WorldWideScience

Sample records for late radiation damage

  1. Consequential late radiation damage in the skin in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Li Wei; Kong Ling; Zhang Youwang; Hu Chaosu; Wu Yongru

    2008-01-01

    Objective: To evaluate the relationship between early and late radiation damage in skin. Methods: 335 patients with nasopharyngeal carcinoma treated with radical radiotherapy were evaluated. 240 patients had lymph nodes in the neck at initial diagnosis. The median doses were 70 Gy (55-86 Gy) to the nasopharyngeal region by external beam radiotherapy. The median doses were 64 Gy (46-72 Gy) to the neck with lymph node metastases, 55 Gy (21-67 Gy) to the node-negative neck. 71 patients were treated with facial-neck fields, while 264 patients were treated with pre-auricular fields. Chemotherapy was given in 48 patients. According to the 1995 SOMA scales late radiation damage in the skin was evaluated. Results: The median time from the radiotherapy to follow up was 14 years (range, 5-38 years). 63 patients have grade 0 late radiation reactions in the neck skin, the grade 1,2, 3,4 late radiation reactions in the neck skin were 43.9% (147 patients), 20.9% (70 patients), 13.7% (46 patients) and 2.7% (9 patients), respectively. 44 patients had moist desquamation in the medical records. The grade 1,2,3,4 late radiation reactions in the neck skin were 41%, 23%, 30% and 5%, respectively in patients with moist desquamation, while in patients without moist desquamation, the corresponding rates were 44.3%, 20.6%, 11.3% and 2.4%, respectively. The difference were significant between these two groups by chi-square analysis(χ 2 =17.42, P=0.002). Furthermore, whether patients had positive lymph node in the neck or not, the size of facial-neck fields and higher doses to the neck had more severe late radiation reaction in the neck skin, while age, gender and chemotherapy failed to show any effects on the development of late radiation reactions in the neck skin. Conclusion: The severe early radiation damage in the skin possibly increases the late radiation damage in the neck skin. (authors)

  2. Late effects of radiation therapy on the gastrointestinal tract

    International Nuclear Information System (INIS)

    Coia, Lawrence R.; Myerson, Robert J.; Tepper, Joel E.

    1995-01-01

    Late gastrointestinal complications of radiation therapy have been recognized but not extensively studied. In this paper, the late effects of radiation on three gastrointestinal sites, the esophagus, the stomach, and the bowel, are described. Esophageal dysmotility and benign stricture following esophageal irradiation are predominantly a result of damage to the esophageal wall, although mucosal ulcerations also may persist following high-dose radiation. The major late morbidity following gastric irradiation is gastric ulceration caused by mucosal destruction. Late radiation injury to the bowel, which may result in bleeding, frequency, fistula formation, and, particularly in small bowel, obstruction, is caused by damage to the entire thickness of the bowel wall, and predisposing factors have been identified. For each site a description of the pathogenesis, clinical findings, and present management is offered. Simple and reproducible endpoint scales for late toxicity measurement were developed and are presented for each of the three gastrointestinal organs. Factors important in analyzing late complications and future considerations in evaluation and management of radiation-related gastrointestinal injury are discussed

  3. Amelioration of both early and late radiation-induced damage to pig skin by essential fatty acids

    International Nuclear Information System (INIS)

    Hopewell, J.W.; Van den Aardweg, G.J.M.J.; Morris, G.M.

    1994-01-01

    To evaluate the possible role of essential fatty acids, specifically gamma-linolenic and eicosapentaenoic acid, in the amelioration of early and late radiation damage to the skin. Skin sites on the flank of 22-25 kg female large white pigs were irradiated with either single or fractionated doses (20 F/28 days) of β-rays from 22.5 mm diameter 90 Sr/ 90 Y plaques at a dose rate of ∼3 Gy/min. Essential fatty acids were administered orally in the form of two open-quotes activeclose quotes oils, So-1100 and So-5407, which contained gamma-linolenic acid and a mixture of that oil with eicosapentaenoic acid, respectively. Oils (1.5-6.0 ml) were given daily for 4 weeks prior, both 4 weeks prior and 10-16 weeks after, or in the case of one single dose study, just for 10 weeks after irradiation. Control animals received a open-quotes placeboclose quotes oil, So-1129, containing no gamma linolenic acid or eicosapentaenoic acid over similar time scales before and after irradiation. Acute and late skin reactions were assessed visually and the dose-related incidence of a specific reaction used to compare the effects of different treatment schedules. A reduction in the severity of both the early and late radiation reactions in the skin was only observed when open-quotes activeclose quotes oils were given over the time course of the expression of radiation damage. Prior treatment with oils did not modify the radiation reaction. A 3.0 ml daily dose of either So-1100 or So-5407 given prior to, but also after irradiation with single and fractionated doses of β-rays produced the most significant modification to the radiation reactions, effects consistent with dose modification factors between 1.06-1.24 for the acute reactions of bright red erythema and/or moist desquamation, and of 1.14-1.35 for the late reactions of dusky/mauve erythema and dermal necrosis. 38 refs., 5 tabs

  4. Gene and protein expression of epidermal growth factor measured on the kidney 24 hours after irradiation correlates to late radiation damage

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Hatakenaka, Masamitsu

    2001-01-01

    This study was designed to evaluate the proliferative response of epidermal growth factor (EGF) gene expression as an early indicator of late renal radiation damage. EGF gene expression was measured in the irradiated left kidney of C3H/HeSlc mice using RT-PCR 24 hours after radiation doses of 9, 12, or 15 Gy. In a second experiment, the same radiation doses were administered to the right kidney plus the lower half of the left kidney. The partly irradiated left kidneys were harvested and EGF gene expression was measured. The irradiated whole right kidneys were subjected to immunohistochemical staining for EGF protein. In a third experiment, 12 Gy was administered to the right kidney plus the lower half of the left kidney. The mice underwent left nephrectomy 24 hours after radiation, and the EGF gene expression in the kidney was correlated with the blood urea nitrogen (BUN) level representing late renal functional damage. EGF expression increased in 1 of 10 control mice and in 9 of 10 mice that received 15 Gy. The extent of increase of EGF was dependent on radiation dose. In mice having an increased BUN level after irradiation, 7 of 10 had EGF positive irradiated kidneys. All six mice whose BUN levels were unchanged had EGF-negative irradiated kidneys. EGF protein staining was observed in tubule cells only, not in glomerular cells. The amount of EGF protein staining correlated with radiation dose to some extent. EGF gene expression seems to be a very early indicator of late radiation damage to the kidney. (author)

  5. Radioprotection by WR-151327 against the late normal tissue damage in mouse hind legs from gamma ray radiation

    International Nuclear Information System (INIS)

    Matsushita, Satoru; Ando, Koichi; Koike, Sachiko

    1994-01-01

    To evaluate the protective effect of WR-151327 on late radiation-induced damaged to normal tissues in mice, the right hind legs of mice with or without WR-151327 administration (400 mg/kg) were irradiated with 137 Cs gamma rays. Leg contracture and skin shrinkage assays were performed at 380 days after irradiation. The mice were killed on day 400 postirradiation and histological sections of the legs were made. The thickness of the dermis, epidermis, and skin (dermis plus epidermis) was measured. The muscular area of the legs and the posterior knee angle between the femur and tibia were also measured. The left hind legs were similarly assessed as nonirradiated controls. Group means and standard deviations were calculated and dose-response curves were drawn for every endpoint. Then, the dose modifying factor (DMF) for each endpoint and the correlations among endpoints were determined. Latae damage assayed by leg contracture and skin shrinkage progressed with increasing radiation dose. However, it was reduced by drug treatment. The significant effect was indicated for skin shrinkage by a DMF of 1.8 at 35%. The DMF for leg contracture was 1.3 at 6 mm. In the irradiated legs, epidermal hyperplasia and dermal fibrosis in the skin, muscular atrophy, and extension disturbance of the knee joint were observed. These changes progressed with increasing radiation dose. Skin damage assayed by the present endpoints was also reduced by drug treatment by DMFs of 1.4 to 1.7. However, DMFs for damage to the muscle and knee were not determined because no isoeffect was observed. There were good correlations between leg contracture or skin shrinkage and the other endpoints in both untreated and drug-treated mice. WR-151327 has the potential to protect against radiation-induced late normal tissue damage. 17 refs., 6 figs., 2 tabs

  6. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma.

    Science.gov (United States)

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-09-19

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased ( P histogram parameters increased (all P histogram parameters. Early mean change rates for bilateral parotid SD and ADC max could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 ( P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy.

  7. Late radiation effects in animals surviving lethal irradiation

    International Nuclear Information System (INIS)

    Dimitrov, L.A.

    1974-01-01

    Animals (rats, mice, dogs) survived lethal irradiation by means of prophylactic-therapeutic treatments or previously irradiated, were studied for late radiation effects: life span, cachexia and fat growing of hypophysical type, tissue or organ hypoplasia manifested by disturbed hemopoiesis, suppressed function of adrenal gland, etc., suppressed immune reactivity of the irradiated organism, atypical biochemical changes in DNA and protein metabolism, epilation, chronic dermatitis, ulcerations, reduced reproductivity or full sterility, damage of kidneys leading to nephrosclerosis, dishormonal states, cataracts, diffuse sclerotic processes, various kinds of malignant and non-malignant tumors. In these cases hemopoiesis compensated for a definite time peripheral blood composition, but during the late period it showed features of incompleteness: shorter life survival of erythrocytes and thrombocytes manifested by a decreased binding of labelled methionine in these blood elements, anemia and relative thrombocytopenia sometimes with an increased number of polychromatic erythrocytes in peripheral blood and a decreased number of reticulocytes at the same time; lymphopenia and relative leucopenia with an increased number of hypersegmented neutrophils. Decreased reproductivity and atypical biochemical changes available in the first generation of the irradiated animals showed the probable role of mutagenic factors in the emergence of some late radiation effects. A significant part of late radiation sequences were due to neuro-endocrine desintegrations which lead to a disturbed supply of the vessels and afterwards to their sclerosis. Some of the described late radiation effects were also observed in biological controls as festures of ageing while in irradiated animals they were manifested in an earlier period. After application of optimal amounts radioprotectors (AET, cysteamine, serotonin) a more marked protective effect is demonstrated in the early reactions (time survival

  8. Late radiation damage to the rat femur and the NSD formula

    International Nuclear Information System (INIS)

    Pitkaenen, M.A.; Hietanen, T.

    1984-01-01

    The extraction of 86 Rb chloride, the red blood cell volume and the mineral content in the rat femur have been studied 7 months after local X-irradiation. Doses were given as 3, 6 and 9 fractions over three weeks. The total doses used were based on NSD value of 1450 and 1900 on the basis of the results from our previous single dose irradiation studies. The reduction in the extraction of 86 Rb chloride was statistically significant for all fractionation schemes and at both NSD levels. In the whole femur, with bone marrow, the extraction was reduced by 33% to 46%. In the hard bone the reduction was less only 18% to 38%. There was no significant difference between the fractionation schemes used at each NSD level. The red blood cell volume was significantly reduced in the whole femur, with bone marrow, with no difference between the fractionation schemes. However, there was no change in the hard bone. The dry bone weight was reduced by 3 to 6% with no significant difference between the different fractionation schemes. The dose levels predicted by the NSD formula produced approximately the same damage to the rat femur 7 months after the irradiation when the dry weight and the extraction of 86 Rb chloride were used as end points for the evaluation of the severity of late radiation damage. (orig.) [de

  9. Inflammatory markers of radiation-induced late effects

    International Nuclear Information System (INIS)

    Dubner, D.; Gallegos, C.; Michelin, S.; Portas, M.

    2011-01-01

    Up to now there is no established parameters for the follow-up of delayed radiation injuries. Late toxicity is generally irreversible and can have devastating effects on quality of life of people exposed either accidentally or during therapeutic radiation treatments. Histologically, late manifestations of radiation damage include fibrosis, necrosis, atrophy and vascular lesions. Although many etiologies have been suggested regarding these late toxicities, persistent inflammation has been described as playing a key role. The recruitment of leukocytes from circulating blood is decisive in the inflammatory reaction. All the steps in the recruitment cascade are orchestrated by cell-adhesion molecules (CAMs) on both leukocytes and endothelial cells, and different subsets of CAMs are responsible for different steps in extravasation. A link between radiation –induced inflammatory processes and alterations in T-cell immunity are still demonstrable in the blood of A-bomb survivors. The following study was conducted to examine the response of the immune system in the inflammatory reactions in patients with late skin injuries after radiotherapy or interventional fluoroscopy procedures. The expression of adhesion molecules ICAM1 and β1-integrin on granulocytes and lymphocytes, as well as changes in subpopulations of T lymphocytes and the level of C-reactive protein, a well- studied inflammatory marker were evaluated. (authors)

  10. Multidisciplinary approach to radiation late effects in the brain circulatory system: First results

    International Nuclear Information System (INIS)

    Keyeux, A.J.M.; Reinhold, H.S.; Gerber, G.B.; Maisin, J.R.; Reyners, H.; Gianfelici de Reyners, E.; Calvo, W.

    1976-01-01

    Although acute vascular damage and the early functional impairment of the central nervous system has been studied relatively frequently, the pathophysiological mechanisms of late radiation effects and their relevance to vascular damage, are less well investigated and are poorly understood. As the possibility of later radiation damage is a factor which limits the therapist in the radiation dose, he can give to effect a local tumour cure, it is essential that the mechanisms and importance of vascular irradiation damage be determined before late effects can either be treated or avoided. In view of the inconclusive results obtained by previous authors, it was felt that a multidisciplinary approach might better be suited to solve this problem. Thus, in 1973 a research project was initiated by EULEP to investigate the origins and consequences of radiation induced vascular changes after local irradiation of the brain. In this preliminary report, data on morphological, circulatory and biochemical parameters are presented and discussed. (GC)

  11. Surgical intervention for complications caused by late radiation damage of the small bowel; a retrospective analysis

    International Nuclear Information System (INIS)

    Halteren, H.K. van; Gortzak, E.; Taal, B.G.; Helmerhorst, Th.J.M.; Aleman, B.M.P.; Hart, A.A.M.; Zoetmulder, F.A.N.

    1993-01-01

    The authors studied the records of 46 patients who had been operated on between 1974 and 1990 in the Netherlands Cancer Institute because of complications due to late radiation damage of the small bowel. The following factors led to an increase in complication-risk: hypalbuminemia. more than one laparotomy prior to irradiation and a short interval (< 12 months) between irradiation and surgical intervention. The following factors related to a poorer survival: incomplete resection of the primary tumor and a short interval (< 12 months) between irradiation and surgical intervention. The type f surgical intervention did not have cumulative prognostic value in relation to complication-risk or survival. (author)

  12. Current study on ionizing radiation-induced mitochondial DNA damage and mutations

    International Nuclear Information System (INIS)

    Zhou Xin; Wang Zhenhua; Zhang Hong

    2012-01-01

    Current advance in ionizing radiation-induced mitochondrial DNA damage and mutations is reviewed, in addition with the essential differences between mtDNA and nDNA damage and mutations. To extent the knowledge about radiation induced mitochondrial alterations, the researchers in Institute of Modern Physics, Chinese Academy of Sciences developed some technics such as real-time PCR, long-PCR for accurate quantification of radiation induced damage and mutations, and in-depth investigation about the functional changes of mitochondria based on mtDNA damage and mutations were also carried out. In conclusion, the important role of mitochondrial study in radiation biology is underlined, and further study on mitochondrial study associated with late effect and metabolism changes in radiation biology is pointed out. (authors)

  13. Late effects of radiation on the spinal cord

    International Nuclear Information System (INIS)

    Kogel, A.J. van der.

    1979-01-01

    The author describes experiments concerned with the mechanisms of the development of late radiation damage in the spinal cord. Male rats were used in most of the experiments. The effects of 300 kV X-rays or 15 MeV neutrons were evaluated for different regions of the spinal cord. (Auth.)

  14. The role of radiation damage analysis in the fusion program

    International Nuclear Information System (INIS)

    Doran, D.G.

    1983-01-01

    The objective of radiation damage analysis is the prediction of the performance of facility components exposed to a radiation environment. The US Magnetic Fusion Energy materials program includes an explicit damage analysis activity within the Damage Analysis and Fundamental Studies (DAFS) Program. Many of the papers in these Proceedings report work done directly or indirectly in support of the DAFS program. The emphasis of this program is on developing procedures, based on an understanding of damage mechanisms, for applying data obtained in diverse radiation environments to the prediction of component behavior in fusion devices. It is assumed that the Fusion Materials Irradiation Test Facility will be available in the late 1980s to test (and calibrate where necessary) correlation procedures to the high fluences expected in commercial reactors. (orig.)

  15. Radiation damage in non-metals

    International Nuclear Information System (INIS)

    Stoneham, A.M.

    1980-01-01

    Work on the problem of radiation damage in non-metals over the past 25 years is reviewed with especial emphasis on the contribution made at AERE, Harwell and in particular by members of the Theoretical Physics Division. In the years between 1954 and the end of the 1960's the main thrust in the radiation damage of non-metals was model-building including devising defect models and mechanisms that were qualitatively acceptable, and compiling systematic data. The early 1970's made greater quantitative demands as computer techniques made theory more powerful. In many cases it was possible to predict defect properties accurately, so that one could distinguish between different defect models which were hard to tell apart by experiment alone. In the late 1970's the most important aspect has moved towards mechanisms of defect processes, especially in cases where experiment by itself is limited by timescale, by complexity, by the unintentional impurities inevitable in real crystals, or by the extreme conditions required. (UK)

  16. Late radiation effects in animals surviving lethal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, L A

    1974-01-01

    Animals (rats, mice, dogs) survived lethal irradiation by means of prophylactic-therapeutic treatments or previously irradiated, were studied for late radiation effects: life span, cachexia and fat growing of hypophysical type, tissue or organ hypoplasia manifested by disturbed hemopoiesis, suppressed function of adrenal gland, etc., suppressed immune reactivity of the irradiated organism, atypical biochemical changes in DNA and protein metabolism, epilation, chronic dermatitis, ulcerations, reduced reproductivity or full sterility, damage of kidneys leading to nephrosclerosis, dishormonal states, cataracts, diffuse sclerotic processes, various kinds of malignant and non-malignant tumors. In these cases hemopoiesis compensated for a definite time peripheral blood composition, but during the late period it showed features of incompleteness: shorter life survival of erythrocytes and thrombocytes manifested by a decreased binding of labelled methionine in these blood elements, anemia and relative thrombocytopenia sometimes with an increased number of polychromatic erythrocytes in peripheral blood and a decreased number of reticulocytes at the same time; lymphopenia and relative leucopenia with an increased number of hypersegmented neutrophils. Decreased reproductivity and atypical biochemical changes available in the first generation of the irradiated animals showed the probable role of mutagenic factors in the emergency of some late radiation effects. A significant part of late radiation sequences were due to neuro-endocrine disintegrations. Some of the described late radiation effects were also observed in biological controls as features of ageing. After application of radioprotectors (AET, cysteamine, serotonin) a more marked protective effect is demonstrated in the early reactions (time survival till 30th day, DNA and protein metabolism, immune reactions) of the lethally irradiated animals.

  17. Late complications of radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Norie [Osaka Prefectural Center for Adult Diseases (Japan)

    1998-03-01

    There are cases in which, although all traces of acute radiation complications seem to have disappeared, late complications may appear months or years to become apparent. Trauma, infection or chemotherapy may sometimes recall radiation damage and irreversible change. There were two cases of breast cancer that received an estimated skin dose in the 6000 cGy range followed by extirpation of the residual tumor. The one (12 y.o.) developed atrophy of the breast and severe teleangiectasis 18 years later radiotherapy. The other one (42 y.o.) developed severe skin necrosis twenty years later radiotherapy after administration of chemotherapy and received skin graft. A case (52 y.o.) of adenoidcystic carcinoma of the trachea received radiation therapy. The field included the thoracic spinal cord which received 6800 cGy. Two years and 8 months after radiation therapy she developed complete paraplegia and died 5 years later. A truly successful therapeutic outcome requires that the patient be alive, cured and free of significant treatment-related morbidity. As such, it is important to assess quality of life in long-term survivors of cancer treatment. (author)

  18. Late complications of radiation therapy

    International Nuclear Information System (INIS)

    Masaki, Norie

    1998-01-01

    There are cases in which, although all traces of acute radiation complications seem to have disappeared, late complications may appear months or years to become apparent. Trauma, infection or chemotherapy may sometimes recall radiation damage and irreversible change. There were two cases of breast cancer that received an estimated skin dose in the 6000 cGy range followed by extirpation of the residual tumor. The one (12 y.o.) developed atrophy of the breast and severe teleangiectasis 18 years later radiotherapy. The other one (42 y.o.) developed severe skin necrosis twenty years later radiotherapy after administration of chemotherapy and received skin graft. A case (52 y.o.) of adenoidcystic carcinoma of the trachea received radiation therapy. The field included the thoracic spinal cord which received 6800 cGy. Two years and 8 months after radiation therapy she developed complete paraplegia and died 5 years later. A truly successful therapeutic outcome requires that the patient be alive, cured and free of significant treatment-related morbidity. As such, it is important to assess quality of life in long-term survivors of cancer treatment. (author)

  19. Chromosome Damage and Cell Proliferation Rates in In Vitro Irradiated Whole Blood as Markers of Late Radiation Toxicity After Radiation Therapy to the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, Lindsay A., E-mail: Lindsay.Beaton@hc-sc.gc.ca [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON (Canada); Ferrarotto, Catherine; Marro, Leonora [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON (Canada); Samiee, Sara; Malone, Shawn; Grimes, Scott; Malone, Kyle [The Ottawa Hospital, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Rd, Ottawa, ON (Canada); Wilkins, Ruth C. [Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, ON (Canada)

    2013-04-01

    Purpose: In vitro irradiated blood samples from prostate cancer patients showing late normal tissue damage were examined for lymphocyte response by measuring chromosomal aberrations and proliferation rate. Methods and Materials: Patients were selected from a randomized trial evaluating the optimal timing of dose-escalated radiation and short-course androgen deprivation therapy. Of 438 patients, 3% experienced grade 3 late radiation proctitis and were considered to be radiosensitive. Blood samples were taken from 10 of these patients along with 20 matched samples from patients with grade 0 proctitis. The samples were irradiated at 6 Gy and, along with control samples, were analyzed for dicentric chromosomes and excess fragments per cell. Cells in first and second metaphase were also enumerated to determine the lymphocyte proliferation rate. Results: At 6 Gy, there were statistically significant differences between the radiosensitive and control cohorts for 3 endpoints: the mean number of dicentric chromosomes per cell (3.26 ± 0.31, 2.91 ± 0.32; P=.0258), the mean number of excess fragments per cell (2.27 ± 0.23, 1.43 ± 0.37; P<.0001), and the proportion of cells in second metaphase (0.27 ± 0.10, 0.46 ± 0.09; P=.0007). Conclusions: These results may be a valuable indicator for identifying radiosensitive patients and for tailoring radiation therapy.

  20. Reduction of radiation-induced early skin damage (mouse foot) by 0-(β-hydroxyaethyl)-rutoside

    International Nuclear Information System (INIS)

    Fritz-Niggli, H.; Froehlich, E.

    1980-01-01

    The effect of a bioflavonoid, 0-(β-hydroxyethyl)-rutoside (HR) on early radiation-induced skin damage was examined, using the mouse foot system; the response to radiation is not species specific and comparison with the clinical situation is therefore possible. The aim was to see whether HR, which is highly effective in protecting against late damage, is also able to reduce early effects. Early reactions were considered to be erythema, swelling and ulceration and occurring up to 30 days after irradiation. It was found that HR significantly reduces early damage, both after a single dose and after fractionated irradiation with low doses. A single pre-treatment dose of HR and pre-treatment together with 30 days post-treatment administration were both found to be effective. The protective effect became more marked with increasing radiation dose (single irradiation). Reduction of late effects is produced iptimally by an interval of 0.25 hours between application of HR and irradiation, and this is also true for early skin damage. The early effects are partly reversible, but there is possibly an interesting correlation between these and irreversible late effects (such as loss of toes); a similar mechanism, presumably affecting the vascular system, may therefore be postulated. The protective action of this well tolesated, highly effective substance, which apparently protects normal tissues from early and late injury, is discussed. (orig.) [de

  1. Radiation-induced normal tissue damage: implications for radiotherapy

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    Radiotherapy is an important treatment modality for many malignancies, either alone or as a part of combined modality treatment. However, despite technological advances in physical treatment delivery, patients suffer adverse effects from radiation therapy due to normal tissue damage. These side effects may be acute, occurring during or within weeks after therapy, or intermediate to late, occurring months to years after therapy. Minimizing normal tissue damage from radiotherapy will allow enhancement of tumor killing and improve tumor control and patients quality of life. Understanding mechanisms through which radiation toxicity develops in normal tissue will facilitate the development of next generation radiation effect modulators. Translation of these agents to the clinic will also require an understanding of the impact of these protectors and mitigators on tumor radiation response. In addition, normal tissues vary in radiobiologically important ways, including organ sensitivity to radiation, cellular turnover rate, and differences in mechanisms of injury manifestation and damage response. Therefore, successful development of radiation modulators may require multiple approaches to address organ/site-specific needs. These may include treatments that modify cellular damage and death processes, inflammation, alteration of normal flora, wound healing, tissue regeneration and others, specifically to counter cancer site-specific adverse effects. Further, an understanding of mechanisms of normal tissue damage will allow development of predictive biomarkers; however harmonization of such assays is critical. This is a necessary step towards patient-specific treatment customization. Examples of important adverse effects of radiotherapy either alone or in conjunction with chemotherapy, and important limitations in the current approaches of using radioprotectors for improving therapeutic outcome will be highlighted. (author)

  2. The role of connective tissue in late effects of radiation

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1979-01-01

    Connective tissues not only serve as support, but also filter and censor the physical and molecular information reaching cells. The late change in connective tissues, i.e. fibrosis several months or years after the irradiation with 1000 rad or more, has been well known, and the dreaded sequel of radiation therapy, but connective tissues are affected already at much earlier time. The change in irradiated connective tissues may be distinguished in 3 phases after irradiation, the change in permeability within hours, damage to cell replacement systems within days and months and the late change of fibrosis, vascular damage and parenchymal atrophy after months and years. Glomerular sclerosis, tubular atrophy and interstitial fibrosis after the excessive irradiation of kidneys, accompanied by renal failure and hypertension, are usually considered as the consequence of vascular or tubular damage, but recent investigation suggested that the change in blood flow is correlated also with the increase in collagen, so that fibrosis may represent an important factor in the pathogenesis of renal damage. Radiofibrosis is considered simply as a result of the vascular damage due to the deficient or abnormal replacement of endothelial cells and/or due to arteriolo-capillary fibrosis. The late effects depend on early ones, and the endothelial cells would be only one. Other possible paths could depend on low fibrinolytic activity and immunological reactions. (Yamashita, S.)

  3. Late effects of radiation on mature and growing bone

    International Nuclear Information System (INIS)

    Ramuz, O.; Mornex, F.; Bourhis, J.

    1997-01-01

    The physiopathology of radiation-induced bone damage is no completely elucidated. Ionizing radiation may induce an inhibition or an impairment of growing bone. This fact is of particular importance in children, and represents one of the most important dose-limiting factors in the radiotherapeutic management of children with malignant diseases. Scoliosis, epiphyseal slippage, avascular necrosis, abnormalities of craniofacial growth may be observed after radiation. Child's age at the time of treatment, location of irradiated bone and irradiation characteristics may influence the radiation related observed effects. In adults, pathological analysis of mature bone after ionizing radiation exposure are rare, suggesting that it is difficult to draw a clear feature of the action of radiation on the bone. Osteoporosis, medullary fibrosis and cytotoxicity on bone cells lead to fracture or necrosis. Various factors can influence bone tolerance to radiation such as bone involvement by tumor cells or infection, which is frequent is mandibulary osteoradionecrosis. Technical improvements in radiation techniques have also decreased radio-induced bone complications : the volume, fractionation and total dose are essential to consider. The absence of a consistent radiation-induced late effects evaluation scale has hampered efforts to analyze the influence of various therapeutic maneuvers and the comparison of results from different reported series. The currently proposed evaluation scale may help harmonizing the classification of radiation-induced bone late effects. (author)

  4. Late radiation encephalopathy in the dog. A model for cerebral vascular disease

    International Nuclear Information System (INIS)

    Michaelson, S.M.; Kramer, M.W.

    The Research Group on Industrial and Environmental Neurology has suggested that assessment of cerebral atherosclerosis should be considered as part of its purview of problems of interest. Although the present study is not related to the ordinary environmental or industrial situation, it can apply to accidental over-exposure to external ionizing radiation or radiation therapy and describes an animal model that can be used for fundamental study of cerebral vascular conditions and encephalomalacia. Ionizing radiation damage to nervous tissue may be apparent early after irradiation or may become evident after a variable latent period. The concept of late ionizing radiation-induced neuropathy, the subject of this study, is characterized by a long latent period between exposure and initial clinical signs, an inverse relationship between radiation dose and latency of appearance of late radiation encephalopathy, and an apparent lack of demonstrable physiological, biochemical, and morphological alterations until necrosis becomes manifest. (U.S.)

  5. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  6. Late effects from particulate radiations in primate and rabbit tissues

    Science.gov (United States)

    Lett, J. T.; Cox, A. B.; Bergtold, D. S.; Lee, A. C.; Pickering, J. E.

    Optic tissues in groups of New Zealand white rabbits were irradiated locally at different stages throughout the median life span of the species with a single dose (9 Gy) of 425 MeV/amu Ne ions (LET∞~30 keV/μm) and then inspected routinely for the progression of radiation cataracts. The level of early cataracts was found to be highest in the youngest group of animals irradiated (8 weeks old) but both the onset of late cataracts and loss of vision occurred earlier when animals were irradiated during the second half of the median life span. This age response can have serious implications in terms of space radiation hazards to man. Rhesus monkeys that had been subjected to whole-body skin irradiation (2.8 and 5.6 Gy) by 32 MeV protons (range in tissue ~ 1 cm) some twenty years previously were analysed for radiation damage by the propagation of skin fibroblasts in primary cultures. Such propagation from skin biopsies in MEM-α medium (serial cultivation) or in supplemented Ham's F-10 medium (cultivation without dilution) revealed late damage in the stem (precursor) cells of the skins of the animals. The proton fluxes employed in this experiment are representative of those occurring in major solar flares.

  7. Experimental study of some homeostatic parameters at late times after exposure to radiation

    International Nuclear Information System (INIS)

    Chertkov, K.S.; Andrianova, I.E.; Atamanova, O.M.; Filimonova, G.I.; Nesterova, T.A.; Sbitneva, M.F.; Glushkov, V.A.; Chotij, V.G.; Stejmatskaya, Z.A.

    1994-01-01

    Following radiation damage from LD 50 - LD 97 , changes in blood, immune and endocrine parameters were revealed and followed up in dogs at the time of late effects development, 3-18 months after exposure. The changes result from post-radiation immunodeficiency and resemble those observed in residents of radioactive contaminate areas or in men participated in Chernobyl accident amelioration

  8. The quantification of wound healing as a method to assess late radiation damage in primate skin exposed to high-energy protons

    Science.gov (United States)

    Cox, A. B.; Lett, J. T.

    In an experiment examining the effects of space radiations on primates, different groups of rhesus monkeys (Macaca mulatta) were exposed to single whole-body doses of 32- or 55-MeV protons. Survivors of those exposures, together with age-matched controls, have been monitored continuously since 1964 and 1965. Late effects of nominal proton doses ranging from 2-6 Gray have been measured in vitro using skin fibroblasts from the animals. A logical extension of that study is reported here, and it involves observations of wound healing after 3-mm diameter dermal punches were removed from the ears (pinnae) of control and irradiated monkeys. Tendencies in the reduction of competence to repair cutaneous wound have been revealed by the initial examinations of animals that received doses greater than 2 Gy more than 2 decades earlier. These trends indicate that this method of assessing radiation damage to skin exposed to high-energy radiations warrants further study.

  9. Radiation damage of nonmetallic solids

    International Nuclear Information System (INIS)

    Goland, A.N.

    1975-01-01

    A review of data and information on radiation damage in nonmetallic solids is presented. Discussions are included on defects in nonmetals, radiation damage processes in nonmetals, electronic damage processes, physical damage processes, atomic displacement, photochemical damage processes, and ion implantation

  10. The vulnerability of silver fir populations to damage from late frosts

    Directory of Open Access Journals (Sweden)

    Klisz Marcin

    2016-03-01

    Full Text Available The aim of the study was to determine the vulnerability of selected silver fir populations to damage from late frost in the climatic conditions of south-eastern Poland. To determine the vulnerability of apical and lateral shoots to damage caused by late frosts, we observed four test plots in 2009 and 2014, each containing progenies of selected seed stands. Our statistical analyses were based on a model incorporating the following variables: site, year, type of frost damage, population as well as the possible interaction between these variables. Significant differences between the populations were found in terms of their sensitivity to damage from low temperature occurring during the growth period. Furthermore, we indirectly demonstrated differences in the severity of late frost on the experimental plots, as well as the intensity and variability of late frost shoot damage. Based on these results, we divided the studied populations into two groups of low (EF, KRA1 and NAR and high (LES2 and BAL2 sensitivity to late frost damage.

  11. Bio-mechanical and morphometric evaluation of late radiation-induced changes in the mouse rectum

    International Nuclear Information System (INIS)

    Lundby, L.

    1998-01-01

    The overall aim of this thesis was to study the development of late radiation induced damage of the rectum and describe the histopathological and morphometric characteristics of the late injury. This required the design of a new, small probe for rectal measurements of cross-sectional area and distension pressure in mice. The impedance planimetric method was developed and validated in vitro and applied in in vivo studies of normal mice. The study of radiation induced damage of the rectum also required a new set-up for selective irradiation of a specific part of the rectum, shielding other organs. Mice were irradiated with varying single doses and followed with impedance planimetric measurements at regular intervals until death of the animals. In order to compare observed changes of the functional properties of the rectum following irradiation, a description of morphometric and morphologic characteristics by a stereolic technique was planned. A simplified stereological method has been applied to this study to describe late morphometric changes in the different intestinal layers after irradiation with varying single doses. (EG)

  12. Radiation Damage in Scintillating Crystals

    CERN Document Server

    Zhu Ren Yuan

    1998-01-01

    Crystal Calorimetry in future high energy physics experiments faces a new challenge to maintain its precision in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals, and concludes that the predominant radiation damage effect in crystal scintillators is the radiation induced absorption, or color center formation, not the loss of the scintillation light yield. The importance of maintaining crystal's light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of the radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen or hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis methods used to reach these conclusions are presented in details.

  13. Late radiation side-effects in three patients undergoing parotid irradiation for benign disease.

    Science.gov (United States)

    Armour, A; Ghanna, P; O'Rielly, B; Habeshaw, T; Symonds, P

    2000-01-01

    We report three patients in whom standard radiation therapy was given and serious late radiation damage was seen. The first patient suffered recurrent parotiditis and a parotid fistula. He was treated initially with 20 Gy in ten fractions via a 300 kV field. Further irradiation was required 1 year later and 40 Gy was given in 2 Gy fractions by an oblique anterior and posterior wedged photon pair. Ten years later he developed localized temporal bone necrosis. The second patient, with pleomorphic salivary adenoma, developed localized temporal bone necrosis 6 years after 60 Gy had been given using standard fractionation and technique. The third patient received 55 Gy in 25 fractions for a pleomorphic salivary adenoma and after 3 years developed temporal bone necrosis. Sixteen years later the same patient developed cerebellar and brainstem necrosis. All patients developed chronic persistent infection during or shortly after the radiation therapy, which increased local tissue sensitivity to late radiation damage. As a result, severe bone, cerebellar and brainstem necrosis was observed at doses that are normally considered safe. We therefore strongly recommend that any infection in a proposed irradiated area should be treated aggressively, with surgical debridement if necessary, before radiotherapy is administered, or that infection developing during or after irradiation is treated promptly.

  14. Protective Effect of HSP25 on Radiation Induced Tissue Damage

    International Nuclear Information System (INIS)

    Lee, Hae-June; Lee, Yoon-Jin; Kwon, Hee-Choong; Bae, Sang-Woo; Lee, Yun-Sil; Kim, Sung Ho

    2007-01-01

    Control of cancer by irradiation therapy alone or in conjunction with combination chemotherapy is often limited by organ specific toxicity. Ionizing irradiation toxicity is initiated by damage to normal tissue near the tumor target and within the transit volume of radiotherapy beams. Irradiation-induced cellular, tissue, and organ damage is mediated by acute effects, which can be dose limiting. A latent period follows recovery from the acute reaction, then chronic irradiation fibrosis (late effects) pose a second cause of organ failure. HSP25/27 has been suggested to protect cells against apoptotic cell death triggered by hyperthermia, ionizing radiation, oxidative stress, Fas ligand, and cytotoxic drugs. And several mechanisms have been proposed to account for HSP27-mediated apoptotic protection. However radioprotective effect of HSP25/27 in vivo system has not yet been evaluated. The aim of this study was to evaluate the potential of exogenous HSP25 expression, as delivered by adenoviral vectors, to protect animal from radiation induced tissue damage

  15. Radiation damage to mushrooms

    International Nuclear Information System (INIS)

    Sattler, P.W.

    1986-01-01

    This document contains newspaper cuttings and correspondence with various ministries in Hessen on the subject of radiation damage to mushrooms from the Odenwald area. The reader is given, amongst other things, detailed information on radiation damage to different types of mushroom in 1986. (MG) [de

  16. Radiation therapy and late reactions in normal tissues

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Kuroda, Yasumasa

    1998-01-01

    Recent developments in cancer therapy have made us increasingly aware that the quality of life of a patient is as valuable as other benefits received from therapy. This awareness leads to an emphasis on organ and/or function preservation in the course of therapy. In line with this new thinking, greater consideration is placed on radiation therapy as an appropriate modality of cancer therapy. Possible complications in normal tissues, especially those of late reaction type after the therapy must be overcome. This review, therefore, focuses on recent progress of studies on mechanisms of the complications of the late reaction type. An observation of a clinical case concerning a late reaction of spinal cord (radiation myelopathy) and surveys of experimental studies on the mechanisms of late reactions (including radiation pneumonitis and lung fibrosis, and radiation response of vascular endothelial cells) provide a hypothesis that apoptosis through the pathway starting with radiation-induced sphingomyelin hydrolysis may play an important role in causing a variety of late reactions. This insight is based on the fact that radiation also activates protein kinase C which appears to block apoptosis. The mechanisms of late reactions, therefore, may involve a balance between radiation-induced apoptotic death and its down regulation by suppressor mechanisms through protein kinase C. (author)

  17. Radiation-induced liver damage

    International Nuclear Information System (INIS)

    Marcial, V.A.; Santiago-Delpin, E.A.; Lanaro, A.E.; Castro-Vita, H.; Arroyo, G.; Moscol, J.A.; Gomez, C.; Velazquez, J.; Prado, K.

    1977-01-01

    Due to the recent increase in the use of radiation therapy in the treatment of cancer with or without chemotherapy, the risk of liver radiation damage has become a significant concern for the radiotherapist when the treated tumour is located in the upper abdomen or lower thorax. Clinically evident radiation liver damage may result in significant mortality, but at times patients recover without sequelae. The dose of 3000 rads in 3 weeks to the entire liver with 5 fractions per week of 200 rads each, seems to be tolerated well clinically by adult humans. Lower doses may lead to damage when used in children, when chemotherapy is added, as in recent hepatectomy cases, and in the presence of pre-existent liver damage. Reduced fractionation may lead to increased damage. Increased fractionation, limitation of the dose delivered to the entire liver, and restriction of the high dose irradiation volume may afford protection. With the aim of studying the problems of hepatic radiation injury in humans, a project of liver irradiation in the dog is being conducted. Mongrel dogs are being conditioned, submitted to pre-irradiation studies (haemogram, blood chemistry, liver scan and biopsy), irradiated under conditions resembling human cancer therapy, and submitted to post-irradiation evaluation of the liver. Twenty-two dogs have been entered in the study but only four qualify for the evaluation of all the study parameters. It has been found that dogs are susceptible to liver irradiation damage similar to humans. The initial mortality has been high mainly due to non-radiation factors which are being kept under control at the present phase of the study. After the initial experiences, the study will involve variations in total dose and fractionation, and the addition of anticoagulant therapy for possible prevention of radiation liver injury. (author)

  18. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  19. Late radiation pathology of mammals

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, S N

    1982-01-01

    The comprehensive monograph on delayed radiation effects in mammals including man comprises 3 main chapters dealing with non-neoplastic as well as neoplastic manifestations of late radiation pathology, with the prophylaxis of delayed radiation effects, and with the therapy of radiation injuries. Alterations induced by whole-body irradiation and delayed radiation effects caused by partial body irradiation are described in detail. The developmental mechanisms and pathogenesis of non-neoplastic pathological changes and of radiation-induced neoplasms are elaborated.

  20. Radiogenic late effects in the eye after therapeutic application of beta radiation

    International Nuclear Information System (INIS)

    Lommatzsch, P.; Neumeister, K.

    1978-01-01

    Beta irradiation with 90 Sr/ 90 Y is used to treat epibulbar tumours (carcinoma, melanoma) and irradiation with 106 Ru/ 106 Rh is used to treat intra-ocular tumours (melanoma, retinoblastoma). Two studies have been carried out. Since 1960, 185 patients with epibulbar pigment tumours and 15 patients with conjunctiva carcinomas have been treated with 90 Sr/ 90 Y-applicators and observed for several years. The dose applied was 10,000 to 20,000 rads at the focus depending on the type and extent of the tumour. Apart from teleangiectasias of the conjunctiva, there were only a few cases of severe radio-induced complications such as keratopathies and secondary glaucoma, which were regarded as the lesser evil in comparison with the main disease. The radiation cataract after beta irradiation remains peripheral and does not impair vision. So far 39 patients with choroid melanomas and 22 children with retinoblastomas have been observed for more than 5 years after beta irradiation with 106 Ru/ 106 Rh. The dose applied at the sclera surface was 40,000 to 100,000 rads for 4 to 8 days. In 39 patients with successfully irradiated choroid melanomas, radio-induced late complications developed such as macula degeneration, opticus atrophy and retinal-vessel ablations, which may impair vision. In the 22 children irradiated, only 7 cases of late complications with impaired functions could be observed. Whereas radiation-induced late damage after beta irradiation of the front section of the eye is of small clinical importance, especially in older patients, intra-ocular tumours with radio-induced late damage in the retinal vessel and capillary system have to be expected after high-dose beta irradiation

  1. OWN EXPERIENCE OF LASER THERAPY FOR THE PREVENTION AND TREATMENT OF EARLY AND LATE RADIATION-INDUCED SKIN INJURIES IN PATIENTS WITH BREAST CANCER AFTER SIMULTANEOUS RECONSTRUCTIVE PLASTIC SURGERY

    Directory of Open Access Journals (Sweden)

    S. I. Tkachev

    2017-01-01

    Full Text Available Low-energy laser radiation has a good anti-inflammatory and stimulating effect on the damaged tissues; therefore, it can be used for the prevention and treatment of both early and late radiation-induced skin injuries in patients receiving radiotherapy. So far, the effect of low-energy laser radiation in the prevention of radiation-induced skin damage remains poorly understood. This article presents a brief overview of the results obtained in the latest foreign studies as well as own experience of laser therapy for the prevention and treatment of both early and late radiation-induced skin injuries in patients with breast cancer after simultaneous reconstructive plastic surgery.

  2. Late radiation damage in bone, bone marrow and brain vasculature, with particular emphasis upon fractionation models

    International Nuclear Information System (INIS)

    Pitkaenen, Maunu.

    1986-04-01

    X-ray induced changes in rat and human bone and bone marrow vasculature and in rat brain vasculature were measured as a function of time after irradiation and absorbed dose. The absorbed dose in the organ varied from 5 to 25 Gy for single dose irradiations and from 19 to 58 Gy for fractionated irradiations.The number of fractions varied from 3 to 10 for the rats and from 12 to 25 for the human. Blood flow changes were measured using an ''1''2''5I antipyrine or ''8''6RbCl extraction technique. The red blood cell (RBC) volume was examined by ''5''1Cr labelled red cells. Different fractionation models have been compared. Radiation induced reduction of bone and bone marrow blood flow were both time and dose dependent. Reduced blood flow 3 months after irradiation would seem to be an important factor in the subsequent atrophy of bones. With a single dose of 10 Gy the bone marrow blood flow returned to the control level by 7 months after irradiation. In the irradiated bone the RBC volume was about same as that in the control side but in bone marrow the reduction was from 32 to 59%. The dose levels predicted by the nominal standard dose (NSD) formula produced about the same damage to the rat femur seven months after irradiation when the extraction of ''8''6Rb chloride and the dry weight were concerned as the end points. However, the results suggest that the NSB formula underestimates the late radiation damage in bone marrow when a small number of large fractions are used. In the irradiated brains of the rats the blood flow was on average 20.4% higher compared to that in the control group. There was no significant difference in brain blood flow between different fractionation schemes. The value of 0.42 for the exponent of N corresponds to the average value for central nervous system tolerance in the literature. The model used may be sufficiently accurate for clinical work provided the treatment schemes used do not depart too radically from standard practice

  3. Investigation of damage mechanism by ionising radiation on biomolecules

    International Nuclear Information System (INIS)

    Lau How Mooi

    1996-01-01

    Occupational radiation hazard is a very controversial subject. Effects from high radiation doses are well known from past experiences. However, hazard from low doses is still a subject that is hotly debated upon until now. The occupational dosimetry used now is based on a macroscopic scale. Lately, microdosimetry is fast gaining recognition as a more superior way of measuring hazard. More importantly, scientists are researching the basic damage mechanism that leads to biological effects by ionising radiation. In this report, a simulation study of the basic damage mechanism is discussed . This simulation is based upon Monte Carlo calculations and using polyuridylic acid (Poly-U) as the DNA model This simulation tries to relate the physics and chemistry of interactions of ionising radiation with biomolecules. The computer codes used in this simulation, OREC and RADLYS were created by Hamm et al. (1983) in Oak Ridge National Laboratory. The biological endpoints in this simulation are the strand break and base release of the DNA, which is the precursor of all biological effects. These results are compared with model studies that had been done experimentally to check the validity of this simulation. The G-values of strand break and base release from this simulation were -2.35 and 2.75 and compared well with results from irradiation experiments by von Sonntag (I 98 7) from Max Plank's Institute, Germany

  4. Late effects of radiation on mature and growing bone; Effets tardifs des radiations sur l`os mature et en croissance

    Energy Technology Data Exchange (ETDEWEB)

    Ramuz, O.; Mornex, F. [Centre Hospitalier Universitaire Lyon-Sud, 69 - Pierre-Benite (France); Bourhis, J. [Institut Gustave Roussy, 94 - Villejuif (France)

    1997-12-01

    The physiopathology of radiation-induced bone damage is no completely elucidated. Ionizing radiation may induce an inhibition or an impairment of growing bone. This fact is of particular importance in children, and represents one of the most important dose-limiting factors in the radiotherapeutic management of children with malignant diseases. Scoliosis, epiphyseal slippage, avascular necrosis, abnormalities of craniofacial growth may be observed after radiation. Child`s age at the time of treatment, location of irradiated bone and irradiation characteristics may influence the radiation related observed effects. In adults, pathological analysis of mature bone after ionizing radiation exposure are rare, suggesting that it is difficult to draw a clear feature of the action of radiation on the bone. Osteoporosis, medullary fibrosis and cytotoxicity on bone cells lead to fracture or necrosis. Various factors can influence bone tolerance to radiation such as bone involvement by tumor cells or infection, which is frequent is mandibulary osteoradionecrosis. Technical improvements in radiation techniques have also decreased radio-induced bone complications : the volume, fractionation and total dose are essential to consider. The absence of a consistent radiation-induced late effects evaluation scale has hampered efforts to analyze the influence of various therapeutic maneuvers and the comparison of results from different reported series. The currently proposed evaluation scale may help harmonizing the classification of radiation-induced bone late effects. (author)

  5. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  6. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  7. Late radiation injury to muscle and peripheral nerves

    International Nuclear Information System (INIS)

    Gillette, E. L.; Mahler, P. A.; Powers, B. E.; Gillette, S. M.; Vujaskovic, Z.

    1995-01-01

    Late radiation injury to muscles and peripheral nerves is infrequently observed. However, the success of radiation oncology has led to longer patient survival, providing a greater opportunity for late effects to develop, increase in severity and, possibly, impact the quality of life of the patient. In addition, when radiation therapy is combined with surgery and/or chemotherapy, the risk of late complications is likely to increase. It is clear that the incidence of complications involving muscles and nerves increases with time following radiation. The influence of volume has yet to be determined; however, an increased volume is likely to increase the risk of injury to muscles and nerves. Experimental and clinical studies have indicated that the (α(β)) ratio for muscle is approximately 4 Gy and, possibly, 2 Gy for peripheral nerve, indicating the great influence of fractionation on response of these tissues. This is of concern for intraoperative radiation therapy, and for high dose rate brachytherapy. This review of clinical and experimental data discusses the response of muscle and nerves late after radiation therapy. A grading system has been proposed and endpoints suggested

  8. Stem cell therapy for the treatment of radiation-induced normal tissue damage

    International Nuclear Information System (INIS)

    Chapel, A.; Benderitter, M.; Gourmelon, P.; Lataillade, J.J.; Gorin, N.C.

    2013-01-01

    Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumour. In Europe, per year, 1.5 million patients undergo external radiotherapy. Acute adverse effect concern 80% of patients. The late adverse effect of radiotherapy concern 5 to 10% of them, which could be life threatening. Eradication of these manifestations is crucial. The French Institute of Radioprotection and Nuclear Safety (IRSN) contribute to understand effect of radiation on healthy tissue. IRSN is strongly implicated in the field of regeneration of healthy tissue after radiotherapy or radiological accident and in the clinical use of cell therapy in the treatment of irradiated patients. Our first success in cell therapy was the correction of deficient hematopoiesis in two patients. The intravenous injection of Mesenchymal Stem Cells (MSC) has restored bone marrow micro-environment after total body irradiation necessary to sustain hematopoiesis. Cutaneous radiation reactions play an important role in radiation accidents, but also as a limitation in radiotherapy and radio-oncology. We have evidenced for the first time, the efficiency of MSC therapy in the context of acute cutaneous and muscle damage following irradiation in five patients. Concerning the medical management of gastrointestinal disorder after irradiation, we have demonstrated the promising approach of the MSC treatment. We have shown that MSC migrate to damaged tissues and restore gut functions after radiation damage. The evaluation of stem cell therapy combining different sources of adult stem cells is under investigation

  9. Computer simulations of radiation damage in protein crystals

    International Nuclear Information System (INIS)

    Zehnder, M.

    2007-03-01

    The achievable resolution and the quality of the dataset of an intensity data collection for structure analysis of protein crystals with X-rays is limited among other factors by radiation damage. The aim of this work is to obtain a better quantitative understanding of the radiation damage process in proteins. Since radiation damage is unavoidable it was intended to look for the optimum ratio between elastically scattered intensity and radiation damage. Using a Monte Carlo algorithm physical processes after an inelastic photon interaction are studied. The main radiation damage consists of ionizations of the atoms through the electron cascade following any inelastic photon interaction. Results of the method introduced in this investigation and results of an earlier theoretical studies of the influence of Auger-electron transport in diamond are in a good agreement. The dependence of the radiation damage as a function of the energy of the incident photon was studied by computer-aided simulations. The optimum energy range for diffraction experiments on the protein myoglobin is 10-40 keV. Studies of radiation damage as a function of crystal volume and shape revealed that very small plate or rod shaped crystals suffer less damage than crystals formed like a cube with the same volume. Furthermore the influence of a few heavy atoms in the protein molecule on radiation damage was examined. Already two iron atoms in the unit cell of myoglobin increase radiation damage significantly. (orig.)

  10. The role of repopulation in early and late radiation reactions in pig skin

    International Nuclear Information System (INIS)

    Redpath, J.L.; Peel, D.M.; Dodd, P.; Simmonds, R.H.; Hopewell, J.W.

    1984-01-01

    The role of repopulation in early and late radiation reactions in pig skin has been assessed by comparing split dose recovery doses (D/sub 2/-D/sub 1/) for a 1-day interval and a 28-day interval. For a 1-day interval, repair of sublethal damage is the major contribution to any recovery observed, whereas for a 28-day interval, repopulation may also play a role. The early reaction studied was moist desquamation and the late reactions studied were a later dermal erythema and necrosis. The data show that over a 28-day interval, repopulation contributes -- 7.0 Gy to a total D/sub 2/-D/sub 1/, of --14.0 Gy for the early moist desquamation (epidermal) reaction. Data for the role of repopulation in the late (dermal) reactions are also presented

  11. WE-D-BRE-05: Prediction of Late Radiation-Induced Proctitis in Prostate Cancer Patients Using Chromosome Aberration and Cell Proliferation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J; Deasy, J [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: Chromosome damage and cell proliferation rate have been investigated as potential biomarkers for the early prediction of late radiationinduced toxicity. Incorporating these endpoints, we explored the predictive power for late radiation proctitis using a machine learning method. Methods: Recently, Beaton et al. showed that chromosome aberration and cell proliferation rate could be used as biomarkers to predict late radiation proctitis (Beaton et al. (2013) Int J Rad Onc Biol Phys, 85:1346–1352). For the identification of radiosensitive biomarkers, blood samples were collected from 10 patients with grade 3 late proctitis along with 20 control patients with grade 0 proctitis. After irradiation at 6 Gy, statistically significant difference was observed between the two groups, using the number of dicentrics and excess fragments, and the number of cells in metaphase 2 (M2). However, Beaton et al. did not show the usefulness of combining these endpoints. We reanalyzed the dataset to investigate whether incorporating these endpoints can increase the predictive power of radiation proctitis, using a support vector machine (SVM). Results: Using the SVM method with the number of fragments and M2 endpoints, perfect classification was achieved. In addition, to avoid biased estimate of the classification method, leave-one-out cross-validation (LOO-CV) was performed. The best performance was achieved when all three endpoints were used with 87% accuracy, 90% sensitivity, 85% specificity, and 0.85 AUC (the area under the receiver operating characteristic (ROC) curve). The most significant endpoint was the number of fragments that obtained 83% accuracy, 70% sensitivity, 90% specificity, and 0.82 AUC. Conclusion: We demonstrated that chromosome damage and cell proliferation rate could be significant biomarkers to predict late radiation proctitis. When these endpoints were used together in conjunction with a machine learning method, the better performance was obtained

  12. Radiation damage in barium fluoride detector materials

    International Nuclear Information System (INIS)

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF 2 , both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF 2 they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with 60 C0 gamma rays. Doses of 10 6 rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF 2 develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials

  13. Radiation damages in solids and tissues

    International Nuclear Information System (INIS)

    Cevc, P.; Kogovsek, F.; Kanduser, A.; Peternelj, M.; Skaleric, U.; Funduk, N.

    1977-01-01

    In submitted research work we have studied radiation damages in ferroelectric crystals and application of ferroelectric crystals. Studying the radiation damages we have introduced new technique of EPR measurements under high hydrostatic pressure, that will enable us to obtain additional data on crystal lattice dynamics. A change of piroelectric coefficient with high radiation doses in dopped TGS has been measured also

  14. Anatomy of the late radiation encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    De Reuck, J; vander Eecken, H

    1975-01-01

    The clinico-pathological data and the topography of the lesions were determined in 13 cases of late radiation encephalopathy. In one case the arterial vascularisation was studied by the translucidation technique after filling of the blood vessels with a colloidal barium sulphate solution. The radiation lesions consisted of areas of focal necrosis and of diffuse demyelination and necrosis of the deep cerebral structures and the brain stem. Demyelination was predominantly present in cases of late appearance of the neurological symptoms while necrosis was found in cases with a short latency period. The cerebral cortex and the arcuate fibres were always the most preserved structures. The topography of the focal lesions in the cerebral hemispheres and in the brain stem corresponded well to the vascular supply areas of the deep perforating arteries, while the diffuse lesions always had a predominant distribution in the periventricular arterial end- and border-zones. These observations were also confirmed by a post mortem angiographic study. The present report argues once more for a vascular aetiology as cause of the late radiation encephalopathy.

  15. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model.

    Science.gov (United States)

    Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan

    2009-02-01

    Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.

  16. Consequences of PAI-1 specific deletion in endothelium on radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Rannou, Emilie

    2015-01-01

    Radiation-induced injury to healthy tissues is a real public health problem, since they are one of the most limiting factors that restrict efficiency of radiation therapy. This problematic is also part of the French Cancer Plan 2014-2017, and involves clinical research. Concepts surrounding the development of radiation-induced damage have gradually evolved into a contemporary and integrated view of the pathogenesis, involving all compartments of target tissue. Among them, endothelium seems to be central in the sequence of interrelated events that lead to the development of radiation-induced damage, although there are rare concrete elements that support this concept. By using new transgenic mouse models, this PhD project provides a direct demonstration of an endothelium-dependent continuum in evolution of radiation-induced intestinal damage. Indeed, changes in the endothelial phenotype through targeted deletion of the gene SERPINE1, chosen because of its key role in the development of radiation enteritis, influences various parameters of the development of the disease. Thus, lack of PAI-1 secretion by endothelial cells significantly improves survival of the animals, and limits severity of early and late tissue damage after a localized small bowel irradiation. Furthermore, these mice partially KO for PAI-1 showed a decrease in the number of apoptotic intestinal stem cells in the hours following irradiation, a decrease in the macrophages infiltrate density one week after irradiation, and a change in the polarization of macrophages throughout the pathophysiological process. In an effort to protect healthy tissues from radiation therapy side effects, without hindering the cancer treatment, PAI-1 seems to be an obvious therapeutic target. Conceptually, this work represents the direct demonstration of the link between endothelium phenotype and radiation enteritis pathogenesis. (author)

  17. Radiation damage in biomolecular systems

    CERN Document Server

    Fuss, Martina Christina

    2012-01-01

    Since the discovery of X-rays and radioactivity, ionizing radiations have been widely applied in medicine both for diagnostic and therapeutic purposes. The risks associated with radiation exposure and handling led to the parallel development of the field of radiation protection. Pioneering experiments done by Sanche and co-workers in 2000 showed that low-energy secondary electrons, which are abundantly generated along radiation tracks, are primarily responsible for radiation damage through successive interactions with the molecular constituents of the medium. Apart from ionizing processes, which are usually related to radiation damage, below the ionization level low-energy electrons can induce molecular fragmentation via dissociative processes such as internal excitation and electron attachment. This prompted collaborative projects between different research groups from European countries together with other specialists from Canada,  the USA and Australia. This book summarizes the advances achieved by these...

  18. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Beirau, Tobias; Mihailova, Boriana; Groat, Lee A.; Chudy, Thomas; Shelyug, Anna; Navrotsky, Alexandra; Ewing, Rodney C.; Schlüter, Jochen; Škoda, Radek; Bismayer, Ulrich

    2017-01-01

    Abstract

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400–1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1·10

  19. Corneal Damage from Infrared Radiation

    National Research Council Canada - National Science Library

    McCally, Russell

    2000-01-01

    ...) laser radiation at 10.6 (micrometer) and Tm: YAG laser radiation at 2.02 (micrometer). Retinal damage from sources with rectangular irradiance distributions was also modeled. Thresholds for CO(2...

  20. Studies on the strategies of minimizing radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hee Yong; Sohn, Young Sook

    1998-04-01

    We studied on the strategies of minimizing radiation damage in animal system. To this end we studied following areas of research (1) mechanisms involved in bone marrow damage after total body irradiation, (2) extraction of components that are useful in protecting hematopoietic system from radiation damage, (3) cell therapy approach in restoring the damaged tissue, (4) development of radioprotective chemical reagent, and (5) epidemiological study on the population that had been exposed to radiation.

  1. Studies on the strategies of minimizing radiation damage

    International Nuclear Information System (INIS)

    Chung, Hee Yong; Sohn, Young Sook

    1998-04-01

    We studied on the strategies of minimizing radiation damage in animal system. To this end we studied following areas of research 1) mechanisms involved in bone marrow damage after total body irradiation, 2) extraction of components that are useful in protecting hematopoietic system from radiation damage, 3) cell therapy approach in restoring the damaged tissue, 4) development of radioprotective chemical reagent, and 5) epidemiological study on the population that had been exposed to radiation

  2. Programmed cellular response to ionizing radiation damage

    International Nuclear Information System (INIS)

    Crompton, N.E.A.

    1998-01-01

    Three forms of radiation response were investigated to evaluate the hypothesis that cellular radiation response is the result of active molecular signaling and not simply a passive physicochemical process. The decision whether or not a cell should respond to radiation-induced damage either by induction of rescue systems, e.g. mobilization of repair proteins, or induction of suicide mechanisms, e.g. programmed cell death, appears to be the expression of intricate cellular biochemistry. A cell must recognize damage in its genetic material and then activate the appropriate responses. Cell type is important; the response of a fibroblast to radiation damage is both quantitatively and qualitatively different form that of a lymphocyte. The programmed component of radiation response is significant in radiation oncology and predicted to create unique opportunities for enhanced treatment success. (orig.)

  3. Nature of radiation damage in ceramics

    International Nuclear Information System (INIS)

    Bunch, J.M.

    1976-01-01

    Efforts to determine the equivalence between different sources of radiation damage in ceramics are reviewed. The ways in which ceramics differ from metals are examined and proposed mechanisms for creation and stabilization of defects in insulators are outlined. Work on radiation damage in crystalline oxides is summarized and suggestions for further research are offered

  4. Clinical impact of predictive assays for acute and late radiation morbidity

    International Nuclear Information System (INIS)

    Budach, W.; Classen, J.; Belka, C.; Bamberg, M.

    1998-01-01

    Background: Clinically reliable predictive assays for normal tissue radiation sensitivity would help to avoid severe radiation induced morbidity and result in individualized dose prescriptions. Profound differences of individual fibroblast and lymphocyte radiation sensitivity in vitro have been documented in patients with certain genetic syndromes but also in patients without known genetic disorders. The following review evaluates whether fibroblast or lymphocyte radiation sensitivity measured in vitro correlates with the degree of acute and late radiation induced morbidity. Results: Acute radiation side effects and lymphocyte sensitivity has been investigated in 2 studies. One of them reported an insecure correlation, the other no correlation at all. Fibroblast radiation sensitivity and the extent of acute radiation induced side effects on skin and mucosal sites has been compared in a total of 5 studies. None of these studies found a consistent significant correlation. Lymphocyte radiation sensitivity and late effects have been studied by 2 institutions. Late radiation induced skin and mucosal changes did not correlate with lymphocyte sensitivity in head and neck cancer patients, whereas in breast cancer patients a weak (R 2 =0.06) correlation between the degree of late skin reactions and lymphocyte sensitivity was observed. Late skin or mucosal radiation reactions and fibroblast sensitivity were examined by 5 research groups. Data analysis revealed significant correlations or at least a trend towards a significant correlation in all studies. The quality of the reported correlations expressed as R 2 ranged from 0.13 to 0.60, indicating a low predictive value. Conclusions: Lymphocyte radiation sensitivity as measured by currently available assays does not or only poorly correlate with acute and late effects of radiation in patients, precluding predictive tests based on lymphocyte sensitivity. Fibroblast radiation sensitivity does not correlate with acute but

  5. Diabetes mellitus: a predictor for late radiation morbidity

    International Nuclear Information System (INIS)

    Herold, David M.; Hanlon, Alexandra L.; Hanks, Gerald E.

    1999-01-01

    Purpose: Given the high frequency of diabetes, as well as prostate cancer in the elderly population, we sought to determine whether diabetic patients treated with three-dimensional conformal external-beam radiotherapy (3DCRT) had an increased risk of late gastrointestinal (GI) or genitourinary (GU) complications. Methods and Materials: Nine-hundred forty-four prostate cancer patients were treated between April 1989 and October 1996 using 3DCRT. Median patient age was 69 years (range 48-89), median center of prostate dose was 7211 cGy (range 6211-8074) and median follow-up was 36 months (range 2-99). Patients were evaluated every 6 months with digital rectal examinations, serum PSAs and symptom questionnaires. Radiation morbidity was quantified using Radiation Therapy Oncology Group (RTOG) and modified Late Effects Normal Tissue Task Force (LENT) scales. Patients with a preexisting history of either Type I or Type II diabetes mellitus were coded as diabetics. Results: One hundred twenty-one patients had diabetes (13% of total). Rates of acute morbidity did not differ between diabetics and nondiabetics; however, diabetics experienced significantly more late grade 2 GI toxicity (28% vs. 17%, p = 0.011) and late grade 2 GU toxicity (14% vs. 6%, p 0.001). There was a trend toward increased late grade 3 and 4 GI complications in diabetics, but not for late grade 3 and 4 GU complications; however, the total number of recorded events for these categories was small. Examining the onset of late toxicity, diabetics developed GU complications earlier than nondiabetics (median: 10 months vs. 24 months, p = 0.02). Considering age, dose, rectal blocking, field size, and history of diabetes in a stepwise multivariate regression model for late grade 2 GI toxicity, dose (p 0.0001), diabetes (p = 0.0110), and rectal blocking (p = 0.0163) emerged independently predictive for complications. For late grade 2 GU toxicity, only the presence of diabetes remained independently significant

  6. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1993-12-01

    In this project the author has proposed several mechanisms for radiation damage to DNA and its constituents, and has detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. In this years work he has completed several experiments on the role of hydration water on DNA radiation damage, continued the investigation of the localization of the initial charges and their reactions on DNA, investigated protonation reactions in DNA base anions, and employed ab initio molecular orbital theory to gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics evolved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this years work to a consideration of ionization energies of various components of the DNA deoxyribose backbone and resulting neutral sugar radicals. This information has aided the formation of new radiation models for the effect of radiation on DNA. During this fiscal year four articles have been published, four are in press, one is submitted and several more are in preparation. Four papers have been presented at scientific meetings. This years effort will include another review article on the open-quotes Electron Spin Resonance of Radiation Damage to DNAclose quotes

  7. Quantification of late complications after radiation therapy

    International Nuclear Information System (INIS)

    Jung, Horst; Beck-Bornholdt, Hans-Peter; Svoboda, Vladimir; Alberti, Winfried; Herrmann, Thomas

    2001-01-01

    Background: An increasing number of patients survive cancer after having received radiation therapy. Therefore, the occurrence of late normal tissue complications among long-term survivors is of particular concern. Methods: Sixty-three patients treated by radical surgery and irradiation for rectal carcinoma were subjected to an unconventional sandwich therapy. Preoperative irradiation was given in four fractions of 5 Gy each applied within 2 or 3 days; postoperative irradiation consisted mostly of 15x2 Gy (range, 20-40 Gy). A considerable proportion of these patients developed severe late complications (Radiother Oncol 53 (1999) 177). The data allowed a detailed analysis of complication kinetics, leading to a new model which was tested using data from the literature. Results: Data on late complications were obtained for eight different organs with a follow-up of up to 10 years. For the various organs, the percentage of patients being free from late complications, plotted as a function of time after start of radiation therapy, was adequately described by exponential regression. From the fit, the parameter p a was obtained, which is the percentage of patients at risk in a given year of developing a complication in a given organ during that year. The rate p a remained about constant with time. Following sandwich therapy, the annual incidence of complications in the bladder, ileum, lymphatic and soft tissue, and ureters was about the same (p a =10-14%/year), whereas complications in bone or dermis occurred at lower rates (4.7 or 7.5%/year, respectively). Discussion: Numerous data sets collected from published reports were analyzed in the same way. Many of the data sets studied were from patients in a series where there was a high incidence of late effects. Three types of kinetics for the occurrence of late effects after radiotherapy were identified: Type 1, purely exponential kinetics; Type 2, exponential kinetics, the slope of which decreased exponentially with time

  8. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    International Nuclear Information System (INIS)

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; Ravelli, Raimond B. G.; Carmichael, Ian; Kneale, Geoff; McGeehan, John E.

    2015-01-01

    Quantitative X-ray induced radiation damage studies employing a model protein–DNA complex revealed a striking partition of damage sites. The DNA component was observed to be far more resistant to specific damage compared with the protein. Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1 —C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses

  9. Molecular mechanisms in radiation damage to DNA

    International Nuclear Information System (INIS)

    Osman, R.

    1991-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypothesis regarding the processes of impairment of regulation of gene expression, alternation in DNA repair, and damage to DNA structure involved in cell death or cancer

  10. Measurement of radiation damage on an optical reflector

    International Nuclear Information System (INIS)

    Peng, K.C.; Sahu, S.K.; Huang, H.C.; Ueno, K.; Chang, Y.H.; Wang, C.H.; Hou, W.S.

    1997-01-01

    We measured the radiation damage on an optical white fluorocarbon reflector called Goretex, which is to be used for aerogel threshold counters and crystal calorimeters of the BELLE detector of the KEK B-factory. Reflectance of the Goretex surface was monitored to see any effect of the radiation damage. Maximum equivalent dose was 8.6 Mrad. No radiation damage is observed within measurement errors. (orig.)

  11. Late effects of radiation: host factors

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Storer, J.B.

    1983-01-01

    The paper discusses the influence of host factors on radiation late effects and in particular cancer. Radiation induces cellular changes that result in initiated cells with a potential to become cancers. The expression of the initiated cells as tumors is influenced, if not determined, by both tissue and systemic factors that are sex-, age-, and species-dependent

  12. The late biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-15

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  13. Radiation dose and late failures in prostate cancer

    International Nuclear Information System (INIS)

    Morgan, Peter B.; Hanlon, Alexandra L.; Horwitz, Eric M.; Buyyounouski, Mark K.; Uzzo, Robert G.; Pollack, Alan

    2007-01-01

    Purpose: To quantify the impact of radiation dose escalation on the timing of biochemical failure (BF) and distant metastasis (DM) for prostate cancer treated with radiotherapy (RT) alone. Methods: The data from 667 men with clinically localized intermediate- and high-risk prostate cancer treated with three-dimensional conformal RT alone were retrospectively analyzed. The interval hazard rates of DM and BF, using the American Society for Therapeutic Radiology and Oncology (ASTRO) and Phoenix (nadir + 2) definitions, were determined. The median follow-up was 77 months. Results: Multivariate analysis showed that increasing radiation dose was independently associated with decreased ASTRO BF (p < 0.0001), nadir + 2 BF (p = 0.001), and DM (p = 0.006). The preponderance (85%) of ASTRO BF occurred at ≤4 years after RT, and nadir + 2 BF was more evenly spread throughout Years 1-10, with 55% of BF in ≤4 years. Radiation dose escalation caused a shift in the BF from earlier to later years. The interval hazard function for DM appeared to be biphasic (early and late peaks) overall and for the <74-Gy group. In patients receiving ≥74 Gy, a reduction occurred in the risk of DM in the early and late waves, although the late wave appeared reduced to a greater degree. Conclusion: The ASTRO definition of BF systematically underestimated late BF because of backdating. Radiation dose escalation diminished and delayed BF; the delay suggested that local persistence may still be present in some patients. For DM, a greater radiation dose reduced the early and late waves, suggesting that persistence of local disease contributed to both

  14. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-15

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  15. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    International Nuclear Information System (INIS)

    1963-01-01

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  16. Tissue responses to low protracted doses of high LET radiations or photons: Early and late damage relevant to radio-protective countermeasures

    Science.gov (United States)

    Ainsworth, E. J.; Afzal, S. M. J.; Crouse, D. A.; Hanson, W. R.; Fry, R. J. M.

    Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for γ-radiation. When total doses of 96 or 247 cGy of neutrons or γ rays were given as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and γ-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. After high single doses of neutrons or γ rays, a significant age- and radiation-related deficiency

  17. Radiation damage prediction system using damage function

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Mori, Seiji

    1979-01-01

    The irradiation damage analysis system using a damage function was investigated. This irradiation damage analysis system consists of the following three processes, the unfolding of a damage function, the calculation of the neutron flux spectrum of the object of damage analysis and the estimation of irradiation effect of the object of damage analysis. The damage function is calculated by applying the SAND-2 code. The ANISN and DOT3, 5 codes are used to calculate neutron flux. The neutron radiation and the allowable time of reactor operation can be estimated based on these calculations of the damage function and neutron flux. The flow diagram of the process of analyzing irradiation damage by a damage function and the flow diagram of SAND-2 code are presented, and the analytical code for estimating damage, which is determined with a damage function and a neutron spectrum, is explained. The application of the irradiation damage analysis system using a damage function was carried out to the core support structure of a fast breeder reactor for the damage estimation and the uncertainty evaluation. The fundamental analytical conditions and the analytical model for this work are presented, then the irradiation data for SUS304, the initial estimated values of a damage function, the error analysis for a damage function and the analytical results are explained concerning the computation of a damage function for 10% total elongation. Concerning the damage estimation of FBR core support structure, the standard and lower limiting values of damage, the permissible neutron flux and the allowable years of reactor operation are presented and were evaluated. (Nakai, Y.)

  18. Late skin damage in rabbits and monkeys after exposure to particulate radiations

    Science.gov (United States)

    Bergtold, D. S.; Cox, A. B.; Lett, J. T.; Su, C. M.

    Skin biopsies were taken from the central regions of the ears of New Zealand white rabbits following localized exposure of one ear of each rabbit to 530 MeV/amu Ar or 365 MeV/amu Ne ions. The unirradiated ears served as controls. Biopsies were taken also from the chests and inner thighs of rhesus monkeys after whole-body exposure to 32 MeV protons and from unirradiated control animals. The linear energy transfers (LET∞'s) for the radiations were 90 +/- 5, 35 +/- 3, and ~1.2 keV/μm, respectively. In the rabbit studies, explants were removed with a 2 mm diameter dermal punch at post-irradiation times up to five years after exposure. Similar volumes of monkey tissue were taken from skin samples excised surgically 16-18 years following proton irradiation. Fibroblast cultures were initiated from the explants and were propagated in vitro until terminal senescence (cessation of cell division) occurred. Cultures from irradiated tissue exhibited decreases in doubling potential that were dependent on radiation dose and LET∞ and seemed to reflect damage to stem cell populations. The implications of these results for astronauts exposed to heavy ions and/or protons in space include possible manifestations of residual effects in the skin many years after exposure (e.g. unsatisfactory responses to trauma or surgery).

  19. Fundamental Technology Development for Radiation Damage in Nuclear Materials

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kwon, J. H.; Kim, E. S. and others

    2005-04-01

    This project was performed to achieve technologies for the evaluation of radiation effects at materials irradiated at HANARO and nuclear power plants, to establish measurement equipment and software for the analysis of radiation defects and to set up facilities for the measurements of radiation damage with non-destructive methods. Major targets were 1) establishment of hot laboratories and remote handling facilities/ technologies for the radioactive material tests, 2) irradiation test for the simulation of nuclear power plant environment and measurement/calculation of physical radiation damage, 3) evaluation and analysis of nano-scale radiation damage, 4) evaluation of radiation embrittlement with ultrasonic resonance spectrum measurement and electromagnetic measurement and 5) basic research of radiation embrittlement and radiation damage mechanism. Through the performance of 3 years, preliminary basics were established for the application research to evaluation of irradiated materials of present nuclear power plants and GEN-IV systems. Particularly the results of SANS, PAS and TEM analyses were the first output in Korea. And computer simulations of radiation damage were tried for the first time in Korea. The technologies will be developed for the design of GEN-IV material

  20. Radiation damage in a high Ni weld

    International Nuclear Information System (INIS)

    Brumovsky, M.; Kytka, M.; Kopriva, R.

    2015-01-01

    WWER-1000 RPV weld metals are characterized by a high content of nickel, mostly about 1.7 mass % with content of manganese around 0.8 mass % with a very low copper content - about 0.05 mass %. In such material some late blooming phase effect should be observed during irradiation. Such typical weld material was irradiated in the experimental reactor LVR-15 in N RI Rez at the irradiation temperature 290 C degrees and at five neutron fluences from 1.5 to 9.5 *10 23 m -2 (E>1 MeV). Charpy V-notch impact tests, static fracture toughness tests, tensile and hardness measurement were performed to obtain effect of neutron fluence on radiation hardening as well as embrittlement. Neutron fluence dependences of all these property changes have monotonic character but with a high neutron embrittlement exponent around 0.8. Scanning electron microscope of fracture surfaces showed no or very small portion of intercrystalline fracture. Transmission electron microscopy was performed on specimens from all neutron fluences. Only low density of black-dot damage has been observed. It is assumed that most of defect are dislocation loops. The late blooming phase which may be observed from results of mechanical properties are probably below the resolution of the used JEM-2010, i.e. 1.5 nm. (authors)

  1. Late effects from hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2004-06-01

    Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.

  2. Radiation exposure and chromosome damage

    International Nuclear Information System (INIS)

    Lloyd, D.

    1979-01-01

    Chromosome damage is discussed as a means of biologically measuring radiation exposure to the body. Human lymphocytes are commonly used for this test since the extent of chromosome damage induced is related to the exposure dose. Several hundred lymphocytes are analysed in metaphase for chromosome damage, particularly dicentrics. The dose estimate is made by comparing the observed dicentric yield against calibration curves, previously produced by in vitro irradiation of blood samples to known doses of different types of radiation. This test is useful when there is doubt that the film badge has recorded a reasonable whole body dose and also when there is an absence of any physical data. A case of deliberate exposure is described where the chromosome damage test estimated an exposure of 152 rads. The life span of cell aberrations is also considered. Regular checks on radiotherapy patients and some accidental overdose cases have shown little reduction in the aberration levels over the first six weeks after which the damage disappears slowly with a half-life of about three years. In conclusion, chromosome studies have been shown to be of value in resolving practical problems in radiological protection. (U.K.)

  3. Metamict state radiation damage in crystalline materials

    International Nuclear Information System (INIS)

    Haaker, R.F.; Ewing, R.C.

    1979-01-01

    Metamict minerals provide an excellent basis for the evaluation of long-term radiation damage effects, particularly such changes in physical and chemical properties as microfracturing, hydrothermal alteration, and solubility. This paper summarizes pertinent literature on metamictization and proposes experiments that are critical to the elucidation of structural controls on radiation damage in crystalline phases

  4. Synthetic Secoisolariciresinol Diglucoside (LGM2605 Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    Directory of Open Access Journals (Sweden)

    Anastasia Velalopoulou

    2017-11-01

    Full Text Available Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS, pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  5. Radiation damage and its repair in non-sporulating bacteria

    International Nuclear Information System (INIS)

    Moseley, B.E.B.

    1984-01-01

    A review is given of radiation damage and its repair in non-sporulating bacteria. The identification and measurement of radiation damage in the DNA of the bacteria after exposure to ultraviolet radiation and ionizing radiation is described. Measuring the extent of DNA repair and ways of isolating repair mutants are also described. The DNA repair mechanisms for UV-induced damage are discussed including photoreactivation repair, excision repair, post-replication recombination repair and induced error-prone repair. The DNA repair mechanisms for ionizing radiation damage are also discussed including the repair of both single and double-strand breaks. Other aspects discussed include the effects of growth, irradiation medium and recovery medium on survival, DNA repair in humans, the commercial use of UV and ionizing radiations and the future of ionizing irradiation as a food treatment process. (U.K.)

  6. Radiation damage for the spallation target of ADS

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    By using SHIELD codes system, the authors investigate the radiation damage, such as radiation damage cross section, displacement atom cross section and the rate of displacement atom, gas production cross section, the rate of gas production and the ratio, R, of the helium and displacement production rates in target, container window and spallation neutron source materials as W and Pb induced from intermediate energy proton and neutron incident. And the study of radiation damage in the thick Pb target with long 60 cm, radius 20 cm is presented

  7. Radiation damage in plastic scintillators

    International Nuclear Information System (INIS)

    Majewski, S.

    1990-01-01

    Results of radiation damage studies in plastic scintillators are reviewed and critically analyzed from the point of view of applications of plastic scintillators in calorimetric detectors for the SSC. Damage to transmission and to fluorescent yield in different conditions is discussed. New directions in R ampersand D are outlined. Several examples are given of the most recent data on the new scintillating materials made with old and new plastics and fluors, which are exhibiting significantly improved radiation resistance. With a present rate of a vigorous R D programme, the survival limits in the vicinity of 100 MRad seem to be feasible within a couple of years

  8. Late neuro endocrinological sequelae of radiation therapy

    International Nuclear Information System (INIS)

    Bieri, S.; Bernier, J.; Sklar, C.; Constine, L.

    1997-01-01

    When the hypothalamic-pituitary axis (HPA) is included in the treatment field in children and adults, a variety of neuroendocrine disturbances are more common than has been appreciated in the past. Clinical damage to the pituitary and thyroid glands usually occurs months to years after treatment, and is preceded by a long subclinical phase. Primary brain tumors represent the largest group of malignant solid tumors in children. The survival rates of 50 reported in the literature are achieved at the expense of late occurring effects. Radiation-induced abnormalities are generally dose-dependent. Growth hormone deficiency and premature sexual development can occur at doses as low as 18 Gy in conventional fractionation, and is the most common neuroendocrine problem in children. In patients treated with > 40 Gy on the HPA, deficiency of gonadotropins, thyroid stimulation hormone, and adrenocorticotropin (> 50 Gy), hyperprolactinemia can be seen, especially among young women. Most neuroendocrine disturbances that develop as a result of HPA can be treated efficiently, provided that an early detection of these endocrine dysfunctions abnormalities is done. (authors)

  9. [Mechanisms of electromagnetic radiation damaging male reproduction].

    Science.gov (United States)

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  10. Study on DNA damages induced by UV radiation

    International Nuclear Information System (INIS)

    Doan Hong Van; Dinh Ba Tuan; Tran Tuan Anh; Nguyen Thuy Ngan; Ta Bich Thuan; Vo Thi Thuong Lan; Tran Minh Quynh; Nguyen Thi Thom

    2015-01-01

    DNA damages in Escherichia coli (E. coli) exposed to UV radiation have been investigated. After 30 min of exposure to UV radiation of 5 mJ/cm"2, the growth of E. coli in LB broth medium was about only 10% in compared with non-irradiated one. This results suggested that the UV radiation caused the damages for E. coli genome resulted in reduction in its growth and survival, and those lesions can be somewhat recovered. For both solutions of plasmid DNAs and E. coli cells containing plasmid DNA, this dose also caused the breakage on single and double strands of DNA, shifted the morphology of DNA plasmid from supercoiled to circular and linear forms. The formation of pyrimidine dimers upon UV radiation significantly reduced when the DNA was irradiated in the presence of Ganoderma lucidum extract. Thus, studies on UV-induced DNA damage at molecular level are very essential to determine the UV radiation doses corresponding to the DNA damages, especially for creation and selection of useful radiation-induced mutants, as well as elucidation the protective effects of the specific compounds against UV light. (author)

  11. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  12. Molecular mechanisms in radiation damage to DNA: Final report

    International Nuclear Information System (INIS)

    Osman, R.

    1996-01-01

    The objectives of this work were to elucidate the molecular mechanisms that were responsible for radiation-induced DNA damage. The studies were based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA

  13. Radiation induced genetic damage in Aspergillus nidulans

    International Nuclear Information System (INIS)

    Georgiou, J.T.

    1984-01-01

    The mechanism by which ionizing radiation induces genetic damage in haploid and diploid conidia of Aspergillus nidulans was investigated. Although the linear dose-response curves obtained following low LET irradiation implied a 'single-hit' action of radiation, high LET radiations were much more efficient than low LET radiations, which suggests the involvement of a multiple target system. It was found that the RBE values for non-disjunction and mitotic crossing-over were very different. Unlike mitotic crossing-over, the RBE values for non-disjunction were much greater than for cell killing. This suggests that non-disjunction is a particularly sensitive genetical endpoint that is brought about by damage to a small, probably non-DNA target. Radiosensitisers were used to study whether radiation acts at the level of the DNA or some other cellular component. The sensitisation to electrons and/or X-rays by oxygen, and two nitroimidazoles (metronidazole and misonidazole) was examined for radiation induced non-disjunction, mitotic crossing-over, gene conversion, point mutation and cell killing. It was found that these compounds sensitised the cells considerably more to genetic damage than to cell killing. (author)

  14. Radiation damage monitoring in the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Seidel, Sally

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to an integrated luminosity 5.6 fb −1 is presented along with a comparison to a model. -- Highlights: ► Radiation damage monitoring via silicon leakage current is implemented in the ATLAS (LHC) pixel detector. ► Leakage currents measured are consistent with the Hamburg/Dortmund model. ► This information can be used to validate the ATLAS simulation model.

  15. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1985-07-01

    Radiation damage to DNA results from the direct interaction of radiation with DNA where positive ions, electrons and excited states are formed in the DNA, and the indirect effect where radical species formed in the surrounding medium by the radiation attack the DNA. The primary mechanism proposed for radiation damage, by the direct effect, is that positive and negative ions formed within the DNA strand migrate through the stacked DNA bases. The ions can then recombine, react with the DNA bases most likely to react by protonation of the anion and deprotonation or hydroxylation of the cation or transfer out of the DNA chain to the surrounding histone protein. This work as aimed at understanding the possible reactions of the DNA base ion radicals, as well as their initial distribution in the DNA strand. 31 refs

  16. Radiation damage of structural materials

    International Nuclear Information System (INIS)

    Koutsky, J.; Kocik, J.

    1994-01-01

    Maintaining the integrity of nuclear power plants (NPP) is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for reactor pressure vessels (RPV) and Zr-Nb alloys for fuel element cladding. The book is divided into seven main chapters, with the exception of the opening one and the chapter providing phenomenological background for the subject of radiation damage. Chapters 3-6 are devoted to RPV steels and chapters 7-9 to zirconium alloys, analyzing their radiation damage structure, changes of mechanical properties due to neutron irradiation as well as factors influencing the degree of their performance degradation. The recovery of damaged materials is also discussed. Considerable attention is paid to a comparison of VVER-type and western-type light-water materials

  17. Constructive and critical approach of the radiation damage simulation

    International Nuclear Information System (INIS)

    Becquart, Ch.

    2002-11-01

    This work deals with the problem of radiation damage in materials for applications in development of fission and nuclear fusion technologies. It is organised in 3 sections. In section 1 are presented the mechanisms of formation and the evolution kinetics of the primary damage. Section 2 is devoted to the study of the sensitivity of the radiation damage at different approximations. Section 3 discusses the contribution of the ab initio calculations to the study of radiation damage and more particularly the point defects in a dilute Fe-Cu ferritic alloy. This work is illustrated by several publications added in each section. (O.M.)

  18. Tooth-germ damage by ionizing radiation

    International Nuclear Information System (INIS)

    Sobkowiak, E.M.; Beetke, E.; Bienengraeber, V.; Held, M.; Kittner, K.H.

    1977-01-01

    Experiments on animals (four-week-old dogs) were conducted in an investigation made to study the possibility of dose-dependent tooth-germ damage produced by ionizing radiation. The individual doses were 50 R and 200 R, respectively, and they were administered once to three times at weekly intervals. Hyperemia and edemata could be observed on tooth-germ pulps from 150 R onward. Both of these conditions became more acute as the radiation dose increased (from 150 R to 600 R). Possible damage to both the dentin and enamel is pointed out. (author)

  19. Radiation damage to DNA: the effect of LET

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J F; Milligan, J R [California Univ., San Diego, La Jolla, CA (United States). School of Medicine

    1997-03-01

    Mechanisms whereby ionizing radiation induced damage are introduced into cellular DNA are discussed. The types of lesions induced are summarized and the rationale is presented which supports the statement that radiation induced singly damaged sites are biologically unimportant. The conclusion that multiply damaged sites are critical is discussed and the mechanisms whereby such lesions are formed are presented. Structures of multiply damaged sites are summarized and problems which they present to cellular repair systems are discussed. Lastly the effects of linear energy transfer on the complexity of multiply damaged sites are surveyed and the consequences of this increased complexity are considered in terms of cell survival and mutation. (author)

  20. Radiation damage analysis by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1979-01-01

    The application of positron annihilation spectroscopy (PAS) to the characterization and study of defects in metals produced by radiation damage is discussed. The physical basis for the positron annihilation techniques (lifetime, Doppler broadening, angular correlation) is introduced and the techniques briefly described. Some examples of the application of PAS to radiation damage analysis are presented with a view toward elucidating the particular advantages of PAS over more traditional defect characterization techniques

  1. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  2. Thermal annealing of natural, radiation-damaged pyrochlore

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter; Mihailova, Boriana [Hamburg Univ. (Germany). Dept. of Earth Sciences; Beirau, Tobias [Hamburg Univ. (Germany). Dept. of Earth Sciences; Stanford Univ., CA (United States). Dept. of Geological Sciences; and others

    2017-03-01

    Radiation damage in minerals is caused by the α-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1000 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia [6.4 wt% Th, 23.1.10{sup 18} α-decay events per gram (dpg)], Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28%, Blue River 85% and Miass 100% according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (M. T. Vandenborre, E. Husson, Comparison of the force field in various pyrochlore families. I. The A{sub 2}B{sub 2}O{sub 7} oxides. J. Solid State Chem. 1983, 50, 362, S. Moll, G. Sattonnay, L. Thome, J. Jagielski, C. Decorse, P. Simon, I. Monnet, W. J. Weber, Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes. Phys. Rev. 2011, 84, 64115.), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} divided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlore (Miass) shows an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K, while the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K

  3. Pathology of radiation induced lung damage

    International Nuclear Information System (INIS)

    Kawabata, Yoshinori; Murata, Yoshihiko; Ogata, Hideo; Katagiri, Shiro; Sugita, Hironobu; Iwai, Kazuo; Sakurai, Isamu.

    1985-01-01

    We examined pathological findings of radiation induced lung damage. Twenty-three cases are chosen from our hospital autopsy cases for 9 years, which fulfil strict criteria of radiation lung damage. Lung damage could be classified into 3 groups : 1) interstitial pneumonia type (9 cases), 2) intermediate pneumonia type (8 cases), and 3) alveolar pneumonia type (6 cases), according to the degree of intra-luminal exudation. These classification is well correlated with clinical findings. Pathological alveolar pneumonia type corresponds to symptomatic, radiologic ground glass pneumonic shadow. And pathologic interstitial type corresponds to clinical asymptomatic, radiologic reticulo-nodular shadow. From the clinico-pathological view point these classification is reasonable one. Radiation affects many lung structures and showed characteristic feature of repair. Elastofibrosis of the alveolar wall is observed in every cases, obstructive bronchiolitis are observed in 5 cases, and obstructive bronchiolitis in 9 cases. They are remarkable additional findings. Thickening of the interlobular septum, broncho-vascular connective tissue, and pleural layer are observed in every cases together with vascular lesions. (author)

  4. Acoustic emission sensor radiation damage threshold experiment

    International Nuclear Information System (INIS)

    Beeson, K.M.; Pepper, C.E.

    1994-01-01

    Determination of the threshold for damage to acoustic emission sensors exposed to radiation is important in their application to leak detection in radioactive waste transport and storage. Proper response to system leaks is necessary to ensure the safe operation of these systems. A radiation impaired sensor could provide ''false negative or false positive'' indication of acoustic signals from leaks within the system. Research was carried out in the Radiochemical Technology Division at Oak Ridge National Laboratory to determine the beta/gamma radiation damage threshold for acoustic emission sensor systems. The individual system consisted of an acoustic sensor mounted with a two part epoxy onto a stainless steel waveguide. The systems were placed in an irradiation fixture and exposed to a Cobalt-60 source. After each irradiation, the sensors were recalibrated by Physical Acoustics Corporation. The results were compared to the initial calibrations performed prior to irradiation and a control group, not exposed to radiation, was used to validate the results. This experiment determines the radiation damage threshold of each acoustic sensor system and verifies its life expectancy, usefulness and reliability for many applications in radioactive environments

  5. Radiation damage testing at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Chinowsky, W.; Thun, R.

    1990-06-01

    A Task Force on Radiation Damage Testing met at the SSC Laboratory on March 5--6, 1990. This Task Force was asked to assess the availability of appropriate facilities for radiation damage tests of SSC detector materials and components. The Task Force was also instructed to review the techniques and standards for conducting such tests. Semiconductors were considered separately from other detector materials. Radiation damage test of electronic devices generally require exposures to both ionizing radiation and neutrons, whereas non-electric components such as plastic scintillating materials, adhesives, cable insulation, and other organic polymers are adequately tested with ionizing radiation only. Test standards are discussed with respect to irradiation techniques, environmental factors, dosimetry, and mechanisms whereby various materials are damaged. It is emphasized that radiation sources should be chosen to duplicate as much as possible the expected SSC environment and that the effects from ionizing particles and from neutrons be investigated separately. Radiation damage tests at reactors must be designed with particular care complex spectra of neutrons and gamma rays are produced at such facilities. It is also essential to investigate dose-rate effects since they are known to be important in many cases. The required irradiations may last several months and are most easily carried out with dedicated radioactive sources. Environmental factors such as the presence of oxygen when testing plastic scintillators, or temperature when measuring semiconductor annealing effects, must also be taken into account. The importance of reliable dosimetry is stressed and suitable references cited. Finally, it is noted that an understanding of the mechanisms for radiation damage in semiconductor and other materials is important in planning irradiations and evaluating results

  6. Imperfection and radiation damage in protein crystals studied with coherent radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nave, Colin, E-mail: colin.nave@diamond.ac.uk [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Sutton, Geoff [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf; Owen, Robin; Rau, Christoph [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian [University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Stuart, David Ian [Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-01-01

    Coherent diffraction observations from polyhedra crystals at cryotemperature are reported. Information is obtained about the lattice strain and the changes with radiation damage. Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage.

  7. Imperfection and radiation damage in protein crystals studied with coherent radiation

    International Nuclear Information System (INIS)

    Nave, Colin; Sutton, Geoff; Evans, Gwyndaf; Owen, Robin; Rau, Christoph; Robinson, Ian; Stuart, David Ian

    2016-01-01

    Coherent diffraction observations from polyhedra crystals at cryotemperature are reported. Information is obtained about the lattice strain and the changes with radiation damage. Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage

  8. Radiation-induced neuropathies: collateral damage of improved cancer prognosis

    International Nuclear Information System (INIS)

    Pradat, Pierre-Francois; Maisonobe, Thierry; Psimaras, Dimitri; Lenglet, Timothee; Porcher, Raphael; Lefaix, J.L.; Delenian, S.

    2012-01-01

    Because of the improvement of cancer prognosis, long-term damages of treatments become a medical and public health problem. Among the iatrogenic complications, neurological impairment is crucial to consider since motor disability and pain have a considerable impact on quality of life of long cancer survivors. However, radiation-induced neuropathies have not been the focus of great attention. The objective of this paper is to provide an updated review about the radiation-induced lesions of the peripheral nerve system. Radiation-induced neuropathies are characterized by their heterogeneity in both symptoms and disease course. Signs and symptoms depend on the affected structures of the peripheral nerve system (nerve roots, nerve plexus or nerve trunks). Early-onset complications are often transient and late complications are usually progressive and associated with a poor prognosis. The most frequent and well known is delayed radiation-induced brachial plexopathy, which may follow breast cancer irradiation. Radiation-induced lumbosacral radiculoplexopathy is characterized by pure or predominant lower motor neuron signs. They can be misdiagnosed, confused with amyotrophic lateral sclerosis (ALS) or with leptomeningeal metastases since nodular MRI enhancement of the nerve roots of the cauda equina and increased cerebrospinal fluid protein content can be observed. In the absence of specific markers of the link with radiotherapy, the diagnosis of post-radiation neuropathy may be difficult. Recently, a posteriori conformal radiotherapy with 3D dosimetric reconstitution has been developed to link a precise anatomical site to unexpected excess irradiation. The importance of early diagnosis of radiation-induced neuropathies is underscored by the emergence of new disease-modifying treatments. Although the pathophysiology is not fully understood, it is already possible to target radiation-induced fibrosis but also associated factors such as ischemia, oxidative stress and

  9. Radiation Damage Monitoring in the ATLAS Pixel Detector

    CERN Document Server

    Seidel, S

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to integrated luminosity 5.6 fb$^{-1}$ is presented along with a comparison to the theoretical model.

  10. Experimental studies on radiation damages of CsI(Tl) crystals

    International Nuclear Information System (INIS)

    He Jingtang; Mao Yufang; Dong Xiaoli; Chen Duanbao; Li Zuhao

    1997-01-01

    The results of experimental studies on radiation damage of CsI(Tl) crystal were reported. There are radiation damage effects on CsI(Tl) crystal. Experimental studies on recovery of damaged CsI(Tl) crystals were made. It seems that after heating at 200 degree C for 4 hours, the damaged crystals could be recovered completely

  11. Late consequences of ARS survivors of different γβ- and γη-radiation injuries

    International Nuclear Information System (INIS)

    Nadejina, N.M.; Galstian, I.A.; Savitsky, A.A.; Rtischeva, J.N.; Uvacheva, I.V.; Kashirina, O.G.

    2000-01-01

    Purpose: to study of health in the late consequences period the acute radiation syndrome (ARS) survivors of different radiation accidents took place in former USSR since 1953. Method: clinical observation, clinical database. Results: radiation cataract were revealed at the survivors who have undergone relatively uniform γβ-radiation exposure in a doze not less 2.0 Gy. At non-uniform γη-radiation exposure the cataract development was observed at smaller dozes for bone marrow. The local radiation injures of skin were observed at relatively uniform γβ- and at non-uniform γη-radiation exposure. The main factors for working disability are the presence of relapsing late radiation ulcers in the late period of local γβ-injures 2-4 degrees and the presence of amputation stumps at γη-radiation exposure. For oncologic diseases developed in the period of late consequences of ARS the dose dependence is not revealed. Transient different changes of blood parameters are not dose dependent. The repeated (relatively stable) changes, as a rule, are connected to presence of heavy accompanying diseases (chronic hepatitis, myelodysplastic syndrome, family neutropenia). We observed development of chronic myeloleukemia at the ARS survivor. Hospital morbidity of these groups of ARS survivors demonstrates absence of the radiation influence to development of somatic pathology in the period of the late consequences. Conclusion: health of the ARS survivors in the late consequences period is determined by presence of consequences of local radiation injures of skin, radiation cataract and different concurrent somatic diseases. The type of irradiation (γβ- and γη-) in many respects determines the speed of occurrence, expression and some clinical features of the late consequences of local radiation injures. (author)

  12. Molecular mechanisms in radiation damage to DNA. Progress report

    International Nuclear Information System (INIS)

    Osman, R.

    1994-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypotheses regarding the processes of impairment of regulation of gene expression, alteration in DNA repair, and damage to DNA structure involved in cell death or cancer

  13. Radiation Damage and Dimensional Changes

    International Nuclear Information System (INIS)

    El-Barbary, A.A.; Lebda, H.I.; Kamel, M.A.

    2009-01-01

    The dimensional changes have been modeled in order to be accommodated in the reactor design. This study has major implications for the interpretation of damage in carbon based nuclear fission and fusion plant materials. Radiation damage of graphite leads to self-interstitials and vacancies defects. The aggregation of these defects causes dimensional changes. Vacancies aggregate into lines and disks which heal and contract the basal planes. Interstitials aggregate into interlayer disks which expand the dimension

  14. Impact of late radiation effects on cancer survivor children: an integrative review

    International Nuclear Information System (INIS)

    Coura, Cibeli Fernandes; Modesto, Patrícia Cláudia; Coura, Cibeli Fernandes; Modesto, Patrícia Cláudia

    2016-01-01

    We aimed to identify the late effects of radiation exposure in pediatric cancer survivors. An integrated literature review was performed in the databases MEDLINE and LILACS and SciELO. Included were articles in Portuguese and English, published over the past 10 years, using the following keywords: “neoplasias/neoplasms” AND “radioterapia/radiotherapy” AND “radiação/radiation”. After analysis, 14 articles - published in nine well-known journals - met the inclusion criteria. The publications were divided into two categories: “Late endocrine effects” and “Late non-endocrine effects”. Considering the increased survival rates in children who had cancer, the impact of late effects of exposure to radiation during radiological examinations for diagnosis and treatment was analyzed. Childhood cancer survivors were exposed to several late effects and should be early and regularly followed up, even when exposed to low radiation doses

  15. Impact of late radiation effects on cancer survivor children: an integrative review

    Energy Technology Data Exchange (ETDEWEB)

    Coura, Cibeli Fernandes; Modesto, Patrícia Cláudia [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Coura, Cibeli Fernandes; Modesto, Patrícia Cláudia [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil)

    2016-07-01

    We aimed to identify the late effects of radiation exposure in pediatric cancer survivors. An integrated literature review was performed in the databases MEDLINE and LILACS and SciELO. Included were articles in Portuguese and English, published over the past 10 years, using the following keywords: “neoplasias/neoplasms” AND “radioterapia/radiotherapy” AND “radiação/radiation”. After analysis, 14 articles - published in nine well-known journals - met the inclusion criteria. The publications were divided into two categories: “Late endocrine effects” and “Late non-endocrine effects”. Considering the increased survival rates in children who had cancer, the impact of late effects of exposure to radiation during radiological examinations for diagnosis and treatment was analyzed. Childhood cancer survivors were exposed to several late effects and should be early and regularly followed up, even when exposed to low radiation doses.

  16. The treatment of late radiation skin ulcers by laser radiation

    International Nuclear Information System (INIS)

    Kim, Yu.A.; Klimanov, M.E.; Bardychev, M.S.

    1985-01-01

    There are presented the results of laser stimulation of reparation processes in 25 patients with late radiation skin ulcers. Short-term therapeutic results turned out to be favorable in 18 (72%) patients, a complete cicatrization of ulcers was observed in 9 patients, significant improvement in 9

  17. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  18. Radiation damage of polymers in ultrasonic fields

    International Nuclear Information System (INIS)

    Anbalagan, Poornnima

    2008-01-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  19. Raman study of radiation-damaged zircon under hydrostatic compression

    Science.gov (United States)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  20. DNA damage caused by ionizing radiation

    International Nuclear Information System (INIS)

    Sachs, R.K.; Peili Chen; Hahnfeldt, P.J.; Klatky, L.R.

    1992-01-01

    A survey is given of continuous-time Markov chain models for ionizing radiation damage to the genome of mammalian cells. In such models, immediate damage induced by the radiation is regarded as a batch-Poisson arrival process of DNA double-strand breaks (DSBs). Enzymatic modification of the immediate damage is modeled as a Markov process similar to those described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete-exchange model. The model postulates that, after being induced by radiation, DSBs subsequently either undergo enzymatically mediated restitution (repair) or participate pairwise in chromosome exchanges. Some of the exchanges make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. Methods for analyzing the Markov chains include using an approximate model for expected values, the discrete-time Markov chain embedded at transitions, partial differential equations for generating functions, normal perturbation theory, singular perturbation theory with scaling, numerical computations, and certain matrix methods that combine Perron-Frobenius theory with variational estimates. Applications to experimental results on expected values, variances, and statistical distributions of DNA lesions are briefly outlined. Continuous-time Markov chains are the most systematic of those radiation damage models that treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g., ignore diffusion limitations). They contain virtually all other relevant homogeneous models and semiempirical summaries as special cases, limiting cases, or approximations. However, the Markov models do not seem to be well suited for studying spatial dependence of DSB interactions. 51 refs., 5 figs

  1. Late effects of ionising radiation on the central nervous system of the rat

    International Nuclear Information System (INIS)

    Hubbard, B.M.

    1977-01-01

    This thesis investigated the role of neuroglial cells in the pathogenesis of delayed radionecrosis of the rat central nervous system (CNS) for up to one year after irradiation. The observed radiation induced changes in the cell kinetics of the subependymal plate of the brain were considered to be important in the development of white matter necrosis. White matter necrosis was apparent in the dorsal, ventral and lateral columns of the cervical cord but in the lumbar cord necrosis was only observed in the nerve bundles of the nerve roots. The glial cell population of the cervical cord was not static and a loss of oligodendrocytes appeared to be important in the development of white matter necrosis. Schwann cells also appeared to be involved in the development of nerve root necrosis of the lumbar cord. It is concluded that a gradual loss of radiation damaged, slowly turning-over supporting cells is the mechanism resulting in the development of late radiation necrosis in the mammalian CNS. The applications of these findings are considered. (UK)

  2. Measurement of radiation damage on an epoxy-based optical glue

    International Nuclear Information System (INIS)

    Huang, H.C.; Peng, K.C.; Sahu, S.K.; Ueno, K.; Chang, Y.H.; Wang, C.H.; Hou, W.S.

    1997-01-01

    We measured the radiation damage on an optical glue called Eccobond-24, which is a candidate for CsI and BGO crystal calorimeters of the BELLE detector of the KEK B-factory. Absorption spectrophotometry in the range 300-800 nm was used to monitor the radiation damage. The maximum equivalent dose was 1.64 Mrad. The glue shows effects of damage, but is acceptable for the radiation level in the above-mentioned experiment. (orig.)

  3. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  4. Assessment of acute and late effects to high-LET radiation

    International Nuclear Information System (INIS)

    Blakely, E.A.; Castro, J.R.; California Univ., San Francisco, CA

    1994-11-01

    We have begun to reassess late tissue effects available from the Charged Particle Cancer Radiotherapy program at Berkeley. Our quantitative approach is limited in the analysis of these Phase I/II studies by not having equivalent patient numbers for each of the particle beams studied, by not having completely comparable follow-up times, by variations in the sizes of the fields compared, by variations in the skin scoring photographic documentation available from the patient charts, and by variations in the fractionation sizes, numbers and schedules. Despite these limitations, preliminary evidence demonstrates acute skin reactions with a shift to increasing lower dose per fraction per field for the maximum skin reactions of helium, carbon and neon ions compared to electrons. Comparisons with skin reactions from low-energy neutrons indicate that Bragg peak carbon ions (initial energy 308 MeV/nucleon) are slightly less effective than 7.5 MeV neutrons. Bragg peak neon ions (initial energy 670 MeV/nucleon) corrected for differences in reference radiation are slightly more effective than 7.5 MeV neutrons. Bragg peak silicon (initial energy 670 MeV/nucleon) result in an enhanced acute skin reaction, and a premature appearance of late effects that may indicate a significantly different mechanism of damage and/or repair

  5. Monitoring radiation damage in the ATLAS pixel detector

    CERN Document Server

    Schorlemmer, André Lukas; Quadt, Arnulf; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  6. Enhancement of radiation damage in germinating wheat seeds by hyperthermia

    International Nuclear Information System (INIS)

    Guo Fangqing; Gu Ruiqi

    1994-01-01

    Enhancement of X-ray induced radiation damage in germinating wheat seeds by heat treatment (44 degree C or 41 degree C, 20 min) has been investigated. The enhancement effect of heat treatment after irradiation was more significant than that of heat treatment before irradiation at dose range of 4.3-8.6 Gy. It was observed that germinating wheat seeds were very sensitive to heat treatment within 15 min after irradiation, which indicated that the repair of radiation damage was very active and rapid in a short period after irradiation. The repair of radiation damage in interval of fractionated irradiation was severely inhibited by heat treatment. The sensitivity of seeds to heat treatment corresponded with the levels of their repair activities. The more active the repairs of the seeds are, the more sensitive to heat treatment the seeds show. It was assumed that the enhancement of radiation damage by heat treatment in germinating wheat seeds was attributed to the inhibition of radiation damage repair by heat treatment, which is similar to the results of animal experiments

  7. Effect of loperamide and delay of bowel motility on bile acid malabsorption caused by late radiation damage and ileal resection

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Olmos, R. (Nederlands Kanker Inst., Amsterdam (Netherlands). Dept. of Nuclear Medicine); Hartog Jager, F. den; Hoefnagel, C.; Taal, B. (Nederlands Kanker Inst., Amsterdam (Netherlands). Dept. of Gastroenterology)

    1991-05-01

    Selenium-75 homocholic acid conjugated with taurine ({sup 75}Se-HCAT) was used during loperamide administration in seven patients suspected of having bile acid malabsorption due to late radiation damage and small-bowel resection in order to document the aetiology of ileal dysfunction and to adjust therapeutic mamagement. In two patients with ileal resection up to 50 cm and in one patient without resection, a reduction of bowel motility by loperamide resulted in marked normalization of the {sup 75}Se-HCAT retention measurements. Sequential scintigraphic {sup 75}Se-HCAT imaging demonstrated a significant improvement in the {sup 75}Se-HCAT reabsorption and recirculation, accompanied in one case by prolongation of colonic retention of the radiopharmaceutical. In four patients with more than 80 cm resection, the {sup 75}Se-HCAT test was abnormal during loperamide administration. In two of these patients for whom baseline values were available, no improvement in the pattern of {sup 75}Se-HCAT absorption was observed. In conclusion, the first results of loperamide {sup 75}Se-HCAT in patients suspected of having bile acid malabsorption and abnormal baseline {sup 75}Se-HCAT are promising. Intervention with loperamide is easy and seems to improve the clinical value of the test with direct therapeutic implications. Sequential {sup 75}Se-HCAT imaging is essential for interpreting changes in the {sup 75}Se-HCAT retention measurements. (orig.).

  8. Development of fusion first-wall radiation damage facilities

    International Nuclear Information System (INIS)

    McElroy, R.J.; Atkins, T.

    1986-11-01

    The report describes work performed on the development of fusion-reactor first-wall simulation facilities on the Variable Energy Cyclotron, at Harwell, United Kingdom. Two irradiation facilities have been constructed: i) a device for helium and hydrogen filling up to 1000 ppm for post-irradiation mechanical properties studies, and ii) a helium implantation and damage facility for simultaneous injection of helium and radiation damage into a specimen under stress. These facilities are now fully commissioned and are available for investigations of first-wall radiation damage and for intercorrelation of fission- and fusion -reactor materials behaviour. (U.K.)

  9. Early mechanisms in radiation-induced biological damage

    International Nuclear Information System (INIS)

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical

  10. THE ROLE OF RADIATION ACCIDENTS AND INDUSTRIAL APPLICATIONS OF IONIZING RADIATION SOURCES IN THE PROBLEM OF RADIATION DAMAGE

    OpenAIRE

    Кіхтенко, Ігор Миколайович

    2016-01-01

    Subject of research – the relevance of radiation damage at modern development of industry and medicine. In the world of radiation sources used in different fields of practice and their application in the future will increase, which greatly increases the likelihood of injury in a significant contingent of people.Research topic – the definition of the role of nuclear energy and the industrial use of ionizing radiation sources in the problem of radiation damage. The purpose of research – identif...

  11. State of damage of radiation facilities in great Hanshin earthquake

    International Nuclear Information System (INIS)

    1995-01-01

    The southern Hyogo Prefecture earthquake of magnitude 7.2 occurred in the early morning of January 17, 1995. The outline of the earthquake and dead and injured, the damages of buildings, life lines, roads, railways and harbors, liquefaction phenomena, the state of occurrence of fires and so on are reported. The districts where the earthquakes of magnitude 5 or stronger occurred, and the radiation facilities in those districts are shown. The state of damage of radiation facilities in past earthquakes is summarized. From January 17 to 19 after the earthquake, Science and Technology Agency gave necessary instruction to and heard the state of damage from 79 permitted facilities in the areas of magnitude 7 or 6 by telephone, and received the report that there was not the fear of radiation damage in all facilities. Also the state of damage of radiation facilities was investigated at the actual places, and the questionnaires on the state of radiation facilities and the action at the time of the earthquake were performed. The state of radiation facilities accompanying the earthquake is reported. The matters to be reflected to the countermeasures to earthquakes anew for the protection of facilities, communication system, facility checkup system and the resumption of use are pointed out. (K.I.)

  12. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  13. Radiation damage in nuclear waste materials

    International Nuclear Information System (INIS)

    Jencic, I.

    2000-01-01

    Final disposal of high-level radioactive nuclear waste is usually envisioned in some sort of ceramic material. The physical and chemical properties of host materials for nuclear waste can be altered by internal radiation and consequently their structural integrity can be jeopardized. Assessment of long-term performance of these ceramic materials is therefore vital for a safe and successful disposal. This paper presents an overview of studies on several possible candidate materials for immobilization of fission products and actinides, such as spinel (MgAl 2 O 4 ), perovskite (CaTiO 3 ), zircon (ZrSiO 4 ), and pyrochlore (Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 ). The basic microscopic picture of radiation damage in ceramics consists of atomic displacements and ionization. In many cases these processes result in amorphization (metaminctization) of irradiated material. The evolution of microscopic structure during irradiation leads to various macroscopic radiation effects. The connection between microscopic and macroscopic picture is in most cases at least qualitatively known and studies of radiation induced microscopic changes are therefore an essential step in the design of a reliable nuclear waste host material. The relevance of these technologically important results on our general understanding of radiation damage processes and on current research efforts in Slovenia is also addressed. (author)

  14. Investigation of radiation damage effects in neutron irradiated CCD

    International Nuclear Information System (INIS)

    Brau, James E.; Igonkina, Olga; Potter, Chris T.; Sinev, Nikolai B.

    2005-01-01

    A Charge Coupled Devices (CCD)-based vertex detector is a leading option for vertex detection at the future linear collider. A major issue for this application is the radiation hardness of such devices. Tests of radiation hardness of CCDs used in the SLD vertex detector, VXD3, have been reported earlier. The first measurements of 1998 involved a spare VXD3 CCD that was irradiated with neutrons from a radioactive source (Pu-Be), and from a nuclear reactor. In 2003, we had the opportunity to disassemble the VXD3 detector and study the nature of the radiation damage it incurred during 3 years of operation at SLC. In the preparation for this study, additional experiments with the spare VXD3 CCD were performed. These included measurements of trapping times in neutron irradiated CCDs. Results, reported here, will help us better understand the mechanism of radiation damage effects and develop techniques to minimize performance degradation due to radiation damage

  15. Radiation damage to DNA: The importance of track structure

    CERN Document Server

    Hill, M A

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that...

  16. Radiation damage in CaF2: Gd

    International Nuclear Information System (INIS)

    Prado, L.

    1979-01-01

    Calcium fluoride crystals doped with Gd 3+ at four different concentrations were irradiated at room temperature. The damage produced by radiation and the primary and secondary effects as well were studied by optical spectroscopy. The increase in optical absorption (with loss of transparency) varied from sample as a function of concentration and dose. The coloration curves showed an evolution from two to three radiation damage steps when going from a pure to the most Gd 3+ concentrated sample. The obtained spectra were analysed at characteristic wave lenghts of electronic defects (photochromic centers, F and its aggregates) and of Gd 3+ and Gd 2+ defects. As a result of the radiation damage the valence change (Gd 3+ →Gd 2+ ) and its reversible character under thermal activation were directly observed. These effects were correlated with other observed effects such as the room temperature luminescence after the irradiation ceased. The non radiative F centers formation from the interaction of holes and photochromic centers was also observed and analysed. A thermal activation study of the several defects responsible for the different absorption bands was made. Values of activation energies were obtained as expected for the kind of defects involved in these processes [pt

  17. Radiation damage to DNA: The importance of track structure

    International Nuclear Information System (INIS)

    Hill, M.A.

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that biological response to radiation is not always restricted to the 'hit' cell but can sometimes be induced in 'un-hit' cells near by

  18. Tissue responses to low protracted doses of high let radiations or photons: Early and late damage relevant to radio-protective countermeasures

    International Nuclear Information System (INIS)

    Ainsworth, E.J.; Afzal, S.M.J.; Crouse, D.A.; Hanson, W.R.; Fry, R.J.M.

    1988-01-01

    Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for γ-radiation. When total doses of 96 or 247 cGy of neutrons or γ rays were given as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and γ-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. 63 refs., 6 figs., 7 tabs

  19. Radiation damage in DNA

    International Nuclear Information System (INIS)

    Lafleur, V.

    1978-01-01

    A number of experiments are described with the purpose to obtain a better insight in the chemical nature and the biological significance of radiation-induced damage in DNA, with some emphasis on the significance of alkali-labile sites. It is shown that not only reactions of OH radicals but also of H radicals introduce breaks and other inactivating damage in single-standed phiX174 DNA. It is found that phosphate buffer is very suitable for the study of the reactions of H radicals with DNA, as the H 2 PO 4 - ions convert the hydrated electrons into H radicals. The hydrated electron, which does react with DNA, does not cause a detectable inactivation. (Auth.)

  20. Ion - biomolecule interactions and radiation damage

    International Nuclear Information System (INIS)

    Schlathoelter, T.

    2004-01-01

    Full text: The biological effects of ionizing radiation in living cells are not a mere result of the direct impact of high energy quanta of radiation. Secondary particles such as low energy electrons, radicals and (multiply charged) ions are formed within the track. The interaction of these secondary particles with biologically relevant molecules is responsible for a large fraction of biological radiation damage to a cell, as well. Singly and multiply charged ions can be of importance as both, primary and secondary particles, and are known to cause severe biological damage. For instance, in heavy ion therapy and proton therapy the pronounced Bragg peak of fast (typically a few 100 MeV/u) ions in biological tissue is utilized. The Bragg peak is located at a depth, where the ions (mostly C q+ or protons) are slowed down to about 100 keV/u and have their maximum linear energy transfer (LET) to the medium. This depth is reasonably well defined and depends on the initial ion kinetic energy. Since the ions are rapidly stopped in this energy range, penetration beyond the Bragg peak is weak and it is thus possible to 'scan' the Bragg peak through a malignant tumour without excessive damage of the surrounding tissue by mere variation of the ion kinetic energy (i.e. the penetration depth). Severe biological damage is almost only possible, when the track of a primary quantum of ionizing radiation crosses the nucleus of a cell. Particularly the induction of double strand breaks of DNA or clustered DNA lesions is potentially lethal or mutagenic. A primary particle interacting with individual molecules within this environment leads to molecular excitation, ionization and fragmentation. In the process, the primary particle looses energy and slow secondary electrons and ions are formed, which might induce further damage. For a deep understanding of biological radiation damage on the level of individual molecules it is thus important to quantify excitation, ionization and

  1. Computer simulations of radiation damage in protein crystals; Simulationsrechnungen zu Strahlenschaeden an Proteinkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Zehnder, M

    2007-03-15

    The achievable resolution and the quality of the dataset of an intensity data collection for structure analysis of protein crystals with X-rays is limited among other factors by radiation damage. The aim of this work is to obtain a better quantitative understanding of the radiation damage process in proteins. Since radiation damage is unavoidable it was intended to look for the optimum ratio between elastically scattered intensity and radiation damage. Using a Monte Carlo algorithm physical processes after an inelastic photon interaction are studied. The main radiation damage consists of ionizations of the atoms through the electron cascade following any inelastic photon interaction. Results of the method introduced in this investigation and results of an earlier theoretical studies of the influence of Auger-electron transport in diamond are in a good agreement. The dependence of the radiation damage as a function of the energy of the incident photon was studied by computer-aided simulations. The optimum energy range for diffraction experiments on the protein myoglobin is 10-40 keV. Studies of radiation damage as a function of crystal volume and shape revealed that very small plate or rod shaped crystals suffer less damage than crystals formed like a cube with the same volume. Furthermore the influence of a few heavy atoms in the protein molecule on radiation damage was examined. Already two iron atoms in the unit cell of myoglobin increase radiation damage significantly. (orig.)

  2. Spallation radiation damage and the radiation damage facility at the LAMPF A-6 target station

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Sommer, W.F. (Los Alamos National Lab., NM (USA))

    1984-05-01

    A redesign of the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF) A-6 Target Station is underway that will permit materials irradiations to be conducted in the proton beam and in the spallation neutron environment under more controlled conditions than has been possible heretofore. The protons of energy near 800 MeV and beam current approaching one mA are able to produce radiation damage rates (displacement production rates) as high as can be achieved in fission reactors, and the damage is uniform over macroscopic dimensions. The spallation neutrons have a degraded fission spectrum energy distribution, with the important admixture of a high energy tail up to 800 MeV. Irradiations in these radiation environments can be used to address important problems in the development of materials for fusion reactors. The redesign of the A-6 Target Station is described and plans for its use are discussed.

  3. Late adverse effects of radiation therapy for rectal cancer - a systematic overview

    International Nuclear Information System (INIS)

    Birgisson, Helgi; Paahlman, Lars; Gunnarsson, Ulf; Glimelius, Bengt

    2007-01-01

    Purpose. The use of radiation therapy (RT) together with improvement in the surgical treatment of rectal cancer improves survival and reduces the risk for local recurrences. Despite these benefits, the adverse effects of radiation therapy limit its use. The aim of this review was to present a comprehensive overview of published studies on late adverse effects related to the RT for rectal cancer. Methods. Meta-analyses, reviews, randomised clinical trials, cohort studies and case-control studies on late adverse effects, due to pre- or postoperative radiation therapy and chemo-radiotherapy for rectal cancer, were systematically searched. Most information was obtained from the randomised trials, especially those comparing preoperative short-course 5x5 Gy radiation therapy with surgery alone. Results. The late adverse effects due to RT were bowel obstructions; bowel dysfunction presented as faecal incontinence to gas, loose or solid stools, evacuation problems or urgency; and sexual dysfunction. However, fewer late adverse effects were reported in recent studies, which generally used smaller irradiated volumes and better irradiation techniques; although, one study revealed an increased risk for secondary cancers in irradiated patients. Conclusions. These results stress the importance of careful patient selection for RT for rectal cancer. Improvements in the radiation technique should further be developed and the long-term follow-up of the randomised trials is the most important source of information on late adverse effects and should therefore be continued

  4. Late adverse effects of radiation therapy for rectal cancer - a systematic overview

    Energy Technology Data Exchange (ETDEWEB)

    Birgisson, Helgi; Paahlman, Lars; Gunnarsson, Ulf [Dept. of Surgery, Univ. Hospital, Univ. of Uppsala, Uppsala (Sweden); Glimelius, Bengt [Dept. of Oncology, Radiology and Clinical Immunology, Univ. Hospital, Univ. of Uppsala, Uppsala (Sweden); Dept. of Oncology and Pathology, Karolinska Inst., Stockholm (Sweden)

    2007-05-15

    Purpose. The use of radiation therapy (RT) together with improvement in the surgical treatment of rectal cancer improves survival and reduces the risk for local recurrences. Despite these benefits, the adverse effects of radiation therapy limit its use. The aim of this review was to present a comprehensive overview of published studies on late adverse effects related to the RT for rectal cancer. Methods. Meta-analyses, reviews, randomised clinical trials, cohort studies and case-control studies on late adverse effects, due to pre- or postoperative radiation therapy and chemo-radiotherapy for rectal cancer, were systematically searched. Most information was obtained from the randomised trials, especially those comparing preoperative short-course 5x5 Gy radiation therapy with surgery alone. Results. The late adverse effects due to RT were bowel obstructions; bowel dysfunction presented as faecal incontinence to gas, loose or solid stools, evacuation problems or urgency; and sexual dysfunction. However, fewer late adverse effects were reported in recent studies, which generally used smaller irradiated volumes and better irradiation techniques; although, one study revealed an increased risk for secondary cancers in irradiated patients. Conclusions. These results stress the importance of careful patient selection for RT for rectal cancer. Improvements in the radiation technique should further be developed and the long-term follow-up of the randomised trials is the most important source of information on late adverse effects and should therefore be continued.

  5. Mechanisms for radiation damage in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1987-01-01

    Several mechanisms are proposed for radiation damage to DNA and its constituents, and a series of experiments utilizing electron spin resonance spectrometry have been used to test the proposed mechanisms. In the past we have concentrated chiefly on investigating irradiated systems of DNA constituents. In this year's effort we have concentrated on radiation effects on DNA itself. In addition studies of radiation effects on lipids and model compounds have been performed which shed light on the only other proposed site for cell kill, the membrane

  6. Radiation damage in BaF2 crystals

    International Nuclear Information System (INIS)

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.

    1991-01-01

    The effects of radiation damage and recovery have been studied in BaF 2 crystals exposed to 60 Co radiation. The change in optical transmission and scintillation light output have been measured as a function of dose up to 4.7 x 10 6 rad. Although some crystals exhibit a small change in transmission, a greater change in scintillation light output is observed. Several 25 cm long crystals whichhave been irradiated show large changes in both transmission and light output. Recovery from radiation damage has been studied as a function of time and exposure to UV light. A long lived radiation induced phosphorescence has been observed in all irradiated samples which is distinct from the standard fast and slow scintillation emissions. The emission spectrum of the phosphorescence has been measured and shown a peakat ∼330 nm, near the region of the slow scintillation component. Results are given on the dependence of the decay time of the phosphorescence with dose

  7. Use of ethonium in the treatment of late radiation injuries of the skin, radiation cystitis and rectitis

    International Nuclear Information System (INIS)

    Bardychev, M.S.; Kurpesheva, A.K.; Petrik, V.D.

    1979-01-01

    Conducted has been investigation of therapeutic effectiveness of ethonium in 71 patients of late radiation injuries of the skin, urinary bladder and rectum. Local radiation injuries developed after radiotherapy of malignant tumours. Shown is comparatively low effectiveness of application of 0.5-2 % aqueous solutions and 2 % ethonium ointment in the expressed necrotic-inflammatory process in radiation ulcer of skin and its expressed effectiveness at granulating late radiation ulcers of skin. Application of 0.02-0.05 % ethonium solution in the form of microclusters and suppositories of 0.05 g of the preparation proved to be effective at catarrhal rectitis and rectosigmoids. An attempt to treat radiation cyctitis aroused aggravation of the inflammatory process of the mucous membrane off the ucinary bladder

  8. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Einor, D., E-mail: daniel@einor.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Bonisoli-Alquati, A., E-mail: andreabonisoli@gmail.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803 (United States); Costantini, D., E-mail: davidcostantini@libero.it [Department of Biology, University of Antwerp, Wilrijk, B-2610, Antwerp (Belgium); Mousseau, T.A., E-mail: mousseau@sc.edu [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Faculty of Bioscience and Biotechnology, Chubu University, Kasugai (Japan); Møller, A.P., E-mail: anders.moller@u-psud.fr [Laboratoire d' Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex (France)

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and − 0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. - Highlights: • There is interest in variation in metabolic effects of chronic low-dose ionizing radiation • A random effect meta-analysis of effect sizes of radioactive contamination was performed • We found significant effects of radiation on oxidative damage and antioxidant response • We found significant heterogeneity among

  9. Analysis of radiation damage in on-orbit solar array of Venus explorer Akatsuki

    International Nuclear Information System (INIS)

    Toyota, Hiroyuki; Shimada, Takanobu; Takahashi, You; Imamura, Takeshi; Hada, Yuko; Ishii, Takako T.; Isobe, Hiroaki; Asai, Ayumi; Shiota, Daikou

    2013-01-01

    This paper describes an analysis of radiation damage in solar array of Venus explorer Akatsuki observed on orbit. The output voltage of the solar array have shown sudden drops, which are most reasonably associated with radiation damage, three times since its launch. The analysis of these radiation damages is difficult, because no direct observation data of the spectra and the amount of the high-energy particles is available. We calculated the radiation damage using the relative damage coefficient (RDC) method assuming a typical spectral shape of protons. (author)

  10. Radiation Damage in the LHCb VELO

    CERN Multimedia

    Harrison, Jon

    2011-01-01

    The VErtex LOcator (VELO) is a silicon strip detector designed to reconstruct particle tracks and vertices produced by proton-proton interactions near to the LHCb interaction point. The excellent track resolution and decay vertex separation provided by the VELO are essential to all LHCb analyses. For the integrated luminosity delivered by the LHC up to the end of $2011$ the VELO is exposed to higher particle fluences than any other silicon detector of the four major LHC experiments. These proceedings present results from radiation damage studies carried out during the first two years of data taking at the LHC. Radiation damage has been observed in all of the $88$ VELO silicon strip sensors, with many sensors showing evidence of type-inversion in the highest fluence regions. Particular attention has been given to the two \

  11. Chemical protection from high LET radiation

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Matsushita, Satoru; Kanai, Tatsuaki; Ohara, Hiroshi

    1992-01-01

    Radioprotection by WR151327 from high LET fast neutrons was investigated and compared with that from low LET radiation. Radiation damage in bone marrow, intestine, skin and leg length were all protected by a pretreatment with 400 mg/kg WR151327. Most prominent protection was observed for bone marrow, which gave a Dose Modifying Factor (DMF) of 2.2 against γ rays. Identical protection was observed between early and late radiation damage. WR151327 protected fast neutrons less efficiently than γ rays; 40% for bone marrow and 80% for skin leg. Pathological findings indicated that hyperplastic change in both dermis and epidermis associated with late skin shrinkage. Laser doppler flow-metry showed a good relationship between reduction of blood flow and late skin shrinkage. Irradiation of skin by heavy particle Carbon-12 indicated that skin shrinkage was modified by unirradiated surrounding normal tissues, which proposed a significant role of 'Volume Effect' in radiation damage. Tumor tissues were less protected by WR151327 than normal tissues. Dependence of radioprotection by WR151327 on tissue oxygen concentration is a probable reason to explain the difference between normal and tumor tissues. (author)

  12. Activation and radiation damage in the environment of hadron accelerators

    CERN Document Server

    Kiselev, Daniela

    2013-01-01

    A component which suffers radiation damage usually also becomes radioactive, since the source of activation and radiation damage is the interaction of the material with particles from an accelerator or with reaction products. However, the underlying mechanisms of the two phenomena are different. These mechanisms are described here. Activation and radiation damage can have far-reaching consequences. Components such as targets, collimators, and beam dumps are the first candidates for failure as a result of radiation damage. This means that they have to be replaced or repaired. This takes time, during which personnel accumulate dose. If the dose to personnel at work would exceed permitted limits, remote handling becomes necessary. The remaining material has to be disposed of as radioactive waste, for which an elaborate procedure acceptable to the authorities is required. One of the requirements of the authorities is a complete nuclide inventory. The methods used for calculation of such inventories are presented,...

  13. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C., E-mail: prabhat-goswami@uiowa.edu

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  14. Radiation-damage calculations with NJOY

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Muir, D.W.; Mann, F.W.

    1983-01-01

    Atomic displacement, gas production, transmutation, and nuclear heating can all be calculated with the NJOY nuclear data processing system using evaluated data in ENDF/B format. Using NJOY helps assure consistency between damage cross sections and those used for transport, and NJOY provides convenient interface formats for linking data to application codes. Unique features of the damage calculation include a simple momentum balance treatment for radiative capture and a new model for (n, particle) reactions based on statistical model calculations. Sample results for iron and nickel are given and compared with the results of other methods

  15. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  16. Acute and late effects of multimodal therapy on normal tissues

    International Nuclear Information System (INIS)

    Phillips, T.L.; Fu, K.K.

    1977-01-01

    The increasing use of combined radiation, chemotherapy, and surgery has led to an increased incidence of acute and late complications. The complications are, in general, similar to those seen with each modality alone, but occur with increased incidence. Enhanced effects of combined radiation and surgery are modest in number and consist primarily of problems with wound healing and fibrosis, as well as late gastrointestinal damage. Combinations of radiotherapy and chemotherapy have shown a greater degree of enhanced acute and late reactions. Drugs, such as actinomycin-D and Adriamycin, are particularly dangerous if the marked enhancement of radiation effects caused by the drugs in almost all organs is not appreciated and the radiation dose not adjusted accordingly. Proper selection of drugs can lead to enhanced local control by radiotherapy and/or surgery, as well as eradication of microscopic distant metastases, without increased normal tissue injury. Late induction of malignancy can occur with either radiation or chemotherapy alone and, in some cases, this appears to be enhanced when they are combined

  17. Progress on clustered DNA damage in radiation research

    International Nuclear Information System (INIS)

    Yang Li'na; Zhang Hong; Di Cuixia; Zhang Qiuning; Wang Xiaohu

    2012-01-01

    Clustered DNA damage which caused by high LET heavy ion radiation can lead to mutation, tumorigenesis and apoptosis. Promoting apoptosis of cancer cells is always the basis of cancer treatment. Clustered DNA damage has been the hot topic in radiobiology. The detect method is diversity, but there is not a detail and complete protocol to analyze clustered DNA damage. In order to provide reference for clustered DNA damage in the radiotherapy study, the clustered DNA damage characteristics, the latest progresses on clustered DNA damage and the detecting methods are reviewed and discussed in detail in this paper. (authors)

  18. Compilation of radiation damage test data. Pt. 3

    International Nuclear Information System (INIS)

    Beynel, P.; Maier, P.; Schoenbacher, H.

    1982-01-01

    This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins. The irradiation have been carried out at various radiation sources and the results of the different tests are reported, sometimes illustrated by tables and graphs to show the variation of the measured property with absorbed radiation dose. For each entry, an appreciation of the radiation resistance is given, based on measurement data, indicating the range of damage (moderate to severe) for doses from 10 to 10 8 Gy. Also included are tables, selected from published reports, of general relative radiation effects for several groups of materials, to which there are systematic cross-references in the alphabetical part. This third and last volume contains cross-references to all the materials presented up to now, so that it can be used as a guide to the three volumes. (orig.)

  19. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G.; Castiglione, F.; Vanzi, E.; Bottoncetti, A.; Pupi, A.

    2011-01-01

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation

  20. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation

  1. The dependence of radiation damage analysis on neutron dosimetry

    International Nuclear Information System (INIS)

    Goland, A.N.; Parkin, D.M.

    1977-01-01

    The characteristics of defect production in neutron spectra can be determined by utilizing neutron cross section data (e.g. ENDF/B), detailed neutron spectral data and radiation damage models. The combination of neutron cross section and spectral data is a fundamental starting point in applying damage models. Calculations using these data and damage models show that there are significant differences in the way defects are produced in various neutron spectra. Nonelastic events dominate the recoil energy distribution in high-energy neutron sources such as those based upon fusion and deuteron-breakup reactions. Therefore, high-energy neutron cross sections must be measured or calculated to supplement existing data files. Radiation damage models can then be used to further characterize the diverse neutron spectra

  2. Late radiation effects: status and needs of epidemiologic research

    International Nuclear Information System (INIS)

    Miller, R.W.

    1974-01-01

    Epidemiologic studies of late radiation effects in man are reviewed, based on exposure to the atomic bomb, radiotherapy, diagnostic radiations, and occupational or accidental exposures. Areas studied include: genetic effects, fertility, immunology, cancer, congenital malformations, growth and development, aging, cataracts, psychiatric effects, interactions with drugs or viruses, host susceptibility, and radiation factors. Cancer areas discussed include leukemia; thyroid, lung, breast, bone, and liver cancers; lymphoma; salivary gland tumors; brain tumors; nonleukemia cancers; intrauterine exposures; and preconception irradiation and childhood cancers. (U.S.)

  3. XRCC3 polymorphisms are associated with the risk of developing radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with intensity modulation radiated therapy.

    Science.gov (United States)

    Zou, Yan; Song, Tao; Yu, Wei; Zhao, Ruping; Wang, Yong; Xie, Ruifei; Chen, Tian; Wu, Bo; Wu, Shixiu

    2014-03-01

    The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.

  4. Radiation-induced DNA damage as a function of DNA hydration

    International Nuclear Information System (INIS)

    Swarts, S.G.; Miao, L.; Wheeler, K.T.; Sevilla, M.D.; Becker, D.

    1995-01-01

    Radiation-induced DNA damage is produced from the sum of the radicals generated by the direct ionization of the DNA (direct effect) and by the reactions of the DNA with free radicals formed in the surrounding environment (indirect effect). The indirect effect has been believed to be the predominant contributor to radiation-induced intracellular DNA damage, mainly as the result of reactions of bulk water radicals (e.g., OH·) with DNA. However, recent evidence suggests that DNA damage, derived from the irradiation of water molecules that are tightly bound in the hydration layer, may occur as the result of the transfer of electron-loss centers (e.g. holes) and electrons from these water molecules to the DNA. Since this mechanism for damaging DNA more closely parallels that of the direct effect, the irradiation of these tightly bound water molecules may contribute to a quasi-direct effect. These water molecules comprise a large fraction of the water surrounding intracellular DNA and could account for a significant proportion of intracellular radiation-induced DNA damage. Consequently, the authors have attempted to characterize this quasi-direct effect to determine: (1) the extent of the DNA hydration layer that is involved with this effect, and (2) what influence this effect has on the types and quantities of radiation-induced DNA damage

  5. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; van de Geijn, J.; Goffman, T. (ROB, DCT, NCI, NIH, Bethesda, Maryland 20892 (US))

    1991-05-01

    In the conventional linear--quadratic model of single-dose response, the {alpha} and {beta} terms reflect lethal damage created {ital during} the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD.

  6. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    International Nuclear Information System (INIS)

    Chen, J.; van de Geijn, J.; Goffman, T.

    1991-01-01

    In the conventional linear--quadratic model of single-dose response, the α and β terms reflect lethal damage created during the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with ''unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD

  7. Radiation induced DNA damage and repair in mutagenesis

    International Nuclear Information System (INIS)

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1987-01-01

    The central theme in cellular radiobiological research has been the mechanisms of radiation action and the physiological response of cells to this action. Considerable effort has been directed toward the characterization of radiation-induced DNA damage and the correlation of this damage to cellular genetic change that is expressed as mutation or initiating events leading to cellular transformation and ultimately carcinogenesis. In addition, there has been a significant advancement in their understanding of the role of DNA repair in the process of mutation leading to genetic change in cells. There is extensive literature concerning studies that address radiation action in both procaryotic and eucaryotic systems. This brief report will make no attempt to summarize this voluminous data but will focus on recent results from their laboratory of experiments in which they have examined, at both the cellular and molecular levels, the process of ionizing radiation-induced mutagenesis in cultured human cells

  8. Automated analysis of damages for radiation in plastics surfaces

    International Nuclear Information System (INIS)

    Andrade, C.; Camacho M, E.; Tavera, L.; Balcazar, M.

    1990-02-01

    Analysis of damages done by the radiation in a polymer characterized by optic properties of polished surfaces, of uniformity and chemical resistance that the acrylic; resistant until the 150 centigrade grades of temperature, and with an approximate weight of half of the glass. An objective of this work is the development of a method that analyze in automated form the superficial damages induced by radiation in plastic materials means an images analyst. (Author)

  9. Radiobiological considerations of late effects arising from radiotherapy

    International Nuclear Information System (INIS)

    Kogelnik, H.D.; Kaercher, K.H.

    1977-01-01

    A variety of clinical and experimental data are reviewed to investigate the different factors leading to appearance of late complications. Higher individual doses per fraction are related to an increase in the incidence and severity of late effects and massive dose techniques result in catastrophic late complications. There is no apparent relation between the severity of initial skin reactions and late effects, indicating that matching of acute radiation reactions on skin or mucous membranes cannot be extrapolated to late damage in connective tissues and organs. The probability of late tissue injury increases with the volume of tissue irradiated. Several phenomena, e.g. parenchymal cell depletion, vascular injury and fibrocyte dysfunction, are likely to operate together as well as separately in the pathogenesis of late effects. The late complications of radiotherapy develop in cells with a slow proliferation, and this is consistent with the hypothesis that parenchymal cell killing may be the basis for the injury. The response of cells with a slow proliferation to a course of fractionated irradiation differs from that of rapidly proliferative cells in three biological processes: repair of potentially lethal damage, redistribution and regeneration. (author)

  10. Laser annealing heals radiation damage in avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Gyu [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)

    2017-12-15

    Avalanche photodiodes (APDs) are a practical option for space-based quantum communications requiring single-photon detection. However, radiation damage to APDs significantly increases their dark count rates and thus reduces their useful lifetimes in orbit. We show that high-power laser annealing of irradiated APDs of three different models (Excelitas C30902SH, Excelitas SLiK, and Laser Components SAP500S2) heals the radiation damage and several APDs are restored to typical pre-radiation dark count rates. Of nine samples we test, six APDs were thermally annealed in a previous experiment as another solution to mitigate the radiation damage. Laser annealing reduces the dark count rates further in all samples with the maximum dark count rate reduction factor varying between 5.3 and 758 when operating at -80 C. This indicates that laser annealing is a more effective method than thermal annealing. The illumination power to reach these reduction factors ranges from 0.8 to 1.6 W. Other photon detection characteristics, such as photon detection efficiency, timing jitter, and afterpulsing probability, fluctuate but the overall performance of quantum communications should be largely unaffected by these variations. These results herald a promising method to extend the lifetime of a quantum satellite equipped with APDs. (orig.)

  11. Computer simulation of radiation damage in NaCl using a kinetic rate reaction model

    International Nuclear Information System (INIS)

    Soppe, W.J.

    1993-01-01

    Sodium chloride and other alkali halides are known to be very susceptible to radiation damage in the halogen sublattice when exposed to ionizing radiation. The formation of radiation damage in NaCl has generated interest because of the relevance of this damage to the disposal of radioactive waste in rock salt formations. In order to estimate the long-term behaviour of a rock salt repository, an accurate theory describing the major processes of radiation damage in NaCl is required. The model presented in this paper is an extended version of the Jain-Lidiard model; its extensions comprise the effect of impurities and the colloid nucleation stage on the formation of radiation damage. The new model has been tested against various experimental data obtained from the literature and accounts for several well known aspects of radiation damage in alkali halides which were not covered by the original Jain-Lidiard model. The new model thus may be expected to provide more reliable predictions for the build-up of radiation damage in a rock salt nuclear waste repository. (Author)

  12. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method

  13. A review on radiation damage of erythrocyte membranes

    International Nuclear Information System (INIS)

    Wang Junling; Wang Weidong; Qin Guangyong

    2007-01-01

    Biomembrane has very important biological function. Its damage will seriously disturb the directivity, the orderly nature and coordination of cell metabolism, and finally causes the cell death. This paper reviewed the effects of radiation damage on erythrocyte membrane in membrane composition, membrane function and oxidation resistance system. (authors)

  14. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    Science.gov (United States)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  15. Primary radiation damage and disturbance in cell divisions

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun-Jong; Kim, Jae-Hun; Petin, Vladislav G.; Nili, Mohammad

    2008-01-01

    Survived cells from a homogeneous population exposed to ionizing radiation form various colonies of different sizes and morphology on a solid nutrient medium, which appear at different time intervals after irradiation. Such a phenomenon agrees well with the modern theory of microdosimetry and classical hit-and-target models of radiobiology. According to the hit-principle, individual cells exposed to the same dose of radiation are damaged in different manners. It means that the survived cells can differ in the content of sublethal damage (hits) produced by the energy absorbed into the cell and which is not enough to give rise to effective radiation damage which is responsible for cell killing or inactivation. In diploid yeast cells, the growth rate of cells from 250 colonies of various sizes appeared at different time intervals after irradiation with 600 Gy of gamma radiation from a 60 Co isotopic source was analyzed. The survival rate after irradiation was 20%. Based on the analyses results, it was possible to categorize the clones grown from irradiated cells according to the number of sub-lesions from 1 to 4. The clones with various numbers of sub-lesions were shown to be different in their viability, radiosensitivity, sensitivity to environmental conditions, and the frequency of recombination and respiratory deficient mutations. Cells from unstable clones exhibited an enhanced radiosensitivity, and an increased portion of morphologically changed cells, nonviable cells and respiration mutants, as well. The degree of expression of the foregoing effects was higher if the number of primary sublethal lesions was greater in the originally irradiated cell. Disturbance in cell division can be characterized by cell inactivation or incorrect distribution of mitochondria between daughter cells. Thus, the suggested methodology of identification of cells with a definite number of primary sublethal lesions will promote further elucidation of the nature of primary radiation

  16. Radiation damage in CTR magnet components

    International Nuclear Information System (INIS)

    Ullmaier, H.

    1976-01-01

    Data are reviewed (already existing or to be acquired) which should allow prediction of the behavior of large superconducting coils in the radiation field of a future fusion reactor. The electrical and mechanical stability of such magnets is determined by the irradiation induced deterioration of the magnet components, i.e., (a) changes in critical current, field and temperature of the superconductor (NbTi, A-15 phases), (b) resistivity increase in the stabilizer (Cu, Al), and (c) changes in mechanical and dielectric properties of insulators and spacers. Recent low temperature simulation experiments (with fission neutrons and heavy ions) show that the superconductor will not be the critical component of a fusion magnet--at least as far as radiation damage is concerned. Much more severe is the loss of stability due to the resistivity increase of the stabilizing material. It seems, however, that the magnitude of this effect can be predicted rather reliably and therefore taken into account in the coil design. Almost no data exist about the low temperature behavior of insulator and spacer materials in a radiation field. Furthermore, very little is known about the nature of the radiation damage in non-metals, which makes extrapolations of the few existing data to other materials or to other doses highly speculative. Only future experiments can decide if the insulators will be the limiting component of a CTR magnet or not

  17. The Status of Radiation Damage Experiments

    International Nuclear Information System (INIS)

    Strachan, Denis M.; Scheele, Randall D.; Icenhower, Jonathan P.; Kozelisky, Anne E.; Sell, Richard L.; Legore, Virginia L.; Schaef, Herbert T.; O'Hara, Matthew J.; Brown, Christopher F.; Buchmiller, William C.

    2001-01-01

    Experiments have been on-going for about two years to determine the effects that radiation damage have on the physical and chemical properties of candidate titanate ceramics for the immobilization of plutonium. We summarize the results of these experiments in this document

  18. Analysis of late toxicity in nasopharyngeal carcinoma patients treated with intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Zheng, YingJie; Han, Fei; Xiao, WeiWei; Xiang, YanQun; Lu, LiXia; Deng, XiaoWu; Cui, NianJi; Zhao, Chong

    2015-01-01

    To observe the late toxicities in nasopharyngeal carcinoma (NPC) patients who achieved long-term survival after intensity modulated radiation therapy (IMRT). 208 untreated NPC patients who received IMRT and survived more than five years with locoregional disease control and no metastasis were evaluated in this study. The prescription dose to the gross target volume of nasopharynx (GTVnx), positive neck lymph nodes (GTVnd), clinical target volume 1 (CTV1) and 2 (CTV2) was 68Gy/30f, 60-66Gy/30f, 60 Gy/30f and 54Gy/30f, respectively. The nasopharynx and upper neck targets were irradiated using IMRT, and the lower neck and supraclavicular fossae targets were irradiated using the half-beam technique with conventional irradiation. The late toxicities were evaluated according to the LENT/SOMA criteria of 1995. The median follow-up time was 78 months (60–96 months). The occurrence rates of cervical subcutaneous fibrosis, hearing loss, skin dystrophy, xerostomia, trismus, temporal lobe injury, cranial nerve damage, cataract, and brain stem injury induced by radiotherapy were 89.9%, 67.8%, 47.6%, 40.9%, 7.21%, 4.33%, 2.88%, 1.44%, and 0.48%, respectively. No spinal cord injury and mandible damage were found. Grade 3–4 late injuries were observed as follows: 1 (0.48%) skin dystrophy, 4 (1.92%) cervical subcutaneous fibrosis, 2 (0.96%) hearing loss, 2 (0.96%) cranial nerve palsy, and 1 (0.48%) temporal lobe necrosis. No grade 3–4 late injuries occurred in parotid, temporomandibular joints and eyes. Xerostomia decreased gradually over time and then showed only slight changes after 4 years. The change in the incisor distance stabilised by 1 year after RT, however, the incidence of hearing loss, skin dystrophy, subcutaneous fibrosis and nervous system injuries increased over time after RT. The late injuries in most NPC patients who had long-term survivals after IMRT are alleviated. Within the 5 years of follow-up, we found xerostomia decreased gradually; The change in the

  19. Radiation damage effect on avalanche photodiodes

    CERN Document Server

    Baccaro, S; Cavallari, F; Da Ponte, V; Deiters, K; Denes, P; Diemoz, M; Kirn, Th; Lintern, A L; Longo, E; Montecchi, M; Musienko, Y; Pansart, J P; Renker, D; Reucroft, S; Rosi, G; Rusack, R; Ruuska, D; Stephenson, R; Torbet, M J

    1999-01-01

    Avalanche Photodiodes have been chosen as photon sensors for the electromagnetic calorimeter of the CMS experiment at the LHC. These sensors should operate in the 4T magnetic field of the experiment. Because of the high neutron radiation in the detector extensive studies have been done by the CMS collaboration on the APD neutron radiation damage. The characteristics of these devices after irradiation have been analized, with particular attention to the quantum efficiency and the dark current. The recovery of the radiation induced dark current has been studied carefully at room temperature and at slightly lower and higher temperatures. The temperature dependence of the defects decay-time has been evaluated.

  20. Radiation damage in lithium orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K.; Nakazawa, T.; Ishii, Y.; Fukai, K.; Watanabe, H. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment); Matsui, H.; Vollath, D.

    1993-11-01

    Radiation damage in lithium orthosilicate (Li[sub 4]SiO[sub 4]) and Al-doped Li[sub 4]SiO[sub 4] (Li[sub 3.7]Al[sub 0.1]SiO[sub 4]) irradiated with oxygen ions was studied with ionic conductivity measurements, Raman spectroscopy, Fourier transform infrared photo-acoustic spectroscopy (FT-IR PAS) and transmission electron microscopy. It was seen from the ionic conductivity measurements that lithium-ion vacancies were introduced as irradiation defects for Li-ions sites in both materials due to the irradiation. By the Raman spectroscopy, oxygen atoms in SiO[sub 4] tetrahedra were considered to be preferentially displaced due to the irradiation for Li[sub 4]SiO[sub 4], although only a decrease of the number of SiO[sub 4] tetrahedra occurred for Li[sub 3.7]Al[sub 0.1]SiO[sub 4] by displacement of both silicon and oxygen atoms. Decomposition of SiO[sub 4] tetrahedra and formation of some new phases having Si-O-Si and Si-O bonds were found to take place for both Li[sub 4]SiO[sub 4] and Li[sub 3.7]Al[sub 0.1]SiO[sub 4] by FT-IR PAS. In the electron microscopy, damage microstructure consisting of many voids or cavities and amorphization were observed for Li[sub 4]SiO[sub 4] irradiated with oxygen ions. The recovery behavior of radiation damage mentioned above was also investigated. (author).

  1. Radiation damage in natural and synthetic halite. Progress report January 1992 - February 1993

    International Nuclear Information System (INIS)

    Garcia Celma, A.

    1993-12-01

    This report complements the information presented in the report of December 1992 regarding the research performed at the ECN on radiation damage in salt. It consists of two parts. The first part regards the amount of stored energy which can be developed by gamma-irradiation on different types of halite and considers both the effect of low dose rates in developing radiation damage, and the possible saturation level of radiation damage in natural halite. The second part presents a model to simulate radiation damage development which incorporates some extensions in the Jain-Lidiard model. Due to malfunction of the Small Angle Neutron Scattering installation, neither the previously reported results nor the newly obtained can be trusted and therefore are not reported here. These results regard the shape, size and size distribution of radiation damage defects. (orig.)

  2. TU-CD-BRB-05: Radiation Damage Signature of White Matter Fiber Bundles Using Diffusion Tensor Imaging (DTI)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, T; Chapman, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States); Tsien, C [Washington University at St. Louis, St. Louis, MO (United States)

    2015-06-15

    Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to the Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines

  3. Contribution of endogenous and exogenous damage to the total radiation-induced damage in the bacterial spore

    International Nuclear Information System (INIS)

    Jacobs, G.P.; Samuni, A.; Czapski, G.

    1980-01-01

    Radical scavengers such as polyethylene glycol 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous damage to the total radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous

  4. Radiation damage in silicon detectors

    CERN Document Server

    Lindström, G

    2003-01-01

    Radiation damage effects in silicon detectors under severe hadron and gamma-irradiation are surveyed, focusing on bulk effects. Both macroscopic detector properties (reverse current, depletion voltage and charge collection) as also the underlying microscopic defect generation are covered. Basic results are taken from the work done in the CERN-RD48 (ROSE) collaboration updated by results of recent work. Preliminary studies on the use of dimerized float zone and Czochralski silicon as detector material show possible benefits. An essential progress in the understanding of the radiation-induced detector deterioration had recently been achieved in gamma irradiation, directly correlating defect analysis data with the macroscopic detector performance.

  5. Radiation damage effects in solids special topic volume with invited peer reviewed papers only

    CERN Document Server

    Virk, Hardev Singh

    2013-01-01

    Public interest and concern about radiation damage effects has increased during recent times. Nuclear radiation proved to be a precursor for the study of radiation damage effects in solids. In general, all types of radiation, e.g. X-ray, gamma ray, heavy ions, fission fragments and neutrons produce damage effects in materials. Radiation damage latent tracks in solids find applications in nuclear and elementary particle physics, chemistry, radiobiology, earth sciences, nuclear engineering, and a host of other areas such as nuclear safeguards, virus counting, ion track filters, uranium exploration and archaeology. Radiation dosimetry and reactor shielding also involve concepts based on radiation damage in solids. This special volume consists of ten Chapters, including Review and Research Papers on various topics in this field.Physical scientists known to be investigating the effects of radiation on material were invited to contribute research and review papers on the areas of their specialty. The topics include...

  6. Radiation-induced late brain injury and the protective effect of traditional Chinese medicine

    International Nuclear Information System (INIS)

    Yi Junlin; Miao Yanjun; Yang Weizhi; Cai Weiming; Liu Yajie

    2004-01-01

    Objective: To investigate whether radiation-induced late injury of the brain can be ameliorated by traditional Chinese Medicine through blocking the primary events. Methods: This trial included five animal groups: sham irradiation, irradiation only, and three treatment groups. The whole brain of BALB/C mouse was irradiated with 22 Gy by using a 6 MV linear accelerator. Step down method was used to evaluate the study and memory abilities. Mouse weight was also recorded every week before and after irradiation. On D90, all mice alive were euthanized and Glee's silver dye method and Bielschousky silver dye method were used to detect the senile plaque and the neurofibrillary tangle. One-Way ANOVA was used to evaluate the differences among the groups in the various aspects of study and memory abilities as well as quality of life. Kaplan-Meier was used to evaluate the survival. Log-rank was used to detect the differences among the survival groups. Results: 1. There was no significant difference in survival among the treatment groups, even though Salvia Miltiorrhiza (SM) was able to improve the quality of life. As to the cognition function, it was shown that whole brain radiation would make a severe cognition damage with the learning and memorizing ability of the irradiated mice being worse than those of the sham irradiation group. The Traditional Chinese Medicine Salvia Miltiorrhiza possesses the role of a protective agent against cognition function damage induced by irradiation. 2. Glee's silver dye and Bielschousky silver dye show much more senile plaque and the neurofibrillary tangle in brain tissue of R group and R + 654-2 group than those in the R + SM group. Conclusions: Salvia Miltiorrhiza is able to protect the mouse from cognition function damage induced by irradiation and improve the quality of life by ameliorating the primary events, though it does not improve the survival

  7. The treatment of late radiation effects with hyperbaric oxygenation (HBO)

    International Nuclear Information System (INIS)

    Plafki, C.; Carl, U.M.; Glag, M.; Hartmann, K.A.

    1998-01-01

    Background: Late radiation injuries may impose a negative influence on the quality of life in the affected patients. In several entities, standardized treatment protocols are lacking. Hyperbaric oxygenation (HBO) has been shown to have beneficial effects in the treatment of late radiation sequelae. Material and methods: The basic principles of HBO are reviewed as well as clinical issues. Current study protocols are presented. Results: During HBO-therapy the patient breathes pure oxygen at pressures above 100 kPa. The oxygen solubility within the fluid phase of the blood is largely increased. Biological effects include an increased oxygen diffusibility, improved collagen synthesis and neoangiogenesis as well as an enhancement of antimicrobial defenses. By decreasing the capillary filtration pressure a reduction of edema becomes possible. HBO has been shown to prevent complications following surgery in irradiated tissues. Its efficacy as an adjunct in the treatment of osteonecroses in radiation patients could be demonstrated. In addition, the loss of osseointegrated implants in the maxillofacial bones of these patients could be significantly reduced. Further indications include soft tissue necroses, hemorrhagic cystitis and proctitis in tumor patients that have been treated by radiotherapy as part of a multimodality approach. Conclusions: HBO in the treatment of late radiation effects is still subject of investigation, but remarkable results have been reported. Optimized treatment protocols need to be determined in various entities. The rate of side effects is acceptable low. (orig.) [de

  8. Alleviation of acute radiation damages by post-irradiation treatments

    International Nuclear Information System (INIS)

    Kurishita, A.; Ono, T.

    1992-01-01

    Radiation induced hematopoietic and gastro-intestinal damages in mice were tried to alleviate experimentally by post-treatment. Combined treatment of OK-432 and aztreonam clearly prevented the radiation induced sepsis and elevated the survival rate in mice; the survival was 80% in the OK-432 plus aztreonam group while it was 55% in the group treated with OK-432 alone and 0% with saline. Irsogladine maleate, an anti-ulcer drug, increased the survival rate of jejunal crypt stem cells with a clear dose-related trend. The D 0 for irsogladine maleate was 2.8 Gy although it was 2.3 Gy for saline, These findings suggest that some conventional drugs are effective for radiation induced hematopoietic and gastro-intestinal damages and the possibility that they can be applied for people exposed to radiation accidentally. (author)

  9. Damage pattern as a function of radiation quality and other factors.

    Science.gov (United States)

    Burkart, W; Jung, T; Frasch, G

    1999-01-01

    An understanding of damage pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation damage, its possible repair, and the propagation of residual changes in somatic and germ cells as potential contributors to disease or ageing. Important quantitative insights have been made recently on the distribution in time and space of critical lesions from direct and indirect action of ionizing radiation on mammalian cells. When compared to damage from chemicals or from spontaneous degradation, e.g. depurination or base deamination in DNA, the potential of even low-LET radiation to create local hot spots of damage from single particle tracks is of utmost importance. This has important repercussions on inferences from critical biological effects at high dose and dose rate exposure situations to health risks at chronic, low-level exposures as experienced in environmental and controlled occupational settings. About 10,000 DNA lesions per human cell nucleus and day from spontaneous degradation and chemical attack cause no apparent effect, but a dose of 4 Gy translating into a similar number of direct and indirect DNA breaks induces acute lethality. Therefore, single lesions cannot explain the high efficiency of ionizing radiation in the induction of mutation, transformation and loss of proliferative capacity. Clustered damage leading to poorly repairable double-strand breaks or even more complex local DNA degradation, correlates better with fixed damage and critical biological endpoints. A comparison with other physical, chemical and biological agents indicates that ionizing radiation is indeed set apart from these by its unique micro- and nano-dosimetric traits. Only a few other agents such as bleomycin have a similar potential to cause complex damage from single events. However, in view of the multi-stage mechanism of carcinogenesis, it is still an open question whether dose-effect linearity for complex

  10. Therapy and prophylaxis of acute and late radiation-induced sequelae of the esophagus

    International Nuclear Information System (INIS)

    Zimmermann, F.B.; Geinitz, H.; Feldmann, H.J.

    1998-01-01

    Background: Radiation-induced esophagitis is a frequent acute side effect in curative and palliative radiotherapy of thoracal and cervical tumors. Late reactions are rare but might be severe. Methods: A resarch for reports on prophylactic and supportive therapies of radiation-induced esophagitis was performed (Medline, Cancerlit, and others). Results: Nutrition must be ensured and symptomatic relief of sequelae is important, especially in the case of dysphagia. The latter can be improved by topic or systemic analgetics. If esophageal spasm occurs, calcium antagonists might help. In case of gastro-esophageal reflux proton pump inhibitors should be used. There is no effective prophylactic measure for radiation esophagitis. Late side effects with clinical relevance are rare in conventional radiotherapy. Chronic ulcera, fistula or stenosis may develop. Before any treatment, a tumor infiltration of the esophagus should be excluded by biopsy. This can lead more often to late complications than radiation therapy itself. Nutrition should be ensured by endoscopic dilation, stent-implantation, or endoscopic percutaneous gastrostomy. Local injection of steroids might be used to avoid an early restenosis. Conclusions: An intensive symptomatic therapy of acute esophagitis is reasonable. Effective prophylaxis do not exist. Late radiation induced sequelae is rare. Therefore, a tumor recurrence should be excluded in cases of dysphagia. Securing nutrition by PEG, stent, or port is well in the fore. (orig.) [de

  11. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention

    International Nuclear Information System (INIS)

    Andratschke, Nicolaus; Maurer, Jean; Molls, Michael; Trott, Klaus-Ruediger

    2011-01-01

    The clinical importance of radiation-induced heart disease, in particular in post-operative radiotherapy of breast cancer patients, has been recognised only recently. There is general agreement, that a co-ordinated research effort would be needed to explore all the potential strategies of how to reduce the late risk of radiation-induced heart disease in radiotherapy. This approach would be based, on one hand, on a comprehensive understanding of the radiobiological mechanisms of radiation-induced heart disease after radiotherapy which would require large-scale long-term animal experiments with high precision local heart irradiation. On the other hand - in close co-operation with mechanistic in vivo research studies - clinical studies in patients need to determine the influence of dose distribution in the heart on the risk of radiation-induced heart disease. The aim of these clinical studies would be to identify the critical structures within the organ which need to be spared and their radiation sensitivity as well as a potential volume and dose effect. The results of the mechanistic studies might also provide concepts of how to modify the gradual progression of radiation damage in the heart by drugs or biological molecules. The results of the studies in patients would need to also incorporate detailed dosimetric and imaging studies in order to develop early indicators of impending radiation-induced heart disease which would be a pre-condition to develop sound criteria for treatment plan optimisation.

  12. Potential radiation damage: Storage tanks for liquid radioactive waste

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1992-01-01

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides

  13. Temperature effects on radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Mendoza A, D.

    1996-01-01

    The objective of present work was to study the temperature effect on radiation damage registration in the structure of a Solid State Nuclear Track Detector of the type CR-39. In order to study the radiation damage as a function of irradiation temperature, sheets of CR-39 detectors were irradiated with electron beams, simulating the interaction of positive ions. CR-39 detectors were maintained at a constant temperature from room temperature up to 373 K during irradiation. Two techniques were used from analyzing changes in the detector structure: Electronic Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). It was found by EPR analysis that the amount of free radicals decrease as irradiation temperature increases. The IR spectrums show yield of new functional group identified as an hydroxyl group (OH). A proposed model of interaction of radiation with CR-39 detectors is discussed. (Author)

  14. Radiation damage studies for the DOe silicon detector

    International Nuclear Information System (INIS)

    Lehner, Frank

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current DOe silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10 14 p/cm 2 at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalisation techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling

  15. PUMN: part I of the WINERY radiation damage computer simulation system

    International Nuclear Information System (INIS)

    Kuspa, J.P.; Edwards, D.R.; Tsoulfanidis, N.

    1976-01-01

    Results of computer work to simulate the response of crystalline materials to radiation are presented. To organize this and future work into a long range program of investigation, the WINERY Radiation Damage Computer Simulation System is proposed. The WINERY system is designed to solve the entire radiation damage problem from the incident radiation to the property changes which occur in the material, using a set of interrelated computer programs. One portion of the system, the PUMN program, has been used to obtain important radiation damage results with Fe 3 Al crystal. PUMN simulates the response of the atoms in a crystal to a knock-on atom. It yields the damage configuration of the crystal by considering the dynamic interaction of all the atoms of the computational cell, up to 1000 atoms. The PUMN program provides the WINERY system with results for the number of displacements, N/sub d/, due to knock-on atoms with various energies. The values of N/sub d/ for Fe 3 Al were obtained at two different energies, 100 and 500 eV, for a variety of initial directions. These values are to be used to form a table of results for use in WINERY

  16. Radiation damage measurements on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C

    2003-01-01

    from 2 x 10(8) to 60 x 10(8) p(+)/cm(2). Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material...... with the proton dose. The radiation contribution to the electron trapping was found to obey the following relation: (mutau(e)(-1))(rad) = (2.5+/-0.2) x 10(-7) x Phi (V/cm)(2) with the proton fluence, Phi in p(+)/cm(2). The trapping depth dependence, however, did not agree well with the damage profile calculated...

  17. Liver late effects of ionizing radiation; Effets tardifs des radiations sur le foie

    Energy Technology Data Exchange (ETDEWEB)

    Mornex, F.; Ramuz, O. [Centre Hospitalier Universitaire Lyon-Sud, 69 - Pierre-Benite (France); Gerard, F. [Laboratoire Marcel-Merieux, 69 - Lyon (France); Van Houtte, P. [Institut Bordet, Brussels (Belgium)

    1997-12-01

    Until recently, the liver was classified as a radioresistant organ, although it is in fact highly radiosensitive. The realization that the whole liver could be treated safety only with low doses of radiation led to the conclusion that radiation therapy had an extremely limited role in the treatment of intrahepatic malignancies. A resurgence of interest has been observed with the advent of conformal radiotherapy and the introduction of bone marrow transplantation with total body irradiation. The radiation-induced liver disease, often called radiation hepatitis, is a syndrome characterized by the development of anicteric ascites, approximately 2 weeks to 4 months after hepatic irradiation. Immediate tolerance is generally surprisingly good, and the subacute radiation injury is followed by a complete asymptomatic healing, although the late lesions may be associated with signs of chronic radiation hepatitis. Radiation hepatitis must be distinguished from chemo-radiation-induced-hepatitis occurring in patients undergoing bone marrow transplantation and total body irradiation. Both syndromes demonstrate the same pathological lesion: veno-occlusive disease. The main treatment for radiation hepatitis is diuretics, although soma advocate steroids for severe cases. (authors)

  18. Health effects of radiation damage

    International Nuclear Information System (INIS)

    Gasimova, K; Azizova, F; Mehdieva, K.

    2012-01-01

    Full text : A summary of the nature of radiactive contamination would be incomplete without some mention of the human health effects relatied to radioactivity and radioactive materials. Several excellent reviews at the variety of levels of detail have been written and should be consulted by the reader. Internal exposures of alpha and beta particles are important for ingested and inhaled radionuclides. Dosimetry models are used to estimate the dose from internally deposited radioactive particles. As mentioned above weighting parameters that take into account the radiation type, the biological half-life and the tissue or organ at risk are used to convert the physically absorbed dose in units of gray (or red) to the biologically significant committed equivalent dose and effective dose, measured in units of Sv (or rem). There is considerable controversy over the shape of the dose-response curve at the chronic low dose levels important for enviromental contamination. Proposed models include linear models, non-linear models and threshold models. Because risks at low dose must be extrapolated from available date at high doses, the shape of the dose-response curve has important implications for the environmental regulations used to protect the general public. The health effect of radiation damage depends on a combination of events of on the cellular, tissue and systemic levels. These lead to mutations and cellular of the irradiated parent cell. The dose level at which significant damage occurs depends on the cell type. Cells that reproduce rapidily, such as those found in bone marrow or the gastrointestinal tract, will be more sensitive to radiation than those that are longer lived, such as striated muscle or nerve cells. The effects of high radiation doses on an organ depends on the various cell types it contains

  19. Introduction of neutron metrology for reactor radiation damage

    International Nuclear Information System (INIS)

    Alberman, A.; Genthon, J.P.; Schneider, W.; Wright, S.B.; Zijp, W.L.

    1979-01-01

    The background of the procedures for determining irradiation parameters which are of interest in radiation damage experiments is described. The first two chapters outline the concept of damage functions and damage models. The next two chapters give information on methods to determine neutron fluences and neutron spectra. The fifth chapter gives a review of correlation data available for graphite and steels. The last chapter gives guidance how to report the relevant irradiation parameters. Attention is given to the role of the neutron spectrum in deriving values for damage fluence, energy transferred to the lattice, and number of displacements

  20. X-radiation damage of hydrated lecithin membranes detected by real-time X-ray diffraction using wiggler-enhanced synchrotron radiation as the ionizing radiation source

    International Nuclear Information System (INIS)

    Caffrey, M.; Cornell Univ., Ithaca, NY

    1984-01-01

    Radiation damage of hydrated lecithin membranes brought about by exposure to wiggler-derived synchrotron radiation at 8.3 keV (1.5 A) is reported. Considerable damage was observed with exposures under 1 h at an incident flux density of 3 x 10 10 photons s -1 mm -2 , corresponding to a cumulative radiation dose of <= 10 MRad. Damage was so dramatic as to be initially observed while making real-time X-ray diffraction measurements on the sample. The damaging effects of 8.3 keV X-rays on dispersions of dipalmitoyllecithin and lecithin derived from hen egg yolk are as follows: (1) marked changes were noted in the X-ray diffraction behaviour, indicating disruption of membrane stacking. (2) Chemical breakdown of lecithin was observed. (3) The X-ray beam visibly damaged the sample and changed the appearance of the lipid dispersion, when viewed under the light microscope. Considering the importance of X-ray diffraction as a structural probe and the anticipated use of synchrotron radiation in studies involving membranes, the problem of radiation damage must be duly recognized. Furthermore, since dipalmitoyllecithin, the major lipid used in the present study, is a relatively stable compound, it is not unreasonable to expect that X-ray damage may be a problem with other less stable biological and non-biological materials. These results serve to emphasize that whenever a high intensity X-ray source is used, radiation damage can be a problem and that the sensitivity of the sample must always be evaluated under the conditions of measurement. (orig.)

  1. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  2. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  3. Issues of damage estimation under radiation emergency situation

    International Nuclear Information System (INIS)

    Volobuev, P.V.; Kozlova, N.I.

    2005-01-01

    The specificity of social, economical and ecological consequences of major radiation emergency situation is considered in the paper. The definitions and structure of direct and indirect damage under radiation emergency situation are given. The priority components of immediate expenses and those of long-term living on the contaminated territories are considered in the paper. (author)

  4. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    Science.gov (United States)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  5. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    International Nuclear Information System (INIS)

    Benko', Klara; Pintye, Eva; Szabo, Boglarka; Geresi, Krisztina; Megyeri, Attila; Benko, Ilona

    2008-01-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ--irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD 50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  6. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    Science.gov (United States)

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Radiation hazards and biological effects of ionising radiation on man

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2004-01-01

    The contents of this chapter are follows - Mechanism of damage: direct action of radiation, indirect action of radiation. Classification of effects: somatic effect, induction of cancer, factors, affecting somatic effects, genetic effect, inherited abnormalities, induced effects, early effects, late effects, deterministic effect, stochastic effect. Effect of specific group: development abnormality, childhood Cancer, fertile women, risk and uncertainty, comparison of risk

  8. Radiation damage to histones

    International Nuclear Information System (INIS)

    Mee, L.K.; Adelstein, S.J.

    1985-01-01

    The damage to histones irradiated in isolation is being elaborated to aid the identification of the crosslinking sites in radiation-induced DNA-histone adducts. Histones are being examined by amino acid analysis to determine the destruction of residues and by polyacrylamide gel electrophoresis to delineate changes in conformation. For the slightly lysine-rich histone, H2A, a specific attack on selective residues has been established, the aromatic residues, tyrosine and phenylalanine, and the heterocyclic residue, histidine, being significantly destroyed. In addition, a significant increase in aspartic acid was found; this may represent a radiation product from scission of the ring in the histidine residues. The similarity of the effects on residues in nitrous oxide-saturated and nitrogen-saturated solutions suggests that OH . and e/sub aq//sup -/ are equally efficient and selective in their attack. On gel electrophoresis degradation of the histone H2A was found to be greatest for irradiations in nitrous oxide-saturated solutions, suggesting CH . is the most effective radical for producing changes in conformation; O/sub 2//sup -/ was essentially ineffective. Other histones are being examined for changes in amino acid composition, conformation, and for the formation of radiation products

  9. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    Science.gov (United States)

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  10. Sensory and motor dysfunction assessed by anorectal manometry in uterine cervical carcinoma patients with radiation-induced late rectal complication

    International Nuclear Information System (INIS)

    Kim, Gwi Eon; Lim, John Jihoon; Park, Won; Park, Hee Chul; Chung, Eun Ji; Seong, Jinsil; Suh, Chang Ok; Lee, Yong Chan; Park, Hyo Jin

    1998-01-01

    Purpose: To investigate the effects of radiation on anorectal function in patients with carcinoma of the uterine cervix. Methods and Materials: Anorectal manometry was carried out on 24 patients (complication group) with late radiation proctitis. All of the manometric data from these patients were compared with those from 24 age-matched female volunteers (control group), in whom radiation treatment had not yet been performed. Results: Regardless of the severity of proctitis symptoms, 25% of patients demonstrated all their manometric data within the normal range, but 75% of patients exhibited one or more abnormal manometric parameters for sensory or motor functions. Six patients (25%) had an isolated sensory dysfunction, eight patients (33.3%) had an isolated motor dysfunction, and four patients (16.7%) had combined disturbances of both sensory and motor functions. The maximum tolerable volume, the minimal threshold volume, and the urgent volume in the complication group were significantly reduced compared with those in the control group. The mean squeeze pressure in the complication group was significantly reduced, whereas the mean resting pressure and anal sphincter length were unchanged. Conclusions: Physiologic changes of the anorectum in patients with late radiation proctitis seem to be caused by a variety of sensory and/or motor dysfunctions in which many different mechanisms are working together. The reduced rectal reservoir capacity and impaired sensory functions were crucial factors for functional disorder in such patients. In addition, radiation damage to the external anal sphincter muscle was considered to be an important cause of motor dysfunction

  11. Nonuniform radiation damage in permanent magnet quadrupoles.

    Science.gov (United States)

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  12. Nonuniform radiation damage in permanent magnet quadrupoles

    International Nuclear Information System (INIS)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-01-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components

  13. Nonuniform radiation damage in permanent magnet quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  14. Damage of DNA by radiation and it's recovery, 3

    International Nuclear Information System (INIS)

    Narita, Noboru; Matsuura, Tomio; Sato, Hiroyuki.

    1974-01-01

    The damage and recovery of DNA was investigated by the incorporation of thymine derivatives (DHT, I trans, II trans, cis and glycol) into exponentially growing Tetrahymena cells. The strain employed was Tetrahymena pyriformis, Variety I, mating type IV. It is well known that these thymine derivatives are induced in vivo by radiation. The in vivo damage of DNA induced by radiation, and its recovery, were confirmed experimentally by means of gradient separation of sucrose density and by analytical ultra centrifugation (UVC). The recovery of DNA, its excision repair and its recombinational repair were compared with the recovery of Bacillus subtilis whose recovery kinetics were already known. 1) The damage of DNA was more sensitive to glycol than to II trans and cis. On the other hand, DHT is not sensitive for breaking DNA strand. 2) In its recovery damaged DNA was no more sensitive to glycol than to hhp as was true for Bacillus subtilis. (author)

  15. Genomic damage in children accidentally exposed to ionizing radiation

    DEFF Research Database (Denmark)

    Fucic, A; Brunborg, G; Lasan, R

    2007-01-01

    During the last decade, our knowledge of the mechanisms by which children respond to exposures to physical and chemical agents present in the environment, has significantly increased. Results of recent projects and programmes focused on children's health underline a specific vulnerability of chil...... and efficient preventive measures, by means of a better knowledge of the early and delayed health effects in children resulting from radiation exposure....... of children to environmental genotoxicants. Environmental research on children predominantly investigates the health effects of air pollution while effects from radiation exposure deserve more attention. The main sources of knowledge on genome damage of children exposed to radiation are studies performed...... after the Chernobyl nuclear plant accident in 1986. The present review presents and discusses data collected from papers analyzing genome damage in children environmentally exposed to ionizing radiation. Overall, the evidence from the studies conducted following the Chernobyl accident, nuclear tests...

  16. Hydration-annealing of chemical radiation damage in calcium nitrate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; James, C.

    1984-01-01

    The effect of hydration on the annealing of chemical radiation damage in anhydrous calcium nitrate has been investigated. Rehydration of the anhydrous irradiated nitrate induces direct recovery of the damage. The rehydrated salt is susceptible to thermal annealing but the extent of annealing is small compared to that in the anhydrous salt. The direct recovery of damage on rehydration is due to enhanced lattice mobility. The recovery process is unimolecular. (author)

  17. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  18. Radio-oxidative membrane damage and its possible role as an indicator of radiation exposure

    International Nuclear Information System (INIS)

    Amit Kumar; Pandey, B.N.; Mishra, K.P.

    2004-01-01

    Cellular membranes have been recognized as a sensitive target in the mechanism of ionizing radiation-induced cell killing. In our laboratory, studies have been devoted to investigations on gamma radiation induced oxidative damage to model and cellular membrane damage by employing fluorescence and electron spin resonance (ESR) methods Considerable evidences has accumulated to suggest that radiation induced oxidative damage was related to apoptotic death of a variety of cells in culture. Radiation induced damage involving lipid peroxidation, altered bilayer fluidity, permeability changes and intracellular generated ROS have been evaluated by chemical and physical methods. Modification of damage by structural modulating agents such as cholesterol and antioxidants such as eugenol, ascorbic acid, ellagic acid, triphala have been extensively investigated. Generation of intracellular ROS in radiation stressed normal cell e.g. mouse thymocytes, tumor cells e.g. Ehrlich ascites cells and human cervical cell line were evaluated after exposure from low to moderate doses of α-radiation. Results suggest that modulation of intracellular ROS level may be an important approach to alter radio-cytotoxicity of cells. This presentation would describe results of our study together with an overview of free radical mediated oxidative damage to cellular membrane as an indicator of radiation exposure. (author)

  19. Effects of chronic gamma radiation on the lichen Parmelia sulcata Tayl. in the Enterprise Radiation Forest

    International Nuclear Information System (INIS)

    Erbisch, F.H.

    1977-01-01

    Within the Enterprise Radiation Forest, the foliose lichen Parmelia sulcata Tayl. exhibited radiation damage. Only those lichens which received in excess of 100 krad manifested damage. The damage was evidenced as a lifting and subsequent breaking of lobes, a coalescing of fungal hyphae, a formation of a brown pigment by the coalescing hyphae, a distortion of the chloroplastid of the algal component, and eventual death of the lichen. The radiation also affected thallus growth by slowing it and rhizinae branching by increasing the number of branches. Damage was not manifested until the late spring (June) of the year following radiation. Apparently P. sulcata is able to maintain itself until conditions are favorable for growth, after receiving a large dose of gamma radiation. Under favorable growth conditions, the lichen cannot carry out its normal growth functions and deteriorates. Although environmental changes did occur within the forest, evidence obtained indicates that gamma radiation was the principal factor affecting the lichens

  20. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ifigeneia V. Mavragani

    2017-07-01

    Full Text Available Cellular effects of ionizing radiation (IR are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs, single strand breaks (SSBs and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1 repair resistant, increasing genomic instability (GI and malignant transformation and (2 can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity. Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  1. [Effects of radiation exposure on human body].

    Science.gov (United States)

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  2. Conformational variation of proteins at room temperature is not dominated by radiation damage

    International Nuclear Information System (INIS)

    Russi, Silvia; González, Ana; Kenner, Lillian R.; Keedy, Daniel A.; Fraser, James S.; Bedem, Henry van den

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation

  3. Design of offline measuring system for radiation damage effects on linear CCD

    International Nuclear Information System (INIS)

    Zhang Yong; Tang Benqi; Xiao Zhigang; Wang Zujun; Huang Fang; Huang Shaoyan

    2004-01-01

    The paper discusses the hardware design of offline measuring system for radiation damage effects on linear CCD. Some credible results were achieved by using this system. The test results indicate that the system is available for the study of the radiation damage effects on linear CCD. (authors)

  4. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  5. Effects of radiation on the human gastrointestinal tract

    International Nuclear Information System (INIS)

    Novak, J.M.; Collins, J.T.; Donowitz, M.; Farman, J.; Sheahan, D.G.; Spiro, H.M.

    1979-01-01

    Radiation therapy directed at the abdomen may damage the digestive tract, the type and extent of injury depending on the dose of the radiation and the radiation sensitivity of the gut. Characteristic early changes are manifest in the mucosa of the gut: for later ulceration, changes in the collagen tissues and particularly in the vascular channels occur. This paper describes and characterizes injuries to the esophagus, stomach, small intestine and colon. It emphasizes the importance of recognizing radiation-induced damage to the gut which may occur early or late after radiation

  6. Relation of radiation damage of metallic solids to electronic structure. Pt. 5

    International Nuclear Information System (INIS)

    Shalaev, A.M.; Adamenko, A.A.

    1977-01-01

    The problem of relating a damage in metal solids to the parameters of radiation fluxes and the physical nature of a target is considered. Basing upon experimental and theoretical investigations into the processes of interaction of particle fluxes with solids, the following conclusions have been reached. Threshold energy of ion displacement in the crystal lattice of a metal solid is dependent on the energy of a bombarding particle, which is due to ionization and electroexcitation stimulated by energy transfer from a fast particle to a system of collectivized electrons. The rate of metal solid damage by radiation depends on the state of the crystal lattice, in particular on its defectness. Variations of local electron density in the vicinity of a defect are related with changing thermodynamic characteristics of radiation-induced defect formation. A type of atomic bond in a solid affects the rate of radiation damage. The greatest damage occurs in materials with a covalent bond

  7. Unilateral hypoglossal nerve atrophy as a late complication of radiation therapy of head and neck carcinoma: a report of four cases and a review of the literature on peripheral and cranial nerve damages after radiation therapy

    International Nuclear Information System (INIS)

    Cheng, V.S.T.; Schulz, M.D.

    1975-01-01

    The case histories of four patients who developed hemiatrophy of the tongue from 3 to 9 years after a course of curative radiation therapy for carcinomas of the head and neck are presented. These patients were subsequently followed from 1 1 / 2 to 6 years without local recurrence of the tumor, distant metastasis, or involvement of other cranial nerves, indicative of only a unilateral hypoglossal nerve atrophy. A review of the literature showed that peripheral and cranial nerve damages after radiation therapy have been reported for the optic nerve, hypoglossal nerve, oculomotor nerve, abducens nerve, recurrent laryngeal nerve, brachial plexus nerves, and peripheral nerves of the extremities. Review of clinical and experimental data indicated that in most cases, the damages were probably caused by extensive connective tissue fibrosis around and infiltrating the nerve trunks. Three possible types of peripheral and cranial nerve damages after radiation therapy are identified. (U.S.)

  8. Radiation damage: special reference to gas filled radiation detectors

    International Nuclear Information System (INIS)

    Gaur, Sudha; Joshi, Pankaj Kumar; Rathore, Shakuntla

    2012-01-01

    Radiation damage is a term associated with ionizing radiation. In gas filled particle detectors, radiation damage to gases plays an important role in the device's ageing, especially in devices exposed to high intensity radiation, e.g. detector for the large hadrons collide. Ionization processes require energy above 10 eV, while splitting covalent bond in molecules and generating free radical require only 3-4 eV. The electrical discharges initiated by the ionization event by the particles result in plasma populated by large amount of free radical. The highly reactive free radical can recombine back to original molecules, or initiate a chain of free radical polymerization reaction with other molecules, yielding compounds with increasing molecular weight. These high molecular weight compounds then precipitate from gases phase, forming conductive or non-conductive deposits on the electrodes an insulating surfaces of the detector and distorting it's response. Gases containing hydrocarbon quenchers, e.g. argon-methane, are typically sensitive to ageing by polymerization; addition of oxygen tends to lower the ageing rates. Trace amount of silicon oils, present form out gassing of silicon elastomers and especially from traces of silicon lubricant tend to decompose and form deposits of silicon crystals on the surfaces. Gases mixture of argon (or xenon) with CO 2 and optimally also with 2-3 % of oxygen are highly tolerant to high radiation fluxes. The oxygen is added as noble gas with CO 2 has too high transparency for high energy photons; ozone formed from the oxygen is a strong absorber of ultra violet photons. Carbon tetra fluoride can be used as a component of the gas for high-rate detectors; the fluorine radical produced during the operation however limit the choice of materials for the chambers and electrodes (e.g. gold electrodes are required, as the fluorine radicals attack metals, forming fluorides). Addition of carbon tetra fluoride can however eliminate the

  9. Radiation damage of pixelated photon detector by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)], E-mail: isamu.nakamura@kek.jp

    2009-10-21

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 10{sup 12}neutron/cm{sup 2}. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  10. Study of radiation damage in solid materials by simulating physical processes

    International Nuclear Information System (INIS)

    Pinnera Hernandez, Ibrahin

    2006-12-01

    Nowadays the damage induced by different types of radiation in advanced materials is widely studied. Especially those materials involved in experiments and developing of new technologies, such as high critical temperature superconductors, semiconductors, metals. These materials are the basis constituents of radiation detectors, particle accelerators, etc. One way of studying this kind of damage is through the determination of the displacements per atom (dpa) induced by the radiation in these materials. This magnitude is one of the measures of the provoked radiation damage. On this direction, the present thesis deals with the study of two types of materials through mathematical simulation of physical processes taking place in the radiation transport. Ceramic superconductor Yba 2 Cu 3 O 7-x and metal Fe are the selected materials. The energy range of the incident gamma radiation goes from a few keV to 15 MeV. The MCNPX version 2.6b is used to determine the physical magnitudes required to calculate the distribution of displacements per atom within these materials, using an algorithm implemented for this purpose. Finally, a comparison between the obtained dpa profiles and the corresponding of energy deposition by radiation in these same materials and the possible linear dependence between both quantities is discussed. (Author)

  11. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  12. Properties and recrystallization of radiation damaged pyrochlore and titanite

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter

    2016-11-02

    Radiation damage in minerals is caused by the alpha-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1400 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG) (Zietlow et al., in print). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia (6.4 wt% Th, 23.1.10{sup 18} a-decay events per gram (dpg)), Zlatoust/Russia (6.3 wt% Th, 23.1.10{sup 18} dpg), Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28 %, Blue River 85 %, Zlatoust and Miass 100 % according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (Vandenborre and Husson 1983, Moll et al. 2011), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} devided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlores (Miass and Zlatoust) show an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K. The volume decrease upon recrystallization in Zlatoust pyrochlore was large enough to crack the sample repeatedly. In contrast, the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K), extending over a temperature range of ca. 300 K, up to 800 K (Raman). The pyrochlore from Blue River shows in its

  13. Radiation damage at LHCb, results and expectations

    CERN Multimedia

    Faerber, Christian

    2011-01-01

    The LHCb Detector is a single-arm spectrometer at the LHC designed to detect new physics through measuring CP violation and rare decays of heavy flavor mesons. The detector consists of vertex detector, tracking system, dipole magnet, 2 RICH detectors, em. calorimeter, hadron calorimeter, muon detector which all use different technologies and suffer differently from radiation damage. These radiation damage results and the investigation methods will be shown. The delivered luminosity till July 2011 was about 450 pb−1. The Vertex detector receives the highest particle flux at LHCb. The currents drawn by the silicon sensors are, as expected, increasing proportional to the integrated luminosity. The highest irradiaton regions of the n-bulk silicon sensors are observed to have recently undergone space charge sign inversion. The Silicon Trackers show increasing leakage currents comparable with earlier predictions. The electromagentic calorimeter and hadron calorimeter suffer under percent-level signal decrease whi...

  14. Radiation injuries/ionizing radiation

    International Nuclear Information System (INIS)

    Gooden, D.S.

    1991-01-01

    This book was written to aid trial attorneys involved in radiation litigation. Radiologists and medical physicists will also find it helpful as they prepare for trial, either as a litigant or an expert witness. Two chapters present checklists to guide attorneys for both plaintiffs and defendants. Gooden titles these checklists Elements of Damages and Elements of Proof and leads the reader to conclusions about each of these. One section that will be particularly helpful to attorneys contains sample interrogatories associated with a case of alleged radiation exposure resulting in a late radiation injury. There are interrogatories for the plaintiff to ask the defendant and for the defendant to ask the plaintiff

  15. Radiation induced late delayed alterations in mice brain after whole body and cranial radiation: a comparative DTI analysis

    International Nuclear Information System (INIS)

    Watve, Apurva; Gupta, Mamta; Trivedi, Richa; Khushu, Subash; Rana, Poonam

    2016-01-01

    Moderate dose of radiation exposure occurs during radiation accidents or radiation therapy induces pathophysiological alterations in CNS that may persist for longer duration. Studies suggest that late delayed injury is irreversible leading to metabolic and cognitive impairment. Our earlier studies have illustrated the varied response of brain at acute and early delayed phase on exposure to cranial and whole body radiation. Hence in continuation with our previous studies, present study focuses on comparative microstructural changes in brain at late delayed phase of radiation injury using Diffusion Tensor Imaging (DTI) technique. Region of interest (ROIs) were drawn on corpus callosum (CC), hippocampus (HIP), sensory-motor cortex (SMC), thalamus (TH), hypothalamus (HTH), cingulum (CG), caudeto-putamen (CUP) and cerebral peduncle (CP). The differences in FA (Fractional Anisotropy) and MD (Mean Diffusivity) values generated from these regions of all the groups were evaluated by ANOVA with multiple comparisons using Bonferroni, Post Hoc test. Maximum changes have been observed in MD values mainly in cranial group showing significantly increased MD in CC and SMC region while both the groups showed changes in TH and CUP region as compared to control. FA showed more prominent changes in whole body radiation group than cranial group by decreasing significantly in CP region while in HTH and CUP region in both the groups. Reduced FA indicates compromised structural integrity due to the loss of glial progenitor cells causing transient demyelination while increased MD has been equated with cellular membrane disruption, cell death and vasogenic edema. Thus, present study reveals late delayed CNS response after cranial and whole body radiation exposure. These findings can help us differentiate and monitor the pathophysiological changes at later stages either due to accidental or intentional exposure to ionizing radiation

  16. Late nonstochastic changes in pig skin after β irradiation

    International Nuclear Information System (INIS)

    Peel, D.M.; Hopewell, J.W.; Wells, J.; Charles, M.W.

    1985-01-01

    Late radiation-induced changes in pig skin have been assessed following irradiation with β-rays from a 22.5- or 15-mm-diameter 90 Sr/ 90 Y source and a 19- or 9-mm-diameter 170 Tm source. Late damage, in terms of dermal atrophy, was assessed 2 years after irradiation from measurements of dermal thickness of 40-50% of the control value, occurred at a dose of approx. 40 Gy from the 22.5-mm source and approx. 75 Gy from the 15-mm source. In the case of 170 Tm the 19- and 9-mm sources produced similar degrees of atrophy at equal doses. Maximum atrophy occurred at approx. 70 Gy, when the dermis was approx. 70% of the thickness of normal skin. Significant late tissue atrophy was seen at doses, from both types of radiation, which only produced minimal erythema in the early reaction. Such late reactions need to be taken into account when revised radiological protection criteria are proposed for skin

  17. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    International Nuclear Information System (INIS)

    Eccles, Laura J.; O'Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a 'friend', leading to cell killing in tumour cells or as a 'foe', resulting in the formation of mutations and genetic instability in normal tissue.

  18. Radiation induced crystallinity damage in poly(L-lactic acid)

    CERN Document Server

    Kantoglu, O

    2002-01-01

    The radiation-induced crystallinity damage in poly(L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature (T sub g) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units (G(-u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively.

  19. Radiation damage to DNA constituents

    International Nuclear Information System (INIS)

    Bergene, R.

    1977-01-01

    The molecular changes of the DNA molecule, in various systems exposed to inoizing radiation, have been the subject of a great number of studies. In the present work electron spin resonance spectroscopy (ESR) has been applied to irradiated crystalline systems, in particular single crystals of DNA subunits and their derivatives. The main conclusions about the molecular damage are based on this technique in combination with molecular orbital calculations. It should be emphasized that the ESR technique is restricted to damage containing unpaired electrons. These unstable intermediates called free radicals seem, however, to be involved in all molecular models describing the action of radiation on DNA. One of the premises for a detailed theory of the radiation induced reactions at the physico-chemical level seems to involve exact knowledge of the induced free radicals as well as the modes of their formation and fate. For DNA, as such, it is hardly possible to arrive at such a level of knowledge since the molecular complexity prevents selective studies of the many different radiation induced products. One possible approach is to study the free radicals formed in the constituents of DNA. In the present work three lines of approach should be mentioned. The first is based on the observation that radical formation in general causes only minor structural alterations to the molecule in question. The use of isotopes with different spin and magnetic moment (in particular deuterium) may also serve a source of information. Deuteration leads to a number of protons, mainly NH - and OH, becoming substituted, and if any of these are involved in interactions with unpaired protons the resonance pattern is influeneed. The third source of information is molecular orbital calculation. The electron spin density distribution is a function in the three dimensional space based on the system's electronic wave functions. This constitutes the basis for the idea that ESR data can be correlated with

  20. Positron annihilation lifetime study of radiation-damaged natural zircons

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Gaugliardo, P. [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia (Australia); Farnan, I.; Zhang, M. [Department of Earth Sciences, University of Cambridge (United Kingdom); Vance, E.R.; Davis, J.; Karatchevtseva, I.; Knott, R.B. [Australian Nuclear Science and Technology Organisation (Australia); Mudie, S. [The Australian Synchrotron, Victoria (Australia); Buckman, S.J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia); Institute for Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Sullivan, J.P., E-mail: james.sullivan@anu.edu.au [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra (Australia)

    2016-04-01

    Zircons are a well-known candidate waste form for actinides and their radiation damage behaviour has been widely studied by a range of techniques. In this study, well-characterised natural single crystal zircons have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). In some, but not all, of the crystals that had incurred at least half of the alpha-event damage of ∼10{sup 19} α/g required to render them structurally amorphous, PALS spectra displayed long lifetimes corresponding to voids of ∼0.5 nm in diameter. The long lifetimes corresponded to expectations from published Small-Angle X-ray Scattering data on similar samples. However, the non-observation by PALS of such voids in some of the heavily damaged samples may reflect large size variations among the voids such that no singular size can be distinguished or. Characterisation of a range of samples was also performed using scanning electron microscopy, optical absorption spectroscopy, Raman scattering and X-ray scattering/diffraction, with the degree of alpha damage being inferred mainly from the Raman technique and X-ray diffraction. The observed void diameters and intensities of the long lifetime components were changed somewhat by annealing at 700 °C; annealing at 1200 °C removed the voids entirely. The voids themselves may derive from He gas bubbles or voids created by the inclusion of small quantities of organic and hydrous matter, notwithstanding the observation that no voidage was evidenced by PALS in two samples containing hydrous and organic matter. - Highlights: • Study of a range of naturally occurring zircons damaged by alpha radiation. • Characterised using a range of techniques, including PALS spectroscopy. • Effects on hydrous material appear important, rather than direct radiation damage. • Annealing is shown to remove the observed voids.

  1. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage

    International Nuclear Information System (INIS)

    Stapleton, A.E.; Walbot, V.

    1994-01-01

    Diverse flavonoid compounds are widely distributed in angiosperm families. Flavonoids absorb radiation in the ultraviolet (UV) region of the spectrum, and it has been proposed that these compounds function as UV filters. We demonstrate that the DNA in Zea mays plants that contain flavonoids (primarily anthocyanins) is protected from the induction of damage caused by UV radiation relative to the DNA in plants that are genetically deficient in these compounds. DNA damage was measured with a sensitive and simple assay using individual monoclonal antibodies, one specific for cyclobutane pyrimidine dimer damage and the other specific for pyrimidine(6,4)pyrimidone damage. (author)

  2. Effect of Mercuric Nitrate on Repair of Radiation-induced DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Paneka, Agnieszka; Antonina, Cebulska Wasilewska [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-10-15

    High concentrations of mercury can cause serious damage to the nervous system, immune system, kidneys and liver in humans. And mercury is toxic to developing embryos because mercury ions can penetrate the blood.placenta barrier to reach the embryo. Studies from human monitoring of occupational exposure to mercury vapours have shown that mercury can alter the ability of lymphocytes to repair radiation-induced DNA damage. The aim of this in vitro study was to investigate, on the molecular and cytogenetic levels, the effect of exposure to mercury ions on the kinetics of the repair process of DNA damage induced by ionising radiation.

  3. Multiscale approach to the physics of radiation damage with ions

    Energy Technology Data Exchange (ETDEWEB)

    Surdutovich, Eugene [Physics Department, Oakland University, 2200 N. Squirrel Rd., Rochester MI 48309 (United States); Solov' yov, Andrey V. [Frankfurt Institute for Advanced Studies, Goethe University, Ruth-Moufang-Str. 1, Frankfurt am Main 60438 (Germany)

    2013-04-19

    We review a multiscale approach to the physics of ion-beam cancer therapy, an approach suggested in order to understand the interplay of a large number of phenomena involved in radiation damage scenario occurring on a range of temporal, spatial, and energy scales. We briefly overview its history and present the current stage of its development. The differences of the multiscale approach from other methods of understanding and assessment of radiation damage are discussed as well as its relationship to other branches of physics, chemistry and biology.

  4. Low dose radiation damage effects in silicon strip detectors

    International Nuclear Information System (INIS)

    Wiącek, P.; Dąbrowski, W.

    2016-01-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  5. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  6. Electron Beam Induced Radiation Damage of the Semiconductor Radiation Detector based on Silicon

    International Nuclear Information System (INIS)

    Kim, Han Soo; Kim, Yong Kyun; Park, Se Hwan; Haa, Jang Ho; Kang, Sang Mook; Chung, Chong Eun; Cho, Seung Yeon; Park, Ji Hyun; Yoon, Tae Hyung

    2005-01-01

    A Silicon Surface Barrier (SSB) semiconductor detector which is generally used to detect a charged particle such as an alpha particle was developed. The performance of the developed SSB semiconductor detector was measured with an I-V curve and an alpha spectrum. The response for an alpha particle was measured by Pu-238 sources. A SSB semiconductor detector was irradiated firstly at 30sec, at 30μA and secondly 40sec, 40μA with a 2MeV pulsed electron beam generator in KAERI. And the electron beam induced radiation damage of a homemade SSB detector and the commercially available PIN photodiode were investigated. An annealing effect of the damaged SSB and PIN diode detector were also investigated using a Rapid Thermal Annealing (RTA). This data may assist in designing the silicon based semiconductor radiation detector when it is operated in a high radiation field such as space or a nuclear power plant

  7. Radiation damage studies on the optical and mechanical properties of plastic scintillators

    International Nuclear Information System (INIS)

    Mizue Hamada, Margarida; Roberto Rela, Paulo; Eduardo da Costa, Fabio; Henrique de Mesquita, Carlos

    1999-01-01

    This paper describes the radiation damage studies on a large volume plastic scintillator based in polystyrene doped with PPO and POPOP. The consequences on their mechanical and scintillation properties were evaluated before and after irradiation with different dose rates of 60 Co gamma radiation, in several doses. The optical results show a significant difference in the radiation susceptibility, when the plastic scintillator is irradiated at low rate (0.1 kGy/h) with that irradiated at high dose rate (85 kGy/h). The losses in the optical and mechanical properties increase as the irradiation dose is increased. The damage evaluated by the transmittance, emission intensity, pulse height and tensile strength was normalized as a damage fraction and fitted by a bi-exponential function. It was observed that the damage for irradiation is not permanent and it obeys a bi-exponential function

  8. Radiation damage studies for the D0 silicon detector

    International Nuclear Information System (INIS)

    Lehner, F.

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current D0 silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10 14 p/cm 2 at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalization techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling

  9. Multi-scale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    International Nuclear Information System (INIS)

    Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.; Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.

    2010-01-01

    We present the latest advances of the multi-scale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multi-scale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This quantification allows the studying of how the clusterization of DNA lesions affects the lethality of damage. We discuss the first results of molecular dynamics simulations of ubiquitin in the environment of thermal spikes, predicted to occur in tissue for a short time after an ion's passage in the vicinity of the ions' tracks. (authors)

  10. PUMN: a radiation damage simulation computer program for the WINERY system

    International Nuclear Information System (INIS)

    Kuspa, J.P.

    1976-01-01

    The WINERY Radiation Damage Computer Simulation System will attempt to solve the entire radiation damage problem from the incident radiation to the property changes which occur in the material, using a set of interrelated computer programs. Computer simulation may be indispensable to the study of the radiation damage to materials in breeder and fusion reactors. WINERY is introduced with this work, and one portion of the system, the PUMN program, is developed and used to obtain important radiation damage results with Fe 3 Al crystal. PUMN is a program which simulates the response of the atoms in a crystal to a knock-on atom. It yields the damage configuration of the crystal by considering the dynamic interaction of all the atoms of the computational cell, up to 1000 atoms. The trajectories of the atoms are calculated using the Nordsieck Method, which has a prediction step based upon Taylor series expansions of the position and its first five time derivatives, and has a correction sequence which uses coefficients which have been optimized for efficiency and accuracy. Other features, such as restart files, automatic time step control, and crystal extension, make PUMN a versatile program which can simulate cases of relatively high knock-on energy, at least up to 500 eV. The PUMN program provides the WINERY system with results for the number of displacements, N/sub d/, due to knock-on atoms with various energies. This study dealt exclusively with Fe 3 Al. The values of N/sub d/ for Fe 3 Al were obtained at two different energies, 100 eV and 500 eV, for a variety of initial directions

  11. Assessment of DNA damage in radiation workers by using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Jia Lili; Zhang Tao; Yang Yonghua; Wang Yan; Du Liqing; Cao Jia; Wang Hong; Liu Qiang; Fan Feiyue

    2010-01-01

    Objective: To assess the DNA damage of radiation workers in different grade hospitals, and to explore the correlation between the types of work or work time and the levels of DNA damage. Methods: DNA single strand break were detected by using alkaline single cell gel electrophoresis (SCGE), and the comet was analyzed with CASP (Comet Assay Software Project). TDNA%, TL, TM and OTM were calculated. Results: The parameters of SCGE in the radiation group were higher than those of control group (F=3.93, P<0.01). The significant difference was found not only among the different types of work or different work time, but also among the different grade hospitals (F=1.83, 1.91, P<0.05). Conclusions: Various levels of DNA damage could be detected in the radiation workers of the two hospitals. DNA damage of radiation workers is less serious in the higher-grade hospital than the lower grade one. Different types of work or work time might affect the DNA damage level. (authors)

  12. Secondary radiation damage as the main cause for unexpected volume effects: A histopathologic study of the parotid gland

    International Nuclear Information System (INIS)

    Konings, Antonius W.T.; Faber, Hette; Cotteleer, Femmy; Vissink, Arjan; Coppes, Rob P.

    2006-01-01

    Purpose: To elucidate with a histopathological study the mechanism of region-dependent volume effects in the partly irradiated parotid gland of the rat. Methods and Materials: Wistar rats were locally X-irradiated with collimators with conformal radiation portals for 100% volume and 50% cranial/caudal partial volumes. Single doses up to 40 Gy were applied. Parotid saliva samples were collected, and the three lobes of the parotid gland were examined individually on the macro- and micromorphologic level up to 1 year after irradiation. Results: Dose-dependent loss of gland weight was observed 1 year after total or partial X-irradiation. Weight loss of the glands correlated very well with loss of secretory function. Irradiating the cranial 50% volume (implicating a shielded lateral lobe) resulted in substantially more damage in terms of weight loss and loss of secretory function than 50% caudal irradiation (shielding the ventral and dorsal lobe). Histologic examinations of the glands 1 year after irradiation revealed that the shielded lateral lobe was severely affected, in contrast to the shielded ventral and dorsal lobes. Time studies showed that irradiation of the cranial 50% volume caused late development of secondary damage in the shielded lateral lobe, becoming manifest between 240 and 360 days after irradiation. The possible clinical significance of this finding is discussed. Conclusion: It is concluded that the observed region-dependent volume effect for late function loss in the rat parotid gland after partial irradiation is mainly caused by secondary events in the shielded lateral lobe. The most probable first step (primary radiation event) in the development of this secondary damage is radiation exposure to the hilus region (located between the ventral and dorsal lobe). By injuring major excretory ducts and supply routes for blood and nerves in this area, the facility system necessary for proper functioning of the nonexposed lateral lobe is seriously affected

  13. Involvement of membrane lipids in radiation damage to potassium-ion permeability of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S [Tokyo Univ. (Japan). Inst. for Medical Science; Akamatsu, Y

    1978-02-01

    Radiation damage to K/sup +/ permeability of an unsaturated fatty acid auxotroph of E.coli grown with oleate or linolenate was investigated at different temperatures. A remarkable effect of radiation was observed at 0/sup 0/C with cells that had been grown in linolenate at 42/sup 0/C. This indicates that, besides protein, membrane lipids at least are involved in the radiation damage. The damage also seems to be affected by the fluidity of membrane lipids.

  14. Cell kinetical aspect of normal tissue damages in relation to radiosensitivity of cells, especially from the points of LQ model

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Oohara, Hiroshi.

    1989-01-01

    Several points on the early and late radiation induced-normal tissue damages in terms of LQ model in multifractionation experiments of isoeffect were discussed from two fractors, (1) dose-responses of cell survivals or of tissue damages and (2) principles of the model. Application of the model to the both early and late tissue damages was fairly difficult in several tissues and several experimental conditions. In early damages, cell survival curve of single irradiation did not always fit to LQ model and further more incomlete repair as well as repopulation in multifractionation experiment contradicted the model especially in low dose fractionation. In late damages, the damages themselves did not express directly cell survival but probably indicate the degree of functional cell damage at the level of 10 -1 . As most isoeffects in early damages were taken at the level of 10 -3 , the comparison of two results from early and late tissue damages indicated the lack of coordinations both conceptionally and experimentally. (author)

  15. Multiscale approach to the physics of radiation damage with ions

    International Nuclear Information System (INIS)

    Surdutovich, E.; Solov'yov, A.

    2014-01-01

    The multiscale approach to the assessment of bio-damage resulting upon irradiation of biological media with ions is reviewed, explained and compared to other approaches. The processes of ion propagation in the medium concurrent with ionization and excitation of molecules, transport of secondary products, dynamics of the medium, and biological damage take place on a number of different temporal, spatial and energy scales. The multiscale approach, a physical phenomenon-based analysis of the scenario that leads to radiation damage, has been designed to consider all relevant effects on a variety of scales and develop an approach to the quantitative assessment of biological damage as a result of irradiation with ions. Presently, physical and chemical effects are included in the scenario while the biological effects such as DNA repair are only mentioned. This paper explains the scenario of radiation damage with ions, overviews its major parts, and applies the multiscale approach to different experimental conditions. On the basis of this experience, the recipe for application of the multiscale approach is formulated. The recipe leads to the calculation of relative biological effectiveness. (authors)

  16. Advances in SSTR techniques for dosimetry and radiation damage measurements

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.

    1979-01-01

    Solid state track recorders (SSTR) have been applied in the diverse nuclear reactor research. Two recent advances are described which possess outstanding relevance for reactor research, namely the evolvement of SSTR radiation damage monitors and the development of CR-39, a new plastic SSTR of extremely high sensitivity. Results from high fluence irradiations of natural quartz crystal SSTR are used to illustrate the concept of the SSTR radiation damage monitor. Response characteristics of CR-39 are presented with emphasis on the remarkable proton sensitivity of this new SSTR

  17. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    Science.gov (United States)

    Eccles, Laura J.; O’Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a “friend”, leading to cell killing in tumour cells or as a “foe”, resulting in the formation of mutations and genetic instability in normal tissue. PMID:21130102

  18. Measurements and TCAD Simulations of Bulk and Surface Radiation Damage Effects

    CERN Document Server

    F. Moscatelli; G. M. Bilei; A. Morozzi; G.-F. Dalla Betta; R. Mendicino; M. Boscardin; N. Zorzi; L. Servoli; P. Maccagnani

    2016-01-01

    In this work we propose the application of a radiation damage model based on the introduction of deep level traps/recombination centers suitable for device level numerical simulation of radiation detectors at very high fluences (e.g. 1÷2×1016 1-MeV equivalent neutrons per square centimeter) combined with a surface damage model developed by using experimental parameters extracted from measurements from gamma irradiated p-type dedicated test structures.

  19. Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review

    International Nuclear Information System (INIS)

    Glaeser, R.M.; Taylor, K.A.

    1978-01-01

    When biological specimens are irradiated by the electron beam in the electron microscope, the specimen structure is damaged as a result of molecular excitation, ionization, and subsequent chemical reactions. The radiation damage that occurs in the normal process of electron microscopy is known to present severe limitations for imaging high resolution detail in biological specimens. The question of radiation damage at low temperatures has therefore been investigated with the view in mind of reducing somewhat the rate at which damage occurs. The radiation damage protection found for small molecule (anhydrous) organic compounds is generally rather limited or even non-existent. However, large molecule, hydrated materials show as much as a 10-fold reduction at low temperature in the rate at which radiation damage occurs, relative to the damage rate at room temperature. In the case of hydrated specimens, therefore, low temperature electron microscopy offers an important advantage as part of the overall effort required in obtaining high resolution images of complex biological structures. (author)

  20. On radiation damage to normal tissues and its treatment. Pt. 2

    International Nuclear Information System (INIS)

    Michalowski, A.S.

    1994-01-01

    In addition to transiently inhibiting cell cycle progression and sterilizing those cells capable of proliferation, irradiation disturbs the homeostasis effected by endogenous mediators of intercellular communication (humoral component of tissue response to radiation). Changes in the mediator levels may modulate radiation effects either by a assisting a return to normality (e.g., through a rise in H-type cell lineage-specific growth factors) or by aggravating the damage. The latter mode is illustrated with reports on changes in eicosanoid levels after irradiation and on results of empirical treatment of radiation injuries with anti-inflammatory drugs. Prodromal, acute and chronic effects of radiation are accompanied by excessive production of eicosanoids (prostaglandins, prostacyclin, thromboxanes and leukotrienes). These endogenous mediators of inflammatory reactions may be responsible for the vasodilatation, vasoconstriction, increased microvascular permeability, thrombosis and chemotaxis observed after radiation exposure. Glucocorticoids inhibit eicosanoid synthesis primarily by interfering with phospholipase A 2 whilst non-steroidal anti-inflammatory drugs prevent prostaglandin/thromboxane synthesis by inhibiting cycloxygenase. When administered after irradiation on empirical grounds, drugs belonging to both groups tend to attenuate a range of prodomal, acute and chronic effects of radiation in man and animals. Taken together, these two sets of observations are highly suggestive of a contribution of humoral factors to the adverse responses of normal tissues and organs to radiation. A full account of radiation damage should therefore consist of complementary descriptions of cellular and humoral events. Further studies on anti-inflammatory drug treatment of radiation damage to normal organs are justified and desirable. (orig.)

  1. Prediction of radiation-related small-bowel damage

    International Nuclear Information System (INIS)

    Potish, R.A.

    1980-01-01

    In order to predict which patients have a high risk for radiation-related small-bowel damage, the concept of the dose-response curve was applied to the predisposing factors (number of previous laparotomies, extent of surgery, thin physique, hypertension, age, cancer stage, number of treatment days, fractionation, and weight change during radiotherapy) present in 92 patients receiving identical radiation doses and volumes This analysis allows an estimate of the probability of complication to be assigned to individual patients. The utility and limitations of the dose-response concept are discussed

  2. Radiation damage in natural materials: implications for radioactive waste forms

    International Nuclear Information System (INIS)

    Ewing, R.C.

    1981-01-01

    The long-term effect of radiation damage on waste forms, either crystalline or glass, is a factor in the evaluation of the integrity of waste disposal mediums. Natural analogs, such as metamict minerals, provide one approach for the evaluaton of radiation damage effects that might be observed in crystalline waste forms, such as supercalcine or synroc. Metamict minerals are a special class of amorphous materials which were initially crystalline. Although the mechanism for the loss of crystallinity in these minerals (mostly actinide-containing oxides and silicates) is not clearly understood, damage caused by alpha particles and recoil nuclei is critical to the metamictization process. The study of metamict minerals allows the evaluation of long-term radiation damage effects, particularly changes in physical and chemical properties such as microfracturing, hydrothermal alteration, and solubility. In addition, structures susceptible to metamictization share some common properties: (1) complex compositions; (2) some degree of covalent bonding, instead of being ionic close-packed MO/sub x/ structures; and (3) channels or interstitial voids which may accommodate displaced atoms or absorbed water. On the basis of these empirical criteria, minerals such as pollucite, sodalite, nepheline and leucite warrant careful scrutiny as potential waste form phases. Phases with the monazite or fluorite structures are excellent candidates

  3. Specific chemical and structural damage to proteins produced by synchrotron radiation.

    Science.gov (United States)

    Weik, M; Ravelli, R B; Kryger, G; McSweeney, S; Raves, M L; Harel, M; Gros, P; Silman, I; Kroon, J; Sussman, J L

    2000-01-18

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  4. Computer simulation of radiation damage in HTGR elements and structural materials

    International Nuclear Information System (INIS)

    Gann, V.V.; Gurin, V.A.; Konotop, Yu.F.; Shilyaev, B.A.; Yamnitskij, V.A.

    1980-01-01

    The problem of mathematical simulation of radiation damages in material and items of HTGR is considered. A system-program complex IMITATOR, intended for imitation of neutron damages by means of charged particle beams, is used. Account of material composite structure and certain geometry of items permits to calculate fields of primary radiation damages and introductions of reaction products in composite fuel elements, microfuel elements, their shells, composite absorbing elements on the base of boron carbide, structural steels and alloys. A good correspondence of calculation and experimental burn-out of absorbing elements is obtained, application of absorbing element as medium for imitation experiments is grounded [ru

  5. Umbelliferone suppresses radiation induced DNA damage and apoptosis in hematopoietic cells of mice

    International Nuclear Information System (INIS)

    Jayakumar, S.; Bhilwade, H.N.; Chaubey, R.C.

    2012-01-01

    Radiotherapy is one of the major modes of treatment for different types of cancers. But the success of radiotherapy is limited by injury to the normal cells. Protection of the normal cells from radiation damage by radioprotectors can increase therapeutic efficiency. These radioprotectors can also be used during nuclear emergency situations. Umbelliferone (UMB) is a wide spread natural product of the coumarin family. It occurs in many plants from the Apiaceae family. In the present study radioprotective effect of UMB was investigated in vitro and in vivo. Anti genotoxic effect of Umbelliferone was tested by treating the splenic lymphocytes with various doses of UMB (6.5 μM - 50 μM) prior to radiation (6Gy) exposure. After the radiation exposure, extent of DNA damage was assessed by comet assay at 5 mm and two hours after radiation exposure. At both the time points, it was observed that the pretreatment of UMB reduced the radiation induced DNA damage to a significant extent in comparison to radiation control. UMB pretreatment also significantly reduced the radiation induced apoptosis enumerated by propidium iodide staining assay. Results of clonogenic survival assay using intestinal cell line showed that pretreatment with UMB significantly protected against radiation induced loss of colony forming units. To assess the anti genotoxic role of umbelliferone in vivo two different doses of UMB (20 mg/Kg and 40 mg/Kg of body weight) were injected into Swiss mice or with vehicle and exposed to radiation. Thirty minutes after the radiation comet assay was performed in peripheral leukocytes. Frequency of micro nucleated erythrocytes was scored in bone marrow cells. It was observed that UMB alone did not cause any significant increase in DNA damage in comparison to control. Animals which are exposed to radiation alone showed significant increase in DNA damage and micronuclei frequency. But animals treated with UMB prior to the radiation exposure showed significant decrease

  6. The use of the SRIM code for calculation of radiation damage induced by neutrons

    Science.gov (United States)

    Mohammadi, A.; Hamidi, S.; Asadabad, Mohsen Asadi

    2017-12-01

    Materials subjected to neutron irradiation will being evolve to structural changes by the displacement cascades initiated by nuclear reaction. This study discusses a methodology to compute primary knock-on atoms or PKAs information that lead to radiation damage. A program AMTRACK has been developed for assessing of the PKAs information. This software determines the specifications of recoil atoms (using PTRAC card of MCNPX code) and also the kinematics of interactions. The deterministic method was used for verification of the results of (MCNPX+AMTRACK). The SRIM (formely TRIM) code is capable to compute neutron radiation damage. The PKAs information was extracted by AMTRACK program, which can be used as an input of SRIM codes for systematic analysis of primary radiation damage. Then the Bushehr Nuclear Power Plant (BNPP) radiation damage on reactor pressure vessel is calculated.

  7. Gamma radiation damage in pixelated detector based on carbon nanotubes

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Leyva, D.; Abreu, Y.; Cruz, C. M.

    2013-01-01

    The aim of this paper is to evaluate the possible gamma radiation damage in high pixelated based on multi-walled carbon nanotubes detectors, grown on two different substrata, when it is operating in aggressive radiational environments. The radiation damage in displacements per atom (dpa) terms were calculated using the MCCM algorithm, which takes into account the McKinley-Feshbach approach with the Kinchin-Pease approximation for the damage function. Was observed that with increasing of the gamma energy the displacement total number grows monotonically reaching values of 0.39 displacements for a 10 MeV incident photon. The profiles of point defects distributions inside the carbon nanotube pixel linearly rise with depth, increasing its slope with photon energy. In the 0.1 MeV - 10 MeV studied energy interval the electron contribution to the total displacement number become higher than the positron ones, reaching this last one a maximum value of 12% for the 10 MeV incident photons. Differences between the calculation results for the two used different substrata were not observed. (Author)

  8. PREFACE: Radiation Damage in Biomolecular Systems (RADAM07)

    Science.gov (United States)

    McGuigan, Kevin G.

    2008-03-01

    The annual meeting of the COST P9 Action `Radiation damage in biomolecular systems' took place from 19-22 June 2007 in the Royal College of Surgeons in Ireland, in Dublin. The conference was structured into 5 Working Group sessions: Electrons and biomolecular interactions Ions and biomolecular interactions Radiation in physiological environments Theoretical developments for radiation damage Track structure in cells Each of the five working groups presented two sessions of invited talks. Professor Ron Chesser of Texas Tech University, USA gave a riveting plenary talk on `Mechanisms of Adaptive Radiation Responses in Mammals at Chernobyl' and the implications his work has on the Linear-No Threshold model of radiation damage. In addition, this was the first RADAM meeting to take place after the Alexander Litvenenko affair and we were fortunate to have one of the leading scientists involved in the European response Professor Herwig Paretzke of GSF-Institut für Strahlenschutz, Neuherberg, Germany, available to speak. The remaining contributions were presented in the poster session. A total of 72 scientific contributions (32 oral, 40 poster), presented by 97 participants from 22 different countries, gave an overview on the current progress in the 5 different subfields. A 1-day pre-conference `Early Researcher Tutorial Workshop' on the same topic kicked off on 19 June attended by more than 40 postgrads, postdocs and senior researchers. Twenty papers, based on these reports, are included in this volume of Journal of Physics: Conference Series. All the contributions in this volume were fully refereed, and they represent a sample of the courses, invited talks and contributed talks presented during RADAM07. The interdisciplinary RADAM07 conference brought together researchers from a variety of different fields with a common interest in biomolecular radiation damage. This is reflected by the disparate backgrounds of the authors of the papers presented in these proceedings

  9. Mechanisms for radiation damage in DNA. Final report, June 1, 1986--August 31, 1996

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1996-08-01

    Over the last 10 years significant advances have been made impacting the understanding of radiation damage to DNA. The principal objective of this work was the elucidation of the fundamental mechanisms of radiation damage to DNA through the direct and indirect effects. Recently the work concentrated on the direct effect of radiation damage on DNA. The objective was to elucidate the ultimate radiation chemical damage to DNA arising from the direct effect. In this effort the focus was on the application of three techniques. ESR spectroscopic measurement of initial radicals formed in DNA and its hydration layer at low temperatures. Ab initio molecular orbital calculations were employed to give highly accurate theoretical predictions of early events such as electron and hole localization sites which serve to test and to clarify the experimental observations. HPLC and GC-mass spectroscopic assays of DNA base products formation provide the ultimate chemical outcome of the initial radiation events. The bridge between the early ion radical species and the non-radical products is made in ESR studies which follow the chemistry of the early species as they react with water and or other DNA bases. The use of these techniques has resulted in a new and fundamental understanding of the radiation damage to DNA on a molecular scale. From this work, a working model for DNA damage from the initial ionization event to the eventual formation of molecular base damage products and strand breaks has been formulated. Results over the past several years which have led to the formulation of this model are described

  10. Introduction to neutron metrology for reactor radiation damage

    International Nuclear Information System (INIS)

    Alberman, A.; Genthon, J.P.; Wright, S.B.; Zijp, W.L.

    1977-01-01

    This document, prepared by members of the Irradiation Damage Subgroup of the Euratom Working Group on Reactor Dosimetry (EWGRD) describes the background of the procedures for determining irradiation parameters which are of interest in radiation damage experiments. The first two chapters outline the concept of damage functions and damge models. The next two chapters give information on methods to determine neutron fluences and neutron spectra. The fifth chapter gives a review of correlation data available for graphite and steels. The last chapter gives guidance how to report the relevant irradiation parameters. Attention is given to the role of the neutron spectrum in deriving values for damage fluence, energy transferred to the lattice, and number of displacements. A suggested list to report data relevant to the irradiation, the instrumentation and the testing of material is included

  11. Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Marathe, D.L.; Pandey, B.N.; Mishra, K.P [Bhabha Atomic Research Centre, Mumbai (India)

    2000-05-01

    Investigations in our laboratory on egg lecithin liposomes have recently showed a marked protection against damage by gamma radiation when cholesterol was present in the composition of vesicles suggesting a role of bilayer molecular architecture in the mechanism of free radical mediated lipid peroxidation. Present study was designed to determine the changes in bilayer permeability in DPPC unilamelar vesicles after exposure to gamma radiation by monitoring the leakage of pre-loaded carboxyfluorescein (CF), a marker loaded in aqueous interior of vesicle and fluidity alterations in the bilayer using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a membrane bilayer probe. It was found that radiation doses of an order of magnitude higher were required to produce detectable changes in vesicles of DPPC than in the vesicles of egg lecithin suggesting a modulating role of chemical nature of composition in the membrane radiation sensitivity. It was significant to find that the leakage of CF from and incorporation of DPH into vesicle bilayer showed similar response pattern to radiation doses (0.1-6 kGy) which was also found to be dose rate dependent. Presence of antioxidants; alpha-tocopherol (0.15 mole %) in the bilayer membrane or ascorbic acid (0.1 mM) in the aqueous region significantly protected DPPC vesicles from radiation damage as determined from DPH uptake kinetics suggesting involvement of reactive free radicals of lipids as well as water radicals in the mechanism of membrane peroxidative damage. The magnitude of protection was found to increase with the increasing concentration of both these antioxidants but comparisons showed that {alpha}-tocopherol was far more effective in protecting the vesicles than ascorbic acid. These results contribute to our understanding of the mechanism of radiation oxidative damage and its modification by radical scavenging and/or organizational modulation which emphasize the importance of structure and composition of

  12. Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants

    International Nuclear Information System (INIS)

    Marathe, D.L.; Pandey, B.N.; Mishra, K.P

    2000-01-01

    Investigations in our laboratory on egg lecithin liposomes have recently showed a marked protection against damage by gamma radiation when cholesterol was present in the composition of vesicles suggesting a role of bilayer molecular architecture in the mechanism of free radical mediated lipid peroxidation. Present study was designed to determine the changes in bilayer permeability in DPPC unilamelar vesicles after exposure to gamma radiation by monitoring the leakage of pre-loaded carboxyfluorescein (CF), a marker loaded in aqueous interior of vesicle and fluidity alterations in the bilayer using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a membrane bilayer probe. It was found that radiation doses of an order of magnitude higher were required to produce detectable changes in vesicles of DPPC than in the vesicles of egg lecithin suggesting a modulating role of chemical nature of composition in the membrane radiation sensitivity. It was significant to find that the leakage of CF from and incorporation of DPH into vesicle bilayer showed similar response pattern to radiation doses (0.1-6 kGy) which was also found to be dose rate dependent. Presence of antioxidants; alpha-tocopherol (0.15 mole %) in the bilayer membrane or ascorbic acid (0.1 mM) in the aqueous region significantly protected DPPC vesicles from radiation damage as determined from DPH uptake kinetics suggesting involvement of reactive free radicals of lipids as well as water radicals in the mechanism of membrane peroxidative damage. The magnitude of protection was found to increase with the increasing concentration of both these antioxidants but comparisons showed that α-tocopherol was far more effective in protecting the vesicles than ascorbic acid. These results contribute to our understanding of the mechanism of radiation oxidative damage and its modification by radical scavenging and/or organizational modulation which emphasize the importance of structure and composition of

  13. Late radiation responses in man: Current evaluation from results from Hiroshima and Nagasaki

    Science.gov (United States)

    Schull, William J.

    Among the late effects of exposure to the atomic bombings of Hiroshima and Nagasaki, none looms larger than radiation related malignancies. Indeed, the late effects of A-bomb radiation on mortality appear to be limited to an increase in malignant tumors. At present, it can be shown that cancers of the breast, colon, esophagus, lungs, stomach, thyroid, and urinary tract as well as leukemia and multiple myeloma increase in frequency with an increase in exposure. No significant relationship to radiation can as yet be established for malignant lymphoma, nor cancers of the rectum, pancreas or uterus. Radiation induced malignancies other than leukemia seem to develop proportionally to the natural cancer rate for the attained age. For specific age-at-death intervals, both relative and absolute risks tend to be higher for those of younger age at the time of bombing. Other late effects include radiation-related lenticular opacities, disturbances of growth among those survivors still growing at the time of exposure, and mental retardation and small head sizes among the in utero exposed. Chromosomal abnormalities too are more frequently encountered in the peripheral leucocytes of survivors, and this increase is functionally related to their exposure. Some uncertainty continues to surround both the quantity and quality of the radiation released by these two nuclear devices, particularly the Hiroshima bomb. A recent reassessment suggests that the gamma radiation estimates which have been used in the past may be too low at some distances and the neutron radiation estimates too high at all distances; moreover, the energies of the neutrons released now appear ``softer'' than previously conjectured. These uncertainties not sufficiently large, however, to compromise the reality of the increased frequency of malignancy, but make estimates of the dose response, particularly in terms of gamma and neutron exposures, tentative.

  14. Particle interaction and displacement damage in silicon devices operated in radiation environments

    International Nuclear Information System (INIS)

    Leroy, Claude; Rancoita, Pier-Giorgio

    2007-01-01

    Silicon is used in radiation detectors and electronic devices. Nowadays, these devices achieving submicron technology are parts of integrated circuits of large to very large scale integration (VLSI). Silicon and silicon-based devices are commonly operated in many fields including particle physics experiments, nuclear medicine and space. Some of these fields present adverse radiation environments that may affect the operation of the devices. The particle energy deposition mechanisms by ionization and non-ionization processes are reviewed as well as the radiation-induced damage and its effect on device parameters evolution, depending on particle type, energy and fluence. The temporary or permanent damage inflicted by a single particle (single event effect) to electronic devices or integrated circuits is treated separately from the total ionizing dose (TID) effect for which the accumulated fluence causes degradation and from the displacement damage induced by the non-ionizing energy-loss (NIEL) deposition. Understanding of radiation effects on silicon devices has an impact on their design and allows the prediction of a specific device behaviour when exposed to a radiation field of interest

  15. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    Science.gov (United States)

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  16. Protecting the radiation-damaged skin from friction: a mini review

    International Nuclear Information System (INIS)

    Herst, Patries M

    2014-01-01

    Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier products that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin

  17. Modification of radiation damage in CHO cells by hyperthermia at 40 and 450C

    International Nuclear Information System (INIS)

    Henle, K.J.; Leeper, D.B.

    1977-01-01

    Low hyperthermia at 40 0 C either before or after X irradiation did not alter the slope of the radiation dose-cell survival curve but reduced the D/sub q/ from 145 to 41 or to 0 rad for a pre- or postirradiation incubation period of 2 hr at 40 0 C, respectively. In contrast, hyperthermia at 45 0 C increased the slope of the radiation survival curve by a factor of 1.7 for a radiation pretreatment of 10 min at 45 0 C, but only by 1.3 for the same treatment immediately after irradiation. The corresponding D/sub q/'s were 262 and 138 rad, respectively. A combination of 45 and 40 0 C hyperthermia (10 min at 45 0 C + 2 hr at 40 0 C + X) resulted in a superposition of the individual effects of 45 or 40 0 C hyperthermia on the radiation survival curve. In addition, the radiation survival curve was shifted downward by a factor of three due to the potentiation of 45 0 C hyperthermia damage by postincubation at 40 0 C. Repair of sublethal radiation damage was completely suppressed during incubation at 40 following hyperthermia at 45 0 C. However, when cells were returned to 37 0 C, even after 6 hr at 40 following 45 0 C hyperthermia, the capacity to accumulate and repair sublethal radiation damage was immediately restored. These findings imply that the hyperthermia damage from low or high temperatures interacts differentially with radiation damage. Low hyperthermia at 40 0 C may affect principally the radiation repair system, whereas 45 0 C hyperthermia probably alters the radiation target more severely than the repair system

  18. Radiobiology in clinical radiation therapy - Part III: Normal tissue damage

    International Nuclear Information System (INIS)

    Travis, Elizabeth L.

    1996-01-01

    Objective: This is the third part of a course designed for residents in radiation oncology preparing for their boards. This part of the course will focus on the mechanisms underlying damage in normal tissues. Although conventional wisdom long held that killing and depletion of a critical cell(s) in a tissue was responsible for the later expression of damage, histopathologic changes in normal tissue can now be explained and better understood in terms of the new molecular biology. The concept that depletion of a single cell type is responsible for the observed histopathologic changes in normal tissues has been replaced by the hypothesis that damage results from the interaction of many different cell systems, including epithelial, endothelial, macrophages and fibroblasts, via the production of specific autocrine, paracrine and endocrine growth factors. A portion of this course will discuss the clinical and experimental data on the production and interaction of those cytokines and cell systems considered to be critical to tissue damage. It had long been suggested that interindividual differences in radiation-induced normal tissue damage was genetically regulated, at least in part. Both clinical and experimental data supported this hypothesis but it is the recent advances in human and mouse molecular genetics which have provided the tools to dissect out the genetic component of normal tissue damage. These data will be presented and related to the potential to develop genetic markers to identify sensitive individuals. The impact on clinical outcome of the ability to identify prospectively sensitive patients will be discussed. Clinically it is well-accepted that the volume of tissue irradiated is a critical factor in determining tissue damage. A profusion of mathematical models for estimating dose-volume relationships in a number of organs have been published recently despite the fact that little data are available to support these models. This course will review the

  19. The effect of pentoxifylline on early and late radiation injury following fractionated irradiation in C3H mice

    Energy Technology Data Exchange (ETDEWEB)

    Dion, M.W.; Hussey, D.H.; Osborne, J.W.

    1989-07-01

    An experiment was performed to test the effectiveness of pentoxifylline in reducing late radiation injury. One hundred and four C3H mice were randomized into eight groups of 13 mice each, and the right hind limbs were irradiated with 4000, 5000, 6000, or 7000 cGy in ten fractions. Each group was treated with once daily injections of either pentoxifylline or saline for 30+ weeks. An additional ten mice received daily injections of pentoxifylline or saline, but no irradiation. The pentoxifylline animals demonstrated significantly less late injury than the saline treated animals. The most obvious differences were observed in the 5000 and 6000 cGy groups. There were seven radiation related deaths in the saline treated control groups, but only one radiation related death in the pentoxifylline treated groups. Whereas 42% (20/48) of the saline treated animals had a late injury score of 3.0 or greater, only 8% (4/51) of the pentoxifylline treated animals had a late skin score as high as 3.0. Pentoxifylline had no effect on the acute radiation injury scores. The drug was well tolerated with no toxic effects noted. Pentoxifylline is a methyl xanthine derivative that is used to treat vascular occlusive disease in humans. It improves perfusion through small capillaries by improving the deformability of red blood cells, inhibiting platelet aggregation, and stimulating the release of prostacyclin. This study shows that the prophylactic administration of pentoxifylline can modify late radiation induced injury in the mouse extremity. It may have value in the prevention or treatment of late radiation induced injury in humans, and it could be a useful tool to help define the mechanisms of late radiation injury in specific organs.

  20. The effect of pentoxifylline on early and late radiation injury following fractionated irradiation in C3H mice

    International Nuclear Information System (INIS)

    Dion, M.W.; Hussey, D.H.; Osborne, J.W.

    1989-01-01

    An experiment was performed to test the effectiveness of pentoxifylline in reducing late radiation injury. One hundred and four C3H mice were randomized into eight groups of 13 mice each, and the right hind limbs were irradiated with 4000, 5000, 6000, or 7000 cGy in ten fractions. Each group was treated with once daily injections of either pentoxifylline or saline for 30+ weeks. An additional ten mice received daily injections of pentoxifylline or saline, but no irradiation. The pentoxifylline animals demonstrated significantly less late injury than the saline treated animals. The most obvious differences were observed in the 5000 and 6000 cGy groups. There were seven radiation related deaths in the saline treated control groups, but only one radiation related death in the pentoxifylline treated groups. Whereas 42% (20/48) of the saline treated animals had a late injury score of 3.0 or greater, only 8% (4/51) of the pentoxifylline treated animals had a late skin score as high as 3.0. Pentoxifylline had no effect on the acute radiation injury scores. The drug was well tolerated with no toxic effects noted. Pentoxifylline is a methyl xanthine derivative that is used to treat vascular occlusive disease in humans. It improves perfusion through small capillaries by improving the deformability of red blood cells, inhibiting platelet aggregation, and stimulating the release of prostacyclin. This study shows that the prophylactic administration of pentoxifylline can modify late radiation induced injury in the mouse extremity. It may have value in the prevention or treatment of late radiation induced injury in humans, and it could be a useful tool to help define the mechanisms of late radiation injury in specific organs

  1. Dosimetric and Late Radiation Toxicity Comparison Between Iodine-125 Brachytherapy and Stereotactic Radiation Therapy for Juxtapapillary Choroidal Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Krema, Hatem, E-mail: htmkrm19@yahoo.com [Department of Ocular Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Heydarian, Mostafa [Department of Radiation Medicine, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Beiki-Ardakani, Akbar [Department of Radiation Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Weisbrod, Daniel [Department of Ocular Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Xu, Wei [Department of Biostatistics, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Laperriere, Normand J.; Sahgal, Arjun [Department of Radiation Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada)

    2013-07-01

    Purpose: To compare the dose distributions and late radiation toxicities for {sup 125}I brachytherapy (IBT) and stereotactic radiation therapy (SRT) in the treatment of juxtapapillary choroidal melanoma. Methods: Ninety-four consecutive patients with juxtapapillary melanoma were reviewed: 30 have been treated with IBT and 64 with SRT. Iodine-125 brachytherapy cases were modeled with plaque simulator software for dosimetric analysis. The SRT dosimetric data were obtained from the Radionics XKnife RT3 software. Mean doses at predetermined intraocular points were calculated. Kaplan-Meier estimates determined the actuarial rates of late toxicities, and the log–rank test compared the estimates. Results: The median follow-up was 46 months in both cohorts. The 2 cohorts were balanced with respect to pretreatment clinical and tumor characteristics. Comparisons of radiation toxicity rates between the IBT and SRT cohorts yielded actuarial rates at 50 months for cataracts of 62% and 75% (P=.1), for neovascular glaucoma 8% and 47% (P=.002), for radiation retinopathy 59% and 89% (P=.0001), and for radiation papillopathy 39% and 74% (P=.003), respectively. Dosimetric comparisons between the IBT and SRT cohorts yielded mean doses of 12.8 and 14.1 Gy (P=.56) for the lens center, 17.6 and 19.7 Gy (P=.44) for the lens posterior pole, 13.9 and 10.8 Gy (P=.30) for the ciliary body, 61.9 and 69.7 Gy (P=.03) for optic disc center, and 48.9 and 60.1 Gy (P<.0001) for retina at 5-mm distance from tumor margin, respectively. Conclusions: Late radiation-induced toxicities were greater with SRT, which is secondary to the high-dose exposure inherent to the technique as compared with IBT. When technically feasible, IBT is preferred to treat juxtapapillary choroidal melanoma.

  2. Repair of radiation damage in mammalian cells: its relevance to environmental effects

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.

    1979-01-01

    Assessment of the potential biological hazards associated with energy production technologies involves the quantitation of risk on the basis of dose-effect dependencies, from which, it is hoped, some safety guidelines can be developed. Our current knowledge of the biological importance of damage/repair processes stems by and large from radiation studies which clearly demonstrate that cellular response to radiation depends upon the ability of cells to repair the damage. Apparently, the same is true for cellular response to different chemical agents. Drawing upon our experiences from radiation studies, we demonstrate the relevance of ongoing repair processes, as evident in the studies of radiation induced cell killing and neoplastic transformation, to the type of risk estimates that might be associated with the hazards from energy production technologies. The effect of repair on cell survival is considered. It is evident from our studies that in the region of small doses, repair of damage relative to cell lethality is of importance in estimating the magnitude of effect. Aside from the cytotoxic effects in terms of cell killing, one of the greatest concerns associated with energy production is the potential of a given technology, or its effluents, to produce cancer. It is therefore of importance to quantify the risk in this context of damage registration and possible effect of repair on damage expression. It has been generally established that exposure of normal cells in culture to a variety of known carcinogens results in neoplastic transformation. Our observations with C3H/10T1/2 cells in culture lend direct evidence for the hypothesis that reduced tumor incidences at low dose rates of radiation could be due to the repair of induced damage

  3. The Addition of Manganese Porphyrins during Radiation Inhibits Prostate Cancer Growth and Simultaneously Protects Normal Prostate Tissue from Radiation Damage

    Directory of Open Access Journals (Sweden)

    Arpita Chatterjee

    2018-01-01

    Full Text Available Radiation therapy is commonly used for prostate cancer treatment; however, normal tissues can be damaged from the reactive oxygen species (ROS produced by radiation. In separate reports, we and others have shown that manganese porphyrins (MnPs, ROS scavengers, protect normal cells from radiation-induced damage but inhibit prostate cancer cell growth. However, there have been no studies demonstrating that MnPs protect normal tissues, while inhibiting tumor growth in the same model. LNCaP or PC3 cells were orthotopically implanted into athymic mice and treated with radiation (2 Gy, for 5 consecutive days in the presence or absence of MnPs. With radiation, MnPs enhanced overall life expectancy and significantly decreased the average tumor volume, as compared to the radiated alone group. MnPs enhanced lipid oxidation in tumor cells but reduced oxidative damage to normal prostate tissue adjacent to the prostate tumor in combination with radiation. Mechanistically, MnPs behave as pro-oxidants or antioxidants depending on the level of oxidative stress inside the treated cell. We found that MnPs act as pro-oxidants in prostate cancer cells, while in normal cells and tissues the MnPs act as antioxidants. For the first time, in the same in vivo model, this study reveals that MnPs enhance the tumoricidal effect of radiation and reduce oxidative damage to normal prostate tissue adjacent to the prostate tumor in the presence of radiation. This study suggests that MnPs are effective radio-protectors for radiation-mediated prostate cancer treatment.

  4. Recovery and permanent radiation damage of plastic scintillators at different dose rates

    International Nuclear Information System (INIS)

    Bicken, B.; Holm, U.; Marckmann, T.; Wick, K.; Rhode, M.

    1990-01-01

    This paper reports on the radiation stability of plastic scintillators and wavelength shifters for the calorimeter of the ZEUS detector by irradiating them with protons, a 60 Co-source, and depleted uranium. Changes in light yield, absorption length and absorption coefficient have been measured for storage in inert and oxygen atmospheres during and after irradiation. Radiation doses up to 40 kGy with dose rates of 30 up to 2000 Gy/h have been applied. The polystyrene based scintillator SCSN-38 and the wavelength shifters Y-7 and K-27 in PMMA show an additional absorption but a recovery in air to a low permanent damage (at 10 kGy) which is proportional to the applied dose. Series investigations on samples of all production cycles of the ZEUS scintillators with high dose rates show only minor differences in radiation hardness. The recovery is described by a simple oxygen diffusion model for high and medium dose rates down to 30 Gy/h. During long term irradiations at low dose rates (<100 Gy/h) of 3 mm thick SCSN-38 in air the radiation damage recovers to a permanent damage which does not depend on the dose rate. On the other hand the radiation damage at very low dose rates (17 Gy/a) seems to be higher than expected for the accumulated dose

  5. Long-term effects of radiation

    International Nuclear Information System (INIS)

    Smith, J.; Smith, T.

    1981-01-01

    It is pointed out that sources of long-term damage from radiation are two-fold. People who have been exposed to doses of radiation from initial early fallout but have recovered from the acute effects may still suffer long-term damage from their exposure. Those who have not been exposed to early fallout may be exposed to delayed fallout, the hazards from which are almost exclusively from ingesting strontium, caesium and carbon isotopes present in food; the damage caused is relatively unimportant compared with that caused by the brief doses from initial radiation and early fallout. A brief discussion is presented of the distribution of delayed long-lived isotope fallout, and an outline is sketched of late biological effects, such as malignant disease, cataracts, retarded development, infertility and genetic effects. (U.K.)

  6. Role of charged particle irradiations in the study of radiation damage correlation

    International Nuclear Information System (INIS)

    Ishino, S.; Sekimura, N.

    1990-01-01

    Charged particle irradiations were originally expected to provide means to simulate the effect of neutron irradiations. However, it has been recognized that quantitative and sometimes even qualitative simulation of neutron radiation damage is difficult and the role of the charged particle irradiations has shifted to establishing fission-fusion correlation based on fundamental understanding of the radiation damage phenomena. The authors have been studying radiation effects in fusion materials using energetic ions from the latter standpoint. In this paper, the authors review recent results using a heavy-ion/electron microscope link facility together with sets of small heavy ion and light ion accelerators on cascade damage produced by energetic primary recoils and on the effect of helium on microstructural and microchemical evolution. Some of the other applications of the ion accelerators will also be mentioned. (orig.)

  7. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kmetko, Jan [Kenyon College, Gambier, OH 43022 (United States); Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Kenyon College, Gambier, OH 43022 (United States)

    2011-10-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions.

  8. Can radiation damage to protein crystals be reduced using small-molecule compounds?

    International Nuclear Information System (INIS)

    Kmetko, Jan; Warkentin, Matthew; Englich, Ulrich; Thorne, Robert E.

    2011-01-01

    Free-radical scavengers that are known to be effective protectors of proteins in solution are found to increase global radiation damage to protein crystals. Protective mechanisms may become deleterious in the protein-dense environment of a crystal. Recent studies have defined a data-collection protocol and a metric that provide a robust measure of global radiation damage to protein crystals. Using this protocol and metric, 19 small-molecule compounds (introduced either by cocrystallization or soaking) were evaluated for their ability to protect lysozyme crystals from radiation damage. The compounds were selected based upon their ability to interact with radiolytic products (e.g. hydrated electrons, hydrogen, hydroxyl and perhydroxyl radicals) and/or their efficacy in protecting biological molecules from radiation damage in dilute aqueous solutions. At room temperature, 12 compounds had no effect and six had a sensitizing effect on global damage. Only one compound, sodium nitrate, appeared to extend crystal lifetimes, but not in all proteins and only by a factor of two or less. No compound provided protection at T = 100 K. Scavengers are ineffective in protecting protein crystals from global damage because a large fraction of primary X-ray-induced excitations are generated in and/or directly attack the protein and because the ratio of scavenger molecules to protein molecules is too small to provide appreciable competitive protection. The same reactivity that makes some scavengers effective radioprotectors in protein solutions may explain their sensitizing effect in the protein-dense environment of a crystal. A more productive focus for future efforts may be to identify and eliminate sensitizing compounds from crystallization solutions

  9. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  10. UV and ionizing radiations induced DNA damage, differences and similarities

    Science.gov (United States)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  11. Late occurring lesions in the skin of rats after repeated doses of X-rays

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1985-01-01

    Late radiation damage, characterized by atrophy and necrosis in the skin and subcutaneous tissues, has been demonstrated in both the tail and feet of rats. The incidence of necrosis increased with total dose. These total doses, in the range 72-144 Gy, were given as 4-8 treatment of 18 Gy, each dose separated from the next by an interval of 28 days. This treatment protocol minimized acute epithelial skin reactions. The same regime applied to the skin on the back of rats resulted in a very severe acute reaction occurring after the second to fifth dose of 18 Gy. This was surprising since back skin, like tail skin, is less sensitive to large single doses of radiation than that of the foot. The late radiation reaction in the foot and tail of rats are compared and contrasted with other attempts to assess late effects in rodent skin and with late changes seen in pig skin. (author)

  12. DNA damage in synchronized hela cells irradiated with ultraviolet

    International Nuclear Information System (INIS)

    Downes, C.S.; Collins, A.R.S.; Johnson, R.T.

    1979-01-01

    The lethal effect of uv radiation on HeLa cells is least in mitosis and greatest in late G 1 -early S. Photochemical damage to HeLa DNA, as measured by thymine-containing dimer formation and by alkaline sucrose sedimentation, also increases from mitosis towards early S phase. Computer simulations of uv absorption by an idealized HeLa cell at different stages of the cell cycle indicate that changes in damage could be due solely to changes in chromatin geometry. But survival is not exclusively a function of damage

  13. Very low temperature rise laser annealing of radiation-damaged solar cells in orbit

    International Nuclear Information System (INIS)

    Poulek, V.

    1988-01-01

    Solar cells of all space objects are damaged by radiation in orbit. This damage, however, can be removed by laser annealing. A new in-orbit laser regeneration system for both body- and spin-stabilized space objects is proposed. For successful annealing of solar cells damaged by 10 years' radiation dose in orbit it is necessary for the temperature rise in the incidence point of the laser beam to reach about 400 0 C. By continuous regeneration, however, between two annealing cycles the solar cells are hit by about two orders of magnitude lower radiation dose. This makes it possible to carry out the regeneration at a temperature rise well under 1 0 C! If an optimal laser regeneration system is used, such low temperature rise laser annealing of radiation-damaged solar cells is possible. A semiconductor GaAlAs diode laser with output power up to 10 mW CW was used for annealing. Some results of the very low temperature rise annealing experiment are given in this paper. (author)

  14. Late health effects of radiation. Knowledge gained through 60 years experience in Japan

    International Nuclear Information System (INIS)

    Yamashita, Shunichi

    2005-01-01

    The proceedings begin with Preface by World Health Organization (WHO) and Message from Nagasaki University, and contain the topics of Health studies on atomic bomb survivors, WHO programs on radiation and health, Round-table discussion, and Special articles. The first topic involves the Radiation effects studies of RERF (Radiation Effects Research Foundation, the Japanese-US research organization focused on the study of health effects of radiation in survivors of the atomic bombings in Hiroshima and Nagasaki), Activities at the atomic bomb survivors health care commission, Late health effects of atomic bomb survivors, Late medical effects of atomic bombs still persisting after over sixty years, Solid cancer incidence among atomic bomb survivors/ preliminary data from a second follow-up, and Multiple primary cancers in Nagasaki atomic bomb survivors. The second; Key radiation projects at the WHO, The role of the WHO in strengthening capacity of the member states for preparedness and response to radiation emergencies, and Diagnostic imaging in a global perspective. A moderator and 8 discussants concerned with topics above give their issues in the third topic. Special articles describe about Historical role of L. S. Taylor in American radiation safety and protection, and Responsibility beyond 60 years. (T.I.)

  15. Radiation-induced Pulmonary Damage in Lung Cancer Patients

    International Nuclear Information System (INIS)

    Chung, Su Mi; Choi, Ihl Bohng; Kang, Mi Mun; Kim, In Ah; Shinn, Kyung Sub

    1993-01-01

    Purpose: A retrospective analysis was performed to evaluate the incidence of radiation induced lung damage after the radiation therapy for the patients with carcinoma of the lung. Method and Materials: Sixty-six patients with lung cancer (squamous cell carcinoma 27, adenocarcinoma 14, large cell carcinoma 2, small cell carcinoma 13, unknown 10) were treated with definitive, postoperative or palliative radiation therapy with or without chemotherapy between July 1987 and December 1991. There were 50 males and 16 females with median age of 63 years(range: 33-80 years). Total lung doses ranged from 500 to 6,660 cGy (median 3960 cGy) given in 2 to 38 fractions (median 20) over a range of 2 to 150 days (median 40 days) using 6 MV or 15 MV linear accelerator. To represent different fractionation schedules of equivalent biological effect, the estimated single dose(ED) model, ED=D·N-0.377·T-0.058 was used in which D was the lung dose in cGy, N was the number of fractions, and T was the overall treatment time in days. The range of ED was 370 to 1357. The endpoint was a visible increase in lung density within the irradiated volume on chest X-ray as observed independently by three diagnostic radiologists. Patients were grouped according to ED, treatment duration, treatment modality and age, and the percent incidence of pulmonary damage for each group was determined. Result: In 40 of 66 patients, radiation induced change was seen on chest radiographs between 11 days and 314 days after initiation of radiation therapy. The incidence of radiation pneumonitis was increased according to increased ED, which was statistically significant (p=0.001). Roentgenographic charges consistent with radiation pneumonitis were seen in 100% of patients receiving radiotherapy after lobectomy or pneumonectomy, which was not statistically significant. In 32 patients who also received chemotherapy, there was no difference in the incidence of radiation induced charge between the group with radiation

  16. Late effects of radiation on immune system; a review

    International Nuclear Information System (INIS)

    Sado, T.

    1979-01-01

    Lymphocytes are divided into 2 major classes: T and B lymphocytes (or cells). T cells are responsible for cell-mediated immune response, and B cells for humoral immune response or antibody formation. The possible immunological complications that might develop as the late manifestation of radiation effects include: lymphoid neoplasms, immune complex diseases, auto-aggressive immune reactions, and other degenerative diseases of immunological nature. The development of lymphoid neoplasma following the exposure to radiation was extensively studied with mice. Radiation-induced immunological compications would not contribute significantly to the life-shortening of exposed individuals. The extensive health survey of adult A-bomb survivors revealed little evidence of immunological complications such as rheumatoid arthritis, kidney diseases, paraproteinemia, etc. The young healthy adults who had received thymic irradiation during infancy for the treatment of enlarged thymus manifested higher incidence of illness with abnormal immunological features. Immune complex diseases, particularly the inter-capillary glomerulosclerosis of kidneys, develop as a result of earlier exposure to high dose of radiation. (Yamashita, S.)

  17. The Assessment of Primary DNA Damage in Medical Personnel Occupationally Exposed to Ionizing Radiation

    International Nuclear Information System (INIS)

    Kopjar, N.; Garaj-Vrhovac, V.

    2003-01-01

    In physico-chemical interaction with cellular DNA ionizing radiation produces a variety of primary lesions, such as single-strand breaks (SSB), alkali-labile sites, double-strand breaks (DSB), DNA-DNA and DNA-protein crosslinks, and damage to purine and pyrimidine bases. The effects of low-level exposure to ionising radiation are of concern to large number of people, including workers receiving radiation exposure on the job. It is very important to estimate absorbed doses from individuals occupationally exposed to ionising radiation for carrying out radioprotection procedures and restrict the hazards to human health. A wide range of methods is presently used for the detection of early biological effects of DNA-damaging agents in environmental and occupational settings. Currently, unstable chromosomal aberrations in peripheral blood lymphocytes, in particularly dicentrics, are the most fully developed biological indicators of ionizing radiation exposure. This methodology usually complements data obtained by physical dosimetry. As a routine, it is used whenever the individual dosimeter shows an exposure to penetrating radiation above its limit of detection. One of the advantages of cytogenetic dosimetry is that this biological dosimeter can be assessed at any moment whereas physical dosimeters are not always present in the subject. During the last years, the single cell gel electrophoresis (SCGE) or comet assay has gained widespread acceptance for genotoxicity testing. In molecular epidemiology studies DNA damage evaluated by the comet assay is utilized as a biomarker of exposure. The comet assay permits the detection of primary DNA damage and the study of repair kinetics at the level of single cells. The aim of the present study was to assess and quantificate the levels of DNA damage in peripheral blood leukocytes of medical workers occupationally exposed to ionizing radiation and corresponding unexposed control subjects. As a sensitive biomarker of exposure the

  18. \\title{Development of Radiation Damage Models for Irradiated Silicon Sensors Using TCAD Tools}

    CERN Document Server

    Bhardwaj, Ashutosh; Lalwani, Kavita; Ranjan, Kirti; Printz, Martin; Ranjeet, Ranjeet; Eber, Robert; Eichhorn, Thomas; Peltola, Timo Hannu Tapani

    2014-01-01

    Abstract. During the high luminosity upgrade of the LHC (HL-LHC) the CMS tracking system will face a more intense radiation environment than the present system was designed for. In order to design radiation tolerant silicon sensors for the future CMS tracker upgrade it is fundamental to complement the measurement with device simulation. This will help in both the understanding of the device performance and in the optimization of the design parameters. One of the important ingredients of the device simulation is to develop a radiation damage model incorporating both bulk and surface damage. In this paper we will discuss the development of a radiation damage model by using commercial TCAD packages (Silvaco and Synopsys), which successfully reproduce the recent measurements like leakage current, depletion voltage, interstrip capacitance and interstrip resistance, and provides an insight into the performance of irradiated silicon strip sensors.

  19. Neurologic complications of radiation therapy and chemotherapy

    International Nuclear Information System (INIS)

    Rosenfeld, Myrna

    1998-01-01

    Radiation induced toxicities are due to the effect of irradiation of normal surrounding tissue which is included in the radiation port. The mechanisms of radiation induced damage have not been completely elucidated. Hypotheses include direct damage to neural cells versus damage to the vascular endothelium with secondary effects on nervous system structures. Another hypothesis is that radiation damaged glial cells release antigens that are able to evoke and antimmune response against the nervous system resulting in both cellular necrosis and vascular damage. The clinical diagnosis of radiation induced neurotoxicity may be difficult especially in patients who had neurologic signs prior to treatment. It is helpful to determine if the clinical signs correlate with the irradiated site and to know the total dose received and the dose per fraction. Prior or concomitant chemotherapy may act to increase the toxicity produced by radiation. The age of the patient at the time of radiation is important as the very young and the elderly are more likely to develop toxicities. Finally, concurrent neurologic diseases such as demyelinating disorders appear to sensitize neural tissue to radiation damage. Radiation injury can occur at almost any time, from immediately after irradiation to years later. The side effects can generally be divided into those that are acute (within days), early -delayed (within 4 weeks to 4 months after treatment) and late- delayed (months to years after treatment). (The author)

  20. Comparison between cytogenetic damage induced in human lymphocytes by environmental chemicals or radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cebulska-Wasilewska, A. [Institute of Nuclear Physics, Cracow (Poland)

    1997-12-31

    Author compared cytogenetic effects of chemicals (benzene and the member at benzene related compounds) and ionizing radiation on the human lymphocytes. Levels of various types of cytogenetic damage observed among people from petroleum plants workers groups are similar to the levels of damages detected in the blood of people suspected of the accidental exposure to a radiation source

  1. Comparison between cytogenetic damage induced in human lymphocytes by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1997-01-01

    Author compared cytogenetic effects of chemicals (benzene and the member at benzene related compounds) and ionizing radiation on the human lymphocytes. Levels of various types of cytogenetic damage observed among people from petroleum plants workers groups are similar to the levels of damages detected in the blood of people suspected of the accidental exposure to a radiation source

  2. Radiation Damage in Silicon Detectors Caused by Hadronic and Electromagnetic Irradiation

    CERN Document Server

    Fretwurst, E.; Stahl, J.; Pintilie, I.

    2002-01-01

    The report contains various aspects of radiation damage in silicon detectors subjected to high intensity hadron and electromagnetic irradiation. It focuses on improvements for the foreseen LHC applications, employing oxygenation of silicon wafers during detector processing (result from CERN-RD48). An updated survey on hadron induced damage is given in the first article. Several improvements are outlined especially with respect to antiannealing problems associated with detector storage during LHC maintenance periods. Open questions are outlined in the final section, among which are a full understanding of differences found between proton and neutron induced damage, process related effects changing the radiation tolerance in addition to the oxygen content and the lack of understanding the changed detector properties on the basis of damage induced point and cluster defects. In addition to float zone silicon, so far entirely used for detector fabrication,Czochralski silicon was also studied and first promising re...

  3. Quantification of complex DNA damage by ionising radiation. An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Fulford, J.

    2000-05-01

    Ionising radiation potentially produces a broad spectrum of damage in DNA including single and double strand breaks (ssb and dsb) and base damages. It has been hypothesised that sites of complex damage within cellular DNA have particular biological significance due to an associated decreased efficiency in repair. The aim of this study is to gain further understanding of the formation of complex DNA damage. Irradiations of plasmid DNA illustrate that an increase in ionising density of the radiation results in a decrease in ssb yields/Gy but an increase in dsb per ssb, indicative of an increase in the number of complex damage sites per simple isolated damage site. As the mechanism for damage formation shifts from purely indirect at low scavenging capacities to a significant proportion of direct at higher scavenging capacities the proportion of complex damage increases. Comparisons with the yields of ssb and dsb simulated by Monte-Carlo calculations for Al K USX and α-particles also indicate this correspondence. The ionisation density of low energy, secondary electrons produced by photons was assessed experimentally from the dependence of the yield of OH radicals escaping intra-track recombination on photon energy. As energy decreases the OH radical yield initially decreases reflecting an increased ionisation density. However, with further decrease in photon energy the yield of OH radicals increases in line with theoretical calculations. Base damage yields were determined for low and high ionising density radiation over a range of scavenging capacities. As scavenging capacity increases the base damage: ssb ratios increases implying a contribution from electrons to base damage. It is proposed that base damage contributes to DNA damage complexity. Complex damage analysis reveals that at cell mimetic scavenging capacities, 23% and 72% of ssb have an additional spatially close damage site following γ-ray and α-particle irradiation respectively. (author)

  4. Jagiellonian University Radiation Damage in Silicon Particle Detectors in High Luminosity Experiments

    CERN Document Server

    Oblakowska-Mucha, A

    2017-01-01

    Radiation damage is nowadays the most serious problem in silicon particle detectors placed in the very harsh radiation environment. This problem will be even more pronounced after the LHC Upgrade because of extremely strong particle fluences never encountered before. In this review, a few aspects of radiation damage in silicon trackers are presented. Among them, the change in the silicon lattice and its influence on the detector performance are discussed. Currently applied solutions and the new ideas for future experiments will be also shown. Most of the results presented in this summary were obtained within the RD50 Collaboration

  5. Modification of radiation damage by naturally occurring substances

    International Nuclear Information System (INIS)

    Prasad, K.N.

    1984-01-01

    The major objectives of studying the modification of radiation sensitivity have been (1) to identify a compound that will produce a differential protection or sensitization of the effect of irradiation on normal and tumor tissue, and (2) to understand more about the mechanisms of radiation damage. In spite of massive research on this particular problem since World War II, the first objective remains elusive. During this period, numerous radioprotective and radiosensitizing agents have been identified. These agents have served as important biologic tools for increasing our understanding of radiation injuries. Most of these substances are synthetic compounds and are very toxic to humans. In addition, very few of the compounds provide differential modifications of the effect of radiation on tumor and normal cells. This chapter presents objectives for identifying naturally occurring substances that modify the effect of x-radiation on mammalian cells and discusses the role of physiologic substances in modifying radiation injuries on mammalian normal and tumor cells

  6. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  7. A Review: Some biological effects of high LET radiations

    Science.gov (United States)

    Wiley, A., Jr.

    1972-01-01

    There are qualitative and quantitative differences in the biological damage observed after exposure to high LET radiation as compared to that caused by low LET radiations. This review is concerned with these differences, which are ultimately reflected at the biochemical, cellular and even whole animal levels. In general, high LET radiations seem to produce biochemical damage which is more severe and possibly less repairable. Experimental data for those effects are presented in terms of biochemical RBE's with consideration of both early and late manifestations. An LET independent process by which significant biochemical damage may result from protons, neutrons and negative pion mesons is discussed.

  8. Functional analysis of molecular mechanisms of radiation induced apoptosis, that are not mediated by DNA damages

    International Nuclear Information System (INIS)

    Angermeier, Marita; Moertl, Simone

    2012-01-01

    The effects of low-dose irradiation pose new challenges on the radiation protection efforts. Enhanced cellular radiation sensitivity is displayed by disturbed cellular reactions and resulting damage like cell cycle arrest, DNA repair and apoptosis. Apoptosis serves as genetically determinate parameter for the individual radiation sensitivity. In the frame of the project the radiation-induced apoptosis was mechanistically investigated. Since ionizing radiation induced direct DNA damage and generates a reactive oxygen species, the main focus of the research was the differentiation and weighting of DNA damage mediated apoptosis and apoptosis caused by the reactive oxygen species (ROS).

  9. Protection from ionizing radiation induced damages by phytoceuticals and nutraceuticals

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2012-01-01

    Exposure of living systems to ionizing radiation cause a variety of damages to DNA and membranes due to generation of free radicals and reactive oxygen species. The radiation induced lesions in the cellular DNA are mainly strand breaks, damage to sugar moiety, alterations and elimination of bases, cross links of the intra and inter strand type and cross links to proteins while peroxidation of the lipids and oxidation of proteins constitute the major lesions in the membranes. The radioprotectors elicit their action by various mechanisms such as i) by suppressing the formation of reactive species, ii) detoxification of radiation induced species, iii) target stabilization and iv) enhancing the repair and recovery processes. The radioprotective compounds are of importance in medical, industrial, environmental, military and space science applications. Radiation protection might offer a tactical advantage on the battlefield in the event of a nuclear warfare. Radioprotectors might reduce the cancer risk to populations exposed to radiations directly or indirectly through industrial and military applications. The antioxidant and radioprotective properties a few of these agents under in vitro and in vivo conditions in animal models will be discussed

  10. Ion bombardment simulation: a review related to fusion radiation damage

    International Nuclear Information System (INIS)

    Brimhall, J.L.

    1975-01-01

    Prime emphasis is given to reviewing the ion bombardment data on the refractory metals molybdenum, niobium and vanadium which have been proposed for use in advanced fusion devices. The temperature and dose dependence of the void parameters are correlated among these metals. The effect of helium and hydrogen gas on the void parameters is also included. The similarities and differences of the response of these materials to high dose, high temperature radiation damage are evaluated. Comparisons are made with results obtained from stainless steel and nickel base alloys. The ion bombardment data is then compared and correlated, as far as possible, with existing neutron data on the refractory metals. The theoretically calculated damage state produced by neutrons and ions is also briefly discussed and compared to experimental data wherever possible. The advantages and limitations of ion simulation in relation to fusion radiation damage are finally summarized

  11. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    International Nuclear Information System (INIS)

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E.

    1989-01-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage

  12. Radiation damage in A-15 materials: EXAFS studies

    International Nuclear Information System (INIS)

    Knapp, G.S.; Kampwirth, R.T.; Georgopoulos, P.; Brown, B.S.

    1980-01-01

    EXAFS measurements are useful in determining the local atomic environment of a particular element in a solid. Since there has been some controversy about the nature of the defects produced in A-15 materials by radiation damage, such studies were carried out on some A-15 compounds, V 3 Ga which was damaged by neutrons, as well as Nb 3 Ge damaged by 2.5 MeV a particles. In the V 3 Ga sample, site exchange disorder seems to be the most important result of the neutron damage with less than 20% of the vanadium atoms on wrong sites. However, in the Nb 3 Ge samples in addition to site exchange disorder, an unusual splitting of the first near-neighbor distance between the Ge and Nb is found. This splitting, approximately 0.2 A, may explain the large Debye Waller factors observed by Burbank et al

  13. Radiation damage of structural materials

    CERN Document Server

    Koutsky, Jaroslav

    1994-01-01

    Maintaining the integrity of nuclear power plants is critical in the prevention or control of severe accidents. This monograph deals with both basic groups of structural materials used in the design of light-water nuclear reactors, making the primary safety barriers of NPPs. Emphasis is placed on materials used in VVER-type nuclear reactors: Cr-Mo-V and Cr-Ni-Mo-V steel for RPV and Zr-Nb alloys for fuel element cladding. The book is divided into 7 main chapters, with the exception of the opening one and the chapter providing a phenomenological background for the subject of radiation damage. Ch

  14. Damages by radiation in glasses

    International Nuclear Information System (INIS)

    Olguin, F.; Gutierrez, C.; Cisniega, G.; Flores, J.H.; Golzarri, J.I.; Espinoza, G.

    1997-01-01

    As a part of the works carried out to characterize the electrons beam from the Pelletron accelerator of the Mexican Nuclear Center aluminium-silicate glass samples were irradiated. The purpose of these irradiations is to cause alterations in the amorphous microstructure of the material by means of the creation of color centers. The population density of these defects, consequence to the irradiation, is function of the exposure time which varied from 1 to 30 minutes, with an electronic beam energy of 400 keV, doing the irradiations at free atmosphere. the obtained spectra are correlated by damage which the radiation produced. (Author)

  15. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  16. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    International Nuclear Information System (INIS)

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-01-01

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor - a sensor that can continuously monitor a material's damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks

  17. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  18. Radiation damage in nonmetallic solids under dense electronic excitation

    International Nuclear Information System (INIS)

    Itoh, Noriaki; Tanimura, Katsumi; Nakai, Yasuo

    1992-01-01

    Basic processes of radiation damage of insulators by dense electronic excitation are reviewed. First it is pointed out that electronic excitation of nonmetallic solids produces the self-trapped excitons and defect-related metastable states having relatively long lifetimes, and that the excitation of these metastable states, produces stable defects. The effects of irradiation with heavy ions, including track registration, are surveyed on the basis of the microscopic studies. It is pointed out also that the excitation of the metastable states plays a role in laser-induced damage at relatively low fluences, while the laser damage has been reported to be governed by heating of free electrons produced by multiphoton excitation. Difference in the contributions of the excitation of metastable defects to laser-induced damage of surfaces, or laser ablation, and laser-induced bulk damage is stressed. (orig.)

  19. A Voxel-Based Approach to Explore Local Dose Differences Associated With Radiation-Induced Lung Damage

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Giuseppe [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Monti, Serena [IRCCS SDN, Naples (Italy); D' Avino, Vittoria [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Conson, Manuel [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Liuzzi, Raffaele [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pressello, Maria Cristina [Department of Health Physics, S. Camillo-Forlanini Hospital, Rome (Italy); Donato, Vittorio [Department of Radiation Oncology, S. Camillo-Forlanini Hospital, Rome (Italy); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY (United States); Quarantelli, Mario [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pacelli, Roberto [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Cella, Laura, E-mail: laura.cella@cnr.it [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy)

    2016-09-01

    Purpose: To apply a voxel-based (VB) approach aimed at exploring local dose differences associated with late radiation-induced lung damage (RILD). Methods and Materials: An interinstitutional database of 98 patients who were Hodgkin lymphoma (HL) survivors treated with postchemotherapy supradiaphragmatic radiation therapy was analyzed in the study. Eighteen patients experienced late RILD, classified according to the Radiation Therapy Oncology Group scoring system. Each patient's computed tomographic (CT) scan was normalized to a single reference case anatomy (common coordinate system, CCS) through a log-diffeomorphic approach. The obtained deformation fields were used to map the dose of each patient into the CCS. The coregistration robustness and the dose mapping accuracy were evaluated by geometric and dose scores. Two different statistical mapping schemes for nonparametric multiple permutation inference on dose maps were applied, and the corresponding P<.05 significance lung subregions were generated. A receiver operating characteristic (ROC)-based test was performed on the mean dose extracted from each subregion. Results: The coregistration process resulted in a geometrically robust and accurate dose warping. A significantly higher dose was consistently delivered to RILD patients in voxel clusters near the peripheral medial-basal portion of the lungs. The area under the ROC curves (AUC) from the mean dose of the voxel clusters was higher than the corresponding AUC derived from the total lung mean dose. Conclusions: We implemented a framework including a robust registration process and a VB approach accounting for the multiple comparison problem in dose-response modeling, and applied it to a cohort of HL survivors to explore a local dose–RILD relationship in the lungs. Patients with RILD received a significantly greater dose in parenchymal regions where low doses (∼6 Gy) were delivered. Interestingly, the relation between differences in the high

  20. Radiation damage of UO{sub 2} fuel; Radijaciono ostecenje UO{sub 2} goriva

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, M; Sigulinski, F [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Radiation damage study of fuel and fuel elements covers: study of radiation damage methods in Sweden; analysis of testing the fuel and fuel elements at the RA reactor; feasibility study of irradiation in the Institute compared to irradiation abroad in respect to the reactor possibilities. Tasks included in this study are relater to testing of irradiated UO{sub 2} and ceramic fuel elements.

  1. Cumulative genetic damage in children exposed to preconception and intrauterine radiation

    International Nuclear Information System (INIS)

    Bross, I.D.; Natarajan, N.

    1980-01-01

    Using a mathematical model and newly developed computer software, the data from the Tri-State Leukemia Survey involving different combinations of radiation exposures to the father and mother prior to conception and to the mother during pregnancy were analyzed. The hypothesis that radiation exposure produces genetic damage which may be expressed in the child both as indicator disease and as leukemia was tested. The genetic damage was estimated in terms of the proportion affected by a given exposure. The relative risk of leukemia and certain other indicator diseases among those affected could then be estimated. The results show that there are at least two distinguishable risk groups, one group with lower (one or two exposures); and the other group with higher (two or three) radiation exposures

  2. The Fifth International Ural seminar. Radiation damage physics of metals and alloys. Abstracts

    International Nuclear Information System (INIS)

    2003-01-01

    Presented are the abstracts of The Fifth International Ural seminar Damage physics of metals and alloys. General problems of radiation damage physics, radiation effect on change of microstucture and the properties of metals and alloys, as well as materials for nuclear and thermonuclear energetics are considered. The themes of reports are the following: correlation effects in cascades of atom-atomic collisions; radiation-induced strengthening critical current density in YBa 2 Cu 3 O 7-x superconductors; conditions of forming and hydrides growth in irradiated zirconium alloys [ru

  3. Radiation damage of DNA. Model for direct ionization of DNA

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Tagawa, Seiichi

    2004-01-01

    Current aspects of radiation damage of DNA, particularly induced by the direct effect of radiation, and author's method of pulse radiolysis are described in relation to behavior of ions formed by radiation and active principles to induce the strand break. In irradiation of DNA solution in water, the direct effect of radiation is derived from ionization of DNA itself and indirect one, from the reaction between DNA and radicals generated from water molecules and the former direct one has been scarcely investigated due to difficulty of experimental approach. Radicals generated in sugar moiety of DNA are shown important in the strand break by recent studies on crystalline DNA irradiated by X-ray, DNA solution by electron and photon beams, hydrated DNA by γ-ray and by high linear energy transfer (LET) ion. Author's pulse radiolysis studies have revealed behaviors of guanine and adenine radical cations in dynamics of DNA oxidation. Since reactions described are the model, the experimental approach is thought necessary for elucidation of the actually occurring DNA damage in living cells. (N.I.)

  4. Solar radiation and mitochondrial DNA damage

    International Nuclear Information System (INIS)

    Hill, H.Z.; Locitzer, J.; Nassrin, E.; Ogbonnaya, A.; Hubbard, K.

    2003-01-01

    The 16.6 kB human mitochondrial DNA contains two homologous 13 base pair direct repeats separated by about 5 kB. During asynchronous mitochondrial DNA replication, the distant repeat sequences are thought to anneal, resulting in the looping out of a portion of the non-template strand which is subsequently deleted as a result of interaction with reactive oxygen species (ROS). A normal daughter and a deleted daughter mitochondrion result from such insults. This deletion has been termed the common deletion as it is the most frequent of the known mitochondrial DNA deletions. The common deletion is present in high frequency in several mitochondrial disorders, accumulates with age in slow turnover tissues and is increased in sun-exposed skin. Berneburg, et al. (Photochem. Photobiol. 66: 271, 1997) induced the common deletion in normal human fibroblasts after repeated exposures to UVA. In this study, the common deletion has been shown to be induced by repeated non-lethal exposures to FS20 sunlamp irradiation. Increases in the common deletion were demonstrated using nested PCR which produced a 303 bp product that was compared to a 324 bp product that required the presence of the undeleted 5 kB region. The cells were exposed to 10 repeated doses ranging from 0.5 (UVB) - 0.24 (UVA) J/sq m to 14.4 (UVB) - 5.8 J/sq m (UVA) measured using a UVX digital radiometer and UVB and UVA detectors respectively. Comparison with the earlier study by Berneberg, et al. suggests that this type of simulated solar damage is considerably more effective in fewer exposures than UVA radiation alone. The common deletion provides a cytoplasmic end-point for ROS damage produced by low dose chronic irradiations and other low level toxic exposures and should prove useful in evaluating cytoplasmic damage produced by ionizing radiation as well

  5. Basic aspects of spallation radiation damage to materials

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States); Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The nature of radiation effects, as learned from investigations using reactor neutron irradiations, is reviewed, and its relevance to spallation radiation damage to materials in accelerator-driven neutron sources is discussed. Property changes upon irradiation are due to (1) displaced atoms, producing vacancy and interstitial defect clusters, which cause radiation hardening and embrittlement; (2) helium production, the helium then forming bubbles, which engenders high-temperature grain-boundary fracture; and (3) transmutations, which means that impurity concentrations are introduced. Methods for analyzing displacement production are related, and recent calculations of displacement cross sections using SPECTER and LAHET are described, with special reference to tungsten, a major candidate for a target material in accelerator-driven neutron systems.

  6. Implantation of keV-energy argon clusters and radiation damage in diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir; Samela, Juha; Nordlund, Kai

    2012-01-01

    We show that for impacting argon clusters, both mean projected ranges of the constituents and depths of radiation damage in diamond scale linearly with momentum. The same dependence was earlier found for keV-energy cluster implantation in graphite, thus suggesting the universality of this scaling...... law. For diamond, a good agreement for the value of displacement energy for the case of cluster impact is found by comparing the calculated target sputtering and experimentally measured depth of radiation damage....

  7. Prospective Study of Local Control and Late Radiation Toxicity After Intraoperative Radiation Therapy Boost for Early Breast Cancer

    International Nuclear Information System (INIS)

    Chang, David W.; Marvelde, Luc te; Chua, Boon H.

    2014-01-01

    Purpose: To report the local recurrence rate and late toxicity of intraoperative radiation therapy (IORT) boost to the tumor bed using the Intrabeam System followed by external-beam whole-breast irradiation (WBI) in women with early-stage breast cancer in a prospective single-institution study. Methods and Materials: Women with breast cancer ≤3 cm were recruited between February 2003 and May 2005. After breast-conserving surgery, a single dose of 5 Gy IORT boost was delivered using 50-kV x-rays to a depth of 10 mm from the applicator surface. This was followed by WBI to a total dose of 50 Gy in 25 fractions. Patients were reviewed at regular, predefined intervals. Late toxicities were recorded using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring systems. Results: Fifty-five patients completed both IORT boost and external-beam WBI. Median follow-up was 3.3 years (range, 1.4-4.1 years). There was no reported locoregional recurrence or death. One patient developed distant metastases. Grade 2 and 3 subcutaneous fibrosis was detected in 29 (53%) and 8 patients (15%), respectively. Conclusions: The use of IORT as a tumor bed boost using kV x-rays in breast-conserving therapy was associated with good local control but a clinically significant rate of grade 2 and 3 subcutaneous fibrosis

  8. Characterization and calibration of radiation-damaged double-sided silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, L. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Vogt, A., E-mail: andreas.vogt@ikp.uni-koeln.de [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Reiter, P.; Birkenbach, B.; Hirsch, R.; Arnswald, K.; Hess, H.; Seidlitz, M.; Steinbach, T.; Warr, N.; Wolf, K. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Stahl, C.; Pietralla, N. [Institut für Kernphysik, Technische Universität Darmstadt, D-64291 Darmstadt (Germany); Limböck, T.; Meerholz, K. [Physikalische Chemie, Universität zu Köln, D-50939 Köln (Germany); Lutter, R. [Maier-Leibnitz-Laboratorium, Ludwig-Maximilians-Universität München, D-85748 Garching (Germany)

    2017-05-21

    Double-sided silicon strip detectors (DSSSD) are commonly used for event-by-event identification of charged particles as well as the reconstruction of particle trajectories in nuclear physics experiments with stable and radioactive beams. Intersecting areas of both p- and n-doped front- and back-side segments form individual virtual pixel segments allowing for a high detector granularity. DSSSDs are employed in demanding experimental environments and have to withstand high count rates of impinging nuclei. The illumination of the detector is often not homogeneous. Consequently, radiation damage of the detector is distributed non-uniformly. Position-dependent incomplete charge collection due to radiation damage limits the performance and lifetime of the detectors, the response of different channels may vary drastically. Position-resolved charge-collection losses between front- and back-side segments are investigated in an in-beam experiment and by performing radioactive source measurements. A novel position-resolved calibration method based on mutual consistency of p-side and n-side charges yields a significant enhancement of the energy resolution and the performance of radiation-damaged parts of the detector.

  9. Radiation damage in molybdenum and tungsten in high neutron fluxes

    International Nuclear Information System (INIS)

    Veljkovic, S.; Milasin, N.

    1964-01-01

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  10. Radiation damage in molybdenum and tungsten in high neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Veljkovic, S; Milasin, N [Institute of Nuclear Sciences Boris Kidric, Department of Reactor Materials, Vinca, Beograd (Serbia and Montenegro)

    1964-04-15

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  11. Hyperspectral Imaging as an Early Biomarker for Radiation Exposure and Microcirculatory Damage

    Directory of Open Access Journals (Sweden)

    Michael S. Chin

    2015-10-01

    Full Text Available BACKGROUND: Radiation exposure can lead to detrimental effects in skin microcirculation. The precise relationship between radiation dose received and its effect on cutaneous perfusion still remains controversial. Previously, we have shown that hyperspectral imaging (HSI is able to demonstrate long-term reductions in cutaneous perfusion secondary to chronic microvascular injury. This study characterizes the changes in skin microcirculation in response to varying doses of ionizing radiation and investigates these microcirculatory changes as a possible early non-invasive biomarker that may correlate with the extent of long-term microvascular damage.METHODS: Immunocompetent hairless mice (n=66 were exposed to single fractions of superficial beta-irradiation in doses of 0, 5, 10, 20, 35, or 50 Gy. A HSI device was utilized to measure deoxygenated hemoglobin levels in irradiated and control areas. HSI measurements were performed at baseline before radiation exposure and for the first three days post-irradiation. Maximum macroscopic skin reactions were graded, and histological assessment of cutaneous microvascular densities at four weeks post-irradiation was performed in harvested tissue by CD31 immunohistochemistry.RESULTS: CD31 immunohistochemistry demonstrated a significant correlation (r=0.90, p<0.0001 between dose and vessel density reduction at four weeks. Using HSI analysis, early changes in deoxygenated hemoglobin levels were observed during the first three days post-irradiation in all groups. These deoxygenated hemoglobin changes varied proportionally with dose (r=0.98, p<0.0001 and skin reactions (r=0.98, p<0.0001. There was a highly significant correlation (r= 0.91, p<0.0001 between these early changes in deoxygenated hemoglobin and late vascular injury severity assessed at the end of four weeks.CONCLUSIONS: Radiation dose is directly correlated with cutaneous microvascular injury severity at four weeks in our model. Early post

  12. Influence of radiation damage on internal friction background

    International Nuclear Information System (INIS)

    Burbelo, R.M.; Grinik, Eh.U.; Paliokha, M.I.; Orlinskij, A.B.

    1984-01-01

    Influence of radiation damage on internal friction background in samples of polycrystalline nickel and iron irradiated by a fast neutron flux approximately 10 14 neutr/(cm 2 xs) at 350 deg C has been studied using the low-frequency unit of the reverse torsion pendulum type. It has been established experimentally that a high-temperature background of internal friction of iron and nickel samples decreases as accumulating radiation defects occurring under neutron irradiation. Assumptions on a possible mechanism of the effect have been proposed. Simple expression for the background magnitude evaluation has been suggested

  13. Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature

    Directory of Open Access Journals (Sweden)

    Abbaszadeh A.

    2017-06-01

    Full Text Available Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/ biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses

  14. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    Culard, G.; Eon, S.; DeVuyst, G.; Charlier, M.; Spotheim-Maurizot, M.

    2003-01-01

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  15. Investigation of solar cell radiation damage

    International Nuclear Information System (INIS)

    Bernard, J.; Reulet, R.; Arndt, R.A.

    1974-01-01

    Development of communications satellites has led to the requirement for a greater and longer lived solar cell power source. Accordingly, studies have been undertaken with the aim of determining which solar cell array provides the greatest power at end of life and the amount of degradation. Investigation of the damage done to thin silicon and thin film CdS solar cells is being carried out in two steps. First, irradiations were performed singly with 0.15, 1.0 and 2.0MeV electrons and 0.7, 2.5 and 22MeV proton. Solar cells and their cover materials were irradiated separately in order to locate the sites of the damage. Diffusion length and I.V. characteristics of the cells and transmission properties of the cover materials were measured. All neasurements were made in vacuum immediately after irradiation. In the second part it is intended to study the effect of various combinations of proton, electron and photon irradiation both with and without an electrical load. The results of this part show whether synergism is involved in solar cell damage and the relative importance of each of three radiation sources if synergism is found [fr

  16. Impact of oxygen concentration on yields of DNA damages caused by ionizing radiation

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Václav; Davídková, Marie

    2008-01-01

    Roč. 101, 012015 (2008), s. 1-4 ISSN 1742-6588. [Radiation Damage in Biomolecular Systems, RADAM'07. Dublin, 19.06.2007-22.06.2007] R&D Projects: GA ČR(CZ) GD202/05/H031; GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiation damage to DNA * oxygen concentration * theoretical modeling Subject RIV: BO - Biophysics

  17. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    Science.gov (United States)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  18. Radiation-induced caries as the late effect of radiation therapy in the head and neck region

    Directory of Open Access Journals (Sweden)

    Katarzyna Dobroś

    2015-10-01

    Full Text Available Overall improvement in the nationwide system of medical services has consequently boosted the number of successfully treated patients who suffer from head and neck cancer. It is essential to effectively prevent development of radiation-induced caries as the late effect of radiation therapy. Incidence and severity of radiation-induced changes within the teeth individually vary depending on the patient’s age, actual radiation dose, size of radiation exposure field, patient’s general condition and additional risk factors. Inadequately managed treatment of caries may lead to loss of teeth, as well as prove instrumental in tangibly diminishing individual quality of life in patients. Furthermore, the need to have the teeth deemed unyielding or unsuitable for the application of conservative methods of treatment duly extracted is fraught for a patient with an extra hazard of developing osteoradionecrosis (ORN, while also increasing all attendant therapeutic expenditures. The present paper aims to offer some practical insights into currently available methods of preventing likely development of radiation-induced caries.

  19. Thermal Decomposition of Radiation-Damaged Polystyrene

    International Nuclear Information System (INIS)

    J Abrefah, J.; Klinger, G.S.

    2000-01-01

    The radiation-damaged polystyrene material (''polycube'') used in this study was synthesized by mixing a high-density polystyrene (''Dylene Fines No. 100'') with plutonium and uranium oxides. The polycubes were used on the Hanford Site in the 1960s for criticality studies to determine the hydrogen-to-fissile atom ratios for neutron moderation during processing of spent nuclear fuel. Upon completion of the studies, two methods were developed to reclaim the transuranic (TRU) oxides from the polymer matrix: (1) burning the polycubes in air at 873 K; and (2) heating the polycubes in the absence of oxygen and scrubbing the released monomer and other volatile organics using carbon tetrachloride. Neither of these methods was satisfactory in separating the TRU oxides from the polystyrene. Consequently, the remaining polycubes were sent to the Hanford Plutonium Finishing Plant (PFP) for storage. Over time, the high dose of alpha and gamma radiation has resulted in a polystyrene matrix that is highly cross-linked and hydrogen deficient and a stabilization process is being developed in support of Defense Nuclear Facility Safety Board Recommendation 94-1. Baseline processes involve thermal treatment to pyrolyze the polycubes in a furnace to decompose the polystyrene and separate out the TRU oxides. Thermal decomposition products from this degraded polystyrene matrix were characterized by Pacific Northwest National Laboratory to provide information for determining the environmental impact of the process and for optimizing the process parameters. A gas chromatography/mass spectrometry (GC/MS) system coupled to a horizontal tube furnace was used for the characterization studies. The decomposition studies were performed both in air and helium atmospheres at 773 K, the planned processing temperature. The volatile and semi-volatile organic products identified for the radiation-damaged polystyrene were different from those observed for virgin polystyrene. The differences were in the

  20. Development and anneal of radiation damage in salt

    International Nuclear Information System (INIS)

    Garcia Celma, A.; Donker, H.; Soppe, W.J.; Miralles, L.

    1993-12-01

    Laboratory gamma-irradiations at a constant temperature (100 C) were carried out in two sorts of experiments, one at variable and another at approximately constant dose rates. The damage developed during irradiation was analyzed by thermal analysis, microstructural analysis and small angle neutron scattering. The results were compared with the yields of the Jain-Lidiard model for each experiment. Experiments at a constant dose rate were planned to obtain information on radiation damage development and anneal in conditions as near as possible to those of radioactive waste repository concepts. For this reason the dose rates were kept low. (orig./DG)

  1. Intensification of ultraviolet-induced dermal damage by infrared radiation

    International Nuclear Information System (INIS)

    Kligman, L.H.

    1982-01-01

    To assess the role of IR in actinic damage to the dermis, albino guinea pigs were irradiated for 45 weeks with UV-B and UV-A, with and without IR. Control animals received IR only or no irradiation at all. Unirradiated dermis contains small amounts of elastic fibers in the upper dermis with greater depositions around follicles and sebaceous glands. After irradiation with UV, the fibers became more numerous, thicker, and more twisted; IR alone producd many fine, feathery fibers. The addition of IR to UV resulted in dense matlike elastic fiber depositions that exceeded what was observed with either irradiation alone. In combination or alone UV and IR radiation produced a large increase in ground substance, a finding also seen in actinically damaged human skin. Infrared radiation, in the physiologic range, though pleasant is not innocuous. (orig./MG) [de

  2. Study on radiation damage of electron and γ-rays and mechanism of nuclear hardening

    International Nuclear Information System (INIS)

    Jing Tao

    2001-01-01

    Radiation damage effects of electrons and γ-rays are presented. The damage defects are studied by experimental methods. On the basis of these studies the damage mechanism and nuclear hardening techniques are studied

  3. Radiation damage in nanostructured metallic films

    Science.gov (United States)

    Yu, Kaiyuan

    High energy neutron and charged particle radiation cause microstructural and mechanical degradation in structural metals and alloys, such as phase segregation, void swelling, embrittlement and creep. Radiation induced damages typically limit nuclear materials to a lifetime of about 40 years. Next generation nuclear reactors require materials that can sustain over 60 - 80 years. Therefore it is of great significance to explore new materials with better radiation resistance, to design metals with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe. Such systems obtain high volume fraction of boundaries, which are considered sinks to radiation induced defects. From the viewpoint of nanomechanics, it is of interest to investigate the plastic deformation mechanisms of nanostructured films, which typically show strong size dependence. By controlling the feature size (layer thickness, twin spacing and grain size), it is applicable to picture a deformation mechanism map which also provides prerequisite information for subsequent radiation hardening study. And from the viewpoint of radiation effects, it is of interest to explore the fundamentals of radiation response, to examine the microstructural and mechanical variations of irradiated nanometals and to enrich the design database. More importantly, with the assistance of in situ techniques, it is appealing to examine the defect generation, evolution, annihilation, absorption and interaction with internal interfaces (layer interfaces, twin boundaries and grain boundaries). Moreover, well-designed nanostructures can also verify the speculation that radiation induced defect density and hardening show clear size dependence. The focus of this thesis lies in the radiation response of Ag/Ni multilayers and nanotwinned Ag

  4. Radiation damage studies of mineral apatite, using fission tracks and thermoluminescence techniques

    International Nuclear Information System (INIS)

    Al-Khalifa, I.J.M.

    1988-01-01

    In a uranium (/thorium)-rich mineral sample which has not suffered a recent geological high-temperature excursion, the fossil fission track density (FFTD) will give a good indication of its natural radiation damage, provided that its U/Th ratio is known. From our studies of FFTD and thermoluminescence (TL) properties of several samples of apatite from different locations, and containing varying degrees of natural-radiation damage, an anti-correlation is observed between FFTD and TL sensitivity. It is also found that an anti-correlation exists between TL sensitivity and the amount of damage produced artificially by bombarding apatite crystals with different fluences of ∼30 MeV α-particles from a cyclotron. These results indicate that the presence of radiation damage in this mineral (viz., fluorapatite) can severely affect its TL sensitivity (i.e. TL output per unit test dose). The effect of crystal composition on the thermoluminescence and fission track annealing properties of mineral apatite is also reported. We have found that fission track annealing sensitivity and TL sensitivity are both significantly lower in samples of chlorapatite than in samples consisting predominantly of fluorapatite. (author)

  5. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  6. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  7. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High- Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for basic...

  8. High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals

    International Nuclear Information System (INIS)

    Niemantsverdriet, Maarten; Goethem, Marc-Jan van; Bron, Reinier; Hogewerf, Wytse; Brandenburg, Sytze; Langendijk, Johannes A.; Luijk, Peter van; Coppes, Robert P.

    2012-01-01

    Purpose: Radiotherapy using high linear energy transfer (LET) radiation is aimed at efficiently killing tumor cells while minimizing dose (biological effective) to normal tissues to prevent toxicity. It is well established that high LET radiation results in lower cell survival per absorbed dose than low LET radiation. However, whether various mechanisms involved in the development of normal tissue damage may be regulated differentially is not known. Therefore the aim of this study was to investigate whether two actions related to normal tissue toxicity, p53-induced apoptosis and expression of the profibrotic gene PAI-1 (plasminogen activator inhibitor 1), are differentially induced by high and low LET radiation. Methods and Materials: Cells were irradiated with high LET carbon ions or low LET photons. Cell survival assays were performed, profibrotic PAI-1 expression was monitored by quantitative polymerase chain reaction, and apoptosis was assayed by annexin V staining. Activation of p53 by phosphorylation at serine 315 and serine 37 was monitored by Western blotting. Transfections of plasmids expressing p53 mutated at serines 315 and 37 were used to test the requirement of these residues for apoptosis and expression of PAI-1. Results: As expected, cell survival was lower and induction of apoptosis was higher in high -LET irradiated cells. Interestingly, induction of the profibrotic PAI-1 gene was similar with high and low LET radiation. In agreement with this finding, phosphorylation of p53 at serine 315 involved in PAI-1 expression was similar with high and low LET radiation, whereas phosphorylation of p53 at serine 37, involved in apoptosis induction, was much higher after high LET irradiation. Conclusions: Our results indicate that diverse mechanisms involved in the development of normal tissue damage may be differentially affected by high and low LET radiation. This may have consequences for the development and manifestation of normal tissue damage.

  9. Curcumin Attenuates Gamma Radiation Induced Intestinal Damage in Rats

    International Nuclear Information System (INIS)

    EI-Tahawy, N.A.

    2009-01-01

    Small Intestine exhibits numerous morphological and functional alterations during radiation exposure. Oxidative stress, a factor implicated in the intestinal injury may contribute towards some of these alterations. The present work was designed to evaluate the efficacy of curcumin, a yellow pigment of turmeric on y-radiation-induced oxidative damage in the small intestine by measuring alterations in the level of thiobarbituric acid reactive substances (TSARS), serotonin metabolism, catecholamine levels, and monoamine oxidase (MAO) activity in parallel to changes in the architecture of intestinal tissues. In addition, monoamine level, MAO activity and TSARS level were determined in the serum. Curcumin was supplemented orally via gavages, to rats at a dose of (45 mg/ Kg body wt/ day) for 2 weeks pre-irradiation and the last supplementation was 30 min pre exposure to 6.5 Gy gamma radiations (applied as one shot dose). Animals were sacrificed on the 7th day after irradiation. The results demonstrated that, whole body exposure of rats to ionizing radiation has induced oxidative damage in small intestine obvious by significant increases of TSARS content, MAO activity and 5-hydroxy indole acetic acid (5-HIAA) and by significant decreases of serotonin (5-HT), dopamine (DA), norepinephrine (NE) and epinephrine (EPI) levels. In parallel histopathological studies of the small intestine of irradiated rats through light microscopic showed significant decrease in the number of villi, villus height, mixed sub mucosa layer with more fibres and fibroblasts. Intestinal damage was in parallel to significant alterations of serum MAO activity, TBARS, 5-HT, DA, NE and EPI levels. Administration of curcumin before irradiation has significantly improved the levels of monoamines in small intestine and serum of irradiated rats, which was associated with significant amelioration in MAO activity and TBARS contents

  10. Defense mechanisms against radiation induced teratogenic damage in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Nomoto, S.; Norimura, T.

    2002-01-01

    Experimental studies with mice have established that fetuses at midgestational stage are highly susceptible to malformation at high, but not low, doses of radiation. When DNA damage is produced by a small amount of radiation, it is efficiently eliminated by DNA repair. However, DNA repair is not perfect. There must be defense mechanisms other than DNA repair. In order to elucidate the essential role of p53 gene in apoptotic tissue repair, we compared the incidence of radiation-induced malformations and deaths (deaths after day 10) in wild-type p53 (+/+) mice and null p53 (-/-) mice. For p53 (+/+) mice, an X-ray dose of 2 Gy given at a high dose-rate (450 mGy/min) to fetuses at 9.5 days of gestation was highly lethal and considerably teratogenic whereas it was only slightly lethal but highly teratogenic for p53 (-/-) fetuses. This reciprocal relationship of radiosensitivity to malformations and deaths supports the notion that fetal tissues have a p53 -dependent idguardianln of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. When an equal dose of 2 Gy given at a 400-fold lower dose-rate (1.2 mGy/min), this dose became not teratogenic for p53 (+/+) fetuses exhibiting p53 -dependent apoptosis, whereas this dose remained teratogenic for p53 (-/-) fetuses unable to carry out apoptosis. Furthermore, when the dose was divided into two equal dose fractions (1+1 Gy) at high dose rate, separated by 24 hours, the incidences of malformations were equal with control level for p53 (+/+), but higher for p53 (-/-) mice. Hence, complete elimination of teratogenic damage from irradiated tissues requires a concerted cooperation of two mechanisms; proficient DNA repair and p53-dependent apoptotic tissue repair

  11. Evaluation of cytogenetic damage in nuclear medicine personnel occupationally exposed to low-level ionising radiation

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.; Poropat, M.

    2005-01-01

    Despite intensive research over the last few decades, there still remains considerable uncertainty as to the genetic impact of ionising radiation on human populations, particularly at low levels. The aim of this study was to provide data on genetic hazards associated with occupational exposure to low doses of ionising radiation in nuclear medicine departments. The assessment of DNA damage in peripheral blood lymphocytes of medical staff was performed using the chromosome aberration (CA) test. Exposed subjects showed significantly higher frequencies of CA than controls. There were significant inter-individual differences in DNA damage within the exposed population, indicating differences in genome sensitivity. Age and gender were not confounding factors, while smoking enhanced the levels of DNA damage only in control subjects. The present study suggests that chronic exposure to low doses of ionising radiation in nuclear medicine departments causes genotoxic damage. Therefore, to avoid potential genotoxic effects, the exposed medical personnel should minimise radiation exposure wherever possible. Our results also point to the significance of biological indicators providing information about the actual risk to the radiation exposed individuals.(author)

  12. Radiation damage to mouse testis cells from [/sup 99m/Tc] pertechnetate

    International Nuclear Information System (INIS)

    Mian, T.A.; Suzuki, N.; Glenn, H.J.; Haynie, T.P.; Meistrich, M.L.

    1977-01-01

    The radiation dose and the biologic damage to mouse testis from intravenously administered [/sup 99m/Tc] pertechnetate were studied. The dose was measured for penetrating radiations from /sup 99m/Tc, using calibrated thermoluminescent dosimeters and calculations from the uptake of the nuclide in the testis, and was found to be 4.9 rads per mCi of 99 Tc. The biologic damage was measured by the decrease in the number of sperm heads in the testis, counted both by hemacytometer and by Coulter counter. In preliminary experiments using external gamma radiation from 137 Cs, the number of sperm heads reached a minimum 29 days after irradiation. Twenty-nine days after injection of 5.8 mCi of /sup 99m/Tc, which gives 28 rads to the testis, the number of sperm heads decreased to 70% of control. The biologic effect corresponds to that seen after 40 rads of gamma radiation from 137 Cs. The damage to mouse testis cells from internally administered /sup 99m/Tc as measured in an in vivo system appears to be at least as significant as that from external gamma irradiation, if not more so

  13. Ion irradiation and biomolecular radiation damage II. Indirect effect

    OpenAIRE

    Wang, Wei; Yu, Zengliang; Su, Wenhui

    2010-01-01

    It has been reported that damage of genome in a living cell by ionizing radiation is about one-third direct and two-thirds indirect. The former which has been introduced in our last paper, concerns direct energy deposition and ionizing reactions in the biomolecules; the latter results from radiation induced reactive species (mainly radicals) in the medium (mainly water) surrounding the biomolecules. In this review, a short description of ion implantation induced radical formation in water is ...

  14. Modulation of radio-induced oxidative damage by the combination of pentoxifylline and γ-tocopherol in skin fibroblasts and microvascular endothelial cells

    International Nuclear Information System (INIS)

    Laurent, Carine; Roy, Laurence; Voisin, Philippe; Pouget, JeanPierre

    2004-01-01

    Clinical or accidental localized ionizing radiation exposure can induce severe skin damage constituting the cutaneous radiological syndrome which is divided in acute and late phases. The combination of pentoxifylline (PTX), antioxidant phytochemical, and γ-tocopherol, antioxidant nutrient shows effectiveness in reducing the late radio-induced skin damage with a long period. This work aims to investigate the molecular and cellular mechanisms involved in the effects of this combination

  15. Radiation damage in undoped CsI and CsI(Tl)

    International Nuclear Information System (INIS)

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.

    1992-01-01

    Radiation damage has been studied in undoped CsI and CsI(TI) crystals using 60 Co gamma radiation for doses up to ∼ 4.2 x 10 6 . Samples from various manufacturers were measured ranging in size from 2.54 cm long cylinders to a 30 cm long block. Measurements were made on the change in optical transmission and scintillation light output as a function of dose. Although some samples showed a small change in transmission, a significant change in light output was observed for all samples. Recovery from damage was also studied as a function of time and exposure to UV light. A short lived phosphorescence was observed in undoped CsI, similar to the phosphorescence seen in CsI(TI)

  16. Damaging and protective cell signalling in the untargeted effects of ionizing radiation

    International Nuclear Information System (INIS)

    Coates, Philip J.; Lorimore, Sally A.; Wright, Eric G.

    2004-01-01

    The major adverse consequences of radiation exposures are attributed to DNA damage in irradiated cells that has not been correctly restored by metabolic repair processes. However, the dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells either directly or via media transfer (radiation-induced genomic instability) or in cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by a number of delayed responses including chromosomal abnormalities, gene mutations and cell death. Bystander effects include increases or decreases in damage-inducible and stress-related proteins, increases or decreases in reactive oxygen and nitrogen species, cell death or cell proliferation, cell differentiation, radioadaptation, induction of mutations and chromosome aberrations and chromosomal instability. The phenotypic expression of untargeted effects and the potential consequences of these effects in tissues reflect a balance between the type of bystander signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. Thus, in addition to targeted effects of damage induced directly in cells by irradiation, a variety of untargeted effects may also make important short-term and long-term contributions to determining overall outcome after radiation exposures

  17. Compensation for damage to workers health exposed to ionizing radiation in Argentina

    CERN Document Server

    Sobehart, L J

    2003-01-01

    The objective of this report is to analyze the possibility to establish a scheme to compensate damage to workers health exposed to ionizing radiation in Argentina for those cases in which it is possible to assume that the exposure to ionizing radiation is the cause of the cancer suffered by the worker. The proposed scheme is based on the recommendations set out in the 'International Conference on Occupational Radiation Protection: Protecting Workers against Exposure to Ionization Radiation, held in Geneva, Switzerland, August 26-30, 2002. To this end, the study analyzes the present state of scientific knowledge on cancer causation due to genotoxic factors, and the accepted form of the doses-response curve, for the human beings exposure to ionization radiation at low doses with low doses rates. Finally, the labor laws and regulations related to damage compensation; in particular the present Argentine Labor Law; the National Russian Federal Occupational Radiological Health Impairment and Workmen Compensation, t...

  18. Dosimetric And Fluence Measurements At Hadron Facilities For LHC Radiation Damage Studies

    CERN Document Server

    León-Florián, E

    2001-01-01

    Dosimetry plays an essential role in experiments assessing radiation damage and hardness for the components of detectors to be operated at the future Large Hadron Collider (LHC), CERN (European Laboratory for Particle Physics), Geneva, Switzerland. Dosimetry is used both for calibration of the radiation fields and estimate of fluences and doses during the irradiation tests. The LHC environment will result in a complex radiation field composed of hadrons (mainly neutrons, pions and protons) and photons, each having an energy spectrum ranging from a few keV to several hundreds of MeV or several GeV, even. In this thesis, are exposed the results of measurements of particle fluences and doses at different hadron irradiation facilities: SARA, πE1-PSI and ZT7PS used for testing the radiation hardness of materials and equipment to be used in the future experiments at LHC. These measurements are applied to the evaluation of radiation damage inflicted to various semiconductors (such as silicon) and electronics ...

  19. Recent progress of applying mesenchymal stem cells in therapy of urgent radiation damage

    International Nuclear Information System (INIS)

    Liu Jiangong; Guo Wanlong; Zhang Shuxian; Duan Zhikai

    2010-01-01

    At present, Cytokine therapy is the main strategy capable of preventing and reducing the acute radiation syndrome (ARS). With the problem of difficult match and severe graft versus host disease, haemopoietic stem cells can be used to find some effective approaches to treat acute radiation damage. Mesenchymal stem cells are of great therapeutic potential due to their particular characteristics including secretion of hematopoietic cytokine, reconstruction hemopoietic microenvironment, poor-immunogenicity, ease of reception ectogenic gene transfection and expression. This paper is to summarize the studies of biological characteristics of MSC and its application prospects in urgent radiation damage. (authors)

  20. Influence of Hot Implantation on Residual Radiation Damage in Silicon Carbide

    International Nuclear Information System (INIS)

    Rawski, M.; Zuk, J.; Kulik, M.; Drozdziel, A.; Pyszniak, K.; Turek, M.; Lin, L.; Prucnal, S.

    2011-01-01

    Remarkable thermomechanical and electrical properties of silicon carbide (SiC) make this material very attractive for high-temperature, high-power, and high-frequency applications. Because of very low values of diffusion coefficient of most impurities in SiC, ion implantation is the best method to selectively introduce dopants over well-defined depths in SiC. Aluminium is commonly used for creating p-type regions in SiC. However, post-implantation radiation damage, which strongly deteriorates required electric properties of the implanted layers, is difficult to anneal even at high temperatures because of remaining residual damage. Therefore implantation at elevated target temperatures (hot implantation) is nowadays an accepted method to decrease the level of the residual radiation damage by avoiding ion beam-induced amorphization. The main objective of this study is to compare the results of the Rutherford backscattering spectroscopy with channeling and micro-Raman spectroscopy investigations of room temperature and 500 o C Al + ion implantation-induced damage in 6H-SiC and its removal by high temperature (up to 1600 o C) thermal annealing. (author)

  1. Measuring Radiation Damage from Heavy Energetic Ions in Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, M., PI-MSU; Ronningen, R., PI-MSU; Ahle, L., PI-LLNL; Gabriel, T., Scientific Investigation and Development; Mansur, L., PI-ORNL; Leonard, K., ORNL; Mokhov, N., FNAL; Niita, K., RIST, Japan

    2009-02-21

    An intense beam of 122 MeV/u (9.3 GeV) 76Ge ions was stopped in aluminum samples at the Coupled Cyclotron Facility at NSCL, MSU. Attempts were made at ORNL to measure changes in material properties by measuring changes in electrical resistivity and microhardness, and by transmission electron microscopy characterization, for defect density caused by radiation damage, as a function of depth and integrated ion flux. These measurements are relevant for estimating damage to components at a rare isotope beam facility.

  2. Compensation for damage to workers health exposed to ionizing radiation in Argentina

    International Nuclear Information System (INIS)

    Sobehart, Leonardo J.

    2003-01-01

    The objective of this report is to analyze the possibility to establish a scheme to compensate damage to workers health exposed to ionizing radiation in Argentina for those cases in which it is possible to assume that the exposure to ionizing radiation is the cause of the cancer suffered by the worker. The proposed scheme is based on the recommendations set out in the 'International Conference on Occupational Radiation Protection: Protecting Workers against Exposure to Ionization Radiation, held in Geneva, Switzerland, August 26-30, 2002. To this end, the study analyzes the present state of scientific knowledge on cancer causation due to genotoxic factors, and the accepted form of the doses-response curve, for the human beings exposure to ionization radiation at low doses with low doses rates. Finally, the labor laws and regulations related to damage compensation; in particular the present Argentine Labor Law; the National Russian Federal Occupational Radiological Health Impairment and Workmen Compensation, the United Kingdom Compensation Scheme for Radiation-linked Diseases and the United States Energy Employees Occupational Illness Compensation Program are described. (author)

  3. Radiation damage assessment of Nb tunnel junction devices

    International Nuclear Information System (INIS)

    King, S.E.; Magno, R.; Maisch, W.G.

    1991-01-01

    This paper reports on the radiation hardness of a new technology using Josephson junctions that was explored by an irradiation using a fluence of 7.6 x 10 14 protons/cm 2 at an energy of 63 MeV from the U.C. Davis cyclotron. In what the authors believe is the first radiation assessment of Nb/Al 2 O 3 /Nb devices, the permanent damage in these devices was investigated. No permanent changes in the I-V characteristics of the junctions were observed indicating no significant level of material defects have occurred at this level of irradiation

  4. Radiation damage studies of detector-compatible Si JFETs

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Boscardin, Maurizio; Candelori, Andrea; Pancheri, Lucio; Piemonte, Claudio; Ratti, Lodovico; Zorzi, Nicola

    2007-01-01

    We have largely improved the performance of our detector-compatible Si JFETs by optimizing the fabrication technology. New devices feature thermal noise values close to the theoretical ones, and remarkably low 1/f noise figures. In view of adopting these JFETs for X-ray imaging and HEP applications, bulk and surface radiation damage tests have been carried out by irradiating single transistors and test structures with neutrons and X-rays. Selected results from static and noise characterization of irradiated devices are discussed in this paper, and the impact of radiation effects on the performance of JFET-based circuits is addressed

  5. Direct determination of a radiation-damage profile with atomic resolution in ion-irradiated platinum. MSC report No. 5030

    International Nuclear Information System (INIS)

    Pramanik, D.; Seidman, D.N.

    1983-05-01

    The field-ion microscope (FIM) technique has been employed to determine directly a radiation damage profile, with atomic resolution, in a platinum specimen which had been irradiated at 80 0 K with 20-keV Kr + ions to a fluence of 5 x 10 12 cm - 2 . It is shown that the microscopic spatial-vacancy distribution (radiation-damage profile) is directly related to the elastically-deposited-energy profile. The experimentally constructed radiation-damage profile is compared with a theoretical damage profile - calculated employing the TRIM Monte Carlo code - and excellent agreement is obtained between the two, thus demonstrating that it is possible to go directly from a microscopic spatial distribution of vacancies to a continuous radiation-damage profile

  6. XRCC1 Polymorphism Associated With Late Toxicity After Radiation Therapy in Breast Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, Petra; Behrens, Sabine [Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg (Germany); Schmezer, Peter [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg (Germany); Helmbold, Irmgard [Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg (Germany); Barnett, Gillian; Coles, Charlotte [Department of Oncology, Oncology Centre, Cambridge University Hospital NHS Foundation Trust, United Kingdom (UK) (United Kingdom); Yarnold, John [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London (United Kingdom); Talbot, Christopher J. [Department of Genetics, University of Leicester, Leicester (United Kingdom); Imai, Takashi [Advanced Radiation Biology Research Program, National Institute of Radiological Sciences, Chiba (Japan); Azria, David [Department of Radiation Oncology and Medical Physics, I.C.M. – Institut regional du Cancer Montpellier, Montpellier (France); Koch, C. Anne [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Dunning, Alison M. [Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge (United Kingdom); Burnet, Neil [Department of Oncology, Oncology Centre, Cambridge University Hospital NHS Foundation Trust, University of Cambridge, Cambridge (United Kingdom); Bliss, Judith M. [The Institute of Cancer Research, Clinical Trials and Statistics Unit, Sutton (United Kingdom); Symonds, R. Paul; Rattay, Tim [Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester (United Kingdom); Suga, Tomo [Advanced Radiation Biology Research Program, National Institute of Radiological Sciences, Chiba (Japan); Kerns, Sarah L. [Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NH (United States); and others

    2015-08-01

    Purpose: To identify single-nucleotide polymorphisms (SNPs) in oxidative stress–related genes associated with risk of late toxicities in breast cancer patients receiving radiation therapy. Methods and Materials: Using a 2-stage design, 305 SNPs in 59 candidate genes were investigated in the discovery phase in 753 breast cancer patients from 2 prospective cohorts from Germany. The 10 most promising SNPs in 4 genes were evaluated in the replication phase in up to 1883 breast cancer patients from 6 cohorts identified through the Radiogenomics Consortium. Outcomes of interest were late skin toxicity and fibrosis of the breast, as well as an overall toxicity score (Standardized Total Average Toxicity). Multivariable logistic and linear regression models were used to assess associations between SNPs and late toxicity. A meta-analysis approach was used to summarize evidence. Results: The association of a genetic variant in the base excision repair gene XRCC1, rs2682585, with normal tissue late radiation toxicity was replicated in all tested studies. In the combined analysis of discovery and replication cohorts, carrying the rare allele was associated with a significantly lower risk of skin toxicities (multivariate odds ratio 0.77, 95% confidence interval 0.61-0.96, P=.02) and a decrease in Standardized Total Average Toxicity scores (−0.08, 95% confidence interval −0.15 to −0.02, P=.016). Conclusions: Using a stage design with replication, we identified a variant allele in the base excision repair gene XRCC1 that could be used in combination with additional variants for developing a test to predict late toxicities after radiation therapy in breast cancer patients.

  7. XRCC1 Polymorphism Associated With Late Toxicity After Radiation Therapy in Breast Cancer Patients

    International Nuclear Information System (INIS)

    Seibold, Petra; Behrens, Sabine; Schmezer, Peter; Helmbold, Irmgard; Barnett, Gillian; Coles, Charlotte; Yarnold, John; Talbot, Christopher J.; Imai, Takashi; Azria, David; Koch, C. Anne; Dunning, Alison M.; Burnet, Neil; Bliss, Judith M.; Symonds, R. Paul; Rattay, Tim; Suga, Tomo; Kerns, Sarah L.

    2015-01-01

    Purpose: To identify single-nucleotide polymorphisms (SNPs) in oxidative stress–related genes associated with risk of late toxicities in breast cancer patients receiving radiation therapy. Methods and Materials: Using a 2-stage design, 305 SNPs in 59 candidate genes were investigated in the discovery phase in 753 breast cancer patients from 2 prospective cohorts from Germany. The 10 most promising SNPs in 4 genes were evaluated in the replication phase in up to 1883 breast cancer patients from 6 cohorts identified through the Radiogenomics Consortium. Outcomes of interest were late skin toxicity and fibrosis of the breast, as well as an overall toxicity score (Standardized Total Average Toxicity). Multivariable logistic and linear regression models were used to assess associations between SNPs and late toxicity. A meta-analysis approach was used to summarize evidence. Results: The association of a genetic variant in the base excision repair gene XRCC1, rs2682585, with normal tissue late radiation toxicity was replicated in all tested studies. In the combined analysis of discovery and replication cohorts, carrying the rare allele was associated with a significantly lower risk of skin toxicities (multivariate odds ratio 0.77, 95% confidence interval 0.61-0.96, P=.02) and a decrease in Standardized Total Average Toxicity scores (−0.08, 95% confidence interval −0.15 to −0.02, P=.016). Conclusions: Using a stage design with replication, we identified a variant allele in the base excision repair gene XRCC1 that could be used in combination with additional variants for developing a test to predict late toxicities after radiation therapy in breast cancer patients

  8. On Monte Carlo estimation of radiation damage in light water reactor systems

    International Nuclear Information System (INIS)

    Read, Edward A.; Oliveira, Cassiano R.E. de

    2010-01-01

    There has been a growing need in recent years for the development of methodologies to calculate damage factors, namely displacements per atom (dpa), of structural components for Light Water Reactors (LWRs). The aim of this paper is discuss and highlight the main issues associated with the calculation of radiation damage factors utilizing the Monte Carlo method. Among these issues are: particle tracking and tallying in complex geometries, dpa calculation methodology, coupled fuel depletion and uncertainty propagation. The capabilities of the Monte Carlo code Serpent such as Woodcock tracking and burnup are assessed for radiation damage calculations and its capability demonstrated and compared to those of the MCNP code for dpa calculations of a typical LWR configuration involving the core vessel and the downcomer. (author)

  9. Radiation damage analysis by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Siegel, R.W.

    1982-01-01

    Positron annihilation spectroscopy (PAS) has in recent years become a valuable new tool for investigating defects in metals. The ability of the positron to localize in a trapped state at various defect sites, in which the positron annihilates with unique characteristics, has enabled the positron to be used as a localized probe of these defect sites. Several reviews of the application of PAS to the study of defects in metals have been published, as have more general treatises on the applications of positron annihilation to the study of solids. PAS has made, and has considerably greater potential for, a significant contribution to radiation damage analysis in two areas of importance: (1) the determination of atomic-defect properties, a knowledge of which is necessary for the modeling required to couple the results of model experiments using electron and ion irradiation with the expected irradiation conditions of reactor systems, and (2) the monitoring and characterization of irradiation-induced microstructure development. A unique aspect of PAS for radiation damage analysis is the defect specificity of the annihilation characteristics of a trapped positron. In addition to its value as an independent analytical tool, PAS can be a useful complement to more traditional techniques for defect studies

  10. Radiation damage to DNA-protein complexes

    Czech Academy of Sciences Publication Activity Database

    Spotheim-Maurizot, M.; Davídková, Marie

    2011-01-01

    Roč. 261, zima (2011), s. 1-10 ISSN 1742-6588. [COST Chemistry CM0603-MELUSYN Joint Meeting Damages Induced in Biomolecules by Low and High Energy Radiations. Paříž, 09.03.2010-12.03.2010] R&D Projects: GA AV ČR IAA1048103; GA AV ČR KJB4048401; GA MŠk 1P05OC085; GA MŠk OC09012; GA AV ČR IAB1048901 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiolysis * molecular-dynamics simulation * hydroxyl radical attack * induced strand breakage Subject RIV: BO - Biophysics

  11. Ultraviolet radiation, sun damage and preventing

    International Nuclear Information System (INIS)

    Johnsen, B.; Christensen, T.; Nilsen, L.T.; Hannevik, M.

    2013-01-01

    The report focuses on the large impact of health damages due to excessive UV exposure from natural sun. The first part of the report gives background information on factors significantly affecting the intensity of UV radiation. The second part gives an overview of health effects related to UV exposure, with recommendations on how to avoid excessive UV exposure and still enjoy the positive sides of outdoor activity. The report is intended to contribute to informational activities about sun exposure as recommended by the World Health Organisation and the World Meteorology Organisation. (Author)

  12. Monitoring the Radiation Damage of the ATLAS Pixel Detector

    CERN Document Server

    Cooke, M; The ATLAS collaboration

    2012-01-01

    The Pixel Detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5x10^{33} cm^{-2} s^{-1}, results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented.

  13. Monitoring the radiation damage of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Cooke, M.

    2013-01-01

    The pixel detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5×10 33 cm −2 s −1 , results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented

  14. Late-onset radiation-induced vasculopathy and stroke in a child with medulloblastoma.

    Science.gov (United States)

    Bansal, Lalit R; Belair, Jeffrey; Cummings, Dana; Zuccoli, Giulio

    2015-05-01

    We report a case of a 15-year-old boy who presented to our institution with left-sided weakness and slurred speech. He had a history of medulloblastoma diagnosed at 3 years of age, status postsurgical resection and craniospinal radiation. Magnetic resonance imaging (MRI) of brain revealed a right paramedian pontine infarction, suspected secondary to late-onset radiation-induced vasculopathy of the vertebrobasilar system. Radiation to the brain is associated with increased incidence of ischemic stroke. Clinicians should have a high index of suspicion for stroke when these patients present with new neurologic symptoms. © The Author(s) 2014.

  15. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.

    2013-01-01

    Genotoxic insults, such as ionizing radiation (IR), cause DNA damage that evokes a multifaceted cellular DNA damage response (DDR). DNA damage signaling events that control protein activity, subcellular localization, DNA binding, protein-protein interactions, etc. rely heavily on time...

  16. Flow cytometric assessment of DNA damage in the fish Catla catla (Ham.) exposed to gamma radiation

    International Nuclear Information System (INIS)

    Anbumani, S.; Mohankumar, Mary N.; Selvanayagam, M.

    2012-01-01

    Environmental mutagens such as ionizing radiation and chemicals induce DNA damage in a wide variety of organisms. The International Commission on Radiological Protection (lCRP) has recently emphasized the need to protect non-human biota from the potential effects of ionizing radiation. Radiation exposures to non-humans can occur as a result of low-level radioactive discharges into the environment. Molecular genetic effects at low-level radiation exposures are largely unexplored and systematic studies using sensitive biomarkers are required to assess DNA damage in representative non-human species. The objective of the study was to detect DNA damage in the fish Catla catla exposed to gamma radiation using flow cytometry at different time intervals. Increases in the coefficient of variation (CV) of the G 0 /G 1 peak, indicating abnormal DNA distributions were observed in fish exposed to gamma radiation than in controls. Significant increase in the CV was observed from day 12-90 and thereafter decreased. This increase in CV might be due to DNA damage in the cell populations at G 0 /G 1 phase or deletions and duplications caused by improper repair of chromosomes in the cell-cycle machinery. Ionizing radiation induced cell-cycle perturbations and apoptosis were also observed after gamma radiation exposure. (author)

  17. Cytogenetic methods for the detection of radiation-induced chromosome damage in aquatic organisms

    International Nuclear Information System (INIS)

    Kligerman, A.D.

    1979-01-01

    One means of evaluating the genetic effects of radiation on the genomes of aquatic organisms is to screen radiation-exposed cells for chromosome aberrations. A brief literature review of studies dealing with radiation-induced chromosome damage in aquatic organisms is presented, and reasons are given detailing why most previous studies are of little quantitative value. Suggestions are made for obtaining adequate qualitative and quantitative data through the use of modern cytogenetic methods and a model systems approach to the study of cytogenetic radiation damage in aquatic organisms. Detailed procedures for both in vivo and in vitro cytogenetic methods are described, and experimental considerations are discussed. Finally, suggestions for studies that could be of value in establishing protective guidelines for aquatic ecosystems are presented. (author)

  18. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    Science.gov (United States)

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  19. Single Molecule Scanning of DNA Radiation Oxidative Damage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  20. Radiation damage and rate limitations in tracking devices

    International Nuclear Information System (INIS)

    Gilchriese, M.G.D.

    1984-01-01

    In this note the author briefly discusses radiation damage to wire chambers and silicon strip devices and the electronics that may be associated with each of these. Scintillating fibers and CCD's are not discussed although the former appears to be a potentially radiation-resistant detector. In order to calculate radiation levels and rates the author assumed the following: an inelastic cross section of 100 mb at the SSC - six charged particles per unit of rapidity - photons and neutrons do not contribute to the background (photon conversions are negligible with a thin Be beam pipe) - beam gas interactions and beam losses (except during injection when I assume that the detector is ''off'') are negligible. This is discussed in a later section. - 1 Rad = 3.5 x 10 7 minimum ionizing particlescm 2

  1. Investigations into radiation damages of reactor materials by computer simulation

    International Nuclear Information System (INIS)

    Bronnikov, V.A.

    2004-01-01

    Data on the state of works in European countries in the field of computerized simulation of radiation damages of reactor materials under the context of the international projects ITEM (European Database for Multiscale Modelling) and SIRENA (Simulation of Radiation Effects in Zr-Nb alloys) - computerized simulation of stress corrosion when contact of Zr-Nb alloys with iodine are presented. Computer codes for the simulation of radiation effects in reactor materials were developed. European Database for Multiscale Modelling (EDAM) was organized using the results of the investigations provided in the ITEM project [ru

  2. Non-carcinogenic late effects of ionizing radiation; human data

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1979-01-01

    The late effects of ionizing radiation may be somatic effect or potential effect, about which such informations as follows are required: teratogenesis the disturbances in growth and development, cataracts, infertility, cytogenetic aberration, and accelerated aging. Although much is known about the nature of the malformations produced by ionizing radiation, and about the vulnerability of human embryonal and fetal tissues during various stages of organogenesis, the quantitative information is uncertain and incomplete. The data on A-bomb survivors were flawed by confounding radiation dose with nutritional and other influences caused by the disasters created by war-time bombings. If the effects of radiation are real, they are quite small for the dose below 100 rad (kerma), are confined to the children of pre-pubertal age at the time of exposure, and are of much less consequence for low-LET radiation than for high. Radiation-induced lenticular changes are of graded severity, and as for cataracts, the threshold is in the range from 600 to 1,000 rad of low-LET radiation, and perhaps 75 to 100 rad for fast neutrons; the average latent period is 2 to 7 years. The estimate of the RBE for neutrons is in the range from 2 to 10, and dose-dependent. Ionizing radiation has important effects on fertility only at very high dose. The relationship of the quantitative aspects of the biologic significance of chromosomal aberration in somatic cells to dose may provide an interesting parallel to the carcinogenic effect. For neutrons, the dose-response curve appears to be linear, at least for stable aberration. (Yamashita, S.)

  3. Empirical constraints on the effects of radiation damage on helium diffusion in zircon

    Science.gov (United States)

    Anderson, Alyssa J.; Hodges, Kip V.; van Soest, Matthijs C.

    2017-12-01

    In this study, we empirically evaluate the impact of radiation damage on zircon (U-Th)/He closure temperatures for a suite of zircon crystals from the slowly cooled McClure Mountain syenite of south-central Colorado, USA. We present new zircon, titanite, and apatite conventional (U-Th)/He dates, zircon laser ablation (U-Th)/He and U-Pb dates, and zircon Raman spectra for crystals from the syenite. Titanite and apatite (U-Th)/He dates range from 447 to 523 Ma and 88.0 to 138.9 Ma, respectively, and display no clear correlation between (U-Th)/He date and effective uranium concentration. Conventional zircon (U-Th)/He dates range from 230.3 to 474 Ma, while laser ablation zircon (U-Th)/He dates show even greater dispersion, ranging from 5.31 to 520 Ma. Dates from both zircon (U-Th)/He datasets decrease with increasing alpha dose, indicating that most of the dispersion can be attributed to radiation damage. Alpha dose values for the dated zircon crystals range from effectively zero to 2.15 × 1019 α /g, spanning the complete damage spectrum. We use an independently constrained thermal model to empirically assign a closure temperature to each dated zircon grain. If we assume that this thermal model is robust, the zircon radiation damage accumulation and annealing model of Guenthner et al. (2013) does not accurately predict closure temperatures for many of the analyzed zircon crystals. Raman maps of the zircons dated by laser ablation document complex radiation damage zoning, sometimes revealing crystalline zones in grains with alpha dose values suggestive of amorphous material. Such zoning likely resulted in heterogeneous intra-crystalline helium diffusion and may help explain some of the discrepancies between our empirical findings and the Guenthner et al. (2013) model predictions. Because U-Th zoning is a common feature in zircon, radiation damage zoning is likely to be a concern for most ancient, slowly cooled zircon (U-Th)/He datasets. Whenever possible, multiple

  4. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    International Nuclear Information System (INIS)

    Averbeck, D.; Boucher, D.

    2006-01-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using 137 Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage into

  5. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D.; Boucher, D. [Institut Curie-Section de Recherche, UMR2027 CNRS, LCR-V28 du CEA, Centre Universitaire, 91405 Orsay Cedex (France)

    2006-07-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using {sup 137}Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage

  6. A correlation between residual radiation-induced DNA double-strand breaks in cultured fibroblasts and late radiotherapy reactions in breast cancer patients

    International Nuclear Information System (INIS)

    Kiltie, A.E.; Ryan, A.J.; Swindell, R.; Barber, J.B.P.; West, C.M.L.; Magee, B.; Hendry, J.H.

    1999-01-01

    Background and purpose: Prediction of late normal tissue reactions to radiotherapy would permit tailoring of dosage to each patient. Measurement of residual DNA double strand breaks using pulsed field gel electrophoresis (PFGE) shows promise in this field. The aim of this study was to test the predictive potential of PFGE in a group of retrospectively studied breast cancer patients.Materials and methods: Thirty nine patients, treated uniformly for breast cancer 9-15 years previously, with excision of the tumour and radiotherapy to the breast and drainage areas, were assessed clinically using the LENT SOMA scale, and a 5-mm punch biopsy taken from the buttock. Fibroblast cell strains were established and used to study residual DNA double strand breaks, using PFGE.Results: There were significant correlations between the DNA assay results and the fibrosis score (r s =0.46; P=0.003), the combined fibrosis and retraction score (r s =0.45, P=0.004) and the overall LENT score (r s =0.43; P=0.006). Using polychotomous logistic regression, the fibroblast DNA assay result was an independent prognostic factor for fibrosis severity.Conclusions: There is a relationship between residual radiation-induced DNA damage in fibroblasts and the severity of the late normal tissue damage seen in the patients from whom the cells were cultured. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  8. Radiation damage of austenitic stainless steels and zirconium alloys; Pregled radijacionog ostecenja austenitnih nerdjajucih celika i legura cirkonijuma

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This review contains analyses of available data concerning texture deformations and radiation damage of zirconium and zircaloy-2; radiation damage, influence of neutron radiation on the mechanical properties of austenitic, ferritic and other types of stainless steels.

  9. Effect of prior hyperthermia on subsequent thermal enhancement of radiation damage in mouse intestine

    International Nuclear Information System (INIS)

    Marigold, J.C.L.; Hume, S.P.

    1982-01-01

    Hyperthermia given in conjunction with X-rays results in a greater level of radiation injury than following X-rays alone, giving a thermal enhancement ratio (TER). The effect of prior hyperthermia ('priming') on TER was studied in the small intestine of mouse by giving 42.0 deg C for 1 hour at various times before the combined heat and X-ray treatments. Radiation damage was assessed by measuring crypt survival 4 days after radiation. TER was reduced when 'priming' hyperthermia was given 24-48 hours before the combined treatments. The reduction in effectiveness of the second heat treatment corresponded to a reduction in hyperthermal temperature of approximately 0.5 deg C, a value similar to that previously reported for induced resistance to heat given alone ('thermotolerance') (Hume and Marigold 1980). However, the time courses for development and decay of the TER response were much longer than those for 'thermotolerance', suggesting that different mechanisms are involved in thermal damage following heat alone and thermal enhancement of radiation damage

  10. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...

  11. Modeling radiation damage to pixel sensors in the ATLAS detector

    Science.gov (United States)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  12. Positron annihilation and perturbed angular correlation studies of radiation damage

    International Nuclear Information System (INIS)

    Zhu Jiazheng; Li Anli; Xu Yongjun; Wang Zhiqiang; Zhou Dongmei; Zheng Yongnan; Zhu Shengyun; Iwata, T.

    2002-01-01

    The positron annihilation and perturbed angular correlation techniques have been employed to study radiation damage in Si and Nb. The results obtained by the positron annihilation are consistent with those given by the perturbed angular correlation

  13. Radiation proctitis. Clinical and pathological manifestations, therapy and prophylaxis of acute and late injurious effects of radiation on the rectal mucosa

    International Nuclear Information System (INIS)

    Zimmermann, F.B.; Feldmann, H.J.

    1998-01-01

    Background: Often the rectum is the dose-limiting organ in curative radiation therapy of pelvic malignancies. It reacts with serous, mucoid, or more rarely bloody diarrhea. Methods: A research for reports on prophylactic and supportive therapies of radiation-induced proctitis was performed (Medline, Cancerlit, and others). Results: No proven effective prophylactic local or systemic therapies of radiation proctitis exist. Also, no reasonable causal medication is known. In the treatment of late radiation sequelae no clinically tested certain effective therapy exists, too. Antiinflammatory, steroidal or non-steroidal therapeutics as well as sucralfate can be used as topical measures. They will be successful in some patients. Side effects are rare and the therapy is cost-effective. Treatment failures can be treated by hyperbaric oxygen. This will achieve good clinical results in about 50% of the cases. Single or few mucosal telangiectasias with rectal bleeding can be treated sufficiently by endoscopic cautherization. Conclusion: Besides clinical studies acute proctitis should be treated just symptomatically. Radical surgery should be performed only when all conventional treatments have been uneffective, although no certain effective therapies of radiation-induced late proctitis exist. (orig.) [de

  14. Radiation damage study in CZT matrix detectors exposed to gamma rays

    International Nuclear Information System (INIS)

    Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Cruz Inclan, Carlos Manuel; Abreu Alfonso, Yamiel; Dona Lemus, Olga; Diaz Garcia, Angelina; Montanno Zetina, Luis Manuel

    2009-01-01

    Radiation damage in terms of atomic displacements in a typical CZT detector used in medical imaging applications was studied using the Monte Carlo statistical method. All detector structural and geometric features as well as different energies of the photons usually used in the application were taken into account. Considering the Mott McKinley Feshbach classical approach, effective cross sections of the displacements were calculated, including the number of displacements per atom for each atomic species present in the material and each photon energy considered. These results are analyzed and compared. Finally, the radiation damage on CZT detector is compared to that calculated in a similar detector manufactured with other semiconducting materials. (author)

  15. ALK1 heterozygosity delays development of late normal tissue damage in the irradiated mouse kidney

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Korlaar, Regina; Russell, Nicola S.; Stewart, Fiona A.

    2011-01-01

    Background and Purpose: Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous studies showed that mice with reduced endoglin levels develop less irradiation-induced vascular damage and fibrosis, caused by an impaired inflammatory response. This study was aimed at investigating the role of ALK1 in late radiation toxicity. Material and Methods: Kidneys of ALK +/+ and ALK1 +/- mice were irradiated with 14 Gy. Mice were sacrificed at 10, 20, and 30 weeks after irradiation and gene expression and protein levels were analyzed. Results: Compared to wild type littermates, ALK1 +/- mice developed less inflammation and fibrosis at 20 weeks after irradiation, but displayed an increase in pro-inflammatory and pro-fibrotic gene expression at 30 weeks. In addition, ALK1 +/- mice showed superior vascular integrity at 10 and 20 weeks after irradiation which deteriorated at 30 weeks coinciding with changes in the VEGF pathway. Conclusions: ALK1 +/- mice develop a delayed normal tissue response by modulating the inflammatory response and growth factor expression after irradiation.

  16. Radiation damage evaluation on concrete within a facility for Selective Production of Exotic Species (SPES Project), Italy

    International Nuclear Information System (INIS)

    Pomaro, B.; Salomoni, V.A.; Gramegna, F.; Prete, G.; Majorana, C.E.

    2011-01-01

    Highlights: → We present the effect of radiation on concrete as shielding material. → The coupling between hydro-thermal-mechanical fields and radiation damage is shown. → Attention is focused on numerical modelling of concrete in 3D domains. → A new estimate of the radiation damage parameter is given. → A risk assessment of concrete-radiation interactions is developed. - Abstract: Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties.

  17. The suppressive effect of etoposide on recovery from sublethal radiation damage in Chinese hamster V 79 cells

    International Nuclear Information System (INIS)

    Saito, Tsutomu; Shimada, Yuji; Kawamori, Jiro; Kamata, Rikisaburo

    1992-01-01

    The combined effect of radiation and etoposide on the survival of cultured Chinese hamster V 79 cells was investigated. Cells in exponential growth phase were treated with various combinations of radiation and etoposide. The surviving fraction was assessed by colony formation. Etoposide significantly reduced so-called shoulder width, as expressed in Dq (quasithreshold dose), of radiation survival curves. The reduction depended on the increase of etoposide concentrations, although steepening of slopes of exponentially regressing portions of the radiation survival curves was slight. Split dose experiments showed that cells did not recover from sublethal radiation damage in the presence of low concentration of etoposide, although they did recover from sublethal radiation damage under a drug free condition. The results show the suppressive effect of etoposide on recovery from sublethal radiation damage. The effect of a sequential combination of radiation and etoposide was also investigated. The effect was more marked when the interval between radiation and etoposide was shorter regardless of the sequence. (author)

  18. The alteration of chromatin domains during damage repair induced by ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Olson, K.M.; Olson, G.B.

    1995-01-01

    Several groups previously have reported the ability of chromatin structure to influence the production of damage induced by ionizing radiation. The authors' interest has been to determine whether chromatin structural alterations exist after ionizing radiation during a repair interval. The earlier work investigated this question using biochemical techniques. The crosslinking of nuclear structural proteins to DNA after ionizing radiation was observed. In addition, they found that the chromatin structure in vitro as measured by sucrose density gradient sedimentation, was altered after ionizing radiation. These observations added to earlier studies in which digital imaging techniques showed an alteration in feulgen-positive DNA after irradiation prompted the present study. The object of this study was to detect whether the higher order structure of DNA into chromatin domains within interphase human cells was altered in interphase cells in response to a radiation induced damage. The present study takes advantage of the advances in the detection of chromatin domains in situ using DNA specific dyes and digital image processing of established human T and B cell lines

  19. Radiation damage of uranium; Radijaciono ostecenje urana

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, Dj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method.

  20. Spatial distribution of radiation damage to crystalline proteins at 25–300 K

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse B.; Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States)

    2012-09-01

    Dose-dependent atomic B factors are used to determine the average spatial distribution of radiation damage to crystalline thaumatin and urease. The spatial distribution of radiation damage (assayed by increases in atomic B factors) to thaumatin and urease crystals at temperatures ranging from 25 to 300 K is reported. The nature of the damage changes dramatically at approximately 180 K. Above this temperature the role of solvent diffusion is apparent in thaumatin crystals, as solvent-exposed turns and loops are especially sensitive. In urease, a flap covering the active site is the most sensitive part of the molecule and nearby loops show enhanced sensitivity. Below 180 K sensitivity is correlated with poor local packing, especially in thaumatin. At all temperatures, the component of the damage that is spatially uniform within the unit cell accounts for more than half of the total increase in the atomic B factors and correlates with changes in mosaicity. This component may arise from lattice-level, rather than local, disorder. The effects of primary structure on radiation sensitivity are small compared with those of tertiary structure, local packing, solvent accessibility and crystal contacts.

  1. Efficacy of serotonin in lessening radiation damage to mouse embryo depending on time of its administration following radiation exposure

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Dontsova, G.V.; Panaeva, S.V.; Turpaev, T.M.

    1994-01-01

    Our earlier studies demonstrated that serotonin lessons radiation damage to an 8-day mouse embryo. Moreover, this biogenic amine was equally effective when administered before and after intrauterine exposure of the embryo to ionizing radiation. The radiotherapeutic effect of serotonin was manifested by disorders in the embryo growth of various intensity, within the range of the studied radiation doses (1.31, 1.74, and 2.18 Gy). The therapeutic effect of serotonin in the embryos exposed to various doses of radiation depended on the amount of serotonin administered. The effective doses of this substance were determined by the severity of the damage inflicted. In this series of experiments, serotonin was administered immediately after exposure to ionizing radiation. The object of the present study was to determine whether or not the radiotherapeutic effect of serotonin depends on the time that elapses between the end of radiation exposure and the administration of serotonin to pregnant mice. It was established that serotonin produces a radiotherapeutic effect during 24 h following the intrauterine exposure of the fetus to ionizing radiation on the 8th day of gestation. The best therapeutic effect is attained with the administration of serotonin immediately after radiation exposure. The effect is slightly lower is serotonin is administered within 5 or 24 h following radiation exposure

  2. Use of lectin-induced lymphocyte stimulation as a biodosimeter of radiation damage

    International Nuclear Information System (INIS)

    Shifrine, M.; Taylor, N.J.; DeRock, E.W.; Wiger, N.; Wilson, F.D.

    1979-01-01

    The purpose of this study was to determine the feasibility of utilizing an in vitro test to determine whether an individual has suffered radiation damage. It was not our purpose to develop a test capable of detecting low doses but rather to determine possible damage due to a radiation accident at medium to high doses. In a pilot study using the whole blood lymphocyte stimulation test (WB/LST), we pretested six dogs weekly for three weeks. One was sham irradiated and is referred to as the control and one each received an acute whole body dose of 10, 25, 50, 75, or 100 R. The dogs were tested one day post-irradiation and then weekly for 56 days. Our data indicate that, using Con-A and PHA in the WB/LST, a biodosimeter can be developed to determine recovery of lymphocyte function after suspected radiation exposure to confirm accidental radiation and estimate the magnitude of the dose

  3. Cytogenetic damages induced in vivo in human lymphocytes by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1999-01-01

    The importance of various environmental exposures has been evident in variation in cancer incidence and mortality. Benzene is considered to be a human carcinogen, is clastogenic to rodents and humans, and it affects the immune response. Workers in various industrial plants, are exposed to benzene and benzene related compounds as a result of various activities in which benzene is processed, generated or used. Major sources of environmental exposure to benzene related compounds, continue to be active and passive smoking, auto exhaust, and driving or riding in automobiles. Benzene is of a particular interest, not only because of its known toxicity, but also because this was to be the parent compound and a model for extensive programs of metabolism of a variety of aromatic chemicals. Ionizing radiation is an unavoidable physical agent that is presented in environment, and public opinion is well aware against radiation risk and strongly against it. The aim of the presentation was comparison between cytogenetic damages induced in vivo by environmental chemicals with those of radiation. Results from biomonitoring survey on genotoxicity in human blood cells of benzene and benzene related compounds were compared to damages detected in lymphocytes of persons who had been accidentally exposed to gamma radiation. In the groups, that had been occupationally or environmentally exposed to benzene related compound, total aberration frequencies, or percent of aberrant cells ranged between 0 - 0.16 aberrations/cell or 16% of aberrant cells respectively. A multivariate regression analysis confirmed: (i) a significant association between cytogenetic damage and exposure to benzene related compound, (ii) a possible association between cytogenetic damage and cancer, (iii) a significant influence of smoking habit. In 1996 few persons were suspected of accidental exposure to gamma radiation. To estimate the absorbed doses, lymphocytes from their blood have been analyzed for the presence of

  4. Genetic damages in radiation workers of radiology centers in Bushehr port

    Directory of Open Access Journals (Sweden)

    Gholamreza Khamisipour

    2004-09-01

    Full Text Available Unstable genetic aberrations might provide a good marker for assessing genetic damage in populations exposed to low levels of ionizing radiation.The frequency of these aberrations was estimated in peripheral lymphocytes from hospital workers in Bushehr Port, occupationally exposed to low levels of ionizing radiation (54 subjects and age and sex matched controls. A total of 34 (23 males & 11 females subjects had unstable genetic aberrations (50 chromosomal-type & 31 chromatid type but only 7 subjects in control group had unstable genetic aberrations. When compared with controls, exposed workers showed a significant increase in structural chromosomal-type aberrations (p<0.001 OR=11 chromosomal exchange being the most frequent alteration. Chromatid deletion (18 cases and ring chromosome (4 cases were seen only in exposed group. There was no association between smoking status, sex, age, level of education or working years. The increased frequencies of chromosomal damage in radiation workers, indicate conducting cytogenetic analysis in parallel to physical dosimetry in the working place.

  5. Radiation damages in superconducting materials

    International Nuclear Information System (INIS)

    Heinz, W.; Seibt, E.

    1978-01-01

    Radiation damage investigations of technical superconductors are reported and discussed with respect to their main properties like critical current jsub(c), transition temperature Tsub(c), upper critical field Bsub(c2), pinning and annealing behaviour. Ordered A15 type alloys (like Nb 3 Sn and V 3 Ga) show significant reductions of all critical parameters above a threshold of about 2x10 21 m -2 with 50 MeV deuterons corresponding to 2x10 22 neutrons/m 2 (Esub(n)>0.1 MeV). Pure metals and disordered B1 type alloys (like Nb or NbTi) show only a small linear decrease in critical parameters (except Bsub(c2) of niobium). Experimental results are compared with theoretical calculations. (author)

  6. A comparison of ionizing radiation damage in CMOS devices from 60Co gamma rays, electrons and protons

    International Nuclear Information System (INIS)

    He Baoping; Yao Zhibin; Zhang Fengqi

    2009-01-01

    Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using 60 Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons below 9 MeV is always less than that of 60 Co gamma rays. The lower energy the proton has, the less serious the radiation damage becomes. (authors)

  7. European Society for Radiation Biology 21. annual meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The volume contains about 100 abstracts of lectures presented to the conference covering a large variety of topics like: Radiobiology as a base for radiotherapy, radiation carcinogenesis and cellular effects, late and secondary effects of radiotherapy, radioprotection and radiosensitization, heavy ions in radiobiology and space research, microdosimetry and biological dosimetry, radiation effects on the mature and the developing central nervous system, DNA damage and repair and cellular mutations, the imact of radiation on the environment, free radicals in radiation biology

  8. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  9. Radiation induced damage to the lipid contents of bacteria and cultured mammalian cells

    International Nuclear Information System (INIS)

    Gholipour Khalili, K.

    1993-01-01

    In this study, exponentially growing phase of E. Coli. K12-N167 and cultured mouse leukemic L5178Y were used to study the effect of gamma irradiation on phospholipid contents. Following irradiation, both bacteria and cultured cells were incubated with either 14 C or 32 P labelled precursors for periods of cell division time. Phospholipid composition and their contents were detected in both the bacteria and cultured cells by using liquid scintillation counting and autoradiography methods. In contrast, as radiation dose increased, the Phospholipid contents were decreased in the both bacteria and cultured cells. It was concluded that the changes of phospholipid contents may result to altered activities of phospholipid pathway enzymes damaged by a radiation dose. The results of this investigation would be helpful in control of induced radiation damages in cell killings in radiation workers and radiation treatment of human cancer in the clinics. (author). 35 refs, 3 figs, 4 tabs

  10. Iodine-131 treatment and chromosomal damage: in vivo dose-effect relationship.

    Science.gov (United States)

    Erselcan, Taner; Sungu, Selma; Ozdemir, Semra; Turgut, Bulent; Dogan, Derya; Ozdemir, Ozturk

    2004-05-01

    Although it is well known that radiation induces chromosomal aberrations, there is a lack of information on the in vivo dose-effect relationship in patients receiving iodine-131 treatment, and the results of previous studies are controversial. In this study, the sister chromatid exchange (SCE) method was employed to investigate acute and late chromosomal damage (CD) in the peripheral lymphocytes of 15 patients who received various doses of (131)I (259-3,700 MBq), either for thyrotoxicosis (TTX) or for ablation treatment in differentiated thyroid cancer (DTC). The SCE frequencies in cultured peripheral lymphocytes were determined before treatment (to assess basal SCE frequencies), on the 3rd day (to assess acute SCE frequencies) and 6 months later (to assess late SCE frequencies). The basal, acute and late SCE frequencies (mean+/-SD) were 3.19+/-0.93, 10.83+/-1.72 and 5.75+/-2.06, respectively, in the whole group, and these values differed significantly from each other ( Pdisappearance of damaged lymphocytes from the peripheral circulation in a dose-dependent manner following (131)I treatment. Further studies are therefore needed to clarify the effect of the negative beta value on the biological dosimetry approach in continuous internal low LET radiation, as in the case of (131)I treatment.

  11. Radiation damage measurements in room temperature semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Franks, L.A.; Olsen, R.W.; James, R.B.; Brunett, B.A.; Walsh, D.S.; Doyle, B.L.; Vizkelethy, G.; Trombka, J.I.

    1998-01-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI 2 ) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10 10 p/cm 2 and significant bulk leakage after 10 12 p/cm 2 . CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 x 10 9 p/cm 2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum of neutrons after fluences up to 10 10 n/cm 2 , although activation was evident. Exposures of CZT to 5 MeV alpha particle at fluences up to 1.5 x 10 10 α/cm 2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5 x 10 9 α/cm 2 . CT detectors show resolution losses after fluences of 3 x 10 9 p/cm 2 at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 x 10 10 n/cm 2 . Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 10 12 p/cm 2 and with 1.5 GeV protons at fluences up to 1.2 x 10 8 p/cm 2 . Neutron exposures at 8 MeV have been reported at fluences up to 10 15 n/cm 2 . No radiation damage was reported under these irradiation conditions

  12. The Future of the South Atlantic Anomaly and Implications for Radiation Damage in Space

    Science.gov (United States)

    Heirtzler, J. R.; Smith, David E. (Technical Monitor)

    2000-01-01

    South Atlantic Anomaly of the geomagnetic field plays a dominant role in where radiation damage occurs in near Earth orbits. The historic and recent variations of the geomagnetic field in the South Atlantic are used to estimate the extent of the South Atlantic Anomaly until the year 2000. This projection indicates that radiation damage to spacecraft and humans in space will greatly increase and cover a much larger geographic area than present.

  13. The correlation of acute toxicity and late rectal injury in radiotherapy for cervical carcinoma: Evidence suggestive of consequential late effect (CQLE)

    International Nuclear Information System (INIS)

    Wang, C.-J.; Leung, Stephen Wan; Chen, H.-C.; Sun, L.-M.; Fang, F.-M.; Huang, E.-Y.; Hsiung, C.-Y.; Changchien, C.-C.

    1998-01-01

    increased the risk of late rectal injury. This result suggested that early excessive damage of acute-responding component of rectal wall may play an important role in the initiation of late rectal injury. Radiation proctitis can be accounted, in part, as a consequential late effect

  14. Protective Effects of Polysaccharides from Soybean Meal Against X-ray Radiation Induced Damage in Mouse Spleen Lymphocytes

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2011-11-01

    Full Text Available The aim of this study was to investigate radioprotective effect of the polysaccharides from soybean meal (SMP against X-ray radiation-induced damage in mouse spleen lymphocytes. MTT and comet assay were performed to evaluate SMP’s ability to prevent cell death and DNA damage induced by radiation. The results show that, X-ray radiation (30 KV, 10 mA, 8 min (4 Gy can significantly increase cell death and DNA fragmentation of mouse spleen lymphocytes. Pretreatment with SMP for 2 h before radiation could increase cell viability, moreover, the SMP can reduce X-ray radiation-induced DNA damage. The percentage of tail DNA and the tail moment of the SMP groups were significantly lower than those of the radiation alone group (p < 0.05. These results suggest SMP may be a good candidate as a radioprotective agent.

  15. Biomarkers of DNA and cytogenetic damages induced by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    1999-01-01

    This paper presents and discusses results from the studies on various biomarkers of the DNA and cytogenetic damages induced by environmental chemicals or radiation. Results of the biomonitoring studies have shown that particularly in the condition of Poland, health hazard from radiation exposure is overestimated in contradistinction to the environmental hazard

  16. Removal of radiation damage by subpopulations of plateau-phase Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Nelson, J.M.; Metting, N.F.; Braby, L.A.; Roesch, W.C.

    1987-01-01

    Specific cellular radiobiology studies are often required to test aspects of the mathematical models developed in the Radiation Dosimetry program. These studies are designed to determine whether specific mathematical expressions, which characterize the expected effect of biochemical mechanisms on observable biological responses, are consistent with the behavior of selected cell lines. Since these tests place stringent requirements on the cellular system, special techniques and culture conditions are required to minimize biological variability. The use of specialized cell populations is providing data on the extent of repair following low doses, and on the changes in the types of damage that can be repaired as the cell progresses toward mitosis. The stationary-phase Chinese hamster ovary (CHO) cells are composed primarily of G(1)-phase cells (83%), with the remainder comprising both G(2) and S phases. Removal of radiation damage by cells was studied in split-dose experiments. To date, we have observed no significant differences in cellular repair rate. This suggests, therefore, that each of the repair processes found in stationary-phase cells is cell-age independent. However, cellular radiation sensitivity does change rapidly and considerably as the cells progress from one phase to the next through the cell cycle. Since the rate of damage removal appears invariant, the change in survival must reflect the efficiency of producing that damage. The experimental data suggest that production of one or another sort of damage probably dominates during specific phases of the cell cycle, while the capacity for removal of all types of damage remains relatively constant

  17. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    International Nuclear Information System (INIS)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-01-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented

  18. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    Science.gov (United States)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  19. Medical treatment of radiation damages and medical emergency planning in case of nuclear power plant incidents and accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1981-03-01

    Medical measures in case of radiation damages are discussed on the basis of five potential categories of radiation incidents and accidents, respectively, viz. contaminations, incorporations, external local and general radiation over-exposures, contaminated wounds, and combinations of radiation damages and conventional injuries. Considerations are made for diagnostic and therapeutic initial measures especially in case of minor and moderate radiation accidents. The medical emergency planning is reviewed by means of definations used in the practical handling of incidents or accidents. The parameters are: extent of the incident or accident, number of persons involved, severity of radiation damage. Based on guiding symptoms the criteria for the classification into minor, moderate or severe radiation accidents are discussed. Reference is made to the Medical Radiation Protection Centers existing in the Federal Republic of Germany and the possibility of getting advices in case of radiation incidents and accidents. (orig.) [de

  20. Radiation damage evaluation on AlGaAs/GaAs solar cells

    International Nuclear Information System (INIS)

    Moreno, E.G.; Alcubilla, R.; Prat, L.; Castaner, L.

    1988-01-01

    A piecewise model to evaluate radiation damage on AlGaAs based solar cells has been developed, which gives complete electrical parameters of the cells in the operating temperature range. Different structures, including graded band gap and double heteroface can be analyzed. The cell structure is sliced into layers of constant parameters, allowing the model to take into account nonuniform damage produced by low energy protons without excess computer time. Proton damage coefficients as well as proton damage ratios can be calculated for energies between 30 and 10/sup 4/ keV with only two adjustable parameters. In addition, coirradiation experiments with different energy protons can be simulated, by improving the conventional method of degradation computering

  1. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Energy Technology Data Exchange (ETDEWEB)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  2. Concurrent Transient Activation of Wnt/β-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    International Nuclear Information System (INIS)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-01-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/β-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/β-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/β-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/β-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  3. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay

    International Nuclear Information System (INIS)

    Praveen Kumar, M.K.; Shyama, S.K.; Sonaye, B.S.; Naik, U Roshini; Kadam, S.B.; Bipin, P.D.; D’costa, A.; Chaubey, R.C.

    2014-01-01

    Highlights: • Possible genotoxic effect of accidental exposure of aquatic fauna to γ radiation. • Relative sensitivity of bivalves to γ radiation is also analyzed using comet assay. • γ radiation induced significant genetic damage in both the species of bivalves. • P. malabarica and M. casta exhibited a similar level of sensitivity to γ radiation. • Comet assay may be used as a biomarker for the environmental biomonitoring. - Abstract: Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of ‘Comet assay’ for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in

  4. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, M.K., E-mail: here.praveen@gmail.com [Department of Zoology, Goa University, Goa 403206 (India); Shyama, S.K., E-mail: skshyama@gmail.com [Department of Zoology, Goa University, Goa 403206 (India); Sonaye, B.S. [Department of Radiation Oncology, Goa Medical College, Goa (India); Naik, U Roshini; Kadam, S.B.; Bipin, P.D.; D’costa, A. [Department of Zoology, Goa University, Goa 403206 (India); Chaubey, R.C. [Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-05-01

    Highlights: • Possible genotoxic effect of accidental exposure of aquatic fauna to γ radiation. • Relative sensitivity of bivalves to γ radiation is also analyzed using comet assay. • γ radiation induced significant genetic damage in both the species of bivalves. • P. malabarica and M. casta exhibited a similar level of sensitivity to γ radiation. • Comet assay may be used as a biomarker for the environmental biomonitoring. - Abstract: Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of ‘Comet assay’ for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in

  5. MO-D-BRB-00: Pediatric Radiation Therapy Planning, Treatment, and Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    , neuroblastoma, requiring focal abdominal irradiation to avoid kidney, liver, and vertebral body damage, retinoblastoma, requiring treatment to an eye while minimizing dose to surrounding tissues, and a variety of other tumors which occur anywhere in the body. Case studies will be presented showing the treatment technique and resulting dosimetry, highlighting the objectives for tumor coverage and organ-at-risk sparing. Practical issues that have to be faced when treating children will also be discussed such as daily sedation and immobilization. Late effects based on the current understanding of dose-volume response in normal tissues will be discussed. In the second presentation, specific focus will be on pediatric proton therapy. We will review literature publications on dosimetric comparison of proton versus photon plans, common pediatric tumors treated with protons, and available clinical outcomes. We will describe simulation technique, treatment planning, image guidance for setup verification, and proton beam delivery unique to pediatric and adolescent patients. Finally, we will discuss desired improvements, outlook, and opportunities for medical physicists in pediatric proton therapy. Learning Objectives: Improve understanding about childhood cancer and treatment with radiation Understand treatment planning and delivery issues and associated late effects specific to children Become aware of specific treatment methods for the most challenging pediatric cancers Know the current status, techniques, and desired improvements for pediatric proton therapy.

  6. Delayed damage after radiation therapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yoshiyuki [Osaka Dental Univ., Hirakata (Japan)

    2000-03-01

    I investigated radiation damage, including osteoradionecrosis, arising from tooth extraction in fields that had received radiation therapy for head and neck cancer, and evaluated the effectiveness of pilocarpine for xerostomia. Between January 1990 and April 1996, I examined 30 patients for bone changes after tooth extraction in fields irradiated at the Department of Oral Radiology, Osaka Dental University Hospital. Nineteen of the patients had been treated for nasopharyngeal cancer and 11 for oropharyngeal cancer. Between January and April 1996, 4 additional patients were given pilocarpine hydrochloride (3-mg, 6-mg and 9-mg of KSS-694 orally three times a day) for 12 weeks and evaluated every 4 weeks as a base line. One had been treated for nasopharyngeal carcinoma, two for cancer of the cheek and one for an unknown carcinoma. Eighteen of the patients (11 with nasopharyngeal carcinoma and 7 with oropharyngeal carcinoma) had extractions. Use of preoperative and postoperative radiographs indicated that damage to the bone following tooth extraction after radiation exposure was related to whether antibiotics were administered the day before the extraction, whether forceps or elevators were used, and whether the tooth was in the field of radiation. Xerostomia improved in all 4 of the patients who received 6-mg or 9-mg of pilocarpine. It improved saliva production and relieved the symptoms of xerostomia after radiation therapy for head and neck cancer, although there were minor side effects such as fever. This information can be used to improve the oral environment of patients who have received radiation therapy for head and neck cancer, and to better understand their oral environment. (author)

  7. Delayed damage after radiation therapy for head and neck cancer

    International Nuclear Information System (INIS)

    Matsumoto, Yoshiyuki

    2000-01-01

    I investigated radiation damage, including osteoradionecrosis, arising from tooth extraction in fields that had received radiation therapy for head and neck cancer, and evaluated the effectiveness of pilocarpine for xerostomia. Between January 1990 and April 1996, I examined 30 patients for bone changes after tooth extraction in fields irradiated at the Department of Oral Radiology, Osaka Dental University Hospital. Nineteen of the patients had been treated for nasopharyngeal cancer and 11 for oropharyngeal cancer. Between January and April 1996, 4 additional patients were given pilocarpine hydrochloride (3-mg, 6-mg and 9-mg of KSS-694 orally three times a day) for 12 weeks and evaluated every 4 weeks as a base line. One had been treated for nasopharyngeal carcinoma, two for cancer of the cheek and one for an unknown carcinoma. Eighteen of the patients (11 with nasopharyngeal carcinoma and 7 with oropharyngeal carcinoma) had extractions. Use of preoperative and postoperative radiographs indicated that damage to the bone following tooth extraction after radiation exposure was related to whether antibiotics were administered the day before the extraction, whether forceps or elevators were used, and whether the tooth was in the field of radiation. Xerostomia improved in all 4 of the patients who received 6-mg or 9-mg of pilocarpine. It improved saliva production and relieved the symptoms of xerostomia after radiation therapy for head and neck cancer, although there were minor side effects such as fever. This information can be used to improve the oral environment of patients who have received radiation therapy for head and neck cancer, and to better understand their oral environment. (author)

  8. Grading-System-Dependent Volume Effects for Late Radiation-Induced Rectal Toxicity After Curative Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Bergh, Alphons van den; Schilstra, Cornelis; Vlasman, Renske; Meertens, Harm; Langendijk, Johannes A.

    2008-01-01

    Purpose: To assess the association between the dose distributions in the rectum and late Radiation Therapy Oncology Group and the European Organisation for Research and Treatment of Cancer (RTOG/EORTC), Late Effects of Normal Tissue SOMA, and Common Terminology Criteria for Adverse Events (CTCAE) version 3.0 graded rectal toxicity among patients with prostate cancer treated with RT. Methods and Materials: Included in the study were 124 patients who received three-dimensional conformal RT for prostate cancer to a total dose of 70 Gy in 2-Gy fractions. All patients completed questionnaires regarding rectum complaints before RT and during long-term follow-up. Late rectum Grade 2 or worse toxicity, according to RTOG/EORTC, LENT SOMA, and CTCAE v3.0 criteria, was analyzed in relation to rectal dose and volume parameters. Results: Dose-volume thresholds (V40 ≥65%, V50 ≥55%, V65 ≥45%, V70 ≥20%, and a rectum volume ≤140 cm 3 ), significantly discriminated patients with late Grade 0-1 and Grade 2 or worse rectal toxicity, particularly using the LENT SOMA and CTCAE v3.0 systems. The rectum volume receiving ≥70 Gy (V70) was most predictive for late Grade 2 or worse rectal toxicity with each of the grading systems. The associations were strongest, however, with use of the LENT SOMA system. Conclusions: Volume effects for late radiation-induced rectal toxicity are present, but their clinical significance depends on the grading system used. This should be taken into account in the interpretation of studies reporting on radiation-induced rectal toxicity

  9. Potential pre-cataractous markers induced by low-dose radiation effects in cultured human lens cells

    Science.gov (United States)

    Blakely, E.; McNamara, M.; Bjornstad, K.; Chang, P.

    The human lens is one of the most radiosensitive organs of the body. Cataract, the opacification of the lens, is a late-appearing response to radiation damage. Recent evidence indicates that exposure to relatively low doses of space radiation are associated with an increased incidence and early appearance of human cataracts (Cucinotta et al., Radiat. Res. 156:460-466, 2001). Basic research in this area is needed to integrate the early responses of various late-responding tissues into our understanding and estimation of radiation risk for space travel. In addition, these studies may contribute to the development of countermeasures for the early lenticular changes, in order to prevent the late sequelae. Radiation damage to the lens is not life threatening but, if severe, can affect vision unless surgically corrected with synthetic lens replacement. The lens, however, may be a sensitive detector of radiation effects for other cells of ectodermal origin in the body for which there are not currently clear endpoints of low-dose radiation effects. We have investigated the dose-dependent expression of several radiation-responsive endpoints using our in vitro model of differentiating human lens epithelial cells (Blakely et al., Investigative Ophthalmology &Visual Sciences, 41(12):3898-3907, 2000). We have investigated radiation effects on several gene families that include, or relate to, DNA damage, cytokines, cell-cycle regulators, cell adhesion molecules, cell cytoskeletal function and apoptotic cell death. In this paper we will summarize some of our dose-dependent data from several radiation types, and describe the model of molecular and cellular events that we believe may be associated with precataractous events in the human lens after radiation exposure. This work was supported by NASA Grant #T-965W.

  10. Neutron radiation damage studies on silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Chen, W.; Kraner, H.W.

    1990-10-01

    Effects of neutron radiation on electrical properties of Si detectors have been studied. At high neutron fluence (Φ n ≥ 10 12 n/cm 2 ), C-V characteristics of detectors with high resistivities (ρ ≥ 1 kΩ-cm) become frequency dependent. A two-trap level model describing this frequency dependent effect is proposed. Room temperature anneal of neutron damaged (at LN 2 temperature) detectors shows three anneal stages, while only two anneal stages were observed in elevated temperature anneal. 19 refs., 14 figs

  11. Scintillation and radiation damage of doped BaF2 crystals

    International Nuclear Information System (INIS)

    Gong Zufang; Xu Zizong; Chang Jin

    1992-01-01

    The emission spectra and the radiation damage of BaF 2 crystals doped Ce and Dy have been studied. The results indicate that the doped BaF 2 crystals have the intrinsic spectra of impurity besides the intrinsic spectra of BaF 2 crystals. The crystals colored and the transmissions decrease with the concentration of impurity in BaF 2 crystals after radiation by γ-ray of 60 Co. The doped Ce BaF 2 irradiated by ultraviolet has faster recover of transmissions but for doped Dy the effect is not obvious. The radiation resistance is not good as pure BaF 2 crystals

  12. Radiation-induced DNA damage and cellular lethality

    International Nuclear Information System (INIS)

    Sakai, K.; Okada, S.

    1984-01-01

    Radiation-induced DNA scissions and their repair were investigated in mammalian cells using an alkaline separation method. DNA breaks in mouse L5178Y cells and Chinese hamster V79 cells were grouped into three in terms of their repair profile; fast-reparable breaks (FRBs; T1/2 = 5 min), slow-reparable breaks (SRBs; T1/2 = 70 min) and non-reparable breaks (NRBs). The three types of DNA lesions were studied under conditions where cellular radiosensitivity was modified. The authors obtained the following results: 1. Cell cycle fluctuation: L5178Y showed maximum sensitivity at M and G/sub 1/-S boundary, and minimum sensitivity at G/sub 1/ and late S. Cycle dependency was not found for FRBs or SRBs, but NRBs showed bimodal fluctuation with peaks at M and G/sub 1/-S, and with bottoms at G/sub 1/ and late S. 2. Different sensitivity of L5178Y and V79: L5178Y cells were more sensitive to X-rays (D/sub ο/ = 0.9 Gy) than V79 (D/sub ο/ = 1.8 Gy). The amount of FRBs or SRBs was identical in the two cell lines. However, the amount of NRBs in L5178Y was greater than that in V79. 3. Split dose irradiation: The time interval between two doses resulted in a gradual decrease of NRBs. The time course of the decrease was similar to the split dose recovery in terms of cell death. The parallel relationship between NRBs and cell killing implies that NRBs could play an important role in radiation-induced cell death

  13. Grading-system-dependent volume effects for late radiation-induced rectal toxicity after curative radiotherapy for prostate cancer

    NARCIS (Netherlands)

    van der Laan, Hans Paul; van den Bergh, Alphons; Schilstra, C; Vlasman, Renske; Meertens, Harm; Langendijk, Johannes A

    2008-01-01

    PURPOSE: To assess the association between the dose distributions in the rectum and late Radiation Therapy Oncology Group and the European Organisation for Research and Treatment of Cancer (RTOG/EORTC), Late Effects of Normal Tissue SOMA, and Common Terminology Criteria for Adverse Events (CTCAE)

  14. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Gapeyev, A B; Pashovkin, T N [Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region (Russian Federation); Matyunin, S N [Section of Applied Problems at the Presidium of the Russian Academy of Sciences, Moscow (Russian Federation); Nazarov, M M [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Cherkasova, O P [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  15. Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten

    Science.gov (United States)

    Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.

    2018-01-01

    Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.

  16. Genetic damage from low-level and natural background radiation

    International Nuclear Information System (INIS)

    Oftedal, P.

    1988-01-01

    Relevant predictions that have been made of possible low level biological effects on man are reviewed, and the estimate of genetic damage is discussed. It is concluded that in spite of a number of attempts, no clear-cut case of effects in human populations of radiation at natural levels has been demonstrated. The stability of genetic material is dynamic, with damage, repair and selection running as continuous processes. Genetic materials are well protected and are conservative in the extreme, not least because evolution by genetic adaptation is an expensive process: Substitution of one allele A 1 by another A 2 means the death of the whole A 1 population

  17. Dependence of Early and Late Chromosomal Aberrations on Radiation Quality and Cell Types

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Rohde, Larry; Wu, Honglu

    2017-01-01

    Exposure to radiation induces different types of DNA damage, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo. The susceptibility of cells to radiation depends on genetic background and growth condition of cells, as well as types of radiation. Mammalian cells of different tissue types and with different genetic background are known to have different survival rate and different mutation rate after cytogenetic insults. Genomic instability, induced by various genetic, metabolic, and environmental factors including radiation, is the driving force of tumorigenesis. Accurate measurements of the relative biological effectiveness (RBE) is important for estimating radiation-related risks. To further understand genomic instability induced by charged particles and their RBE, we exposed human lymphocytes ex vivo, human fibroblast AG1522, human mammary epithelial cells (CH184B5F5/M10), and bone marrow cells isolated from CBA/CaH(CBA) and C57BL/6 (C57) mice to high energy protons and Fe ions. Normal human fibroblasts AG1522 have apparently normal DNA damage response and repair mechanisms, while mammary epithelial cells (M10) are deficient in the repair of DNA DSBs. Mouse strain CBA is radio-sensitive while C57 is radio-resistant. Metaphase chromosomes at different cell divisions after radiation exposure were collected and chromosome aberrations were analyzed as RBE for different cell lines exposed to different radiations at various time points up to one month post irradiation.

  18. The changes of fingernail microcirculation in the patients with hand skin radiation damage caused by β rays

    International Nuclear Information System (INIS)

    Wang Guoquan; Qian Jianjun; Wang Zuofa

    2000-01-01

    Objective: To observe the microcirculation changes in the patients with hand skin radiation damage caused by β rays. Methods: The XOX-1A type microcirculation microscope was used in observation of the microcirculation changes of fingernail, in 22 patients with III-IV degree hand skin radiation damage caused by β rays. Results: A series of abnormal signs were observed in all these patients and it was found that the microcirculation abnormality of the fingernail were the most clinical significant sign. Conclusion: The fingernail microcirculation changes can be used as an indicator for prognosis in the hand skin radiation damage patients

  19. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  20. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  1. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    International Nuclear Information System (INIS)

    Phillpot, Simon; Tulenko, James

    2011-01-01

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  2. Role of l-carnitine in the prevention of seminiferous tubules damage induced by gamma radiation: a light and electron microscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Topcu-Tarladacalisir, Yeter; Kanter, Mehmet [Trakya University, Department of Histology and Embryology, Faculty of Medicine, Edirne (Turkey); Uzal, Mustafa Cem [Trakya University, Department of Radiation Oncology, Faculty of Medicine, Edirne (Turkey)

    2009-08-15

    The present study, we hypothesized that l-carnitine can minimize germ-cell depletion and morphological features of late cell damage in the rat testis following gamma ({gamma})-irradiation. Wistar albino male rats were divided into three groups. Control group received physiological saline 0.2 ml intraperitoneally (i.p.), as placebo. Radiation group received scrotal {gamma}-irradiation of 10 Gy as a single dose plus physiological saline. Radiation + l-carnitine group received scrotal {gamma}-irradiation plus 200 mg/kg i.p. l-carnitine. l-carnitine starting 1 day before irradiation and 21 days (three times per week) after irradiation. Testis samples of the all groups were taken at day 21, 44 and 70 post-irradiation. All samples were processed at the light and electron microscopic levels. Morphologically, examination of {gamma}-irradiated testis revealed presence of marked disorganization and depletion of germ cells, arrest of spermatogenesis, formation of multinucleated giant cells, and vacuolization in the germinal epithelium. The type and extent of these changes varied at different post-treatment intervals. The damage was evident at the 21st day and reached maximum level by the 44th day. By day 44 post-irradiation, the changes were most advanced, and were associated with atrophied seminiferous tubules without germ cells, the increase in the number and size of vacuolizations in germinal epithelium, and the absent multinucleated giant cells due to spermatids had completely disappeared. The increase in nucleus invaginations, the dilatation of smooth endoplasmic reticulum cysternas and the increase in the number and size of lipid droplets in the Sertoli cells were determined at the electron microscopic level. In conclusion, l-carnitine supplementation during the radiotherapy would be effective in protecting against radiation-induced damages in rat testis, and thereby may improve the quality of patient's life after the therapy. (orig.)

  3. Role of l-carnitine in the prevention of seminiferous tubules damage induced by gamma radiation: a light and electron microscopic study

    International Nuclear Information System (INIS)

    Topcu-Tarladacalisir, Yeter; Kanter, Mehmet; Uzal, Mustafa Cem

    2009-01-01

    The present study, we hypothesized that l-carnitine can minimize germ-cell depletion and morphological features of late cell damage in the rat testis following gamma (γ)-irradiation. Wistar albino male rats were divided into three groups. Control group received physiological saline 0.2 ml intraperitoneally (i.p.), as placebo. Radiation group received scrotal γ-irradiation of 10 Gy as a single dose plus physiological saline. Radiation + l-carnitine group received scrotal γ-irradiation plus 200 mg/kg i.p. l-carnitine. l-carnitine starting 1 day before irradiation and 21 days (three times per week) after irradiation. Testis samples of the all groups were taken at day 21, 44 and 70 post-irradiation. All samples were processed at the light and electron microscopic levels. Morphologically, examination of γ-irradiated testis revealed presence of marked disorganization and depletion of germ cells, arrest of spermatogenesis, formation of multinucleated giant cells, and vacuolization in the germinal epithelium. The type and extent of these changes varied at different post-treatment intervals. The damage was evident at the 21st day and reached maximum level by the 44th day. By day 44 post-irradiation, the changes were most advanced, and were associated with atrophied seminiferous tubules without germ cells, the increase in the number and size of vacuolizations in germinal epithelium, and the absent multinucleated giant cells due to spermatids had completely disappeared. The increase in nucleus invaginations, the dilatation of smooth endoplasmic reticulum cysternas and the increase in the number and size of lipid droplets in the Sertoli cells were determined at the electron microscopic level. In conclusion, l-carnitine supplementation during the radiotherapy would be effective in protecting against radiation-induced damages in rat testis, and thereby may improve the quality of patient's life after the therapy. (orig.)

  4. Report of the radiation group on radiation backgrounds and damage in the ISABELLE intersection regions

    International Nuclear Information System (INIS)

    Ludlam, T.; Kistiakowsky, V.; Toohig, T.E.

    1976-01-01

    The Radiation Group was charged to examine radiation aspects of the current ISABELLE design and the projected experimental arrangements. Some samples of questions to be addressed were: (1) how does the overall shielding design impact the experimental design, (2) what backgrounds might be expected from the proposed beam scraping, shaving, etc. schemes, (3) what are the radiation damage considerations for experimental electronics near the beam, and (4) what backgrounds might be expected in an experiment from operation of another experiment in the same or the adjacent intersection region. A review is given based on the ISABELLE Proposal, The Proceedings of the 1975 ISABELLE Summer Study, and the estimate of ISABELLE shielding requirements by Stevens and Thorndike

  5. DNA Damage in Melania Snail (Semisulcospira libertine) Irradiated with Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); An, Kwang Guk [Chungnam National University, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-10-15

    Generally radiological protection has focused on human. But International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on nonhuman biota for the radiological protection of the environment. The choice of a melania snail as a model for environmental biomonitoring of radiation genotoxicity took into account that invertebrates represent one of aquatic species. The comet assay or single cell gel electrophoresis (SCGE) assay, first introduced by Ostling and Johanson, was used to detect DNA single strand breaks and to investigate the application of this technique as a tool for aquatic biomonitoring. Comet assay offers considerable advantages over some other assays used in DNA damage detection, such as chromosomal aberrations, sister chromatid Exchange and the micronucleus test, since there is no need for cells to be in a dividing state. Other advantages are its rapidity, relatively low coast, and wide applicability to virtually any nucleated cell type. In this study, we evaluated DNA damage in cells of Semisulcospira libertina after irradiation with {sup 60}Co gamma radiation by using the comet assay

  6. Radiation damage calculations for the LANSCE degrader

    International Nuclear Information System (INIS)

    Ferguson, P.D.; Sommer, W.F.; Dudziak, D.J.; Wechsler, M.S.; Barnett, M.H.; Corzine, R.K.

    1998-01-01

    The A-6 water degrader at the Los Alamos Neutron Science Center (LANSCE) linear proton accelerator has an outer shell of Inconel 718. The degrader was irradiated by 800-MeV protons during 1988--1993 to an exposure of 5.3 ampere-hours (A h). As described in Ref. 1, material from the Inconel is currently being cut into specimens for microhardness, three-point bending, ball punch, microscopy, and corrosion tests. This paper is devoted to calculations of radiation damage, particularly displacement and He production, sustained by the degrader Inconel

  7. Investigations of the effects of UV and X-ray radiation and the repair of radiation damage in the ciliate Stylonychia mytilus

    International Nuclear Information System (INIS)

    Dittmann, F.N.

    1978-01-01

    Using the example of Stylomychia mytilus, the effects of UV-radiation and ionizing X-ray radiation are compared. The effects on cell division and on the repair of radiation damage in DNA are compared. Sensitivity to UV radiation differs between the stages of the cell cycle while the effects of X-ray radiation are independent of phase. There is no difference in repair processes. (AJ) 891 AJ/AJ 892 MKO [de

  8. Chromatin damage induced by fast neutrons or UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I

    2002-07-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m{sup -2}. The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  9. Chromatin damage induced by fast neutrons or UV laser radiation

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I.

    2002-01-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m -2 . The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  10. Experimental data available for radiation damage modelling in reactor materials

    International Nuclear Information System (INIS)

    Wollenberger, H.

    Radiation damage modelling requires rate constants for production, annihilation and trapping of defects. The literature is reviewed with respect to experimental determination of such constants. Useful quantitative information exists only for Cu and Al. Special emphasis is given to the temperature dependence of the rate constants

  11. Analytical studies into radiation-induced starch damage in black and white peppers

    International Nuclear Information System (INIS)

    Farkas, J.; Sharif, M.M.; Barabassy, S.

    1990-01-01

    In order to develop detection methods of radiation treatment, ground black pepper samples equilibrated to water activity levels of 0.25, 0.50 and 0.75 a w , respectively, were irradiated with gamma radiation doses of 0, 4, 8, 16 or 32 kGy, and their damaged starch content, reduced sugar content and alcohol induced turbidity of their aqueous extracts were investigated. The colorimetric method and the alcohol-induced turbidity showed statistically significant increase of starch damage at 4 kGy or higher dose levels. However, all investigated analytical indices of starch radio-depolymerization were changed less dramatically by irradiation than the apparent viscosity of the gelatinized suspensions of spices reported previously. (author) 15 refs.; 4 tabs

  12. Dislocations and radiation damage in α-uranium

    International Nuclear Information System (INIS)

    Leteurtre, J.

    1969-01-01

    Dislocations in α-uranium were studied by electron microscopy. Electropolishing of thin foils was performed at low temperature (-110 deg. C) to prevent oxidation. Burgers vectors of twins dislocations are defined. Interactions between slip and twinning are studied from both experimental and theoretical point of view. Samples irradiated at several burn-up were examined. In order to explain our micrographic results, and also all information gathered in literature about radiation damage in α-uranium, a coherent model is propound for the fission particles effects. We analyse the influences of parameters: temperature, dislocation density, impurity content. The number of point defects created by one initial fission is determined for pure and annealed metal. The importance of the self-anneal which occurs immediately in each displacement spike, and the anneal due to a new fission on the damage resulting from a previous fission, are estimated. The focussing distance in [100] direction is found to be about 1000 Angstrom, at 4 deg. K. (author) [fr

  13. Optical Coherence Tomography for Quantitative Assessment of Microstructural and Microvascular Alterations in Late Oral Radiation Toxicity

    Science.gov (United States)

    Davoudi, Bahar

    More than half of head-and-neck cancer patients undergo radiotherapy at some point during their treatment. Even though the use of conformed therapeutic beams has increased radiation dose localization to the tumor, resulting in more normal tissue sparing, still, in many head-and-neck cancer patients, the healthy tissue of the oral cavity still receives a sizeable amount of radiation. This causes acute and / or late complications in these patients. The latter occur as late as several months or even years after the completion of treatment and are typically associated with severe symptoms. Currently, the clinical method for diagnosing these complications is visual examination of the oral tissue surface. However, it has been well established that such complications originate in subsurface oral tissue layers including its microvasculature. Therefore, to better understand the mechanism of these complications and to be able to diagnose them earlier, there exists a need for subsurface monitoring of the irradiated oral tissue. Histology has been used as such a tool for research purposes; however, its use in clinical diagnosis is limited due to its invasive and hazardous nature. Therefore, in this thesis, I propose to use optical coherence tomography (OCT) as a subsurface, micron-scale resolution optical imaging tool that can provide images of oral tissue subsurface layers down to a depth of 1-2 mm (structural OCT), as well as images demonstrating vessel morphology (speckle variance OCT) and blood flow information (Doppler OCT). This thesis explains the development of an OCT setup and an oral probe to acquire images in-vivo. Moreover, it introduces a software-based quantification platform for extracting specific biologically-meaningful metrics from the structural and vascular OCT images. It then describes the application of the developed imaging and quantification platform in a feasibility clinical study that was performed on 15 late oral radiation toxicity patients and 5 age

  14. Three cases of dysphagia as a late complication after radiation therapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Mesuda, Yasushi; Dohsaka, Yoshihiro; Honma, Akihiro; Nishizawa, Noriko; Oridate, Nobuhiko; Furuta, Yasushi; Fukuda, Satoshi

    2006-01-01

    Our experience of 3 cases with dysphagia due to cranial nerve palsy as a late complication after radiation therapy for nasopharyngeal carcinoma (NPC) is herein reported. The cases consisted of two males and one female, ranging in age from 20 to 41 years old at the time of radiation therapy. Two cases received conventional radiation therapy alone while one case was given a combination of chemotherapy and radiotherapy. All patients began to suffer from dysphagia from eight to fifteen weeks after the therapy. All cases had bilateral hypoglossal nerve palsy with several sensory and motor disturbances of the pharynx and larynx. The method of intermittent oral-esophageal tube feeding was performed in one case, however, the other one case had to undergo a total laryngectomy in order to prevent aspiration pneumonia. Recently, the combination of chemotherapy and radiotherapy is frequently performed in order to improve prognosis of NPC. As a result, the occurrence of dysphagia associated with this therapeutic regimen and caused by a late disturbance of the cranial nerve may therefore increase in future. (author)

  15. Cranial nerve damage in patients after alpha (heavy)-particle radiation to the pituitary

    International Nuclear Information System (INIS)

    Price, J.; Wei, W.C.; Chong, C.Y.

    1979-01-01

    The records of 161 patients were reviewed to determine if radiation damage had occurred following cranial irradiation. All of these patients had received alpha-particle radiation to their pituitary glands during the period when this form of therapy was given for diabetic retinopathy. Extraocular muscle palsy developed in 11 of these patients, iridoplegia in six, and fifth nerve damage in six. All of the palsies developed within a short period following their irradiation, and a definite dose relationship was present. The dose rate was approximately 100 rads/min for all cases. Fractionation varied but it is known for all cases

  16. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay.

    Science.gov (United States)

    Praveen Kumar, M K; Shyama, S K; Sonaye, B S; Naik, U Roshini; Kadam, S B; Bipin, P D; D'costa, A; Chaubey, R C

    2014-05-01

    Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of 'Comet assay' for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in both bivalve species. This showed a dose-dependent increase of genetic damage induced in bivalves by EMS as well as gamma radiation. Further, the highest DNA damage was observed at 24h. The damage gradually decreased with time, i.e. was smaller at 48 and 72 h than at 24h post irradiation in both species of bivalves. This may indicate repair of the damaged DNA and/or loss of heavily damaged cells as the post irradiation time advanced. The present study

  17. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  18. No late effect of ionizing radiation on the aging-related oxidative changes in the mouse brain

    International Nuclear Information System (INIS)

    Jang, Beom Su; Kim, Seol Wha; Jung, U Hee; Jo, Sung Kee

    2010-01-01

    Radiation-induced late injury to normal tissue is a primary area of radiation biology research. The present study was undertaken to investigate whether the late effect of the ionizing radiation appears as an age-related oxidative status in the brain. Three groups of 4-month old C57BL/6 mice that were exposed to 137 Cs γ-rays at a single dose (5 Gy) or fractionated doses (1 Gy x 5 times, or 0,2 Gy x 25 times) at 2 months old were investigated for the oxidative status of their brains with both young (2-month) and old (24-month) mice. A significant (p< o.05) decrease in superoxide dismutase (SOD) activity was observed in old mice brains compared with that of the young mice. Malondialdehyde (MDA) content was significantly (p<0.05) increased in the old mice brain. However, any significant difference in SOD activity and MDA contents of the irradiated brain was not observed compared to age-matched control group mice. SOD activity and MDA content were observed within good parameters of brain aging and there no late effects on the age-related oxidative level in the γ-ray irradiated mice brains

  19. No late effect of ionizing radiation on the aging-related oxidative changes in the mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beom Su; Kim, Seol Wha; Jung, U Hee; Jo, Sung Kee [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-09-15

    Radiation-induced late injury to normal tissue is a primary area of radiation biology research. The present study was undertaken to investigate whether the late effect of the ionizing radiation appears as an age-related oxidative status in the brain. Three groups of 4-month old C57BL/6 mice that were exposed to {sup 137}Cs {gamma}-rays at a single dose (5 Gy) or fractionated doses (1 Gy x 5 times, or 0,2 Gy x 25 times) at 2 months old were investigated for the oxidative status of their brains with both young (2-month) and old (24-month) mice. A significant (plate effects on the age-related oxidative level in the {gamma}-ray irradiated mice brains.

  20. Quantitation of the late effects of x radiation on the large intestine

    International Nuclear Information System (INIS)

    Black, W.C.; Gomez, L.S.; Yuhas, J.M.; Kligerman, M.M.

    1980-01-01

    A model for quantitating late effects of x radiation on the large intestine utilizing the rectum of the Sprague-Dawley rat is reported. This model was constructed prefatory to establishing relative biological effectiveness for negative pions as a component of preclinical trials at the Clinton P. Anderson Meson Physics Facility. The endpoint involves microscopic evaluation of the severity of the experimental lesion, compared with surgically resected bowel lesions we have studied following clinical radiation exposure of the bowel. Individual components of the overall lesion include mucosal ulceration, a typical epithelial regeneration, colitis cystica profunda, fibrosis, and vascular sclerosis. Dose response curves were established for animals receiving 1, 2, 5 and 10 fractions with groups sacrificed at both four and 12 months after completion of radiation exposures

  1. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  2. The cellular basis of renal injury by radiation

    International Nuclear Information System (INIS)

    Williams, M.V.

    1986-01-01

    This review with substantial bibliography summarises renal assay techniques available and discusses the histological and functional studies leading to differing opinions between the belief that vascular injury provides a general explanation of the late effects of radiotherapy and the opposing view that parenchymal cell damage is more important. It is proposed that the link between glomerular and tubular function obscures the primary site of injury and that radiation injury will result in a reduction of functioning nephron mass by primary damage to the tubules or glomeruli. Compensatory renal vasodilation would close a positive feedback loop. Radiation could also cause direct vascular injury; decreased renal perfusion and hypertension would result. Again sensitisation to hypertensive vascular damage would close a feedback loop. (UK)

  3. DNA damage response in a radiation resistant bacterium Deinococcus radiodurans: a paradigm shift

    International Nuclear Information System (INIS)

    Misra, H.S.

    2015-01-01

    Deinococcusradiodurans is best known for its extraordinary resistance to gamma radiation with its D 10 12kGy, and several other DNA damaging agents including desiccation to less than 5% humidity and chemical xenotoxicants. An efficient DNA double strand break (DSB) repair and its ability to protect biomolecules from oxidative damage are a few mechanisms attributed to these phenotypes in this bacterium. Although it regulates its proteome and transcriptome in response to DNA damage for its growth and survival, it lacks LexA mediated classical SOS response mechanism. Since LexA mediated damages response mechanism is highly and perhaps only, characterized DNA damage response processes in prokaryotes, this bacterium keeps us guessing how it responds to extreme doses of DNA damage. Interestingly, this bacterium encodes a large number of eukaryotic type serine threonine/tyrosine protein kinases (eST/YPK), phosphatases and response regulators and roles of eST/YPKs in cellular response to DNA damage and cell cycle regulations are well established in eukaryotes. Here, we characterized an antioxidant and DNA damage inducible eST/YPK (RqkA) and established its role in extraordinary radioresistance and DSB repair in this bacterium. We identified native phosphoprotein substrates for this kinase and demonstrated the involvement of some of these proteins phosphorylation in the regulation of DSB repair and growth under radiation stress. Findings suggesting the possible existence of eST/YPK mediated DNA damage response mechanism as an alternate to classical SOS response in this prokaryote would be discussed. (author)

  4. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  5. Persistent and late occurring lesions in irradiated feet of rats: their clinical relevance

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1982-01-01

    Radiation-induced deformity, as characterized by tissue loss, has been investigated in rat feet. The acute epithelial response and the loss of deeper tissues occur concomitantly after irradiation. The greatest loss of tissue (severe deformity) was produced in feet where the healing of the epithelial reaction was greatly delayed. While deformity will clearly continue to ''persist'' after the acute reaction has healed it is misleading to refer to this lesion as ''late'' damage. A late-occurring lesion, not previously described in the literature, can be produced in the rat foot by high doses of radiation delivered in such a way that moist desquamation is avoided, i.e. by extending the total treatment time. Parallels are drawn between reactions in rodents and those in the skin of pig and man. (author)

  6. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  7. Protection by caffeine against oxic radiation damage and chemical carcinogens : mechanistic considerations

    International Nuclear Information System (INIS)

    Kesavan, P.C.

    1992-01-01

    There is little doubt that caffeine administered after exposure to UV light enhances the damage to cells and organisms by inhibiting photoreactivation, excision and/or recombinational repair. However, when already present in the system, it affords remarkable protection not only against O 2 -dependent component of radiation damage, but also against chemical carcinogens that require metabolic activation. Possible mechanistic aspects are discussed briefly. (author). 81 refs

  8. Therapy and prophylaxis of acute and late radiation-induced sequelae of the esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.B.; Geinitz, H.; Feldmann, H.J. [Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie, Klinikum rechts der Isar, Muenchen (Germany)

    1998-11-01

    Background: Radiation-induced esophagitis is a frequent acute side effect in curative and palliative radiotherapy of thoracal and cervical tumors. Late reactions are rare but might be severe. Methods: A resarch for reports on prophylactic and supportive therapies of radiation-induced esophagitis was performed (Medline, Cancerlit, and others). Results: Nutrition must be ensured and symptomatic relief of sequelae is important, especially in the case of dysphagia. The latter can be improved by topic or systemic analgetics. If esophageal spasm occurs, calcium antagonists might help. In case of gastro-esophageal reflux proton pump inhibitors should be used. There is no effective prophylactic measure for radiation esophagitis. Late side effects with clinical relevance are rare in conventional radiotherapy. Chronic ulcera, fistula or stenosis may develop. Before any treatment, a tumor infiltration of the esophagus should be excluded by biopsy. This can lead more often to late complications than radiation therapy itself. Nutrition should be ensured by endoscopic dilation, stent-implantation, or endoscopic percutaneous gastrostomy. Local injection of steroids might be used to avoid an early restenosis. Conclusions: An intensive symptomatic therapy of acute esophagitis is reasonable. Effective prophylaxis do not exist. Late radiation induced sequelae is rare. Therefore, a tumor recurrenc e should be excluded in cases of dysphagia. Securing nutrition by PEG, stent, or port is well in the fore. (orig.) [Deutsch] Hintergrund: Die radiogene Oesophagitis ist eine haeufige akute Nebenwirkung bei kurativen wie palliativen Bestrahlungen thorakaler und zervikaler Tumoren. Spaete Gewebereaktionen sind selten, koennen aber schwerwiegend sein. Methode: Es wurde eine Literaturrecherche nach prophylaktischen und supportiven Therapien der radiogen verursachten Oesophagitis durchgefuehrt (Medline, Cancerlit und andere). Ergebnisse: Therapeutisch stehen die Sicherung der Ernaehrung und die

  9. Effect of laminaria japonica polysaccharides (LJP) on radiation damage of testis tissue in male rats

    International Nuclear Information System (INIS)

    Ren Shicheng; Luo Qiong; Yang Mingliang; Yang Jiajuan; Yan Jun; Li Zhuoneng; Wang Lihong; Cui Xiaoyan

    2007-01-01

    Objective: To observe the effect of laminaria japonica polysaccharides (LJP) on local radiation damage of testis tissue in male rats. Methods: The Wistar rats were randomly divided into 4 groups: the normal group, the model group, positive control group and LJP treatment group (50 mg·kg -1 ·d -1 ). LJP was applied to the treatment group for 10 d before local irradiation with γ-ray (6.0 Gy). The morphological change of the testis, organ index of testis and epididymides, sperm count, motility rate, superoxide dismutase (SOD) activity and malonic aldehyde (MDA) contents were measured. Results: LJP could make the damaged testis recover to near normal, elevate the organ index of testis and epididymides, promote the sperm count and motility rate, increase the activity of SOD and decrease the contents of MDA in testis tissue. Conclusions: LJP could inhibit testis tissue damage induced by local radiation, hence enhance the significant radioprotective effect to testis tissue. LJP has the conspicuous protective effect on radiation damage of testis tissue. (authors)

  10. Radiation-damage studies, irradiations and high-dose dosimetry for LHC detectors

    CERN Document Server

    Coninckx, F; León-Florián, E; Leutz, H; Schönbacher, Helmut; Sonderegger, P; Tavlet, Marc; Sopko, B; Henschel, H; Schmidt, H U; Boden, A; Bräunig, D; Wulf, F; Cramariuc, R; Ilie, D; Fattibene, P; Onori, S; Miljanic, S; Paic, G; Razen, B; Razem, D; Rendic, D; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    The proposal is divided into a main project and special projects. The main project consists of a service similar to the one given in the past to accelerator construction projects at CERN (ISR,SPS,LEP) on high-dose dosimetry, material irradiations, irradiations tests, standardization of test procedures and data compilations. Large experience in this field and numerous radiation damage test data of insulating and structural materials are available. The special projects cover three topics which are of specific interest for LHC detector physicists and engineers at CERN and in other high energy physics institutes, namely: Radiation effects in scintillators; Selection of radiation hard optical fibres for data transmission; and Selection and testing of radiation hard electronic components.

  11. Late effects of ionizing radiation on the eye and ocular adnexa

    International Nuclear Information System (INIS)

    Romestaing, P.; Hullo, A.

    1997-01-01

    Late ocular effects after irradiation of the eyes and ocular adnexa are reviewed. Ocular and orbital injuries occur more often after irradiation of central nervous system neoplasms or treatment of paranasal sinus malignancies. The complete loss of vision is the major complication which is multi-factorial. This paper describes the radiation effects and grading of ocular adnexa, lens, retina, optic nerves and orbit. The tolerance doses and treatment are described. (authors)

  12. Age associated alteration in DNA damage and repair capacity in Turbatrix aceti exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Targovnik, H.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    Excision repair capacity was measured in young and old Turbatrix aceti (phylum Nematoda) following exposure to ionizing radiation. Both repair synthesis and removal of 5,6-dihydroxydihydrothymine type (glycol) base damage were quantitated. At least two-fold higher glycol levels were produced in the DNA of young than of old nematodes for the same radiation dose. Young worms also excised glycol damage more rapidly and completely than old worms. Both peak repair synthesis activity and completion of repair synthesis occurred at earlier times during post-irradiation incubation in young nematodes. The data indicate there is a significant age-associated difference in both the incidence and removal of ionizing radiation damage in T. aceti which is used as a model of the ageing process. (author)

  13. Heavy ion linear accelerator for radiation damage studies of materials

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  14. Heavy ion linear accelerator for radiation damage studies of materials.

    Science.gov (United States)

    Kutsaev, Sergey V; Mustapha, Brahim; Ostroumov, Peter N; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238 U 50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper prese