729, [O III]λ5007, [N II]λλ6549, 6584, and [S II]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, I.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O II] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H II regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H II regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N II]/Hα and [O II]/Hα ratios between the disk and the halo. SDSS IV.

  20. Red giants: then and now

    Science.gov (United States)

    Faulkner, John

    Fred Hoyle's work on the structure and evolution of red giants, particularly his pathbreaking contribution with Martin Schwarzschild (Hoyle and Schwarzschild 1955), is both lauded and critically assessed. In his later lectures and work with students in the early 1960s, Hoyle presented more physical ways of understanding some of the approximations used, and results obtained, in that seminal paper. Although later ideas by other investigators will be touched upon, Hoyle's viewpoint - that low-mass red giants are essentially white dwarfs with a serious mass-storage problem - is still extremely fruitful. Over the years, I have further developed his method of attack. Relatively recently, I have been able to deepen and broaden the approach, finally extending the theory to provide a unifying treatment of the structure of low-mass stars from the main sequence though both the red-giant and horizontal-branch phases of evolution. Many aspects of these stars that had remained puzzling, even mysterious, for decades have now fallen into place, and some questions have been answered that were not even posed before. With low-mass red giants as the simplest example, this recent work emphasizes that stars, in general, may have at least two distinct but very important centres: (I) a geometrical centre, and (II) a separate nuclear centre, residing in a shell outside a zero-luminosity dense core for example. This two-centre perspective leads to an explicit, analytical, asymptotic theory of low-mass red-giant structure. It enables one to appreciate that the problem of understanding why such stars become red giants is one of anticipating a remarkable yet natural structural bifurcation that occurs in them. This bifurcation occurs because of a combination of known and understandable facts just summarized namely that, following central hydrogen exhaustion, a thin nuclear-burning shell does develop outside a more-or-less dense core. In the resulting theory, both ρsh/ρolinec and

  1. Asteroseismology of 16,000 Kepler Red Giants

    DEFF Research Database (Denmark)

    Yu, Jie; Huber, Daniel; Bedding, Timothy R.

    2018-01-01

    (sigma(M) = 7.8%), radius (sigma(R) = 2.9%), and thus surface gravity (sigma(log g) = 0.01 dex). Thanks to the large red giant sample, we confirm that red-giant-branch (RGB) and helium-core-burning (HeB) stars collectively differ in the distribution of oscillation amplitude, granulation power, and width...

  2. The Westerbork HI survey of spiral and irregular galaxies - I. HI imaging of late-type dwarf galaxies

    NARCIS (Netherlands)

    Swaters, RA; Van Albada, TS; van der Hulst, JM; Sancisi, R

    Neutral hydrogen observations with the Westerbork Synthesis Radio Telescope are presented for a sample of 73 late-type dwarf galaxies. These observations are part of the WHISP project (Westerbork Hi Survey of Spiral and Irregular Galaxies). Here we present Hi maps, velocity fields, global profiles

  3. Physical Parameters of Late Type Spiral Galaxies I-Mass and Luminosity of NGC 6946

    Directory of Open Access Journals (Sweden)

    Sug-Whan Kim

    1985-12-01

    Full Text Available Using Brandt model the mass distribution of the late type spiral galaxy NGC 6946 was derived, and the total mass was reestimated to understand the M/L ratio of this galaxy. Two kinds of the rotation curve with shape parameter n = 1 and 3.3 were examined. The followings are the main results; (1 The total masses of NGC 6946 are 3.1 x 10^11*M (n=1 and 2.8 x 10^11*M (n=3.3 respectively, and the corresponding M/L are about 17 and 16 for both cases. (2 The optical image in the blue light, whose radius is 9.6 kpc, has 8 x 10^10*Msolar and 1.4 x 10^11*Msolar. These give the value of M/L about 5 and 8 respectively. (3 The masses and M/L of the nuclear region within 1.2 kpc are 4.0 x 10^9*Msolar, 4.7 x 10^9*Msolar and 3, 4 for both cases. Those of the disk from 1.2 kpc to 9.6 kpc are 7.6 x 10^10*Msolar, 1.4 x 10^11*Msolar, and 5, 8. (4 The masses of the outer halo extended to few hundreds kiloparsecs are 2.3 x 10^11*Msolar and 1.4 x 10^11*Msolar. The corresponding M/L are about 62 and 37.

  4. Investigation of eclipsing binary stars exhibiting calcium II emission

    International Nuclear Information System (INIS)

    Oliver, J.P.

    1974-01-01

    Three color photometry of some eclipsing binaries showing Calcium II emission is reported. A highly stable and accurate d.c. amplifier, and a new type digital averaging system are described. Past and current light curves of SS Boo, RS CVn, WY Cnc, WW Dra, UV Psc, Z Her, SS Cam, RW UMa, AR Lac, and RT Lac are discussed with particular emphasis on asymmetries in the heights of the maxima and variations in the depths of the minima. Both RS CVn and SS Boo show nearly sinusoidal variation outside eclipse. Spectra of SS Boo and RS CVn are discussed. The suggestion is made that many of these systems belong to a new category of variable eclipsing binary star. It is pointed out that most double line eclipsing binaries with late-type sub-giant secondary components fall into this group, and that many of the characteristics of this group are not easily explained on the basis of existing data and theory. Possible models are discussed and the need for future photometric and spectroscopic study is emphasized. (U.S.)

  5. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  6. CHARACTERIZING THE ATMOSPHERES OF TRANSITING ROCKY PLANETS AROUND LATE-TYPE DWARFS

    International Nuclear Information System (INIS)

    Palle, E.; Garcia Munoz, A.; Zosorio, M. R. Zapatero

    2011-01-01

    Visible and near-infrared spectra of transiting hot Jupiter planets have recently been observed, revealing some of the atmospheric constituents of their atmospheres. In the near future, it is probable that primary and secondary eclipse observations of Earth-like rocky planets will also be achieved. The characterization of Earth's transmission spectrum has shown that both major and trace atmospheric constituents may present strong absorption features, including important bio-markers such as water, oxygen, and methane. Our simulations using a recently published empirical Earth's transmission spectrum, and the stellar spectra for a variety of stellar types, indicate that the new generation of extremely large telescopes, such as the proposed 42 m European Extremely Large Telescope, could be capable of retrieving the transmission spectrum of an Earth-like planet around very cool stars and brown dwarfs (T eff ≤ ∼3100 K). For a twin of Earth around a star with T eff ∼ 3100 K (M4), for example, the spectral features of H 2 O, CH 4 , CO 2 , and O 2 in the wavelength range between 0.9 and 2.4 μm can simultaneously be detected within 100 hr of observing time, or even less for a late-M star. Such detection would constitute proof for the existence of life in that planet. The detection time can be reduced to a few hours for a super-Earth type of planet with twice Earth's radius.

  7. The masses of retired A stars with asteroseismology

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Campante, Tiago L.; Miglio, Andrea

    2017-01-01

    We investigate the masses of 'retired A stars' using asteroseismic detections on seven low-luminosity red-giant and sub-giant stars observed by the NASA Kepler and K2 missions. Our aim is to explore whether masses derived from spectroscopy and isochrone fitting may have been systematically overes...

  8. Nitrogen depletion in field red giants

    DEFF Research Database (Denmark)

    Masseron, T.; Lagarde, N.; Miglio, A.

    2017-01-01

    , the behaviour of nitrogen data along the evolution confirms the existence of non-canonical extramixing on the red giant branch (RGB) for all low-mass stars in the field. But more surprisingly, the data indicate that nitrogen has been depleted between the RGB tip and the red clump. This may suggest that some...

  9. Asteroseismic Diagram for Subgiants and Red Giants

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Ning; Tang, Yanke [College of Physics and Electronic information, Dezhou University, Dezhou 253023 (China); Yu, Peng [College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Dou, Xianghua, E-mail: ning_gai@163.com, E-mail: tyk450@163.com [Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023 (China)

    2017-02-10

    Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.

  10. Surface Magnetic Fields on Giants and Supergiants

    Science.gov (United States)

    Lebre, Agnès

    2018-04-01

    After a short introduction to spectropolarimetry and the tecnics allowing for the detection of surface fields, I will review the numerous and various detections of magnetic fields at the surface of giant and supergiant stars. On Betelgeuse, the prototype of Red Supergiants, I will present recent results collected after a 10 years long spectropolarimetric survey.

  11. Physical properties of the red giant envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, W J [Instituto de Astronomia e Geofisico da Universidade de Sao Paulo (Brazil)

    1978-12-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained.

  12. Physical properties of the red giant envelopes

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1978-01-01

    In this work, several model envelopes are calculated for cool giant stars with mass loss due to the action of stellar radiation pressure on molecules and grains. Molecular profiles as well as average values of some physical parameters of the envelopes are obtained [pt

  13. Lithium in the barium stars

    International Nuclear Information System (INIS)

    Pinsonneault, M.H.; Sneden, C.

    1984-01-01

    New high-resolution spectra of the lithium resonance doublet have provided lithium abundances or upper limits for 26 classical and mild barium stars. The lithium lines always are present in the classical barium stars. Lithium abundances in these stars obey a trend with stellar masses consistent with that previously derived for ordinary K giants. This supports the notion that classical barium stars are post-core-He-flash or core-He-burning stars. Lithium contents in the mild barium stars, however, often are much smaller than those of the classical barium stars sometimes only upper limits may be determined. The cause for this difference is not easily understood, but may be related to more extensive mass loss by the mild barium stars. 45 references

  14. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  15. Chemical composition of late-type supergiants. IV. Homogeneous abundances and galactic metallicity trends

    International Nuclear Information System (INIS)

    Luck, R.E.

    1982-01-01

    In a recent series of papers by Luck and by Luck and Bond on the chemical composition of G and K lb supergiants, [Fe/H] ratios were determined from high-dispersion spectroscopic data for 54 stars. The main results were: (1) that supergiants in the solar neighborhood have about twice the iron content of the Sun ( = +0.3); and (2) that supergiants between 7.7 and 10.2 kpc from the galactic center show a steep radial metallicity gradient, d[Fe/H]/dR = -0.24 kpc -1

  16. The evolutionary status of symbiotic stars

    International Nuclear Information System (INIS)

    Rudak, B.

    1982-01-01

    The evolutionary relations between symbiotic stars and cataclysmic variables are presented. The symbiotic stars are assumed to be long period detached binaries containing a carbon-oxygen degenerate primary and a red giant losing its mass through a spherically symmetric wind. Such systems can be obtained in Case C evolution, provided a common envelope during a rapid mass transfer phase was not formed. The same way recurrent novae containing a red giant as a secondary component may be produced. The factors influencing the differences between symbiotic stars and nova-type stars are discussed. (Auth.)

  17. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  18. IUE observations of circumstellar emission from the late-type variable R AQR (M6 + pec)

    Science.gov (United States)

    Hobbs, R. W.; Michalitsianos, A. G.; Kafatos, M.

    1981-01-01

    The IUE observations of R Aqr (M7 + pec) obtained in low dispersion are discussed with particular reference to circumstellar emission. Strong permitted, semiforbidden, and forbidden emission lines are seen, superimposed on a bright ultraviolet continuum. It is deduced that the strong emission line spectrum that involves C III, C IV, Si III, (0 II) and (0 III) probably arises from a dense compact nebula the size of which is comparable to the orbital radius of the binary system of which R Aqr is the primary star. The low excitation emission lines of Fe II, Mg II, 0 I, and Si II probably a white dwarf, comparable to or somewhat brighter than the Sun, since such a star can produce enough ionizing photons to excite the continuum and emission line spectrum and yet be sufficiently faint as to escape detection by direct observation. The UV continuum is attributed to Balmer recombination from the dense nebula and not to blackbody emission from the hot companion.

  19. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  20. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  1. Discovery of the near-infrared counterpart to the luminous neutron-star low-mass X-ray binary GX 3+1

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, Maureen; Fridriksson, Joel K. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Homan, Jeroen [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States); Linares, Manuel, E-mail: M.C.vandenBerg@uva.nl [Instituto de Astrofísica de Canarias (IAC), Vía Láctea s/n, La Laguna, E-38205, S/C de Tenerife (Spain)

    2014-10-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this K{sub s} = 15.8 ± 0.1 mag star as the counterpart is based on the presence of a Br γ emission line in an NIR spectrum taken with the Folded-port InfraRed Echelette spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (L{sub X} ≈ 10{sup 36}-10{sup 37} erg s{sup –1}) than GX 3+1, where optically thin synchrotron emission from a jet probably dominates the NIR flux.

  2. The DiskMass Survey. VIII. On the Relationship between Disk Stability and Star Formation

    NARCIS (Netherlands)

    Westfall, Kyle B.; Andersen, David R.; Bershady, Matthew A.; Martinsson, Thomas P. K.; Swaters, Robert A.; Verheijen, Marc A. W.

    2014-01-01

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo & Wiegert (Q RW), incorporating stellar

  3. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. VI. THE ANCIENT STAR-FORMING DISK OF NGC 404

    International Nuclear Information System (INIS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Stilp, Adrienne; Dolphin, Andrew; Seth, Anil C.; Weisz, Daniel; Skillman, Evan

    2010-01-01

    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. The locations of our fields contain a roughly equal mixture of bulge and disk stars. All of our resolved stellar photometry reaches m F814W = 26 (M F814W = -1.4), which covers 2.5 mag of the red giant branch and main-sequence stars with ages F814W = 27.2 (M F814W = -0.2), sufficient to resolve the red clump and main-sequence stars with ages 10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that ∼70% of the stellar mass in the NGC 404 disk formed by z ∼ 2 (10 Gyr ago) and at least ∼90% formed prior to z ∼ 1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early- and late-type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in Galaxy Evolution Explorer images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, ∼ 0.5-1 Gyr ago, the star formation rate was unusually low for the inferred gas density, consistent with the possibility that there was a gas accretion event that reignited star formation ∼0.5 Gyr ago. Such an event could explain why this S0 galaxy hosts an extended gas disk.

  4. X-ray sources in regions of star formation. II. The pre-main-sequence G star HDE 283572

    International Nuclear Information System (INIS)

    Walter, F.M.; Brown, A.; Linsky, J.L.; Rydgren, A.E.; Vrba, F.; Joint Institute for Laboratory Astrophysics, Boulder, CO; Computer Sciences Corp., El Segundo, CA; Naval Observatory, Flagstaff, AZ)

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a naked T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars. 49 references

  5. Shells around stars

    International Nuclear Information System (INIS)

    Olnon, F.M.

    1977-01-01

    This thesis deals with optically visible stars surrounded by gas and dust and hot enough to ionize the hydrogen atoms in their envelopes. The ionized gas emits radio continuum radiation by the thermal Bremsstrahlung mechanism. Cool giant stars that show radio line emission from molecules in their circumstellar envelopes are discussed. Under favourable conditions the so-called maser effect gives rise to very intense emission lines. Up till now seven different maser transitions have been found in the envelopes of cool giants. Four of these lines from OH, H 2 O and SiO are studied here. Each of them originates in a different layer so that these lines can be used to probe the envelope. The profile of a maser line gives information about the velocity structure of the region where it is formed

  6. A new spectroscopic calibration to determine Teff and [Fe/H] of FGK dwarfs and giants

    Directory of Open Access Journals (Sweden)

    Teixeira G. D. C.

    2017-01-01

    Full Text Available We present a new spectroscopic calibration for a fast estimate of Teff and [Fe/H] for FGK dwarfs and GK giant stars. We used spectra from a joint sample of 708 stars, composed by 451 FGK dwarfs and 257 GK-giant stars with homogeneously determined spectroscopic stellar parameters. We have derived 322 EW line-ratios and 100 FeI lines that can be used to compute Teff and [Fe/H], respectively. We show that these calibrations are effective for FGK dwarfs and GK-giant stars in the following ranges: 4500 K < Teff < 6500 K, 2.5 < log g < 4.9 dex, and –0.8 < [Fe/H] < 0:5 dex. The new calibration has a standard deviation of 74 K for Teff and 0.07 dex for [Fe/H]. We use four independent samples of stars to test and verify the new calibration, a sample of giant stars, a sample composed of Gaia FGK benchmark stars, a sample of GK-giant stars from the DR1 of the Gaia-ESO survey, and a sample of FGK-dwarf stars. We present a new computer code, GeTCal, for automatically producing new calibration files based on any new sample of stars.

  7. PLANETS AROUND THE K-GIANTS BD+20 274 AND HD 219415

    International Nuclear Information System (INIS)

    Gettel, S.; Wolszczan, A.; Niedzielski, A.; Nowak, G.; Adamów, M.; Zieliński, P.; Maciejewski, G.

    2012-01-01

    We present the discovery of planet-mass companions to two giant stars by the ongoing Penn State-Toruń Planet Search conducted with the 9.2 m Hobby-Eberly Telescope. The less massive of these stars, K5-giant BD+20 274, has a 4.2 M J minimum mass planet orbiting the star at a 578 day period and a more distant, likely stellar-mass companion. The best currently available model of the planet orbiting the K0-giant HD 219415 points to a ∼> Jupiter-mass companion in a 5.7 year, eccentric orbit around the star, making it the longest period planet yet detected by our survey. This planet has an amplitude of ∼18 m s –1 , comparable to the median radial velocity 'jitter', typical of giant stars.

  8. Transforming giants.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  9. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  10. Probing the Deep End of the Milky Way with New Oscillating Kepler Giants

    Science.gov (United States)

    Mathur, Savita; García, Rafael A.; Huber, Daniel; Regulo, Clara; Stello, Dennis; Beck, Paul G.; Houmani, Kenza; Salabert, David

    2017-10-01

    The Kepler mission has been a success in both exoplanet search and stellar physics studies. Red giants have actually been quite a highlight in the Kepler scene. The Kepler long and almost continuous four-year observations allowed us to detect oscillations in more than 15,000 red giants targeted by the mission. However by looking at the power spectra of 45,000 stars classified as dwarfs according to the Q1-16 Kepler star properties catalog, we detected red-giant like oscillations in 850 stars. Even though this is a small addition to the known red-giant sample, these misclassified stars represent a goldmine for galactic archeology studies. Indeed they happen to be fainter (down to Kp 16) and more distant (d>10kPc) than the known red giants, opening the possibility to probe unknown regions of our Galaxy. The faintness of these red giants with detected oscillations is very promising for detecting acoustic modes in red giants observed with K2 and TESS. In this talk, I will present this new sample of red giants with their revised stellar parameters derived from asteroseismology. Then I will discuss about the distribution of their masses, distances, and evolutionary states compared to the previously known sample of red giants.

  11. Properties of cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leehdyarv, L.

    1986-01-01

    Using the Blackwell-Shallis method the luminosities, temperatures and radii for cold components of symbiotic stars and for a sample of field red giants have been determined by means of infrared photometric observations. It turned out that the cold components of symbiotic stars do not differ from the normal red giants of the asymptotic branch. The masses of cold components of symbiotic stars have been found to be close to 3 M* (M* is the solar mass).The cold components of symbiotic stars do not fill their Roche lobes. About 10 times more carbon stars than the normal value in the vicinity of the Sun have been found among the cold components of symbiotic stars

  12. Hot Jupiters and cool stars

    International Nuclear Information System (INIS)

    Villaver, Eva; Mustill, Alexander J.; Livio, Mario; Siess, Lionel

    2014-01-01

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M ☉ ), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  13. Dusty disks around young stars

    NARCIS (Netherlands)

    Verhoeff, A.

    2009-01-01

    Stars are formed through the collapse of giant molecular clouds. During this contraction the matter spins up and naturally forms a circumstellar disk. Once accretion comes to a halt, these disks are relatively stable. Some disks are known to last up to 10 Myrs. Most disks however, dissipate on

  14. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  15. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  16. The giant branch of Omega Centauri. II. Mixing versus primordial abundance variations

    International Nuclear Information System (INIS)

    Norris, J.; Bessell, M.S.

    1977-01-01

    The lower giant branch of ω Centauri in the magnitude range 13< V<14 contains weak-G-band stars, CH stars, and CN stars; five stars from a sample of 20 members are clearly peculiar. There is also a positive correlation between the strength of the CN band at lambda3883 and the Ca II H and K lines in this sample, with the calcium lines being strongest in the CH and CN stars. All available BVRI data show that while the wide giant branch of ω Cen in the (V, B--V) -plane extends redward almost to that of 47 Tuc, there is a clear separation of ω Cen from 47 Tuc in the (V, R--I) -plane. This suggests that there are no stars on the giant branch of ω Cen with metal abundance as high as that in 47 Tuc. We obtain an upper limit [Fe/H]approx.-1.0 for a sample of approx.60 ω Cen giants brighter than V=14. This is surprising in view of the result of Freeman and Rodgers that there exist strong-lined RR Lyrae stars on the horizontal branch of ω Cen which are most easily understood in terms of 47 Tucanae-like abundances. While we offer no explanation for the strong-lined RR Lyrae stars, we suggest that the mixed stars on the giant branch of ω Cen are stronger lined than normal because of the effect of CN opacity on their atmospheric structure

  17. Hα ACTIVITY OF OLD M DWARFS: STELLAR CYCLES AND MEAN ACTIVITY LEVELS FOR 93 LOW-MASS STARS IN THE SOLAR NEIGHBORHOOD

    International Nuclear Information System (INIS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; Dodson-Robinson, Sarah E.

    2013-01-01

    Through the McDonald Observatory M Dwarf Planet Search, we have acquired nearly 3000 high-resolution spectra of 93 late-type (K5-M5) stars over more than a decade using the High Resolution Spectrograph on the Hobby-Eberly Telescope. This sample provides a unique opportunity to investigate the occurrence of long-term stellar activity cycles for low-mass stars. In this paper, we examine the stellar activity of our targets as reflected in the Hα feature. We have identified periodic signals for six stars, with periods ranging from days to more than 10 years, and find long-term trends for seven others. Stellar cycles with P ≥ 1 year are present for at least 5% of our targets. Additionally, we present an analysis of the time-averaged activity levels of our sample, and search for correlations with other stellar properties. In particular, we find that more massive, earlier type (M0-M2) stars tend to be more active than later type dwarfs. Furthermore, high-metallicity stars tend to be more active at a given stellar mass. We also evaluate Hα variability as a tracer of activity-induced radial velocity (RV) variation. For the M dwarf GJ 1170, Hα variation reveals stellar activity patterns matching those seen in the RVs, mimicking the signal of a giant planet, and we find evidence that the previously identified stellar activity cycle of GJ 581 may be responsible for the recently retracted planet f in that system. In general, though, we find that Hα is not frequently correlated with RV at the precision (typically 6-7 m s –1 ) of our measurements.

  18. H{alpha} ACTIVITY OF OLD M DWARFS: STELLAR CYCLES AND MEAN ACTIVITY LEVELS FOR 93 LOW-MASS STARS IN THE SOLAR NEIGHBORHOOD

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Paul; Endl, Michael; Cochran, William D.; Dodson-Robinson, Sarah E., E-mail: paul@astro.as.utexas.edu [Department of Astronomy and McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States)

    2013-02-10

    Through the McDonald Observatory M Dwarf Planet Search, we have acquired nearly 3000 high-resolution spectra of 93 late-type (K5-M5) stars over more than a decade using the High Resolution Spectrograph on the Hobby-Eberly Telescope. This sample provides a unique opportunity to investigate the occurrence of long-term stellar activity cycles for low-mass stars. In this paper, we examine the stellar activity of our targets as reflected in the H{alpha} feature. We have identified periodic signals for six stars, with periods ranging from days to more than 10 years, and find long-term trends for seven others. Stellar cycles with P {>=} 1 year are present for at least 5% of our targets. Additionally, we present an analysis of the time-averaged activity levels of our sample, and search for correlations with other stellar properties. In particular, we find that more massive, earlier type (M0-M2) stars tend to be more active than later type dwarfs. Furthermore, high-metallicity stars tend to be more active at a given stellar mass. We also evaluate H{alpha} variability as a tracer of activity-induced radial velocity (RV) variation. For the M dwarf GJ 1170, H{alpha} variation reveals stellar activity patterns matching those seen in the RVs, mimicking the signal of a giant planet, and we find evidence that the previously identified stellar activity cycle of GJ 581 may be responsible for the recently retracted planet f in that system. In general, though, we find that H{alpha} is not frequently correlated with RV at the precision (typically 6-7 m s{sup -1}) of our measurements.

  19. A dust shell around the early-type Wolf-Ryate star WR 19

    International Nuclear Information System (INIS)

    Williams, P.M.; Hucht, K.A. van der; Bouchet, P.

    1990-01-01

    Infrared photometry of the WC4-type Wolf-Rayet star WR 19 (LS 3) in 1988-90 shows evidence for an expanding dust shell in its wind, similar to those observed from late-type WR stars like WR 48a (WC8), WR 140 (WC7+04) and WR 137 (WC7+). This demonstrates that dust formation by Wolf-Rayet stars is not restricted to later WC subtypes and is more common than hitherto supposed. (author)

  20. ISO-SWS spectrophotometry of galactic Wolf-Rayet stars: preliminary results.

    NARCIS (Netherlands)

    van der Hucht, K. A.; Morris, P. W.; Williams, P. M.; Setia Gunawan, D. Y. A.; Beintema, D. A.; Boxhoorn, D. R.; de Graauw, T.; Heras, A.; Kester, D. J. M.; Lahuis, F.; Leech, K. J.; Roelfsema, P. R.; Salama, A.; Valentijn, E. A.; Vandenbussche, B.

    1996-01-01

    ISO-SWS spectra of seven late-type galactic Wolf-Rayet stars are discussed. A high resolution spectrum (2.3-29.6μm, λ/{DELTA}λ=~820-1700) of the WC8 star WR11 (γ^2^ Vel) is shown and its Ne abundance is discussed. Medium resolution spectra (λ/{DELTA}λ=~250-600) of the WC8-9 stars WR48a, WR98a,

  1. Measuring Precise Radii of Giants Orbiting Giants to Distinguish Between Planet Evolution Models

    Science.gov (United States)

    Grunblatt, Samuel; Huber, Daniel; Lopez, Eric; Gaidos, Eric; Livingston, John

    2017-10-01

    Despite more than twenty years since the initial discovery of highly irradiated gas giant planets, the mechanism for planet inflation remains unknown. However, proposed planet inflation mechanisms can now be separated into two general classes: those which allow for post-main sequence planet inflation by direct irradiation from the host star, and those which only allow for slowed cooling of the planet over its lifetime. The recent discovery of two inflated warm Jupiters orbiting red giant stars with the NASA K2 Mission allows distinction between these two classes, but uncertainty in the planet radius blurs this distinction. Observing transits of these planets with the Spitzer Space Telescope would reduce stellar variability and thus planet radius uncertainties by approximately 50% relative to K2, allowing distinction between the two planet inflation model classes at a 3-sigma level. We propose to observe one transit of both known warm Jupiters orbiting red giant stars, K2-97b and EPIC228754001.01, to distinguish between planet model inflation classes and measure the planetary heating efficiency to 3-sigma precision. These systems are benchmarks for the upcoming NASA TESS Mission, which is predicted to discover an order of magnitude more red giant planet systems after launching next year.

  2. Southern high-velocity stars

    International Nuclear Information System (INIS)

    Augensen, H.J.; Buscombe, W.

    1978-01-01

    Using the model of the Galaxy presented by Eggen, Lynden-Bell and Sandage (1962), plane galactic orbits have been calculated for 800 southern high-velocity stars which possess parallax, proper motion, and radial velocity data. The stars with trigonometric parallaxes were selected from Buscombe and Morris (1958), supplemented by more recent spectroscopic data. Photometric parallaxes from infrared color indices were used for bright red giants studied by Eggen (1970), and for red dwarfs for which Rodgers and Eggen (1974) determined radial velocities. A color-color diagram based on published values of (U-B) and (B-V) for most of these stars is shown. (Auth.)

  3. Stellar parameters of Be stars observed with X-shooter

    Science.gov (United States)

    Shokry, A.; Rivinius, Th.; Mehner, A.; Martayan, C.; Hummel, W.; Townsend, R. H. D.; Mérand, A.; Mota, B.; Faes, D. M.; Hamdy, M. A.; Beheary, M. M.; Gadallah, K. A. K.; Abo-Elazm, M. S.

    2018-01-01

    Aims: The X-shooter archive of several thousand telluric standard star spectra was skimmed for Be and Be shell stars to derive the stellar fundamental parameters and statistical properties, in particular for the less investigated late-type Be stars and the extension of the Be phenomenon into early A stars. Methods: An adapted version of the BCD method is used, using the Balmer discontinuity parameters to determine effective temperature and surface gravity. This method is optimally suited for late B stars. The projected rotational velocity was obtained by profile fitting to the Mg ii lines of the targets, and the spectra were inspected visually for the presence of peculiar features such as the infrared Ca ii triplet or the presence of a double Balmer discontinuity. The Balmer line equivalent widths were measured, but they are only useful for determining the pure emission contribution in a subsample of Be stars owing to uncertainties in determining the photospheric contribution. Results: A total of 78, mostly late-type, Be stars, were identified in the X-shooter telluric standard star archive, out of which 48 had not been reported before. We confirm the general trend that late-type Be stars have more tenuous disks and are less variable than early-type Be stars. The relatively large number (48) of relatively bright (V> 8.5) additional Be stars casts some doubt on the statistics of late-type Be stars; they are more common than currently thought. The Be/B star fraction may not strongly depend on spectral subtype. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 60.A-9022, 60.A-9024, 077.D-0085, 085.A-0962, 185.D-0056, 091.B-0900, and 093.D-0415.Table 6 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A108

  4. Musical Interests and Talent: Twin Jazz Musicians and Twin Studies/Twin Research: Loss of a Preterm Multiple; Conjoined Twin Conception; Depression in Fathers of Twins; Twin-to-Twin Transfusion Syndrome/Twin News: High-Achieving Twins; Twin Children of a Tennis Star; Conjoined Twin Separation; Twin Delivery to a Giant Panda.

    Science.gov (United States)

    Segal, Nancy L

    2017-12-01

    Findings from twin studies of musical interests and talent are reviewed as a backdrop to the lives and careers of twin jazz musicians, Peter and Will Anderson. The Anderson twins exemplify many aspects of twin research, namely their matched musical abilities, shared musical interests, and common career. This overview is followed by reviews of studies and case reports of bereavement in families who have lost a preterm multiple birth infant, the conception of conjoined twins following in vitro fertilization (IVF), depression in fathers of twins, and twin-to-twin transfusion incidence in monochorionic-diamniotic IVF twin pairs. Twins highlighted in the media include high-achieving identical female twins with nearly identical academic standing, tennis star Roger Federer's two sets of identical twin children, surgical separation of craniopagus conjoined twins, and the rare delivery of twins to a 23-year-old giant panda.

  5. ON THE SERENDIPITOUS DISCOVERY OF A Li-RICH GIANT IN THE GLOBULAR CLUSTER NGC 362

    Energy Technology Data Exchange (ETDEWEB)

    D’Orazi, Valentina; Gratton, Raffaele G.; Lucatello, Sara; Momany, Yazan [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova (Italy); Angelou, George C. [Max Planck Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Bragaglia, Angela; Carretta, Eugenio; Sollima, Antonio [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127, Bologna (Italy); Lattanzio, John C., E-mail: valentina.dorazi@oapd.inaf.it [Monash Centre for Astrophysics (MoCA), Monash University, Melbourne, VIC 3800 (Australia)

    2015-03-10

    We have serendipitously identified the first lithium-rich giant star located close to the red giant branch bump in a globular cluster. Through intermediate-resolution FLAMES spectra we derived a lithium abundance of A(Li) = 2.55 (assuming local thermodynamical equilibrium), which is extremely high considering the star’s evolutionary stage. Kinematic and photometric analysis confirm the object as a member of the globular cluster NGC 362. This is the fourth Li-rich giant discovered in a globular cluster, but is the only one known to exist at a luminosity close to the bump magnitude. The three previous detections are clearly more evolved, located close to, or beyond, the tip of their red giant branch. Our observations are able to discard the accretion of planets/brown dwarfs, as well as an enhanced mass-loss mechanism as a formation channel for this rare object. While the star sits just above the cluster bump luminosity, its temperature places it toward the blue side of the giant branch in the color–magnitude diagram. We require further dedicated observations to unambiguously identify the star as a red giant: we are currently unable to confirm whether Li production has occurred at the bump of the luminosity function or if the star is on the pre-zero-age horizontal branch. The latter scenario provides the opportunity for the star to have synthesized Li rapidly during the core helium flash or gradually during its red giant branch ascent via some extra mixing process.

  6. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Starkenburg, Else [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700, STN CSC, Victoria BC V8W 3P6 (Canada); Xue, Xiang Xiang; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Johnson, Jennifer [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lee, Young Sun [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  7. Amplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation

    Directory of Open Access Journals (Sweden)

    Barban C.

    2013-03-01

    Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.

  8. Chemical element abundance in K giant atmospheres

    International Nuclear Information System (INIS)

    Komarov, N.S.; Shcherbak, A.N.

    1980-01-01

    With the help of modified method of differential curves of growth studied are physical parameters of atmospheres of giant stars of KO111 spectral class of the NGC 752, M25 and UMa cluster. Observations have been made on reflector of Crimea astrophysical observatory of Academy of Sciences of the USSR in the period from February to May, 1978. Spectograms are obtained for the wave length range from 5000-5500 A. It is shown that the change of chemical content in the wide range in heavy element composition does not influence the star atmosphere structUre. It follows from the results of the investigation that the abundance of chemical elements in stars of various scattered clusters, is the same in the range of errors of measurements and is similar to the abundance of chemical elements in the Sun atmosphere

  9. Statistical properties of barium stars

    International Nuclear Information System (INIS)

    Hakkila, J.E.

    1986-01-01

    Barium stars are G- and K-giant stars with atmospheric excesses of s-process elements, and a broadband spectral depression in the blue portion of the spectrum. The strength of the λ4554 Ball line is used as a classification parameter known as the Barium Intensity. They have a mean absolute magnitude of 1.0 and a dispersion of 1.2 magnitudes (assuming a Gaussian distribution in absolute magnitude) as measured from secular and statistical parallaxes. These stars apparently belong to a young-disk population from analyses of both the solar reflex motion and their residual velocity distribution, which implies that they have an upper mass limit of around three solar masses. There is no apparent correlation of barium intensity with either luminosity or kinematic properties. The barium stars appear to be preferentially distributed in the direction of the local spiral arm, but show no preference to associate with or avoid the direction of the galactic center. They do not appear related to either the carbon or S-stars because of these tendencies and because of the stellar population to which each type of star belongs. The distribution in absolute magnitude combined with star count analyses implies that these stars are slightly less numerous than previously believed. Barium stars show infrared excesses that correlate with their barium intensities

  10. Symbiotic star AG Dra

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Yudin, B.F.; Moskovskij Gosudarstvennyj Univ.

    1986-01-01

    The results obtained from photometric (in the UBVRJHKLM system) and spectrophotometric (in the range 0.33-0.75 μm) observations of symbiotic star AG Dra are presented. The cool component of this star is a red giant with approximately constant brightness (ΔJ ≤ 0 m .3) classified as K4-K5. This red giant fills it's Roche loble and probably is on the assymptotic giant branch of the HR diagramm. The presence of IR excess in 5 μm associated with radiation of the gaseous envelope with the mass of M≅ 10 -6 M sun have been detected. Observations of AG Dra indicate that growing of the bolometric flux of a hot component is accompanied with decreasing effective temperature. The hot component of the system is probably an accerting red dwarf with the mass M≅ 0.4 M sun and disk accretion of matter of cool star with the rate M >or ∼ 10 -4 M sun year in equatorial region. Increase of accretion rate during the outburst of AG Dra leads to the increase of stellar wind from the red dwarf surface and the decrease of it's effective temperature. The hot component of AG Dra may also be considered as a white Dwarf with luminosity L 3 L sun and R eff >or approx. 0.2 R sun . In this case gravitational energy of accreting matter M > or ∼ 10 -6 M sun / year would be the source of the hot component outbursts. The luminosity between outbursts is determined by energy generation from the burning hydrogen layer source

  11. Nanodielectrics with giant permittivity

    Indian Academy of Sciences (India)

    Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal ...

  12. Grain-gas interaction in envelopes of red giants

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1976-01-01

    A model for the ejection of the dust shell of red giant stars through the action of the stellar radiation pressure is developed. Being momentum-coupled to the gas, the dust shell can drive an effective mass loss. On the other hand, the grain injection rate into the interstellar space can be estimated [pt

  13. The Westerbork HI survey of spiral and irregular galaxies - II. R-band surface photometry of late-type dwarf galaxies

    NARCIS (Netherlands)

    Swaters, RA; Balcells, M

    R-band surface photometry is presented for 171 late-type dwarf and irregular galaxies. For a subsample of 46 galaxies B-band photometry is presented as well. We present surface brightness profiles as well as isophotal and photometric parameters including magnitudes, diameters and central surface

  14. Mass-loss rates of cool stars

    Science.gov (United States)

    Katrien Els Decin, Leen

    2015-08-01

    Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.

  15. Multitechnique Testing of the Viscous Decretion Disk Model. 1. The Stable and Tenuous Disk of the Late-Type Be Star Beta CMi

    Science.gov (United States)

    2015-10-05

    4) and the INCT- A. Support for CARMA construction was derived from the states of Califor- nia , Illinois, and Maryland, the James S. McDonnell...C. 2009, A&A, 505 , 687 Meilland, A., Stee, P., Vannier, M., et al. 2007, A&A, 464, 59 Monnier, J. D., Pedretti, E., Thureau, N., et al. 2006, in

  16. Non-LTE line formation of Fe in late-type stars - IV. Modelling of the solar centre-to-limb variation in 3D

    DEFF Research Database (Denmark)

    Lind, K.; Amarsi, A. M.; Asplund, M.

    2017-01-01

    Our ability to model the shapes and strengths of iron lines in the solar spectrum is a critical test of the accuracy of the solar iron abundance, which sets the absolute zero-point of all stellar metallicities. We use an extensive 463-level Fe atom with new photoionization cross-sections for Fe I...

  17. DK UMa: A Star on the Ascent

    Science.gov (United States)

    Simon, Theodore

    1999-01-01

    DK UMa (= 24 UMa = HD 82210) is a G4 IV-III star. According to its M(sub v) and B - V color, it is located at the base of the red giant branch, having recently exited from the Hertzsprung Gap. Now poised to start its first ascent along the giant branch, DK UMa is at a significant juncture in its post-main-sequence evolution, offering an important evolutionary comparison for magnetic activity with stars like 31 Comae, which is just entering the Hertzsprung Gap, and older stars like the Hyades giants or P Ceti, which have passed the tip of the giant branch and lie in the so-called 'clump'. As part of a major survey of the ultraviolet and X ray properties of a well-defined sample of evolved giant stars, DK UMa was observed with the Extreme Ultraviolet Explorer (EUVE) spacecraft in March 1997, for a total exposure time of 230 kiloseconds. A plot of the extracted short-wavelength (SW) spectrum of this star is shown, where it is compared with similar EUVE exposures for other yellow and red giant stars in the activity survey. In terms of the spectral lines of different ionization stages present in these spectra, the transition region and coronal temperature of DK UMa appears to be intermediate between those of 31 Com and P Ceti. Combining the relative strengths of the EUVE lines with Hubble Space Telescope (HST) data at near UV wavelengths and with ROSAT X-ray fluxes, the differential emission measure (DEM) distributions of these stars form a sequence in coronal temperature, which peaks at 10(exp 7.2) K for 31 Com, at 10(exp 6.8) K for B Ceti, and at intermediate temperatures for DK UMa - consistent with the evolutionary stages represented by the three stars. The integrated fluxes of the strongest emission lines found in the EUVE spectrum of DK UMa are listed, again compared with similar measurements for other giant stars that were observed in the course of other EUVE Guest Observer programs.

  18. Models of symbiotic stars

    Science.gov (United States)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical

  19. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  20. "Wonderful" Star Reveals its Hot Nature

    Science.gov (United States)

    2005-04-01

    For the first time an X-ray image of a pair of interacting stars has been made by NASA's Chandra X-ray Observatory. The ability to distinguish between the interacting stars - one a highly evolved giant star and the other likely a white dwarf - allowed a team of scientists to observe an X-ray outburst from the giant star and find evidence that a bridge of hot matter is streaming between the two stars. "Before this observation it was assumed that all the X-rays came from a hot disk surrounding a white dwarf, so the detection of an X-ray outburst from the giant star came as a surprise," said Margarita Karovska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and lead author article in the latest Astrophysical Journal Letters describing this work. An ultraviolet image made by the Hubble Space Telescope was a key to identifying the location of the X-ray outburst with the giant star. X-ray studies of this system, called Mira AB, may also provide better understanding of interactions between other binary systems consisting of a "normal" star and a collapsed star such as a white dwarf, black hole or a neutron star, where the stellar objects and gas flow cannot be distinguished in an image. HST Ultraviolet Image of Mira HST Ultraviolet Image of Mira The separation of the X-rays from the giant star and the white dwarf was made possible by the superb angular resolution of Chandra, and the relative proximity of the star system at about 420 light years from Earth. The stars in Mira AB are about 6.5 billion miles apart, or almost twice the distance of Pluto from the Sun. Mira A (Mira) was named "The Wonderful" star in the 17th century because its brightness was observed to wax and wane over a period of about 330 days. Because it is in the advanced, red giant phase of a star's life, it has swollen to about 600 times that of the Sun and it is pulsating. Mira A is now approaching the stage where its nuclear fuel supply will be exhausted, and it will collapse

  1. FIRE SPECTROSCOPY OF FIVE LATE-TYPE T DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    International Nuclear Information System (INIS)

    Burgasser, Adam J.; Cushing, Michael C.; Mainzer, A.; Bauer, James M.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Looper, Dagny L.; Tinney, Christopher; Simcoe, Robert A.; Bochanski, John J.; Skrutskie, Michael F.; Thompson, Maggie A.; Wright, Edward L.

    2011-01-01

    We present the discovery of five late-type T dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Low-resolution near-infrared spectroscopy obtained with the Magellan Folded-port InfraRed Echellette reveal strong H 2 O and CH 4 absorption in all five sources, and spectral indices and comparison to spectral templates indicate classifications ranging from T5.5 to T8.5:. The spectrum of the latest-type source, WISE J1812+2721, is an excellent match to that of the T8.5 companion brown dwarf Wolf 940B. WISE-based spectrophotometric distance estimates place these T dwarfs at 12-13 pc from the Sun, assuming they are single. Preliminary fits of the spectral data to the atmosphere models of Saumon and Marley indicate effective temperatures ranging from 600 K to 930 K, both cloudy and cloud-free atmospheres, and a broad range of ages and masses. In particular, two sources show evidence of both low surface gravity and cloudy atmospheres, tentatively supporting a trend noted in other young brown dwarfs and exoplanets. In contrast, the high proper motion T dwarf WISE J2018-7423 exhibits a suppressed K-band peak and blue spectrophotometric J - K colors indicative of an old, massive brown dwarf; however, it lacks the broadened Y-band peak seen in metal-poor counterparts. These results illustrate the broad diversity of low-temperature brown dwarfs that will be uncovered with WISE.

  2. Abell 1367: a high fraction of late-type galaxies displaying H I morphological and kinematic perturbations

    Science.gov (United States)

    Scott, T. C.; Brinks, E.; Cortese, L.; Boselli, A.; Bravo-Alfaro, H.

    2018-04-01

    To investigate the effects the cluster environment has on late-type galaxies (LTGs), we studied H I perturbation signatures for all Abell 1367 LTGs with H I detections. We used new Very Large Array H I observations combined with AGES single-dish blind survey data. Our study indicates that the asymmetry between the high- and low-velocity wings of the characteristic double-horn-integrated H I spectrum as measured by the asymmetry parameter, A_{flux}, can be a useful diagnostic for ongoing and/or recent H I stripping. 26 per cent of A1367 LTGs have an A_{flux} ratio, more asymmetrical than 3 times the 1σ spread in the A_{flux} ratio distribution of an undisturbed sample of isolated galaxies (2 per cent) and samples from other denser environments (10 per cent-20 per cent). Over half of the A1367 LTGs, which are members of groups or pairs, have an A_{flux} ratio larger than twice the 1σ spread found in the isolated sample. This suggests intergroup/pair interactions could be making a significant contribution to the LTGs displaying such A_{flux} ratios. The study also demonstrates that the definition of the H I offset from the optical centre of LTGs is resolution dependent, suggesting that unresolved AGES H I offsets that are significantly larger than the pointing uncertainties (>2σ), reflect interactions which have asymmetrically displaced, significant masses of lower density H I, while having minimal impact on the location of the highest density H I in resolved maps. The distribution of A_{flux} from a comparable sample of Virgo galaxies provides a clear indication that the frequency of H I profile perturbations is lower than in A1367.

  3. THE LEECH EXOPLANET IMAGING SURVEY: ORBIT AND COMPONENT MASSES OF THE INTERMEDIATE-AGE, LATE-TYPE BINARY NO UMa

    Energy Technology Data Exchange (ETDEWEB)

    Schlieder, Joshua E. [NASA Ames Research Center, Space Science and Astrobiology Division, MS 245-6, Moffett Field, CA 94035 (United States); Skemer, Andrew J.; Hinz, Philip; Leisenring, Jarron; Defrère, Denis; Close, Laird M.; Eisner, Josh A. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Maire, Anne-Lise; Desidera, Silvano [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova (Italy); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA, 22904 (United States); Bailey, Vanessa [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Esposito, Simone [INAF—Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy); Strassmeier, Klaus G.; Weber, Michael [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany); Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Henning, Thomas [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN, 46556 (United States); Hofmann, Karl-Heinz, E-mail: joshua.e.schlieder@nasa.gov [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany); and others

    2016-02-10

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, K{sub s}-, and L′-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M{sub ⊙} and 0.64 ± 0.02 M{sub ⊙}, respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits.

  4. Convective-core Overshoot and Suppression of Oscillations: Constraints from Red Giants in NGC 6811

    Energy Technology Data Exchange (ETDEWEB)

    Arentoft, T.; Brogaard, K.; Jessen-Hansen, J.; Silva Aguirre, V.; Kjeldsen, H.; Mosumgaard, J. R. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Sandquist, E. L., E-mail: toar@phys.au.dk [San Diego State University, Department of Astronomy, San Diego, CA 92182 (United States)

    2017-04-01

    Using data from the NASA spacecraft Kepler , we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest Δ ν values display rich sets of mixed l = 1 modes, while this is not the case for the four stars with higher Δ ν . For the four stars with lowest Δ ν , we determine the asymptotic period spacing of the mixed modes, Δ P , which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ∼2 M {sub ⊙} stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.

  5. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.

    2017-01-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stella...

  6. Optical-NIR dust extinction towards Galactic O stars

    Science.gov (United States)

    Maíz Apellániz, J.; Barbá, R. H.

    2018-05-01

    Context. O stars are excellent tracers of the intervening ISM because of their high luminosity, blue intrinsic SED, and relatively featureless spectra. We are currently conducting the Galactic O-Star Spectroscopic Survey (GOSSS), which is generating a large sample of O stars with accurate spectral types within several kpc of the Sun. Aims: We aim to obtain a global picture of the properties of dust extinction in the solar neighborhood based on optical-NIR photometry of O stars with accurate spectral types. Methods: We have processed a carefully selected photometric set with the CHORIZOS code to measure the amount [E(4405 - 5495)] and type [R5495] of extinction towards 562 O-type stellar systems. We have tested three different families of extinction laws and analyzed our results with the help of additional archival data. Results: The Maíz Apellániz et al. (2014, A&A, 564, A63) family of extinction laws provides a better description of Galactic dust that either the Cardelli et al. (1989, ApJ, 345, 245) or Fitzpatrick (1999, PASP, 111, 63) families, so it should be preferentially used when analysing samples similar to the one in this paper. In many cases O stars and late-type stars experience similar amounts of extinction at similar distances but some O stars are located close to the molecular clouds left over from their births and have larger extinctions than the average for nearby late-type populations. In qualitative terms, O stars experience a more diverse extinction than late-type stars, as some are affected by the small-grain-size, low-R5495 effect of molecular clouds and others by the large-grain-size, high-R5495 effect of H II regions. Late-type stars experience a narrower range of grain sizes or R5495, as their extinction is predominantly caused by the average, diffuse ISM. We propose that the reason for the existence of large-grain-size, high-R5495 regions in the ISM in the form of H II regions and hot-gas bubbles is the selective destruction of small dust

  7. On the red giant titanium oxide bands

    Science.gov (United States)

    Hanni, L.; Sitska, J.

    1985-12-01

    The dependence of TiO absorption in cool oxygen-sequence giant stars on the Teff and log g of their atmospheres is investigated theoretically on the basis of spectra simulated using the computer program described by Hanni (1983) and the giant model atmospheres of Johnson et al. (1980). The temperature dependence of the intensity jumps at the head of the alpha(1.0) band is determined from simulated spectra, and the jumps are related to spectral types using the calibration of Ridgway et al. (1980). The results are presented in tables and graphs and shown to be in good agreement with the empirical Teff/intensity-jump correlation of Boyarchuk (1969).

  8. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  9. IRAS observations of chromospherically active dwarf stars

    Science.gov (United States)

    Tsikoudi, Vassiliki

    1989-01-01

    Far-infrared observations of chromospherically active, spotted, and plage stars in the dF7-dk7 spectral range are examined. Most (75 percent) of the stars have detectable 12-micron fluxes, and 50 percent of them have 25-micron emission. The 12-micron luminosity, L(12), is found to be in the range of 1.5-13 x 10 to the 30th ergs/s and to comprise only 0.2-0.5 percent of the star's total luminosity, L(bol). The present work extends to earlier spectral types and higher stellar luminosities the L(12) vs L(bol) relationship noted previously for late-type active dwarfs (K5-M5).

  10. IRAS observations of chromospherically active dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Tsikoudi, V. (Ioannina Univ. (Greece))

    1989-07-01

    Far-infrared observations of chromospherically active, spotted, and plage stars in the dF7-dk7 spectral range are examined. Most (75 percent) of the stars have detectable 12-micron fluxes, and 50 percent of them have 25-micron emission. The 12-micron luminosity, L(12), is found to be in the range of 1.5-13 x 10 to the 30th ergs/s and to comprise only 0.2-0.5 percent of the star's total luminosity, L(bol). The present work extends to earlier spectral types and higher stellar luminosities the L(12) vs L(bol) relationship noted previously for late-type active dwarfs (K5-M5). 17 refs.

  11. Symbiotic star H1-36

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed.

  12. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed

  13. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  14. Lipase polystyrene giant amphiphiles.

    Science.gov (United States)

    Velonia, Kelly; Rowan, Alan E; Nolte, Roeland J M

    2002-04-24

    A new type of giant amphiphilic molecule has been synthesized by covalently connecting a lipase enzyme headgroup to a maleimide-functionalized polystyrene tail (40 repeat units). The resulting biohybrid forms catalytic micellar rods in water.

  15. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  16. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    International Nuclear Information System (INIS)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Kniazev, A. Y.

    2014-01-01

    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R 25 ) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with the values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for the three

  17. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  18. Star formations rates in the Galaxy

    International Nuclear Information System (INIS)

    Smith, L.F.; Mezger, P.G.; Biermann, P.

    1978-01-01

    Data relevant to giant HII regions in the Galaxy are collected. The production rate for Lyman continuum photons by O stars in giant HII regions is 4.7 10 52 s -1 in the whole Galaxy. The corresponding present rate of star formation is M (sun)/yr, of which 74% occurs in main spiral arms, 13% in the interarm region and 13% in the galactic center. The star formation rates, the observed heavy element and deuterium abundances in the solar neighbourhood are compared to model predictions based on star formation proportional to a power (k) of the gas surface density. The mass function is terminated at Msub(u)=100 M (sun) above and M 1 below. Msub(u)=50 M (sun) is also considered. Comparing with data derived from observations a) the star formation rate, b) metal abundances, c) deuterium abundances, and d) colors of the stellar population, we find that models of k=1/2 to 1, and M 1 1 M (sun) are formed together with O and B stars, but under rather special conditions of the interstellar gas, while lower mass stars form wherever dense molecular clouds exist. The high rate of star formation in the galactic center may represent a burst. (orig.) [de

  19. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  20. The Wolf-Rayet stars in 30 Doradus

    International Nuclear Information System (INIS)

    Melnick, J.

    1982-01-01

    The second brightest giant HII region in the sky is the 30 Doradus nebula in the LMC. This cluster contains many WR stars and may be one of the best objects where general ideas about the origin and evolution of WR stars can be tested. The author briefly describes observations of WR stars in 30 Doradus and discusses the implications for Wolf-Rayet evolutionary theories. (Auth.)

  1. On hot and cool stars, spectroscopic investigations in the ultraviolet

    International Nuclear Information System (INIS)

    Hucht, K.A. van der.

    1978-01-01

    Measured ultraviolet stellar spectra are compared with theoretically synthesised spectra. Three A-type and some B-type stars have been observed. The expanding outer layers of cool giants and supergiants are dealt with. K-type and M-type stars are discussed. The problem of the continuous energy distribution of Wolf-Tayet stars derived from observations is considered. (C.F.)

  2. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  3. Conflicting evidence on the composition of Am stars

    International Nuclear Information System (INIS)

    't Veer, C. van

    1976-01-01

    The programme involves the study of Am stars of differing temperatures and luminosities as well as of the Am stars deviating from the positions of the classical ones in the photometric diagrams. For certain stars a significant disagreement between the so-called 'abundance indices' and the abundances determined at high dispersion is found. Often giants or spectroscopic binaries, or stars with a detectable rotation, are involved. However, there are no consistent relationships between these different peculiarities and the observed disagreements. Examples are given of stars studied. Are these 'abundance indices' really what they are supposed to be in all cases. In which cases are they not and why. (Auth.)

  4. Evolutionary effects of mass loss in low-mass stars

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    The effects of mass loss on the evolution of low-mass stars (actual mass smaller than 1.4 solar masses) are reviewed. The case of globular cluster stars is discussed in some detail, and it is shown that evolutionary theory sets quite precise limits to the mass-loss rate in population II red giants. The effects of mass loss on the final evolutionary stages of stars producing white dwarfs is also discussed. In particular, the interaction of the wind from the hot central star with the surrounding planetary nebula is considered. Finally, the problem of the origin of hydrogen-deficient stars is briefly discussed. (Auth.)

  5. FLUORINE ABUNDANCES OF GALACTIC LOW-METALLICITY GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. N.; Zhao, G. [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang, Beijing 100012 (China); Ludwig, H.-G.; Caffau, E.; Christlieb, N., E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn, E-mail: hludwig@lsw.uni-heidelberg.de, E-mail: ecaffau@lsw.uni-heidelberg.de, E-mail: N.Christlieb@lsw.uni-heidelberg.de [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany)

    2013-03-01

    With abundances and 2{sigma} upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 A using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) {nu}-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II {nu}-process with a neutrino energy of E {sub {nu}} = 3 Multiplication-Sign 10{sup 53} erg. Our sample contains HD 110281, a retrograde orbiting low-{alpha} halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.

  6. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  7. On the model of symbiotic stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungelson, L.R.

    1982-01-01

    The authors discuss conditions necessary for appearance and discovery of the symbiotic star phenomenon within the model of a binary consisting of a red (super)giant 3 solar masses not filling the Roche lobe and of an accreting hot degenerate CO-dwarf 0.8 solar masses. Within this model ''classical'' symbiotic stars may exist only within a narrow region of mass accretion rates and separations of components: 10 -7 approximately -7 solar masses/y and 3x10 13 approximately 14 cm. The evolutionary status of symbiotic stars and related objects and the mechanisms of their variability are discussed. (Auth.)

  8. Surface effects on the red giant branch

    Science.gov (United States)

    Ball, W. H.; Themeßl, N.; Hekker, S.

    2018-05-01

    Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.

  9. Stellar evolution IV: evolution of a star of 1.5 M(S) from the main-sequence to the red-giant branch with and without overshooting from convective core

    International Nuclear Information System (INIS)

    Maeder, A.

    1975-01-01

    For a star of 1.5 M(S) with an initial composition given by X=0.70 and Z=0.03, three sets of evolutionary models are computed with different assumptions on the non-local effects characterizing the turbulent motions in the convective core. Some overshooting from the convective core may occur during Main-sequence evolution. The changes in the stellar structure, lifetimes and evolutionary tracks brought about by this process are studied. Some characteristics of the evolutionary tracks in the theoretical HR diagram have a very high sensitivity to the exact extent of the convective core, and this may provide powerful tests of events occurring in the deep stellar interior. (orig./BJ) [de

  10. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  11. Polarimetry of symbiotic stars

    International Nuclear Information System (INIS)

    Piirola, V.

    1983-01-01

    Five symbiotic stars have been observed for linear polarization (UBVRI) in September 1981. Three systems, CH Cyg, CI Cyg and AG Peg show intrinsic polarization while in the case of Z And and AX Per the observed polarization seems to be mostly of interstellar origin. The position angle of polarization of CI Cyg and AG Peg rotates strongly vs. wavelength, as observed also for CH Cyg in 1977-80. The polarization of CH Cyg has decreased since May 1980, especially in the I, R and U bands, so that the maximum polarization is now in the blue (Psub(B) approx. 0.3%). Probably one is monitoring the formation, growth and disappearance of dust particles in the atmosphere of this star. Two related systems, PU Vul (Nova Vul 1979) and R Aql (Mira) have polarization behaviour rather similar to that of symbiotic stars which suggests that the M type giant present in these systems is responsible for most of the intrinsic polarization. (Auth.)

  12. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  13. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    Science.gov (United States)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser

  14. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars: II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc

    NARCIS (Netherlands)

    Bensby, T.; Feltzing, S.; Johnson, J.A.; Gould, A.; Adén, D.; Asplund, M.; Meléndez, J.; Gal-Yam, A.; Lucatello, S.; Sana, H.; Sumi, T.; Miyake, N.; Suzuki, D.; Han, C.; Bond, I.; Udalski, A.

    2010-01-01

    Context. The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurately trace the chemical evolution of a

  15. Capture of terrestrial-sized moons by gas giant planets.

    Science.gov (United States)

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  16. DETERMINING AGES OF APOGEE GIANTS WITH KNOWN DISTANCES

    Energy Technology Data Exchange (ETDEWEB)

    Feuillet, Diane K.; Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Bovy, Jo [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); MacDonald, Nick [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Nidever, David L., E-mail: feuilldk@nmsu.edu [Large Synoptic Survey Telescope, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2016-01-20

    We present a sample of 705 local giant stars observed using the New Mexico State University 1 m telescope with the Sloan Digital Sky Survey-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph, for which we estimate stellar ages and the local star formation history (SFH). The high-resolution (R ∼ 22,500), near infrared (1.51–1.7 μm) APOGEE spectra provide measurements of stellar atmospheric parameters (temperature, surface gravity, [M/H], and [α/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 30%. For giants, the relatively rapid evolution up the red giant branch allows the age to be constrained by the mass. We examine methods of estimating age using both the mass–age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant SFH. To improve the SFH prior, we use a hierarchical modeling approach to constrain the parameters of the model SFH using the age probability distribution functions of the data. The results of an α-dependent Gaussian SFH model show a clear age–[α/M] relation at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we determine ages for individual stars. The resulting age–metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ∼0.5 dex spread in metallicity across most ages. For stars with ages ≲1 Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.

  17. On the spatial distribution of the M spectral type stars

    International Nuclear Information System (INIS)

    Kevanishvili, G.T.

    1982-01-01

    The distribution of M stars with known radial velocities is studied on the base of the Wilson catalogue data. M stars have turned out to show a trend to clustering. The analysis of distances between these grouping stars as well as of their radial velocities, proper motions and other physical characteristics has allowed to keep 24 such groupings. Data concerning the grouping configurations and different physical characteristics of group stars are given. The stars belonging to one group are mostly giants. As a rule each grouping has one or two emission stars, but sometimes all the stars of a grouping are emission ones. It is possible that these groupings are the physical ones and the stars contained in them are of a common origin

  18. Charting the Giants

    Science.gov (United States)

    2004-06-01

    zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e

  19. The Chemistry of Extragalactic Carbon Stars

    Science.gov (United States)

    Woods, Paul; Walsh, C.; Cordiner, M. A.; Kemper, F.

    2013-01-01

    Prompted by the ongoing interest in Spitzer Infrared Spectrometer spectra of carbon stars in the Large Magellanic Cloud, we have investigated the circumstellar chemistry of carbon stars in low-metallicity environments. Consistent with observations, our models show that acetylene is particularly abundant in the inner regions of low metallicity carbon-rich asymptotic giant branch stars - more abundant than carbon monoxide. As a consequence, larger hydrocarbons have higher abundances at the metallicities of the Magellanic Clouds than in stars with solar metallicity. We also find that the oxygen and nitrogen chemistry is suppressed at lower metallicity, as expected. Finally, we calculate molecular line emission from carbon stars in the Large and Small Magellanic Cloud and find that several molecules should be readily detectable with the Atacama Large Millimeter Array at Full Science operations.

  20. Evidence of an Upper Bound on the Masses of Planets and Its Implications for Giant Planet Formation

    Science.gov (United States)

    Schlaufman, Kevin C.

    2018-01-01

    Celestial bodies with a mass of M≈ 10 {M}{Jup} have been found orbiting nearby stars. It is unknown whether these objects formed like gas-giant planets through core accretion or like stars through gravitational instability. I show that objects with M≲ 4 {M}{Jup} orbit metal-rich solar-type dwarf stars, a property associated with core accretion. Objects with M≳ 10 {M}{Jup} do not share this property. This transition is coincident with a minimum in the occurrence rate of such objects, suggesting that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 {M}{Jup}. Consequently, objects with M≳ 10 {M}{Jup} orbiting solar-type dwarf stars likely formed through gravitational instability and should not be thought of as planets. Theoretical models of giant planet formation in scaled minimum-mass solar nebula Shakura–Sunyaev disks with standard parameters tuned to produce giant planets predict a maximum mass nearly an order of magnitude larger. To prevent newly formed giant planets from growing larger than 10 {M}{Jup}, protoplanetary disks must therefore be significantly less viscous or of lower mass than typically assumed during the runaway gas accretion stage of giant planet formation. Either effect would act to slow the Type I/II migration of planetary embryos/giant planets and promote their survival. These inferences are insensitive to the host star mass, planet formation location, or characteristic disk dissipation time.

  1. SUBSTELLAR-MASS COMPANIONS TO THE K-GIANTS HD 240237, BD +48 738, AND HD 96127

    International Nuclear Information System (INIS)

    Gettel, S.; Wolszczan, A.; Niedzielski, A.; Nowak, G.; Adamów, M.; Zieliński, P.; Maciejewski, G.

    2012-01-01

    We present the discovery of substellar-mass companions to three giant stars by the ongoing Penn State-Toruń Planet Search conducted with the 9.2 m Hobby-Eberly Telescope. The most massive of the three stars, K2-giant HD 240237, has a 5.3 M J minimum mass companion orbiting the star at a 746 day period. The K0-giant BD +48 738 is orbited by a ≥0.91 M J planet which has a period of 393 days and shows a nonlinear, long-term radial velocity (RV) trend that indicates a presence of another, more distant companion, which may have a substellar mass or be a low-mass star. The K2-giant HD 96127 has a ≥4.0 M J mass companion in a 647 day orbit around the star. The two K2-giants exhibit a significant RV noise that complicates the detection of low-amplitude, periodic variations in the data. If the noise component of the observed RV variations is due to solar-type oscillations, we show, using all the published data for the substellar companions to giants, that its amplitude is anti-correlated with stellar metallicity.

  2. Giant Congenital Melanocytic Nevus

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Henriksen, Trine Foged; Kølle, Stig-Frederik Trojahn

    2015-01-01

    Giant congenital melanocytic nevi (GCMN) occur in 1:20,000 livebirths and are associated with increased risk of malignant transformation. The treatment of GCMN from 1981 to 2010 in a tertiary referral center was reviewed evaluating the modalities used, cosmetic results, associated complications...

  3. Waking the Sleeping Giant

    NARCIS (Netherlands)

    Ollenburger, Mary H.; Descheemaeker, Katrien; Crane, Todd A.; Sanogo, Ousmane M.; Giller, Ken E.

    2016-01-01

    The World Bank argued that West Africa's Guinea Savannah zone forms part of “Africa's Sleeping Giant,” where increases in agricultural production could be an engine of economic growth, through expansion of cultivated land in sparsely populated areas. The district of Bougouni, in southern Mali,

  4. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  5. from the Giant Panda

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... 1College of Life Science, China West Normal University, 44# Yuying Road, 637002, Nanchong, China. 2Zhan Jiang educational ... in Escherichia coli and the RPS28 protein fusioned with the N-terminally GST -tagged protein gave rise ... long Conservation Center of the Giant Panda, Sichuan, China. The.

  6. Giant scrotal elephantiasis.

    Science.gov (United States)

    Kuepper, Daniel

    2005-02-01

    How much can a man carry? Penoscrotal elephantiasis is a debilitating syndrome. This is a case report of a patient with giant genital elephantiasis secondary to long-standing lymphogranuloma venereum infection in Ethiopia. Complete surgical resection of the pathologic tissue and penile reconstruction was undertaken with good cosmetic and functional results.

  7. Giant vesical calculus

    African Journals Online (AJOL)

    Giant vesical calculus. A case report. H. H. LAUBSCHER. Summary. An exceptional case of bladder stone is presented. The case is unusual as regards the size of the stone and the fact that the patient did··not seek medical assistance much earlier, as this was readily avail- able. Furthermore, recovery after removal of the.

  8. Juvenile giant fibroadenoma

    Directory of Open Access Journals (Sweden)

    Vipul Yagnik

    2011-07-01

    Full Text Available Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice.

  9. Giant abdominal cystic lymphangioma

    International Nuclear Information System (INIS)

    Vazquez, V.; Florencio, I.; Boluda, F.

    1996-01-01

    We present a case of giant abdominal cystic lymphangioma in a 10-year-old boy. Despite numerous consultations with physicians to identify the underlying problem, it had originally been attributed to ascites of unknown cause. We review the characteristics of this lesion and the diagnostic features that aid in differentiating it from ascites

  10. Giant peritoneal loose bodies

    African Journals Online (AJOL)

    2015-03-27

    Mar 27, 2015 ... not be familiar with the entity, can potentially be confused with malignant or parasitic lesions. Familiarity with their characteristic computed tomographic ... preventing unnecessary surgical intervention in an asymptomatic patient.3,4 It is important to differentiate giant peritoneal loose bodies from lesions such ...

  11. HAZMAT. III. The UV Evolution of Mid- to Late-M Stars with GALEX

    Science.gov (United States)

    Schneider, Adam C.; Shkolnik, Evgenya L.

    2018-03-01

    Low-mass stars are currently the most promising targets for detecting and characterizing habitable planets in the solar neighborhood. However, the ultraviolet (UV) radiation emitted by such stars can erode and modify planetary atmospheres over time, drastically affecting their habitability. Thus, knowledge of the UV evolution of low-mass stars is critical for interpreting the evolutionary history of any orbiting planets. Shkolnik & Barman used photometry from the Galaxy Evolution Explorer (GALEX) to show how UV emission evolves for early-type M stars (>0.35 M ⊙). In this paper, we extend their work to include both a larger sample of low-mass stars with known ages as well as M stars with lower masses. We find clear evidence that mid- and late-type M stars (0.08–0.35 M ⊙) do not follow the same UV evolutionary trend as early-Ms. Lower-mass M stars retain high levels of UV activity up to field ages, with only a factor of 4 decrease on average in GALEX NUV and FUV flux density between young (flux density ratio, which can affect the photochemistry of important planetary biosignatures, is mass- and age-dependent for early-Ms, but remains relatively constant for the mid- and late-type Ms in our sample.

  12. PLANET ENGULFMENT BY ∼1.5-3 Msun RED GIANTS

    International Nuclear Information System (INIS)

    Kunitomo, M.; Ikoma, M.; Sato, B.; Ida, S.; Katsuta, Y.

    2011-01-01

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around ∼1.5-3 M sun stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (or the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M sun , which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M sun ), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses ∼> 2.5M sun , is required.

  13. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    International Nuclear Information System (INIS)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienaymé, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-01-01

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] 7 Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) 7 Be (which burns to 7 Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  14. Binary stars as sources of iron and of s-process isotopes

    International Nuclear Information System (INIS)

    Iben, Icko Jr.; Bologna Univ.; Sussex Univ., Brighton

    1986-01-01

    Sources of elements and isotopes in stars, during the development of stars, is examined. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. Intermediate mass stars in their asymptotic giant branch phase of evolution as sources of carbon, merging white dwarfs as sources of iron, and helium star cataclysmics as sources of s-process elements, are all discussed. (U.K.)

  15. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars

    OpenAIRE

    Bensby, T.; Johnson, J. A.; Cohen, J.; Feltzing, S.; Udalski, A.; Gould, A.; Huang, W.; Thompson, I.; Simmerer, J.; Adén, D.

    2009-01-01

    Aims. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. Contrary to the cool giant stars, with their extremely crowded spectra, the dwarf stars are hotter, their spe...

  16. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  17. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  18. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City, 362-763 (Korea, Republic of)

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  19. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  20. APOKASC 2.0: Asteroseismology and Spectroscopy for Cool Stars

    Science.gov (United States)

    Pinsonneault, Marc H.; Elsworth, Yvonne P.; APOKASC

    2017-01-01

    The APOGEE survey has obtained and analyzed high resolution H band spectra of more than 10,000 cool dwarfs and giants in the original Kepler fields. The APOKASC effort combines this data with asteroseismology and star spot studies, resulting in more than 7,000 stellar mass estimates for dwarfs and giants with high quality abundances, temperatures, and surface gravities. We highlight the main results from this effort so far, which include a tight correlation between surface abundances in giants and stellar mass, precise absolute gravity calibrations, and the discovery of unexpected stellar populations, such as young alpha-enhanced stars. We discuss grid modeling estimates for stellar masses and compare the absolute asteroseismic mass scale to calibrators in star clusters and the halo Directions for future efforts are discussed.

  1. Presence of mixed modes in red giants in binary systems

    Directory of Open Access Journals (Sweden)

    Themeßl Nathalie

    2017-01-01

    Full Text Available The frequencies of oscillation modes in stars contain valueable information about the stellar properties. In red giants the frequency spectrum also contains mixed modes, with both pressure (p and gravity (g as restoring force, which are key to understanding the physical conditions in the stellar core. We observe a high fraction of red giants in binary systems, for which g-dominated mixed modes are not pronounced. This trend leads us to investigate whether this is specific for binary systems or a more general feature. We do so by comparing the fraction of stars with only p-dominated mixed modes in binaries and in a larger set of stars from the APOKASC sample. We find only p-dominated mixed modes in about 50% of red giants in detached eclipsing binaries compared to about 4% in the large sample. This could indicate that this phenomenon is tightly related to binarity and that the binary fraction in the APOKASC sample is about 8%.

  2. A sample of potential disk hosting first ascent red giants

    Science.gov (United States)

    Steele, Amy; Debes, John

    2018-01-01

    Observations of (sub)giants with planets and disks provide the first set of proof that disks can survive the first stages of post-main-sequence evolution, even though the disks are expected to dissipate by this time. The infrared (IR) excesses present around a number of post-main-sequence (PMS) stars could be due to a traditional debris disk with planets (e.g. kappa CrB), some remnant of enhanced mass loss (e.g. the shell-like structure of R Sculptoris), and/or background contamination. We present a sample of potential disk hosting first ascent red giants. These stars all have infrared excesses at 22 microns, and possibly host circumstellar debris. We summarize the characteristics of the sample to better inform the incidence rates of thermally emitting material around giant stars. A thorough follow-up study of these candidates would serve as the first step in probing the composition of the dust in these systems that have left the main sequence, providing clues to the degree of disk processing that occurs beyond the main-sequence.

  3. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    Science.gov (United States)

    Nadège, Lagarde

    The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)

  4. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    International Nuclear Information System (INIS)

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo; Morrison, Heather L.; Harding, Paul; Beers, Timothy C.; Ivans, Inese I.; Jacobson, Heather R.; Johnson, Jennifer; Lee, Young Sun; Lucatello, Sara; Rockosi, Constance M.; Sobeck, Jennifer S.; Yanny, Brian; Zhao, Gang; Allende Prieto, Carlos

    2014-01-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r) 0 color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.

  5. Kuwano's peculiar object is a novalike (symbiotic) binary with a red giant. Discussion of observational results

    International Nuclear Information System (INIS)

    Belyakina, T.S.; Gershberg, R.E.; Efimov, Yu.S.; Krasnobabtsev, V.I.; Pavlenko, E.P.; Petrov, P.P.; Chuvaev, K.K.; Shenavrin, V.I.

    1982-01-01

    Photometric, polarimetric and spectral observations carried out at the Crimea permit to conclude that the Kuwano object is a binary system that consists of an M-giant and of a low-luminosity star. During the 1979 flare, the absolute magnitude of the weak component has increased up to about -6sup(m), the M-giant had apparently small variations as well. A distance to the object is estimated to be 5-7 kpc, and it is located certainly out of the galactic plane. Similarities between the Kuwano object and slow novae and symbiotic stars are noted [ru

  6. White dwarf stars with carbon atmospheres.

    Science.gov (United States)

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.

  7. Origin and evolutionary stage of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Tutukov, A V; Yungel' son, L R [AN SSSR, Moscow. Astronomicheskij Sovet

    1976-08-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter at the rate of 10/sup -5/-10/sup -6/ M/yr over the period of 10/sup 5/-10/sup 6/ years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the red giant stage,, and also of closer pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10/sup -6/-10/sup -9/ M/yr, and some consequencies of accretion on a C-O dwarf have been considered.

  8. Search for near-infrared counterparts of IRAS embedded sources in the M17 SW giant molecular cloud

    International Nuclear Information System (INIS)

    Elmegreen, D.M.; Phillips, J.; Beck, K.; Thomas, H.; Howard, J.

    1988-01-01

    Wide-field near-infrared and blue band plates of the region containing the M17 giant molecular cloud complex have been blinked to locate bright near-infrared stars that may be embedded in the M17 SW giant molecular cloud. Twenty such stars coincided with the positions of IRAS point sources that appeared embedded based on color-color diagrams. Some of these stars may be the sources of the infrared luminosities. Of the 20 stars, seven were too faint to appear on the B band plate. The optical magnitudes and colors determined from the plate image diameters were measured for the other 13 coincident stars; they are most likely upper main-sequence or pre-main-sequence stars with extinctions of 7 mag. The IRAS luminosity-temperature diagram indicates that the embedded sources in M17 are more massive than those in the Orion cloud. 35 references

  9. From red giants to planetary nebulae: Asymmetries, dust, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1990-01-01

    In order to investigate the development of aspherical planetary nebulae, polarimetry was obtained for a group of planetary nebulae and for objects that will evolve into planetary nebulae, i.e., red giants, late asymptotic giant branch (AGB) objects, proto-planetary nebulae, and young planetary nebulae. To study the dust around the objects in our sample, we also used data from the Infrared Astronomy Satellite (IRAS) mission. The youngest objects in our survey, red giants, had the hottest dust temperatures while planetary nebulae had the coolest. Most of the objects were intrinsically polarized, including the red giants. This indicated that the circumstellar dust shells of these objects were aspherical. Both carbon- and oxygen-rich objects could be intrinsically polarized. The intrinsic polarizations of a sample of our objects were modeled using an ellipsoidal circumstellar dust shell. The findings of this study suggest that the asphericities that lead to an aspherical planetary nebula originate when a red giant begins to undergo mass loss. The polarization and thus the asphericity as the star evolves, with both reaching a maximum during the proto-planetary nebula stage. The circumstellar dust shell will dissipate after the proto-planetary nebulae stage since no new material is being added. The polarization of planetary nebulae will thus be low. In the most evolved planetary nebulae, the dust has either been destroyed or dissipated into the interstellar medium. In these objects no polarization was observed

  10. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, G. C. [Cornell Center for Astrophysics and Planetary Science, Cornell Univ., Ithaca, NY 14853-6801 (United States); Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); McDonald, I.; Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, Univ. of Manchester, Manchester M13 9PL (United Kingdom); Groenewegen, M. A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, B-1180 Brussels (Belgium); Wood, P. R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Lagadec, E. [Observatoire de la Côte d’Azur, F-06300, Nice (France); Boyer, M. L. [CRESST and Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Kemper, F.; Srinivasan, S. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, R.O.C. (China); Matsuura, M. [School of Physics and Astronomy, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Van Loon, J. Th. [Lennard Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Volk, K., E-mail: sloan@isc.astro.cornell.edu [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2016-07-20

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C{sub 2}H{sub 2} at 7.5 μ m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.

  11. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    International Nuclear Information System (INIS)

    Sloan, G. C.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Lagadec, E.; Boyer, M. L.; Kemper, F.; Srinivasan, S.; Matsuura, M.; Sahai, R.; Sargent, B. A.; Van Loon, J. Th.; Volk, K.

    2016-01-01

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C 2 H 2 at 7.5 μ m. The relation between DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.

  12. Observations of Hα-emission stars in the young cluster NGC 2264

    International Nuclear Information System (INIS)

    Rydgren, A.E.

    1979-01-01

    UBVRI photometry is given for a sample of 25 late-type Hα-emission stars in the young cluster NGC 2264. The stars are in the magnitude range 12< or =V<16. Some but not all appear to be T Tauri stars. The color--color diagrams support the view that the deviations from normal photospheric colors (due to ''spectral veiling'' and line emission) decrease with increasing wavelength between the U and I filters. In the (V, V-R) diagram, the Hα-emission stars lie in a well-defined pre-main-sequence band. Within this sample, there is a trend toward stronger line emission and spectral veiling with later spectral type. All of the likely legitimate T Tauri stars have inferred spectral types later than about K3. The question of cluster membership for stars in the cluster field with very small proper motions is considered

  13. New candidates for carbon stars with silicate features

    Science.gov (United States)

    Chan, S. J.; Kwok, Sun

    1991-01-01

    All stars in the General Catalog of Cool Galactic Carbon Stars with IRAS 12-micron fluxes greater than 10 Jy were searched for Low-Resolution-Spectrometer (LRS) spectra in the IRAS LRS data base. Out of the 532 spectra examined, 11 were found to show the 9.7-micron silicate emission feature. Four of these are identified for the first time. This group of carbon stars may represent transition objects between oxygen-rich and carbon-rich stars on the asymptotic giant branch.

  14. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  15. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  16. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  17. Giant cystic craniopharyngiomas

    International Nuclear Information System (INIS)

    Young, S.C.; Zimmerman, R.A.; Nowell, M.A.; Bilaniuk, L.T.; Hackney, D.B.; Grossman, R.I.; Goldberg, H.I.

    1987-01-01

    Three cases of giant cystic craniopharyngiomas with large areas of extension beyond the suprasellar area are presented. The magnetic resonance (MR) appearance in one case is described. These giant tumors had large, multilobulated cysts that comprised the bulk of the tumors. In one case, there was an unusual extension of the large tumor cyst into the lateral ventricle. In two cases, the tumors extended to the level of the foramen magnum. On CT, the cyst contents of these two tumors were hyperdense and became hypodense postoperatively. All three tumors harbored calcifications in the form of clumps in the suprasellar region and rim calcifications around the cysts. None of the tumors exhibited contrast enhancement. A literature review of the radiographic features of craniopharyngiomas is discussed. (orig.)

  18. Giant duodenal ulcers

    Institute of Scientific and Technical Information of China (English)

    Eric Benjamin Newton; Mark R Versland; Thomas E Sepe

    2008-01-01

    Giant duodenal ulcers (GDUs) are a subset of duodenal ulcers that have historically resulted in greater morbidity than usual duodenal ulcers. Until recently,few cases had been successfully treated with medical therapy. However, the widespread use of endoscopy,the introduction of H-2 receptor blockers and proton pump inhibitors, and the improvement in surgical techniques all have revolutionized the diagnosis,treatment and outcome of this condition. Nevertheless,GDUs are still associated with high rates of morbidity,mortality and complications. Thus, surgical evaluation of a patient with a GDU should remain an integral part of patient care. These giant variants, while usually benign, can frequently harbor malignancy. A careful review of the literature highlights the important differences when comparing GDUs to classical peptic ulcers and why they must be thought of differently than their more common counterpart.

  19. Multispin giant magnons

    International Nuclear Information System (INIS)

    Bobev, N. P.; Rashkov, R. C.

    2006-01-01

    We investigate giant magnons from classical rotating strings in two different backgrounds. First we generalize the solution of Hofman and Maldacena and investigate new magnon excitations of a spin chain which are dual to a string on RxS 5 with two nonvanishing angular momenta. Allowing string dynamics along the third angle in the five sphere, we find a dispersion relation that reproduces the Hofman and Maldacena one and the one found by Dorey for the two spin case. In the second part of the paper we generalize the two 'spin' giant magnon to the case of β-deformed AdS 5 xS 5 background. We find agreement between the dispersion relation of the rotating string and the proposed dispersion relation of the magnon bound state on the spin chain

  20. MAGNESIUM ISOTOPE RATIOS IN ω CENTAURI RED GIANTS

    International Nuclear Information System (INIS)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-01-01

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R ∼ 100,000) and at Gemini-S with b-HROS (R ∼ 150,000) to determine magnesium isotope ratios for seven ω Cen red giants that cover a range in iron abundance from [Fe/H] = –1.78 to –0.78 dex, and for two red giants in M4 (NGC 6121). The ω Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both ω Cen and M4 show ( 25 Mg, 26 Mg)/ 24 Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the ω Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the 26 Mg/ 24 Mg ratio is highest at intermediate metallicities ([Fe/H] 26 Mg in the extreme population stars is notably higher than that of 25 Mg, in contrast to model predictions. The 25 Mg/ 24 Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  1. Giant Otters in Peru

    OpenAIRE

    Schenk C.; Staib E.

    1992-01-01

    We are in the second year of fieldwork surveying for Giant Otters in the southeastern rainforest of Peru, in three areas with differing levels of legal protection. While there is some illegal hunting still happening outside the protected areas, the main threat to the otters is badly-conducted tourism. Well-organised tourism can be a promising argument for establishing protected areas like national parks.

  2. Intraoral giant condyloma acuminatum

    Directory of Open Access Journals (Sweden)

    Gupta R

    2001-09-01

    Full Text Available A case of intraoral giant condyloma acuminatum is reported in a 50- year- old Indian. He did not respond to topical application of podophyllin 20% but responded partially to electric cauterisation. Surgical excision was done to get rid of the warty growh completely. Since there were no skin or genital lesions and no history of marital or extramarital sexual contact the lesion was probably acquired from environmental sources. Nonsexual transmission should be considered especially when the lesions are extragenital.

  3. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  4. Giant prolactinomas in women

    DEFF Research Database (Denmark)

    Delgrange, Etienne; Raverot, Gerald; Bex, Marie

    2014-01-01

    OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg/l and id......OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg....../l and identified 19 similar cases from the literature; a gender-based comparison of the frequency and age distribution was obtained from a literature review. RESULTS: The initial PubMed search using the term 'giant prolactinomas' identified 125 patients (13 women) responding to the inclusion criteria. The female......:male ratio was 1:9. Another six female patients were found by extending the literature search, while our own series added 15 patients. The median age at diagnosis was 44 years in women compared with 35 years in men (Pwomen (n=34), we...

  5. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  6. The Drifting Star

    Science.gov (United States)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  7. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  8. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  9. Comparative Modelling of the Spectra of Cool Giants

    Science.gov (United States)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  10. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  11. THE MASSIVE STAR POPULATION IN M101. I. THE IDENTIFICATION AND SPATIAL DISTRIBUTION OF THE VISUALLY LUMINOUS STARS

    International Nuclear Information System (INIS)

    Grammer, Skyler; Humphreys, Roberta M.

    2013-01-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face-on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars. In this paper, we present BVI photometry obtained from archival HST/ACS Wide Field Camera images of M101. We have produced a catalog of luminous stars with photometric errors <10% for V < 24.5 and 50% completeness down to V ∼ 26.5 even in regions of high stellar crowding. Using color and luminosity criteria, we have identified candidate luminous OB-type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent of M101 corresponding to 0.5 dex in metallicity. We discuss the resolved stellar content in the giant star-forming complexes NGC 5458, 5453, 5461, 5451, 5462, and 5449 and discuss their color-magnitude diagrams in conjunction with the spatial distribution of the stars to determine their spatio-temporal formation histories

  12. The magnetic fields at the surface of active single G-K giants

    Science.gov (United States)

    Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.

    2015-02-01

    Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro

  13. Planets, stars and stellar systems

    CERN Document Server

    Bond, Howard; McLean, Ian; Barstow, Martin; Gilmore, Gerard; Keel, William; French, Linda

    2013-01-01

    This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in...

  14. The collective radio properties of symbiotic stars

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Taylor, A.R.

    1990-01-01

    Radio measurements of symbiotic stars are reported which extend the search for radio emission and provide multifrequency and multiepoch measurements of previously detected stars. The results show no evidence that there are time variations in excess of about 30 percent over a period of several years in the detected stars. The radio flux densities are correlated with brightness in the IR, especially at the longer IR wavelengths where dust emission dominates. It is confirmed that symbiotics with the latest red giant spectral types are the most luminous radio emitters. The D-types are the most radio-luminous. Virtually all detected stars with measurements at more than one frequency exhibit a positive spectral index, consistent with optically thick thermal bremsstrahlung. The binary separation for a number of radio-emitting symbiotics is estimated, and it is found that the distribution of inferred binary separations is dramatically different for IR D-types than for S-types. 37 refs

  15. HM Sagittae - a most remarkable star

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The author summarises recent observations of HM Sagittae, a symbiotic star that displays activity in every spectral band from X-ray to radio. He concludes that it is best described as a binary system consisting of a late M giant and a hot compact object which is similar to central stars of planetary nebulae. The presence of a wind from the M giant implies that Roche-lobe overflow is not a necessary condition for mass transfer. The complex structure of the circumstellar nebula is possibly the result of wind interactions. The ongoing spectral evolution of HM Sge after its recent outburst makes it an ideal candidate to test models of the symbiotic phenomenon. (Auth.)

  16. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Ida, Shigeru

    2013-01-01

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r ∼> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems

  17. Search for giant planets in M 67. IV. Survey results

    Science.gov (United States)

    Brucalassi, A.; Koppenhoefer, J.; Saglia, R.; Pasquini, L.; Ruiz, M. T.; Bonifacio, P.; Bedin, L. R.; Libralato, M.; Biazzo, K.; Melo, C.; Lovis, C.; Randich, S.

    2017-07-01

    Context. We present the results of a seven-year-long radial velocity survey of a sample of 88 main-sequence and evolved stars to reveal signatures of Jupiter-mass planets in the solar-age and solar-metallicity open cluster M 67. Aims: We aim at studying the frequency of giant planets in this cluster with respect to the field stars. In addition, our sample is also ideal to perform a long-term study to compare the chemical composition of stars with and without giant planets in detail. Methods: We analyzed precise radial velocity (RV) measurements obtained with the HARPS spectrograph at the European Southern Observatory (La Silla), the SOPHIE spectrograph at the Observatoire de Haute-Provence (France), the HRS spectrograph at the Hobby Eberly Telescope (Texas), and the HARPS-N spectrograph at the Telescopio Nazionale Galileo (La Palma). Additional RV data come from the CORALIE spectrograph at the Euler Swiss Telescope (La Silla). We conducted Monte Carlo simulations to estimate the occurrence rate of giant planets in our radial velocity survey. We considered orbital periods between 1.0 day and 1000 days and planet masses between 0.2 MJ and 10.0 MJ. We used a measure of the observational detection efficiency to determine the frequency of planets for each star. Results: All the planets previously announced in this RV campaign with their properties are summarized here: 3 hot Jupiters around the main-sequence stars YBP1194, YBP1514, and YBP401, and 1 giant planet around the evolved star S364. Two additional planet candidates around the stars YBP778 and S978 are also analyzed in the present work. We discuss stars that exhibit large RV variability or trends individually. For 2 additional stars, long-term trends are compatible with new binary candidates or substellar objects, which increases the total number of binary candidates detected in our campaign to 14. Based on the Doppler-detected planets discovered in this survey, we find an occurrence of giant planets of 18

  18. Red giants and yellow stragglers in the young open cluster NGC 2447

    Science.gov (United States)

    da Silveira, M. D.; Pereira, C. B.; Drake, N. A.

    2018-06-01

    In this work we analysed, using high-resolution spectroscopy, a sample of 12 single and 4 spectroscopic binary stars of the open cluster NGC 2447. For the single stars, we obtained atmospheric parameters and chemical abundances of Li, C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, Nd, Eu. Rotational velocities were obtained for all the stars. The abundances of the light elements and Eu and the rotational velocities were derived using spectral synthesis technique. We obtained a mean metallicity of [Fe/H] = -0.17 ± 0.05. We found that the abundances of all elements are similar to field giants and/or giants of open clusters, even for the s-process elements, which are enhanced as in other young open clusters. We show that the spectroscopic binaries NGC 2447-26, 38, and 42 are yellow-straggler stars, of which the primary is a giant star and the secondary a main-sequence A-type star.

  19. Winds of AGB stars: does size matter?

    International Nuclear Information System (INIS)

    Hoefner, S

    2008-01-01

    Asymptotic giant branch (AGB) stars are showing clear signs of significant mass loss through cool stellar winds. These outflows are attributed to the combined effects of pulsation-induced shocks and radiation pressure on dust grains formed in the outer atmospheric layers. This paper gives an overview of the current status of radiation-hydrodynamical modelling of these processes, and presents a toy model that allows analysis of certain features of detailed models, such as the influence of grain size dependent opacities and basic differences in winds of C- and M-type AGB stars.

  20. X-ray observations of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1981-11-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone.

  1. X-ray observations of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1981-01-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone. (author)

  2. Gradients in giant branch morphology in the core of 47 Tucanae

    Science.gov (United States)

    Bailyn, Charles D.

    1994-01-01

    I describe an algorithm which uses the high spatial resolution of the Hubble Space Telescope to complement the high spatial-to-noise, approximately symmetric point response function, relatively large spatial coverage, and standard filters available from ground based images of crowded fields. Applying this technique to the central regions of the globular cluster 47 Tucanae, I find that the morphology of the giant branch in the core is significantly different from that in more distant regions (r approximately equals 5 to 10 core radii) of the cluster. In particular, there appear to be fewer bright giants in the core, along with an enhanced `asymptotic giant branch' (AGB) sequence. Depletion of giants has been observed in the cores of other dense clusters, and may be due to `stripping' of large stars by stellar encounters and/or mass transfer in binary systems. Central concentrations of true asymptotic giant branch stars are not expected to result from dynamical processes; possibly some of these stars may be evolved blue stragglers.

  3. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  4. Fluorine Abundances in AGB Carbon Stars: New Results?

    Science.gov (United States)

    Abia, C.; de Laverny, P.; Recio-Blanco, A.; Domínguez, I.; Cristallo, S.; Straniero, O.

    2009-09-01

    A recent reanalysis of the fluorine abundance in three Galactic Asymptotic Giant Branch (AGB) carbon stars (TX Psc, AQ Sgr and R Scl) by Abia et al. (2009) results in estimates of fluorine abundances systematically lower by ~0.8 dex on average, with respect to the sole previous estimates by Jorissen, Smith & Lambert (1992). The new F abundances are in better agreement with the predictions of full-network stellar models of low-mass (<3 Msolar) AGB stars.

  5. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  6. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  7. Isoscalar giant resonances

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  8. STARS no star on Kauai

    International Nuclear Information System (INIS)

    Jones, M.

    1993-01-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem

  9. Giant Ulcerative Dermatofibroma

    Directory of Open Access Journals (Sweden)

    Turgut Karlidag

    2013-01-01

    Full Text Available Dermatofibroma is a slowly growing common benign cutaneous tumor characterized by hard papules and nodules. The rarely seen erosions and ulcerations may cause difficulties in the diagnosis. Dermatofibrosarcoma protuberans, which is clinically and histopathologically of malignant character, displays difficulties in the diagnosis since it has similarities with basal cell carcinoma, epidermoid carcinoma, and sarcomas. Head and neck involvement is very rare. In this study, a giant dermatofibroma case, which is histopathologically, ulcerative dermatofibroma, the biggest lesion of the head and neck region and seen rarely in the literature that has characteristics similar to dermatofibrosarcoma protuberans, has been presented.

  10. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  11. A Giant Urethral Calculus.

    Science.gov (United States)

    Sigdel, G; Agarwal, A; Keshaw, B W

    2014-01-01

    Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.

  12. Giant paraganglioma in

    Directory of Open Access Journals (Sweden)

    Alka Gupta

    2017-07-01

    Full Text Available Paraganglioma is a rare neuroendocrine catecholamine producing tumour in childhood which arises outside the adrenal medulla. We present a 12 year old girl with giant paraganglioma with severe hypertension and end organ damage. Diagnosis was confirmed with 24 h urinary Vanillymandelic Acid (VMA and CT scan. Preoperative blood pressure was controlled with intravenous nitroprusside, and oral prazosin, amlodepine, labetalol and metoprolol. General anaesthesia with epidural analgesia was given. Intra operative blood pressure rise was managed with infusion of nitriglycerine (NTG, esmolol, nitroprusside and propofol.

  13. GIANT INTRACANALICULAR FIBROADENOMA

    Science.gov (United States)

    Smith, Clyn; Parsons, Robert J.; Bogart, William M.

    1951-01-01

    Five cases of giant intracanalicular fibroadenoma (“cystosarcoma phylloides”) were observed at one hospital in a period of three years. In a search of the literature, additional reports of breast tumors of this kind, not included in previous reviews, were noted. As there is record of 229 cases, it would appear that this rapidly growing benign tumor should be kept in mind in the diagnosis of masses in the breast. If removal is incomplete, there may be recurrence. Simple mastectomy is the treatment of choice. Radical mastectomy should be avoided. ImagesFigure 1Figure 2.Figure 3Figure 4Figure 5 PMID:14848732

  14. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  15. A Hard X-Ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    DEFF Research Database (Denmark)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.

    2016-01-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E > 10 keV) X-ray emission of this galaxy. The nuclear region and similar to 20 off-nuclear point sources......, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most...

  16. Properties of minimum-flux coronae in dwarfs and giants

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    Using a method due to Hearn, we examine the properties of minimum-flux coronae in dwarfs and giants. If the fraction phi of the total stellar luminosity which is used to heat the corona is equal to the solar value phi/sub s/, then red dwarfs must have coronae that are cooler than the solar corona: in UV Ceti, for example, the coronal temperature is a factor 3 less than in the Sun. This is consistent with an independent estimate of coronal temperature in a flare star. If phi=phi/sub s/, main-sequence stars hotter than the Sun have coronae which are hotter than the solar corona. Soft X-rays from Sirius suggest that the coronal temperature in Sirius is indeed hotter than the Sun by a factor of about 40 percent. Giants show an even more marked decrease in coronal temperature at later spectral type than do the dwarfs. We suggest that the reason for the presence of O V emission in β Gem and O VI emission in α Aur, and the absence of O V emission in α Boo and α Tau, is that the coronae in the latter two stars are cooler (rather than hotter, as McClintock et al. have suggested) than in the former two. Our results explain why it is more likely that mass loss has been detected in α Aur and α Boo, but not in α Tau or β Gem. Using a simple flare model, we show that flares in both a dwarf star (UV Ceti) and a giant (α Aur) were initiated not in the corona, but in the transition region

  17. An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle

    NARCIS (Netherlands)

    Waters, LBFM; Waelkens, C; van Winckel, H; Molster, FJ; Tielens, AGGM; van Loon, JT; Morris, PW; Cami, J; Bouwman, J; de Koter, A; de Jong, T; de Graauw, T

    1998-01-01

    The Red Rectangle(1) is the prototype of a class of carbon-rich reflection nebulae surrounding low-mass stars in the final stages of evolution. The central star of this nebula has ejected most of its layers (during the red-giant phase), which now form the surrounding cloud, and is rapidly evolving

  18. IUE observations of the symbiotic star CH Cygni during an active phase

    International Nuclear Information System (INIS)

    Hack, M.

    1979-01-01

    The observations of CH Cygni reported here were made to determine whether a symbiotic star is a binary system composed of an M6 giant and a hot subdwarf, or whether it is a cooled star surrounded by a thick corona. (author)

  19. IUE observations of the symbiotic star CH Cygni during an active phase

    Energy Technology Data Exchange (ETDEWEB)

    Hack, M [Astronomical Observatory, Trieste (Italy)

    1979-05-24

    The observations of CH Cygni reported here were made to determine whether a symbiotic star is a binary system composed of an M6 giant and a hot subdwarf, or whether it is a cooled star surrounded by a thick corona.

  20. CHEMICAL AND KINEMATICAL PROPERTIES OF BLUE STRAGGLER STARS AND HORIZONTAL BRANCH STARS IN NGC 6397

    International Nuclear Information System (INIS)

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Contreras Ramos, R.; Gratton, R.

    2012-01-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i –1 ), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ∼70 km s –1 . For HB stars with T 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = –2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.