WorldWideScience

Sample records for late glacial period

  1. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes

    Science.gov (United States)

    Bromley, Gordon R. M.; Schaefer, Joerg M.; Winckler, Gisela; Hall, Brenda L.; Todd, Claire E.; Rademaker, Kurt M.

    2009-11-01

    Whether or not tropical climate fluctuated in synchrony with global events during the Late Pleistocene is a key problem in climate research. However, the timing of past climate changes in the tropics remains controversial, with a number of recent studies reporting that tropical ice age climate is out of phase with global events. Here, we present geomorphic evidence and an in-situ cosmogenic 3He surface-exposure chronology from Nevado Coropuna, southern Peru, showing that glaciers underwent at least two significant advances during the Late Pleistocene prior to Holocene warming. Comparison of our glacial-geomorphic map at Nevado Coropuna to mid-latitude reconstructions yields a striking similarity between Last Glacial Maximum (LGM) and Late-Glacial sequences in tropical and temperate regions. Exposure ages constraining the maximum and end of the older advance at Nevado Coropuna range between 24.5 and 25.3 ka, and between 16.7 and 21.1 ka, respectively, depending on the cosmogenic production rate scaling model used. Similarly, the mean age of the younger event ranges from 10 to 13 ka. This implies that (1) the LGM and the onset of deglaciation in southern Peru occurred no earlier than at higher latitudes and (2) that a significant Late-Glacial event occurred, most likely prior to the Holocene, coherent with the glacial record from mid and high latitudes. The time elapsed between the end of the LGM and the Late-Glacial event at Nevado Coropuna is independent of scaling model and matches the period between the LGM termination and Late-Glacial reversal in classic mid-latitude records, suggesting that these events in both tropical and temperate regions were in phase.

  2. Late-glacial atmospheric CO{sub 2} reconstructions from western Norway using fossil leaves

    Energy Technology Data Exchange (ETDEWEB)

    Birks, H H; Birks, H J.B. [Sheffield Univ. (United Kingdom). Dept. of Animal and Plant Sciences; Beerling, D J; Woodward, F I [Bergen Univ. (Norway). Botanical Inst.

    1996-12-31

    Analyses of air bubbles trapped in Antarctic ice-cores have shown that atmospheric CO{sub 2} concentrations are 180-200 ppmv during glacial periods, and ca. 280 ppmv during interglacials, including the Holocene. The change from glacial to Holocene concentrations occurred steadily over ca. 5000 years, slightly lagging the temperature increase inferred from {delta}{sup 18}. Antarctic ice cores lack fine time resolution over the late-glacial/early Holocene period 12-9000 {sup 14}C yr BP, that includes the Younger Dryas cold oscillation. The stomatal density on leaves is inversely proportional to the concentration of atmospheric CO{sub 2}. A late glacial sequence at Kraakenes, western Norway, contains well-preserved Salix herbacea (dwarf willow) leaves, dated from 11700-9600 {sup 14}C yr BP. If the stomatal density is measured on the fossil leaves, a calibration derived from the relationship of stomatal density of modern material of the same species to known CO{sub 2} concentrations can be used to reconstruct CO{sub 2} concentrations of the past. Because of the decadal time-resolution available at Kraakenes through the late-glacial and early Holocene, a detailed record of CO{sub 2} concentrations can be reconstructed over this period, that will complement the ice core record. (author)

  3. Late-glacial atmospheric CO{sub 2} reconstructions from western Norway using fossil leaves

    Energy Technology Data Exchange (ETDEWEB)

    Birks, H.H.; Birks, H.J.B. [Sheffield Univ. (United Kingdom). Dept. of Animal and Plant Sciences; Beerling, D.J.; Woodward, F.I. [Bergen Univ. (Norway). Botanical Inst.

    1995-12-31

    Analyses of air bubbles trapped in Antarctic ice-cores have shown that atmospheric CO{sub 2} concentrations are 180-200 ppmv during glacial periods, and ca. 280 ppmv during interglacials, including the Holocene. The change from glacial to Holocene concentrations occurred steadily over ca. 5000 years, slightly lagging the temperature increase inferred from {delta}{sup 18}. Antarctic ice cores lack fine time resolution over the late-glacial/early Holocene period 12-9000 {sup 14}C yr BP, that includes the Younger Dryas cold oscillation. The stomatal density on leaves is inversely proportional to the concentration of atmospheric CO{sub 2}. A late glacial sequence at Kraakenes, western Norway, contains well-preserved Salix herbacea (dwarf willow) leaves, dated from 11700-9600 {sup 14}C yr BP. If the stomatal density is measured on the fossil leaves, a calibration derived from the relationship of stomatal density of modern material of the same species to known CO{sub 2} concentrations can be used to reconstruct CO{sub 2} concentrations of the past. Because of the decadal time-resolution available at Kraakenes through the late-glacial and early Holocene, a detailed record of CO{sub 2} concentrations can be reconstructed over this period, that will complement the ice core record. (author)

  4. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland

    Science.gov (United States)

    Reinig, Frederick; Nievergelt, Daniel; Esper, Jan; Friedrich, Michael; Helle, Gerhard; Hellmann, Lena; Kromer, Bernd; Morganti, Sandro; Pauly, Maren; Sookdeo, Adam; Tegel, Willy; Treydte, Kerstin; Verstege, Anne; Wacker, Lukas; Büntgen, Ulf

    2018-04-01

    The rate and magnitude of temperature variability at the transition from the Last Glacial Maximum into the early Holocene represents a natural analog to current and predicted climate change. A limited number of high-resolution proxy archives, however, challenges our understanding of environmental conditions during this period. Here, we present combined dendrochronological and radiocarbon evidence from 253 newly discovered subfossil pine stumps from Zurich, Switzerland. The individual trees reveal ages of 41-506 years and were growing between the Allerød and Preboreal (∼13‧900-11‧300 cal BP). Together with previously collected pines from this region, this world's best preserved Late Glacial forest substantially improves the earliest part of the absolutely dated European tree-ring width chronology between 11‧300 and 11‧900 cal BP. Radiocarbon measurements from 65 Zurich pines between ∼12‧320 and 13‧950 cal BP provide a perspective to prolong the continuous European tree-ring record by another ∼2000 years into the Late Glacial era. These data will also be relevant for pinpointing the Laacher See volcanic eruption (∼12‧900 cal BP) and two major Alpine earthquakes (∼13‧770 and ∼11‧600 cal BP). In summary, this study emphasizes the importance of dating precision and multi-proxy comparison to disentangle environmental signals from methodological noise, particularly during periods of high climate variability but low data availability, such as the Younger Dryas cold spell (∼11‧700 and 12‧900 cal BP).

  5. Limiting factors for vegetation development during the early late glacial in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Morten Fischer; Odgaard, Bent Vad; Jessen, Cathrine

    Slotseng, a small basin in southern Jutland, is the first Danish site with a bio- and chronostratigraphy that unambiguously reflects the environment of the earliest late glacial, the Bølling period. Results of pollen and macrofossil analyses show that the vegetation of the Bølling and Older Dryas...... periods at Slotseng was dominated by Betula nana and Dryas octopetala and associated with many herbs of open habitats. Late-glacial pollen records are frequently interpreted only in the context of climate change. However, the forcing mechanisms of vegetational change may shift over time between e...... to climate change suggests that other factors limited vegetational development. These factors included soil instability, aridity and low soil nitrogen.. This study highlights the multitude of climatic, physical, chemical and biological interactions important for the formation of pollen records of late...

  6. Late Ordovician (Ashgillian) glacial deposits in southern Jordan

    Science.gov (United States)

    Turner, Brian R.; Makhlouf, Issa M.; Armstrong, Howard A.

    2005-11-01

    The Late Ordovician (Ashgillian) glacial deposits in southern Jordan, comprise a lower and upper glacially incised palaeovalley system, occupying reactivated basement and Pan-African fault-controlled depressions. The lower palaeovalley, incised into shoreface sandstones of the pre-glacial Tubeiliyat Formation, is filled with thin glaciofluvial sandstones at the base, overlain by up to 50 m of shoreface sandstone. A prominent glaciated surface near the top of this palaeovalley-fill contains intersecting glacial striations aligned E-W and NW-SE. The upper palaeovalley-fill comprises glaciofluvial and marine sandstones, incised into the lower palaeovalley or, where this is absent, into the Tubeiliyat Formation. Southern Jordan lay close to the margin of a Late Ordovician terrestrial ice sheet in Northwest Saudi Arabia, characterised by two major ice advances. These are correlated with the lower and upper palaeovalleys in southern Jordan, interrupted by two subsidiary glacial advances during late stage filling of the lower palaeovalley when ice advanced from the west and northwest. Thus, four ice advances are now recorded from the Late Ordovician glacial record of southern Jordan. Disturbed and deformed green sandstones beneath the upper palaeovalley-fill in the Jebel Ammar area, are confined to the margins of the Hutayya graben, and have been interpreted as structureless glacial loessite or glacial rock flour. Petrographic and textural analyses of the deformed sandstones, their mapped lateral transition into undeformed Tubeiliyat marine sandstones away from the fault zone, and the presence of similar sedimentary structures to those in the pre-glacial marine Tubeiliyat Formation suggest that they are a locally deformed facies equivalent of the Tubeiliyat, not part of the younger glacial deposits. Deformation is attributed to glacially induced crustal stresses and seismic reactivation of pre-existing faults, previously weakened by epeirogenesis, triggering sediment

  7. Abiotic landscape and vegetation patterns in the Netherlands during the Weichselian Late Glacial

    NARCIS (Netherlands)

    Hoek, W.Z.

    2000-01-01

    The Late Glacial landscape of the Netherlands was a landscape with changing geomorphology and vegetation. Glacial, eolian and fluvial processes in the time before the Late Glacial initially had formed the main landscape types that still existed during the Late Glacial. In these landscape types,

  8. Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period

    Science.gov (United States)

    Brezinski, D.K.; Cecil, C.B.; Skema, V.W.; Stamm, R.

    2008-01-01

    A Late Devonian polymictic diamictite extends for more than 400??km from northeastern Pennsylvania across western Maryland and into east-central West Virginia. The matrix-supported, unbedded, locally sheared diamictite contains subangular to rounded clasts up to 2??m in diameter. The mostly rounded clasts are both locally derived and exotic; some exhibit striations, faceting, and polish. The diamictite commonly is overlain by laminated siltstone/mudstone facies associations (laminites). The laminites contain isolated clasts ranging in size from sand and pebbles to boulders, some of which are striated. The diamictite/laminite sequence is capped by massive, coarse-grained, pebbly sandstone that is trough cross-bedded. A stratigraphic change from red, calcic paleo-Vertisols in strata below the diamictite to non-calcic paleo-Spodosols and coal beds at and above the diamictite interval suggests that the climate became much wetter during deposition of the diamictite. The diamictite deposit is contemporaneous with regressive facies that reflect fluvial incision during the Late Devonian of the Appalachian basin. These deposits record a Late Devonian episode of climatic cooling so extreme that it produced glaciation in the Appalachian basin. Evidence for this episode of climatic cooling is preserved as the interpreted glacial deposits of diamictite, overlain by glaciolacustrine varves containing dropstones, and capped by sandstone interpreted as braided stream outwash. The Appalachian glacigenic deposits are contemporaneous with glacial deposits in South America, and suggest that Late Devonian climatic cooling was global. This period of dramatic global cooling may represent the end of the mid-Paleozoic warm interval that began in the Middle Silurian. ?? 2008 Elsevier B.V. All rights reserved.

  9. LATE GLACIAL AND HOLOCENE BIOCLIMATIC RECONSTRUCTION IN SOUTHERN ITALY: THE TRIFOGLIETTI LAKE

    Directory of Open Access Journals (Sweden)

    E. Brugiapaglia

    2013-04-01

    Full Text Available The pollen record from Trifoglietti lake (Calabria region provides new information about the paleoenvironmental and palaeoclimatic changes occurred during the LateGlacial and Holocene period. The LateGlacial part of the record, for which only preliminary data is available, is a new and original sequence from southern Italy. The Holocene sequence, with 11 AMS radiocarbon dates shows a stable Fagus forest for the entire period. Apart from sporadic pastoralism activities and the selective exploitation of Abies, only a weak human impact is recognized in the pollen records. Lake level oscillations have been reconstructed and annual precipitations quantified using the Modern Analogue Technique. The reconstruction was effectuated both at millennial and centennial scale: the first shows an increasing of moisture from 11000 to 9400 cal BP and a maximum of humidity from 9400 to 6200 cal BP. Moreover, several climatic oscillations punctuated the Holocene and therefore superimposed the millennial trend.

  10. Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes

    Science.gov (United States)

    Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne

    2017-09-01

    The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.

  11. Late-Glacial radiocarbon- and palynostratigraphy in the Swiss Plateau

    International Nuclear Information System (INIS)

    Ammann, B.; Lotter, A.F.

    1989-01-01

    A detailed Late-Glacial radiocarbon stratigraphy for the Swiss Plateau has been established on the basis of over 90 accelerator 14 C dates on terrestrial plant macrofossils. A comparison of the radiocarbon ages derived from terrestrial, telmatic and limnic material at different sites on the Swiss Plateau yields a proposal for modifying the zonation system of Welten for the Late-Glacial. By retaining the limits of chronozones and by refining the palynostratigraphic criteria for the limits of biozones, a separation between chrono- and biozonation at the beginning of the Boelling and the Younger Dryas becomes obvious. 54 refs

  12. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland

    Czech Academy of Sciences Publication Activity Database

    Reinig, F.; Nievergelt, D.; Esper, J.; Friedrich, M.; Helle, G.; Hellmann, L.; Kromer, B.; Morganti, S.; Pauly, M.; Sookdeo, A.; Tegel, W.; Treydte, K.; Verstege, A.; Wacker, L.; Büntgen, Ulf

    2018-01-01

    Roč. 186, APR (2018), s. 215-224 ISSN 0277-3791 Keywords : new-zealand kauri * laacher see volcano * ice-core records * radiocarbon calibration * central-europe * cal bp * southern-hemisphere * last deglaciation * hohenheim oak * climate * Central Europe * Dendrochronology * Late Glacial * Paleoclimatology * Radiocarbon * Subfossil wood * Switzerland * Tree rings * Younger Dryas Impact factor: 4.797, year: 2016

  13. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary

    International Nuclear Information System (INIS)

    Becker, Bernd; Kromer, Bernd; Trimborn, Peter

    1991-01-01

    Late Glacial and Holocene tree-ring chronologies, like deep-sea sediments or polar ice cores, contain information about past environments. Changes in tree-ring growth rates can be related to past climate anomalies and changes in the isotope composition of tree-ring cellulose reflect changes in the composition of the atmosphere and the hydrosphere. We have established a 9,928-year absolutely dated dendrochronological record of Holocene oak (Quercus robur, Quercus petraea)-and a 1,604-year floating Late Glacial and Early Holocene chronology of pine (Pinus sylvestris) from subfossil tree remnants deposited in alluvial terraces of south central European rivers. The pine sequence provides records of dendro-dated 14 C, 13 C and 2 H patterns for the late Younger Dryas and the entire Preboreal (10,100-9,000 yr BP). Through the use of dendrochronology, radiocarbon age calibration and stable isotope analysis, we suggest that the Late Glacial/Holocene transition may be identified and dated by 13 C and 2 H tree-ring chronologies. (author)

  14. Quantitative functional analysis of Late Glacial projectile points from northern Europe

    DEFF Research Database (Denmark)

    Dev, Satya; Riede, Felix

    2012-01-01

    This paper discusses the function of Late Glacial arch-backed and tanged projectile points from northern Europe in general and southern Scandinavia in particular. Ballistic requirements place clear and fairly well understood constraints on the design of projectile points. We outline the argument...... surely fully serviceable, diverged considerably from the functional optimum predicated by ballistic theory. These observations relate directly to southern Scandinavian Late Glacial culture-history which is marked by a sequence of co-occurrence of arch-backed and large tanged points in the earlier part...

  15. Mitochondrial DNA signals of late glacial recolonization of Europe from near eastern refugia.

    Science.gov (United States)

    Pala, Maria; Olivieri, Anna; Achilli, Alessandro; Accetturo, Matteo; Metspalu, Ene; Reidla, Maere; Tamm, Erika; Karmin, Monika; Reisberg, Tuuli; Hooshiar Kashani, Baharak; Perego, Ugo A; Carossa, Valeria; Gandini, Francesca; Pereira, Joana B; Soares, Pedro; Angerhofer, Norman; Rychkov, Sergei; Al-Zahery, Nadia; Carelli, Valerio; Sanati, Mohammad Hossein; Houshmand, Massoud; Hatina, Jiři; Macaulay, Vincent; Pereira, Luísa; Woodward, Scott R; Davies, William; Gamble, Clive; Baird, Douglas; Semino, Ornella; Villems, Richard; Torroni, Antonio; Richards, Martin B

    2012-05-04

    Human populations, along with those of many other species, are thought to have contracted into a number of refuge areas at the height of the last Ice Age. European populations are believed to be, to a large extent, the descendants of the inhabitants of these refugia, and some extant mtDNA lineages can be traced to refugia in Franco-Cantabria (haplogroups H1, H3, V, and U5b1), the Italian Peninsula (U5b3), and the East European Plain (U4 and U5a). Parts of the Near East, such as the Levant, were also continuously inhabited throughout the Last Glacial Maximum, but unlike western and eastern Europe, no archaeological or genetic evidence for Late Glacial expansions into Europe from the Near East has hitherto been discovered. Here we report, on the basis of an enlarged whole-genome mitochondrial database, that a substantial, perhaps predominant, signal from mitochondrial haplogroups J and T, previously thought to have spread primarily from the Near East into Europe with the Neolithic population, may in fact reflect dispersals during the Late Glacial period, ∼19-12 thousand years (ka) ago. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    Science.gov (United States)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but

  17. Takaka Fossil Cave : a stratified Late Glacial to Late Holocene deposit from Takaka Hill, New Zealand

    International Nuclear Information System (INIS)

    Worthy, T.H.; Roscoe, D.

    2003-01-01

    A rich terrestrial vertebrate fauna from the pitfall trap deposit of Takaka Fossil Cave on Takaka Hill, South Island, New Zealand, is described. Radiocarbon ages on moa bones bracket the onset of sedimentation in the site to between 12361 and 11354 14 C yrs BP. Euryapteryx geranoides was in the Late Glacial moa fauna that predates the onset of sedi-mentation in the site, but was absent in younger faunas. The moa Anomalopteryx didiformis was present in the Late Glacial fauna as well throughout the Holocene. A total of 1633 bones from 25 species of birds and a further 895 bones of 154 individuals of vertebrates other than birds (two species of frog, one tuatara, three lizards, two bats, and a rat) were identified in the total recovered fauna. A well-preserved partial skeleton of Haast's eagle (Harpagornis moorei) of Late Glacial age had severe arthritis. Unusually small specimens of Euryapteryx were morphologically diagnosed as E. geranoides, and confirmed as such by mitochondrial DNA analysis. The molluscan fauna contained two aquatic, troglobitic hydrobiids and 29 taxa of land snails. While there is little change in species diversity between lower and upper layers, there are marked changes in relative abundance of some taxa that suggest the environment was drier in the Early and Middle Holocene than it was in the Late Holocene. (author). 26 refs., 3 figs., 4 tabs

  18. Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska

    Science.gov (United States)

    Zander, Paul D.; Kaufman, Darrell S.; Kuehn, Stephen C.; Wallace, Kristi L.; Anderson, R. Scott

    2013-01-01

    Marked changes in sediment types deposited in Cabin Lake, near Cordova, Alaska, represent environmental shifts during the early and late Holocene, including fluctuations in the terminal position of Sheridan Glacier. Cabin Lake is situated to receive meltwater during periods when the outwash plain of the advancing Sheridan Glacier had aggraded. A brief early Holocene advance from 11.2 to 11.0 cal ka is represented by glacial rock flour near the base of the sediment core. Non-glacial lake conditions were restored for about 1000 years before the water level in Cabin Lake lowered and the core site became a fen. The fen indicates drier-than-present conditions leading up to the Holocene thermal maximum. An unconformity spanning 5400 years during the mid-Holocene is overlain by peat until 1110 CE when meltwater from Sheridan Glacier returned to the basin. Three intervals of an advanced Sheridan Glacier are recorded in the Cabin Lake sediments during the late Holocene: 1110–1180, 1260–1540 and 1610–1780 CE. The sedimentary sequence also contains the first five reported tephra deposits from the Copper River delta region, and their geochemical signatures suggest that the sources are the Cook Inlet volcanoes Redoubt, Augustine and Crater Peak, and possibly Mt Churchill in the Wrangell Volcanic field.

  19. Ecosystem responses during Late Glacial period recorded in the sediments of Lake Łukie (East Poland)

    Science.gov (United States)

    Zawiska, Izabela; Słowiński, Michał; Correa-Metrio, Alex; Obremska, Milena; Luoto, Tomi; Nevalainen, Liisa; Woszczyk, Michał; Milecka, Krystyna

    2014-05-01

    The main objectives of this study was to reconstruct climate impact on the functioning of Lake Łukie and its catchment (Łęczna Włodawa Lake District, East European Plain) during Late Glacial period. In order to reconstruct climatic fluctuations and corresponding ecosystem responses, we analysed lake sediments for pollen, subfossil Cladocera, plant macrofossils and chemical composition of the sediment. Of these, plant macrofossils and Cladocera were used to infer minimum and mean July temperatures and ordination analysis was used to examine biotic community shifts. Multiproxy analyses of late-glacial sediments of Lake Łukie clearly show that the main driver of aquatic and terrestrial ecosystems as well as geomorphological processes in the catchment was climate variation. The history of the lake initiated during the Older Dryas. In that period, Łęczna Włodawa Lake District was covered by open habitats dominated by grasses (Poaceae), humid sites were occupied by tundra plant communities with less clubmoss (Selaginella selaginoides), dry sites by dominated by steppe-like vegetation with light-demanding species such as Helianthemum, Artemisia, Chenopodiaceae, and juniper bushes (Juniperus). Cold climate limited the growth and development of organisms in the lake, Cladocera community species composition was poor, with only few species present there all the time. During this time period, permafrost was still present in the ground limiting infiltration of rainwater and causing high erosion in the catchment area. Surface runoff is confirmed by the presence of sclerotia of Cenococcum geophilum and high terrigenous silica content. The warming of the early Allerød caused a remarkable change in the natural environment of this area. This is in accordance with the temperature rise reconstructed with the use of plant macrofossils though the Cladocera reconstruction did not recorded the rise than. This temperature increase resulted in turnover of vegetation in the

  20. LATE GLACIAL AND HOLOCENE ENVIRONMENTAL CHANGE INFERRED FROM THE PÁRAMO OF CAJANUMA IN THE PODOCARPUS NATIONAL PARK, SOUTHERN ECUADOR

    Directory of Open Access Journals (Sweden)

    ANDREA VILLOTA

    2014-12-01

    Full Text Available To reconstruct the environmental history including vegetation, fire and climate dynamics, from the Cajanuma valley area ( 3285 m elevation in the Podocarpus National Park, southern Ecuador , we address the following major research question: (1 How did the mountain vegetation developed during the late Glacial and Holocene? (2 Did fire played an important control on the vegetation change and was it natural or of anthropogenic origin?. Palaeoenvironmental changes were investigated using multiple proxies such as pollen, spores, charcoal analyses and radiocarbon dating. Pollen data indicated that during the late Glacial and transition to the early Holocene (ca. 16 000-10 500 cal yr BP herb páramo was the main vegetation type around the study area, while subpáramo and mountain rainforest were scarcely represented. The early and mid-Holocene (ca. 10 500 to 5600 cal yr BP is marked by high abundance of páramo during the early Holocene followed by a slight expansion of mountain forest during the mid-Holocene. During the mid- to late Holocene (ca. 5600-1200 cal yr BP there is a significant presence of páramo and subpáramo while Lower Mountain Forest decreased substantially, although, Upper Mountain Forest remained relatively stable during this period. The late Holocene, from ca. 1200 cal yr BP to present, was characterized by páramo; however, mountain forest and subpáramo presented significantly abundance compared to the previous periods. Fires became frequent since the late Holocene. The marked increased local and regional fire intensity during the wetter late Holocene strongly suggests that were of anthropogenic origin. During the late Glacial and early Holocene, the upper forest line was located at low elevations; but shifted slightly upslope to higher elevations during the mid-Holocene.

  1. Periodic isolation of the southern coastal plain of South Africa and the evolution of modern humans over late Quaternary glacial to interglacial cycles

    Science.gov (United States)

    Compton, J. S.

    2012-04-01

    Humans evolved in Africa, but where in Africa and by what mechanisms remain unclear. The evolution of modern humans over the last million years is associated with the onset of major global climate fluctuations, glacial to interglacial cycles, related to the build up and melting of large ice sheets in the Northern Hemisphere. During interglacial periods, such as today, warm and wet climates favored human expansion but during cold and dry glacial periods conditions were harsh and habitats fragmented. These large climate fluctuations periodically expanded and contracted African ecosystems and led to human migrations to more hospitable glacial refugia. Periodic isolation of relatively small numbers of humans may have allowed for their rapid evolutionary divergence from the rest of Africa. During climate transitions these divergent groups may have then dispersed and interbred with other groups (hybridization). Two areas at the opposite ends of Africa stand out as regions that were periodically isolated from the rest of Africa: North Africa (the Maghreb) and the southern coastal plain (SCP) of South Africa. The Maghreb is isolated by the Sahara Desert which periodically greens and is reconnected to the rest of Africa during the transition from glacial to interglacial periods. The SCP of South Africa is isolated from the rest of Africa by the rugged mountains of the Cape Fold Belt associated with inedible vegetation and dry climates to the north. The SCP is periodically opened when sea level falls by up to 130 m during glacial maxima to expose the present day submerged inner continental shelf. A five-fold expansion of the SCP receiving more rainfall in glacial periods may have served as a refuge to humans and large migratory herds. The expansive glacial SCP habitat abruptly contracts, by as much as one-third in 300 yr, during the rapid rise in sea level associated with glacial terminations. Rapid flooding may have increased population density and competition on the SCP to

  2. Timing of the deglaciation and the late-glacial vegetation development on the Pandivere Upland, North Estonia

    Directory of Open Access Journals (Sweden)

    L. Amon

    2016-12-01

    Full Text Available In this study, the deglaciation chronology of the Pandivere Upland is defined, and the late-glacial vegetation trends of north-eastern Estonia are summarised. The multi-proxy study includes accelerated mass spectrometry 14 C dating, plant macrofossil, magnetic susceptibility, loss-on-ignition and grain-size distribution data of the lacustrine sediment record from one previously unpublished study site (Kursi, and the study discusses the results in combination with five previously published study locations from the area. The results indicate that the deglaciation of the Pandivere Upland started at approximately 14 200 cal. yr BP and was completed by 13 800 cal. yr BP. The ice recession rate was approximately 180 m yr -1 . Based on these new radiocarbon dates, the Baltic Ice Lake stage A 1 submerged the northern and western ice-free areas of Estonia by ca. 13 800 cal. yr BP. The prevalent vegetation type in north-eastern Estonia during the late-glacial period was tundra with local variations in the dominant shrub species. The region remained treeless until the Holocene.

  3. A glacial record of the last termination in the southern tropical Andes

    Science.gov (United States)

    Bromley, G. R.; Schaefer, J. M.; Winckler, G.; Hall, B. L.; Todd, C. E.; Rademaker, K.

    2012-12-01

    The last glacial termination represents the highest-magnitude climate change of the last hundred thousand years. Accurate resolution of events during the termination is vital to our understanding of how - and why - the global climate system transitions from a full glacial to interglacial state, as well as the causes of abrupt climate change during the late-glacial period. Palaeoclimate data from low latitudes, though relatively sparse, are particularly valuable, since the tropical ocean and atmosphere likely play a crucial role in Quaternary climate variability on all timescales. We present a detailed glacier record from the Andes of southern Peru (15°S), resolved with 3He surface-exposure dating and spanning the last glacial maximum and termination. Our dataset reveals that glaciers in this part of the Southern Hemisphere maintained their Late Pleistocene maxima for several millennia and that the onset of the termination may have occurred relatively late. Deglaciation was punctuated by two major advances during the late-glacial period. Following the glacial-interglacial transition, our preliminary chronologic and morphologic data suggest that, in contrast to the Northern Hemisphere, glaciers in the southern tropical Andes have experienced overall shrinkage during the Holocene.

  4. Late Glacial to Early Holocene socio-ecological responses to climatic instability within the Mediterranean basin

    Science.gov (United States)

    Fernández-López de Pablo, Javier; Jones, Samantha E.; Burjachs, Francesc

    2018-03-01

    The period spanning the Late Glacial and the Early Holocene (≈19-8.2 ka) witnessed a dramatic sequence of climate and palaeoenvironmental changes (Rasmussen et al., 2014). Interestingly, some of the most significant transformations ever documented in human Prehistory took place during this period such as the intensification of hunter-gatherer economic systems, the domestication process of wild plants and animals, and the spread of farming across Eurasia. Understanding the role of climate and environmental dynamics on long-term cultural and economic trajectories, as well as specific human responses to episodes of rapid climate change, still remains as one of the main challenges of archaeological research (Kintigh et al., 2014).

  5. A coherent high-precision radiocarbon chronology for the Late-glacial sequence at Sluggan Bog, Co. Antrim, Northern Ireland

    Science.gov (United States)

    Lowe, J. J.; Walker, M. J. C.; Scott, E. M.; Harkness, D. D.; Bryant, C. L.; Davies, S. M.

    2004-02-01

    Seventy-five radiocarbon dates are presented from Sluggan Bog in Co. Antrim, Northern Ireland. The Holocene peats are underlain by Late-glacial sediments, which also appear to have accumulated largely in a mire environment. The radiocarbon dates, from the Late-glacial and early Holocene part of the profile, were obtained from the humic and humin fractions of the sedimentary matrix, and from plant macrofossils. The last-named were dated by AMS and the sediment samples by radiometric (beta counting) methods. Age-depth models for the three dating series show a very high level of agreement between the two fractions and the macrofossils. No statistically significant difference is found between the beta counting and AMS results. Three tephras were located in the profile, the uppermost of which is in a stratigraphical position suggestive of the Vedde Ash, but the geochemical and radiocarbon evidence do not support this interpretation. The lower ashes are in the correct stratigraphical position for the Laacher See and Borrobol tephras, attributions substantiated by the radiocarbon evidence, but not by the geochemical data. The Sluggan sequence has generated one of the most internally consistent radiocarbon chronologies for any Late-glacial site in the British Isles, and it is suggested that in future more effort should be devoted to the search for, and analysis of, Late-glacial mire sequences, rather than the limnic records that have formed the principal focus of Late-glacial investigations hitherto. Copyright

  6. 10Be dating of late-glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Kelly, M. A.; Thompson, L. G.

    2004-12-01

    The surface exposure method, based on the measurement of cosmogenic 10Be produced in quartz, is applied to determine the age of deposition of glacial moraines near the Cordillera Vilcanota and the Quelccaya Ice Cap (about 13° S, 70° W) in southeastern Peru. These data are useful for examining the timing of past glaciation in the tropical Andes and for comparison with chronologies of glaciation at higher latitudes. The preliminary data set consists of more than ten surface exposure ages. Samples used for dating are from the surfaces of boulders on a set of prominent moraines about four kilometers away from the present ice margins. The age of the moraine set was previously bracketed by radiocarbon dating of peat associated with the glacial deposits. Based on radiocarbon ages, these moraines were formed during the late-glacial period, just prior to the last glacial-interglacial transition. The surface exposure dating method enables the direct dating of the moraines. Surface exposure dates are cross-checked with the previously existing radiocarbon dates and provide a means to improve the chronology of past glaciation in the tropical Andes.

  7. A Chronology of Late-Glacial and Holocene Advances of Quelccaya Ice Cap, Peru, Based on 10Be and Radiocarbon Dating

    Science.gov (United States)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.

    2007-12-01

    The Quelccaya Ice Cap region in the southeastern Peruvian Andes (~13-14°S latitude) is a key location for the development of late-glacial and Holocene terrestrial paleoclimate records in the tropics. We present a chronology of past extents of Quelccaya Ice Cap based on ~thirty internally consistent 10Be dates of boulders on moraines and bedrock as well as twenty radiocarbon dates of organic material associated with moraines. Based on results from both dating methods, we suggest that significant advances of Quelccaya Ice Cap occurred during late-glacial time, at ~12,700-11,400 yr BP, and during Late Holocene time ~400-300 yr BP. Radiocarbon dating of organic material associated with moraines provides maximum and minimum ages for ice advances and recessions, respectively, thus providing an independent check on 10Be dates of boulders on moraines. The opportunity to use both 10Be and radiocarbon dating makes the Quelccaya Ice Cap region a potentially important low-latitude calibration site for production rates of cosmogenic nuclides. Our radiocarbon chronology provides a tighter constraint on maximum ages of late-glacial and Late Holocene ice advances. Upcoming field research will obtain organic material for radiocarbon dating to improve minimum age constrains for late-glacial and Late Holocene ice recessions.

  8. Pollen record of the penultimate glacial period in Yuchi Basin, Central Taiwan

    Science.gov (United States)

    Lai, Hsiao-Yin; Liew, Ping-Mei

    2010-05-01

    Pollen records of the penultimate glacial period are scare not only in Taiwan, but also in East Asia area. Hence, this study intends to provide a new pollen record from a site, Yuchi Basin, in central Taiwan, which may improve our knowledge of the penultimate glacial period. The sediment core, CTN6, was drilled in the northern part of Yuchi Basin. The core is 29.4 m in length and the sampling interval is 10 cm. In total, 86 samples are processed for pollen analysis. Three pollen zones (I,II and III) are determined according to the ratio of arboreal pollens (AP) and non-arboreal pollens (NAP). Because of the scarcity of dating data, pollen assemblages compared with previous pollen records at peripheral areas is utilized to estimate the ages of each pollen zone. AP dominate (60%) Zone I and III, which consist mainly of Cyclobalanopsis-Castanopsis. Thus, Zone I may mark the MIS 5 because of a Cyclobalanopsis-Castanopsis dominant condition. In Zone II, the increase in NAP and pollen of Taxodiaceae and decrease in pollens of Cyclobalanopsis-Castanopsis indicates the penultimate glacial period, i.e. MIS 6. In contrast to the evergreen broadleaved forest found there today, the herbs occupied the basin in Zone II, indicating a relatively dry climate condition than present. Furthermore, during the penultimate glacial period, the climate condition of early part is wetter, evidenced by a higher AP/NAP in Zone IIb. Finally, comparing with the last glacial period in Toushe, we suggest that the penultimate glacial period is drier due to the lower AP/NAP.

  9. Icelandic volcanic ash from the Late-glacial open-air archaeological site of Ahrenshöft LA 58 D, North Germany

    DEFF Research Database (Denmark)

    Housley, R. A.; Lane, C. S.; Cullen, V. L.

    2012-01-01

    Cryptotephra of Icelandic origin from the open-air archaeological site of Ahrenshöft LA 58 D (Kr. Nordfriesland, Schleswig-Holstein), northern Germany overlies a Late-glacial Havelte lithic assemblage, hitherto dated by 14C and biostratigraphy to the earliest part of the Late-glacial interstadial...

  10. Late Otiran sedimentation and glacial chronology in the Warwick valley, southeast Nelson

    International Nuclear Information System (INIS)

    Mabin, M.C.G.

    1983-01-01

    Approximately 14 m of sediment are exposed in a road cutting beneath a landslide deposit in the Warwick valley, southeast Nelson, New Zealand. Three radiocarbon dates and 5 pollen spectra were obtained from organic horizons in these sediments. The dates indicate that lacustrine sedimentation predominated from before 17 500 until 14 450 years ago. This was interrupted by a brief period of gravel aggradation between 17 500 and 16 650 years ago, which is attributed to a glacial advance. Vegetation at the site was consistently dominated by Cyperaceae, with some Gramineae, suggesting a bleak, treeless landscape. Correlation of this information with other radiocarbon dated sites indicates the need for some revision of the chronology of the late Otira Glaciation. A late phase of the Kumara 2 2 advance occurred between 17 000 and 16 000 years ago, and the Kumara 3 1 advance did not occur until after about 15 000 years ago. The end of the Otira Glaciation probably occurred between 13 000 and 12 500 years ago. (auth)

  11. Late Otiran sedimentation and glacial chronology in the Warwick valley, southeast Nelson

    Energy Technology Data Exchange (ETDEWEB)

    Mabin, M C.G. [Canterbury Univ., Christchurch (New Zealand). Dept. of Geology

    1983-01-01

    Approximately 14 m of sediment are exposed in a road cutting beneath a landslide deposit in the Warwick valley, southeast Nelson, New Zealand. Three radiocarbon dates and 5 pollen spectra were obtained from organic horizons in these sediments. The dates indicate that lacustrine sedimentation predominated from before 17,500 until 14,450 years ago. This was interrupted by a brief period of gravel aggradation between 17,500 and 16,650 years ago, which is attributed to a glacial advance. Vegetation at the site was consistently dominated by Cyperaceae, with some Gramineae, suggesting a bleak, treeless landscape. Correlation of this information with other radiocarbon dated sites indicates the need for some revision of the chronology of the late Otira Glaciation. A late phase of the Kumara 2/sub 2/ advance occurred between 17,000 and 16,000 years ago, and the Kumara 3/sub 1/ advance did not occur until after about 15,000 years ago. The end of the Otira Glaciation probably occurred between 13,000 and 12,500 years ago.

  12. Some comments on the terminology of the Late Glacial in Central Europe and the problem of its application to SW Europe

    Directory of Open Access Journals (Sweden)

    Olaf JÖRIS

    2013-05-01

    Full Text Available Today, the Late Glacial interstadials Bølling and Allerød, originally defined in northern Europe, are often applied as chronozones in different palaeoclimate contexts across the Northern Hemisphere. The scientific community in both palaeoclimate research and archaeology often disregards the fact that the Meiendorf interstadial has long been identified as preceding the Bølling-Allerød sequence, and that there are lots of difficulties with the synchronization of the Oldest Dryas-Bølling-Older Dryas-sequence. Synchronization of important Central European high-resolution pollen records with the Greenland GRIP ice core demonstrates a strong climatic gradient from the South to the North of Europe over the entire Late Glacial. Therefore, the northern European interstadials (Meiendorf, Bølling, Allerød cannot serve universally as Late Glacial chronozones with reference to their characteristic pollen compositions, even though they are of greatest importance for the understanding of the regional vegetational history. The Greenland ice cores offer continous climate information over the entire Late Glacial and may serve as chronostratigraphical type sections. In the close future, detailed synchronization of terrestrial sequences with the Greenland ice core records will be achieved, using high-precision radiocarbon calibration based on Late Glacial dendrochronologies.

  13. Mitogenomes from two uncommon haplogroups mark late glacial/postglacial expansions from the near east and neolithic dispersals within Europe.

    Directory of Open Access Journals (Sweden)

    Anna Olivieri

    Full Text Available The current human mitochondrial (mtDNA phylogeny does not equally represent all human populations but is biased in favour of representatives originally from north and central Europe. This especially affects the phylogeny of some uncommon West Eurasian haplogroups, including I and W, whose southern European and Near Eastern components are very poorly represented, suggesting that extensive hidden phylogenetic substructure remains to be uncovered. This study expanded and re-analysed the available datasets of I and W complete mtDNA genomes, reaching a comprehensive 419 mitogenomes, and searched for precise correlations between the ages and geographical distributions of their numerous newly identified subclades with events of human dispersal which contributed to the genetic formation of modern Europeans. Our results showed that haplogroups I (within N1a1b and W originated in the Near East during the Last Glacial Maximum or pre-warming period (the period of gradual warming between the end of the LGM, ∼19 ky ago, and the beginning of the first main warming phase, ∼15 ky ago and, like the much more common haplogroups J and T, may have been involved in Late Glacial expansions starting from the Near East. Thus our data contribute to a better definition of the Late and postglacial re-peopling of Europe, providing further evidence for the scenario that major population expansions started after the Last Glacial Maximum but before Neolithic times, but also evidencing traces of diffusion events in several I and W subclades dating to the European Neolithic and restricted to Europe.

  14. Late Glacial and Early Holocene Climatic Changes Based on a Multiproxy Lacustrine Sediment Record from Northeast Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kokorowski, H D; Anderson, P M; Sletten, R S; Lozhkin, A V; Brown, T A

    2008-05-20

    Palynological (species assemblage, pollen accumulation rate), geochemical (carbon to nitrogen ratios, organic carbon and biogenic silica content), and sedimentological (particle size, magnetic susceptibility) data combined with improved chronology and greater sampling resolution from a new core from Elikchan 4 Lake provide a stronger basis for defining paleoenvironmental changes than was previously possible. Persistence of herb-dominated tundra, slow expansion of Betula and Alnus shrubs, and low percentages of organic carbon and biogenic silica suggest that the Late-Glacial transition (ca. 16,000-11,000 cal. yr BP) was a period of gradual rather than abrupt vegetation and climatic change. Consistency of all Late-Glacial data indicates no Younger Dryas climatic oscillation. A dramatic peak in pollen accumulation rates (ca. 11,000-9800 cal. yr BP) suggests a possible summer temperature optimum, but finer grain-sizes, low magnetic susceptibility, and greater organic carbon and biogenic silica, while showing significant warming at ca. 11,000 cal. yr BP, offer no evidence of a Holocene thermal maximum. When compared to trends in other paleo-records, the new Elikchan data underscore the apparent spatial complexity of climatic responses in Northeast Siberia to global forcings between ca. 16,000-9000 cal. yr BP.

  15. The INTIMATE event stratigraphy of the last glacial period

    Science.gov (United States)

    Olander Rasmussen, Sune; Svensson, Anders

    2015-04-01

    The North Atlantic INTIMATE (INtegration of Ice-core, MArine and TErrestrial records) group has previously recommended an Event Stratigraphy approach for the synchronisation of records of the Last Termination using the Greenland ice core records as the regional stratotypes. A key element of these protocols has been the formal definition of numbered Greenland Stadials (GS) and Greenland Interstadials (GI) within the past glacial period as the Greenland expressions of the characteristic Dansgaard-Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. Using a recent synchronization of the NGRIP, GRIP, and GISP2 ice cores that allows the parallel analysis of all three records on a common time scale, we here present an extension of the GS/GI stratigraphic template to the entire glacial period. In addition to the well-known sequence of Dansgaard-Oeschger events that were first defined and numbered in the ice core records more than two decades ago, a number of short-lived climatic oscillations have been identified in the three synchronized records. Some of these events have been observed in other studies, but we here propose a consistent scheme for discriminating and naming all the significant climatic events of the last glacial period that are represented in the Greenland ice cores. In addition to presenting the updated event stratigraphy, we make a series of recommendations on how to refer to these periods in a way that promotes unambiguous comparison and correlation between different proxy records, providing a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations. The work presented is a part of a newly published paper in an INTIMATE special issue of Quaternary Science Reviews: Rasmussen et al., 'A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event

  16. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  17. Climate and landscape in Italy during Late Epigravettian. The Late Glacial small mammal sequence of Riparo Tagliente (Stallavena di Grezzana, Verona, Italy)

    Science.gov (United States)

    Berto, Claudio; Luzi, Elisa; Canini, Guido Montanari; Guerreschi, Antonio; Fontana, Federica

    2018-03-01

    The site of Riparo Tagliente (north-eastern Italy) contains one of the main Upper Pleistocene archaeological sequences of south-western Europe. It also represents a key site for the study of human adaptation to Late Glacial environmental changes in the southern Alpine area. These climatic and environmental conditions are here reconstructed based on small mammal assemblages, using the Bioclimatic model and Habitat Weighting methods. Climate proxies indicate a rise in temperature during the transition between HE1 and the Bølling-Allerød interstadial, while the landscape surrounding the shelter was still dominated by open grasslands. By comparing the data obtained from Riparo Tagliente with other coeval small mammal faunas from the Italian Peninsula and Europe we contribute to the reconstruction of the processes of faunal renewal registered during the Late Glacial across the continent and of the climatic and environmental context in which the Late Epigravettian hunter-gatherer groups lived.

  18. Inherent characteristics of sawtooth cycles can explain different glacial periodicities

    NARCIS (Netherlands)

    Omta, A.W.; Kooi, B.W.; van Voorn, G.A.K.; Rickaby, R.E.M; Follows, M.J.

    2016-01-01

    At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from ~40 to ~100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two variables,

  19. Inherent characteristics of sawtooth cycles can explain different glacial periodicities

    NARCIS (Netherlands)

    Omta, Anne Willem; Kooi, Bob W.; Voorn, van G.A.K.; Rickaby, Rosalind E.M.; Follows, Michael J.

    2016-01-01

    At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from ~40 to ~100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two

  20. Late glacial and Holocene history of the dry forest area in south Colombian Cauca Valley from sites Quilichao and la Teta

    International Nuclear Information System (INIS)

    Berrio, Juan Carlos; Hooghiemstra, Henry; Marchant, Rob; Rangel Orlando

    2002-01-01

    Two sedimentary cores with records of pollen and charcoal content within a chronology provided by radiocarbon are presented from the southern Cauca Valley in Colombia (1020 m). These records document the late glacial and Holocene dry forest vegetation, fire and environment history. Specifically, core Quilichao -1 (640 cm; 3 degrade 6' N, 76 degrade 31' W) represents the periods of 13/150-7720 14 C yr BP and following a hiatus from 2880 14 C yr BP to recent. Core la Teta - 2 (250 cm; 3 degrade 5' N, 76 degrade 32' W) provides a record from 8700 14 C yr BP around 13/150 21 4 C yr BP Quilichao shown an active late glacial drainage system and presence of dry forest. From 11/465-10/520 14 C yr BP dry forest consists mainly of Crotalaria Moraceae Urticaceae, Melastomataceae, Piper and low stature trees, such as Acalypha, Alchornea, Cecropia and Celtis. At higher elevation on the slopes Andean forest with Quercus, Hedyosmum, Myrica and Alnus are common

  1. Changes in vegetation since the late glacial on peat bog in the Small Carpathians

    International Nuclear Information System (INIS)

    Ciernikova, M.

    2014-01-01

    Mires are ecosystems accumulating high amount of organic matter with preserved micro- and macro-fossils. Thus they can serve as natural archives allowing reconstruction of local vegetation and landscape development. Main aim of this study was to bring evidence of the whole Holocene history of mire birch woodland located on the ridge of the Male Karpaty Mts (SW Slovakia) using pollen analysis. One peat core was sampled from the middle part containing the whole Holocene sequence. The local development of study site started with small lake in a terrain depression, which arose at the end of the Late Glacial (Middle Dryas). The Late Glacial landscape was mosaic of birch-pine forests on suitable places and Artemisia steppes. Early Holocene is characterized by steep decline of pine and increase of Corylus and other mesophilous trees (Quercus, Tilia, Ulmus, Fraxinus). Fagus started dominate in middle Holocene (about 5000 cal BP). The recent vegetation established only several hundred years ago (ca 500 cal. BP), when birch started dominate. (author)

  2. Causes of strong ocean heating during glacial periods

    Science.gov (United States)

    Zimov, N.; Zimov, S. A.

    2013-12-01

    During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface

  3. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Follin, Sven; Zugec, Nada

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions

  4. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  5. A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece

    Directory of Open Access Journals (Sweden)

    A. Francke

    2013-02-01

    Full Text Available A Late Glacial to Holocene sediment sequence (Co1260, 717 cm from Lake Dojran, located at the boarder of the F.Y.R. of Macedonia and Greece, has been investigated to provide information on climate variability in the Balkan region. A robust age-model was established from 13 radiocarbon ages, and indicates that the base of the sequence was deposited at ca. 12 500 cal yr BP, when the lake-level was low. Variations in sedimentological (H2O, TOC, CaCO3, TS, TOC/TN, TOC/TS, grain-size, XRF, δ18Ocarb, δ13Ccarb, δ13Corg data were linked to hydro-acoustic data and indicate that warmer and more humid climate conditions characterised the remaining period of the Younger Dryas until the beginning of the Holocene. The Holocene exhibits significant environmental variations, including the 8.2 and 4.2 ka cooling events, the Medieval Warm Period and the Little Ice Age. Human induced erosion processes in the catchment of Lake Dojran intensified after 2800 cal yr BP.

  6. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....

  7. Comparing Terrestrial Organic Carbon Cycle Dynamics in Interglacial and Glacial Climates in the South American Tropics

    Science.gov (United States)

    Fornace, K. L.; Galy, V.; Hughen, K. A.

    2014-12-01

    The application of compound-specific radiocarbon dating to molecular biomarkers has allowed for tracking of specific organic carbon pools as they move through the environment, providing insight into complex processes within the global carbon cycle. Here we use this technique to investigate links between glacial-interglacial climate change and terrestrial organic carbon cycling in the catchments of Cariaco Basin and Lake Titicaca, two tropical South American sites with well-characterized climate histories since the last glacial period. By comparing radiocarbon ages of terrestrial biomarkers (leaf wax compounds) with deposition ages in late glacial and Holocene sediments, we are able to gauge the storage time of these compounds in the catchments in soils, floodplains, etc. before transport to marine or lacustrine sediments. We are also able to probe the effects of temperature and hydrologic change individually by taking advantage of opposite hydrologic trends at the two sites: while both were colder during the last glacial period, precipitation at Titicaca decreased from the last glacial period to the Holocene, but the late glacial was marked by drier conditions at Cariaco. Preliminary data from both sites show a wide range of apparent ages of long-chain n-fatty acids (within error of 0 to >10,000 years older than sediment), with the majority showing ages on the order of several millennia at time of deposition and age generally increasing with chain length. While late glacial leaf waxes appear to be older relative to sediment than those deposited in the Holocene at both sites, at Cariaco we find a ~2-3 times larger glacial-interglacial age difference than at Titicaca. We hypothesize that at Titicaca the competing influences of wetter and colder conditions during the last glacial period, which respectively tend to increase and decrease the rate of organic carbon turnover on land, served to minimize the contrast between glacial and interglacial leaf wax storage time

  8. LGM and Late Glacial glacier advances in the Cordillera Real and Cochabamba (Bolivia deduced from 10Be surface exposure dating

    Directory of Open Access Journals (Sweden)

    H. Veit

    2007-10-01

    Full Text Available Surface exposure dating (SED is an innovative tool already being widely applied for moraine dating and for Late Quaternary glacier and climate reconstruction. Here we present exposure ages of 28 boulders from the Cordillera Real and the Cordillera Cochabamba, Bolivia. Our results indicate that the local Last Glacial Maximum (LGM in the Eastern Cordilleras occurred at ~22–25 ka and was thus synchronous to the global temperature minimum. We were also able to date several Late Glacial moraines to ~11–13 ka, which likely document lower temperatures and increased precipitation ("Coipasa" humid phase. Additionally, we recognize the existence of older Late Glacial moraines re-calculated to ~15 ka from published cosmogenic nuclide data. Those may coincide with the cold Heinrich 1 event in the North Atlantic region and the pronounced "Tauca" humid phase. We conclude that (i exposure ages in the tropical Andes may have been overestimated so far due to methodological uncertainties, and (ii although precipitation plays an important role for glacier mass balances in the tropical Andes, it becomes the dominant forcing for glaciation only in the drier and thus more precipitation-sensitive regions farther west and south.

  9. Hydrology of surface waters and thermohaline circulation during the last glacial period

    International Nuclear Information System (INIS)

    Vidal, L.

    1996-01-01

    Sedimentological studies on oceanic cores from the north Atlantic have revealed, over the last glacial period, abrupt climatic changes with a periodicity of several thousand years which contrasts strongly with the glacial-interglacial periodicity (several tens of thousand years). These periods of abrupt climate changes correspond to massive icebergs discharges into the north Atlantic. The aim of this work was to study the evolution of the thermohaline circulation in relation to these episodic iceberg discharges which punctuated the last 60 ka. To reconstruct the oceanic circulation in the past, we have analysed oxygen and carbon stable isotopes on benthic foraminifera from north Atlantic deep-sea cores. First of all, the higher temporal resolution of sedimentary records has enabled us to establish a precise chrono-stratigraphy for the different cores. Then, we have shown the close linkage between surface water hydrology and deep circulation, giving evidence of the sensibility of thermohaline circulation to melt water input in the north Atlantic ocean. Indeed, changes in deep circulation are synchronous from those identified in surface waters and are recorded on a period which lasted ∼ 1500 years. Deep circulation reconstructions, before and during a typical iceberg discharge reveal several modes of circulation linked to different convection sites at the high latitudes of the Atlantic basin. Moreover, the study of the last glacial period gives the opportunity to differentiate circulation changes due to the external forcing (variations of the orbital parameters) and those linked to a more local forcing (icebergs discharges). 105 refs., 50 figs., 14 tabs., 4 appends

  10. Multiple glacial culminations from the Lateglacial to the late Holocene in central and southern Peru (Invited)

    Science.gov (United States)

    Licciardi, J. M.; Schaefer, J. M.; Rodbell, D. T.; Stansell, N.; Schweinsberg, A.; Finkel, R. C.; Zimmerman, S. R.

    2013-12-01

    Fluctuations in small tropical mountain glaciers serve as sensitive indicators of variations in past and present-day climate. Most of the world's modern tropical glaciers reside in the Peruvian Andes, where a growing number of well-dated glacial records have recently been developed. As additional records are documented, regional patterns of late Pleistocene to Holocene glacial activity have begun to emerge. Here we present a compilation of new and previously obtained 10Be surface exposure ages from boulders on well-preserved moraine successions in two glaciated Andean ranges: the Cordillera Vilcabamba of southern Peru (13°20'S, 72°32'W) and the Huaguruncho massif (10°32'S, 75°56'W), located in central Peru ~450 km northwest of the Vilcabamba. A high-resolution composite chronology that merges >100 10Be measurements on moraine sequences in five glaciated drainages of the Cordillera Vilcabamba reveals the occurrence of at least five discrete glacial culminations from the Lateglacial to the late Holocene. At the Huaguruncho massif, >20 10Be exposure ages obtained from moraine sequences in a south-facing cirque indicate at least three major glacial stages spanning the Lateglacial to the Little Ice Age. The moraine ages at Huaguruncho are broadly correlative with the Vilcabamba moraine chronologies, with some dated moraine belts exhibiting geomorphic expressions that closely resemble those of their coeval counterparts in the Vilcabamba. A recurring finding in both field areas is a mismatch between basal radiocarbon ages from bog and lake sediments and 10Be exposure ages on outboard moraines, which enclose the depositional basins. These age discrepancies suggest that cosmogenic 10Be production rates scaled to high altitudes in the tropics are substantially lower than previous estimates. While we anticipate that future refinements to scaled isotope production rates may significantly affect correlation of 10Be exposure ages in the high Andes with ages derived from

  11. Oligocene sea water temperatures offshore Wilkes Land (Antarctica) indicate warm and stable glacial-interglacial variation and show no 'late Oligocene warming'

    Science.gov (United States)

    Hartman, Julian; Bijl, Peter; Peterse, Francien; Schouten, Stefan; Salabarnada, Ariadna; Bohaty, Steven; Escutia, Carlota; Brinkhuis, Henk; Sangiorgi, Francesca

    2017-04-01

    At present, warming of the waters below the Antarctic ice shelves is a major contributor to the instability of the Antarctic cryosphere. In order to get insight into future melt behavior of the Antarctic ice sheet, it is important to look at past warm periods that can serve as an analogue for the future. The Oligocene ( 34-23 Ma) is a period within the range of CO2 concentrations predicted by the latest IPCC report for the coming century and is characterized by a very dynamic Antarctic ice sheet, as suggested by benthic δ18O records from ice-distal sites. We suspect that, like today, environmental changes in the Southern Ocean are in part responsible for this dynamicity. To gain more insight into this, we have reconstructed sea water temperatures (SWT) based on Thaumarchaeotal lipids (TEX86) for the Oligocene record obtained from the ice-proximal Site U1356 (Integrated Ocean Drilling Program), offshore Wilkes Land. Part of our record shows a strong coupling between the lithology and SWT, which we attribute to glacial-interglacial variation. Our data shows that both glacial and interglacial temperatures are relatively warm throughout the Oligocene: 14°C and 18°C respectively, which is consistent with previously published estimates based on UK'37 and clumped isotopes for the early Oligocene. Our SST records show only a minor decline between 30 and 24 Ma, and thus show no evidence for a 'late Oligocene warming' as was suggested based on benthic δ18O records from low latitudes. Instead, the discrepancy between our SST trend and the δ18O trend suggests that the late-Oligocene benthic δ18O decrease is likely related to a decline in ice volume. After 24 Ma, however, glacial-interglacial temperature variation appears to increase. In particular, some large temperature drops occur, one of which can be related to the Mi-1 event and a major expansion of the Antarctic ice sheet.

  12. Late glacial multiproxy evidence of vegetation development and environmental change at Solova, southeastern Estonia

    Directory of Open Access Journals (Sweden)

    Amon, Leeli

    2010-06-01

    Full Text Available Reinvestigation of the late glacial Solova (Remmeski basin, based on plant macro­fossil and diatom record, AMS 14C chronology and sediment composition (loss-on-ignition and magnetic susceptibility data, provided information on vegetation history and palaeoenvironmental and palaeoclimatic changes since the time of the deglaciation of the area around 14 000 cal yr BP. The chronology of the sequence is based on seven AMS dates on terrestrial macrofossils, providing evidence of rapid sedimentation in between 14 000 and 13 500 cal yr BP. Loss-on-ignition data show a clear short-lived warming episode centred to 13 800 cal yr BP, tentatively correlated with the GI-1c warming of the event stratigraphy of the Last Termination in the North Atlantic region, which suggests that at least parts of the Haanja Heights were ice-free by 14 000 cal yr BP. Macrofossil evidence indicates Betula nana–Dryas octopetala-dominated open tundra communities with Saxifraga on dry ground, and Carex sp. and Juncus on wet ground at that time. The first evidence of the postglacial presence of tree birch (Betula pendula in Estonia is dated back to 13 500 cal yr BP. However, conifer remains were not found in the late glacial sediment sequence of Solova Bog. The late-Allerød (GI-1a organic deposits, which are quite typical of other parts of Estonia and indicate general warming, are missing at Solova, most probably due to a hiatus in sedimentation in this very small and shallow upland basin.

  13. Southern westerly winds: a pacemaker of Holocene glacial fluctuations in Patagonia?

    Science.gov (United States)

    Sagredo, E. A.; Reynhout, S.; Kaplan, M. R.; Patricio, M. I.; Aravena, J. C.; Martini, M. A.; Schaefer, J. M.

    2017-12-01

    A well-resolved glacial chronology is crucial to compare sequences of glacial/climate events within and between regions, and thus, to unravel mechanisms underlying past climate changes. Important efforts have been made towards understanding the Holocene climate evolution of the Southern Andes; however, the timing, patterns and causes of glacial fluctuations during this period still remain elusive. Recent advances in terrestrial cosmogenic nuclide surface exposure dating, together with the establishment of a Patagonian 10Be production rate, have opened new possibilities for establishing high-resolution glacial chronologies at centennial/decadal scale. Here we present a 10Be surface exposure chronology of fluctuations of a small, climate-sensitive mountain glacier at Mt. Fitz Roy area (49.3°S), spanning from the last glacial termination to the present. Thirty new 10Be ages show glacial advances and moraine building events at 17.1±0.9 ka, 13.5±0.5 ka, 10.2±0.7 ka or 9.9±0.5 ka, 6.9±0.2 ka, 6.1±0.3 ka, 4.5±0.2 ka and 0.5±0.1 ka. Similar to the pattern observed in New Zealand, this sequence features progressively less extensive glacial advances during the late-glacial and early Holocene, followed by advances of roughly similar extent during the mid- to late-Holocene. We suggest that while the magnitude of Holocene glacial fluctuations in Patagonia is modulated by SH summer insolation ("modulator"), the specific timing of these glacial events is influenced by centennial-scale shifts of the Southern Westerly Winds ("pacemaker").

  14. Late Wisconsinan Glacial Geomorphology of the Kent Interlobate Complex, Ohio, USA

    Directory of Open Access Journals (Sweden)

    João Bessa Santos

    2012-06-01

    Full Text Available The northern sector of the Kent Interlobate Complex, created by twomajor ice lobes of the Laurentide Ice Sheet during late Wisconsinan times, dominates the glacial landscape of northeast Ohio. The geomorphology of this impressive complex reveals the presence of large hummocks, kettle lakes and substantial esker chains. The esker chains,usually smaller than 1.3 km long, run parallel to the interlobate complex geographic orientation of northeast-southwest. Gravel pits present on large hummocks display bedded and sorted sedimentary units of gravel, sand and gravel and climbing ripple laminated sand with folds, which demonstrate that the northern sector of the interlobate complex is primarily a glaciofluvial feature. Topping these hummocks is a massive clast-supported diamicton interpreted to be a debris flow. These geomorphic and sedimentary characteristics seem to indicate that hummocks present in the interlobate area are in fact kames and that the entire northern sector of the interlobate complex is a product of late Wisconsinan time transgressive ice stagnation that occurred between two major ice lobes.

  15. Late-glacial to Holocene aeolian deposition in northeastern Europe - The timing of sedimentation at the Iisaku site (NE Estonia)

    DEFF Research Database (Denmark)

    Kalinska-Nartisa, Edyta; Nartiss, Maris; Thiel, Christine

    2015-01-01

    The Late-glacial and Holocene aeolian inland dune complex at Iisaku (NE Estonia) has been investigated using an accurate and detailed compilation of the sedimentary properties and chronological framework. The quartz grains forming the dunes are very variable, reflecting aeolian, weathering...

  16. Late Glacial-Holocene Pollen-Based Vegetation History from Pass Lake, Prince of Wales Island, Southeastern Alaska

    Science.gov (United States)

    Ager, Thomas A.; Rosenbaum, Joseph G.

    2009-01-01

    A radiocarbon-dated history of vegetation development since late Wisconsin deglaciation has been reconstructed from pollen evidence preserved in a sediment core from Pass Lake on Prince of Wales Island, southeastern Alaska. The shallow lake is in the south-central part of the island and occupies a low pass that was filled by glacial ice of local origin during the late Wisconsin glaciation. The oldest pollen assemblages indicate that pine woodland (Pinus contorta) had developed in the area by ~13,715 cal yr B.P. An abrupt decline in the pine population, coinciding with expansion of alder (Alnus) and ferns (mostly Polypodiaceae) began ~12,875 yr B.P., and may have been a response to colder, drier climates during the Younger Dryas climatic interval. Mountain hemlock (Tsuga mertensiana) began to colonize central Prince of Wales Island by ~11,920 yr B.P. and was soon followed by Sitka spruce (Picea sitchensis). Pollen of western hemlock (Tsuga heterophylla) began to appear in Pass Lake sediments soon after 11,200 yr B.P. The abundance of western hemlock pollen in the Pass Lake core during most of the Holocene appears to be the result of wind transport from trees growing at lower altitudes on the island. The late Holocene pollen record from Pass Lake is incomplete because of one or more unconformities, but the available record suggests that a vegetation change occurred during the late Holocene. Increases in pollen percentages of pine, cedar (probably yellow cedar, Chamaecyparis nootkatensis), and heaths (Ericales) suggest an expansion of muskeg vegetation occurred in the area during the late Holocene. This vegetation change may be related to the onset of cooler, wetter climates that began as early as ~3,774 yr B.P. in the region. This vegetation history provides the first radiocarbon-dated Late Glacial-Holocene terrestrial paleoecological framework for Prince of Wales Island. An analysis of magnetic properties of core sediments from Pass Lake suggests that unconformities

  17. The late Pleistocene glacial sequence in the middle Maruia valley, southeast Nelson, New Zealand

    International Nuclear Information System (INIS)

    Mabin, M.C.G.

    1983-01-01

    Glacial and fluvioglacial landforms and deposits preserved in the middle reaches of the Maruia valley, southeast Nelson, New Zealand, record the activity of the Maruia glacier during the late Pleistocene Otira Glaciation. Five advances are recognised, from oldest to youngest: Creighton 1, 2, 3, and the Reid Stream 1, 2 advances. There was an interstadial interval between the Creighton 3 and Reid Stream 1 advances. The Reid Stream 1 advance occurred shortly after 14 800 years B.P. (NZ536, old T/sub 0.5/). (auths)

  18. Long-time duration of gravitaty induced caves versus landslide aktivity in the Late Glacial-Holocene. Polish Flysch Carpathians case study

    Czech Academy of Sciences Publication Activity Database

    Margielewski, W.; Urban, J.; Zernitskaya, V.; Žák, Karel; Szura, C.

    2017-01-01

    Roč. 120 (2017), s. 30-32 ISSN 0944-4122. [Central European Geomorphology Conference /4./. 09.10.2017-13.10.2017, Bayreuth] Institutional support: RVO:67985831 Keywords : caves * Late Glacial-Holocene * Polish Flysch Carpathians Subject RIV: DB - Geology ; Mineralogy

  19. Late Glacial and Holocene sequences in rockshelters and adjacent wetlands of Northern Bohemia, Czech Republic: Correlation of environmental and archaeological records

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Pokorný, P.; Horáček, I.; Sázelová, Sandra; Abraham, V.; Divišová, M.; Ivanov, M.; Kozáková, Radka; Novák, J.; Novák, Martin; Šída, P.; Perri, A.

    2018-01-01

    Roč. 465, January 26 2018 (2018), s. 234-250 ISSN 1040-6182 R&D Projects: GA ČR GA13-08169S Institutional support: RVO:67985912 Keywords : Czech Republic * sandstone rockshelters * wetlands * Late Glacial * Holocene * Late Paleolithic * Mesolithic * paleoecology * lithic industries Subject RIV: AC - Archeology, Anthropology, Ethnology; AC - Archeology, Anthropology, Ethnology (ARU-G) OBOR OECD: Archaeology; Archaeology (ARU-G) Impact factor: 2.199, year: 2016

  20. To what extent can global warming events influence scaling properties of climatic fluctuations in glacial periods?

    Science.gov (United States)

    Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo

    2017-04-01

    The Earth's climate is an extremely unstable complex system consisting of nonlinear and still rather unknown interactions among atmosphere, land surface, ice and oceans. The system is mainly driven by solar irradiance, even if internal components as volcanic eruptions and human activities affect the atmospheric composition thus acting as a driver for climate changes. Since the extreme climate variability is the result of a set of phenomena operating from daily to multi-millennial timescales, with different correlation times, a study of the scaling properties of the system can evidence non-trivial persistent structures, internal or external physical processes. Recently, the scaling properties of the paleoclimate changes have been analyzed by distinguish between interglacial and glacial climates [Shao and Ditlevsen, 2016]. The results show that the last glacial record (20-120 kyr BP) presents some elements of multifractality, while the last interglacial period (0-10 kyr BP), say the Holocene period, seems to be characterized by a mono-fractal structure. This is associated to the absence of Dansgaard-Oeschger (DO) events in the interglacial climate that could be the cause for the absence of multifractality. This hypothesis is supported by the analysis of the period between 18 and 27 kyr BP, i.e. during the Last Glacial Period, in which a single DO event have been registred. Through the Empirical Mode Decomposition (EMD) we were able to detect a timescale separation within the Last Glacial Period (20-120 kyr BP) in two main components: a high-frequency component, related to the occurrence of DO events, and a low-frequency one, associated to the cooling/warming phase switch [Alberti et al., 2014]. Here, we investigate the scaling properties of the climate fluctuations within the Last Glacial Period, where abrupt climate changes, characterized by fast increase of temperature usually called Dansgaard-Oeschger (DO) events, have been particularly pronounced. By using the

  1. Decoupling of monsoon activity across the northern and southern Indo-Pacific during the Late Glacial

    Science.gov (United States)

    Denniston, R. F.; Asmerom, Y.; Polyak, V. J.; Wanamaker, A. D.; Ummenhofer, C. C.; Humphreys, W. F.; Cugley, J.; Woods, D.; Lucker, S.

    2017-11-01

    Recent studies of stalagmites from the Southern Hemisphere tropics of Indonesia reveal two shifts in monsoon activity not apparent in records from the Northern Hemisphere sectors of the Austral-Asian monsoon system: an interval of enhanced rainfall at ∼19 ka, immediately prior to Heinrich Stadial 1, and a sharp increase in precipitation at ∼9 ka. Determining whether these events are site-specific or regional is important for understanding the full range of sensitivities of the Austral-Asian monsoon. We present a discontinuous 40 kyr carbon isotope record of stalagmites from two caves in the Kimberley region of the north-central Australian tropics. Heinrich stadials are represented by pronounced negative carbon isotopic anomalies, indicative of enhanced rainfall associated with a southward shift of the intertropical convergence zone and consistent with hydroclimatic changes observed across Asia and the Indo-Pacific. Between 20 and 8 ka, however, the Kimberley stalagmites, like the Indonesian record, reveal decoupling of monsoon behavior from Southeast Asia, including the early deglacial wet period (which we term the Late Glacial Pluvial) and the abrupt strengthening of early Holocene monsoon rainfall.

  2. Andean glacial lakes and climate variability since the last glacial maximum

    Directory of Open Access Journals (Sweden)

    1995-01-01

    á registrada en la estratigrafía de varios lagos, incluyendo el Lago Titicaca. Los niveles de los lagos estaban subiendo y había neoglaciación en el Holoceno superior después de la fase de sequía en el Holoceno medio. Sediment cores from glacial lakes in the tropical-subtropical Andes provide a nearly continuous record of late glacial and Holocene paleoclimates. Basal radiocarbon dates from lakes and peats suggest that the last glacial maximum significantly predated the global maximum at 18 14C kyr BP. Most lakes have basal radiocarbon ages of <13 14C kyr BP, implying that there was a late-Pleistocene phase of glaciation that may have culminated about 14 14C kyr BP. Late glacial advances are recorded in several sediment records from lakes and by 10 14C kyr BP glaciers had retreated to within their modern limits. Mid-Holocene aridity is recorded in the stratigraphy from a number of lakes including Lago Titicaca. This phase of aridity was followed by rising lake levels and neoglaciation in the late Holocene.

  3. Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period

    DEFF Research Database (Denmark)

    Capron, E.; Landais, A.; Chappellaz, J.

    2010-01-01

    Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized...... that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period....

  4. Late Glacial to Holocene evolution and sea-level history of Gulf of Gemlik, Sea of Marmara, Turkey

    Science.gov (United States)

    Sabuncu, Asen; Kadir Eriş, K.; Kaslilar, Ayse; Namık Çaǧatay, M.; Gasperini, Luca; Filikçi, Betül

    2016-04-01

    sequence boundary represented by different reflection coefficient and various amplitude values were mapped for the whole gulf area from the pseudo-3D seismic data. Isopach and isochron maps were generated using 2-D cubic B-spline interpolation method to reconstruct basin evolution models through late glacial to Holocene. Each map shows various depositional period with respect to water level changes that has been controlled by sea level fluctuations in the SoM. The seismic units labeled as Unit S1-S4 from top to bottom display different seismic facies and geometries. Unit S1 is a transgressive marine mud drape younger than 10.6 ka BP, which lacustrine sediments, Unit S2 is a parallel bedded mud drape in the basin and progradational clinoforms on the shelf edge. It is dated between 13.9-10.6 ka BP, Unit S3 is characterized by erosional gullies and a clinoform architecture indicating a deltaic system dated between 15.8-13.9 ka BP. Unit S4 represents mounded sediments that are truncated by erosional gullies and dated >15.8 ka BP. Key words: Gulf of Gemlik, Seismic Stratigraphy, Numerical Modelling, Late Pleistocene to Holocene

  5. Glacial removal of late Cenozoic subglacially emplaced volcanic edifices by the West Antarctic ice sheet

    Science.gov (United States)

    Behrendt, John C.; Blankenship, D.D.; Damaske, D.; Cooper, A. K.

    1995-01-01

    Local maxima of the horizontal gradient of pseudogravity from closely spaced aeromagnetic surveys over the Ross Sea, northwestern Ross Ice Shelf, and the West Antarctic ice sheet, reveal a linear magnetic rift fabric and numerous subcircular, high-amplitude anomalies. Geophysical data indicate two or three youthful volcanic edifices at widely separated areas beneath the sea and ice cover in the West Antarctic rift system. In contrast, we suggest glacial removal of edifices of volcanic sources of many more anomalies. Magnetic models, controlled by marine seismic reflection and radar ice-sounding data, allow us to infer that glacial removal of the associated late Cenozoic volcanic edifices (probably debris, comprising pillow breccias, and hyaloclastites) has occurred essentially concomitantly with their subglacial eruption. "Removal' of unconsolidated volcanic debris erupted beneath the ice is probably a more appropriate term than "erosion', given its fragmented, ice-contact origin. The exposed volcanoes may have been protected from erosion by the surrounding ice sheet because of more competent rock or high elevation above the ice sheet. -from Authors

  6. The ''Gour de Tazenat'' and the Late Glacial to Boreal environmental changes in the northern Chaine des Puys

    International Nuclear Information System (INIS)

    Juvigne, E.; Bastin, B.

    1995-01-01

    A core taken from the lacustrine deposits of the ''Gour de Tazenat'', below 66 m of water, allowed us to describe the environmental changes from the early Late Glacial to the Boreal in the northern Chaine des Puys. The Middle Dryas is particularly well recorded and the Late Dryas can be subdivided into three cold sub-oscillations. The same sequence contains two tephra beds (volcanic ash): (i) one is mugearitic, dated at 10,280 a BP and within the Allerod; (ii) the other is trachytic, dated at about 8,220 a BP and within the Boreal. The Tazenat volcano erupted prior to 29,000 a BP. (authors). 20 refs., 5 figs

  7. Late Proterozoic glacially controlled shelf sequences in western Mali (west Africa)

    Science.gov (United States)

    Deynoux, M.; Prousti, J. N.; Simon, B.

    The Late Proterozoic deposits of the Bakoye Group (500 m) in western Mali constitute a remarkable example of a glacially influenced sedimentary record on an epicratonic platform. They are composed of alternating marine and continental formations which represent accumulation in a basin located in the vicinity of upland areas covered by ice sheets. One of these formations (the Ba4 Formation), which is the focus of this study, is composed of three major units. The basal Unit 1 is made up of carbonaceous coarse to fine grained sandstones which are organized in fining upward sequences and which comprise lenticular diamictite intercalations. This Unit is considered to represent the fore slope gravity flows of a subaqueous ice-cootact fan fed by meltwater streams (≪glacioturbidites≫). Unit 2 is made up of coarse to fine grained sandstones in a highly variable association of facies. This Unit is characterized by the abundance of wave ripples associated with convolute beddings. planar or wavy beddings and tabular or hummocky crossbeddings in a general shallowing upward trend. It also comprises evidence of gravity processes including debris flows and large slumped sandstone bodies. Unit 2 represents the progressive filling of the Ba4 basin and reflects the combined effect of glacially induced eustatism and isostacy during a phase of glacial retreat. The basal part of Unit 3 is made up of a succession (a few meters thick) of conglomerates, diamictites, sandstones, siltstones or carbonates lying on an erosional unconformity marked by periglacial frost wedges. The upper part of Unit 3 is thicker (100-150 m) and onlaps on these basal facies with a succession of sandstone bars exhibiting swaley and hummocky crossbeddings, large cut and fill structures, and planar laminations. Unit 3 is strongly transgressive, the lower shoreface and backshore deposits include algal mats and are onlapped by sand ridges emplaced in a high energy upper to middle shoreface environment. Overall

  8. Late- and post-glacial vegetation dynamics in Western Rhodopes (Bulgaria) based on pollen analysis and radiocarbon dating

    International Nuclear Information System (INIS)

    Filipovitch, L.; Lazarova, M.

    2002-01-01

    This study offers a reconstruction of Quaternary vegetation in the region of Shiroka Polyana (Western Rhodopes mountains) on the basis of pollen analysis and 14 C dating. It helps to trace out the trends in vegetation dynamics. The palaeosuccession cycle providing valuable floristic and coenotic information about the Late Glacial (13000 BP) and the entire Holocene throughout several major stages is recreated: grassy communities, thermophilus deciduous forests, fir-hornbeam-beech forests, spruce-pine forests, pine-spruce forests. (authors)

  9. Discovery of a landscape-wide drape of late-glacial aeolian silt in the western Northern Calcareous Alps (Austria): First results and implications

    Science.gov (United States)

    Gild, Charlotte; Geitner, Clemens; Sanders, Diethard

    2018-01-01

    Aeolian deposits record palaeoenvironmental conditions and may coin soil properties. Whereas periglacial loess is extensively investigated for 200 years, the study of the intramontane wind-blown deposits of the Alps has just stuttered along. Herein, we describe a drape of polymictic siliciclastic silt interpreted as an aeolian deposit that veneers extensive areas in the western Northern Calcareous Alps (NCA), from kames terraces near valley floors up to last-glacial nunataks. The NCA - part of the Eastern Alps mountain range - consist mainly of Triassic carbonate rocks; these are overlain by deposits of the Last Glacial Maximum (LGM) and its deglacial-paraglacial aftermath (e.g., glacial tills, fluvio-lacustrine successions, alluvial fans, scree slopes) - and a regional drape of polymictic silt newly described herein. The drape is typically a few decimeters in thickness and slightly modified by soil formation; it consists mainly of well-sorted silt of quartz, feldspars, phyllosilicates (muscovite, chlorite, biotite), amphiboles and, rarely, calcite or dolomite. The drape is unrelated to the substrate: it overlies carbonate bedrock and - in lateral continuity - abandoned deposystems such as colluvial slopes of redeposited till, kames, alluvial fans, scree slopes, and rock avalanche deposits. The drape was spotted from near the present valley floors up to LGM nunataks, over a vertical range of some 2000 m; it is also present in catchments of the NCA that were not overridden by far-travelled ice streams and that lack metamorphic rock fragments. Two OSL quartz ages of the drape from two distinct locations (18.77 ± 1.55 ka; 17.81 ± 1.68 ka) fall into the early Alpine late-glacial interval shortly after the collapse of pleniglacial ice streams; this fits with geological and geomorphological evidence, respectively, that the drape should be of early late-glacial age, and that it accumulated during a specific interval of time. In the NCA, localized minor deposition of

  10. Glacial isostatic stress shadowing by the Antarctic ice sheet

    Science.gov (United States)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  11. Does carbon isotope data help explain atmospheric CO2 concentrations during glacial periods?

    International Nuclear Information System (INIS)

    Alverson, K.; Le Grand, P.

    2002-01-01

    An inverse ocean box modeling approach is used to address the question of what may have caused decreased atmospheric CO 2 concentration during glacial periods. The inverse procedure seeks solutions that are consistent, within prescribed uncertainties, with both available paleodata constraints and box model conservation equations while relaxing traditional assumptions such as exact steady state and precise prescription of uncertain model parameters. Decreased ventilation of Southern Ocean deep water, decreased Southern Ocean air-sea gas exchange, and enhanced high latitude biological pumping are all shown to be individually capable of explaining available paleodata constraints provided that significant calcium carbonate compensation is allowed. None of the scenarios require more than a very minor (order 1 deg. C) glacial reduction in low to mid latitude sea surface temperature although scenarios with larger changes are equally plausible. One explanation for the fairly wide range of plausible solutions is that most paleo-data directly constrain the inventory of paleo-tracers but only indirectly constrain their fluxes. Because the various scenarios that have been proposed to explain pCO 2 levels during the last glacial maximum are distinguished primarily by different fluxes, the data, including ocean 13 C concentrations, do not allow one to confidently chose between them. Oceanic 14 C data for the last glacial maximum, which can constrain water mass fluxes, present an excellent potential solution to this problem if their reliability is demonstrated in the future. (author)

  12. The sedimentary sequence from the Lake Ķūži outcrop, central Latvia: implications for late glacial stratigraphy

    Directory of Open Access Journals (Sweden)

    Tiiu Koff

    2011-06-01

    Full Text Available Sediment samples from an outcrop in the near-shore area of Lake Ķūži (Vidzeme Heights, Central Latvia were investigated using palaeobotanical (pollen and macrofossil analysis and lithological (grain-size analysis methods and accelerator mass spectrometry 14C dating. A dark, organic-rich sediment layer was found below 1.7 m of sandy layers approximately 30 cm above the present lake level. Radiocarbon dating of a wood sample from the lowermost layer (11 050 ± 60 14C BP, 13 107–12 721 cal BP shows that the layer is of late glacial age. The composition of the pollen spectra is characterized by Betula nana, Cyperaceae pollen and spores of Equisetum, confirming that the lowermost sediments were formed during the late glacial. Fossils of obligate aquatic organisms in the upper layer, which include oospores of Characeae and seeds of Potamogeton, indicate an open water environment. Pollen of Myriophyllum and Potamogeton and non-pollen palynomorphs, such as algal Botryococcus and Pediastrum cf. boryanum, confirm this conclusion. The pollen assemblage from the greyish loam layer following this lacustrine phase shows a pattern characteristic of the Younger Dryas vegetation before the start of the real expansion of birch forests at the beginning of the Holocene.

  13. Carbonate cementation in the late glacial outwash and beach deposits in northern Estonia

    Directory of Open Access Journals (Sweden)

    Maris Rattas

    2014-02-01

    Full Text Available The sedimentary environments, morphology and formation of carbonate cement in the late glacial glaciofluvial outwash and beach deposits in northern Estonia are discussed. Cementation is observed in well-drained, highly porous carbonaceous debris-rich gravel and sand-forming, resistant ledges in otherwise unconsolidated sediments. The cemented units occur as laterally continuous layers or as isolated lenticular patches with thicknesses from a few centimetres to 3 m. The cement is found in two main morphologies: (1 cement crusts or coatings around detrital grains and (2 massive cement almost entirely filling interparticle pores and intraparticle voids. It is exclusively composed of low-Mg calcite with angular equant to slightly elongated rhombohedral and scalenohedral or prismatic crystals, which indicate precipitation from meteoric or connate fresh surface (glacial lake water and/or near-surface groundwater under low to moderate supersaturation and flow conditions. The absence of organic structures within the cement suggests that cementation is essentially inorganic. The cement exhibits both meteoric vadose and phreatic features and most probably occurred close to the vadose–phreatic interface, where the conditions were transitional and/or fluctuating. Cementation has mainly taken place by CO2-degassing in response to fluctuations in groundwater level and flow conditions, controlled by the Baltic Ice Lake water level, and seasonal cold and/or dry climate conditions.

  14. The glacial record of New Zealand's Southern Alps

    Science.gov (United States)

    Schaefer, J. M.; Denton, G.; Lowell, T.; Anderson, B.; Rinterknecht, V.; Schlosser, P.; Ivy-Ochs, S.; Kubik, P.; Schluechter, C.; Chinn, T.; Barrell, D.; Lifton, N.; Jull, T.

    2004-12-01

    We present detailed mapping and surface exposure dating using in-situ Be-10 and C-14 of the moraine set of Lake Pukaki, New Zealand's Southern Alps, spanning from the penultimate glaciation, over several Last Glacial Maximum (LGM) moraines, the late glacial event to Holocene glacial advances. New Zealand, a mountain ridge in the middle of the Southern Ocean, has one of the best preserved moraine records world-wide, offering the opportunity to reconstruct amplitude and timing of climate changes from Southern mid-latitudes, an area where paleoclimate data is scarce. The extensive mapping effort by G. Denton and colleagues (http://wyvern.gns.cri.nz/website/csigg/) provides a unique background for sample selection for Surface Exposure Dating. Our extensive data set (>40 samples analyzed so far) indicate that (i) the LGM in New Zealand terminated clearly prior to the Boelling/Alleroed warming, (ii) the late glacial advance is within uncertainties consistent with the timing of the Younger Dryas cold reversal; (iii) there occurred an early Holocene glacial event of the same amplitude than the Little Ice Age. This latter event is the first Holocene glacial event from the Southern Hemisphere dated by in-situ Be-10 and C-14.

  15. Glacial sequence stratigraphy reveal the Weichselian glacial history of the SE sector of the Eurasian Ice Sheet

    Science.gov (United States)

    Räsänen, Matti

    2016-04-01

    Reconstructions of the last Weichselian glacial cycle 117,000-11,700 years (kyr) ago propose that S Finland, adjacent Russia and the Baltic countries in the SE sector of the Eurasian Ice Sheet (EIS), were glaciated during the Middle Weichselian time [marine isotope stage (MIS) 4, 71-57 kyr ago] and that this glaciation was preceded in S Finland by an Early Weichselian interstadial (MIS 5c, 105-93 kyr ago) with pine forest. Here glacial sequence stratigraphy (Powell and Cooper 2002) is applied to isolated Late Pleistocene onshore outcrop sections in S Finland. The analysed sedimentary records have traditionally been investigated, interpreted and published separately by different authors without an attempt to a methodologically more systematic survey. By putting new field data and old observations into a regional sequence stratigraphic framework it is shown how previously unnoticed regularities can be found in the lithofacies and fossil successions. It is shown that the proposed Middle Weichselian glaciation or the pine dominated interstadial did not take place at all (Räsänen et al. 2015). The one Late Weichselian glaciation (MIS 2, 29-11 kyr ago) at the SE sector of EIS was preceded in S Finland by a nearly 90 kyr long still poorly known non-glacial period, featuring tundra with permafrost and probably birch forest. The new Middle Weichselian paleoenvironmental scenario revises the configuration and hydrology of the S part of EIS and gives new setting for the evolution of Scandinavian biota. References Powell, R. D., and Cooper, J. M., 2002, A glacial sequence stratigraphic model for temperate, glaciated continental shelves, in Dowdeswell, J. A., and Cofaig, C. Ó. eds., Glacier-Influenced Sedimentation on High-Latitude Continental Margins: The Geological Society of London, London, Geological Society London, Special Publication v. 203, p. 215-244. Räsänen, M.E., Huitti, J.V., Bhattarai, S. Harvey, J. and Huttunen, S. 2015, The SE sector of the Middle

  16. Late Quaternary geomorphic history of a glacial landscape - new sedimentary and chronological data from the Cordillera de Cochabamba (Bolivia)

    Science.gov (United States)

    May, J.-H.; Preusser, F.; Zech, R.; Ilgner, J.; Veit, H.

    2009-04-01

    Throughout the Central Andes, glacial landscapes have long been used for the reconstruction of Late Quaternary glaciations and landscape evolution. Much work has focused on the Andes in Peru, Chile and the Bolivian Altiplano, whereas relatively little data has been published on glaciation history in the eastern Andean ranges and slopes. Even less is known with regard to the postglacial evolution of these glacial landscapes. In the Cordillera de Cochabamba (Bolivia), local maximum advances probably peaked around 20-25 ka BP and were followed by significant readvances between ~12-16 ka BP. This generally points to temperature controlled maximum glacial advances along the humid eastern slopes of the Central Andes, which is supported by glacier-climate-modelling studies. However, most studies include only marginal information with regard to the complex geomorphic and sedimentary situation in the Cordillera de Cochabamba. Furthermore, the chronological results are afflicted with several methodological uncertainties inherent to surface exposure dating and call for application of alternative, independent age dating methods. Therefore this study aims at i) documenting and interpreting the complex glacial geomorphology of the Huara Loma valley in the Cordillera de Cochabamba (Bolivia), ii) analyzing the involved units of glacial sediments, and iii) improving the chronological framework by applying optically stimulated luminescence (OSL) and radiocarbon dating (14C). For this purpose, geomorphic mapping was combined with field documentation of sedimentary profiles. The involved sediments were subject to geochemical and mineralogical analysis in order to deduce information on their erosional and weathering histories. In addition, the interpretation of OSL ages from glacial and proglacial sediments integrated several methodological procedures with regard to sample preparation and statistical analysis of the measurements in order to increase the degree of confidence. These

  17. Reconstructing the migration patterns of late Pleistocene mammals from northern Florida, USA

    Science.gov (United States)

    Hoppe, Kathryn A.; Koch, Paul L.

    2007-11-01

    We used analyses of the strontium isotope ( 87Sr/ 86Sr) ratios of tooth enamel to reconstruct the migration patterns of fossil mammals collected along the Aucilla River in northern Florida. Specimens date to the late-glacial period and before the last glacial maximum (pre-LGM). Deer and tapir displayed low 87Sr/ 86Sr ratios that were similar to the ratios of Florida environments, which suggest that these taxa did not migrate long distance outside of the Florida region. Mastodons, mammoths, and equids all displayed a wide range of 87Sr/ 86Sr ratios. Some individuals in each taxon displayed low 87Sr/ 86Sr ratios that suggest they ranged locally, while other animals had high 87Sr/ 86Sr ratios that suggest they migrated long distances (> 150 km) outside of the Florida region. Mastodons were the only taxa from this region that provided enough well-dated specimens to compare changes in migration patterns over time. Pre-LGM mastodons displayed significantly lower 87Sr/ 86Sr ratios than late-glacial mastodons, which suggests that late-glacial mastodons from Florida migrated longer distances than their earlier counterparts. This change in movement patterns reflects temporal changes in regional vegetation patterns.

  18. Late Glacial and Holocene Flow Dynamics of the Denmark Strait Overflow Water

    Science.gov (United States)

    Williams, M.; Schmidt, D. N.; Andersen, M. B.; Barker, S.; McCave, I. N. N.

    2014-12-01

    The overflow of dense water from the Nordic Seas to the North Atlantic across the Greenland-Scotland Ridge forms a major component of the deep branch of the Atlantic Meridional Overturning Circulation and influences the climate system in Northwest Europe. Research has focused on deep convection of the Iceland Scotland Overflow Water (ISOW) and its links to climate variability in the North Atlantic. Our understanding of the history of the Denmark Strait Overflow Water (DSOW) is significantly less constrained and yet it accounts for half of the total overflow production today. We focus on the Eirik Drift south of Greenland in the vicinity of the DSOW. Down-core 230Thxs derived sediment focusing factors (Ψ) and measurements of the mean size of sortable silt reveal winnowed sediments during the Last Glacial Maximum and Heinrich 1 suggesting an influx of vigorous southern sourced waters and restricted DSOW production. Reduced overflow may be due to glacial isostatic processes which shoaled the Denmark Strait sill combined with a southward shift of deep convection sites in response to enhanced ice cover in the Nordic Seas. Intensification of the DSOW is evident between 9 and 13ka BP indicating initial deepening of the Denmark Strait sill and northward migration of the locus of deep water production. Ψ values for the Holocene suggest an active DSOW with a shift in the flow regime at 6.8 ka BP indicated by a reduction and subsequent stabilization of mean size sortable silt during the mid-late Holocene. This is corroborated by other studies showing a reorganization of the deep water after 7ka. An establishment of the Labrador Sea Water at intermediate depths altered the density structure of the deep western boundary current and weakened the ISOW. Changes in deep water circulation occur as North Atlantic climate entered Neoglacial cooling determined by Mg/Ca derived sea surface temperatures and abundances of the polar planktic foraminifera species N. pachyderma. They

  19. Stratigraphy and palaeoclimatic significance of Late Quaternary loess-palaeosol sequences of the Last Interglacial-Glacial cycle in central Alaska

    Science.gov (United States)

    Muhs, D.R.; Ager, T.A.; Bettis, E. Arthur; McGeehin, J.; Been, J.M.; Beget, J.E.; Pavich, M.J.; Stafford, Thomas W.; Stevens, D.A.S.P.

    2003-01-01

    Loess is one of the most widespread subaerial deposits in Alaska and adjacent Yukon Territory and may have a history that goes back 3 Ma. Based on mineralogy and major and trace element chemistry, central Alaskan loess has a composition that is distinctive from other loess bodies of the world, although it is quartz-dominated. Central Alaskan loess was probably derived from a variety of rock types, including granites, metabasalts and schists. Detailed stratigraphic data and pedologic criteria indicate that, contrary to early studies, many palaeosols are present in central Alaskan loess sections. The buried soils indicate that loess sedimentation was episodic, or at least rates of deposition decreased to the point where pedogenesis could keep ahead of aeolian input. As in China, loess deposition and pedogenesis are likely competing processes and neither stops completely during either phase of the loess/soil formation cycle. Loess deposition in central Alaska took place before, and probably during the last interglacial period, during stadials of the mid-Wisconsin period, during the last glacial period and during the Holocene. An unexpected result of our geochronological studies is that only moderate loess deposition took place during the last glacial period. Our studies lead us to conclude that vegetation plays a key role in loess accumulation in Alaska. Factors favouring loess production are enhanced during glacial periods but factors that favour loess accumulation are diminished during glacial periods. The most important of these is vegetation; boreal forest serves as an effective loess trap, but sparsely distributed herb tundra does not. Thus, thick accumulations of loess should not be expected where tundra vegetation was dominant and this is borne out by modern studies near the treeline in central Alaska. Much of the stratigraphic diversity of North American loess, including that found in the Central Lowlands, the Great Plains, and Alaska is explained by a new

  20. Interhemispheric correlation of late pleistocene glacial events.

    Science.gov (United States)

    Lowell, T V; Heusser, C J; Andersen, B G; Moreno, P I; Hauser, A; Heusser, L E; Schlüchter, C; Marchant, D R; Denton, G H

    1995-09-15

    A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and >/=33,500 carbon-14 years before present ((14)C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,000(14)C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,720(14)C yr B.P., and at the beginning of the Younger Dryas at 11,050 (14)C yr B. P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges.

  1. Sedimentary architecture and chronostratigraphy of a late Quaternary incised-valley fill: A case study of the late Middle and Late Pleistocene Rhine system in the Netherlands

    Science.gov (United States)

    Peeters, J.; Busschers, F. S.; Stouthamer, E.; Bosch, J. H. A.; Van den Berg, M. W.; Wallinga, J.; Versendaal, A. J.; Bunnik, F. P. M.; Middelkoop, H.

    2016-01-01

    This paper describes the sedimentary architecture, chronostratigraphy and palaeogeography of the late Middle and Late Pleistocene (Marine Isotope Stage/MIS 6-2) incised Rhine-valley fill in the central Netherlands based on six geological transects, luminescence dating, biostratigraphical data and a 3D geological model. The incised-valley fill consists of a ca. 50 m thick and 10-20 km wide sand-dominated succession and includes a well-developed sequence dating from the Last Interglacial: known as the Eemian in northwest Europe. The lower part of the valley fill contains coarse-grained fluvio-glacial and fluvial Rhine sediments that were deposited under Late Saalian (MIS 6) cold-climatic periglacial conditions and during the transition into the warm Eemian interglacial (MIS 5e-d). This unit is overlain by fine-grained fresh-water flood-basin deposits, which are transgressed by a fine-grained estuarine unit that formed during marine high-stand. This ca. 10 m thick sequence reflects gradual drowning of the Eemian interglacial fluvial Rhine system and transformation into an estuary due to relative sea-level rise. The chronological data suggests a delay in timing of regional Eemian interglacial transgression and sea-level high-stand of several thousand years, when compared to eustatic sea-level. As a result of this glacio-isostatic controlled delay, formation of the interglacial lower deltaic system took only place for a relative short period of time: progradation was therefore limited. During the cooler Weichselian Early Glacial period (MIS 5d-a) deposition of deltaic sediments continued and extensive westward progradation of the Rhine system occurred. Major parts of the Eemian and Weichselian Early Glacial deposits were eroded and buried as a result of sea-level lowering and climate cooling during the early Middle Weichselian (MIS 4-3). Near complete sedimentary preservation occurred along the margins of the incised valley allowing the detailed reconstruction presented

  2. Adaptation and niche construction in human prehistory: a case study from the southern Scandinavian Late Glacial.

    Science.gov (United States)

    Riede, Felix

    2011-03-27

    The niche construction model postulates that human bio-social evolution is composed of three inheritance domains, genetic, cultural and ecological, linked by feedback selection. This paper argues that many kinds of archaeological data can serve as proxies for human niche construction processes, and presents a method for investigating specific niche construction hypotheses. To illustrate this method, the repeated emergence of specialized reindeer (Rangifer tarandus) hunting/herding economies during the Late Palaeolithic (ca 14.7-11.5 kyr BP) in southern Scandinavia is analysed from a niche construction/triple-inheritance perspective. This economic relationship resulted in the eventual domestication of Rangifer. The hypothesis of whether domestication was achieved as early as the Late Palaeolithic, and whether this required the use of domesticated dogs (Canis familiaris) as hunting, herding or transport aids, is tested via a comparative analysis using material culture-based phylogenies and ecological datasets in relation to demographic/genetic proxies. Only weak evidence for sustained niche construction behaviours by prehistoric hunter-gatherer in southern Scandinavia is found, but this study nonetheless provides interesting insights into the likely processes of dog and reindeer domestication, and into processes of adaptation in Late Glacial foragers.

  3. Glacial History of Southernmost South America and Implications for Movement of the Westerlies and Antarctic Frontal Zone

    Science.gov (United States)

    Kaplan, M. R.; Fogwill, C. J.; Hulton, N. R.; Sugden, D. E.; Peter, K. W.

    2004-12-01

    The ~1 Myr glacial geologic record in southern South American is one of the few available terrestrial paleoclimate proxies at orbital and suborbital time scales in the middle latitudes of the Southern Hemisphere. Presently, southernmost Patagonia lies about 3\\deg north of the Antarctic frontal zone and within the middle latitude westerlies and the climate is controlled by the surrounding maritime conditions. Thus, the long-term glacial record provides insight into the history of climatic boundaries over the middle and high latitude southern ocean, including the upwind SE Pacific Ocean, tectonic-glacial evolution of the Andes, and global climate. To date, cosmogenic nuclide and 14C dating have focused on glacial fluctuations between 51 and 53\\deg S (Torres del Paine to northern Tierra del Fuego) during the last glacial cycle, including the late glacial period. At least 4 advances occurred between ca. 25 and 17 ka, with the maximum expansion of ice ca. 25-24 ka. Major deglaciation commenced after ca. 17.5 ka, which was interrupted by a major glacial-climate event ca. 14-12 ka. Modelling experiments suggest that the ice mass needed to form the glacial maximum moraines required about a 6\\deg cooling and a slight drying relative to the present. Such a fundamental temperature reduction, despite high summer isolation, strongly suggests northward movement of the westerlies and the polar front on millennial timescales. The Patagonian record also indicates that on orbital timescales equatorward movement of climate boundaries and glacial growth was in phase with major Northern Hemisphere ice volume change, despite high local summer insolation. At suborbital timescales, the picture is more complex. While major facets of the last glacial maximum appear to be in phase between the hemispheres, at least some late glacial events may be in step with Antarctic climate change. Present and future research will further constrain the timing of glacial events over the last 1 Myr and

  4. Comparison of northern and central Greenland ice cores records of methanesulfonate covering the last glacial period

    DEFF Research Database (Denmark)

    Jonsell, U.; Hansson, M. E.; Siggaard-Andersen, M-L-

    2007-01-01

    Methanesulfonate (MS-) is measured in ice cores with the objective to obtain a proxy record of marine phytoplankton production of dimethylsulfide (DMS). We present a continuous MS- record covering the last glacial period from the North Greenland Ice Core Project (NGRIP) ice core and compare...... this record with the corresponding records previously presented from Greenland and, in particular, with the GISP2 ice core located 320 km south of NGRIP. Despite that the records have similar mean concentrations, their responses to climatic changes during the last glacial period are slightly different. NGRIP...... MS- concentrations were higher during the cold marine isotopic stages (MIS) 2 and 4 and lower during the warm MIS 5. This long-term trend in MS-, which is similar to the inverse of the corresponding trend in d 18O, is not detected in the GISP2 MS- record. A systematic response in MS- concentrations...

  5. Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Science.gov (United States)

    Brown, Kyle S.; Oestmo, Simen; Pereira, Telmo; Ranhorn, Kathryn L.; Schoville, Benjamin J.; Marean, Curtis W.

    2017-01-01

    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5–6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, ‘place provisioning’, longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS

  6. Late Glacial temperature and precipitation changes in the lowland Neotropics by tandem measurement of δ 18O in biogenic carbonate and gypsum hydration water

    Science.gov (United States)

    Hodell, David A.; Turchyn, Alexandra V.; Wiseman, Camilla J.; Escobar, Jaime; Curtis, Jason H.; Brenner, Mark; Gilli, Adrian; Mueller, Andreas D.; Anselmetti, Flavio; Ariztegui, Daniel; Brown, Erik T.

    2012-01-01

    We applied a new method to reconstruct paleotemperature in the tropics during the last deglaciation by measuring oxygen isotopes of co-occurring gypsum hydration water and biogenic carbonate in sediment cores from two lakes on the Yucatan Peninsula. Oxygen and hydrogen isotope values of interstitial and gypsum hydration water indicate that the crystallization water preserves the isotopic signal of the lake water, and has not undergone post-depositional isotopic exchange with sediment pore water. The estimated lake water δ18O is combined with carbonate δ18O to calculate paleotemperature. Three paired measurements of 1200-yr-old gypsum and gastropod aragonite from Lake Chichancanab, Mexico, yielded a mean temperature of 26 °C (range 23-29.5 °C), which is consistent with the mean and range of mean annual temperatures (MAT) in the region today. Paired measurements of ostracods, gastropods, and gypsum hydration water samples were measured in cores from Lake Petén Itzá, Guatemala, spanning the Late Glacial and early Holocene period (18.5-10.4 ka). The lowest recorded temperatures occurred at the start of Heinrich Stadial (HS) 1 at 18.5 ka. Inferred temperatures from benthic ostracods ranged from 16 to 20 °C during HS 1, which is 6-10 °C cooler than MAT in the region today, whereas temperatures derived from shallow-water gastropods were generally warmer (20-25 °C), reflecting epilimnetic temperatures. The derived temperatures support previous findings of greater tropical cooling on land in Central America during the Late Glacial than indicated by nearby marine records. Temperature increased in two steps during the last deglaciation. The first occurred during the Bolling-Allerod (B-A; from 14.7 to 13 ka) when temperature rose to 20-24 °C towards the end of this period. The second step occurred at 10.4 ka near the beginning of the Holocene when ostracod-inferred temperature rose to 26 °C, reflecting modern hypolimnetic temperature set during winter, whereas

  7. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Claudia J [Los Alamos National Laboratory; Mcdonald, Eric [NON LANL; Sancho, Carlos [NON LANL; Pena, Jose- Luis [NON LANL

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  8. Sediment-palaeosol successions in Calabria and Sardinia suggest spatially differentiated palaeo-vegetation patterns in southern Italy during the Last Glacial period

    Science.gov (United States)

    Sauer, Daniela; Zucca, Claudio; Al-Sharif, Riyad; Zwanzig, Lisa; Madrau, Salvatore; Andreucci, Stefano; Pascucci, Vincenzo; Kadereit, Annette; Scarciglia, Fabio; Brückner, Helmut

    2016-04-01

    .9-30.3 ka cal BP, respectively. Thus, the formation of these soils falls into the period for which the lacustrine record indicates alternations between open and wooded steppe. The second palaeosol-sediment succession was found in a similar geomorphological situation near Piale, ca. 30 km north of the Lazzaro profile. In this case, the major part of the alluvial fan was removed by the creek (flowing from east to west), so that only its southernmost edge is preserved. SOM of the two lowermost palaeosols embedded in it was 14C-dated to 44.8-45.8 ka cal BP and 45.2-46.2 ka cal BP, respectively. The palaeosols of the Piale profile are very dark, almost carbonate-free, and several of them are characterized by an aeolian component (volcanic ash). The third sediment-palaeosol succession is exposed at the north-western coast of Sardinia, ca. 1.5 km north of Porto Palmas. The succession has developed in alluvial fan deposits that are constrained in a narrow valley, thus forming a valley infilling. Where the valley opens into the sea, this infilling is exposed in a high cliff. The sediment-palaeosol succession is sandwiched between marine deposits at the bottom (attributed to MIS 5c), and a sandy cover on top, dated to 23±4 ka by optically stimulated luminescence (OSL). 14C dating was performed on charcoal fragments that were abundant in several horizons. Interestingly, in contrast to the two sediment-palaeosol successions in Calabria, the palaeosols exposed in NW Sardinia do not represent dark steppe and forest steppe soils. The NW Sardinian Late Pleistocene palaeosols are brownish, reflecting rather forest environments. This difference suggests somewhat more humid and less continental conditions in this area compared to Calabria, during the Last Glacial period. However, more of these terrestrial archives along the coast of S Italy would need to be studied to gain a deeper understanding of spatial patterns of Last Glacial vegetation and environments.

  9. Risk and resilience in the late glacial: A case study from the western Mediterranean

    Science.gov (United States)

    Barton, C. Michael; Aura Tortosa, J. Emili; Garcia-Puchol, Oreto; Riel-Salvatore, Julien G.; Gauthier, Nicolas; Vadillo Conesa, Margarita; Pothier Bouchard, Geneviève

    2018-03-01

    The period spanning the Last Glacial Maximum through early Holocene encompasses dramatic and rapid environmental changes that offered both increased risk and new opportunities to human populations of the Mediterranean zone. The regional effects of global climate change varied spatially with latitude, topography, and distance from a shifting coastline; and human adaptations to these changes played out at these regional scales. To better understand the spatial and temporal dynamics of climate change and human social-ecological-technological systems (or SETS) during the transition from full glacial to interglacial, we carried out a meta-analysis of archaeological and paleoenvironmental datasets across the western Mediterranean region. We compiled information on prehistoric technology, land-use, and hunting strategies from 291 archaeological assemblages, recovered from 122 sites extending from southern Spain, through Mediterranean France, to northern and peninsular Italy, as well as 2,386 radiocarbon dates from across this region. We combine these data on human ecological dynamics with paleoenvironmental information derived from global climate models, proxy data, and estimates of coastlines modeled from sea level estimates and digital terrain. The LGM represents an ecologically predictable period for over much of the western Mediterranean, while the remainder of the Pleistocene was increasingly unpredictable, making it a period of increased ecological risk for hunter-gatherers. In response to increasing spatial and temporal uncertainty, hunter-gatherers reorganized different constituents of their SETS, allowing regional populations to adapt to these conditions up to a point. Beyond this threshold, rapid environmental change resulted in significant demographic change in Mediterranean hunter-gatherer populations.

  10. The amount of glacial erosion of the bedrock

    International Nuclear Information System (INIS)

    Paasse, Tore

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m

  11. The amount of glacial erosion of the bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Paasse, Tore [Geological Survey of Sweden, Uppsala (Sweden)

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m.

  12. Late Glacial to Holocene climate change and human impact in the Mediterranean : The last ca. 17ka diatom record of Lake Prespa (Macedonia/Albania/Greece)

    NARCIS (Netherlands)

    Cvetkoska, Aleksandra; Levkov, Zlatko; Reed, Jane M.; Wagner, Bernd

    2014-01-01

    Lake Prespa (Macedonia/Albania/Greece) occupies an important location between Mediterranean and central European climate zones. Although previous multi-proxy research on the Late Glacial to Holocene sequence, core Co1215 (320cm; ca. 17cal ka BP to present), has demonstrated its great value as an

  13. Increased risk of glacial mudflows origin in Kabardino-Balkaria in the recent period

    Directory of Open Access Journals (Sweden)

    I. V. Malneva

    2013-01-01

    Full Text Available The paper deals with probability of glacial mudflow formation during the nearest years in the highland of Central Caucasus where the most mudflow-hazardous rivers are concentrated: Gerhozhansu, Adylsu, Adyrsu and others. It is established on the basis of calculated multi-year air temperatures during summer period that in June–August of 2012–2013 considerable increase and can intensify the activity of glacial mudflows. We estimate the tendency in mudflow activity using the analysis of multi-year regime of atmospheric circulation, the types of which determine mudflow-hazardous weather on a given territory (e.g. 12a, 13s, etc. according to the classification of B.L. Dzerdzeevsky. The duration of these types is presently sufficiently long and will remain the same during the nearest years. Due to the above-mentioned weather situation and availability of sufficient amounts of loose-clastic rock material on the territory of Kabardino-Balkaria, an increase of mudflow hazard is possible. So, in 2011 the glacial-flash mudflows happened in the basins of the rivers Cherek Balkarsky, Chegem, Baksan. In all these cases the weather corresponded to the type of ECM 13s. In 2013 the increase in duration of the above-mentioned ECM and mudflow activity can be connected with maximum of the solar cycle. During the previous maximum in 2000 the catastrophic mudflow happened on the river Gerhonzhansu; the town Tyrnyauz have been highly destructed.

  14. Late Pleistocene glacial stratigraphy of the Kumara-Moana region, West Coast of South Island, New Zealand

    Science.gov (United States)

    Barrows, Timothy T.; Almond, Peter; Rose, Robert; Keith Fifield, L.; Mills, Stephanie C.; Tims, Stephen G.

    2013-08-01

    On the South Island of New Zealand, large piedmont glaciers descended from an ice cap on the Southern Alps onto the coastal plain of the West Coast during the late Pleistocene. The series of moraine belts and outwash plains left by the Taramakau glacier are used as a type section for interpreting the glacial geology and timing of major climatic events of New Zealand and also as a benchmark for comparison with the wider Southern Hemisphere. In this paper we review the chronology of advances by the Taramakau glacier during the last or Otira Glaciation using a combination of exposure dating using the cosmogenic nuclides 10Be and 36Cl, and tephrochronology. We document three distinct glacial maxima, represented by the Loopline, Larrikins and Moana Formations, separated by brief interstadials. We find that the Loopline Formation, originally attributed to Oxygen Isotope Chronozone 4, is much younger than previously thought, with an advance culminating around 24,900 ± 800 yr. The widespread late Pleistocene Kawakawa/Oruanui tephra stratigraphically lies immediately above it. This Formation has the same age previously attributed to the older part of the Larrikins Formation. Dating of the Larrikins Formation demonstrates there is no longer a basis for subdividing it into older and younger phases with an advance lasting about 1000 years between 20,800 ± 500 to 20,000 ± 400 yr. The Moana Formation represents the deposits of the last major advance of ice at 17,300 ± 500 yr and is younger than expected based on limited previous dating. The timing of major piedmont glaciation is restricted to between ˜25,000 and 17,000 yr and this interval corresponds to a time of regionally cold sea surface temperatures, expansion of grasslands at the expense of forest on South Island, and hemisphere wide glaciation.

  15. Was the Sun especially active at the end of the late glacial epoch?

    Science.gov (United States)

    Alekseeva, Liliya

    In their pioneering work, the geophysicists A. Brekke and A. Egeland (1983) collected beliefs of different peoples, associated with northern lights. Our analyses of this collection show that these beliefs are mainly related to the mythological idea of ``abnormal'' deads (dead, childless old maids in Finnish beliefs; killed people; spirits dangerous to children). We find similar motifs in Slavic fairy tales about the ``Thrice-Nine Land,'' regarded as the other world in folkloric studies (in the Land where mobile and agitated warlike girls live, whose Head Girl is characterized by the words ``white snow, pretty light, the prettiest in the World,'' but whose name ``Mariya Morevna'' refers to the word ``mort''; where a river flows with its banks covered by human bones; where the witch Baba-Yaga dwells, being extremely dangerous for children). Moreover, it can be noted that similar narrative fabulous myths deal with the concept of auroral oval northern lights, since some specific features of the natural auroral forms are mentioned there, with their particular spatial orientations (to the North or West). This resembles the manner in which Ancient Greek myths describe the real properties of the heavenly phenomena in a mythological language. It is interesting that myths on the high-latitude northern lights spread even to the South of Europe (and, might be, to India and Iran). This fact can be understood in view of the following. It has been established that, during the late glacial epoch, the environmental and cultural conditions were similar over the area from Pyrenean to the Ural Mountains; the pattern of hunters' settlements outlined the glacial sheet from the outside. Relics of the hunters' beliefs can now be found in Arctic, where the environment and lifestyle remain nearly unchanged. The ethnographer Yu.B. Simchenko (1976) has reconstructed the most archaic Arctic myths. According to them, the World of dead is associated with the world of ice governed by the ``Ice

  16. Late Quaternary palaeolakes, rivers, and wetlands on the Bolivian Altiplano and their palaeoclimatic implications

    Science.gov (United States)

    Rigsby, Catherine A.; Platt Bradbury, J.; Baker, Paul A.; Rollins, Stephanie M.; Warren, Michelle R.

    2005-10-01

    Drill cores of sediments from the Rio Desaguadero valley, Bolivia, provide new information about the climate of tropical South America over the past 50 000 years. The modern Rio Desaguadero is fed by Lake Titicaca overflow (and by local tributaries) in the wetter northern Altiplano and discharges into Lake Poopo in the more arid central Altiplano. During the late Quaternary the Rio Desaguadero valley was the site of several generations of palaeolakes and wetlands that formed during periods of increased precipitation and local runoff, augmented by increased overflow from Lake Titicaca. Sediments recovered by drilling in eight localities along the 390-km long valley of the Rio Desaguadero yield a regional history of lacustrine sedimentation and effective precipitation. Lacustrine strata in the drill cores record 12 distinct wet periods in the past 50 000 years. Four of these wet periods resulted in the formation of major palaeolakes in the Rio Desaguadero valley: during the last glacial maximum from before 20 000 to 16 000 cal. yr BP, during the late glacial from about 14 000 to 12 000 cal. yr BP, in the early Holocene from about 10 000 to 7900 cal. yr BP, and in the late Holocene from 4500 cal. yrBP to present. The period that appears to have been most arid was between 7900 and 4500cal.yrBP. The Altiplano wet periods were generally synchronous with North Atlantic cold events (respectively, the last glacial maximum, the Younger Dryas, the 8200cal.yrBP event, and the Neoglacial) implying a relationship between past precipitation variability in tropical South America and North Atlantic sea-surface temperature.

  17. Earth's glacial record and its tectonic setting

    Science.gov (United States)

    Eyles, N.

    1993-09-01

    clearly established glacial parentage. The same remarks apply to many successions of laminated and thin-bedded facies interpreted as "varvites". Despite suggestions of much lower values of solar luminosity (the weak young sun hypothesis), the stratigraphic record of Archean glaciations is not extensive and may be the result of non-preservation. However, the effects of very different Archean global tectonic regimes and much higher geothermal heat flows, combined with a Venus-like atmosphere warmed by elevated levels of CO 2, cannot be ruled out. The oldest unambiguous glacial succession in Earth history appears to be the Early Proterozoic Gowganda Formation of the Huronian Supergroup in Ontario; the age of this event is not well-constrained but glaciation coincided with regional rifting, and may be causally related to, oxygenation of Earth's atmosphere just after 2300 Ma. New evidence that oxygenation is tectonically, not biologically driven, stresses the intimate relationship between plate tectonics, evolution of the atmosphere and glaciation. Global geochemical controls, such as elevated atmospheric CO 2 levels, may be responsible for a long mid-Proterozoic non-glacial interval after 2000 Ma that was terminated by the Late Proterozoic glaciations just after 800 Ma. A persistent theme in both Late Proterozoic and Phanerozoic glaciations is the adiabatic effect of tectonic uplift, either along collisional margins or as a result of passive margin uplifts in areas of extended crust, as the trigger for glaciation; the process is reinforced by global geochemical feedback, principally the drawdown of atmospheric CO 2 and Milankovitch "astronomical" forcing but these are unlikely, by themselves, to inititiate glaciation. The same remarks apply to late Cenozoic glaciations. Late Proterozoic glacially-influenced strata occur on all seven continents and fall into two tectonostratigraphic types. In the first category are thick sucessions of turbidites and mass flows deposited along

  18. Glacial-interglacial variations of microbial communities in permafrost and lake deposits in the Siberian Arctic

    Science.gov (United States)

    Mangelsdorf, Kai; Bischoff, Juliane; Gattinger, Andreas; Wagner, Dirk

    2013-04-01

    The Artic regions are expected to be very sensitive to the currently observed climate change. When permafrost is thawing, the stored carbon becomes available again for microbial degradation, forming a potential source for the generation of carbon dioxide and methane with their positive feedback effect on the climate warming. For the prediction of future climate evolution it is, therefore, important to improve our knowledge about the microbial-driven greenhouse gas dynamics in the Siberian Arctic and their response to glacial-interglacial changes in the past. Sample material was drilled on Kurungnahk Island (Russian-German LENA expedition) located in the southern part of the Lena delta and in lake El'gygytgyn (ICDP-project) in the eastern part of Siberia. The Kurungnahk samples comprise Late Pleistocene to Holocene deposits, whereas the lake El'gygytgyn samples cover Middle to Late Pleistocene sediments. Samples were investigated applying a combined biogeochemical and microbiological approach. The methane profile of the Kurungnahk core reveals highest methane contents in the warm and wet Holocene and Late Pleistocene (LP) deposits and correlates largly to the organic carbon (TOC) contents. Archaeol concentrations, being a biomarker for past methanogenic archaea, are also high during the warm and wet Holocene and LP intervals and low during the cold and dry LP periods. This indicates that part of the methane might be produced and trapped in the past. However, biomarkers for living microorganisms (bacteria and archaea) and microbial activity measurements of methanogens point, especially, for the Holocene to a viable archaeal community, indicating a possible in-situ methane production. Furthermore, warm/wet-cold/dry climate cycles are recorded in the archaeal diversity as revealed by genetic fingerprint analysis. Although the overlying lake water buffers the temperature effect on the lake sediments, which never became permafrost, the bacterial and archaeal biomarker

  19. Oxygen isotope composition as late glacial palaeoclimate indicators of groundwater recharge in the Baltic Basin

    International Nuclear Information System (INIS)

    Mokrik, R.; Mazeika, J.

    2002-01-01

    Several hypotheses were established to explain low δ 18 O values of groundwater which have been found in the Estonian Homocline. Traces of depleted groundwater were found also in other parts of the Baltic Basin near the shoreline. From data collected in this and previous studies, the δ 18 O values of groundwater in most aquifers are known to range from -7.7 to -13.9 per mille. However, the groundwater in Estonia in the Cambrian-Vendian aquifer system has significantly lower δ 18 O values, which vary mainly from -18 to -22.5 per mille. The overlying Ordovician-Cambrian aquifer is also depleted in 18 O, but, as a rule, the degree of depletion is several per mille less than in case of the Cambrian- Vendian aquifer. The thickness of the depleted water in Estonia reaches 450 m. At similar depths beneath Gotland Island (Sweden Homocline), groundwater has significantly higher δ 18 O values (from -5.7 to -6.1 per mille). A hydrogeologic model, depicting conditions during the pre Late Glacial, and accounting for hydraulic connections between the lake and river systems through taliks in permafrost, was developed to explain the observed groundwater isotope data. According to the adopted model, penetration of isotopically depleted surface waters could have reached depths of up to 500 m, with subsequent mixing between subglacial meltwater and old groundwater of Huneborg-Denekamp time. Traces of this penetration were discovered only near the shoreline, where δ 18 O values vary from -12 to -13.9 per mille and 14 C is below 4%. In the territory of the Estonian Homocline, the hydraulically close connection via the Cambrian-Vendian aquifer between talik systems of the Gulf of Riga and the Gulf of Finland existed through permafrost before the Late Glacial. This was due to subglacial recharge during the recessional Pandivere (12 ka BP) and Palivere (11.2 ka BP) phases, which is also associated with recharge of isotopically depleted groundwater. (author)

  20. Vegetation history and paleoclimate at Lake Dojran (FYROM/Greece) during the Late Glacial and Holocene

    Science.gov (United States)

    Masi, Alessia; Francke, Alexander; Pepe, Caterina; Thienemann, Matthias; Wagner, Bernd; Sadori, Laura

    2018-03-01

    A new high-resolution pollen and NPP (non-pollen palynomorph) analysis has been performed on the sediments of Lake Dojran, a transboundary lake located at the border between Greece and the former Yugoslav Republic of Macedonia (FYROM). The sequence covers the last 12 500 years and provides information on the vegetational dynamics of the Late Glacial and Holocene for the southern Balkans. Robust age model, sedimentological diatom, and biomarker analyses published previously have been the base for a multi-perspective interpretation of the new palynological data. Pollen analysis revealed that the Late Glacial is characterized by steppic taxa with prevailing Amaranthaceae, Artemisia and Poaceae. The arboreal vegetation starts to rise after 11 500 yr BP, taking a couple of millennia to be definitively attested. Holocene vegetation is characterized by the dominance of mesophilous plants. The Quercus robur type and Pinus are the most abundant taxa, followed by the Quercus cerris type, the Quercus ilex type and Ostrya-Carpinus orientalis. The first attestation of human presence can be presumed at 5000 yr BP from the contemporary presence of cereals, Juglans and Rumex. A drop in both pollen concentration and influx together with a δ18Ocarb shift indicates increasing aridity and precedes clear and continuous human signs since 4000 yr BP. Also, a correlation between Pediastrum boryanum and fecal stanol suggests that the increase in nutrients in the water is related to human presence and pasture. An undoubted expansion of human-related plants occurs since 2600 yr BP when cereals, arboreal cultivated and other synanthropic non-cultivated taxa are found. A strong reduction in arboreal vegetation occurred at 2000 yr BP, when the Roman Empire impacted a landscape undergoing climate dryness in the whole Mediterranean area. In recent centuries the human impact still remains high but spots of natural vegetation are preserved. The Lake Dojran multi-proxy analysis including pollen

  1. Ventilation changes in the western North Pacific since the last glacial period

    Directory of Open Access Journals (Sweden)

    Y. Okazaki

    2012-01-01

    Full Text Available We reconstructed the ventilation record of deep water at 2100 m depth in the mid-latitude western North Pacific over the past 25 kyr from radiocarbon measurements of coexisting planktic and benthic foraminiferal shells in sediment with a high sedimentation rate. The 14C data on fragile and robust planktic foraminiferal shells were concordant with each other, ensuring high quality of the reconstructed ventilation record. The radiocarbon activity changes were consistent with the atmospheric record, suggesting that no massive mixing of old carbon from the abyssal reservoir occurred throughout the glacial to deglacial periods.

  2. Glacial cycles: exogenous orbital changes vs. endogenous climate dynamics

    Science.gov (United States)

    Kaufmann, R. K.; Juselius, K.

    2010-04-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed to simulate glacial cycles accurately. Also, results suggest that non-linear dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles.

  3. Preliminary results on the search for new Late Glacial rock shelter-sites in the Federal State of Hesse

    DEFF Research Database (Denmark)

    Sauer, Florian Rudolf

    The multidisciplinary project “Apocalypse Then? The Laacher See volcanic eruption, Deep Environmental History and Europe’s Geo-cultural Heritage” at Aarhus University aims to investigate the influence of the catastrophic Late Glacial volcanic eruption on the lifeways of foragers 13.000 years ago....... One of the major work packages is the discovery of new sites which can provide Late Palaeolithic strata in the context of volcanic ash deposits. Previous tephrochronological research has demonstrated that neither open-air nor deep cave sites harbour great potential for discovering in situ volcanic ash...... of Bettenroder Berg in Lower Saxony which provide rich ABP (Arch-backed point-technocomplex) finds covered by Laacher-See Tephra (see Grote 1994). For the state of Hesse in Central Germany a database of ca. 800 potential rock shelters is forming the basis for the search for new sites in the medial zone...

  4. Palaeoclimate significance of speleothems in crystalline rocks: a test case from the Late Glacial and early Holocene (Vinschgau, northern Italy)

    Science.gov (United States)

    Koltai, Gabriella; Cheng, Hai; Spötl, Christoph

    2018-03-01

    Partly coeval flowstones formed in fractured gneiss and schist were studied to test the palaeoclimate significance of this new type of speleothem archive on a decadal-to-millennial timescale. The samples encompass a few hundred to a few thousand years of the Late Glacial and the early Holocene. The speleothem fabric is primarily comprised of columnar fascicular optic calcite and acicular aragonite, both indicative of elevated Mg / Ca ratios in the groundwater. Stable isotopes suggest that aragonite is more prone to disequilibrium isotope fractionation driven by evaporation and prior calcite/aragonite precipitation than calcite. Changes in mineralogy are therefore attributed to these two internal fracture processes rather than to palaeoclimate. Flowstones formed in the same fracture show similar δ18O changes on centennial scales, which broadly correspond to regional lacustrine δ18O records, suggesting that such speleothems may provide an opportunity to investigate past climate conditions in non-karstic areas. The shortness of overlapping periods in flowstone growth and the complexity of in-aquifer processes, however, render the establishment of a robust stacked δ18O record challenging.

  5. A Reassessment of U-Th and 14C Ages for Late-Glacial High-Frequency Hydrological Events at Searles Lake, California

    Science.gov (United States)

    Lin, J.C.; Broecker, W.S.; Hemming, S.R.; Hajdas, I.; Anderson, Robert F.; Smith, G.I.; Kelley, M.; Bonani, G.

    1998-01-01

    U-Th isochron ages of tufas formed on shorelines suggest that the last pluvial event in Lake Lahontan and Searles Lake was synchronous at about 16,500 cal yr B.P. (equivalent to a radiocarbon age of between 14,000 and 13,500 yr B.P.), whereas the timing of this pluvial event determined by radiocarbon dating is on the order of 1000 yr younger. The timing of seven distinct periods of near desiccation in Searles Lake during late-glacial time has been reinvestigated for U-Th age determination by mass spectrometry. U-Th dating of evaporite layers in the interbedded mud and salt unit called the Lower Salt in Searles Lake was hampered by the uncertainty in assessing the initial 230Th/232Th of the samples. The resulting ages, corrected by a conservative range of initial 230Th/ 232Th ratios, suggest close correlation of the abrupt changes recorded in Greenland ice cores (Dansgaard-Oeschger events) and wet-dry conditions in Searles Lake between 35,000 and 24,000 Cal yr B.P. ?? 1998 University of Washington.

  6. The rare peat moss Sphagnum wulfianum (Sphagnaceae) did not survive the last glacial period in northern European refugia.

    Science.gov (United States)

    Kyrkjeeide, Magni Olsen; Hassel, Kristian; Flatberg, Kjell I; Stenøien, Hans K

    2012-04-01

    Organisms may survive unfavorable conditions either by moving to more favorable areas by means of dispersal or by adapting to stressful environments. Pleistocene glacial periods represent extremely unfavorable conditions for the majority of life forms, especially sessile organisms. Many studies have revealed placements of refugial areas and postglacial colonization patterns of seed plants, but little is still known about areas of long-term survival and historical migration routes of bryophytes. Given overall differences in stress tolerance between seed plants and bryophytes, it is of interest to know whether bryophytes have survived periods of extreme climatic conditions better then seed plants in northern areas. The haploid and rarely spore-producing peat moss Sphagnum wulfianum is mostly found in areas that were covered by ice during the last glacial maximum. Twelve microsatellite markers were amplified from 43 populations (367 shoots) of this species, and data were analyzed using population genetic diversity statistics, Bayesian clustering methods, and coalescence-based inference tools to estimate historical and demographic parameters. Genetic diversity within populations was low, but populations were highly differentiated, with two main genetic clusters being recognized. The two main genetic groups have diverged quite recently in the Holocene, and the pattern of genetic variability and structuring gives no support for survival in Scandinavian refugia during the last glacial period in this species. The dispersal ability of this plant thus seems surprisingly high despite its infrequent spore production.

  7. Preservation of a Late Glacial terrestrial and Holocene estuarine record on the margins of Kaipara Harbour, Northland, New Zealand

    International Nuclear Information System (INIS)

    Nichol, S.; Deng, Y.; Horrocks, M.; Zhou, W.; Hume, T.

    2009-01-01

    Subtidal to intertidal deposits from the margins of Kaipara Harbour in Northland preserve a c. 23,000 year incomplete sedimentary record of the transition from terrestrial to estuarine conditions. Cores are used to reconstruct the depositional setting for this transition, interpreted as a succession from dune and freshwater wetland to shallow estuarine environments. The fossil pollen record provides a proxy of Last Glacial Maximum and Late Glacial vegetation for the area. Stability of the Pleistocene dune landscape during the postglacial marine transgression is interpreted on the basis of strong dominance of tall forest taxa (Dacrydium) in the pollen record and soil development in dune sands, with preservation aided by location along the estuary margin. During the Holocene, reworking of the buried dune and wetland sediments has only reached to a depth of 1.5 m below the modern tidal flat. As such, the site provides a rare example of good preservation of Pleistocene deposits at the coast, where extensive reworking and loss of record are more typical. (author). 41 refs., 6 figs., 1 tab

  8. Evidence of a low-latitude glacial buzzsaw: Progressive hypsometry reveals height-limiting glacial erosion in tropical mountain belts

    Science.gov (United States)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2017-12-01

    It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active

  9. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet

    Directory of Open Access Journals (Sweden)

    Tao Che

    2014-01-01

    Full Text Available Latest satellite images have been utilized to update the inventories of glaciers and glacial lakes in the Pumqu river basin, Xizang (Tibet, in the study. Compared to the inventories in 1970s, the areas of glaciers are reduced by 19.05% while the areas of glacial lakes are increased by 26.76%. The magnitudes of glacier retreat rate and glacial lake increase rate during the period of 2001–2013 are more significant than those for the period of the 1970s–2001. The accelerated changes in areas of the glaciers and glacial lakes, as well as the increasing temperature and rising variability of precipitation, have resulted in an increased risk of glacial lake outburst floods (GLOFs in the Pumqu river basin. Integrated criteria were established to identify potentially dangerous glacial lakes based on a bibliometric analysis method. It is found, in total, 19 glacial lakes were identified as dangerous. Such finding suggests that there is an immediate need to conduct field surveys not only to validate the findings, but also to acquire information for further use in order to assure the welfare of the humans.

  10. Holocene glacial fluctuations in southern South America

    Science.gov (United States)

    Reynhout, S.; Sagredo, E. A.; Kaplan, M. R.; Aravena, J. C.; Martini, M. A.; Strelin, J. A.; Schaefer, J. M.

    2016-12-01

    Understanding the timing and magnitude of former glacier fluctuations is critical to decipher long-term climatic trends and to unravel both natural cycles and human impact on the current glacial behavior. Despite more than seven decades of research efforts, a unifying model of Holocene glacial fluctuations in Southern South America remains elusive. Here, we present the state-of-the-art regarding the timing of Holocene glacial fluctuation in southern Patagonia-Tierra del Fuego, with a focus on a new generation of high-resolution radiocarbon and 10Be surface exposure dating chronologies. Recently acquired evidence suggest that after receding from advanced Late Glacial positions, Patagonian glaciers were for the most part close to, or even behind, present ice margins during the Early Holocene. On the other hand, emerging chronologies indicate that in some areas there were extensive expansions (century scale?) that punctuated the warm interval. Subsequently, we have evidence of multiple millennial timescale glacial advances starting in the middle Holocene. Several glacial maxima are defined by moraines and other landforms from 7000 years ago to the 19th century, with a gap sometime between 4,500 and 2,500 years ago. The last set of advances began around 800-600 years ago. Although glacial activity is documented in Patagonia at the same time as the European Little Ice Age, the extent of these glacial events are less prominent than those of the mid-Holocene. The causes that may explain these glacial fluctuations remain elusive. Finally, we discuss ongoing efforts to better define the timing and extent of Holocene glaciations in southern South America, and to establish the basis to test competing hypothesis of regional Holocene climate variability.

  11. Vegetation history and paleoclimate at Lake Dojran (FYROM/Greece during the Late Glacial and Holocene

    Directory of Open Access Journals (Sweden)

    A. Masi

    2018-03-01

    Full Text Available A new high-resolution pollen and NPP (non-pollen palynomorph analysis has been performed on the sediments of Lake Dojran, a transboundary lake located at the border between Greece and the former Yugoslav Republic of Macedonia (FYROM. The sequence covers the last 12 500 years and provides information on the vegetational dynamics of the Late Glacial and Holocene for the southern Balkans. Robust age model, sedimentological diatom, and biomarker analyses published previously have been the base for a multi-perspective interpretation of the new palynological data. Pollen analysis revealed that the Late Glacial is characterized by steppic taxa with prevailing Amaranthaceae, Artemisia and Poaceae. The arboreal vegetation starts to rise after 11 500 yr BP, taking a couple of millennia to be definitively attested. Holocene vegetation is characterized by the dominance of mesophilous plants. The Quercus robur type and Pinus are the most abundant taxa, followed by the Quercus cerris type, the Quercus ilex type and Ostrya–Carpinus orientalis. The first attestation of human presence can be presumed at 5000 yr BP from the contemporary presence of cereals, Juglans and Rumex. A drop in both pollen concentration and influx together with a δ18Ocarb shift indicates increasing aridity and precedes clear and continuous human signs since 4000 yr BP. Also, a correlation between Pediastrum boryanum and fecal stanol suggests that the increase in nutrients in the water is related to human presence and pasture. An undoubted expansion of human-related plants occurs since 2600 yr BP when cereals, arboreal cultivated and other synanthropic non-cultivated taxa are found. A strong reduction in arboreal vegetation occurred at 2000 yr BP, when the Roman Empire impacted a landscape undergoing climate dryness in the whole Mediterranean area. In recent centuries the human impact still remains high but spots of natural vegetation are preserved. The Lake

  12. The last glacial inception in continental northwestern Europe: characterization and timing of the Late Eemian Aridity Pulse (LEAP) recorded in multiple Belgian speleothems.

    Science.gov (United States)

    Vansteenberge, Stef; Verheyden, Sophie; Quinif, Yves; Genty, Dominique; Blamart, Dominique; Deprez, Maxim; Van Stappen, Jeroen; Cnudde, Veerle; Cheng, Hai; Edwards, R. Lawrence; Claeys, Philippe

    2017-04-01

    Interglacial-glacial transitions represent important turnovers in the climate system. In contrast with glacial terminations, they are described as a more gradual cooling. So far, the last interglacial has yielded a wealth of knowledge regarding climate dynamics during past warm periods. On top of the assumed gradual temperature drop starting at 119 ka, evidence for the presence of a drastic drying/cooling event in northern Europe has been observed. In lake records from Germany, a distinct shift in pollen assembly at 117.5 ka is interpreted as the consequence of a short dry event lasting 470 years, defined as the Late Eemian Aridity Pulse (LEAP, Sirocko et al., 2005). In a Belgian stalagmite from Han-sur-Lesse Cave, the LEAP is characterized by a 5‰ increase in δ13C occurring in just 200 years. The δ13C enrichment is dated at 117.5 ka and associated with a vegetation change above the cave, induced by a drying and/or cooling event (Vansteenberge et al., 2016). Also, within North Atlantic sediment cores, an increase in ice rafted debris was linked to the occurrence of a colder period at 117 ka (Irvali et al., 2016). Its coevality with the LEAP indicates a likely more regional extent than previously thought. Up to now, no independent chronology exists and little is known about the continental climatic expression of the LEAP. This study aims at 1) constructing an improved and independent chronology for the LEAP event, 2) characterizing this event in terms of its climatic expression and 3) placing the LEAP within the context of an interglacial-glacial transition. For this, two additional speleothems (Han-8, RSM-17) from two different Belgian caves (Han-sur-Lesse, Remouchamps) are added to the existing Han-9 dataset. Exceptionally high growth rates (0.5 mm yr-1) and a presumed annual layering of the RSM-17 sample enable an annual to decadal resolution to investigate the LEAP. U-Th age models covering the glacial inception are constructed with 25 dates on the three

  13. Vegetation and environmental dynamics in the Páramo of Jimbura region in the southeastern Ecuadorian Andes during the late Quaternary

    Science.gov (United States)

    Villota, Andrea; León-Yánez, Susana; Behling, Hermann

    2012-12-01

    The last 15,000 years of vegetation, fire and climate history were reconstructed from the Laguna Natosa Peat bog core (3600 m elevation) in the Páramo of Jimbura region in the Cordillera Real, close to the Peruvian border of southern Ecuador in the southernmost part of the Andean depression. The pollen record, dated by 5 radiocarbon dates, indicates that during the late Glacial (ca. 15,000-12,000 cal yr BP) a gradual expansion of mountain forest, restricting the páramo vegetation to small patches, and a shift of the forest line to higher elevation took place; reflecting an increase in temperature. However, a clear signal of the warmer Bølling/Allerød interstadial and the cooler Younger Dryas period, are not reflected in the record. During the transition from the late Glacial to the early/mid-Holocene (ca. 12,000-4800 cal yr BP), tree taxa such as Hedyosmum and Podocarpaceae are well represented, suggesting that the upper forest line, especially in the mid-Holocene, reached slightly higher elevations than at present. Hence, páramo vegetation was limited, indicating warmer climatic conditions for the early to mid-Holocene period than today. The late Holocene from 4800 cal yr BP until the present is characterized by higher occurrences of páramo taxa. During this period, the upper forest line shifted downwards giving room to the expansion of the páramo vegetation to its current size. Fire was rare during the late Glacial period but became more frequent after about 8000 cal yr BP, probably due to the dry event during the mid-Holocene and increased human activity.

  14. Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period

    Science.gov (United States)

    Rella, Stephan F.; Tada, Ryuji; Nagashima, Kana; Ikehara, Minoru; Itaki, Takuya; Ohkushi, Ken'ichi; Sakamoto, Tatsuhiko; Harada, Naomi; Uchida, Masao

    2012-09-01

    Millennial-scale variability in the behavior of North Pacific Intermediate Water during the last glacial and deglacial period, and its association with Dansgaard-Oeschger (D-O) cycles and Heinrich events, are examined based on benthic foraminiferal oxygen and carbon isotopes (δ18Obf and δ13Cbf) and %CaCO3 using a sediment core recovered from the northeastern slope of the Bering Sea. A suite of positive δ18Obf excursions at intermediate depths of the Bering Sea, which seem at least in part associated with increases in the δ18Obf gradients between the Bering and Okhotsk Seas, suggest the Bering Sea as a proximate source of intermediate water during several severe stadial episodes in the last glacial and deglacial period. Absence of such δ18Obf gradients during periods of high surface productivity in the Bering and Okhotsk Seas, which we correlate to D-O interstadials, suggests a reduction in intermediate water production in the Bering Sea and subsequent introduction of nutrient-rich deep waters from the North Pacific into intermediate depths of the Bering Sea. We argue that a reorganization of atmospheric circulation in the high-latitude North Pacific during severe cold episodes in the last glacial and deglacial period created favorable conditions for brine rejection in the northeastern Bering Sea. The resulting salinity increase in the cold surface waters could have initiated intermediate (and deep) water formation that spread out to the North Pacific.

  15. Links between Patagonian Ice Sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4-2)

    Science.gov (United States)

    Kaiser, Jérôme; Lamy, Frank

    2010-06-01

    Antarctic and Greenland ice-core records reveal large fluctuations of dust input on both orbital and millennial time-scales with potential global climate implications. At least during glacial periods, the Antarctic dust fluctuations appear to be largely controlled by environmental changes in southern South America. We compare dust flux records from two Antarctic ice-cores to variations in the composition of the terrigenous supply at ODP Site 1233 located off southern Chile and known to record fluctuations in the extent of the northern part of the Patagonian ice-sheet (NPIS) during the last glacial period (Marine Isotope Stage, MIS, 4 to 2). Within age uncertainties, millennial-scale glacial advances (retreats) of the NPIS correlate to Antarctic dust maxima (minima). In turn, NPIS fluctuations were closely related to offshore sea surface temperature (SST) changes. This pattern suggests a causal link involving changes in temperature, in rock flour availability, in latitudinal extensions of the westerly winds and in foehn winds in the southern Pampas and Patagonia. We further suggest that the long-term trend of dust accumulation is partly linked to the sea-level related changes in the size if the Patagonian source area due to the particular morphology of the Argentine shelf. We suggest that sea-level drops at the beginning of MIS 4 and MIS 2 were important for long-term dust increases, while changes in the Patagonian dust source regions primarily control the early dust decrease during the MIS 4/3 transition and Termination 1.

  16. A ~20,000 year history of glacial variability in the tropical Andes recorded in lake sediments from the Cordillera Blanca, Peru

    Science.gov (United States)

    Stansell, N.; Rodbell, D. T.; Moy, C. M.

    2010-12-01

    Pro-glacial lake sediments from the Cordillera Blanca, Peru contain continuous records of climate variability spanning the Last Glacial Maximum to present day. Here we present results from two alpine lake basins in the Queshgue Valley (9.8°S, 77.3°W) that contain high-resolution records of clastic sediment deposition for the last ~20,000 years. Radiocarbon-dated sediment cores were scanned at 0.5 to 1.0 cm resolution using a profiling x-ray fluorescence scanner for major and minor element distributions. In addition, we measured down-core variations in magnetic susceptibility, organic carbon, biogenic silica and calcium carbonate. Samples of bedrock and sediments from glacial moraines in the Queshgue watershed were analyzed using an ICP-MS in order to fingerprint and trace the source of glacial sediments deposited in the lakes. The bedrock is dominated by a combination of granodiorite with high Sr concentrations and meta-sedimentary rocks with high Zr values. Because the glacial sediments proximal to the modern glacier terminus are composed mostly of the granodiorite end-member, we interpret changes in Sr and clastic sediment concentrations in the lake sediment profiles as proxies for past glacial variability. Preliminary results indicate that glaciers retreated soon after ~14,500 cal yr BP and remained less extensive during the remaining late Glacial Stage and early Holocene. Gradually increasing clastic sediments through the middle and late Holocene indicate that glaciers became progressively larger, or more erosive towards present day. However, this overall Holocene trend of increasing glacier extent was interrupted by multiple periods of centennial- to millennial-scale ice margin retreat. For example, relative peaks in clastic sediments occurred from ~14,500 to 6000, 5600 to 5000, 4600 to 4200, 3600 to 3200, 2800 to 2700, 2400 to 2200, 1750 to 1550, 1100 to 900 cal yr BP, and during the Little Ice Age (~700 to 50 cal yr BP), while periods of low clastic

  17. Quaternary glacial stratigraphy and chronology of Mexico

    Science.gov (United States)

    White, Sidney E.

    The volcano Iztaccihuatl in central Mexico was glaciated twice during the middle Pleistocene, once probably in pre-Illinoian (or pre-Bull Lake) time, and once in late Illinoian (or Bull Lake) time. Glaciation during the late Pleistocene was restricted to the late Wisconsin (or Pinedale). A maximum advance and one readvance are recorded in the early part, and one readvance in the latter part. Three or four small neoglacial advances occurred during the Holocene. Two other volcanoes nearby, Ajusco and Malinche, have a partial record of late Pleistocene and Holocene glaciations. Three others, Popocatépetl, Pico de Orizaba, and Nevado de Toluca, have a full Holocene record of three to five glacial advances during Neoglaciation.

  18. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    Science.gov (United States)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa; Bentley, Michael J.; King, Matt

    2014-05-01

    The Holocene deglaciation of West Antarctica resulted in widespread ice surface lowering. While many ice-sheet reconstructions generally assume a monotone Holocene retreat for the West Antarctica Ice sheet (WAIS) [Ivins et al., 2013; Peltier, 2004; Whitehouse et al., 2012], an increasing number of glaciological observations infer it is readvancing, following retreat behind the present-day margin[Siegert et al., 2013]. We will show that a readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice-streams grounded on beds that deepen inland in apparent contradiction to theory [Schoof, 2007]; and (ii) the inability of models of Glacial Isostatic Adjustment (GIA) to match present-day uplift rates [Whitehouse et al., 2012]. Combining a suite of ice loading histories that include a readvance with a model of GIA provides significant improvements to predictions of present-day uplift rates, and we are able to reproduce previously unexplained observations of subsidence in the southern sector of the Weddell Sea. We hypothesize that retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery led to shallowing, ice sheet re-grounding and readvance. We will conclude that some sections of the current WAIS grounding line that are theoretically unstable, may be advancing and that the volume change of the WAIS may have been more complex in the Late Holocene than previously posited. This revised Holocene ice-loading history would have important implications for the GIA correction applied to Gravity Recovery and Climate Experiment (GRACE) data, likely resulting in a reduction in the GIA correction and a smaller estimate of present-day ice mass loss within the Weddell Sea region of the WAIS. Ivins, E. R., T. S. James, J. Wahr, E. J. O. Schrama, F. W. Landerer, and K. M. Simon (2013), Antarctic contribution to sea level rise observed by GRACE with improved GIA correction

  19. Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?

    Science.gov (United States)

    Leonard, Saoirse A; Risley, Claire L; Turvey, Samuel T

    2013-08-23

    Brown bears are recorded from Ireland during both the Late Pleistocene and early-mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British-Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear-polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions.

  20. Fossil Coral Records of ENSO during the Last Glacial Period

    Science.gov (United States)

    Partin, J. W.; Taylor, F. W.; Shen, C. C.; Edwards, R. L.; Quinn, T. M.; DiNezro, P.

    2017-12-01

    Only a handful of paleoclimate records exist that can resolve interannual changes, and hence El Nino/Southern Oscillation (ENSO) variability, during the last glacial period, a time of altered mean climate. The few existing data suggest reduced ENSO variability compared to the Holocene, possibly due to a weaker zonal sea surface temperature gradient across the tropical Pacific and/or a deeper thermocline in the eastern tropical Pacific. Our goal is to add crucial data to this extremely limited subset using sub-annually resolved fossil corals that grew during this time period to reconstruct ENSO. We seek to recover fossil corals from Vanuatu, SW Pacific (16°S, 167°E) with the objective of using coral δ18O to reconstruct changes in the ENSO during and near the Last Glacial Maximum (LGM). Modern δ18O coral records from Vanuatu show a high degree of skill in capturing ENSO variability, making it a suitable site for reconstructing ENSO variability. We have custom designed and are building a drill system that can rapidly core many 0-25 m holes resulting in much more meters of penetration than achieved by previous land-based reef drilling. As the new drill system is extremely portable and can be quickly relocated by workers without landing craft or vehicles, it is time and cost efficient. Because the proposed drilling sites have uplifted extremely fast, 7 mm/year, the LGM shoreline has been raised from 120-140 m depth to within a depth range of 10 below to 20 m above present sea level. This enables all the drilling to be within the time range of interest ( 15-25 ka). A last advantage is that the LGM corals either are still submersed in seawater or emerged only within the last 2000 years at the uplift rate of 7 mm/yr. This greatly reduces the chances of disruption of the original climate signal because sea water is less diagenetically damaging than meteoric water in the mixed, phreatic, or vadose zones. LGM coral records will enable us to compare the proxy variability

  1. Middle and Late Pleistocene glaciations in the southwestern Pamir and their effects on topography [Topography of the SW Pamir shaped by middle-late Pleistocene glaciation

    International Nuclear Information System (INIS)

    Stübner, Konstanze; Grin, Elena; Hidy, Alan J.; Schaller, Mirjam; Gold, Ryan D.

    2017-01-01

    Glacial chronologies provide insight into the evolution of paleo-landscapes, paleoclimate, topography, and the erosion processes that shape mountain ranges. In the Pamir of Central Asia, glacial morphologies and deposits indicate extensive past glaciations, whose timing and extent remain poorly constrained. Geomorphic data and 15 new "1"0Be exposure ages from moraine boulders and roches moutonnées in the southwestern Pamir document multiple Pleistocene glacial stages. The oldest exposure ages, View the MathML source113 ± 10ka, underestimate the age of the earliest preserved glacial advance and imply that the modern relief of the southwestern Pamir (peaks at ~5000–6000 m a.s.l.; valleys at ~2000–3000 m a.s.l.) already existed in the late Middle Pleistocene. Younger exposure ages (~40–80 ka, ~30 ka) complement the existing Central Asian glacial chronology and reflect successively less extensive Late Pleistocene glaciations. The topography of the Pamir and the glacial chronologies suggest that, in the Middle Pleistocene, an ice cap or ice field occupied the eastern Pamir high-altitude plateau, whereas westward flowing valley glaciers incised the southwestern Pamir. Since the Late Pleistocene deglaciation, the rivers of the southwestern Pamir adjusted to the glacially shaped landscape. As a result, localized rapid fluvial incision and drainage network reorganization reflect the transient nature of the deglaciated landscape.

  2. Late glacial vegetation and climate changes in the high mountains of Bulgaria (Southeast Europe)

    International Nuclear Information System (INIS)

    Bozilova, E.D.; Tonkov, S.B.

    2005-01-01

    Full text: The Late glacial vegetation history in the high mountains of Southern Bulgaria (Rila, Pirin, Western Rhodopes) is reconstructed by means of pollen analysis, plant macrofossils and radiocarbon dating of sediments from lakes and peat-bogs located between 1300 and 2200 m a.s.l. The vegetation response to the climate fluctuations after 13000 14 C yrs. BP in the Rila Mountains is bound for the first time to a detailed chronological framework. Two stadial and one interstadial phases are delimited analogous with the Oldest Dryas-Bolling/Allerod-Younger Dryas cycle for Western Europe. During the stadials mountain-steppe vegetation composed of Artemisia, Chenopodiaceae, Poaceae and other cold-resistant herbs dominated at high elevation with sparse stands of Pinus, Betula, and shrubland of Juniperus and Ephedra. The climate improvement in the interstadial resulted in the initial spread of deciduous and coniferous trees (Quercus, Tilia, Corylus, Carpinus, Abies, Picea) from their local refugia below 1000 m. The palaeoecological record from the climate deterioration during the Younger Dryas is documented in thin sections of the cores investigated. (author)

  3. A synthesis of post-glacial diatom records from Lake Baikal

    Science.gov (United States)

    Bradbury, J. Platt; Bezrukova, E.; Chernyaeva, G.; Colman, S.M.; Khursevich, G.; King, J.W.; Likoshway, Ye. V.

    1994-01-01

    The biostratigraphy of fossil diatoms contributes important chronologic, paleolimnologic, and paleoclimatic information from Lake Baikal in southeastern Siberia. Diatoms are the dominant and best preserved microfossils in the sediments, and distinctive assemblages and species provide inter-core correlations throughout the basin at millennial to centennial scales, in both high and low sedimentation-rate environments. Distributions of unique species, once dated by radiocarbon, allow diatoms to be used as dating tools for the Holocene history of the lake.Diatom, pollen, and organic geochemical records from site 305, at the foot of the Selenga Delta, provide a history of paleolimnologic and paleoclimatic changes from the late glacial (15 ka) through the Holocene. Before 14 ka diatoms were very rare, probably because excessive turbidity from glacial meltwater entering the lake impeded productivity. Between 14 and 12 ka, lake productivity increased, perhaps as strong winds promoted deep mixing and nutrient regeneration. Pollen evidence suggests a cold shrub — steppe landscape dominated the central Baikal depression at this time. As summer insolation increased, conifers replaced steppe taxa, but diatom productivity declined between 11 and 9 ka perhaps as a result of increased summer turbidity resulting from violent storm runoff entering the lake via short, steep drainages. After 8 ka, drier, but more continental climates prevailed, and the modern diatom flora of Lake Baikal came to prominence.On Academician Ridge, a site of slow sedimentation rates, Holocene diatom assemblages at the top of 10-m cores reappear at deeper levels suggesting that such cores record at least two previous interglacial (or interstadial?) periods. Nevertheless, distinctive species that developed prior to the last glacial period indicate that the dynamics of nutrient cycling in Baikal and the responsible regional climatic environments were not entirely analogous to Holocene conditions. During

  4. Lateglacial.org

    DEFF Research Database (Denmark)

    Jensen, Peter

    2012-01-01

    Lateglacial.org is an interactive, open-access online data repository and geographic research tool for the Late Glacial period of northern Europe. The database behind this website currently contains information on those localities that have yielded remains from the Late Glacial period, and is cen......Lateglacial.org is an interactive, open-access online data repository and geographic research tool for the Late Glacial period of northern Europe. The database behind this website currently contains information on those localities that have yielded remains from the Late Glacial period...

  5. Evidence for slow late-glacial ice retreat in the upper Rangitata Valley, South Island, New Zealand

    Science.gov (United States)

    Shulmeister, J.; Fink, D.; Winkler, S.; Thackray, G. D.; Borsellino, R.; Hemmingsen, M.; Rittenour, T. M.

    2018-04-01

    A suite of cosmogenic radionuclide ages taken from boulders on lateral and latero-terminal moraines in the Rangitata Valley, eastern South Island, New Zealand demonstrates that relatively thick ice occupied valley reaches inland of the Rangitata Gorge until c. 21 ka. Thereafter ice began to thin, and by c. 17 ka it had retreated 33 km up-valley of the Rangitata Gorge to the Butler-Brabazon Downs, a structurally created basin in the upper Rangitata Valley. Despite its magnitude, this retreat represents a minor ice volume reduction from 21 ka to 17 ka, and numerous lateral moraines preserved suggest a relatively gradual retreat over that 4 ka period. In contrast to records from adjacent valleys, there is no evidence for an ice-collapse at c. 18 ka. We argue that the Rangitata record constitutes a more direct record of glacial response to deglacial climate than other records where glacial dynamics were influenced by proglacial lake development, such as the Rakaia Valley to the North and the major valleys in the Mackenzie Basin to the south-west. Our data supports the concept of a gradual warming during the early deglaciation in the South Island New Zealand.

  6. Invariance of the carbonate chemistry of the South China Sea from the glacial period to the Holocene and its implications to the Pacific Ocean carbonate system

    Science.gov (United States)

    Luo, Yiming; Kienast, Markus; Boudreau, Bernard P.

    2018-06-01

    Substantial and correlated changes in marine carbonate (CaCO3) content of oceanic sediments commonly accompany the transitions from cold glacial periods to warm interglacial periods. The South China Sea (SCS) is said to be ocean-dominated at depth, and its CaCO3 records should reflect and preserve the effects of changes in the carbonate chemistry of the (western) Pacific Ocean. Using published and newly acquired CaCO3 data and a model for carbonate compensation dynamics, we show that a significant change with respect to carbonate saturation is unlikely to have occurred in the SCS during the last glacial-interglacial transition. Instead, the results from a carbonate deposition model argue that the saturation state of the SCS was largely invariant; a separate diagenetic model argues that changes in sediment CaCO3 content can be explained by alterations in lithogenic input. In turn, this could indicate that the carbonate ion concentration of the (western) Pacific at depths shallower than the sill to the SCS (ca. 2,400 m) has not changed appreciably between the last glacial period and the present interglacial.

  7. A paleoecological reconstruction of the Late Glacial and Holocene based on multidisciplinary studies at Steregoiu site (Gutai Mts., Romania

    Directory of Open Access Journals (Sweden)

    Angelica Feurdean

    2001-09-01

    Full Text Available High resolution analyses of pollen, mineral magnetic properties, loss of ignition, lithostratigraphy and AMS 14C measurements of lake sediments and peat deposits accumulated in the former crater lake of Steregoiu (Gutâiului Mts., NW Romania, gave new and important information about vegetation and climate changes from the period GS-2 to the present. During the Lateglacial, three cold events were recorded: before 14,700 cal. years BP (GS-2, 14,050–13,800 cal. years BP (GI-1d, 12,900-11,500 cal. years BP (GS-1, and a warm climatic event between 13,800-12,950 cal. years BP (GI-1c to GL-1a. The Late Glacial/Holocene transition around 11,500 cal. years BP, was determined by an expansion of Betula, Alnus and Picea, followed by a rapid and strong expansion of Ulmus. At 10,700 cal. years BP, dense and highly diverse forests with Ulmus, Quercus, Tilia, Fraxinus and a few Acer and Corylus individuals dominated the area. Corylus and Picea were the dominant species in the forests from 10,150 to 8,500 cal. years BP. The first occurrence of single Fagus pollen grains was around 8,000 cal years BP. Only at 4,700 cal year BP Fagus and Carpinus became widespread and established trees in the local woodlands.

  8. Glacially striated, soft sediment surfaces on late Paleozoic tillite at São Luiz do Purunã, PR

    Directory of Open Access Journals (Sweden)

    Ivo Trosdtorf Jr.

    2005-06-01

    Full Text Available Striae and furrows found on the upper surfaces of three stratigraphically superposed decimetric beds of late Paleozoic lodgement tillite of the Itararé Subgroup in the northern Paraná Basin were engraved by ploughing of clasts and possibly also ice protuberances at the base of the glacier, on unconsolidated to partially consolidated sediment. Associated features indicate that the rheology of the bed varied from stiff during lodgement to soft and deformable during ploughing. Poor drainage of meltwater at the glacier-bed interface may have contributed to lower the strength of sediment to deformation. The deformed interval was probably generated during a single glacial phase or advance of a glacier grounding in a marine or lacustrine water body. Changes in the dynamics of the glacier involving slow and fast flow were correlated respectively with alternation of deposition and erosion. The proposed model is analogous to that of lodgement till complexes from the Pleistocene of the northern hemisphere. Retreat of the glacier was probably fast, followed by settling of muds on top of the upper striated and furrowed surface, and progradation of deltaic sands during post-glacial time.Estrias e sulcos encontrados sobre três camadas decimétricas, estratigraficamente superpostas, de tilito de alojamento neopaleozóico do Subgrupo Itararé, na porção norte da Bacia do Paraná, foram formados por aração de clastos e, possivelmente, por protuberâncias de gelo, na base da geleira. Feições associadas indicam que a reologia do sedimento variou de rígido, durante o alojamento, a inconsolidado e deformável durante a aração. A baixa drenagem da água de degelo na interface geleira-substrato pode ter contribuído para reduzir a resistência do sedimento à deformação. A sucessão acima foi gerada provavelmente durante uma única fase glacial ou avanço de geleira sobre corpo de água marinho ou lacustre. Mudanças na dinâmica da geleira envolvendo

  9. A model of late quaternary landscape development in the Delaware Valley, New Jersey and Pennsylvania

    Science.gov (United States)

    Ridge, J.C.; Evenson, E.B.; Sevon, W.D.

    1992-01-01

    landscape stability were delayed until the Holocene by a lingering cold climate, slope erosion, colluvium and alluvial fan deposition, and eolian sedimentation. Late Quaternary erosion in the Delaware Valley was dominated by glacial and periglacial processes during glacial stages. During the warm interglacial stages, soils developed on a more stable landscape. These souls were easily colluviated by periglacial erosion during periods of intermittent cold climate. ?? 1992.

  10. Testing Hypotheses About Glacial Cycles Against the Observational Record

    DEFF Research Database (Denmark)

    Kaufmann, Robert; Juselius, Katarina

    2013-01-01

    We estimate an identified cointegrated vector autoregression (CVAR) model of the climate system to test hypotheses about the physical mechanisms that may drive glacial cycles during the late Pleistocene. Results indicate that a permanent doubling of CO2 generates a 11.1oC rise in Antarctic...

  11. A geochemical record of polycyclic aromatic hydrocarbons (PAHs) during the late Paleozoic Ice Age: The relationship between atmospheric pCO2, climate and fire.

    Science.gov (United States)

    Hren, M. T.; Harris, G.; Montanez, I. P.; DiMichele, W.; Eley, Y.; White, J. D.; Wilson, J. P.; McElwain, J.; Poulsen, C. J.

    2017-12-01

    The late Paleozoic Ice Age (LPIA) represents a dynamic period of widespread glacial/interglacial cycling as the earth underwent a major transition from an icehouse to greenhouse climate. During this transition period, pCO2 is shown to have varied by several hundred ppm and within the predicted range for anthropogenic change. Glacial/interglacial changes in atmospheric pCO2 during this time are associated with restructuring of tropical forests and carbon cycle dynamics. At present however, there is considerable debate over the potential hydrologic and fire-frequency feedbacks associated with this climatic variability. Polycyclic aromatic hydrocarbons (PAHs) are produced from the incomplete combustion of organic matter and are shown to be preserved over hundreds of millions of years. Thus, these organic compounds provide a potential record of the feedbacks between global biogeochemical systems and fire. We analyzed sedimentary organic matter from the Illinois Basin spanning the late Carboniferous glacial-interglacial cycles to assess the evolution of fire during this period. Our data show a decrease in the overall abundance of high molecular weight PAHs (HMW) from 312 to 304 Myr with significant variability that is coincident with the general timing of pCO2 cycling. Decreasing PAH abundance is also coincident with a proposed long-term change in pO2 and may reflect the influence of atmospheric oxygen in regulating fire occurrence and hydrologic cycling in tropical ecosystems in the late Carboniferous.

  12. Late-glacial and Holocene history of changes in Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.; Finkel, R. C.

    2008-12-01

    Quelccaya Ice Cap in the southeastern Peruvian Andes (~13-14° S latitude) is an icon for climate change. Its rapidly receding outlet, Qori Kalis Glacier, has been monitored since the 1970's. Cores from Quelccaya Ice Cap provide high-resolution information about temperature and precipitation during the past 1,500 years. We extend the understanding of past changes in Quelccaya Ice Cap based on mapping and dating of glacial moraines and associated deposits. Our results include fifty 10Be ages of moraines and bedrock as well as twenty-nine 14C ages of organic material associated with moraines. These results form the basis of a chronology of changes in Quelccaya Ice Cap from ~16,000 yr BP to late Holocene time. Results from 10Be and 14C dating indicate that Quelccaya Ice Cap experienced a significant advance at 12,700-11,400 yr BP. Subsequent to this advance, the ice margin deposited at least three recessional moraine sets. Quelccaya Ice Cap receded to near its present-day margin by ~10,000 yr BP. Neoglacial advances began by ~3,000 yr BP and culminated with a maximum advance during the Little Ice Age. This chronology fits well with prior work which indicates a restricted Quelccaya Ice Cap during middle Holocene time. Moreover, the overlap between moraine and ice core data for the last 1,500 years provides a unique opportunity to assess the influences of temperature and precipitation on past ice cap extents.

  13. Paleoceanographic Changes Since the Last Glacial as Revealed by Analysis of Alkenone Organic Biomarkers from the Northwest Pacific (Core LV 63-41-2)

    Science.gov (United States)

    Yu, P. S.; Liao, C. J.; Chen, M. T.; Zou, J. J.; Shi, X.; Bosin, A. A.; Gorbarenko, S. A.

    2017-12-01

    Sea surface temperature (SST) records from the subarctic Northwestern (NW) Pacific are ideal for reconstructing regional paleoceanographic changes sensitive to global climate change. Core LV 63-41-2 (52.56°N, 160.00° E; water depth 1924 m) retrieved from a high sedimentation site, in which the interactions of the Bering Sea and the warm water mass from the NW Pacific are highly dynamic. Here we reported high-resolution last glacial alkenone-based records from Core LV 63-41-2. Prior to 27-16 ka BP high glacial C37:4 alkenone concentrations indicate large amount of fresh water influencing the surface water of the NW Pacific with a reaching to the Site LV 63-41-2. We further inferred that during the last glacial the low salinity water may be formed from the ice-melting water on site and/or brought by the surface current from the Bering Sea, and are efficient in producing strong water stratification condition. The stratification weakens vertical mixing of the upper water column, that in turn decreases the nutrients upwelled from deep to the surface therefore causes low productivity of coccolithophorids. During the early Bølling-Allerød (B/A) period, a gradual increasing alkenone-SST and associated with high C37:4 alkenone concentrations, implying that a weakened stratification and much stronger nutrient upwelling of the early B/A period than that of the glacial. The late B/A period is characterized by an abrupt warming with possibly more melting sea ices in the Bering Sea and the coast near the Kamchatka Peninsula. The large amount of fresh water lens formed during the ice melting might have ceased vertical mixing and upwelling in the upper water column as evidenced by a decline of biological productivity of both calcerous and soliceous organism during late B/A. We suggest an early warming and low productivity in the NW Pacific that is coincident with a rapid cooling in most of the Northern Hemisphere high latitudes during the Younger Dryas.

  14. Late-glacial recolonization and phylogeography of European red deer (Cervus elaphus L.).

    Science.gov (United States)

    Meiri, Meirav; Lister, Adrian M; Higham, Thomas F G; Stewart, John R; Straus, Lawrence G; Obermaier, Henriette; González Morales, Manuel R; Marín-Arroyo, Ana B; Barnes, Ian

    2013-09-01

    The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion-contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40,000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South-East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South-Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North-West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas. © 2013 John Wiley & Sons Ltd.

  15. Phosphorus burial in the ocean over glacial-interglacial time scales

    Directory of Open Access Journals (Sweden)

    F. Tamburini

    2009-04-01

    Full Text Available The role of nutrients, such as phosphorus (P, and their impact on primary productivity and the fluctuations in atmospheric CO2 over glacial-interglacial periods are intensely debated. Suggestions as to the importance of P evolved from an earlier proposal that P actively participated in changing productivity rates and therefore climate change, to most recent ones that changes in the glacial ocean inventory of phosphorus were important but not influential if compared to other macronutrients, such as nitrate. Using new data coming from a selection of ODP sites, we analyzed the distribution of oceanic P sedimentary phases and calculate reactive P burial fluxes, and we show how P burial fluxes changed over the last glacial-interglacial period at these sites. Concentrations of reactive P are generally lower during glacial times, while mass accumulation rates (MAR of reactive P show higher variability. If we extrapolate for the analyzed sites, we may assume that in general glacial burial fluxes of reactive P are lower than those during interglacial periods by about 8%, because the lack of burial of reactive P on the glacial shelf reduced in size, was apparently not compensated by burial in other regions of the ocean. Using the calculated changes in P burial, we evaluate their possible impact on the phosphate inventory in the world oceans. Using a simple mathematical approach, we find that these changes alone could have increased the phosphate inventory of glacial ocean waters by 17–40% compared to interglacial stages. Variations in the distribution of sedimentary P phases at the investigated sites seem to indicate that at the onset of interglacial stages, shallower sites experienced an increase in reactive P concentrations, which seems to point to P-richer waters at glacial terminations. All these findings would support the Shelf-Nutrient Hypothesis, which assumes that during glacial low stands nutrients are transferred from shallow sites

  16. Phylogeographic insights into cryptic glacial refugia.

    Science.gov (United States)

    Provan, Jim; Bennett, K D

    2008-10-01

    The glacial episodes of the Quaternary (2.6 million years ago-present) were a major factor in shaping the present-day distributions of extant flora and fauna, with expansions and contractions of the ice sheets rendering large areas uninhabitable for most species. Fossil records suggest that many species survived glacial maxima by retreating to refugia, usually at lower latitudes. Recently, phylogeographic studies have given support to the existence of previously unknown, or cryptic, refugia. Here we summarise many of these insights into the glacial histories of species in cryptic refugia gained through phylogeographic approaches. Understanding such refugia might be important as the Earth heads into another period of climate change, in terms of predicting the effects on species distribution and survival.

  17. Reconstruction of the North Atlantic end-member of the Atlantic Meridional Overturning Circulation over glacial-interglacial cycles

    Science.gov (United States)

    Kim, J.; Seguí, M. J.; Knudson, K. P.; Yehudai, M.; Goldstein, S. L.; Pena, L. D.; Basak, C.; Ferretti, P.

    2017-12-01

    North Atlantic Deep Water (NADW) represents the major water mass that drives the Atlantic Meridional Ocean Circulation (AMOC), which undergoes substantial reorganization with changing climate. In order to understand its impact on ocean circulation and climate through time, it is necessary to constrain its composition. We report Nd isotope ratios of Fe-Mn oxide encrusted foraminifera and fish debris from DSDP Site 607 (41.00N 32.96W, 3427m), in the present-day core of NADW, and ODP 1063 (33.68N 57.62W, 4585m), on the deep abyssal plain at the interface between NADW and Antarctic Bottom Water. We provide a new North Atlantic paleocirculation record covering 2 Ma. At Site 607 interglacial ɛNd-values are consistently similar to present-day NADW (ɛNd -13.5), with median ɛNd-values of -14.3 in the Early Pleistocene and -13.8 in the Late Pleistocene. Glacial ɛNd-values are higher by 1 ɛNd-unit in the Early Pleistocene, and 1.5-2 ɛNd-units in the Late Pleistocene. Site 1063 shows much greater variability, with ɛNd ranging from -10 to -26. We interpret the North Atlantic AMOC source as represented by the Site 607 interglacial ɛNd-values, which has remained nearly stable throughout the entire period. The higher glacial ɛNd-values reflect incursions of some southern-sourced waters to Site 607, which is supported by coeval shifts to lower benthic foraminiferal d13C. In contrast, the Site 1063 ɛNd-values do not appear to reflect the AMOC end-member, and likely reflects local effects from a bottom source. A period of greatly disrupted ocean circulation marks 950-850 Ma, which may have been triggered by enhanced ice growth in the Northern Hemisphere that began around 1.2 Ma, as suggested by possible input events of Nd from the surrounding cratons into the North Atlantic observed in Site 607. Interglacial AMOC only recovers to the previously observed vigor over 200 ka following the disruption, whereas further intensified SSW incursion into the deep North Atlantic come to

  18. Late Glacial Tropical Savannas in Sundaland Inferred From Stable Carbon Isotope Records of Cave Guano

    Science.gov (United States)

    Wurster, C. M.; Bird, M. I.; Bull, I.; Dungait, J.; Bryant, C. L.; Ertunç, T.; Hunt, C.; Lewis, H. A.; Paz, V.

    2008-12-01

    During the Last Glacial Period (LGP), reduced global sea level exposed the continental shelf south of Thailand to Sumatra, Java, and Borneo to form the contiguous continent of Sundaland. However, the type and extent of vegetation that existed on much of this exposed landmass during the LGP remains speculative. Extensive bird and bat guano deposits in caves throughout this region span beyond 40,000 yr BP, and contain a wealth of untapped stratigraphic palaeoenvironmental information. Stable carbon isotope ratios of insectivorous bird and bat guano contain a reliable record of the animal's diet and, through non-specific insect predation, reflect the relative abundance of major physiological pathways in plants. Various physiological pathways of carbon fixation in plants yield differing stable carbon isotope ratios. Stable carbon isotope values of C3 plants are lower than C4 vegetation due to different enzymatic discriminations of the heavy isotope through the carbon fixing pathways. In tropical locales, grasses nearly always follow the C4 photosynthetic pathway, whereas tropical rainforest uses C3 photosynthesis, providing a proxy for vegetation and therefore climate change in the past. Here we discuss four guano stable-isotope records, based on insect cuticle and n-alkane analysis, supplemented by pollen analysis. All sites suggest a C3 dominated ecosystem for the Holocene, consistent with the wet tropical forest vegetation present at all locations. Two sites from Palawan Island, Philippines, record stable carbon isotope values of guano that document a drastic change from C3 (forest) to C4 (savanna) dominated ecosystems during the Last Glacial Maximum (LGM). A third location, at Niah Great Cave, Malaysia, indicates C3-dominant vegetation throughout the record, but does display variation in stable carbon isotope values likely linked to humidity changes. A fourth location, Batu Caves in Peninsular Malaysia, also indicates open vegetation during the LGM. Vegetation

  19. Late Quaternary climate change shapes island biodiversity.

    Science.gov (United States)

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-07

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.

  20. Periodicity in a Conceptual Model of Glacial Cycles in the Absence of Milankovitch Forcing

    Science.gov (United States)

    Hahn, J.; Walsh, J.; Widiasih, E.; McGehee, R.

    2015-12-01

    Previously, McGehee and Widiasih coupled Budyko's Energy Balance Model with dynamics of a latitudinal ice-line incorporating the albedo feedback effect. They reduced this model to a two-dimensional equation of global mean temperature and a latitudinal ice-line. With this conceptual model, we now include dynamics of the ablation and accumulation of ice, to form a three-dimensional system that partitions the regions of the Earth latitudinally into an accumulation zone, ablation zone, and ice-free zone. Motivated by the findings of Abe-Ouchi et al that the fast retreat of ice-sheets is due to an increased rate of ablation via the effects of delayed isostatic rebound, we incorporate a simple switching mechanism to the model which increases the rate of ablation during periods of glacial retreat. This forms a discontinuous system of the Earth's temperature and ice-volume in which we find a stable periodic orbit. This can be interpreted as a intrinsic cycling of the Earth's climate in the absence of Milankovitch forcing.

  1. Periodical climate variations and their impact on Earth rotation for the last 800Kyr

    Science.gov (United States)

    Chapanov, Yavor; Gambis, Daniel

    2010-05-01

    The Earth rotation variations are highly affected by climatic variations associated with the glacial cycles in the late Pleistocene. The processes of glaciation, followed by ice melting, are connected with significant changes of the mean sea level. These processes redistribute great amount of water masses between oceans and ice sheets, which lead to changes of the axial moment of inertia and corresponding variations of the Universal Time UT1 and Length of Day LOD, according to the law of angular momentum conservation. The climatic variations for the last 800Kyr are analyzed by means of time series of temperature changes, determined by deuterium data from Antarctica ice core. Reconstructed glacial sea level variations for the last 380Kyr, determined by the sediments from the Red sea, are used, too. Common periodicities of the temperature and mean sea level variations are determined. Time series of the long-periodical UT1 and LOD oscillations for the last 380Kyr and 800Kyr are reconstructed by means of empirical hydrological model of global water redistribution between the ocean and ice sheets during the last glacial events.

  2. Sulphate and chloride aerosols during Holocene and last glacial periods preserved in the Talos Dome Ice Core, a peripheral region of Antarctica

    Directory of Open Access Journals (Sweden)

    Yoshinori Iizuka

    2013-04-01

    Full Text Available Antarctic ice cores preserve the record of past aerosols, an important proxy of past atmospheric chemistry. Here we present the aerosol compositions of sulphate and chloride particles in the Talos Dome (TD ice core from the Holocene and Last Glacial Period. We find that the main salt types of both periods are NaCl, Na2SO4 and CaSO4, indicating that TD ice contains relatively abundant sea salt (NaCl from marine primary particles. By evaluating the molar ratio of NaCl to Na2SO4, we show that about half of the sea salt does not undergo sulphatisation during late Holocene. Compared to in inland Antarctica, the lower sulphatisation rate at TD is probably due to relatively little contact between sea salt and sulphuric acid. This low contact rate can be related to a reduced time of reaction for marine-sourced aerosol before reaching TD and/or to a reduced post-depositional effect from the higher accumulation rate at TD. Many sulphate and chloride salts are adhered to silicate minerals. The ratio of sulphate-adhered mineral to particle mass and the corresponding ratio of chloride-adhered mineral both increase with increasing dust concentration. Also, the TD ice appears to contain Ca(NO32 or CaCO3 particles, thus differing from aerosol compositions in inland Antarctica, and indicating the proximity of peripheral regions to marine aerosols.

  3. Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period

    Directory of Open Access Journals (Sweden)

    E. Capron

    2010-06-01

    Full Text Available Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka and characterized by short Dansgaard-Oeschger (DO events. Recent and new results obtained on the EPICA and NorthGRIP ice cores now precisely describe the rapid variations of Antarctic and Greenland temperature during MIS 5 (73.5–123 ka, a time period corresponding to relatively high sea level. The results display a succession of abrupt events associated with long Greenland InterStadial phases (GIS enabling us to highlight a sub-millennial scale climatic variability depicted by (i short-lived and abrupt warming events preceding some GIS (precursor-type events and (ii abrupt warming events at the end of some GIS (rebound-type events. The occurrence of these sub-millennial scale events is suggested to be driven by the insolation at high northern latitudes together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML common timescale over MIS 5, the bipolar sequence of climatic events can be established at millennial to sub-millennial timescale. This shows that for extraordinary long stadial durations the accompanying Antarctic warming amplitude cannot be described by a simple linear relationship between the two as expected from the bipolar seesaw concept. We also show that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period.

  4. Late glacial ice advances in the Strait of Magellan, Southern Chile

    Science.gov (United States)

    Mcculloch, Robert D.; Bentley, Michael J.

    During the last glacial cycle low gradient glaciers repeatedly drained north-eastward into the Strait of Magellan and dammed extensive proglacial lakes in the central section of the strait. This paper focuses on the two most recent glacial advances in the strait, culminating over 150 and 80 km from the present ice limits. The timing of the first of the two advances has, up to now, been ambiguous and depended on the interpretation of anomously older dates of 16,590-15,800 yr BP for deglaciation at Puerto del Hambre. Here, we show there is evidence from seismic data and truncated shorelines that the Puerto del Hambre basin has been tectonically displaced and that the dates do not represent minimums for deglaciation. Several other dates show that the advance occurred sometime before 14,260 yr BP. The timing of the second advance has been investigated using a refined tephrochronology for the region, which has also enabled a palaeoshoreline and glaciolacustrine sediments to be linked to a moraine limit. 14C dating of peat and a key tephra layer, above and below the glaciolacustrine deposits, respectively suggest that the advance culminated in the Strait of Magellan between 12,010 and 10,050 yr BP.

  5. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    Directory of Open Access Journals (Sweden)

    Brian Huntley

    Full Text Available Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM we explored the implications of the differing climatic conditions generated by a general circulation model (GCM in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  6. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    Science.gov (United States)

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

  7. Post-glacial climate forcing of surface processes in the Ganges-Brahmaputra river basin and implications for carbon sequestration

    Science.gov (United States)

    Hein, Christopher J.; Galy, Valier; Galy, Albert; France-Lanord, Christian; Kudrass, Hermann; Schwenk, Tilmann

    2017-11-01

    Climate has been proposed to control both the rate of terrestrial silicate weathering and the export rate of associated sediments and terrestrial organic carbon to river-dominated margins - and thus the rate of sequestration of atmospheric CO2 in the coastal ocean - over glacial-interglacial timescales. Focused on the Ganges-Brahmaputra rivers, this study presents records of post-glacial changes in basin-scale Indian summer monsoon intensity and vegetation composition based on stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the channel-levee system of the Bengal Fan. It then explores the role of these changes in controlling the provenance and degree of chemical weathering of sediments exported by these rivers, and the potential climate feedbacks through organic-carbon burial in the Bengal Fan. An observed 40‰ shift in δD and a 3-4‰ shift in both bulk organic-carbon and plant-wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlates well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes likely coincided with a subtle focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, grain-size-normalized organic-carbon concentrations in the Bengal Fan remained constant through time, despite order-of-magnitude level changes in catchment-scale monsoon precipitation and enhanced chemical weathering (recorded as a gradual increase in K/Si* and detrital carbonate content, and decrease in H2O+/Si*, proxies) throughout the study period. These findings demonstrate a partial decoupling of climate change and silicate weathering during the Holocene and that marine organic-carbon sequestration rates primary reflect rates of physical erosion and sediment export

  8. Latest Pleistocene and Holocene glacial events in the Colonia valley, Northern Patagonia Icefield, southern Chile

    Science.gov (United States)

    Nimick, David A.; Mcgrath, Daniel; Mahan, Shannon; Friesen, Beverly A.; Leidich, Jonathan

    2016-01-01

    The Northern Patagonia Icefield (NPI) is the primary glaciated terrain worldwide at its latitude (46.5–47.5°S), and constraining its glacial history provides unique information for reconstructing Southern Hemisphere paleoclimate. The Colonia Glacier is the largest outlet glacier draining the eastern NPI. Ages were determined using dendrochronology, lichenometry, radiocarbon, cosmogenic 10Be and optically stimulated luminescence. Dated moraines in the Colonia valley defined advances at 13.2 ± 0.95, 11.0 ± 0.47 and 4.96 ± 0.21 ka, with the last being the first constraint on the onset of Neoglaciation for the eastern NPI from a directly dated landform. Dating in the tributary Cachet valley, which contains an ice-dammed lake during periods of Colonia Glacier expansion, defined an advance at ca. 2.95 ± 0.21 ka, periods of advancement at 810 ± 49 cal a BP and 245 ± 13 cal a BP, and retreat during the intervening periods. Recent Colonia Glacier thinning, which began in the late 1800s, opened a lower-elevation outlet channel for Lago Cachet Dos in ca. 1960. Our data provide the most comprehensive set of Latest Pleistocene and Holocene ages for a single NPI outlet glacier and expand previously developed NPI glacial chronologies.

  9. Glacial lakes of the Central and Patagonian Andes

    Science.gov (United States)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  10. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  11. Glacial modification of granite tors in the Cairngorms, Scotland

    Science.gov (United States)

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    A range of evidence indicates that many granite tors in the Cairngorms have been modified by the flow of glacier ice during the Pleistocene. Comparisons with SW England and the use of a space-time transformation across 38 tor groups in the Cairngorms allow a model to be developed for progressive glacial modification. Tors with deeply etched surfaces and no, or limited, block removal imply an absence of significant glacial modification. The removal of superstructure and blocks, locally forming boulder trains, and the progressive reduction of tors to stumps and basal slabs represent the more advanced stages of modification. Recognition of some slabs as tor stumps from which glacial erosion has removed all superstructure allows the original distribution of tors to be reconstructed for large areas of the Cairngorms. Unmodified tors require covers of non-erosive, cold-based ice during all of the cold stages of the Middle and Late Pleistocene. Deformation beneath cold-based glacier ice is capable of the removal of blocks but advanced glacial modification requires former wet-based glacier ice. The depth of glacial erosion at former tor sites remains limited largely to the partial or total elimination of the upstanding tor form. Cosmogenic nuclide exposure ages (Phillips et al., 2006) together with data from weathering pit depths (Hall and Phillips, 2006), from the surfaces of tors and large erratic blocks require that the glacial entrainment of blocks from tors occurred in Marine Isotope Stages (MIS) 4-2, 6 and, probably, at least one earlier phase. The occurrence of glacially modified tors on or close to, the main summits of the Cairngorms requires full ice cover over the mountains during these Stages. Evidence from the Cairngorms indicates that tor morphology can be regarded as an important indicator of former ice cover in many formerly glaciated areas, particularly where other evidence of ice cover is sparse. Recognition of the glacial modification of tors is important

  12. Millennial-scale climate variability during the Last Glacial period in the tropical Andes

    Science.gov (United States)

    Fritz, S. C.; Baker, P. A.; Ekdahl, E.; Seltzer, G. O.; Stevens, L. R.

    2010-04-01

    Millennial-scale climate variation during the Last Glacial period is evident in many locations worldwide, but it is unclear if such variation occurred in the interior of tropical South America, and, if so, how the low-latitude variation was related to its high-latitude counterpart. A high-resolution record, derived from the deep drilling of sediments on the floor of Lake Titicaca in the southern tropical Andes, is presented that shows clear evidence of millennial-scale climate variation between ˜60 and 20 ka BP. This variation is manifested by alternations of two interbedded sedimentary units. The two units have distinctive sedimentary, geochemical, and paleobiotic properties that are controlled by the relative abundance of terrigenous or nearshore components versus pelagic components. The sediments of more terrigenous or nearshore nature likely were deposited during regionally wetter climates when river transport of water and sediment was higher, whereas the sediments of more pelagic character were deposited during somewhat drier climates regionally. The majority of the wet periods inferred from the Lake Titicaca sediment record are correlated with the cold events in the Greenland ice cores and North Atlantic sediment cores, indicating that increased intensity of the South American summer monsoon was part of near-global scale climate excursions.

  13. Origin of last-glacial loess in the western Yukon-Tanana Upland, central Alaska, USA

    Science.gov (United States)

    Muhs, Daniel; Pigati, Jeffrey S.; Budahn, James R.; Skipp, Gary L.; Bettis, E. Arthur; Jensen, Britta

    2018-01-01

    Loess is widespread over Alaska, and its accumulation has traditionally been associated with glacial periods. Surprisingly, loess deposits securely dated to the last glacial period are rare in Alaska, and paleowind reconstructions for this time period are limited to inferences from dune orientations. We report a rare occurrence of loess deposits dating to the last glacial period, ~19 ka to ~12 ka, in the Yukon-Tanana Upland. Loess in this area is very coarse grained (abundant coarse silt), with decreases in particle size moving south of the Yukon River, implying that the drainage basin of this river was the main source. Geochemical data show, however, that the Tanana River valley to the south is also a likely distal source. The occurrence of last-glacial loess with sources to both the south and north is explained by both regional, synoptic-scale winds from the northeast and opposing katabatic winds that could have developed from expanded glaciers in both the Brooks Range to the north and the Alaska Range to the south. Based on a comparison with recent climate modeling for the last glacial period, seasonality of dust transport may also have played a role in bringing about contributions from both northern and southern sources.

  14. Evolution of periodicity in periodical cicadas.

    Science.gov (United States)

    Ito, Hiromu; Kakishima, Satoshi; Uehara, Takashi; Morita, Satoru; Koyama, Takuya; Sota, Teiji; Cooley, John R; Yoshimura, Jin

    2015-09-14

    Periodical cicadas (Magicicada spp.) in the USA are famous for their unique prime-numbered life cycles of 13 and 17 years and their nearly perfectly synchronized mass emergences. Because almost all known species of cicada are non-periodical, periodicity is assumed to be a derived state. A leading hypothesis for the evolution of periodicity in Magicicada implicates the decline in average temperature during glacial periods. During the evolution of periodicity, the determinant of maturation in ancestral cicadas is hypothesized to have switched from size dependence to time (period) dependence. The selection for the prime-numbered cycles should have taken place only after the fixation of periodicity. Here, we build an individual-based model of cicadas under conditions of climatic cooling to explore the fixation of periodicity. In our model, under cold environments, extremely long juvenile stages lead to extremely low adult densities, limiting mating opportunities and favouring the evolution of synchronized emergence. Our results indicate that these changes, which were triggered by glacial cooling, could have led to the fixation of periodicity in the non-periodical ancestors.

  15. Intermittent ice sheet discharge events in northeastern North America during the last glacial period

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Brian D.; Mysak, Lawrence A.; Wang, Zhaomin [McGill University, Earth System Modelling Group, Department of Atmospheric and Oceanic Sciences, Montreal, QC (Canada)

    2006-02-01

    The 3D ice sheet model of Marshall and Clarke, which includes both dynamics and thermodynamics, is used to successfully simulate millennial-scale oscillations within an ice sheet under steady external forcing. Such internal oscillations are theorized to be the main cause of quasi-periodic large-scale ice discharges known as Heinrich Events. An analysis of the mechanisms associated with multi-millennial oscillations of the Laurentide Ice Sheet, including the initiation and termination of sliding events, is performed. This analysis involves an examination of the various heat sources and sinks that affect the basal ice temperature, which in turn determines the nature of the ice sheet movement. The ice sheet thickness and surface slope, which affect the pressure-melting point and strain heating, respectively, are found to be critical for the formation and development of fast moving ice streams, which lead to large iceberg calving. Although the main provenance for Heinrich Events is thought to be from Hudson Bay and Hudson Strait, we show that the more northerly regions around Lancaster Strait and Baffin Island may also be important sources for ice discharges during the last glacial period. (orig.)

  16. Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records

    Science.gov (United States)

    Bock, Michael; Schmitt, Jochen; Beck, Jonas; Seth, Barbara; Chappellaz, Jérôme; Fischer, Hubertus

    2017-07-01

    Atmospheric methane (CH4) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [δ13CH4 and δD(CH4)] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our δD(CH4) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.

  17. Late Paleozoic paleofjord in the southernmost Parana Basin (Brazil): Geomorphology and sedimentary fill

    Science.gov (United States)

    Tedesco, Julia; Cagliari, Joice; Coitinho, Julia dos Reis; da Cunha Lopes, Ricardo; Lavina, Ernesto Luiz Correa

    2016-09-01

    In the southernmost part of the Parana Basin, records of the late Paleozoic glaciation occur in a discontinuous form preserved in paleovalley systems excavated in the crystalline basement. This paper addresses one of these paleovalleys, the Mariana Pimentel, which extends over 60 km with NW-SE valley direction and a constant width of 2.5 km. With the objective of demonstrating that the paleovalley worked as a fjord during the glaciation period, its origin as well as sedimentary fill and morphology were analyzed. The paleovalley morphology was obtained through electrical resistivity (electrical sounding and lateral mapping) and mathematical modeling in four transverse sections. The morphology of the paleovalley documented by the U-shape, steady width, and high depth reaching up to 400 m are typical features of modern glacial valleys. The sedimentary facies that fill the base of the paleovalley, such as rhythmites and dropstones with thickness up to 70 m and diamictites with faceted pebbles (up to 5 m thick) are signs of its glacial origin. During the glaciation period, the paleovalley had a connection to the epicontinental sea located to the northwest, extended toward Namibia, and was excavated by glaciers from the highlands of this region. Thus, the evidence attests that the Mariana Pimentel paleovalley was a fjord during the late Paleozoic glaciation. The duration of the late Paleozoic glaciation (which is longer than the Quaternary glaciation), the apatite fission track that suggests erosion up to 4 km thick in the study area, and the lack of preserved hanging valleys in the Mariana Pimentel indicate that the paleovalley once featured a higher dimension. Furthermore, the existence of paleofjords excavated in the border of the basement corroborates the idea of small ice centers controlled by topography during the late Paleozoic glaciation.

  18. The extent of permafrost in China during the local Last Glacial Maximum (LLGM)

    NARCIS (Netherlands)

    Zhao, L.; Jin, H.; Li, C.; Cui, Z.; Chang, X.; Marchenko, S.S.; Vandenberghe, J.; Zhang, T.; Luo, D.; Liu, G.; Yi, C.

    2014-01-01

    Recent investigations into relict periglacial phenomena in northern and western China and on the Qinghai-Tibet Plateau provide information for delineating the extent of permafrost in China during the Late Pleistocene. Polygonal and wedge-shaped structures indicate that, during the local Last Glacial

  19. Cosmogenic evidence for limited local LGM glacial expansion, Denton Hills, Antarctica

    Science.gov (United States)

    Joy, Kurt; Fink, David; Storey, Bryan; De Pascale, Gregory P.; Quigley, Mark; Fujioka, Toshiyuki

    2017-12-01

    The geomorphology of the Denton Hills provides insight into the timing and magnitude of glacial retreats in a region of Antarctica isolated from the influence of the East Antarctic ice sheet. We present 26 Beryllium-10 surface exposure ages from a variety of glacial and lacustrine features in the Garwood and Miers valleys to document the glacial history of the area from 10 to 286 ka. Our data show that the cold-based Miers, Joyce and Garwood glaciers retreated little since their maximum positions at 37.2 ± 6.9 (1σ n = 4), 35.1 ± 1.5 (1σ, n = 3) and 35.6 ± 10.1 (1σ, n = 6) ka respectively. The similar timing of advance of all three glaciers and the lack of a significant glacial expansion during the global LGM suggests a local LGM for the Denton Hills between ca. 26 and 51 ka, with a mean age of 36.0 ± 7.5 (1σ, n = 13) ka. A second cohort of exposure ages provides constraints to the behaviour of Glacial Lake Trowbridge that formerly occupied Miers Valley in the late Pleistocene. These data show active modification of the landscape from ∼20 ka until the withdrawal of ice from the valley mouths, and deposition of Ross Sea Drift, at 10-14 ka.

  20. Impact of late glacial climate variations on stratification and trophic state of the meromictic lake Längsee (Austria: validation of a conceptual model by multi proxy studies

    Directory of Open Access Journals (Sweden)

    Jens MÜLLER

    2002-02-01

    Full Text Available Selected pigments, diatoms and diatom-inferred phosphorus (Di-TP concentrations of a late glacial sediment core section of the meromictic Längsee, Austria, were compared with tephra- and varve-dated pollen stratigraphic and geochemical results. A conceptual model was adopted for Längsee and evaluated using multi proxy data. During the unforested late Pleniglacial, a holomictic lake stage with low primary productivity prevailed. Subsequent to the Lateglacial Betula expansion, at about 14,300 cal. y BP, okenone and isorenieratene, pigments from purple and green sulphur bacteria, indicate the onset of anoxic conditions in the hypolimnion. The formation of laminae coincides with this anoxic, meromictic period with high, though fluctuating, amounts of okenone that persisted throughout the Lateglacial interstadial. The occurrence of unlaminated sediment sections of allochthonous origin, and concurrent low concentrations of okenone, were related to cool and wet climate fluctuations during this period, probably coupled with a complete mixing of the water column. Two of these oscillations of the Lateglacial interstadial have been correlated tentatively with the Aegelsee and Gerzensee oscillations in the Alps. The latter climate fluctuation divides a period of enhanced anoxia and primary productivity, correlated with the Alleröd chronozone. Continental climate conditions were assumed to be the main driving forces for meromictic stability during Alleröd times. In addition, calcite dissolution due to severe hypolimnetic anoxia, appear to have supported meromictic stability. Increased pigment concentrations, which are in contrast to low diatom-inferred total phosphorus (Di- TP, indicate the formation of a productive metalimnion during this period, probably due to a clear-water phase (low catchment erosion, increased temperatures, and a steep gradient between the phosphorus enriched hypolimnion and the oligotrophic epilimnion. Meltwater impacts from an

  1. Late quaternary faulting and paleoseismicity in northern Fennoscandia, with particular reference to the Lansjaerv area, northern Sweden

    International Nuclear Information System (INIS)

    Lagerbaeck, R.

    1990-01-01

    Many fault scarps, interpreted as post- or late-glacial in age, occur in northern Sweden and adjacent parts of Finland and Norway. In the Lansjaerv area in northern Sweden attempts have been made to date fault displacement relative to the glacial and postglacial stratigraphy by trenching across some of these fault scarps. It is shown that the faulting occurred soon after the local deglaciation some 9000 years ago. There are no signs of movements since that time. The faulting was obviously associated with violent earthquakes because seismically induced phenomena, dating from the same period as the faulting, are frequently found in the vicinity. Numerous landslides, developed in glacial till, occur in the same region as the faults and different types of seismites (seismically-induced sediment deformation) were found when actively sought for. It is concluded that several earthquakes of high magnitudes occurred in northern Fennoscandia during the vanishing of the inland ice sheet. (author)

  2. Atmospheric radiocarbon calibration to 45,000 yr B.P.: late glacial fluctuations and cosmogenic isotope production

    Science.gov (United States)

    Kitagawa; van der Plicht J

    1998-02-20

    More than 250 carbon-14 accelerator mass spectrometry dates of terrestrial macrofossils from annually laminated sediments from Lake Suigetsu (Japan) provide a first atmospheric calibration for almost the total range of the radiocarbon method (45,000 years before the present). The results confirm the (recently revised) floating German pine chronology and are consistent with data from European and marine varved sediments, and combined uranium-thorium and carbon-14 dating of corals up to the Last Glacial Maximum. The data during the Glacial show large fluctuations in the atmospheric carbon-14 content, related to changes in global environment and in cosmogenic isotope production.

  3. Glacial evolution of the Ampato Volcanic Complex (Peru)

    Science.gov (United States)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.; Vázquez, L.

    2009-04-01

    Ice masses on the Western range of the Central Andes are a main source of water resources and act as a geoindicator of variations in the climate of the tropics (Mark, 2008). The study of their evolution is of particular interest since they are situated in the transition zone between the tropical and mid-latitude circulation areas of the atmosphere (Zech et al., 2007). The function of this transition area is currently under debate, and understanding it is essential for the development of global climate models (Kull et al, 2008; Mark, 2008). However our understanding of the evolution of glaciers and their paleoclimatic factors for this sector of the Central Andes is still at a very basic level. This paper presents initial results of a study on the glacial evolution of the Ampato volcanic complex (15°24´- 15° 51´ S, 71° 51´ - 73° W; 6288 m a.s.l.) located in the Western Range of the Central Andes in Southern Peru, 70 km NW of the city of Arequipa. The main objectives are to identify the number of glacial phases the complex has undergone using geomorphological criteria to define a time frame for each phase, based on cosmogenic 36Cl dating of a sequence of moraine deposits; and to estimate the glacier Equilibrium Line Altitude (ELA) of each phase. The Ampato volcanic complex is formed by 3 great andesitic stratovolcanoes, the Nevados HualcaHualca-Sabancaya-Ampato, which started forming between the late Miocene and early Quaternary (Bulmer et al., 1999), aligned N-S and with summits covered with glaciers. The Sabancaya volcano is fully active, with its latest eruption occurring in 2001. Glacial landforms were identified and mapped using photointerpretation of vertical aerial photographs from 1955 (1:35,000 scale, National Geographic Institute of Peru), oblique photographs from 1943 (Aerophotographical Service of Peru), and a geo-referenced high-resolution Mrsid satellite image from 2000 (NASA). This cartography was corrected and improved through fieldwork. It was

  4. Quantifying the influence of the terrestrial biosphere on glacial-interglacial climate dynamics

    Science.gov (United States)

    Davies-Barnard, Taraka; Ridgwell, Andy; Singarayer, Joy; Valdes, Paul

    2017-10-01

    The terrestrial biosphere is thought to be a key component in the climatic variability seen in the palaeo-record. It has a direct impact on surface temperature through changes in surface albedo and evapotranspiration (so-called biogeophysical effects) and, in addition, has an important indirect effect through changes in vegetation and soil carbon storage (biogeochemical effects) and hence modulates the concentrations of greenhouse gases in the atmosphere. The biogeochemical and biogeophysical effects generally have opposite signs, meaning that the terrestrial biosphere could potentially have played only a very minor role in the dynamics of the glacial-interglacial cycles of the late Quaternary. Here we use a fully coupled dynamic atmosphere-ocean-vegetation general circulation model (GCM) to generate a set of 62 equilibrium simulations spanning the last 120 kyr. The analysis of these simulations elucidates the relative importance of the biogeophysical versus biogeochemical terrestrial biosphere interactions with climate. We find that the biogeophysical effects of vegetation account for up to an additional -0.91 °C global mean cooling, with regional cooling as large as -5 °C, but with considerable variability across the glacial-interglacial cycle. By comparison, while opposite in sign, our model estimates of the biogeochemical impacts are substantially smaller in magnitude. Offline simulations show a maximum of +0.33 °C warming due to an increase of 25 ppm above our (pre-industrial) baseline atmospheric CO2 mixing ratio. In contrast to shorter (century) timescale projections of future terrestrial biosphere response where direct and indirect responses may at times cancel out, we find that the biogeophysical effects consistently and strongly dominate the biogeochemical effect over the inter-glacial cycle. On average across the period, the terrestrial biosphere has a -0.26 °C effect on temperature, with -0.58 °C at the Last Glacial Maximum. Depending on

  5. Radiolarian Indices of Paleoproductivity Variation in the late Pleistocene Benguela Upwelling System, ODP Site 1084

    Science.gov (United States)

    Bittniok, B. B.; Lazarus, D. B.; Diester-Haass, L.; Billups, K.; Meyers, P.

    2006-12-01

    Changes in export productivity play a significant role in ocean carbon budgets and global climate change. Proxies for export productivity can be difficult to interpret: benthic foraminifera accumulation rates (BFAR) can be affected by carbonate dissolution in organic-carbon rich sediments; bulk opal can be affected by silica limitation of source waters. Recent work (Lazarus et al. 2006; Mar. Micropal.) has shown that a new index based on radiolarian faunal changes (WADE ratio) correlates well to total organic carbon (TOC) values from the same samples over the long term (latest Miocene-Recent) history of productivity in the Benguela Upwelling System (BUS). We present new data on variation in export productivity proxies (WADE, TOC, carbonate, radiolarian opal, BFAR) for the last glacial-interglacial cycle from ODP Site 1084, located just offshore from the main coastal upwelling cells of the BUS. Our age model, from mean Quaternary sedimentation rates (Leg 175 Scientific Results), is in accordance with cyclic variation in other climate sensitive parameters (carbonate and color reflectance). Although opal content and radiolarian preservation is only moderate in our samples, WADE values vary significantly and suggest higher productivity during the last glacial, in accordance with current interpretations of BUS history. Radiolarian opal accumulation is also higher during the last glacial, suggesting that silica limitation (opal paradox) conditions did not dominate over this time period. Similar results for bulk opal have been reported from late Quaternary piston cores from the more northerly Congo upwelling region (Schneider et al, 1997; Paleoc.). We conclude that WADE ratios are a useful proxy for late Pleistocene productivity in the BUS at glacial- interglacial time scales.

  6. Alternative glacial-interglacial refugia demographic hypotheses tested on Cephalocereus columna-trajani (Cactaceae) in the intertropical Mexican drylands.

    Science.gov (United States)

    Cornejo-Romero, Amelia; Vargas-Mendoza, Carlos Fabián; Aguilar-Martínez, Gustavo F; Medina-Sánchez, Javier; Rendón-Aguilar, Beatriz; Valverde, Pedro Luis; Zavala-Hurtado, Jose Alejandro; Serrato, Alejandra; Rivas-Arancibia, Sombra; Pérez-Hernández, Marco Aurelio; López-Ortega, Gerardo; Jiménez-Sierra, Cecilia

    2017-01-01

    Historic demography changes of plant species adapted to New World arid environments could be consistent with either the Glacial Refugium Hypothesis (GRH), which posits that populations contracted to refuges during the cold-dry glacial and expanded in warm-humid interglacial periods, or with the Interglacial Refugium Hypothesis (IRH), which suggests that populations contracted during interglacials and expanded in glacial times. These contrasting hypotheses are developed in the present study for the giant columnar cactus Cephalocereus columna-trajani in the intertropical Mexican drylands where the effects of Late Quaternary climatic changes on phylogeography of cacti remain largely unknown. In order to determine if the historic demography and phylogeographic structure of the species are consistent with either hypothesis, sequences of the chloroplast regions psbA-trnH and trnT-trnL from 110 individuals from 10 populations comprising the full distribution range of this species were analysed. Standard estimators of genetic diversity and structure were calculated. The historic demography was analysed using a Bayesian approach and the palaeodistribution was derived from ecological niche modelling to determine if, in the arid environments of south-central Mexico, glacial-interglacial cycles drove the genetic divergence and diversification of this species. Results reveal low but statistically significant population differentiation (FST = 0.124, P < 0.001), although very clear geographic clusters are not formed. Genetic diversity, haplotype network and Approximate Bayesian Computation (ABC) demographic analyses suggest a population expansion estimated to have taken place in the Last Interglacial (123.04 kya, 95% CI 115.3-130.03). The species palaeodistribution is consistent with the ABC analyses and indicates that the potential area of palaedistribution and climatic suitability were larger during the Last Interglacial and Holocene than in the Last Glacial Maximum. Overall

  7. Glacial cycles:exogenous orbital changes vs. endogenous climate dynamics

    OpenAIRE

    Kaufmann, R. K.; Juselius, Katarina

    2010-01-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduc...

  8. Subtropical Climate Variability since the Last Glacial Maximum from Speleothem Precipitation Reconstructions in Florida

    Science.gov (United States)

    Polk, J.; van Beynen, P.; DeLong, K. L.; Asmerom, Y.; Polyak, V. J.

    2017-12-01

    Teleconnections between the tropical-subtropical regions of the Americas since the Last Glacial Maximum (LGM), particularly the Mid- to Late-Holocene, and high-resolution proxy records refining climate variability over this period continue to receive increasing attention. Here, we present a high-resolution, precisely dated speleothem record spanning multiple periods of time since the LGM ( 30 ka) for the Florida peninsula. The data indicate that the amount effect plays a significant role in determining the isotopic signal of the speleothem calcite. Collectively, the records indicate distinct differences in climate in the region between the LGM, Mid-Holocene, and Late Holocene, including a progressive shift in ocean composition and precipitation isotopic values through the period, suggesting Florida's sensitivity to regional and global climatic shifts. Comparisons between speleothem δ18O values and Gulf of Mexico marine records reveal a strong connection between the Gulf region and the terrestrial subtropical climate in the Late Holocene, while the North Atlantic's influence is clear in the earlier portions of the record. Warmer sea surface temperatures correspond to enhanced evaporation, leading to more intense atmospheric convection in Florida, and thereby modulating the isotopic composition of rainfall above the cave. These regional signals in climate extend from the subtropics to the tropics, with a clear covariance between the speleothem signal and other proxy records from around the region, as well as global agreement during the LGM period with other records. These latter connections appear to be driven by changes in the mean position of the Intertropical Convergence Zone and time series analysis of the δ18O values reveals significant multidecadal periodicities in the record, which are evidenced by agreement with the AMV and other multidecadal influences (NAO and PDO) likely having varying influence throughout the period of record. The climate variability

  9. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability.

    Science.gov (United States)

    Hu, Aixue; Meehl, Gerald A; Han, Weiqing; Timmermann, Axel; Otto-Bliesner, Bette; Liu, Zhengyu; Washington, Warren M; Large, William; Abe-Ouchi, Ayako; Kimoto, Masahide; Lambeck, Kurt; Wu, Bingyi

    2012-04-24

    Abrupt climate transitions, known as Dansgaard-Oeschger and Heinrich events, occurred frequently during the last glacial period, specifically from 80-11 thousand years before present, but were nearly absent during interglacial periods and the early stages of glacial periods, when major ice-sheets were still forming. Here we show, with a fully coupled state-of-the-art climate model, that closing the Bering Strait and preventing its throughflow between the Pacific and Arctic Oceans during the glacial period can lead to the emergence of stronger hysteresis behavior of the ocean conveyor belt circulation to create conditions that are conducive to triggering abrupt climate transitions. Hence, it is argued that even for greenhouse warming, abrupt climate transitions similar to those in the last glacial time are unlikely to occur as the Bering Strait remains open.

  10. Compilation of information on the climate and evaluation of the hydrochemical and isotopic composition during Late Pleistocene and Holocene

    International Nuclear Information System (INIS)

    Andersson, Cecilia

    1998-01-01

    This report summarises and evaluates some of the existing information on the Late Pleistocene and Holocene climates, i.e. the last 130 000 years. An estimation of the conditions at the Aespoe island (southeast Sweden) has also been made during this time span. The knowledge about Late Pleistocene (Eemian Interglacial and Weichselian glacial) is not yet fully understood. There are still a lot of assumptions concerning this period and more information is needed to be able to establish the climatic conditions. This is not the case for the Weichselian deglaciation and the present interglacial, Holocene, for which the environmental conditions are quite certain. It has been concluded, however, that the Eemian climatic development probably was similar to the Holocene but perhaps somewhat warmer and more humid. The Eemian Baltic Sea level was probably also higher than the present Baltic Sea level and there was a connection between it and the White Sea in the northeast. Aespoe was probably situated below sea level during the greater part of Eemian. Not much is known about the last glacial period, the Weichselian glaciation, until the final deglaciation. The ice sheet during Early Weichselian was probably mostly concentrated to the Scandinavian mountain area and in northern Scandinavia. At least two intervals with higher temperatures have been recorded, the Broerup and Odderade interstadials. The Middle Weichselian substage is characterised by fluctuations, melting and re-advances. Aespoe was probably not glaciated until the middle or latter part of Middle Weichselian. The maximum extension of the Weichselian ice sheet occurred in Late Weichselian, around 20 to 18 ka BP, which was succeeded by the final deglaciation. The retreat of the Weichselian ice sheet is described by for example end moraines and glacial varved clay. The Aespoe area was glaciated until 12 500 BP. Huge quantities of glacial meltwater was released into the Baltic basin as the ice receded. Due to different

  11. Compilation of information on the climate and evaluation of the hydrochemical and isotopic composition during Late Pleistocene and Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Cecilia [Intera KB (Sweden)

    1998-01-01

    This report summarises and evaluates some of the existing information on the Late Pleistocene and Holocene climates, i.e. the last 130 000 years. An estimation of the conditions at the Aespoe island (southeast Sweden) has also been made during this time span. The knowledge about Late Pleistocene (Eemian Interglacial and Weichselian glacial) is not yet fully understood. There are still a lot of assumptions concerning this period and more information is needed to be able to establish the climatic conditions. This is not the case for the Weichselian deglaciation and the present interglacial, Holocene, for which the environmental conditions are quite certain. It has been concluded, however, that the Eemian climatic development probably was similar to the Holocene but perhaps somewhat warmer and more humid. The Eemian Baltic Sea level was probably also higher than the present Baltic Sea level and there was a connection between it and the White Sea in the northeast. Aespoe was probably situated below sea level during the greater part of Eemian. Not much is known about the last glacial period, the Weichselian glaciation, until the final deglaciation. The ice sheet during Early Weichselian was probably mostly concentrated to the Scandinavian mountain area and in northern Scandinavia. At least two intervals with higher temperatures have been recorded, the Broerup and Odderade interstadials. The Middle Weichselian substage is characterised by fluctuations, melting and re-advances. Aespoe was probably not glaciated until the middle or latter part of Middle Weichselian. The maximum extension of the Weichselian ice sheet occurred in Late Weichselian, around 20 to 18 ka BP, which was succeeded by the final deglaciation. The retreat of the Weichselian ice sheet is described by for example end moraines and glacial varved clay. The Aespoe area was glaciated until 12 500 BP. Huge quantities of glacial meltwater was released into the Baltic basin as the ice receded. Due to different

  12. Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada

    Science.gov (United States)

    Bash, E. A.; Marshall, S. J.; White, E. C.

    2009-12-01

    Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of

  13. Late quaternary palaeo-oceanography and palaeo-climatology from sediment cores of the eastern Arctic Ocean

    International Nuclear Information System (INIS)

    Pagels, U.; Koehler, S.

    1991-01-01

    Box cores recovered along a N-S transect in the Eurasian Basin allow the establishment of a time scale for the Late Quaternary history of the Arctic Ocean, based on stable oxygen isotope stratigraphy and AMS 14 C dating of planktonic foraminifers (N. pachyderma I.c.). This high resolution stratigraphy, in combination with sedimentological investigations (e.g. coarse fraction analysis, carbonate content, productivity of foraminifers), was carried out to reconstruct the glacial and inter-glacial Arctic Ocean palaeo-environment The sediment cores, which can be correlated throughout the sampling area in the Eastern Arctic Ocean, were dated as representing oxygen isotope stages 1 to 4/5. The sedimentation rates varied between a few mm/ka in glacials and approximately one cm/ka during the Holocene. The sediments allow a detailed sedimentological description of the depositional regime and the palaeo-oceanography of the Eastern Arctic Ocean. Changing ratios of biogenic and lithogenic components in the sediments reflect variations in the oceanographic circulation pattern in the Eurasian Basin during the Late Quaternary. Carbonate content (1-9wt.%), productivity of foraminifers (high in interglacial, low in glacial stages) and the terrigenous components are in good correlation with glacial and inter-glacial climatic fluctuations

  14. A 230 ka record of glacial and interglacial events from Aurora Cave, Fiordland, New Zealand

    International Nuclear Information System (INIS)

    Williams, P.W.

    1996-01-01

    Caves overrun by glaciers are known to accumulate dateable evidence of past glacial and interglacial events. Results are reported from an investigation of Aurora Cave on the slopes above Lake Te Anau in Fiordland. The cave commenced to form before c. 230 ka B.P. Sequences of glaciofluvial sediments interbedded with speleothems are evidence of the number and timing of glacial advances and the status of intervals between them. Twenty-six uranium series dates on speleothems underpin a chronology of seven glacial advances in the last 230 ka, with the peak of the late Otira glaciation, Aurora 3 advance, at c. 19 ka B.P. With five advances in the Otiran, the last glaciation is more complex than previously recognised. Comparison of the record with that recorded offshore from DSDP Site 594 reveals little matching, but the correspondence of the Aurora sequence with that interpreted from other onshore deposits is more convincing. Glacial deposits on slopes above the cave for a further 660 m may be evidence of the 'missing' glacial events of the mid-early Pleistocene. (author). 44 refs., 12 figs., 5 tabs

  15. Late Pliocene and Quaternary Eurasian locust infestations in the Canary Archipelago

    Science.gov (United States)

    Meco, J.; Muhs, D.R.; Fontugne, M.; Ramos, A.J.; Lomoschitz, A.; Patterson, D.

    2011-01-01

    The Canary Archipelago has long been a sensitive location to record climate changes of the past. Interbedded with its basalt lavas are marine deposits from the principal Pleistocene interglacials, as well as aeolian sands with intercalated palaeosols. The palaeosols contain African dust and innumerable relict egg pods of a temperate-region locust (cf. Dociostaurus maroccanusThunberg 1815). New ecological and stratigraphical information reveals the geological history of locust plagues (or infestations) and their palaeoclimatic significance. Here, we show that the first arrival of the plagues to the Canary Islands from Africa took place near the end of the Pliocene, ca. 3Ma, and reappeared with immense strength during the middle Late Pleistocene preceding MIS (marine isotope stage) 11 (ca. 420ka), MIS 5.5 (ca. 125ka) and probably during other warm interglacials of the late Middle Pleistocene and the Late Pleistocene. During the Early Holocene, locust plagues may have coincided with a brief cool period in the current interglacial. Climatically, locust plagues on the Canaries are a link in the chain of full-glacial arid-cold climate (calcareous dunes), early interglacial arid-sub-humid climate (African dust inputs and locust plagues), peak interglacial warm-humid climate (marine deposits with Senegalese fauna), transitional arid-temperate climate (pedogenic calcretes), and again full-glacial arid-cold climate (calcareous dunes) oscillations. During the principal interglacials of the Pleistocene, the Canary Islands recorded the migrations of warm Senegalese marine faunas to the north, crossing latitudes in the Euro-African Atlantic. However, this northward marine faunal migration was preceded in the terrestrial realm by interglacial infestations of locusts. ??? Locust plagues, Canary Islands, Late Pliocene, Pleistocene, Holocene, palaeoclimatology. ?? 2010 The Authors, Lethaia ?? 2010 The Lethaia Foundation.

  16. Glacial geology of the upper Wairau Valley, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    McCalpin, J.P.

    1992-01-01

    Late Pleistocene glaciers in the upper Wairau Valley deposited four groups of moraines inferred to represent one Waimean ice advance, two Otiran ice advances, and an advance of early Aranuian age. The Waimean and early Otiran glaciers advanced into Tarndale Valley, deposited terminal moraines, and shed outwash down both the Alma River and Travellers Valley. The middle Otiran glacier terminated in northern Tarndale Valley and shed outwash from the southern part of its terminus down the Alma River. The north side of the terminus abutted a large ice-dammed lake in the Wairau Gorge, and fan-deltas graded to an old shore level at an elevation of 1040 m. Well-preserved moraines at the mouths of four glaciated tributaries may be middle Otiran recessional, or late Otiran terminal moraines. The latest ice advance extended 11 km down the upper Wairau Valley and deposited a subdued moraine at Island Gully. The composite chronology of the latest glacial advance based on 10 radiocarbon ages suggests it occurred between about 9.5 and 10.2 ka. This age span is similar to that of early Aranuian glacial advances dated by other workers in the Southern Alps, and may reflect Younger Dryas cooling. (author). 22 refs., 10 figs., 3 tabs

  17. Post-Glacial and Paleo-Environmental History of the West Coast of Vancouver Island

    Science.gov (United States)

    Dallimore, A.; Enkin, R. J.

    2005-12-01

    Annually laminated sediments in anoxic fjords are potentially ideal paleoclimate recorders, particularly once proxy measurements for atmospheric, oceanographic and sedimentological conditions have been calibrated. On the west coast of Canada, these sediments also record the changing environment as glaciers retreated from this area about 12 ka y BP. In Effingham Inlet, a 40 m core taken from the French ship the Marion Dufresne as part of the international IMAGES/PAGES program, gives evidence of an isolation basin at maximum glacial isostatic rebound and lowest paleo-sea level followed by eustatic sea level rise about 10 ka y BP. The Late Pleistocene record also marks dramatic changes in glacial sedimentary source and transport. Excellent chronological control is provided by complementary yet independent dating methods including radiocarbon dates on both plants and shells, identification of the Mazama Ash, varve counting and paleomagnetic, paleosecular variation correlations in the lower, pro-glacial section of the core which does not contain organic material. Paleoenvironmental evidence from this core provides information on immediate post-glacial conditions along the coast and rapid climatic changes throughout the Holocene, with implications for the possibility of early human migration routes and refugia.

  18. Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?

    OpenAIRE

    Leonard, Saoirse A.; Risley, Claire L.; Turvey, Samuel T.

    2013-01-01

    Brown bears are recorded from Ireland during both the Late Pleistocene and early?mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to d...

  19. Influence of glacial meltwater on global seawater δ234U

    Science.gov (United States)

    Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.; Das, Sarah B.; Sheik, Cody; Stevenson, Emily I.

    2018-03-01

    We present the first published uranium-series measurements from modern Greenland Ice Sheet (GrIS) runoff and proximal seawater, and investigate the influence of glacial melt on global seawater δ234U over glacial-interglacial (g-ig) timescales. Climate reconstructions based on closed-system uranium-thorium (U/Th) dating of fossil corals assume U chemistry of seawater has remained stable over time despite notable fluctuations in major elemental compositions, concentrations, and isotopic compositions of global seawater on g-ig timescales. Deglacial processes increase weathering, significantly increasing U-series concentrations and changing the δ234U of glacial meltwater. Analyses of glacial discharge from GrIS outlet glaciers indicate that meltwater runoff has elevated U concentrations and differing 222Rn concentrations and δ234U compositions, likely due to variations in subglacial residence time. Locations with high δ234U have the potential to increase proximal seawater δ234U. To better understand the impact of bulk glacial melt on global seawater δ234U over time, we use a simple box model to scale these processes to periods of extreme deglaciation. We account for U fluxes from the GrIS, Antarctica, and large Northern Hemisphere Continental Ice Sheets, and assess sensitivity by varying melt volumes, duration and U flux input rates based on modern subglacial water U concentrations and compositions. All scenarios support the hypothesis that global seawater δ234U has varied by more than 1‰ through time as a function of predictable perturbations in continental U fluxes during g-ig periods.

  20. Modeled seasonality of glacial abrupt climate events

    NARCIS (Netherlands)

    Flueckiger, J.; Knutti, R.; White, J.W.C.; Renssen, H.

    2008-01-01

    Greenland ice cores, as well as many other paleo-archives from the northern hemisphere, recorded a series of 25 warm interstadial events, the so-called Dansgaard-Oeschger (D-O) events, during the last glacial period. We use the three-dimensional coupled global ocean-atmosphere-sea ice model

  1. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    Energy Technology Data Exchange (ETDEWEB)

    Mea Cook; Lloyd Keigwin

    2007-11-30

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers produced by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.

  2. Lineage-specific late pleistocene expansion of an endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan

    Directory of Open Access Journals (Sweden)

    Huang Jen-Pan

    2011-04-01

    Full Text Available Abstract Background Pleistocene glacial oscillations have significantly affected the historical population dynamics of temperate taxa. However, the general effects of recent climatic changes on the evolutionary history and genetic structure of extant subtropical species remain poorly understood. In the present study, phylogeographic and historical demographic analyses based on mitochondrial and nuclear DNA sequences were used. The aim was to investigate whether Pleistocene climatic cycles, paleo-drainages or mountain vicariance of Taiwan shaped the evolutionary diversification of a subtropical gossamer-wing damselfly, Euphaea formosa. Results E. formosa populations originated in the middle Pleistocene period (0.3 Mya and consisted of two evolutionarily independent lineages. It is likely that they derived from the Pleistocene paleo-drainages of northern and southern Minjiang, or alternatively by divergence within Taiwan. The ancestral North-central lineage colonized northwestern Taiwan first and maintained a slowly growing population throughout much of the early to middle Pleistocene period. The ancestral widespread lineage reached central-southern Taiwan and experienced a spatial and demographic expansion into eastern Taiwan. This expansion began approximately 30,000 years ago in the Holocene interglacial period. The ancestral southern expansion into eastern Taiwan indicates that the central mountain range (CMR formed a barrier to east-west expansion. However, E. formosa populations in the three major biogeographic regions (East, South, and North-Central exhibit no significant genetic partitions, suggesting that river drainages and mountains did not form strong geographical barriers against gene flow among extant populations. Conclusions The present study implies that the antiquity of E. formosa's colonization is associated with its high dispersal ability and larval tolerance to the late Pleistocene dry grasslands. The effect of late Pleistocene

  3. Late Pliocene diatoms in a diatomite from Prydz Bay, East Antarctica

    Science.gov (United States)

    Mahood, A.D.; Barron, J.A.

    1996-01-01

    Very well-preserved Pliocene diatoms from a diatomite unit interbedded within glacial sediments at Ocean Drilling Program Site 742 in Prydz Bay, Antarctica are documented and illustrated. The presence of Thalassiosira kolbei, T. torokina, Actinocyclus actinochilus, A. karstenii and the absence of Nitzschia interfrigidaria. T. insigna and T. vulnifica in Sample 119-742A-15R-4, 44-46cm constrain its age to ca. 2.2-1.8 Ma (late Pliocene). Diatoms associated with sea ice constitute 35% of the Pliocene diatom assemblage, compared with 71% of the modern sediment assemblage at the site, suggesting that sea ice was present during the late Pliocene period of deposition of the sample, although it probably was not the significant feature it is today. Thalassiosira ellitipora (Donahue) Fenner is described and illustrated in detail and is validly published. An expanded description and numerous illustrations are also presented for T. torokina Brady.

  4. Palynological evidence for vegetation patterns in the Transvaal (South Africa during the late Pleistocene and Holocene

    Directory of Open Access Journals (Sweden)

    L. Scott

    1983-11-01

    Full Text Available Palynological evidence relating to the nature of Late Quaternary vegetation types and plant migrations in the Transvaal is briefly summarized. It is suggested that, after an early temperate, relatively moist phase and a subsequent relatively dry phase lasting until about 25 000 yr B.P., a vegetation-type with ericaceous elements developed. It resembled belts presently occurring above the treeline and was possibly widespread over the plains of the Transvaal during the last glacial maximum period. In the central parts of the province, warm semi-arid savanna subsequently expanded during the early Holocene and was followed by a more broad-leafed type of woodland in the late Holocene. This change probably resulted from slightly wetter and, at times, also slightly warmer and cooler conditions.

  5. Effects of glacial/post-glacial weathering compared with hydrothermal alteration - implications for matrix diffusion. Results from drillcore studies in porphyritic quartz monzodiorite from Aespoe SE Sweden

    International Nuclear Information System (INIS)

    Landstroem, Ove; Tullborg, Eva-Lena

    2001-08-01

    slight dissolution of these minerals. Quartz and K-feldspar have remained almost unaltered. Besides the thin weathered surface rim, slight alteration of plagioclase and increase in porosity is indicated in the 2-3 cm zone below the surface. Decrease of U and Cs concentrations in this zone is then interpreted as being due to leaching/diffusion processes, confined to the Weichselian glaciation (< 100 ka). The 234U/238U is close to unity indicating bulk leaching of U under oxic conditions. The deposition of U in Ya 1192 and leaching of U from BAS 1 are coeval to quaternary glacial, interstadial and interglacial periods during which the hydrogeological and geochemical conditions changed significantly. A main question in performance assessment is whether oxygenated glacial meltwater can penetrate to repository depth (500 m) and modify the redox conditions. The bedrock surface at BAS 1 has certainly been in contact with glacial meltwater as well as meteoric water, resulting in oxidation/ alteration of pyrite, oxidation/mobilisation of U, and probably also desorption/ mobilisation of Cs. In contrast, no signs of oxygenated glacial meltwater influence were found in the YA 1192 core (170 m depth). In fact, the absence of Fe oxyhydroxide but presence of fresh pyrite in the fracture filling and the altered zone at YA 1192 as well as deposition of U are contradictory to interactions with oxidising glacial meltwater from the late glaciations

  6. Early human-plant interactions based on palaeovegetation simulations of Africa over glacial-interglacial cycles

    Science.gov (United States)

    Cowling, S. A.; Cox, P. M.; Jones, C. D.; Maslin, M. A.; Spall, S. A.

    2003-04-01

    A greater understanding of African palaeovegetation environments over the Pleistocene (1.6 Mya) is important for evaluating potential catalysts underlying the anatomical, social and demographic changes observed in early human populations. We used a state-of-the-art fully-coupled earth system model (HADLEY-GCM3) to simulate typical glacial and interglacial environments likely encountered by late-Pleistocene humans. Our simulations indicate that tropical broadleaf forests of central Africa were not severely restricted by expanding grasslands during the last glacial maximum, although the carbon content of stem and density of leaf components were substantially reduced. We interpret a natural eastern migration corridor between southern Africa and the Rift Valley based on simulations of a no-analogue vegetation assemblage characterised by a unique combination of grass and low density forest. We postulate that early human populations in southern Africa were isolated from northern groups during warm interglacials, and that trans-African migration was facilitated during glacial cycles via a more openly forested eastern corridor.

  7. Synoptic climate change as a driver of late Quaternary glaciations in the mid-latitudes of the Southern Hemisphere

    Science.gov (United States)

    Rother, H.; Shulmeister, J.

    2006-05-01

    The relative timing of late Quaternary glacial advances in mid-latitude (40-55° S) mountain belts of the Southern Hemisphere (SH) has become a critical focus in the debate on global climate teleconnections. On the basis of glacial data from New Zealand (NZ) and southern South America it has been argued that interhemispheric synchrony or asynchrony of Quaternary glacial events is due to Northern Hemisphere (NH) forcing of SH climate through either the ocean or atmosphere systems. Here we present a glacial snow-mass balance model that demonstrates that large scale glaciation in the temperate and hyperhumid Southern Alps of New Zealand can be generated with moderate cooling. This is because the rapid conversion of precipitation from rainfall to snowfall drives massive ice accumulation at small thermal changes (1-4°C). Our model is consistent with recent paleo-environmental reconstructions showing that glacial advances in New Zealand during the Last Glacial Maximum (LGM) and the Last Glacial Interglacial Transition (LGIT) occurred under very moderate cooling. We suggest that such moderate cooling could be generated by changes in synoptic climatology, specifically through enhanced regional flow of moist westerly air masses. Our results imply that NH climate forcing may not have been the exclusive driver of Quaternary glaciations in New Zealand and that synoptic style climate variations are a better explanation for at least some late Quaternary glacial events, in particular during the LGIT (e.g. Younger Dryas and/or Antarctic Cold Reversal).

  8. Synoptic climate change as a driver of late Quaternary glaciations in the mid-latitudes of the Southern Hemisphere

    Directory of Open Access Journals (Sweden)

    H. Rother

    2006-01-01

    Full Text Available The relative timing of late Quaternary glacial advances in mid-latitude (40-55° S mountain belts of the Southern Hemisphere (SH has become a critical focus in the debate on global climate teleconnections. On the basis of glacial data from New Zealand (NZ and southern South America it has been argued that interhemispheric synchrony or asynchrony of Quaternary glacial events is due to Northern Hemisphere (NH forcing of SH climate through either the ocean or atmosphere systems. Here we present a glacial snow-mass balance model that demonstrates that large scale glaciation in the temperate and hyperhumid Southern Alps of New Zealand can be generated with moderate cooling. This is because the rapid conversion of precipitation from rainfall to snowfall drives massive ice accumulation at small thermal changes (1-4°C. Our model is consistent with recent paleo-environmental reconstructions showing that glacial advances in New Zealand during the Last Glacial Maximum (LGM and the Last Glacial Interglacial Transition (LGIT occurred under very moderate cooling. We suggest that such moderate cooling could be generated by changes in synoptic climatology, specifically through enhanced regional flow of moist westerly air masses. Our results imply that NH climate forcing may not have been the exclusive driver of Quaternary glaciations in New Zealand and that synoptic style climate variations are a better explanation for at least some late Quaternary glacial events, in particular during the LGIT (e.g. Younger Dryas and/or Antarctic Cold Reversal.

  9. Relationship between weights of planktonic foraminifer shell and surface water CO sub(3) sup(=) concentration during the Holocene and Last Glacial Period

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D.; Govil, P.; Godad, S.

    = change in the Arabian Sea is quantified and found that a [CO 3 = ] variation of ~8 µmol/kg occurred during the Holocene and a ~36µmol/kg variation occurred during the last glacial period. Keywords: Atmospheric CO 2 proxy, carbonate ion... it influences the dissolved inorganic carbon (DIC) species; CO 2 (aq), H 2 CO 3 , HCO 3 - and CO 3 = (Broecker and Peng, 1982). The increased dissolution of CO 2 consequently decreases the pH and carbonate ion concentration [CO 3 = ] of surface...

  10. Glacial and Quaternary geology of the northern Yellowstone area, Montana and Wyoming

    Science.gov (United States)

    Pierce, Kenneth L.; Licciardi, Joseph M.; Krause, Teresa R.; Whitlock, Cathy

    2014-01-01

    This field guide focuses on the glacial geology and paleoecology beginning in the Paradise Valley and progressing southward into northern Yellowstone National Park. During the last (Pinedale) glaciation, the northern Yellowstone outlet glacier flowed out of Yellowstone Park and down the Yellowstone River Valley into the Paradise Valley. The field trip will traverse the following Pinedale glacial sequence: (1) deposition of the Eightmile terminal moraines and outwash 16.5 ± 1.4 10Be ka in the Paradise Valley; (2) glacial recession of ~8 km and deposition of the Chico moraines and outwash 16.1 ± 1.7 10Be ka; (3) glacial recession of 45 km to near the northern Yellowstone boundary and moraine deposition during the Deckard Flats readjustment 14.2 ± 1.2 10Be ka; and (4) glacial recession of ~37 km and deposition of the Junction Butte moraines 15.2 ± 1.3 10Be ka (this age is a little too old based on the stratigraphic sequence). Yellowstone's northern range of sagebrush-grasslands and bison, elk, wolf, and bear inhabitants is founded on glacial moraines, sub-glacial till, and outwash deposited during the last glaciation. Floods released from glacially dammed lakes and a landslide-dammed lake punctuate this record. The glacial geologic reconstruction was evaluated by calculation of basal shear stress, and yielded the following values for flow pattern in plan view: strongly converging—1.21 ± 0.12 bars (n = 15); nearly uniform—1.04 ± 0.16 bars (n = 11); and strongly diverging—0.84 ± 0.14 bars (n = 16). Reconstructed mass balance yielded accumulation and ablation each of ~3 km3/yr, with glacial movement near the equilibrium line altitude dominated by basal sliding. Pollen and charcoal records from three lakes in northern Yellowstone provide information on the postglacial vegetation and fire history. Following glacial retreat, sparsely vegetated landscapes were colonized first by spruce parkland and then by closed subalpine forests. Regional fire activity

  11. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    Science.gov (United States)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  12. The sensitivity of the Greenland Ice Sheet to glacial-interglacial oceanic forcing

    Science.gov (United States)

    Tabone, Ilaria; Blasco, Javier; Robinson, Alexander; Alvarez-Solas, Jorge; Montoya, Marisa

    2018-04-01

    Observations suggest that during the last decades the Greenland Ice Sheet (GrIS) has experienced a gradually accelerating mass loss, in part due to the observed speed-up of several of Greenland's marine-terminating glaciers. Recent studies directly attribute this to warming North Atlantic temperatures, which have triggered melting of the outlet glaciers of the GrIS, grounding-line retreat and enhanced ice discharge into the ocean, contributing to an acceleration of sea-level rise. Reconstructions suggest that the influence of the ocean has been of primary importance in the past as well. This was the case not only in interglacial periods, when warmer climates led to a rapid retreat of the GrIS to land above sea level, but also in glacial periods, when the GrIS expanded as far as the continental shelf break and was thus more directly exposed to oceanic changes. However, the GrIS response to palaeo-oceanic variations has yet to be investigated in detail from a mechanistic modelling perspective. In this work, the evolution of the GrIS over the past two glacial cycles is studied using a three-dimensional hybrid ice-sheet-shelf model. We assess the effect of the variation of oceanic temperatures on the GrIS evolution on glacial-interglacial timescales through changes in submarine melting. The results show a very high sensitivity of the GrIS to changing oceanic conditions. Oceanic forcing is found to be a primary driver of GrIS expansion in glacial times and of retreat in interglacial periods. If switched off, palaeo-atmospheric variations alone are not able to yield a reliable glacial configuration of the GrIS. This work therefore suggests that considering the ocean as an active forcing should become standard practice in palaeo-ice-sheet modelling.

  13. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    Science.gov (United States)

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  14. A late glacial record of ice-sheet dynamics and melt supply recovered in the sediments of IODP Expedition 347 in the Baltic Sea

    Science.gov (United States)

    Passchier, Sandra; Jensen, Jørn Bo; Kenzler, Michael; Johnson, Sean; Andrén, Thomas; Barker Jørgensen, Bo

    2015-04-01

    Modern observations of increased surface ablation, meltwater routing to the bed, and increases in glacial speeds point to feedbacks between ice-sheet dynamics, melt supply, and subglacial discharge. Paleorecords have the potential to explore the decadal to centennial variability of these systems, but until recently such records were short and discontinuous in ice-proximal settings and underutilized for this specific purpose. The Integrated Ocean Drilling Program Expedition 347 in the Baltic Sea recovered annually laminated sediments that document the dynamics of the Scandinavian Ice Sheet. Hydraulic piston cores recovered from Sites M0060, M0063, M0064, and M0065 allow us to reconstruct a nearly complete record of ca. 6000 years in ice retreat history at annual to decadal resolution between ca. 17 and 11ka. The late glacial successions of these four IODP drillsites comprise of a till or proglacial fluvioglacial sediment overlain by variable thicknesses of well-laminated deglacial successions within several high-recovery holes. As the Scandinavian Ice Sheet retreated from the western Baltic Sea, and to the North, the ice-sheet's grounding line migrated across the four sites and deposited overlapping sections of high-resolution ice-proximal to ice-distal successions. Laser particle size results from Sites M0060 and M0063, and inspection of line-scan images, show shifts in sedimentary facies and lithologies that were not recognized during initial visual core description. For example, at Site M0060 in the Kattegat, ice-rafting fluxes in silty clays decrease upward and are negligible in the overlying varved succession. These characteristics are interpreted as ice retreat within a calving bay environment from ca. 17ka onward, followed by distal glacial marine deposition from sediment plumes governed by meltwater discharge. Moreover, at Site M0063 in the Baltic Sea, laser particle size distributions record an abrupt shift from interlaminated clayey silt to laminated clay

  15. Decadal-scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA

    Science.gov (United States)

    Pederson, Gregory T.; Fagre, Daniel B.; Gray, Stephen T.; Graumlich, Lisa J.

    2004-06-01

    Little Ice Age (14th-19th centuries A.D.) glacial maxima and 20th century retreat have been well documented in Glacier National Park, Montana, USA. However, the influence of regional and Pacific Basin driven climate variability on these events is poorly understood. We use tree-ring reconstructions of North Pacific surface temperature anomalies and summer drought as proxies for winter glacial accumulation and summer ablation, respectively, over the past three centuries. These records show that the 1850's glacial maximum was likely produced by ~70 yrs of cool/wet summers coupled with high snowpack. Post 1850, glacial retreat coincides with an extended period (>50 yr) of summer drought and low snowpack culminating in the exceptional events of 1917 to 1941 when retreat rates for some glaciers exceeded 100 m/yr. This research highlights potential local and ocean-based drivers of glacial dynamics, and difficulties in separating the effects of global climate change from regional expressions of decadal-scale climate variability.

  16. Quantitative Temperature Reconstructions from Holocene and Late Glacial Lake Sediments in the Tropical Andes using Chironomidae (non-biting midges)

    Science.gov (United States)

    Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.

    2014-12-01

    Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas

  17. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains.

    Science.gov (United States)

    Yang, Guang Li; Hou, Shu Gui; Le Baoge, Ri; Li, Zhi Guo; Xu, Hao; Liu, Ya Ping; Du, Wen Tao; Liu, Yong Qin

    2016-11-04

    A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.

  18. Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial-Interglacial cycle

    Science.gov (United States)

    Prothero, Donald R.; Syverson, Valerie J.; Raymond, Kristina R.; Madan, Meena; Molina, Sarah; Fragomeni, Ashley; DeSantis, Sylvana; Sutyagina, Anastasiya; Gage, Gina L.

    2012-11-01

    Conventional neo-Darwinian theory views organisms as infinitely sensitive and responsive to their environments, and considers them able to readily change size or shape when they adapt to selective pressures. Yet since 1863 it has been well known that Pleistocene animals and plants do not show much morphological change or speciation in response to the glacial-interglacial climate cycles. We tested this hypothesis with all of the common birds (condors, golden and bald eagles, turkeys, caracaras) and mammals (dire wolves, saber-toothed cats, giant lions, horses, camels, bison, and ground sloths) from Rancho La Brea tar pits in Los Angeles, California, which preserves large samples of many bones from many well-dated pits spanning the 35,000 years of the Last Glacial-Interglacial cycle. Pollen evidence showed the climate changed from chaparral/oaks 35,000 years ago to snowy piñon-juniper forests at the peak glacial 20,000 years ago, then back to the modern chaparral since the glacial-interglacial transition. Based on Bergmann's rule, we would expect peak glacial specimens to have larger body sizes, and based on Allen's rule, peak glacial samples should have shorter and more robust limbs. Yet statistical analysis (ANOVA for parametric samples; Kruskal-Wallis test for non-parametric samples) showed that none of the Pleistocene pit samples is statistically distinct from the rest, indicating complete stasis from 35 ka to 9 ka. The sole exception was the Pit 13 sample of dire wolves (16 ka), which was significantly smaller than the rest, but this did not occur in response to climate change. We also performed a time series analysis of the pit samples. None showed directional change; all were either static or showed a random walk. Thus, the data show that birds and mammals at Rancho La Brea show complete stasis and were unresponsive to the major climate change that occurred at 20 ka, consistent with other studies of Pleistocene animals and plants. Most explanations for such

  19. Late Palaeolithic Nørre Lyngby - a northern outpost close to the west coast of Europe

    DEFF Research Database (Denmark)

    Fischer, Anders; Clemmensen, Lars B; Donahue, Randolph

    2013-01-01

    Freshwater deposits exposed in a coastal cliff at Nørre Lyngby, NW Denmark, have yielded some of the northernmost traces of human presence in Western Europe during the Late Glacial. A rib from a reindeer bearing a cut mark has been dated to the climatically mild Allerød period. A robust projectile...... point of flint and an axe of reindeer antler, bearing zigzag ornamentation, are potentially of the same age. Wear marks indicate their use as a projectile tip and an axe, respectively. Botanical and faunal remains from the lake sediments indicate a colder climate and a significantly less treecovered...

  20. Post-glacial recolonization of the Great Lakes region by the common gartersnake (Thamnophis sirtalis) inferred from mtDNA sequences.

    Science.gov (United States)

    Placyk, John S; Burghardt, Gordon M; Small, Randall L; King, Richard B; Casper, Gary S; Robinson, Jace W

    2007-05-01

    Pleistocene events played an important role in the differentiation of North American vertebrate populations. Michigan, in particular, and the Great Lakes region, in general, were greatly influenced by the last glaciation. While several hypotheses regarding the recolonization of this region have been advanced, none have been strongly supported. We generated 148 complete ND2 mitochondrial DNA (mtDNA) sequences from common gartersnake (Thamnophis sirtalis) populations throughout the Great Lakes region to evaluate phylogeographic patterns and population structure and to determine whether the distribution of haplotypic variants is related to the post-Pleistocene retreat of the Wisconsinan glacier. The common gartersnake was utilized, as it is believed to have been one of the primary vertebrate invaders of the Great Lakes region following the most recent period of glacial retreat and because it has been a model species for a variety of evolutionary, ecological, behavioral, and physiological studies. Several genetically distinct evolutionary lineages were supported by both genealogical and molecular population genetic analyses, although to different degrees. The geographic distribution of the majority of these lineages is interpreted as reflecting post-glacial recolonization dynamics during the late Pleistocene. These findings generally support previous hypotheses of range expansion in this region.

  1. Antenatal steroid exposure in the late preterm period is associated with reduced cord blood neurotrophin-3.

    Science.gov (United States)

    Hodyl, Nicolette A; Crawford, Tara M; McKerracher, Lorna; Lawrence, Andrew; Pitcher, Julia B; Stark, Michael J

    2016-10-01

    Neurotrophins are proteins critically involved in neural growth, survival and differentiation, and therefore important for fetal brain development. Reduced cord blood neurotrophins have been observed in very preterm infants (neurotrophin concentrations, yet studies to date have not examined whether this occurs in the late preterm infant (33-36weeks gestation), despite increasing recognition of subtle neurodevelopmental deficits in this population. To assess the impact of antenatal steroids on cord blood neurotrophins in late preterm infants following antenatal steroid exposure. Retrospective analysis. Late preterm infants (33-36weeks; n=119) and term infants (37-41weeks; n=129) born at the Women's and Children's Hospital, Adelaide. Cord blood neurotrophin-3 (NT-3), NT-4, nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) concentrations measured by ELISA. Cord blood NT-4 and NGF were increased at term compared to the late preterm period (p24h prior to delivery (p<0.01). This study identified an association between reduced cord blood NT-3 and antenatal steroid exposure in the late preterm period. The reduced NT-3 may be a consequence of steroids inducing neuronal apoptosis, thereby reducing endogenous neuronal NT3 production, or be an action of steroids on other maternal or fetal NT-3 producing cells, which may then affect neuronal growth, differentiation and survival. Regardless of the specific mechanism, a reduction in NT-3 may have long term implications for child neurodevelopment, and emphasizes the ongoing vulnerability of the fetal brain across the full preterm period. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Precise chronologies of Holocene glacial culminations in the Cordillera Vilcabamba of southern Peru

    Science.gov (United States)

    Licciardi, J. M.; Schaefer, J. M.; Schweinsberg, A. D.

    2012-12-01

    Records of past fluctuations in climatically sensitive tropical mountain glaciers are among the best indicators of regional paleoclimatic trends and controls. The majority of the world's present-day tropical glaciers are found in the Peruvian Andes, but accurate and precise chronologies of past glacial activity in this region remain relatively scarce, particularly during the Holocene. Here we present ~50 new 10Be exposure ages derived from boulders on well-preserved moraine successions in several glaciated drainages in the Cordillera Vilcabamba of southern Peru (13°20'S latitude). The new results suggest that prominent moraines in these valleys are correlative with previously published moraine ages near Nevado Salcantay in this range (Licciardi et al., 2009), but also expand on the initial surface exposure chronologies to reveal additional periods of glacier stabilization not found in previous work. A provisional composite chronology that merges the new and previously obtained moraine ages indicates at least five discrete glacial culminations from the Lateglacial to the late Holocene. Forthcoming 10Be ages from an additional ~50 samples collected from moraine boulders will increase the precision and completeness of the Vilcabamba moraine chronologies. Basal radiocarbon ages are being developed from bog and lake sediments in stratigraphic contact with the 10Be-dated moraines. These new 14C age data will help constrain the local cosmogenic 10Be production rate, thereby increasing the accuracy of the 10Be chronologies.

  3. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability

    OpenAIRE

    Hu, Aixue; Meehl, Gerald A.; Han, Weiqing; Timmermann, Axel; Otto-Bliesner, Bette; Liu, Zhengyu; Washington, Warren M.; Large, William; Abe-Ouchi, Ayako; Kimoto, Masahide; Lambeck, Kurt; Wu, Bingyi

    2012-01-01

    Abrupt climate transitions, known as Dansgaard-Oeschger and Heinrich events, occurred frequently during the last glacial period, specifically from 80–11 thousand years before present, but were nearly absent during interglacial periods and the early stages of glacial periods, when major ice-sheets were still forming. Here we show, with a fully coupled state-of-the-art climate model, that closing the Bering Strait and preventing its throughflow between the Pacific and Arctic Oceans during the g...

  4. Late Quaternary climatic changes in the Ross Sea area, Antarctica

    International Nuclear Information System (INIS)

    Brambati, A.; Melis, R.; Quaia, T.; Salvi, G.

    2002-01-01

    Ten cores from the Ross Sea continental margin were investigated to detect Late Quaternary climatic changes. Two main climatic cycles over the last 300,000 yr (isotope stages 1-8) were recognised in cores from the continental slope, whereas minor fluctuations over the last 30,000 yr were found in cores from the continental shelf. The occurrence of calcareous taxa within the Last Glacial interval and their subsequent disappearance reveal a general raising of the CCD during the last climatic cycle. In addition, periodical trends of c. 400, c. 700, and c. 1400 yr determined on calcareous foraminifers from sediments of the Joides Basin, indicate fluctuations of the Ross Ice Shelf between 15 and 30 ka BP. (author). 24 refs., 5 figs

  5. Glacial-interglacial changes and Holocene variations in Arabian Sea denitrification

    Science.gov (United States)

    Gaye, Birgit; Böll, Anna; Segschneider, Joachim; Burdanowitz, Nicole; Emeis, Kay-Christian; Ramaswamy, Venkitasubramani; Lahajnar, Niko; Lückge, Andreas; Rixen, Tim

    2018-01-01

    At present, the Arabian Sea has a permanent oxygen minimum zone (OMZ) at water depths between about 100 and 1200 m. Active denitrification in the upper part of the OMZ is recorded by enhanced δ15N values in the sediments. Sediment cores show a δ15N increase during the middle and late Holocene, which is contrary to the trend in the other two regions of water column denitrification in the eastern tropical North and South Pacific. We calculated composite sea surface temperature (SST) and δ15N ratios in time slices of 1000 years of the last 25 kyr to better understand the reasons for the establishment of the Arabian Sea OMZ and its response to changes in the Asian monsoon system. Low δ15N values of 4-7 ‰ during the last glacial maximum (LGM) and stadials (Younger Dryas and Heinrich events) suggest that denitrification was inactive or weak during Pleistocene cold phases, while warm interstadials (ISs) had elevated δ15N. Fast changes in upwelling intensities and OMZ ventilation from the Antarctic were responsible for these strong millennial-scale variations during the glacial. During the entire Holocene δ15N values > 6 ‰ indicate a relatively stable OMZ with enhanced denitrification. The OMZ develops parallel to the strengthening of the SW monsoon and monsoonal upwelling after the LGM. Despite the relatively stable climatic conditions of the Holocene, the δ15N records show regionally different trends in the Arabian Sea. In the upwelling areas in the western part of the basin, δ15N values are lower during the mid-Holocene (4.2-8.2 ka BP) compared to the late Holocene ( ventilation of the OMZ during the period of the most intense southwest monsoonal upwelling. In contrast, δ15N values in the northern and eastern Arabian Sea rose during the last 8 kyr. The displacement of the core of the OMZ from the region of maximum productivity in the western Arabian Sea to its present position in the northeast was established during the middle and late Holocene. This was

  6. The last glacial cycles in East Greenland, an overVIew

    DEFF Research Database (Denmark)

    Funder, Svend Visby

    1994-01-01

    /glacial cycle. The stratigraphical scheme is based on studies on the Jameson Land peninsula, and contains five glacial stages and stades with the Greenland ice sheet or its outlets reaching the outer coasts. Individual sites are correlated and dated by a combination of biostratigraphy, luminescence dating...... ( ~ Eemian) the advection of warm Atlantic water was higher than during the Holocene, and the terrestrial flora and insect faullas show that summer temperatures were 3-4"C higher than during the Holocene optimum. There is no unambiguous evidence for cooling in the sediments from this interval. Later......, in isotope stage 5, there were apparently two ice-free periods. During the Hugin Sa interstade, stable Polar water dominated Scoresby Sund, and the terrestrial flora suggests summer temperatures 2"_3" lower than the present. The marine and fluvial sediments from the second ice-free period, the Manselv...

  7. Evidence for Multiple Late Quaternary Glaciations in the Southernmost Cordillera Blanca, Peru

    Science.gov (United States)

    Smith, J. A.; Rodbell, D. T.; Ramage, J. M.

    2007-12-01

    Surface-exposure dating with in-situ-produced cosmogenic isotopes has provided the basis for a growing framework of glacial chronologies in the tropical Andes. In the Peruvian Andes, long chronologies (>400 ka) with relatively small local last glacial maximum (LLGM) advances have been reported for the central Cordillera Blanca (ca. 9°30'S) and Junin Plain (11°00'S), whereas preliminary data suggest a shorter record (<40 ka) in the intervening Cordillera Huayhuash (10°15'S). These seemingly contradictory findings raise several questions: Was the LLGM a relatively minor event in the Peruvian Andes, far exceeded by bigger, older advances? Which combination of geographic and geomorphic factors increases the likelihood that evidence of older advances will be preserved? With these questions in mind, we sought a site with both high peaks and a high-altitude plateau. The glaciated Nevado Jeulla Rajo massif (10°00'S, 77°16'W, peaks ca. 5600 masl) marks the southern end of the Cordillera Blanca and the Callejon de Huaylas valley in the central Peruvian Andes. The Conococha Plain (ca. 4050 masl) borders the western side of the massif. Large lateral moraines extend onto the Conococha Plain from the west-facing valleys and multiple moraine loops lie upvalley, closer to active ice margins. Surface-exposure dating (10Be) indicates that the largest lateral moraines from Jeullesh Valley are compound features deposited during the LLGM (ca. 30 ka) and a late-glacial readvance (ca. 16 ka). The LLGM/late-glacial moraines cross-cut an older pair of lateral moraines (ca. 70 ka) that may provide evidence for a smaller advance during marine isotope stage 4. Although the LLGM/late-glacial moraines are impressively large (ca. 150 m high), they do not represent the maximum ice extent in the region. Fluvial outwash deposits beyond the termini of the moraines on the Conococha Plain are underlain by lodgement till that is up to 20 m thick and extends ca. 6 km across the width of the Plain

  8. A {approx}180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Anselmetti, F. S. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf (Switzerland); Drescher-Schneider, R. [Institut fuer Pflanzenwissenschaften, Karl-Fanzen-Universitaet Graz, Graz (Austria); Furrer, H. [Palaeontologisches Institut und Museum, Universitaet Zuerich, Zuerich (Switzerland); Graf, H. R. [Matousek, Baumann und Niggli AG, Baden (Switzerland); Lowick, S. E.; Preusser, F. [Institut fuer Geologie, Universitaet Bern, Bern (Switzerland); Riedi, M. A. [Marc A. Riedi, Susenbuehlstrasse 41, Chur (Switzerland)

    2010-11-15

    A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a {approx} 180 ka old sedimentary succession that provides new insights into the timing and nature of erosion-sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between {approx} 180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called {sup M}ammoth peat{sup ,} previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with paleoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history. (authors)

  9. A ∼180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland)

    International Nuclear Information System (INIS)

    Anselmetti, F. S.; Drescher-Schneider, R.; Furrer, H.; Graf, H. R.; Lowick, S. E.; Preusser, F.; Riedi, M. A.

    2010-01-01

    A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a ∼ 180 ka old sedimentary succession that provides new insights into the timing and nature of erosion-sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between ∼ 180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called M ammoth peat , previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with paleoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history. (authors)

  10. Glacial and postglacial geology near Lake Tennyson, Clarence River, New Zealand

    International Nuclear Information System (INIS)

    McCalpin, J.P.

    1992-01-01

    Otiran valley glaciers extended 15 km down the upper Clarence Valley in central Marlborough, South Island, New Zealand. A massive Otiran terminal moraine complex, composed of moraines of three glacial advances, impounds Lake Tennyson. The moraines are early and middle Otiran, and possibly late Otiran-early Aranuian in age, based on relative position and differences in moraine morphology, weathering rinds, and soils. Radiocarbon ages from a tributary (Serpentine Creek) suggest the latest major episode of aggradation in the Clarence Valley was in progress by 11.3 ka, and had ended by 9.2 ka. Postglacial history was dominated by incision of glacial outwash, deposition of small alluvial fans, and landsliding near the trace of the Awatere Fault. Fault scarps of the Awatere Fault and of unnamed parallel splays displace early Otiran moraines up to 19 m and early Holocene terraces up to 2.6 m. (author). 25 refs., 10 figs., 3 tabs

  11. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    Science.gov (United States)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa L.; Bentley, Michael J.; King, Matt A.

    2015-03-01

    Many ice-sheet reconstructions assume monotonic Holocene retreat for the West Antarctic Ice Sheet, but an increasing number of glaciological observations infer that some portions of the ice sheet may be readvancing, following retreat behind the present-day margin. A readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice streams grounded on beds that deepen inland; and (ii) the inability of models of glacial isostatic adjustment to match present-day uplift rates. By combining a suite of ice loading histories that include a readvance with a model of glacial isostatic adjustment we report substantial improvements to predictions of present-day uplift rates, including reconciling one problematic observation of land sinking. We suggest retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery has since led to shallowing, ice sheet re-grounding and readvance. The paradoxical existence of grounding lines in apparently unstable configurations on reverse bed slopes may be resolved by invoking the process of unstable advance, in accordance with our load modelling.

  12. Late Quaternary glaciation history of monsoon-dominated Dingad basin, central Himalaya, India

    Science.gov (United States)

    Shukla, Tanuj; Mehta, Manish; Jaiswal, Manoj K.; Srivastava, Pradeep; Dobhal, D. P.; Nainwal, H. C.; Singh, Atul K.

    2018-02-01

    The study presents the Late Quaternary glaciation history of monsoon-dominated Dokriani Glacier valley, Dingad basin, central Himalaya, India. The basin is tested for the mechanism of landforms preservation in high relief and abundant precipitation regimes of the Higher Himalaya. Field geomorphology and remote sensing data, supported by Optical Stimulated Luminescence (OSL) dating enabled identification of five major glacial events of decreasing magnitude. The oldest glacial stage, Dokriani Glacial Stage I (DGS-I), extended down to ∼8 km (2883 m asl) from present-day snout (3965 m asl) followed by other four glaciations events viz. DGS-II, DGS-III, DGS-IV and DGS-V terminating at ∼3211, 3445, 3648 and ∼3733 m asl respectively. The DGS-I glaciation (∼25-∼22 ka BP) occurred during early Marine Isotope Stage (MIS) -2, characterized as Last Glacial Maximum (LGM) extension of the valley. Similarly, DGS-II stage (∼14-∼11 ka BP) represents the global cool and dry Older Dryas and Younger Dryas event glaciation. The DGS-III glaciation (∼8 ka BP) coincides with early Holocene 8.2 ka cooling event, the DGS-IV glaciations (∼4-3.7 ka BP) corresponds to 4.2 ka cool and drier event, DGS-V (∼2.7-∼1 ka BP) represents the cool and moist late Holocene glacial advancement of the valley. This study suggests that the Dokriani Glacier valley responded to the global lowering of temperature and variable precipitation conditions. This study also highlights the close correlation between the monsoon-dominated valley glaciations and Northern Hemisphere cooling events influenced by North Atlantic climate.

  13. Climate evolution during the Pleniglacial and Late Glacial as recorded in quartz grain morphoscopy of fluvial to aeolian successions of the European Sand Belt

    Directory of Open Access Journals (Sweden)

    Woronko Barbara

    2015-06-01

    Full Text Available We present results of research into fluvial to aeolian successions at four sites in the foreland of the Last Glacial Maximum, i.e., the central part of the “European Sand Belt”. These sites include dune fields on higher-lying river terraces and alluvial fans. Sediments were subjected to detailed lithofacies analyses and sampling for morphoscopic assessment of quartz grains. Based on these results, three units were identified in the sedimentary succession: fluvial, fluvio-aeolian and aeolian. Material with traces of aeolian origin predominate in these sediments and this enabled conclusions on the activity of aeolian processes during the Pleniglacial and Late Glacial, and the source of sediment supply to be drawn. Aeolian processes played a major role in the deposition of the lower portions of the fluvial and fluvio-aeolian units. Aeolian material in the fluvial unit stems from aeolian accumulation of fluvial sediments within the valley as well as particles transported by wind from beyond the valley. The fluvio-aeolian unit is composed mainly of fluvial sediments that were subject to multiple redeposition, and long-term, intensive processing in an aeolian environment. In spite of the asynchronous onset of deposition of the fluvio-aeolian unit, it is characterised by the greatest homogeneity of structural and textural characteristics. Although the aeolian unit was laid down simultaneously, it is typified by the widest range of variation in quartz morphoscopic traits. It reflects local factors, mainly the origin of the source material, rather than climate. The duration of dune-formation processes was too short to be reflected in the morphoscopy of quartz grains.

  14. Geomorphic investigation of the Late-Quaternary landforms in the southern Zanskar Valley, NW Himalaya

    Science.gov (United States)

    Sharma, Shubhra; Hussain, Aadil; Mishra, Amit K.; Lone, Aasif; Solanki, Tarun; Khan, Mohammad Khatib

    2018-02-01

    The Suru, Doda and Zanskar river valleys in the semi-arid region of Southern Zanskar Ranges (SZR) preserve a rich repository of the glacial and fluvial landforms, alluvial fans, and lacustrine deposits. Based on detailed field observations, geomorphic mapping and limited optical ages, we suggest four glaciations of decreasing magnitude in the SZR. The oldest Southern Zanskar Glaciation Stage (SZS-4) is inferred from glacially polished bedrock and tillite pinnacles. The SZS-4 is ascribed to the Marine Isotopic Stage (MIS)-4/3. The subsequent SZS-3 is represented by obliterated and dissected moraines, and is assigned to MIS-2/Last Glacial Maximum. The multiple recessional moraines of SZS-2 glaciation are assigned the early to mid Holocene age whereas, the youngest SZS-1 moraines were deposited during the Little Ice Age. We suggest that during the SZS-2 glaciation, the Drang-Drung glacier shifted its course from Suru Valley (west) to the Doda Valley (east). The study area has preserved three generations of outwash gravel terraces, which broadly correlate with the phases of deglaciation associated with SZS-3, 2, and 1. The alluvial fan aggradation, lacustrine sedimentation, and loess deposition occurred during the mid-to-late Holocene. We suggest that glaciation was driven by a combination of the mid-latitude westerlies and the Indian Summer Monsoon during periods of cooler temperature, while phases of deglaciation occurred during enhanced temperature.

  15. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Science.gov (United States)

    Sánchez Goñi, María Fernanda; Desprat, Stéphanie; Daniau, Anne-Laure; Bassinot, Frank C.; Polanco-Martínez, Josué M.; Harrison, Sandy P.; Allen, Judy R. M.; Anderson, R. Scott; Behling, Hermann; Bonnefille, Raymonde; Burjachs, Francesc; Carrión, José S.; Cheddadi, Rachid; Clark, James S.; Combourieu-Nebout, Nathalie; Mustaphi, Colin. J. Courtney; Debusk, Georg H.; Dupont, Lydie M.; Finch, Jemma M.; Fletcher, William J.; Giardini, Marco; González, Catalina; Gosling, William D.; Grigg, Laurie D.; Grimm, Eric C.; Hayashi, Ryoma; Helmens, Karin; Heusser, Linda E.; Hill, Trevor; Hope, Geoffrey; Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie; Jiménez-Moreno, Gonzalo; Kawai, Sayuri; Kershaw, A. Peter; Kumon, Fujio; Lawson, Ian T.; Ledru, Marie-Pierre; Lézine, Anne-Marie; Liew, Ping Mei; Magri, Donatella; Marchant, Robert; Margari, Vasiliki; Mayle, Francis E.; Merna McKenzie, G.; Moss, Patrick; Müller, Stefanie; Müller, Ulrich C.; Naughton, Filipa; Newnham, Rewi M.; Oba, Tadamichi; Pérez-Obiol, Ramón; Pini, Roberta; Ravazzi, Cesare; Roucoux, Katy H.; Rucina, Stephen M.; Scott, Louis; Takahara, Hikaru; Tzedakis, Polichronis C.; Urrego, Dunia H.; van Geel, Bas; Valencia, B. Guido; Vandergoes, Marcus J.; Vincens, Annie; Whitlock, Cathy L.; Willard, Debra A.; Yamamoto, Masanobu

    2017-09-01

    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at PANGAEA.870867" target="_blank">https://doi.org/10.1594/PANGAEA.870867.

  16. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment

    Science.gov (United States)

    Xu, Zhaokai; Li, Tiegang; Clift, Peter D.; Lim, Dhongil; Wan, Shiming; Chen, Hongjin; Tang, Zheng; Jiang, Fuqing; Xiong, Zhifang

    2015-09-01

    We present a new high-resolution multiproxy data set of Sr-Nd isotopes, rare earth element, soluble iron, and total organic carbon data from International Marine Global Change Study Core MD06-3047 located in the western Philippine Sea. We integrate our new data with published clay mineralogy, rare earth element chemistry, thermocline depth, and δ13C differences between benthic and planktonic foraminifera, in order to quantitatively constrain Asian dust input to the basin. We explore the relationship between Philippine Sea and high-latitude Pacific eolian fluxes, as well as its significance for marine productivity and atmospheric CO2 during the mid-late Quaternary. Three different indices indicate that Asian dust contributes between ˜15% and ˜50% to the detrital fraction of the sediments. Eolian dust flux in Core MD06-3047 is similar to that in the polar southern Pacific sediment. Coherent changes for most dust flux maximum/minimum indicate that dust generation in interhemispheric source areas might have a common response to climatic variation over the mid-late Quaternary. Furthermore, we note relatively good coherence between Asian dust input, soluble iron concentration, local marine productivity, and even global atmospheric CO2 concentration over the entire study interval. This suggests that dust-borne iron fertilization of marine phytoplankton might have been a periodic process operating at glacial/interglacial time scales over the past 700 ka. We suggest that strengthening of the biological pump in the Philippine Sea, and elsewhere in the tropical western Pacific during the mid-late Quaternary glacial periods may contribute to the lowering of atmospheric CO2 concentrations during ice ages.

  17. A proxy late Holocene climatic record deduced from northwest Alaskan beach ridges

    International Nuclear Information System (INIS)

    Mason, O.K.; Jordan, J.W.

    1991-01-01

    A climatically-sensitive, oscillatory pattern of progradation and erosion is revealed in late Holocene accretionary sand ridge and barrier island complexes of Seward Peninsula, northwest Alaska. Archaeological and geological radiocarbon dates constrain the authors chronology for the Cape Espenberg beach ridge plain and the Shishmaref barrier islands, 50 km to the southwest. Cape Espenberg, acts as the depositional sink for the northeastward longshore transport system and contains the oldest sedimentary deposits: based on 3700±90 B.P. (β-23170) old grass from a paleosol capping a low dune facies. The oldest date on the Shishmaref barrier islands is 1550±70 B.P. (β-23183) and implies that the modem barrier is a comparatively recent phenomenon. Late Holocene sedimentation varies between intervals of erosion and rapid progradation. During erosional periods higher dunes are built atop beach ridges: as between 3000-2000 yrs. BP and intermittently from 1000 BP to the present. At other times, rapid progradation predominated, generating wide swales and low beach ridges without dunes. Tentatively, dune formation is correlative with the Neo-glacial and Little Ice Age glacial advances and increased alluviation in north Alaska. Rapid progradation is contemporaneous with warmer intervals of soil and peat formation atop alluvial terraces, dated to ca. 4000-3500 and 2000-1000 yrs. B.P. In the record of the last 1000 years, dune building is correlative with heightened storminess, as reflected in northwest Alaska tree-ring chronologies and weather anomalies such as spring dust storms and winter thunderstorms in East Asian locations

  18. Application of sediment core modelling to interpreting the glacial-interglacial record of Southern Ocean silica cycling

    Directory of Open Access Journals (Sweden)

    A. Ridgwell

    2007-07-01

    Full Text Available Sediments from the Southern Ocean reveal a meridional divide in biogeochemical cycling response to the glacial-interglacial cycles of the late Neogene. South of the present-day position of the Antarctic Polar Front in the Atlantic sector of the Southern Ocean, biogenic opal is generally much more abundant in sediments during interglacials compared to glacials. To the north, an anti-phased relationship is observed, with maximum opal abundance instead occurring during glacials. This antagonistic response of sedimentary properties provides an important model validation target for testing hypotheses of glacial-interglacial change against, particularly for understanding the causes of the concurrent variability in atmospheric CO2. Here, I illustrate a time-dependent modelling approach to helping understand climates of the past by means of the mechanistic simulation of marine sediment core records. I find that a close match between model-predicted and observed down-core changes in sedimentary opal content can be achieved when changes in seasonal sea-ice extent are imposed, whereas the predicted sedimentary response to iron fertilization on its own is not consistent with sedimentary observations. The results of this sediment record model-data comparison supports previous inferences that the changing cryosphere is the primary driver of the striking features exhibited by the paleoceanographic record of this region.

  19. Glacial flour in lacustrine sediments: Records of alpine glaciation in the western U.S.A. during the last glacial interval

    Science.gov (United States)

    Rosenbaum, J. G.; Reynolds, R. L.

    2010-12-01

    Sediments in Bear Lake (UT/ID) and Upper Klamath Lake (OR) contain glacial flour derived during the last glacial interval from the Uinta Mountains and the southern Cascade Range, respectively. Magnetic properties provide measures of glacial-flour content and, in concert with elemental and grain-size analyses, yield high-resolution records of glacial growth and decay. Creation and preservation of such records requires that (1) properties of glacial flour contrast with those of other sedimentary components and (2) magnetic minerals are neither formed nor destroyed after deposition. In the Bear Lake watershed, glaciers were confined to a small headwater area of the Bear River underlain by hematite-rich rocks of the Uinta Mountain Group (UMG), which are not exposed elsewhere in the catchment. Because UMG detritus is abundant only in Bear Lake sediments of glacial age, hard isothermal remanent magnetization (a measure of hematite content) provides a proxy for glacial flour. In contrast, the entire Upper Klamath Lake catchment, which lies to the east of the Cascade Range in southern Oregon, is underlain largely by basalt and basaltic andesite. Magnetic properties of fresh titanomagnetite-rich rock flour from glaciers on a composite volcano contrast sharply with those of detritus from unglaciated areas in which weathering destroyed some of the titanomagnetite. Ideally, well-dated records of the flux of glacial flour can be compared to ages of glacial features (e.g., moraines). For Upper Klamath Lake, quantitative measures of rock-flour content (from magnetic properties) and excellent chronology allow accurate calculation of flux. However, ages of glacial features are lacking and mafic volcanic rocks, which weather rapidly in this environment, are not well suited for cosmogenic exposure dating. At Bear Lake, estimates of glacial-flour content are less quantitative and chronology within the glacial interval must be interpolated from radiocarbon ages above and below the

  20. Palaeocirculation across New Zealand during the last glacial maximum at ˜21 ka

    Science.gov (United States)

    Lorrey, Andrew M.; Vandergoes, Marcus; Almond, Peter; Renwick, James; Stephens, Tom; Bostock, Helen; Mackintosh, Andrew; Newnham, Rewi; Williams, Paul W.; Ackerley, Duncan; Neil, Helen; Fowler, Anthony M.

    2012-03-01

    What circulation pattern drove Southern Alps glacial advances at ˜21 ka? Late 20th century glacial advances in New Zealand are commonly attributed to a dual precipitation increase and cooler than normal temperatures associated with enhanced westerly flow that occur under synoptic pressure patterns termed 'zonal' regimes (Kidson, 2000). But was the circulation pattern that supported major Southern Alps glacial advances during the global LGM similar to the modern analog? Here, a Regional Climate Regime Classification (RCRC) time slice was used to infer past circulation for New Zealand during the LGM at ˜21 ka. Palaeoclimate information that supported the construction of the ˜21 ka time slice was derived from the NZ-INTIMATE Climate Event Stratigraphy (CES), one new Auckland maar proxy record, and additional low-resolution data sourced from the literature. The terrestrial evidence at ˜21 ka implicates several possibilities for past circulation, depending on how interpretations for some proxies are made. The interpretation considered most tenable for the LGM, based on the agreement between terrestrial evidence, marine reconstructions and palaeoclimate model results is an 'anticyclonic/zonal' circulation regime characterized by increased influences from blocking 'highs' over the South Island during winter and an increase in zonal and trough synoptic types (with southerly to westerly quarter wind flow) during summer. These seasonal circulation traits would have generated lower mean annual temperatures, cooler than normal summer temperatures, and overall lower mean annual precipitation for New Zealand (particularly in the western South Island) at ˜21 ka. The anticyclonic/zonal time slice reconstruction presented in this study has different spatial traits than the late 20th Century and the early Little Ice Age signatures, suggesting more than one type of regional circulation pattern can drive Southern Alps glacial activity. This finding lends support to the hypothesis

  1. Late Post-glacial Sea Level Rise and Its Effects On Human Activity In Asia

    Science.gov (United States)

    Oppenheimer, S. J.

    Three rapid post-glacial sea-level rises flooded coastlines with large continental shelves. The last of these, shortly before the interglacial optimum c.7,500BP, not only changed coastal Neolithic societies, but may also have stimulated maritime skills. Two Asian examples explore these aspects. First, during the Mid-Holocene, the Arabian Gulf transgressed as far inland as Ur probably laying down Woolley's famous Ur Flood silt layer between 7,000-5,500 BP. Stratigraphy and dating suggests the phase of rapid sea level rise immediately preceded the start of the 'Ubaid pottery period. Red-slipped Uruk pottery and copper items then appear from about 6,000BP, but above Woolley's silt layer. The Sumerian King Lists also record a major upheaval and dynastic change after 'the Flood'. Second, the final flooding of the Sunda shelf in Southeast Asia was followed by a maritime extension of human occupation from Northern Melanesia south into the Solomon Islands 6,000 years ago. Simultaneously, further west on the north coast of New Guinea, new archaeological assemblages ap- pear beneath a silt layer left by a pro-grading 6,000 year-old inland sea. The presence of arboriculture items such as betel nuts and the contemporary arrival of dogs and pigs in the same region suggests intrusion from Southeast Asia. This supports Solheim's suggestion that rapid sea-level rise on the eastern edge of the Sunda Shelf stimulated maritime skills and invention in Southeast Asia. This may have provided the initial stimulus to the first maritime expansion that was later to colonise the whole Pacific.

  2. Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods.

    Science.gov (United States)

    Selden, Paul A; Huys, Rony; Stephenson, Michael H; Heward, Alan P; Taylor, Paul N

    2010-08-10

    Copepod crustaceans are extremely abundant but, because of their small size and fragility, they fossilize poorly. Their fossil record consists of one Cretaceous (c. 115 Ma) parasite and a few Miocene (c. 14 Ma) fossils. In this paper, we describe abundant crustacean fragments, including copepods, from a single bitumen clast in a glacial diamictite of late Carboniferous age (c. 303 Ma) from eastern Oman. Geochemistry identifies the source of the bitumen as an oilfield some 100-300 km to the southwest, which is consistent with an ice flow direction from glacial striae. The bitumen likely originated as an oil seep into a subglacial lake. This find extends the fossil record of copepods by some 188 Ma, and of free-living forms by 289 Ma. The copepods include evidence of the extant family Canthocamptidae, believed to have colonized fresh water in Pangaea during Carboniferous times.

  3. Alaska Harbor Seal Glacial Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Floating glacial ice serves as a haul-out substrate for a significant number (10-15%) of Alaskan harbor seals, and thus surveying tidewater glacial fjords is an...

  4. A first look at the ACER-SST dataset: Mapping the spatio-temporal variability of sea-surface temperatures in the last Glacial and the Holocene

    Science.gov (United States)

    Rehfeld, Kira; Laepple, Thomas; Bassinot, Franck; Daniau, Anne-Laure; Desprat, Stéphanie; Kim, Jung-Hyun; Fernanda Sánchez-Goñi, Maria; Harrison, Sandy

    2016-04-01

    Climate in the last Glacial was characterized by abrupt and large-scale changes around cold Heinrich-Events and warm Dansgaard-Oeschger excursions in the Northern high latitudes. The global repercussions of these periods of rapid dynamics are, to date, unconstrained. Here, we present a first statistical analysis of the global multi-proxy ACER (Abrupt Climate Changes and Environmental Responses) sea surface temperature dataset, spanning the last 80 thousand years, to investigate the spatial footprints of glacial climate dynamics. In a first step we evaluate the spatial and temporal variability throughout the Glacial period, and contrast them with that during the Holocene. In a second step we investigate to which extent a temporal synchroneity of extreme events during the Glacial is detectable in the proxy records, and analyze the reversibility of Glacial dynamics.

  5. Glacial cold-water coral growth in the Gulf of Cádiz: Implications of increased palaeo-productivity

    Science.gov (United States)

    Wienberg, Claudia; Frank, Norbert; Mertens, Kenneth N.; Stuut, Jan-Berend; Marchant, Margarita; Fietzke, Jan; Mienis, Furu; Hebbeln, Dierk

    2010-10-01

    A set of 40 Uranium-series datings obtained on the reef-forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata revealed that during the past 400 kyr their occurrence in the Gulf of Cádiz (GoC) was almost exclusively restricted to glacial periods. This result strengthens the outcomes of former studies that coral growth in the temperate NE Atlantic encompassing the French, Iberian and Moroccan margins dominated during glacial periods, whereas in the higher latitudes (Irish and Norwegian margins) extended coral growth prevailed during interglacial periods. Thus it appears that the biogeographical limits for sustained cold-water coral growth along the NE Atlantic margin are strongly related to climate change. By focussing on the last glacial-interglacial cycle, this study shows that palaeo-productivity was increased during the last glacial. This was likely driven by the fertilisation effect of an increased input of aeolian dust and locally intensified upwelling. After the Younger Dryas cold event, the input of aeolian dust and productivity significantly decreased concurrent with an increase in water temperatures in the GoC. This primarily resulted in reduced food availability and caused a widespread demise of the formerly thriving coral ecosystems. Moreover, these climate induced changes most likely caused a latitudinal shift of areas with optimum coral growth conditions towards the northern NE Atlantic where more suitable environmental conditions established with the onset of the Holocene.

  6. [Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-Zhong; Yang, Wan-Qin; Yu, Sheng; Yang, Yu-Lian; Wang, Ao

    2011-05-01

    Late soil-thawing period is a critical stage connecting winter and growth season. The significant temperature fluctuation at this stage might have strong effects on soil ecological processes. In order to understand the soil biochemical processes at this stage in the subalpine/alpine forests of west Sichuan, soil samples were collected from the representative forests including primary fir forest, fir and birch mixed forest, and secondary fir forest in March 5-April 25, 2009, with the activities of soil invertase, urease, and phosphatase (neutral, acid and alkaline phosphatases) measured. In soil frozen period, the activities of the three enzymes in test forests still kept relatively higher. With the increase of soil temperature, the activities of hydrolases at the early stage of soil-thawing decreased rapidly after a sharp increase, except for neutral phosphatease. Thereafter, there was an increase in the activities of urease and phosphatase. Relative to soil mineral layer, soil organic layer had higher hydrolase activity in late soil-thawing period, and showed more obvious responses to the variation of soil temperature.

  7. The late Cainozoic East Antarctic ice sheet

    International Nuclear Information System (INIS)

    Colhoun, E.A.

    1999-01-01

    A review, mainly of East Antarctic late Cainozoic (post 40 Ma) geological and geomorphological evidence, supports the hypothesis of the continuous presence of an ice sheet, of about the present size, since the late Miocene. Evidence is presented and the view advanced that, during the late Wisconsin maximum of isotope stage 2, ice was not nearly as thick or extensive over the continental shelf as required by the model of 'maximum' Antarctic glaciation. Some of the factors influencing the contribution of Antarctica to post-glacial sea-level rise are discussed. It is considered that Antarctica's contribution was probably considerably less than previously estimated. The dating of marine and freshwater sequences in the Vestfold and Bunger Hills is consistent with deglaciation around the Pleistocene Holocene boundary, after the Late Wisconsin maximum. A date of ∼25 ka BP from permafrost in the Larsemann Hills means that either the Larsemann Hills were not glaciated during the Late Wisconsin or the ice failed to erode much of the permafrost surface. The degree of weathering of rock and glacial drifts in the Vestfold, Larsemann and Bunger Hills suggests a long time for formation, perhaps considerably longer than indicated by the dated marine and freshwater sediment sequences. Cosmogenic isotope dating in the Vestfold Hills has provided equivocal ages for deglaciation. While the results could indicate deglaciation before 80 ka BP, they do not confirm such early deglaciation. If the ice cover was thin and failed to remove the previous rock exposure profile, then the assays could predate the last ice advance. Weathered iron crust fragments in the till suggest little erosion. The raised beaches of the oases are Holocene. Assuming they have been produced by post Late Wisconsin isostatic uplift and by the Holocene transgression, calculations show that the Antarctic continental ice sheet could not have been more than ∼500 m thicker in the inner shelf-coastal zone. The

  8. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Directory of Open Access Journals (Sweden)

    M. F. Sánchez Goñi

    2017-09-01

    Full Text Available Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses global database, which includes 93 pollen records from the last glacial period (73–15 ka with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL, 40Ar∕39Ar-dated tephra layers has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867.

  9. Responses of high-elevation herbaceous plant assemblages to low glacial CO₂ concentrations revealed by fossil marmot (Marmota) teeth.

    Science.gov (United States)

    McLean, Bryan S; Ward, Joy K; Polito, Michael J; Emslie, Steven D

    2014-08-01

    Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy-fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris)-which we developed using detailed isotopic analysis of modern individuals. Calculated C isotopic discrimination (Δ) of alpine plants was nearly 2 ‰ lower prior to the Last Glacial Maximum than at present, a response almost identical to that of nonherbaceous taxa from lower elevations. However, initial shifts in Δ aligned most closely with the onset of the late Pleistocene bipolar temperature "seesaw" rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.

  10. A Glacial Perspective on the Impact of Heinrich Stadials on North Atlantic Climate

    Science.gov (United States)

    Bromley, G. R.; Putnam, A. E.; Rademaker, K. M.; Balter, A.; Hall, B. L.

    2017-12-01

    The British Isles contain a rich geologic record of Late Pleistocene ice sheet behaviour in the NE North Atlantic basin. We are using cosmogenic 10Be surface-exposure dating, in conjunction with detailed glacial-geomorphic mapping, to reconstruct the timing and nature of cryospheric change - and thus climate variability - in northern Scotland since the Last Glacial Maximum. Our specific focus is Heinrich Stadial 1 (18,300-14,700 years ago), arguably the most significant abrupt climate event of the last glacial cycle and a major feature in global palaeoclimate records. Such constraint is needed because of currently conflicting models of how these events impact terrestrial environments and a recent hypothesis attributing this disparity to enhanced seasonality in the North Atlantic basin. To date, we have measured 10Be in > 30 samples from glacial erratics located on moraines deposited by the British Ice Sheet as it retreated from the continental shelf to its highland source regions. Our preliminary results indicate that the stadial was characterised by widespread deglaciation driven by atmospheric warming, a pattern that is suggestive of pronounced seasonality. Additionally, we report new exposure ages from moraines deposited during a subsequent phase of alpine glaciation (known locally as the Loch Lomond Readvance) that has long been attributed to the Younger Dryas stadial. With the growing focus on the full expression of stadials, and the inherent vulnerability of Europe to shifts in North Atlantic climate, developing the extant record of terrestrial glaciation and comparing these data to marine records is a critical step towards understanding the drivers of abrupt climate change.

  11. Comparison of three devices for oxygen administration in the late postoperative period

    DEFF Research Database (Denmark)

    Stausholm, K; Rosenberg-Adamsen, S; Skriver, M

    1995-01-01

    We have evaluated three different devices for oxygen administration in the surgical ward, the Hudson face mask (oxygen 3 litre min-1, air 12 litre min-1), the nasal prong (oxygen 3 litre min-1) and the binasal catheter (oxygen 3 litre min-1). We evaluated the three devices in random order......, but the highest degree of comfort was found with the binasal catheter. Use of the binasal catheter is recommended for oxygen administration in the late postoperative period....

  12. Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain

    Science.gov (United States)

    Panin, Andrei; Adamiec, Grzegorz; Buylaert, Jan-Pieter; Matlakhova, Ekaterina; Moska, Piotr; Novenko, Elena

    2017-06-01

    In valleys of the River Seim and its tributaries in the middle Dnieper basin (west-central Russian Plain), two low terraces (T1, 10-16 m, and T0, 5-7 m above the river) and a floodplain (2-4 m) with characteristic large and small palaeochannels exist. A range of field and laboratory techniques was applied and ∼30 new numerical ages (OSL and 14C dates) were obtained to establish a chronology of incision and aggradation events that resulted in the current valley morphology. Two full incision/aggradation rhythms and one additional aggradation phase from the previous rhythm were recognized in the Late Pleistocene - Holocene climate cycle. The following events were detected. (1) Late MIS 5 - early MIS 4: aggradation of Terrace T1 following the deep incision at the end of MIS 6. (2) Late MIS 4 (40-30 ka): incision into Terrace T1 below the present-day river, formation of the main scarp in the bottom of the valley between Terrace T1 and Terrace T0/Floodplain levels. (3) MIS 2: aggradation of Terrace T0, lateral migrations of a shallow braided channel located few meters above the present-day river since ∼25 ka through the LGM. (4) 18-13 ka: incision into Terrace T0 below the modern river. Multiple-thread channels concentrated in a single flow that at some places formed large meanders. In the period 15-13 ka, high floods that rose above the present-day floods left large levees and overbank loams on Terrace T0. (5) Younger Dryas - Holocene transition: aggradation up to the modern channel level, transformation of large Late Glacial to small Holocene meanders. The established incision/aggradation rhythms are believed to be manifested over the Central Russian Plain outside the influence of ice sheets in the north and base level changes in the south. The two-phase deepening of the valley occurred in the last quarter of the last glacial epoch but can not be attributed directly to the glacial-interglacial transition. Both the detected incision events correspond to relatively

  13. Monumental Architecture of Late Intermediate Period Cuzco: Continuities of Ritual Reciprocity and Statecraft between the Middle and Late Horizons

    OpenAIRE

    McEwan, Gordon; Gibaja, Arminda; Chatfield, Melissa

    2012-01-01

    The culture history of the valley of Cuzco prior to the rise of the Incas is being revealed by twelve years of fieldwork at the site of Chokepukio. Located in the Lucre Basin at the eastern end of the valley, Chokepukio contains the only surviving monumental architecture of Late Intermediate Period Cuzco. Excavations in a series of large niched structures on the site reveals that they functioned as feasting halls. Quantities of polychrome ceramic serving and feasting vessels and high quality ...

  14. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa.

    Science.gov (United States)

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-06-05

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO(2) concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO(2) concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO(2) glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods.

  15. Magnetic cycles and rotation periods of late-type stars from photometric time series

    Science.gov (United States)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  16. Reconstructing the Mineralogy and Bioavailability of Dust-Borne Iron Deposited to the Southern Ocean through the Last Glacial Cycle

    Science.gov (United States)

    Shoenfelt, E. M.; Winckler, G.; Lamy, F.; Bostick, B. C.

    2017-12-01

    The iron (Fe) in dust deposited to the Fe-limited Southern Ocean plays an important role in ocean biogeochemistry and global climate. For instance, increases in dust-borne Fe deposition in the subantarctic Southern Ocean have been linked to increases in productivity and part of the CO2 drawdown of the last glacial cycle [1]. Notably, bioavailable Fe impacts productivity rather than total Fe. While it has long been understood that Fe mineralogy impacts Fe bioavailability in general, our understanding of the mineralogy of Fe in dust in specific is limited to that in modern dust sources. Reduced mineral Fe in dust has been shown to be more bioavailable than oxidized mineral iron, as it is more readily dissolved [2], and it is more easily utilized directly by a model diatom [3]. Our previous work focusing on South American dust sources shows that glacial activity is associated with higher Fe(II) fractions in dust-borne minerals, due to the physical weathering of Fe(II)-rich silicates in bedrock [3]. Thus, we hypothesize that there were higher Fe(II) fractions in dust deposited during cold glacial periods where ice sheets were more widespread. Using synchrotron-based X-ray absorption spectroscopy, we have reconstructed the mineralogy of Fe deposited to Southern Ocean sediment cores from the subantarctic South Atlantic (TN057-6/ODP Site 1090) and South Pacific (PS7/56-1) through the last glacial cycle, creating the first paleorecord of Fe mineralogy and its associated bioavailability. During cold glacial periods there is a higher fraction of reduced Fe - in the form of Fe(II) silicates - deposited to the sediments compared to warm interglacial periods. Thus, Fe(II) content is directly correlated with dust input. The presence of Fe(II) silicates rather than products of diagenesis such as pyrite suggests that these Fe(II) minerals are physically weathered from bedrock and preserved rather than produced in the sediment. This result suggests that not only was there more dust

  17. An improved active contour model for glacial lake extraction

    Science.gov (United States)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  18. Glacial and oceanic history of the polar North Atlantic margins: An overview

    DEFF Research Database (Denmark)

    Elverhøj, A.; Dowdeswell, J.; Funder, S.V.

    1998-01-01

    Greenland Icc Sheet, in thc Late Pliocene as compared with the t...liddlejLate Miocene. The Svalbard-Barents Sea margin is characterised by major prograding fans, built mainly of stacked debris flows. These fans are interpreted as products of rapid sediment delivery from fast-llowing ice streams reaching...... the shelf break during full glacial conditions. Such major submarine fans are not found north of the Scorcsby Suml Fan off East Greenland, where ice seldom reached the shelf break, sedimentation rates were relatively low and sediment transport appears to have becn localised in several major deep......-sca submarine channel systems. Fcw debris flows are present and more uniform, acoustically-stratified scdiments predominate. In general, the Greenland Ice Sheet has been more stable than those on the European North Atlantic margin, which rcflect greater variability in heat and moisture transfer at timescale...

  19. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance.

    OpenAIRE

    Bradley, S.L.; Hindmarsh, R.C.A.; Whitehouse, P.L.; Bentley, M.J.; King, M.A.

    2015-01-01

    Many ice-sheet reconstructions assume monotonic Holocene retreat for the West Antarctic Ice Sheet, but an increasing number of glaciological observations infer that some portions of the ice sheet may be readvancing, following retreat behind the present-day margin. A readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice streams grounded on beds that deepen inland; and (ii) the inability of models of glacial...

  20. Late Pleistocene dune activity in the central Great Plains, USA

    Science.gov (United States)

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  1. The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin

    Directory of Open Access Journals (Sweden)

    M. O'Regan

    2017-09-01

    Full Text Available Ice sheets extending over parts of the East Siberian continental shelf have been proposed for the last glacial period and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean have left the timing, extent and even existence of these ice sheets largely unresolved. Here we present new geophysical mapping and sediment coring data from the East Siberian shelf and slope collected during the 2014 SWERUS-C3 expedition (SWERUS-C3: Swedish – Russian – US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions. The multibeam bathymetry and chirp sub-bottom profiles reveal a set of glacial landforms that include grounding zone formations along the outer continental shelf, seaward of which lies a  >  65 m thick sequence of glacio-genic debris flows. The glacial landforms are interpreted to lie at the seaward end of a glacial trough – the first to be reported on the East Siberian margin, here referred to as the De Long Trough because of its location due north of the De Long Islands. Stratigraphy and dating of sediment cores show that a drape of acoustically laminated sediments covering the glacial deposits is older than ∼ 50 cal kyr BP. This provides direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum and most likely occurred during the Saalian (Marine Isotope Stage (MIS 6.

  2. The influence of basal-ice debris on patterns and rates of glacial erosion

    Science.gov (United States)

    Ugelvig, Sofie V.; Egholm, David L.

    2018-05-01

    Glaciers have played a key role for shaping much of Earth's high topography during the cold periods of the Late Cenozoic. However, despite of their distinct influence on landscapes, the mechanisms of glacial erosion, and the properties that determine their rate of operation, are still poorly understood. Theoretical models of subglacial erosion generally highlight the influence of basal sliding in setting the pace of erosion, but they also point to a strong influence of other subglacial properties, such as effective bed pressure and basal-ice debris concentration. The latter properties are, however, not easily measured in existing glaciers, and hence their influence cannot readily be confirmed by observations. In order to better connect theoretical models for erosion to measurable properties in glaciers, we used computational landscape evolution experiments to study the expected influence of basal-ice debris concentration for subglacial abrasion at the scale of glaciers. The computational experiments couple the two erosion processes of quarrying and abrasion, and furthermore integrate the flow of ice and transport of debris within the ice, thus allowing for the study of dynamic feedbacks between subglacial erosion and systematic glacier-scale variations in basal-ice debris concentration. The experiments explored several physics-based models for glacial erosion, in combination with different models for basal sliding to elucidate the relationship between sliding speed, erosion rate and basal-ice debris concentration. The results demonstrate how differences in debris concentration can explain large variations in measured rates. The experiments also provide a simple explanation for the observed dependence of glacier-averaged rate of erosion on glacier size: that large glacier uplands feed more debris into their lower-elevation parts, thereby strengthening their erosive power.

  3. Subdivision of Glacial Deposits in Southeastern Peru Based on Pedogenic Development and Radiometric Ages

    Science.gov (United States)

    Goodman, Adam Y.; Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.

    2001-07-01

    The Cordillera Vilcanota and Quelccaya Ice Cap region of southern Peru (13°30‧-14°00‧S; 70°40‧-71°25‧W) contains a detailed record of late Quaternary glaciation in the tropical Andes. Quantification of soil development on 19 moraine crests and radiocarbon ages are used to reconstruct the glacial history. Secondary iron and clay increase linearly in Quelccaya soils and clay accumulates at a linear rate in Vilcanota soils, which may reflect the semicontinuous addition of eolian dust enriched in secondary iron to all soils. In contrast, logarithmic rates of iron buildup in soils in the Cordillera Vilcanota reflect chemical weathering; high concentrations of secondary iron in Vilcanota tills may mask the role of eolian input to these soils. Soil-age estimates from extrapolation of field and laboratory data suggest that the most extensive late Quaternary glaciation occurred >70,000 yr B.P. This provides one of the first semiquantitative age estimates for maximum ice extent in southern Peru and is supported by a minimum-limiting age of ∼41,520 14C yr B.P. A late glacial readvance culminated ∼16,650 cal yr B.P. in the Cordillera Vilcanota. Following rapid deglaciation of unknown extent, an advance of the Quelccaya Ice Cap occurred between ∼13,090 and 12,800 cal yr B.P., which coincides approximately with the onset of the Younger Dryas cooling in the North Atlantic region. Moraines deposited <394 cal yr B.P. in the Cordillera Vilcanota and <300 cal yr B.P. on the west side of the Quelccaya Ice Cap correlate with Little Ice Age moraines of other regions.

  4. Iatromathematica (medical astrology) in late antiquity and the Byzantine period.

    Science.gov (United States)

    Papathanassiou, M

    1999-01-01

    Byzantium inherited the rich astrological tradition of Late Antiquity, especially that of Alexandria, where even in the 6th century A.D., astrology was taught in philosophical schools. The great number of Byzantine astrological MSS, which preserve works of famous authors and many anonymous treatises, shows the survival and continuity of astrology in Byzantium. Through medical astrology physicians can better understand the temperament of an individual man and find out about his bodily constitution and psychic faculties, his inclination to chronic and acute diseases, the possibilities of curable or incurable cases, and finally the periods of major danger for his health. They can conjecture about the evolution of a disease, choose a favorable time for an operation, or initiate a cure.

  5. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum.

    Directory of Open Access Journals (Sweden)

    Nikolai D Ovodov

    Full Text Available BACKGROUND: Virtually all well-documented remains of early domestic dog (Canis familiaris come from the late Glacial and early Holocene periods (ca. 14,000-9000 calendar years ago, cal BP, with few putative dogs found prior to the Last Glacial Maximum (LGM, ca. 26,500-19,000 cal BP. The dearth of pre-LGM dog-like canids and incomplete state of their preservation has until now prevented an understanding of the morphological features of transitional forms between wild wolves and domesticated dogs in temporal perspective. METHODOLOGY/PRINCIPAL FINDING: We describe the well-preserved remains of a dog-like canid from the Razboinichya Cave (Altai Mountains of southern Siberia. Because of the extraordinary preservation of the material, including skull, mandibles (both sides and teeth, it was possible to conduct a complete morphological description and comparison with representative examples of pre-LGM wild wolves, modern wolves, prehistoric domesticated dogs, and early dog-like canids, using morphological criteria to distinguish between wolves and dogs. It was found that the Razboinichya Cave individual is most similar to fully domesticated dogs from Greenland (about 1000 years old, and unlike ancient and modern wolves, and putative dogs from Eliseevichi I site in central Russia. Direct AMS radiocarbon dating of the skull and mandible of the Razboinichya canid conducted in three independent laboratories resulted in highly compatible ages, with average value of ca. 33,000 cal BP. CONCLUSIONS/SIGNIFICANCE: The Razboinichya Cave specimen appears to be an incipient dog that did not give rise to late Glacial-early Holocene lineages and probably represents wolf domestication disrupted by the climatic and cultural changes associated with the LGM. The two earliest incipient dogs from Western Europe (Goyet, Belguim and Siberia (Razboinichya, separated by thousands of kilometers, show that dog domestication was multiregional, and thus had no single place of

  6. The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period

    Directory of Open Access Journals (Sweden)

    F. S. R. Pausata

    2011-10-01

    Full Text Available The Last Glacial Maximum (LGM; 21 000 yr before present was a period of low atmospheric greenhouse gas concentrations, when vast ice sheets covered large parts of North America and Europe. Paleoclimate reconstructions and modeling studies suggest that the atmospheric circulation was substantially altered compared to today, both in terms of its mean state and its variability. Here we present a suite of coupled model simulations designed to investigate both the separate and combined influences of the main LGM boundary condition changes (greenhouse gases, ice sheet topography and ice sheet albedo on the mean state and variability of the atmospheric circulation as represented by sea level pressure (SLP and 200-hPa zonal wind in the North Atlantic sector. We find that ice sheet topography accounts for most of the simulated changes during the LGM. Greenhouse gases and ice sheet albedo affect the SLP gradient in the North Atlantic, but the overall placement of high and low pressure centers is controlled by topography. Additional analysis shows that North Atlantic sea surface temperatures and sea ice edge position do not substantially influence the pattern of the climatological-mean SLP field, SLP variability or the position of the North Atlantic jet in the LGM.

  7. Radiocarbon clock strikes the glacial period pulse

    International Nuclear Information System (INIS)

    Serebryannyj, L.R.

    1976-01-01

    Discussed are some aspects of the theory of radiocarbon dating in application to the study of the history of the Earth. The accumulation and the decay of C 14 and methods for its recording are desribed. Presented is a block diagram of a scintillation counter for recording C 14 . The chronology of the last glaciation of Europe has been determined: the Interglacial period (between 50 and 40 thousand years) a prolonged preglacil period (between 40 and 25 thousand years), the last glaciation (between 25 and 10 thousand years ago)

  8. Aeolian sediments deposited in Lake Hamoun; the proxy of frequency and severity of dust storms in Sistan since the late glacial

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hamzeh

    2017-03-01

    Our results suggest that the late Holocene in the Sistan Basin (facies C3 was characterized by frequent changes in MLW and SH activity. Palaeoclimatic records show since the mid Holocene to the present time, the climate of Sistan and its catchment area more or less oscillated around a steady state comparable with modern situations (Hamzeh et al. 2016. During this time, the hydroclimatic regime and Aeolian activity of the Sistan Basin and NW Himalaya have been mostly governed by MLW-associated precipitation. Periods of prolonged droughts are indicated in proxy records of NW Iran such Lake Neor (Sharifi et al. 2015, presumably consistent with high MS values in our record. It is possible that weakening of ISM, along with distal influences of the MLW during the late Holocene exposed the Lake Hamoun basin to frequent droughts. Frequent lake level fluctuations show unstable climate of the Sistan Basin during mid to late Holocene with frequent wind storms.

  9. A first look at the dinoflagellate cysts abundance in the Bay of Bengal: implications on Late Quaternary productivity and climate change

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Patil, J.S.; Narale, D.D.; Anil, A.C.

    glacial period reflect the affinity to climate change between these two periods, like other regions. Greater abundance of heterotroph and autotroph cysts and higher species diversity were noticed during Holocene than in the last glacial period, which...

  10. Effects of glaciological and hydro-meteorological conditions on the glacial danger in Zailiyskiy Alatau

    Directory of Open Access Journals (Sweden)

    A. R. Medeu

    2017-01-01

    Full Text Available A need to estimate a hazard of a mudflow stream appearance in the glacial-nival zone of the Northern slope of Zailiyskiy Alatau (Kasakhstan is now one of the really urgent problems. The objective of this study was to inves‑ tigate influence of glacial and hydrometeorological factors on the condition of snow-glacial zone of Zailiyskiy Alatau and find out a mudflow-forming role of the mudflow centers arising due to climate warming and degra‑ dation of glaciation: periglacial lakes, intramoraine channels and reservoirs, and also talik massifs of morainic deposits. We analyzed glacial processes in the Zailiysky Alatau over a long period using meteorological data of the Almaty weather station and its close correlations with data from weather stations in the mountains. The area of glaciations was found out to be reduced after the maximum of the Little Ice Age. A combined diagram of occurrence of the mudflow manifestations and factors causing them had been constructed on the basis of sta‑ tistical data on the landslide phenomena. Glacial mudflows were the most frequent in 1960–1990, and later on activity of them became weaker. We believe, that in the next 10–20 years, the glacial mudflow hazard in Zailiys‑ kiy Alatau can sharply decrease, but at the same time, a probability of occurrence of the rainfall mudflows can increase in the mountainous zone of the ridge due the increase of areas with melted moraine and slope deposits.

  11. Vestiges of Glacial Action in Ostrava: Their Significance for and Application in Geotourism

    Science.gov (United States)

    Duraj, Miloš; Niemiec, Dominik; Cheng, Xianfeng; Koleňák, Petr

    2017-12-01

    The territory of Northern Moravia and Silesia is outstanding from the geological point of view. The abundance of different mineral resources has largely contributed to the intense development of the territory, particularly in the 19th century. Mineral resources were discovered already in the pre-historic period, when pre-historic man found coal at the coal seam exposures in Ostrava-Landek. They also used some raw materials that had been transported there by glacial action of the last Saale glaciation. Flint fragments and other travelled material may be frequently found in many localities to date. Large pieces that are called glacial boulders have been removed and exhibited for more than a century in many towns of the region. These vestiges of glacial action represent one of the many stages the Earth has passed through its history. At present, such findings mainly have an aesthetic function. Particularly interesting specimens have been protected as national monuments. The geomorphology of Ostrava has been responsible for the findings of the largest glacial boulders within the Czech Republic. Many of the formations are fascinating specimens that enrich the list of numerous geomontane sights in the City of Ostrava.

  12. Modeling the evolution of the Laurentide Ice Sheet from MIS 3 to the Last Glacial Maximum: an approach using sea level modeling and ice flow dynamics

    Science.gov (United States)

    Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.

    2017-12-01

    The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.

  13. High resolution record of the Last Glacial Maximum in eastern Australia

    Science.gov (United States)

    Petherick, Lynda; Moss, Patrick; McGowan, Hamish

    2010-05-01

    A continuous, high resolution (average ca. 22 year) record encompassing the Last Glacial Maximum (LGM) has been developed using multiple proxies (aeolian sediment flux, grain size, pollen and charcoal) in lake sediment from Tortoise Lagoon (TOR), North Stradbroke Island, Queensland, Australia. The presence of Asteraceae tubilifloreae and spineless Asteraceae (common indicators of glacial conditions in Australia) at TOR indicates significantly cooler temperatures (mean annual temperature up to 6oC lower than today). In addition to the palaeoclimatic reconstruction, a record of palaeodust transport pathways for eastern Australia was developed using ICP-MS trace element analysis and geochemical "fingerprinting" of TOR aeolian sediment to continental dust source areas. Vectors between dominant dust source areas and North Stradbroke Island allowed the reconstruction of the position and intensity of LGM dust transport pathways. Furthermore, changes in likely synpotic scale conditions can be postulated based on the position of the dust transport corridors. Similarities between the vegetation at TOR during the LGM and that at temperate sites e.g. Caledonia Fen, Victoria (Kershaw et al. 2007), Redhead Lagoon, New South Wales (Williams et al. 2006) and Barrington Tops, New South Wales (Sweller and Martin 2001) suggests that this record reflects regional conditions across southeastern Australia. The TOR record also correlates well with that from nearby Native Companion Lagoon which suggests that the LGM was actually an extended period of ca. 8 - 10 kyr, characterised by 2 periods of increased aridity (ca. 30 - 26.5 kyr and 21 - 19.5 kyr) (Petherick et al. 2008). A growing number of records from across the Southern Hemisphere e.g. New Zealand (Suggate and Almond 2003; Alloway et al. 2007; Newnham et al. 2007), Chile (Denton et al. 1999), Antarctica (Röthlisberger et al. 2002; EPICA 2006) and Australia (Smith 2009) also show evidence that the LGM encompassed a longer period of

  14. The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe

    Science.gov (United States)

    Helmens, Karin F.

    2014-02-01

    Current multi-proxy studies on a long sediment sequence preserved at Sokli (N Finland), i.e. in the central area of Fennoscandian glaciations, are drastically changing classic ideas of glaciations, vegetation and climate in northern Europe during the Late Pleistocene. The sediments in the Sokli basin have escaped major glacial erosion due to non-typical bedrock conditions. In this review, the Sokli record is compared in great detail with other long proxy records from central, temperate and northern, boreal Europe. These comprise the classic records of La Grande Pile (E France) and Oerel (N Germany) and more recently obtained records from Horoszki Duże (E Poland) and Lake Yamozero (NW Russia). The focus of the review is on pollen, lithology and macrofossil- and insect-based temperature inferences. The long records are further compared with recent proxy data from nearby terrestrial sites as well as with the rapidly accumulating high-resolution proxy data from the ocean realm. The comparison allows a re-examination of the environmental history and climate evolution of the Last Interglacial-Glacial (LI-G) cycle (MIS 5-2). It shows that environmental and climate conditions during MIS 5 (ca 130-70 ka BP) were distinctly different from those during MIS 4-2 (ca 70-15 ka BP). MIS 5 is characterized by three long forested intervals (broadly corresponding to MIS 5e, 5c, 5a), both in temperate and northern boreal Europe. These mild periods were interrupted by two short, relatively cold and dry intervals (MIS 5d and 5b) with mountain-centered glaciation in Fennoscandia. Millennial scale climate events were superimposed upon these longer lasting climate fluctuations. The time interval encompassing MIS 4-2 shows open vegetation. It is characterized by two glacial maxima (MIS 4 and 2) with sub-continental scale glaciation over northern Europe and dry conditions in strongly continental eastern European settings. High amplitude climate oscillations of millennial duration

  15. Evolution of high-Arctic glacial landforms during deglaciation

    Science.gov (United States)

    Midgley, N. G.; Tonkin, T. N.; Graham, D. J.; Cook, S. J.

    2018-06-01

    Glacial landsystems in the high-Arctic have been reported to undergo geomorphological transformation during deglaciation. This research evaluates moraine evolution over a decadal timescale at Midtre Lovénbreen, Svalbard. This work is of interest because glacial landforms developed in Svalbard have been used as an analogue for landforms developed during Pleistocene mid-latitude glaciation. Ground penetrating radar was used to investigate the subsurface characteristics of moraines. To determine surface change, a LiDAR topographic data set (obtained 2003) and a UAV-derived (obtained 2014) digital surface model processed using structure-from-motion (SfM) are also compared. Evaluation of these data sets together enables subsurface character and landform response to climatic amelioration to be linked. Ground penetrating radar evidence shows that the moraine substrate at Midtre Lovénbreen includes ice-rich (radar velocities of 0.17 m ns-1) and debris-rich (radar velocities of 0.1-0.13 m ns-1) zones. The ice-rich zones are demonstrated to exhibit relatively high rates of surface change (mean thresholded rate of -4.39 m over the 11-year observation period). However, the debris-rich zones show a relatively low rate of surface change (mean thresholded rate of -0.98 m over the 11-year observation period), and the morphology of the debris-rich landforms appear stable over the observation period. A complex response of proglacial landforms to climatic warming is shown to occur within and between glacier forelands as indicated by spatially variable surface lowering rates. Landform response is controlled by the ice-debris balance of the moraine substrate, along with the topographic context (such as the influence of meltwater). Site-specific characteristics such as surface debris thickness and glaciofluvial drainage are, therefore, argued to be a highly important control on surface evolution in ice-cored terrain, resulting in a diverse response of high-Arctic glacial landsystems

  16. High-resolution record of Northern Hemisphere climate extending into the last interglacial period

    DEFF Research Database (Denmark)

    North Greenland Ice Core Project members; Andersen, Katrine K.; Azuma, N.

    2004-01-01

    Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from...... the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see......-saw between the hemispheres (which dominated the last glacial period) was not operating at this time....

  17. Late Glacial and Holocene sedimentary evolution of Czechowskie Lake (Eastern Pomerania, North Central Poland)

    Science.gov (United States)

    Kordowski, Jarosław; Błaszkiewicz, Mirosław; Kramkowski, Mateusz; Noryśkiewicz, Agnieszka M.; Słowiński, Michał; Tyszkowski, Sebastian; Brauer, Achim; Ott, Florian

    2015-04-01

    transient increase of organic sedimentation. Increased deposition of colluvial deposits took place in Late Glacial and again about 200 years ago due to transient deforestation of the lake vicinity. Acknowledgements: This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association.

  18. Vegetation dynamics during the Last Interglacial-Glacial cycle in the Arno coastal plain (Tuscany, western Italy): location of a new tree refuge

    Science.gov (United States)

    Lucchi, M. Ricci

    2008-12-01

    Pollen analysis of the pre-Last Glacial Maximum succession of a 105 m-long continuous core from Tirrenia (Tuscany) provides evidence for the existence of an area of relatively high ecological stability where the effects of climate change were mitigated. The chronological framework of the vegetation record, spanning the Last Interglacial-Glacial cycle, was established by (i) AMS 14C dating, (ii) correlation with well-dated pollen sequences, and (iii) local stratigraphical constraints. A high lithological and sedimentological variability, with facies associations changing from fluvial to alluvial and coastal plain, enhances the palaeoenvironmental control on pollen distribution, thus helping to discriminate the impact of local factors on vegetation history. The most remarkable evidence, however, is represented by the continuous record of temperate trees throughout the whole glacial period, which provides useful indications on the location and nature of cold stage refugia. Most of the vegetation changes recorded in the core can be compared to the vegetation history of the Last Interglacial-Glacial cycle from southern Europe as a whole. In addition, local geographic and environmental features account for a more complex and varied floristic composition. Only the last phase of the Penultimate Glacial (MIS6), which was characterized by the diffusion of an arid steppe tundra, is recorded at the base of the core. The subsequent Last Interglacial (MIS5e) interval shows a poor and scattered pollen content due to the instability of the sedimentary environment. Nevertheless, it provides evidence of both global and local controls on vegetation dynamics, as indicated by the initial expansion of thermophilous forests and the remarkably late diffusion of conifers ( Pinus-Abies-Picea forests), respectively. Similarly, the transition to the Last Glacial (MIS5b and 5a in the core) is characterized by a reduced vegetation response to the typical stadial/interstadial climate variability

  19. Westerly Winds and the Southern Ocean CO2 Sink Since the Last Glacial-Interglacial Transition

    Science.gov (United States)

    Hodgson, D. A.; Saunders, K. M.; Roberts, S. J.; Perren, B.; Butz, C.; Sime, L. C.; Davies, S. J.; Grosjean, M.

    2017-12-01

    The capacity of the Southern Ocean carbon sink is partly controlled by the Southern Hemisphere westerly winds (SHW) and sea ice. These regulate the upwelling of dissolved carbon-rich deep water to Antarctic surface waters, determine the surface area for air-sea gas exchange and therefore modulate the net uptake of atmospheric CO2. Some models have proposed that strengthened SHW will result in a weakening of the Southern Ocean CO2 sink. If these models are correct, then one would expect that reconstructions of changes in SHW intensity on centennial to millennial timescales would show clear links with Antarctic ice core and Southern Ocean marine geological records of atmospheric CO2, temperature and sea ice. Here, we present a 12,300 year reconstruction of past wind strength based on three independent proxies that track the changing inputs of sea salt aerosols and minerogenic particles into lake sediments on sub-Antarctic Macquarie Island. The proxies are consistent in showing that periods of high wind intensity corresponded with the increase in CO2 across the late Last Glacial-Interglacial Transition and in the last 7,000 years, suggesting that the winds have contributed to the long term outgassing of CO2 from the ocean during these periods.

  20. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean

    Directory of Open Access Journals (Sweden)

    L. M. Dupont

    2011-11-01

    Full Text Available Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a pollen record of the marine core MD96-2048 retrieved by the Marion Dufresne from the Indian Ocean ∼120 km south of the Limpopo River mouth. The sedimentation at the site is slow and continuous. The upper 6 m (spanning the past 342 Ka have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials, the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests. During glacials open mountainous scrubland dominated. Montane forest with Podocarpus extended during humid periods was favoured by strong local insolation. Correlation with the sea surface temperature record of the same core indicates that the extension of mountainous scrubland primarily depends on sea surface temperatures of the Agulhas Current. Our record corroborates terrestrial evidence of the extension of open mountainous scrubland (including fynbos-like species of the high-altitude Grassland biome for the last glacial as well as for other glacial periods of the past 300 Ka.

  1. Glacial Features (Point) - Quad 168 (EPPING, NH)

    Data.gov (United States)

    University of New Hampshire — The Glacial Features (Point) layer describes point features associated with surficial geology. These glacial features include, but are not limited to, delta forsets,...

  2. Schizophrenomorphical psychosis in the late period of craniocerebral trauma: clinical picture and management

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2014-01-01

    Full Text Available A comparative clinical and psychopathological examination of psychotic manifestations in the patients of three groups - with schizophrenomorphical disorders in the late period of craniocerebral trauma (35 patients with schizophrenia (33 patients, and with a combination of schizophrenia and TBI (32 patients. Marked clinical and diagnostic evaluation criteria allow to differentiate the hallucinatory-delusional disorders within shizophreniamorphical disorders in traumatic disease of the brain from an equal psychopathology in schizophrenia. Particular issues of treatment and prognosis are highlighted.

  3. The Distribution and Magnitude of Glacial Erosion on 103-year Timescales at Engabreen, Norway

    Science.gov (United States)

    Rand, C.; Goehring, B. M.

    2017-12-01

    We derive the magnitudes of glacial erosion integrated over 103-year timescales across a transect transverse to the direction of ice flow at Engabreen, Norway. Understanding the distribution of glacial erosion is important for several reasons, including sediment budgeting to fjord environments, development of robust landscape evolution models, and if a better understanding between erosion and ice-bed interface properties (e.g., sliding rate, basal water pressure) can be developed, we can use records of glacial erosion to infer glaciological properties that can ultimately benefit models of past and future glaciers. With few exceptions, measurements of glacial erosion are limited to the historical past and even then are rare owing to the difficulty of accessing the glacier bed. One method proven useful in estimating glacial erosion on 103-year timescales is to measure the remaining concentrations of cosmogenic nuclides that accumulate in exposed bedrock during periods of retracted glacier extent and are removed by glacial erosion and radioactive decay during ice cover. Here we will present measurements of 14C and 10Be measured in proglacial bedrock from Engabreen. Our transects are ca. 600 and 400 meters in front of the modern ice front, and based on historical imagery, was ice covered until the recent past. Initial 10Be results show an increase in concentrations of nearly an order of magnitude from the samples near the center of the glacial trough to those on the lateral margin, consistent with conceptual models of glacial erosion parameterized in terms of sliding velocity. Naïve exposure ages that assume no subglacial erosion range from 0.22 - 9.04 ka. More importantly, we can estimate erosion depths by assuming zero erosion of the highest concentration sample along the two transects and calculate the amount of material removed to yield the lower concentrations elsewhere along the two transects. Results indicate minimum erosion depths of 1-183 cm for most ice

  4. Contribution of Socioeconomic Status at 3 Life-Course Periods to Late-Life Memory Function and Decline: Early and Late Predictors of Dementia Risk.

    Science.gov (United States)

    Marden, Jessica R; Tchetgen Tchetgen, Eric J; Kawachi, Ichiro; Glymour, M Maria

    2017-10-01

    Both early life and adult socioeconomic status (SES) predict late-life level of memory; however, evidence is mixed on the relationship between SES and rate of memory decline. Further, the relative importance of different life-course periods for rate of late-life memory decline has not been evaluated. We examined associations between life-course SES and late-life memory function and decline. Health and Retirement Study participants (n = 10,781) were interviewed biennially from 1998-2012 (United States). SES measurements for childhood (composite score including parents' educational attainment), early adulthood (high-school or college completion), and older adulthood (income, mean age 66 years) were all dichotomized. Word-list memory was modeled via inverse-probability weighted longitudinal models accounting for differential attrition, survival, and time-varying confounding, with nonrespondents retained via proxy assessments. Compared to low SES at all 3 points (referent), stable, high SES predicted the best memory function and slowest decline. High-school completion had the largest estimated effect on memory (β = 0.19; 95% confidence interval: 0.15, 0.22), but high late-life income had the largest estimated benefit for slowing declines (for 10-year memory change, β = 0.35; 95% confidence interval: 0.24, 0.46). Both early and late-life interventions are potentially relevant for reducing dementia risk by improving memory function or slowing decline. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Phylogeography of the Alcippe morrisonia (Aves: Timaliidae: long population history beyond late Pleistocene glaciations

    Directory of Open Access Journals (Sweden)

    Li Shouhsien

    2009-06-01

    Full Text Available Abstract Background The role of Pleistocene glacial oscillations in current biodiversity and distribution patterns varies with latitude, physical topology and population life history and has long been a topic of discussion. However, there had been little phylogeographical research in south China, where the geophysical complexity is associated with great biodiversity. A bird endemic in Southeast Asia, the Grey-cheeked Fulvetta, Alcippe morrisonia, has been reported to show deep genetic divergences among its seven subspecies. In the present study, we investigated the phylogeography of A. morrisonia to explore its population structure and evolutionary history, in order to gain insight into the effect of geological events on the speciation and diversity of birds endemic in south China. Results Mitochondrial genes cytochrome b (Cytb and cytochrome c oxidase I (COI were represented by 1236 nucleotide sites from 151 individuals from 29 localities. Phylogenetic analysis showed seven monophyletic clades congruent with the geographically separated groups, which were identified as major sources of molecular variance (90.92% by AMOVA. TCS analysis revealed four disconnected networks, and that no haplotype was shared among the geographical groups. The common ancestor of these populations was dated to 11.6 Mya and several divergence events were estimated along the population evolutionary history. Isolation by distance was inferred by NCPA to be responsible for the current intra-population genetic pattern and gene flow among geographical groups was interrupted. A late Pleistocene demographic expansion was detected in the eastern geographical groups, while the expansion time (0.2–0.4 Mya was earlier than the Last Glacial Maximum. Conclusion It is proposed that the complicated topology preserves high genetic diversity and ancient lineages for geographical groups of A. morrisonia in China mainland and its two major islands, and restricts gene exchange during

  6. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhengtang; Wu, Haibin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); Zhou, Xin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); University of Science and Technology of China, School of Earth and Space Sciences and Institute of Polar Environment, Hefei (China)

    2012-09-15

    The causes of atmospheric methane (CH{sub 4}) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH{sub 4} signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH{sub 4} signals attributable to different drivers. The first group ({proportional_to}80% variance), well tracking the marine {delta}{sup 18}O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group ({proportional_to}15% variance), centered at the {proportional_to}10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group ({proportional_to}5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH{sub 4}. This mechanism also partially explains the Holocene CH{sub 4} reversal since {proportional_to}5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon

  7. Tracking Lateglacial and early Holocene environmental change: a palaeolimnological study of sediment at Preluca Tiganului, NW Romania

    Directory of Open Access Journals (Sweden)

    Angelica Feurdean

    2005-04-01

    Full Text Available Palaeoecological, palaeohydrological, and paleoenvironmental reconstruction of the Late Glacial and the early Holocene have been performed from sediment accumulated in a small former crater lake, in the GutâI Mountains, NW Romania. Pollen, lithology, mineral magnetic, and loss-on-ignition analyses in conjunction to radiocarbon dating have been use for this purpose. The data indicates that during the Late Glacial period, vegetation dynamics were likely driven by climatic fluctuations. The climate events during the Late Glacial are well mirrored in local vegetation assemblage development, and past lake level fluctuations. These climatic events recorded in south-eastern Europe, are well correlated with the climate events from the North Western Europe and Greenland ice core stratigraphy.

  8. Dendrochronology and late Holocene history of Bering piedmont glacier, Alaska

    Science.gov (United States)

    Wiles, G.C.; Post, A.; Muller, E.H.; Molnia, B.F.

    1999-01-01

    Fluctuations of the piedmont lobe of Bering Glacier and its sublobe Steller Glacier over the past two millennia are reconstructed using 34 radiocarbon dates and tree-ring data from 16 sites across the glaciers' forelands. The general sequence of glacial activity is consistent with well-dated fluctuations of tidewater and land-terminating glaciers elsewhere along the Gulf of Alaska. Extensive forested areas along 25 km of the Bering ice margin were inundated by glacio-lacustrine and glacio-fluvial sediments during a probable ice advance shortly before 500 cal yr A.D. Regrowth of forests followed the retreating ice as early as the 7th century A.D., with frequent interruptions of tree growth due to outwash aggradation. Forests overrun by ice and buried in outwash indicate readvance about 1080 cal yr A.D. Retreat followed, with ice-free conditions maintained along the distal portions of the forefield until the early 17th century after which the ice advanced to within a few kilometers of its outer Neoglacial moraine. Ice reached this position after the mid-17th century and prior to 200 yr ago. Since the early 20th century, glacial retreat has been punctuated by periodic surges. The record from forests overrun by the nonsurging Steller Lobe shows that this western ice margin was advancing by 1250 A.D., reaching near its outer moraine after 1420 cal yr A.D. Since the late 19th century, the lobe has dominantly retreated.

  9. Oskarshamn site investigation. Searching for evidence of late- or post-glacial faulting in the Oskarshamn region. Results from 2004

    International Nuclear Information System (INIS)

    Lagerbaeck, Robert; Sundh, Martin; Svantesson, Sven-Ingemund; Svedlund, Jan-Olov

    2005-11-01

    In connection with previous aerial photo interpretation, a number of prominent escarpments, hypothetically indicative of late- or postglacial faulting, were noted in the mainland part of the investigation area. Most of these scarps were field-checked in 2004 and found to be more or less intensely glacially abraded, i.e. formed prior to the last deglaciation. On the island of Oeland a very distinct, straight lineament was likewise noticed in connection with aerial photo interpretation. In the field the lineament was identified as a step in the ground surface or as a very distinct vegetational boundary, the latter due to a difference in thickness of the soil cover on either side of the lineament. The step in the ground surface clearly derives from a bedrock scarp but it was not possible to determine its nature or age in the absence of stratigraphical information. No systematic search for unstable boulders, tentatively refuting the occurrence of major earthquakes in the vicinity, was carried out, but a few specimens were encountered during minor excursions in different parts of the investigation area. However, without estimating how much earthquake-induced ground motion these boulders could withstand before they would topple over, it is difficult to judge their significance as palaeo-earthquake indicators. Stratigraphical investigations in machine-dug trenches were carried out at three localities along the Faarbo esker, all situated west of the candidate area at Simpevarp. A total of some 170 m of trenches were excavated and investigated. Deposits of loosely packed sand and coarse silt were encountered in almost all the trenches and in some of them a clayey bed covered the sandy-silty deposits. When shaken by strong earthquakes in a water saturated state, such deposits are highly likely to liquefy but no significant features related to liquefaction were noted in any of the trenches. However, as the excavation sites are situated some 30-100 m above the present sea

  10. Oskarshamn site investigation. Searching for evidence of late- or post-glacial faulting in the Oskarshamn region. Results from 2004

    Energy Technology Data Exchange (ETDEWEB)

    Lagerbaeck, Robert; Sundh, Martin; Svantesson, Sven-Ingemund; Svedlund, Jan-Olov [Geological Survey of Sweden (SGU), Uppsala (Sweden)

    2005-11-15

    In connection with previous aerial photo interpretation, a number of prominent escarpments, hypothetically indicative of late- or postglacial faulting, were noted in the mainland part of the investigation area. Most of these scarps were field-checked in 2004 and found to be more or less intensely glacially abraded, i.e. formed prior to the last deglaciation. On the island of Oeland a very distinct, straight lineament was likewise noticed in connection with aerial photo interpretation. In the field the lineament was identified as a step in the ground surface or as a very distinct vegetational boundary, the latter due to a difference in thickness of the soil cover on either side of the lineament. The step in the ground surface clearly derives from a bedrock scarp but it was not possible to determine its nature or age in the absence of stratigraphical information. No systematic search for unstable boulders, tentatively refuting the occurrence of major earthquakes in the vicinity, was carried out, but a few specimens were encountered during minor excursions in different parts of the investigation area. However, without estimating how much earthquake-induced ground motion these boulders could withstand before they would topple over, it is difficult to judge their significance as palaeo-earthquake indicators. Stratigraphical investigations in machine-dug trenches were carried out at three localities along the Faarbo esker, all situated west of the candidate area at Simpevarp. A total of some 170 m of trenches were excavated and investigated. Deposits of loosely packed sand and coarse silt were encountered in almost all the trenches and in some of them a clayey bed covered the sandy-silty deposits. When shaken by strong earthquakes in a water saturated state, such deposits are highly likely to liquefy but no significant features related to liquefaction were noted in any of the trenches. However, as the excavation sites are situated some 30-100 m above the present sea

  11. Cosmic ray production rates of Be-10 and Al-26 in quartz from glacially polished rocks

    Science.gov (United States)

    Nishiizumi, K.; Kohl, C. P.; Winterer, E. L.; Klein, J.; Middleton, R.

    1989-01-01

    The concentrations of Be-10 and Al-26 in quartz crystals extracted from glacially polished granitic surfaces from the Sierra Nevada range are studied. These surfaces are identified with the glacial advance during the Tioga period about 11,000 yr ago. The measurements yield the most accurate estimates to date for the absolute production rates of three nuclides in SiO2 due to cosmic ray nucleons and muons for geomagnetic latitudes 43.8-44.6 N and altitudes 2.1-3.6 km.

  12. Late Pleistocene deglaciation chronology in the NW of the Iberian Peninsula using cosmic-ray produced 21Ne in quartz

    International Nuclear Information System (INIS)

    Fernandez Mosquera, D.; Marti, K.; Romani, J.R. Vidal; Weigel, A.

    2000-01-01

    Late Pleistocene glaciations in the NW Iberian Peninsula over Serra de Queixa and Serra de Xures, all with granite substrata, were studied by mass spectrometry using cosmogenic 21 Ne. Rock cores were drilled in glacial polished surfaces and push-moraine boulders, and were analyzed to determine their integral exposure time to cosmic rays. First results, which are consistent with the relative geomorphologic model estimates, allow the identification of at least three different glacial stages, with the latest terminating about 15 ka BP

  13. A multi-disciplinary review of late Quaternary palaeoclimates and environments for Lesotho

    Directory of Open Access Journals (Sweden)

    Jennifer M. Fitchett

    2016-07-01

    Full Text Available Lesotho provides a unique context for palaeoclimatic research. The small country is entirely landlocked by South Africa, yet has considerable variation in topography, climate, and associated vegetation over an approximate east-west transect. The region has been of archaeological interest for over a century, and hosts many Early to Late Stone Age sites with occupation preceding 80 000 years before present. The eastern Lesotho highlands are of interest to periglacial and glacial geomorphologists because of their well-preserved relict landforms and contentious evidence for permafrost and niche glaciation during the late Quaternary. However, continuous proxy records for palaeoenvironmental reconstructions for Lesotho are scarce and hampered by a range of methodological shortfalls. These challenges include uncertain ages, poor sampling resolution, and proxies extracted from archaeological excavations for which there may be bias in selection. Inferences on palaeoclimates are thus based predominantly on archaeological and palaeogeomorphological evidence for discrete periods during the late Quaternary. This review paper presents a more detailed multidisciplinary synthesis of late Quaternary conditions in Lesotho. We simultaneously considered the varying data that contribute to the under-studied palaeoenvironmental record for southern Africa. The collective palaeoenvironmental data for eastern Lesotho were shown to be relatively contradictory, with considerable variations in contemporaneous palaeoclimatic conditions within the study area. We argue that although methodological challenges may contribute to this variation, the marked changes in topography result in contrasting late Quaternary palaeoenvironments. Such environments are characterised by similar contrasting microclimates and niche ecologies as are witnessed in the contemporary landscape. These spatial variations within a relatively small landlocked country are of importance in understanding

  14. Glacial conditions in the Red Sea

    Science.gov (United States)

    Rohling, Eelco J.

    1994-10-01

    In this paper, results from previous studies on planktonic foraminifera, δ18O, and global sea level are combined to discuss climatic conditions in the Red Sea during the last glacial maximum (18,000 B.P.). First, the influence of 120-m sea level lowering on the exchange transport through the strait of Bab-el-Mandab is considered. This strait is the only natural connection of the Red Sea to the open ocean. Next, glacial Red Sea outflow salinity is estimated (about 48 parts per thousand) from the foraminiferal record. Combined, these results yield an estimate of the glacial net water deficit, which appears to have been quite similar to the present (about 2 m yr-1). Finally, budget calculation of δ18O fluxes suggests that the glacial δ18O value of evaporation was about 50% of the present value. This is considered to have resulted from substantially increased mean wind speeds over the glacial Red Sea, which would have caused a rapid drop in the kinematic fractionation factor for 18O. The sensitivity of the calculated values for water deficit and isotopic fractionation to the various assumptions and estimates is evaluated in the discussion. Improvents are to be expected especially through research on the glacial salinity contrast between the Red Sea and Gulf of Aden. It is argued, however, that such future improvement will likely result in a worsening of the isotopic discrepancy, thus increasing the need for an additional mechanism that influenced fractionation (such as mean wind speed). This study demonstrates the need for caution when calculating paleosalinities from δ18O records under the assumption that the modern S∶δ18O relation has remained constant through time. Previously overlooked factors, such as mean wind speed, may have significantly altered that relation in the past.

  15. Determining Late Pleistocene to Early Holocene deglaciation of the Baltic Ice Lake through sedimentological core sample analysis of IODP Site M0064

    Science.gov (United States)

    Kelly, A. L.; Passchier, S.

    2016-12-01

    This study investigates the deglaciation history of the Scandinavian Ice Sheet (SIS) within the Baltic Sea's Hanö Bay from the Late Pleistocene to the Holocene using samples from International Ocean Discovery Program (IODP) Site M0064. The research aims to understand how the speed of deglaciation influences Baltic Ice Lake (BIL) drainage patterns and relative sea level changes on a high-resolution timescale. Glacial history of the SIS has been studied through glacial till analysis, surface exposure dating, and modeling, encompassing its most recent deglaciation 20-14ka BP, and suggests ice retreated from the project site 16.7ka BP. Between 17 and 14ka BP global sea level rose 4 meters per century, accompanied by a dramatic increase in atmospheric carbon. This period of rapid sea level rise and global warming is a valuable analog for understanding the Earth's current and projected climate. This project uses particle size analysis to better understand the late-glacial depositional environment in Hanö Bay, and ICP-OES geochemical analysis for evidence pertaining to changing sediment provenance and bottom water oxygenation in the BIL. Diamicton is present between 47 and 9 mbsf in Hole M0064D. At 8 mbsf, the sediment exhibits a prominent upward transition from well-laminated cm-scale grey to more thinly laminated reddish brown rhythmites. With calculated Al/Ti ratios, we find that there is not much provenance change in the sequence, however we see fluctuations in Mn/Al ratios, implying shifts in sediment color may be chemical, possibly indicating redox changes in the water column during sediment deposition. Although we find that particle size in the varve sequence does not change, this factor may be driving chemical fluctuations in the diamicton. These results increase the understanding of ice retreat, paleocirculation and relative sea level changes in the Baltic Sea at the onset of the last deglaciation.

  16. Quantitative Morphometric Analysis of Terrestrial Glacial Valleys and the Application to Mars

    Science.gov (United States)

    Allred, Kory

    Although the current climate on Mars is very cold and dry, it is generally accepted that the past environments on the planet were very different. Paleo-environments may have been warm and wet with oceans and rivers. And there is abundant evidence of water ice and glaciers on the surface as well. However, much of that comes from visual interpretation of imagery and other remote sensing data. For example, some of the characteristics that have been utilized to distinguish glacial forms are the presence of landscape features that appear similar to terrestrial glacial landforms, constraining surrounding topography, evidence of flow, orientation, elevation and valley shape. The main purpose of this dissertation is to develop a model that uses quantitative variables extracted from elevation data that can accurately categorize a valley basin as either glacial or non-glacial. The application of this model will limit the inherent subjectivity of image analysis by human interpretation. The model developed uses hypsometric attributes (elevation-area relationship), a newly defined variable similar to the equilibrium line altitude for an alpine glacier, and two neighborhood search functions intended to describe the valley cross-sectional curvature, all based on a digital elevation model (DEM) of a region. The classification model uses data-mining techniques trained on several terrestrial mountain ranges in varied geologic and geographic settings. It was applied to a select set of previously catalogued locations on Mars that resemble terrestrial glaciers. The results suggest that the landforms do have a glacial origin, thus supporting much of the previous research that has identified the glacial landforms. This implies that the paleo-environment of Mars was at least episodically cold and wet, probably during a period of increased planetary obliquity. Furthermore, the results of this research and the implications thereof add to the body of knowledge for the current and past

  17. Lake sediment-based Late Holocene glacier reconstruction reveals medieval retreat and two-phase Little Ice Age on subantarctic South Georgia

    Science.gov (United States)

    van der Bilt, W. G. M.; Bakke, J.; Werner, J.; Paasche, O.; Rosqvist, G. N.; Vatle, S. S.

    2016-12-01

    Southern Ocean climate is rapidly changing. Yet beyond the instrumental period (± 100 years), our comprehension of climate variability in the region is restricted by a lack of high-resolution paleoclimate records. Alpine glaciers, ubiquitous on Southern Ocean islands, may provide such data as they rapidly respond to climate shifts, recording attendant changes in extent by variations in glacial erosion. Rock flour, the fine-grained fraction of this process, is suspended in meltwater streams and transfers this signal to the sediments of downstream lakes, continuously recording glacier history. Here, we use this relationship and present the first reconstruction of the Late Holocene (1250 cal. yr BP - present) glacier history of the Southern Ocean island of South Georgia, using sediments from the glacier-fed Middle Hamberg lake. Variations are resolved on multi-centennial scales due to robust chronological control. To fingerprint a glacial erosion signal, we employed a set of routinely used physical, geochemical and magnetic parameters. Using Titanium counts, validated against changes in sediment density and grain size distribution, we continuously reconstruct glacier variations over the past millennium. Refining local moraine evidence and supporting evidence from other Southern Hemisphere sites, this study shows a progressive diminishing of consecutive Late Holocene advances. These include a two-stage Little Ice Age, in agreement with other Southern Hemisphere glacier evidence. The presented record furthermore captures an unreported retreat phase behind present limits around 500 cal. yr BP.

  18. Using satellite images to monitor glacial-lake outburst floods: Lago Cachet Dos drainage, Chile

    Science.gov (United States)

    Friesen, Beverly A.; Cole, Christopher J.; Nimick, David A.; Wilson, Earl M.; Fahey, Mark J.; McGrath, Daniel J.; Leidich, Jonathan

    2015-01-01

    The U.S. Geological Survey (USGS) is monitoring and analyzing glacial-lake outburst floods (GLOFs) in the Colonia valley in the Patagonia region of southern Chile. A GLOF is a type of flood that occurs when water impounded by a glacier or a glacial moraine is released catastrophically. In the Colonia valley, GLOFs originating from Lago Cachet Dos, which is dammed by the Colonia Glacier, have recurred periodically since 2008. The water discharged during these GLOFs flows under or through the Colonia Glacier, into Lago Colonia and then the Río Colonia, and finally into the Río Baker—Chile's largest river in terms of volume of water.

  19. Asynchronous Glacial Chronologies in the Central Andes (15-40°S) and Paleoclimatic Implications

    Science.gov (United States)

    Zech, R.; Kull, C.; Kubik, P. W.; Veit, H.

    2006-12-01

    We have established glacial chronologies along a N-S transect over the Central Andes using 10Be surface exposure dating. Our results show that maximum glacial advances occurred asynchronously and reflect the varying influence and shifts of the major atmospheric circulation systems during the Late Quaternary: the tropical circulation in the north and the westerlies in the south. In Bolivia (three research areas in the Cordillera Real and the Cordillera Cochabamba, ~15°S) glacial advances could be dated to ~20 and 12 ka BP. This is in good agreement with published exposure age data from moraines in Bolivia and Peru (provided that all ages are calculated following the same scaling system). Accordingly, the maximum glaciation there probably occurred roughly synchronous to the temperature minimum of the global Last Glacial Maximum (LGM) and the lateglacial cold reversals. Strict correlation with neither the Younger Dryas in the northern hemisphere, nor the Antarctic Cold Reversal is possible due to the current systematic exposure age uncertainties (~10%). Glacier-Climate-Modelling corroborates the sensitivity of the reconstructed glaciers to temperature changes, rather than precipitation. On the contrary, there is good evidence for the dominant role of precipitation changes on the glacial chronologies in the lee of the Cordillera Occidental, i.e. on the Altiplano and further south. The pronounced lateglacial wet phase, which is well documented in lake transgression phases as far south as 28°S (-> tropical moisture source), seems to have caused glacial advances even at ~30°S. In two research areas in Chile at that latitude, we were able to date several lateglacial moraines. Besides, the maximum datable glaciation there occurred at ~30 ka BP. That is significantly earlier than the LGM (sensu strictu) and points to favourable climate conditions for glaciation at that time (particularly increased precipitation). We conclude that the westerlies were more intensive or

  20. Chronology of fast climatic changes during the last glacial period; Chronologie des variations climatiques rapides pendant la derniere periode glaciaire

    Energy Technology Data Exchange (ETDEWEB)

    Bard, E.; Rostek, F.; Menot-Combes, G. [Cerege, UMR 6635 et College de France, 13 - Aix-en-Provence (France)

    2006-01-15

    The history of the glacial climate is punctuated by events occurring at the scale of a human life. They are characterised by temperature changes of large amplitude, simultaneously in Greenland and the North Atlantic. These events affected not only the surface hydrology, but also the deep circulation of this oceanic basin. A by-product of the obvious correspondence between Dansgaard-Oeschger and Heinrich in the polar ice and marine sediments is to allow, by correlation, the construction of a calendar chronology for the marine records. This chronostratigraphic approach was validated by means of radiocarbon dating of deep-sea sediments raised on the Iberian Margin. Our study also contributes to the international effort of calibration of the radiocarbon time scale by providing significant results in the interval between 33000 and 41000 years calendar BP. (authors)

  1. Modeled seasonality of glacial abrupt climate events

    Energy Technology Data Exchange (ETDEWEB)

    Flueckiger, Jacqueline [Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO (United States); Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Zurich (Switzerland); Knutti, Reto [Institute for Atmospheric and Climate Science, ETH Zuerich, Zurich (Switzerland); White, James W.C. [Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO (United States); Renssen, Hans [Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, Amsterdam (Netherlands)

    2008-11-15

    Greenland ice cores, as well as many other paleo-archives from the northern hemisphere, recorded a series of 25 warm interstadial events, the so-called Dansgaard-Oeschger (D-O) events, during the last glacial period. We use the three-dimensional coupled global ocean-atmosphere-sea ice model ECBILT-CLIO and force it with freshwater input into the North Atlantic to simulate abrupt glacial climate events, which we use as analogues for D-O events. We focus our analysis on the Northern Hemisphere. The simulated events show large differences in the regional and seasonal distribution of the temperature and precipitation changes. While the temperature changes in high northern latitudes and in the North Atlantic region are dominated by winter changes, the largest temperature increases in most other land regions are seen in spring. Smallest changes over land are found during the summer months. Our model simulations also demonstrate that the temperature and precipitation change patterns for different intensifications of the Atlantic meridional overturning circulation are not linear. The extent of the transitions varies, and local non-linearities influence the amplitude of the annual mean response as well as the response in different seasons. Implications for the interpretation of paleo-records are discussed. (orig.)

  2. Variations in Mediterranean-Atlantic exchange across the late Pliocene climate transition

    Science.gov (United States)

    García-Gallardo, Ángela; Grunert, Patrick; Piller, Werner E.

    2018-03-01

    Mediterranean-Atlantic exchange through the Strait of Gibraltar plays a significant role in the global ocean-climate dynamics in two ways. On one side, the injection of the saline and warm Mediterranean Outflow Water (MOW) contributes to North Atlantic deep-water formation. In return, the Atlantic inflow is considered a sink of less saline water for the North Atlantic Ocean. However, while the history of MOW is the focus of numerous studies, the Pliocene Atlantic inflow has received little attention so far. The present study provides an assessment of the Mediterranean-Atlantic exchange with a focus on the Atlantic inflow strength and its response to regional and global climate from 3.33 to 2.60 Ma. This time interval comprises the mid-Pliocene warm period (MPWP; 3.29-2.97 Ma) and the onset of the Northern Hemisphere glaciation (NHG). For this purpose, gradients in surface δ18O records of the planktonic foraminifer Globigerinoides ruber between the Integrated Ocean Drilling Program (IODP) Hole U1389E (Gulf of Cádiz) and Ocean Drilling Program (ODP) Hole 978A (Alboran Sea) have been evaluated. Interglacial stages and warm glacials of the MPWP revealed steep and reversed (relative to the present) W-E δ18O gradients suggesting a weakening of Mediterranean-Atlantic exchange likely caused by high levels of relative humidity in the Mediterranean region. In contrast, periods of stronger inflow are indicated by flat δ18O gradients due to more intense arid conditions during the severe glacial Marine Isotope Stage (MIS) M2 and the initiation of NHG (MIS G22, G14, G6-104). Intensified Mediterranean-Atlantic exchange in cold periods is linked to the occurrence of ice-rafted debris (IRD) at low latitudes and a weakening of the Atlantic Meridional Overturning Circulation (AMOC). Our results thus suggest the development of a negative feedback between AMOC and exchange rates at the Strait of Gibraltar in the latest Pliocene as it has been proposed for the late Quaternary.

  3. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes

    Science.gov (United States)

    Pasquier, Virgil; Sansjofre, Pierre; Rabineau, Marina; Revillon, Sidonie; Houghton, Jennifer; Fike, David A.

    2017-06-01

    The sulfur biogeochemical cycle plays a key role in regulating Earth’s surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth’s surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial-interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial-interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial-interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.

  4. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    Science.gov (United States)

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  5. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments

    Science.gov (United States)

    Fornace, Kyrstin L.; Hughen, Konrad A.; Shanahan, Timothy M.; Fritz, Sherilyn C.; Baker, Paul A.; Sylva, Sean P.

    2014-12-01

    A record of the hydrogen isotopic composition of terrestrial leaf waxes (δDwax) in sediment cores from Lake Titicaca provides new insight into the precipitation history of the Central Andes and controls of South American Summer Monsoon (SASM) variability since the last glacial period. Comparison of the δDwax record with a 19-kyr δD record from the nearby Illimani ice core supports the interpretation that precipitation δD is the primary control on δDwax with a lesser but significant role for local evapotranspiration and other secondary influences on δDwax. The Titicaca δDwax record confirms overall wetter conditions in the Central Andes during the last glacial period relative to a drier Holocene. During the last deglaciation, abrupt δDwax shifts correspond to millennial-scale events observed in the high-latitude North Atlantic, with dry conditions corresponding to the Bølling-Allerød and early Holocene periods and wetter conditions during late glacial and Younger Dryas intervals. We observe a trend of increasing monsoonal precipitation from the early to the late Holocene, consistent with summer insolation forcing of the SASM, but similar hydrologic variability on precessional timescales is not apparent during the last glacial period. Overall, this study demonstrates the relative importance of high-latitude versus tropical forcing as a dominant control on glacial SASM precipitation variability.

  6. Mid-latitude trans-Pacific reconstructions and comparisons of coupled glacial/interglacial climate cycles based on soil stratigraphy of cover-beds

    Science.gov (United States)

    Alloway, B. V.; Almond, P. C.; Moreno, P. I.; Sagredo, E.; Kaplan, M. R.; Kubik, P. W.; Tonkin, P. J.

    2018-06-01

    relative dating of glacial episodes prior to the Late Quaternary, surface exposure dating techniques could provide another chronological alternative to address this issue. However, there have been two main obstacles to successfully apply this dating technique in Patagonia. First, minimum exposure ages may be obtained on moraines older than the last glacial cycle due to erosion, although dating outwash plains is more robust. Second, on the wet western side adjacent to the Andes, persistent vegetation cover during both glacial and post-glacial times, as well as widespread inundation by volcanic mass-flows, appear preventive. We make a case that soil genesis within this region appears to be dominated by a constant flux of intermittently erupted Andean-sourced tephra which has continued to upbuild soils at the ground surface separated by intervals where topdown weathering processes are intensified. As already demonstrated by New Zealand studies, multisequal soil successions have a clear implied connection to coupled glacial and interglacial climate cycles of the Quaternary. On this basis, similar sequences in northwest Patagonia provide a relatively untapped archive to enable Quaternary glacial and environmental changes in this pervasively glaciated volcanic region to be constructed.

  7. Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica: implications for atmospheric variations from regional to hemispheric scales

    Directory of Open Access Journals (Sweden)

    S. Albani

    2012-04-01

    Full Text Available Central East Antarctic ice cores preserve stratigraphic records of mineral dust originating from remote sources in the Southern Hemisphere, and represent useful indicators of climatic variations on glacial-interglacial time scales. The peripheries of the East Antarctic Ice Sheet, where ice-free areas with the potential to emit dust exist, have been less explored from this point of view. Here, we present a new profile of dust deposition flux and grain size distributions from an ice core drilled at Talos Dome (TALDICE, Northern Victoria Land, East Antarctica, where there is a significant input of dust from proximal Antarctic ice-free areas. We analyze dust and stable water isotopes variations from the Last Glacial Maximum to the Late Holocene, and compare them to the EPICA Dome C profiles from central East Antarctica. The smaller glacial-interglacial variations at Talos Dome compared to Dome C and a distinctive decreasing trend during the Holocene characterize the TALDICE dust profile. By deciphering the composite dust signal from both remote and local sources, we show the potential of this combined proxy of source activity and atmospheric transport to give information on both regional and larger spatial scales. In particular, we show how a regional signal, which we relate to the deglaciation history of the Ross Sea embayment, can be superimposed to the broader scale glacial-interglacial variability that characterizes other Antarctic sites.

  8. Late Quaternary sea-level history and the antiquity of mammoths (Mammuthus exilis and Mammuthus columbi), Channel Islands NationalPark, California, USA

    Science.gov (United States)

    Muhs, Daniel R.; Simmons, Kathleen R.; Groves, Lindsey T.; McGeehin, John P.; Schumann, R. Randall; Agenbroad, Larry D.

    2015-01-01

    Fossils of Columbian mammoths (Mammuthus columbi) and pygmy mammoths (Mammuthus exilis) have been reported from Channel Islands National Park, California. Most date to the last glacial period (Marine Isotope Stage [MIS] 2), but a tusk of M. exilis (or immature M. columbi) was found in the lowest marine terrace of Santa Rosa Island. Uranium-series dating of corals yielded ages from 83.8 ± 0.6 ka to 78.6 ± 0.5 ka, correlating the terrace with MIS 5.1, a time of relatively high sea level. Mammoths likely immigrated to the islands by swimming during the glacial periods MIS 6 (~ 150 ka) or MIS 8 (~ 250 ka), when sea level was low and the island–mainland distance was minimal, as during MIS 2. Earliest mammoth immigration to the islands likely occurred late enough in the Quaternary that uplift of the islands and the mainland decreased the swimming distance to a range that could be accomplished by mammoths. Results challenge the hypothesis that climate change, vegetation change, and decreased land area from sea-level rise were the causes of mammoth extinction at the Pleistocene/Holocene boundary on the Channel Islands. Pre-MIS 2 mammoth populations would have experienced similar or even more dramatic changes at the MIS 6/5.5 transition.

  9. Glacial refugia, recolonization patterns and diversification forces in Alpine-endemic Megabunus harvestmen.

    Science.gov (United States)

    Wachter, Gregor A; Papadopoulou, Anna; Muster, Christoph; Arthofer, Wolfgang; Knowles, L Lacey; Steiner, Florian M; Schlick-Steiner, Birgit C

    2016-06-01

    The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner-Alpine areas. In contrast, evidence for survival on nunataks, ice-free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high-altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner-Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long-distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long-term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species-specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity. © 2016 John Wiley & Sons Ltd.

  10. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    Science.gov (United States)

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  11. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles

    Directory of Open Access Journals (Sweden)

    A. Ganopolski

    2011-12-01

    Full Text Available The origin of the 100 kyr cyclicity, which dominates ice volume variations and other climate records over the past million years, remains debatable. Here, using a comprehensive Earth system model of intermediate complexity, we demonstrate that both strong 100 kyr periodicity in the ice volume variations and the timing of glacial terminations during past 800 kyr can be successfully simulated as direct, strongly nonlinear responses of the climate-cryosphere system to orbital forcing alone, if the atmospheric CO2 concentration stays below its typical interglacial value. The existence of long glacial cycles is primarily attributed to the North American ice sheet and requires the presence of a large continental area with exposed rocks. We show that the sharp, 100 kyr peak in the power spectrum of ice volume results from the long glacial cycles being synchronized with the Earth's orbital eccentricity. Although 100 kyr cyclicity can be simulated with a constant CO2 concentration, temporal variability in the CO2 concentration plays an important role in the amplification of the 100 kyr cycles.

  12. Subfossil markers of climate change during the Roman Warm Period of the late Holocene

    Science.gov (United States)

    Jach, Renata; Knutelski, Stanisław; Uchman, Alfred; Hercman, Helena; Dohnalik, Marek

    2018-02-01

    Abundant bog oak trunks occur in alluvial deposits of the Raba River in the village of Targowisko (southern Poland). Several of them contain galleries of the great capricorn beetle ( Cerambyx cerdo L.). A well-preserved subfossil larva and pupa, as well as adults of this species, are concealed in some of the galleries. These galleries co-occur with boring galleries of other insects such as ship-timber beetles (Lymexylidae) and metallic wood borers (Buprestidae). A dry larva of a stag beetle (Lucanidae) and a mite (Acari) have been found in the C. cerdo galleries. Selected samples of the trunks and a sample of the C. cerdo larva were dated, using radiocarbon and dendrochronological methods, to the period from 45 bc to ad 554; one sample was dated to the period from 799 to 700 bc. Accumulation of the channel alluvia containing the bog oak trunks is synchronous with the Roman Warm Period (late antiquity/Early Mediaeval times). The most recent part of this period correlates with massive accumulations of fallen oak trunks noted from various river valleys in the Carpathian region and dated to ad 450-570. The results indicate that C. cerdo was more abundant within the study area during the Roman Warm Period than it is today.

  13. Does the Length of Fielding Period Matter? Examining Response Scores of Early Versus Late Responders

    Directory of Open Access Journals (Sweden)

    Sigman Richard

    2014-12-01

    Full Text Available This article discusses the potential effects of a shortened fielding period on an employee survey’s item and index scores and respondent demographics. Using data from the U.S. Office of Personnel Management’s 2011 Federal Employee Viewpoint Survey, we investigate whether early responding employees differ from later responding employees. Specifically, we examine differences in item and index scores related to employee engagement and global satisfaction. Our findings show that early responders tend to be less positive, even after adjusting their weights for nonresponse. Agencies vary in their prevalence of late responders, and score differences become magnified as this proportion increases. We also examine the extent to which early versus late responders differ on demographic characteristics such as grade level, supervisory status, gender, tenure with agency, and intention to leave, noting that nonminorities and females are the two demographic characteristics most associated with responding early.

  14. SERUM ELECTROLYTES IN BUFFALOES DURING LATE PREGNANCY, PARTURITION AND POST PARTUM PERIODS

    Directory of Open Access Journals (Sweden)

    Shahzad Hussain, Muhammad Amir Saeed and Isma Nazli Bashir

    2001-09-01

    Full Text Available This study was executed on 30 pregnant Nili-Ravi buffaloes. Serum was harvested for the estimation of calcium, magnesium, phosphorus, sodium, potassium and iron in the late pregnancy (at 8th and 9th month of gestation, at parturition and in the postpartum periods (at Ist and 2 month postpartum. The concentrations of Ca and P were significantly (P< 0.05 lower and Mg was significantly (P<0.05 higher at the time of parturition. The concentrations of Na and K did not show much variation. The values of Fe also decreased significantly (P<0.05 near parturition (at 9th month of gestation and at parturition. No puerperal disorder was observed in any of the experimental animals.

  15. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age

    Science.gov (United States)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2018-04-01

    At the end of the Late Paleozoic Ice Age (LPIA) from late Early Permian to early Late Permian, the global climate was impacted by a prevailing megamonsoon and Gondwanan deglaciation. To better understand the abiotic and biotic responses to Milankovitch-forced climate changes during this time period, multi-element X-ray fluorescence (XRF) geochemistry analyses were conducted on 948 samples from the late Early-late Middle Permian Maokou Formation at Shangsi, South China. The Fe/Ti, S/Ti, Ba/Ti and Ca time series, which were calibrated with an existing "floating" astronomical time scale (ATS), show the entire suite of Milankovitch rhythms including 405 kyr long eccentricity, 128 and 95 kyr short eccentricity, 33 kyr obliquity and 20 kyr precession. Spectral coherency and cross-phase analysis reveals that chemical weathering (monitored by Fe/Ti) and upwelling (captured by S/Ti and Ba/Ti) are nearly antiphase in the precession band, which suggests a contrast between summer and winter monsoon intensities. Strong obliquity signal in the Ba/Ti series is proposed to derive from changes in thermohaline circulation intensity from glaciation dynamics in southern Gondwana. The abundance of foraminifer, brachiopod and ostracod faunas within the Maokou Formation were mainly controlled by the 1.1 Myr obliquity modulation cycle. The obliquity-forced high-nutrient and oxygen-depleted conditions generally produced a benthic foraminifer bloom, but threatened the brachiopod and ostracod faunas.

  16. The Late Glacial Chronology from Lake Suigestu: A new approach to varve interpolation using frequency distributions of annual sub-layers

    Science.gov (United States)

    Schlolaut, Gordon; Marshall, Michael; Brauer, Achim; Nakagawa, Takeshi; Lamb, Henry; Staff, Richard; Bronk Ramsey, Christopher; Brock, Fiona; Bryant, Charlotte; 2006 Project Members, Suigetsu

    2010-05-01

    The 1993 sediment core from Lake Suigetsu is one of the most comprehensive terrestrial radiocarbon records. It is extremely rich in leaf fossils, providing a unique, truly atmospheric record of radiocarbon for the last 10-50 kyr BP (Kitagawa & van der Plicht, 2000). Since the Lake Suigetsu sediment is annually laminated (varved) for much of its depth it is suitable for extending the terrestrial radiocarbon calibration model up to 50 kyr BP. However, the data presented by Kitagawa & van der Plicht (2000) significantly diverged from alternative, marine-based calibration datasets, due to gaps in the sediment profile and varve counting uncertainties (Staff et al., 2009). In 2006 four new parallel cores were recovered from Lake Suigetsu and combined to construct a new complete and continuous master profile (SG06). Along with a new program of AMS radiocarbon measurement, varve counting is being carried out using two different techniques: i) thin section microscopy and ii) high-resolution X-ray fluorescence and X-radiography. In addition, a novel interpolation approach has been developed. First results are presented for the Late Glacial (10,200 - 15,000 kyr BP). The U-Oki Tephra at the top of this interval is used as tie point for the floating varve count chronology. Initially, the two counting methods are carried out independently. The results are then compared in detail to identify the differences down to the sub-mm scale. This new approach substantially reduces internal error and results in a greater degree of accuracy than previously possible. Due to poor varve preservation in some sediment intervals, the counts of these sections have to be interpolated. Commonly, interpolation is carried out manually using sedimentation rate estimates from neighbouring sections. The new approach presented here is based on an automated analysis of frequency distributions of annual sub-layers from the compromised section itself, allowing an estimate of the sedimentation rate unbiased

  17. Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a'b

    Directory of Open Access Journals (Sweden)

    Wang Wen-Zhi

    2011-01-01

    Full Text Available Abstract Background Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum in East Asia; whether these changes left any signatures in the gene pool of East Asians remains poorly indicated. To achieve deeper insights into the demographic history of modern humans in East Asia around the Last Glacial Maximum, we extensively analyzed mitochondrial DNA haplogroup M9a'b, a specific haplogroup that was suggested to have some potential for tracing the migration around the Last Glacial Maximum in East Eurasia. Results A total of 837 M9a'b mitochondrial DNAs (583 from the literature, while the remaining 254 were newly collected in this study pinpointed from over 28,000 subjects residing across East Eurasia were studied here. Fifty-nine representative samples were further selected for total mitochondrial DNA sequencing so we could better understand the phylogeny within M9a'b. Based on the updated phylogeny, an extensive phylogeographic analysis was carried out to reveal the differentiation of haplogroup M9a'b and to reconstruct the dispersal histories. Conclusions Our results indicated that southern China and/or Southeast Asia likely served as the source of some post-Last Glacial Maximum dispersal(s. The detailed dissection of haplogroup M9a'b revealed the existence of an inland dispersal in mainland East Asia during the post-glacial period. It was this dispersal that expanded not only to western China but also to northeast India and the south Himalaya region. A similar phylogeographic distribution pattern was also observed for haplogroup F1c, thus substantiating our proposition. This inland post-glacial dispersal was in agreement with the spread of the Mesolithic culture originating in South China and northern Vietnam.

  18. Ice flow models and glacial erosion over multiple glacial–interglacial cycles

    OpenAIRE

    Headley, R. M.; Ehlers, T. A.

    2015-01-01

    Mountain topography is constructed through a variety of interacting processes. Over glaciological timescales, even simple representations of glacial-flow physics can reproduce many of the distinctive features formed through glacial erosion. However, detailed comparisons at orogen time and length scales hold potential for quantifying the influence of glacial physics in landscape evolution models. We present a comparison using two different numerical models for glacial flow ov...

  19. Falsifying the Sikussak-Oasis Hypothesis for the Tillite Group, East Greenland: Implications for Trezona-like Carbon Isotope Excursions Beneath Neoproterozoic Glacials

    Science.gov (United States)

    Hoffman, P. F.; Domack, E. W.; Maloof, A. C.; Halverson, G. P.

    2006-05-01

    In Neoproterozoic time, East Greenland and East Svalbard (EGES) occupied landward and seaward positions, respectively, on the southern subtropical margin of Laurentia. In both areas, thick clastic-to-carbonate successions are overlain by two discrete glacial and/or periglacial formations, separated by fine basinal clastics. In Svalbard, the younger glacial has a characteristic Marinoan (basal Ediacaran) cap dolostone, but the older glacial is underlain by a 10-permil negative carbon isotope excursion that is indistinguishable from excursions observed exclusively beneath Marinoan glacials in Australia, Namibia and western Laurentia. This led us to propose (Basin Research 16, 297-324, 2004) that the paired glacials in EGES represent the onset and climax of a single, long-lived, Marinoan glaciation. The intervening fine clastics, which contain ikaite pseudomorphs, presumptively accumulated beneath permanent shorefast sea ice (sikussak), analogous to East Greenland fjords during the Younger Dryas and Little Ice Age. In this model, the top of the older glacial signals the start of Snowball Earth. We conducted a preliminary field test of the sikussak hypothesis in Strindberg Land (SL), Andrée Land (AL) and Ella O (EO), East Greenland. We confirmed the correlation of the paired glacials and the Marinoan cap dolostone (missing on EO). In SL, the older glacial (Ulveso Fm) is a thin diamictite overlain by conglomerate lag and a set of megavarves composed of alternating siltstone and ice-rafted debris. In AL and EO, the Ulveso is a sub-glacial diamictite overlain by aeolian and/or marine sandstone. In Bastion Bugt on EO, it is a transgressive shoreface sandstone. This proves that glacial recession occurred under open-water conditions and did not result from permanent sea-ice formation, as stipulated in the sikussak model. There is no evidence that the fine clastic sequence between the glacials formed under an ice cover, or for a single glacial period. This brings us back to

  20. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    Science.gov (United States)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  1. Quaternary sedimentation of the Alaskan Beaufort shelf: Influence of regional tectonics, fluctuating sea levels, and glacial sediment sources

    Science.gov (United States)

    Dinter, D.A.

    1985-01-01

    The offshore stratigraphy of the Quaternary Gubik Formation of Arctic Alaska has been studied on high-resolution seismic profiles with a maximum sub-seafloor penetration of about 100 m. In general, marine transgressive subunits of the Gubik Formation are wedge-shaped on the shelf, thickening slightly seaward to the shelf break, beyond which they are offset by landslides and slumps. Beneath the eastern third of the Alaskan Beaufort shelf, active folding has created two persistent structural depressions, the Eastern and Western Wedge Terranes, in which the wedge morphology is especially well developed. The youngest transgressive marine wedge, which was deposited in such a way as to fill these depressions, leaving a generally flat present-day shelf surface, is inferred to be late Wisconsin or younger in age because it overlies a prominent disconformity interpreted to have been formed during the late Wisconsin glacial sea-level minimum. The thickness of this youngest wedge, Unit A, locally exceeds 40 m on the outer shelf, yet apparently relict gravel deposits collected from its seabed surface indicate that the depositional rate is presently quite low on the middle and outer shelf. Lithologies of the gravels are exotic to Alaska, but similar to suites exposed in the Canadian Arctic Islands. These observations suggest a depositional scenario in which the retreating Laurentide Ice Sheet shed sediment-laden icebergs from the Canadian Arctic Islands into the Arctic Ocean following the late Wisconsin glacial maximum. These bergs were then rafted westward by the Beaufort Gyre and grounded on the Alaskan shelf by northeasterly prevailing winds. Especially large numbers of bergs accumulated in the wedge terrane embayments-created as sea level rose-and melted there, filling the embayments with their sedimentary cargo. As glacial retreat slowed, depositional rates on the shelf dwindled. This mode of deposition in the Alaskan Beaufort wedge terranes may be typical of early post-glacial

  2. The glacial cycles and cosmic rays

    CERN Document Server

    Kirkby, Jasper; Müller, R A

    2004-01-01

    The cause of the glacial cycles remains a mystery. The origin is widely accepted to be astronomical since paleoclimatic archives contain strong spectral components that match the frequencies of Earth's orbital modulation. Milankovitch insolation theory contains similar frequencies and has become established as the standard model of the glacial cycles. However, high precision paleoclimatic data have revealed serious discrepancies with the Milankovitch model that fundamentally challenge its validity and re-open the question of what causes the glacial cycles. We propose here that the ice ages are initially driven not by insolation cycles but by cosmic ray changes, probably through their effect on clouds. This conclusion is based on a wide range of evidence, including results presented here on speleothem growth in caves in Austria and Oman, and on a record of cosmic ray flux over the past 220 kyr obtained from the 10Be composition of deep-ocean sediments.

  3. A continuous record of glacial-interglacial cycles spanning more than 500 kyr from Lake Junín, Perú

    Science.gov (United States)

    Rodbell, D. T.; Abbott, M. B.; McGee, D.; Chen, C. Y.; Stoner, J. S.; Hatfield, R. G.; Tapia, P. M.; Bush, M. B.; Weidhaas, N.; Woods, A.; Valero-Garces, B. L.; Lehmann, S. B.; Bustamante, M. G.; Larsen, D. J.

    2017-12-01

    Lake Junín (11.0°S, 76.2°W) is a shallow (zmax 12 m), intermontane, high-elevation (4080 masl) lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. It is dammed by coalescing alluvial fans that are >250 ka that emanate from glacial valleys. Lake Junín has not been overrun by glacial ice in several hundred thousand years and is ideally located to receive glacigenic sediment. The Junín basin is underlain by carbonate rocks that have provided a source of Ca and HCO3 ions; precipitation of CaCO3 in the western margin of the lake during the present interglacial period has occurred at 1mm yr-1. An airgun seismic survey revealed a strong reflector at 105 meters depth, which marks the base of the lacustrine section. Drilling focused on three sites. Site 1, located near the depocenter and most distal to glacial sources, yielded a composite sediment thickness of 95m; Site 2, proximal to glacial outwash fans, yielded a composite thickness of 28 m; Site 3, located at an intermediate distance yielded a sediment thickness of 55m. The stratigraphy of Site 1 is marked by 8 glacial/interglacial cycles; the latter are characterized by low bulk density and magnetic susceptibility (MS) and high CaCO3. These units are intercalated with glacigenic sediment that has high density and MS, and low CaCO3. The age model for Site 1 is based on AMS radiocarbon dates on terrestrial macrofossils and dozens of U/Th ages on authigenic CaCO3. Strong and protracted interglacial periods appear to be associated with intervals of reduced variability of solar insolation in the Southern Hemisphere tropics. During these intervals there is strong covariation (r2>0.9) between the δ13C and δ18O of authigenic calcium carbonate, and δ18O values are relatively enriched (-12 to -2‰); examples include interglacial periods correlative with marine isotope stages (MIS) 1, 13, and 15. The magnitude of tropical glaciation appears to have been greater during glacial cycles prior to the LGM

  4. Paleolimnological reconstruction of environmental variability during the Late Pleistocene and Holocene in the south-east Baltic region

    Science.gov (United States)

    Kublitskiy, Iurii; Subetto, Dmitriy; Druzhinina, Olga; Kulkova, Marianna; Arslanov, Khikmatula

    2016-04-01

    The main goal of our research is the high-resolution reconstruction of environmental and climatic changes in SE Baltic region since the Last Glacial Maximum by palaeolimnological data. The 6 objects - lakes and peat-bogs, were studied since 2009 in the Kaliningrad region, Russian Federation. According to palaeolimnological studies of bottom sediments of the Kamyshovoe Lake (N 54°22,6`; E22°42,8`, 189 m a.s.l.), located in the Vishtynets Highland, the south-east part of Kaliningrad district, the environmental and climatic changes after the late glacial have been reconstructed. At that moment the radiocarbon and loss-on-ignition (LOI) data, geochemistry and diatom analysis for the whole sediment core, and pollen analyze for the bottom part of the core have been completed. According to the pollen data the Alleröd interstadial starts at 13 200 cal. yrs BP and is marked by the rising of birch and pine pollen. The transition to the Younger Dryas around 12 700 cal. yrs BP corresponds with the development of patches of shrublands in which light-demanding species, such as juniper, flourished and communities of steppe herbs. The late Preboreal is marked by the appearance of Populus and an increase of the role of grasses in the vegetation cover 11 300-11 100 cal. yrs BP (Druzinina et al., 2015). The Holocene climatic zones have been identified by LOI and geochemistry analyses. The Boreal period started about 10 200 cal. yrs BP, Atlantic around 9100 cal. yrs BP, Subboreal 5800 cal. yrs BP, and Subatlantic 3200 cal. yrs BP (Kublitskiy et al., 2015). During the conference the new palaeolimnological data of environmental variability during the late Pleistocene and Holocene in SE Baltic region will be presented. Acknowledgements The investigations have been granted by the Russian Fund for Basic Research (12-05-33013, 13-05-41457, 15-35-50721). References Druzhinina, O., Subetto, D., Stančikaitė, M., Vaikutienė, G., Kublitsky, J., Arslanov, Kh., 2015. Sediment record from the

  5. Late Glacial and Holocene gravity deposits in the Gulf of Lions deep basin, Western Mediterranean

    Science.gov (United States)

    Dennielou, B.; Bonnel, C.; Sultan, N.; Voisset, M.; Berné, S.; Beaudouin, C.; Guichard, F.; Melki, T.; Méar, Y.; Droz, L.

    2003-04-01

    Recent investigations in the Gulf of Lions have shown that complex gravity processes and deposits occurred in the deep basin since the last Glacial period. Besides the largest western Mediterranean turbiditic system, Petit-Rhône deep-sea fan (PRDSF), whose built-up started at the end of Pliocene, several sedimentary bodies can be distinguished: (1) The turbiditic Pyreneo-Languedocian ridge (PLR), at the outlet of the Sète canyon network, whose activity is strongly connected to the sea level and the connection of the canyons with the rivers. It surface shows long wave-length sediment waves, probably in relation with the turbiditic overspill. (2) An acoustically chaotic unit, filling the topographic low between the PRDSF and the PLR, the Lower Interlobe Unit. Possible source areas are the Sète canyon and/or the Marti Canyon. (3) An acoustically transparent unit, below the neofan, filling the same topographic low, the Western Transparent Unit, interpreted as a debris-flow. Recent sediment cores have shown that this sedimentary is composed of folded, laminated mud, both in its northern and southern fringes. (4) The Petit-Rhône neofan, a channelized turbiditic lobe resulting from the last avulsion of the Petit-Rhône turbiditic channel and composed of two units. The lower, acoustically chaotic facies unit, corresponding to an initial stage of the avulsion, similar to the HARP facies found on the Amazon fan. The upper, transparent, slightly bedded, channel-levee shaped unit, corresponding to the channelized stage of the avulsion. (5) Up to ten, Deglacial to Holocene, thin, fine sand layers, probably originating from shelf-break sand accumulations, through the Sète canyon network. (6) Giant scours, in the southern, distal part of the neofan, possibly linked to turbiditic overflow from the neo-channel, probably corresponding to channel-lobe transition zone features (Wynn et al. 2002). Recent investigations have shown no evidence of bottom current features.

  6. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Science.gov (United States)

    Malinverno, A.; Cook, A.; Daigle, H.; Oryan, B.

    2017-12-01

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  7. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Malinverno, Alberto; Cook, Ann; Daigle, Hugh; Oryan, Bar

    2017-12-15

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  8. Glacial chronology and palaeoclimate in the Bystra catchment, Western Tatra Mountains (Poland) during the Late Pleistocene

    Science.gov (United States)

    Makos, Michał; Rinterknecht, Vincent; Braucher, Régis; Żarnowski, Michał

    2016-02-01

    Deglaciation chronology of the Bystra catchment (Western Tatra Mountains) has been reconstructed based on 10Be exposure age dating. Fourteen rock samples were collected from boulders located on three moraines that limit the horizontal extent of the LGM maximum advance and the Lateglacial recessional stage. The oldest preserved, maximum moraine was dated at 15.5 ± 0.8 ka, an age that could be explained more likely by post-depositional erosion of the moraine. Such scenario is supported by geomorphologic and palaeoclimatological evidence. The younger cold stage is represented by well-preserved termino-lateral moraine systems in the Kondratowa and Sucha Kasprowa valleys. The distribution of the moraine ridges in both valleys suggest a complex history of deglaciation of the area. The first Late-glacial re-advance (LG1) was followed by a cold oscillation (LG2), that occurred at around 14.0 ± 0.7-13.7 ± 1.2 ka. Glaciers during both stages had nearly the same horizontal extent, however, their thickness and geometry changed significantly, mainly due to local climatic conditions triggered by topography, controlling the exposition to solar radiation. The LG1 stage occurred probably during the pre-Bølling cold stage (Greenland Stadial 2.1a), however, the LG2 stage can be correlated with the cooling at around 14 ka during the Greenland Interstadial 1 (GI-1d - Older Dryas). This is the first chronological evidence of the Older Dryas in the Tatra Mountains. The ELA of the maximum Bystra glacier was located at 1480 m a.s.l. in accordance with the ELA in the High Tatra Mountains during the LGM. During the LG1 and LG2 stages, the ELA in the catchment rose up to 1520-1530 m a.s.l. and was located approximately 100-150 m lower than in the eastern part of the massif. Climate modelling results show that the Bystra glacier (maximum advance) could have advanced in the catchment when mean annual temperature was lower than today by 11-12 °C and precipitation was reduced by 40-60%. This

  9. Late Glacial and Holocene Climate Change in the subantarctic Auckland Islands

    Science.gov (United States)

    Gilmer, G.; Moy, C. M.; Vandergoes, M.; Gadd, P.; Riesselman, C. R.; Jacobsen, G. E.; Wilson, G. S.; Visinand, C.

    2017-12-01

    Situated within the core of the Southern Hemisphere westerly winds, and between the subtropical and subantarctic fronts, the New Zealand subantarctic islands are uniquely positioned to evaluate past ocean and atmospheric change in the middle to high southern latitudes. We collected a series of sediment cores from Auckland Island fjords to produce a high-resolution record of climate change following the Last Glacial Maximum. Physical property and organic geochemical data, Itrax XRF, and visual core descriptions indicate the cores capture several phases of sedimentation. From these studies, we identify four primary sedimentary facies: 1) a deglacial facies exhibiting mm-scale laminae defined by magnetic susceptibility and density contrasts and high counts of elements associated with terrigenous sources; 2) a lacustrine facies defined by very low density, high organic carbon concentrations and low counts of lithophilic elements; 3) a marine transgression facies with moderate density, moderate bioturbation and alternating marine and lacustrine sedimentary components; 4) a marine facies that contains biogenic carbonate. Radiocarbon results indicate deglacial sedimentation was underway in the basin by approximately 19,000 cal yr BP. Lacustrine deposition in ice-free conditions began around 15,600 cal yr BP and continued until marine transgression at approximately 9,500 cal yr BP. During the early Holocene between 11 and 9.5 ka, we observe elevated n-alkane δD values and an overall increase in redox-sensitive elements that signal a combination of warmer atmospheric temperatures and reduced westerly wind strength that drives fjord stratification. Poleward-shifted westerlies south of the Auckland Islands could accommodate these results, but there are few records to corroborate this interpretation. We will discuss these results within the context of developing New Zealand and subantarctic paleoclimate records in order to provide a more comprehensive record of past change.

  10. A mechanism for overdeepenings of glacial valleys and fjords

    OpenAIRE

    Herman F.; Beaud F.; Champagnac J.-D.; Lemieux J.-M.; Sternai P.

    2011-01-01

    Most glacial erosion models assume that erosion rates are proportional to ice sliding velocity. While recent studies have shown that water plays a major role in modulating sliding velocities the impact it might have on erosion rates is still unclear. Here we incorporate subglacial hydrology into a glacial erosion model that is based on a sliding rule. Our results explicitly highlight that adding subglacial hydrology has profound impacts on the temporal and spatial patterns of glacial erosion....

  11. Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1?

    Science.gov (United States)

    Zale, R.; Huang, Y.-T.; Bigler, C.; Wood, J. R.; Dalén, L.; Wang, X.-R.; Segerström, U.; Klaminder, J.

    2018-04-01

    Unglaciated forelands and summits protruding from ice-sheets are commonly portrayed as areas where plants first establish at the end of glacial cycles. But is this prevailing view of ice-free refugia too simplistic? Here, we present findings suggesting that surface debris supported plant communities far beyond the rim of the Late Weichselian Ice-sheet during Greenland interstadial 1 (GI-1 or Bølling-Allerød interstadial). We base our interpretations upon findings from terrigenous sediments largely resembling 'plant-trash' deposits in North America (known to form as vegetation established on stagnant ice became buried along with glacial debris during the deglaciation). In our studied deposit, we found macrofossils (N = 10) overlapping with the deglaciation period of the area (9.5-10 cal kyr BP) as well as samples (N = 2) with ages ranging between 12.9 and 13.3 cal kyr BP. The latter ages indicate growth of at least graminoids during the GI-1 interstadial when the site was near the geographic center of the degrading ice-sheet. We suggest that exposure of englacial material during GI-1 created patches of supraglacial debris capable of supporting vascular plants three millennia before deglaciation. The composition and resilience of this early plant community remain uncertain. Yet, the younger group of macrofossils, in combination with pollen and ancient DNA analyses of inclusions, imply that shrubs (Salix sp., Betula sp. and Ericaceae sp) and even tree species (Larix) were present in the debris during the final deglaciation stage.

  12. Epidemiological characteristics and predictors of late presentation of HIV infection in Barcelona (Spain during the period 2001-2009

    Directory of Open Access Journals (Sweden)

    Guelar Ana

    2011-07-01

    Full Text Available Abstract Background Early diagnosis of HIV infection can prevent morbidity and mortality as well as reduce HIV transmission. The aim of the present study was to assess prevalence, describe trends and identify factors associated with late presentation of HIV infection in Barcelona (Spain during the period 2001-09. Methods Demographic and epidemiological characteristics of cases reported to the Barcelona HIV surveillance system were analysed. Late presentation was defined for individuals with a CD4 count below 350 cells/ml upon HIV diagnosis or diagnosis of AIDS within 3 months of HIV diagnosis. Multivariate logistic regression were used to identify predictors of late presentation. Results Of the 2,938 newly diagnosed HIV-infected individuals, 2,507 (85,3% had either a CD4 cell count or an AIDS diagnosis available. A total of 1,139 (55.6% of the 2,507 studied cases over these nine years were late presenters varying from 48% among men who have sex with men to 70% among heterosexual men. The proportion of late presentation was 62.7% in 2001-2003, 51.9% in 2004-2005, 52.6% in 2006-2007 and 52.1% in 2008-2009. A decrease over time only was observed between 2001-2003 and 2004-2005 (p = 0.001 but remained constant thereafter (p = 0.9. Independent risk factors for late presentation were older age at diagnosis (p Conclusion Late presentation of HIV is still too frequent in all transmission groups in spite of a strong commitment with HIV prevention in our city. It is necessary to develop interventions that increase HIV testing and facilitate earlier entry into HIV care.

  13. The ESR age of Portlandia arctica shells from glacial deposits of Central Latvia . an answer to a controversy on the age and genesis of their enclosing sediments

    Science.gov (United States)

    Molodkov, Anatoly; Dreimanis, Aleksis; ĀBoltiņš, Ojars; Raukas, Anto

    The occurrence of Portlandia arctica shells in glacigenic sediments of Central Latvia had created a controversy in many publications about (1) their age ranging from the Holsteinian to the Late Weichselian and (2) the genesis of their enclosing sediments: glacial, glaciomarine or marine. Our reinvestigation of the main object of controversy, the Lı¯čupe site, leads to a conclusion that the sedimentary package of diamictons, clays and sands containing Portlandia arctica shells and marine microfossils is a large glacial raft that had been transported and deposited by the Riga lobe during the Weichselian. The electron spin resonance (ESR) ages on five sets of Portlandia arctica shells from the Lı¯čupe and Daugmales Tomēni sites range from 86.0±6.8 to 105.0±9.2 ka BP. These ESR age determinations and the cool climate indicators of the associated microflora and microfauna suggest that their source sediments, probably in the Gulf of Riga, are marine clays of Early Weichselian age, probably correlative to the Brørup Interstadial. In Central Latvia Portlandia arctica shells and their enclosing clay occur resedimented or translocated in glacial deposits during Weichselian glacial advances.

  14. The timing and cause of glacial activity during the last glacial in central Tibet based on 10Be surface exposure dating east of Mount Jaggang, the Xainza range

    Science.gov (United States)

    Dong, Guocheng; Zhou, Weijian; Yi, Chaolu; Fu, Yunchong; Zhang, Li; Li, Ming

    2018-04-01

    Mountain glaciers are sensitive to climate change, and can provide valuable information for inferring former climates on the Tibetan Plateau (TP). The increasing glacial chronologies indicate that the timing of the local Last Glacial Maximum (LGM) recorded across the TP is asynchronous, implying different local influences of the mid-latitude westerlies and Asian Summer Monsoon in triggering glacier advances. However, the well-dated sites are still too few, especially in the transition zone between regions controlled by the two climate systems. Here we present detailed last glacial chronologies for the Mount Jaggang area, in the Xainza range, central Tibet, with forty-three apparent 10Be exposure-ages ranging from 12.4 ± 0.8 ka to 61.9 ± 3.8 ka. These exposure-ages indicate that at least seven glacial episodes occurred during the last glacial cycle east of Mount Jaggang. These include: a local LGM that occurred at ∼61.9 ± 3.8 ka, possibly corresponding to Marine Isotope Stage 4 (MIS 4); subsequent glacial advances at ∼43.2 ± 2.6 ka and ∼35.1 ± 2.1 ka during MIS 3; one glacial re-advance/standstill at MIS3/2 transition (∼29.8 ± 1.8 ka); and three glacial re-advances/standstills that occurred following MIS 3 at ∼27.9 ± 1.7 ka, ∼21.8 ± 1.3 ka, and ∼15.1 ± 0.9 ka. The timing of these glacial activities is roughly in agreement with North Atlantic millennial-scale climate oscillations (Heinrich events), suggesting the potential correlations between these abrupt climate changes and glacial fluctuations in the Mount Jaggang area. The successively reduced glacial extent might have resulted from an overall decrease in Asian Summer Monsoon intensity over this timeframe.

  15. Climate Stability: Pathway to understand abrupt glacial climate shifts

    Science.gov (United States)

    Zhang, X.; Knorr, G.; Barker, S.; Lohmann, G.

    2017-12-01

    Glacial climate is marked by abrupt, millennial-scale climate changes known as Dansgaard-Oeschger (DO) cycles that have been linked to variations in the Atlantic meridional overturning circulation (AMOC). The most pronounced stadial coolings, Heinrich Stadials (HSs), are associated with massive iceberg discharges to the North Atlantic. This motivates scientists to consider that the North Atlantic freshwater perturbations is a common trigger of the associated abrupt transitions between weak and strong AMOC states. However, recent studies suggest that the Heinrich ice-surging events are triggered by ocean subsurface warming associated with an AMOC slow-down. Furthermore, the duration of ice-rafting events does not systematically coincide with the beginning and end of the pronounced cold conditions during HSs. In this context, we show that both, changes in atmospheric CO2 and ice sheet configuration can provide important control on the stability of the AMOC, using a coupled atmosphere-ocean model. Our simulations reveal that gradual changes in Northern Hemisphere ice sheet height and atmospheric CO2 can act as a trigger of abrupt glacial/deglacial climate changes. The simulated global climate responses—including abrupt warming in the North Atlantic, a northward shift of the tropical rain belts, and Southern Hemisphere cooling related to the bipolar seesaw—are generally consistent with empirical evidence. We further find that under a delicate configuration of atmospheric CO2 and ice sheet height the AMOC can be characterized by a self-oscillation (resonance) feature (Hopf Bifucation) with a 1000-year cycle that is comparable with observed small DO events during the MIS 3. This provides an alternative explanation for millennial-scale DO variability during glacial periods.

  16. Timing of maximum glacial extent and deglaciation from HualcaHualca volcano (southern Peru), obtained with cosmogenic 36Cl.

    Science.gov (United States)

    Alcalá, Jesus; Palacios, David; Vazquez, Lorenzo; Juan Zamorano, Jose

    2015-04-01

    Andean glacial deposits are key records of climate fluctuations in the southern hemisphere. During the last decades, in situ cosmogenic nuclides have provided fresh and significant dates to determine past glacier behavior in this region. But still there are many important discrepancies such as the impact of Last Glacial Maximum or the influence of Late Glacial climatic events on glacial mass balances. Furthermore, glacial chronologies from many sites are still missing, such as HualcaHualca (15° 43' S; 71° 52' W; 6,025 masl), a high volcano of the Peruvian Andes located 70 km northwest of Arequipa. The goal of this study is to establish the age of the Maximum Glacier Extent (MGE) and deglaciation at HualcaHualca volcano. To achieve this objetive, we focused in four valleys (Huayuray, Pujro Huayjo, Mollebaya and Mucurca) characterized by a well-preserved sequence of moraines and roches moutonnées. The method is based on geomorphological analysis supported by cosmogenic 36Cl surface exposure dating. 36Cl ages have been estimated with the CHLOE calculator and were compared with other central Andean glacial chronologies as well as paleoclimatological proxies. In Huayuray valley, exposure ages indicates that MGE occurred ~ 18 - 16 ka. Later, the ice mass gradually retreated but this process was interrupted by at least two readvances; the last one has been dated at ~ 12 ka. In the other hand, 36Cl result reflects a MGE age of ~ 13 ka in Mollebaya valley. Also, two samples obtained in Pujro-Huayjo and Mucurca valleys associated with MGE have an exposure age of 10-9 ka, but likely are moraine boulders affected by exhumation or erosion processes. Deglaciation in HualcaHualca volcano began abruptly ~ 11.5 ka ago according to a 36Cl age from a polished and striated bedrock in Pujro Huayjo valley, presumably as a result of reduced precipitation as well as a global increase of temperatures. The glacier evolution at HualcaHualca volcano presents a high correlation with

  17. A lacustrine record from Lop Nur, Xinjiang, China: Implications for paleoclimate change during Late Pleistocene

    Science.gov (United States)

    Chao, L.; Zicheng, P.; Dong, Y.; Weiguo, L.; Zhaofeng, Z.; Jianfeng, H.; Chenlin, C.

    2009-01-01

    Climate variability during the Late Pleistocene is studied from the proxies in core CK-2 drilled from the Luobei Depression (91??03???E, 40??47???N), Lop Nur in the eastern Tarim Basin, Xinjiang, China. Geophysical and geochemical properties, including magnetic susceptibility, granularity, chroma, carbonate content, loss on ignition and trace elements, have been determined to reconstruct the environmental evolution of the area during 32-9 ka BP. The chronology is established by uranium-thorium disequilibrium dating techniques. Our data suggest four paleoclimate stages, indicating glacial variations between cold-humid and warm-arid environments. A period of extreme humidity occurred during 31,900-19,200 yr BP is attributed the last glacial maximum (LGM). The period was followed by a warm-arid episode during 19,200-13,500 yr BP. Then a cold-humid interval during 13,500-12,700 yr BP may correspond to another cooling phases at high latitudes of the Northern Hemisphere. The last stage from 12,700 to 9000 yr BP has a trend that the climate turned warm and arid. The Lop Nur region is characterized by particularly humid stadials and arid interstadials. The climate variability in Lop Nur was constrained by global climate change because it is correlated with Dansgaard-Oeschger and Heinrich events, which were observed at the northern high latitudes. The synchroneity of the palaeoclimatic events suggested that cold air activity at the northern high latitudes was the most important factor that influenced the climate evolution in the Lop Nur region. A probable mechanism that involves the migration of westerly winds is proposed to interpret this synchroneity. ?? 2008 Elsevier Ltd.

  18. Scottish landform examples : The Cairngorms - a pre-glacial upland granite landscape

    OpenAIRE

    Hall, A.M.; Gillespie, M.R.; Thomas, C.W.; Ebert, K.

    2013-01-01

    The Cairngorm massif in NE Scotland (Figure 1) is an excellent example of a preglacial upland landscape formed in granite. Glacial erosion in the mountains has been largely confined to valleys and corries (Rea, 1998) and so has acted to dissect a pre-existing upland (Figure 2). Intervening areas of the massif experienced negligible glacial erosion due to protective covers of cold-based ice (Sugden, 1968) and preserve a wide range of pre-glacial and non-glacial landforms and reg...

  19. Glacial lakes in South Tyrol: distribution, evolution and potential for GLOFs

    Science.gov (United States)

    Schug, Marie-Claire; Mergili, Martin

    2017-04-01

    All over the world glaciers are currently retreating, leading to the formation or growth of glacial lakes. Some of these lakes are susceptible to sudden drainage. In order to assess the danger of glacial lake outburst floods (GLOFs) in South Tyrol in the Italian Alps, we present (i) an inventory of lakes, (ii) an analysis of the development of selected glacial lakes since 1945, and (iii) the susceptibility to and the possible impact areas of GLOFs. The inventory includes 1010 lakes that are larger than 250 m2 at an elevation above 2000 m asl, most of them of glacial origin. These lakes are mapped manually from orthophotos. Apart from collecting information on the spatial distribution of these lakes, the inventory lists dam material, glacier contact, and further parameters. 89% of the lakes in the investigation area are impounded by bedrock, whereas 93% of the lakes are detached from the associated glacier. The majority of lakes is small to medium sized (selected lakes are analyzed in detail in the field and from multi-temporal orthophotos, including the development of lake size and surroundings in the period since 1945. The majority of the selected lakes, however, was first recorded on orthophotos from the early 1980s. Eight of ten lakes grew significantly in that period. But when the lakes detached from the glacier until the early 2000s, the growth slowed down or ceased. Based on the current development of the selected lakes we conclude that the close surroundings of these lakes have stabilised and the lakes' susceptibility to an outburst has thus decreased. We further conduct broad-scale analyses of the susceptibility of the mapped lakes to GLOFs, and of the potential reach of possible GLOFs. The tool r.glachaz is used to determine the potentially dangerous lakes. Even though some few lakes require closer attention, the overall susceptibility to GLOFs in South Tyrol is relatively low, as most lakes are impounded by bedrock. In some cases, GLOFs caused by impact

  20. Can glacial shearing of sediment reset the signal used for luminescence dating?

    Science.gov (United States)

    Bateman, Mark D.; Swift, Darrel A.; Piotrowski, Jan A.; Rhodes, Edward J.; Damsgaard, Anders

    2018-04-01

    Understanding the geomorphology left by waxing and waning of former glaciers and ice sheets during the late Quaternary has been the focus of much research. This has been hampered by the difficulty in dating such features. Luminescence has the potential to be applied to glacial sediments but requires signal resetting prior to burial in order to provide accurate ages. This paper explores the possibility that, rather than relying on light to reset the luminescence signal, glacial processes underneath ice might cause resetting. Experiments were conducted on a ring-shear machine set up to replicate subglacial conditions and simulate the shearing that can occur within subglacial sediments. Luminescence measurement at the single grain level indicates that a number (albeit small) of zero-dosed grains were produced and that these increased in abundance with distance travelled within the shearing zone. Observed changes in grain shape characteristics with increasing shear distance indicate the presence of localised high pressure grain-to-grain stresses caused by grain bridges. This appears to explain why some grains became zeroed whilst others retained their palaeodose. Based on the observed experimental trend, it is thought that localised grain stress is a viable luminescence resetting mechanism. As such relatively short shearing distances might be sufficient to reset a small proportion of the luminescence signal within subglacial sediments. Dating of previously avoided subglacial sediments may therefore be possible.

  1. Glacial origin for cave rhythmite during MIS 5d-c in a glaciokarst landscape, Picos de Europa (Spain)

    Science.gov (United States)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Giralt, Santiago; DeFelipe, Irene; García-Sansegundo, Joaquín

    2017-06-01

    Laminated slackwater deposits have been identified in many karst caves related to fluvial and lacustrine sedimentation. However, sedimentological evidence rarely supports a glacial origin for these deposits, which was proposed by previous studies. The Torca La Texa shaft is located in a glaciokarst area that comprises numerous slackwater-type deposits, piled up in fining-upward sequences. A basal sandy erosive layer and millimeter-sized laminated rhythmite with interbedded flowstone characterize these sequences. Fining-upward layers of carbonate silt, clay, and minor quartz sand deposited in flooded conduits define the rhythmite lamination. The presence of allochthonous minerals indicates that the rhythmite sediment comes from the glacial erosion of nearby carbonate mountains. Two 234U/230Th radiometric ages dated the rhythmite deposits around 109 and 95 ka, coinciding with relative cold periods included in the MIS 5d-c. These cold periods were marked by a high annual seasonality, immediately after the glacial local maximum extension, in agreement with a varve-type deposit. The combination of these sedimentological mineralogical, geomorphological and paleoclimate information indicates that the rhythmite should be introduced into the studied cave during the summer melting of the glaciers, which produced the recharge of the karst aquifer, triggering cave floods. In addition, punctual glacier collapses would also have their imprint in the slackwater sequences with thicker, coarser and erosive sand deposits and the spring blocking by glaciers may have promoted floods inside the cave. Therefore, the studied rhythmite can be interpreted as glacial varves decanted during the relatively cold climate conditions.

  2. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes

    Science.gov (United States)

    Sagredo, Esteban A.; Kaplan, Michael R.; Araya, Paola S.; Lowell, Thomas V.; Aravena, Juan C.; Moreno, Patricio I.; Kelly, Meredith A.; Schaefer, Joerg M.

    2018-05-01

    Elucidating the timing and regional extent of abrupt climate events during the last glacial-interglacial transition (∼18-11.5 ka) is critical for identifying spatial patterns and mechanisms responsible for large-magnitude climate events. The record of climate change in the Southern Hemisphere during this time period, however, remains scarce and unevenly distributed. We present new geomorphic, chronological, and equilibrium line altitude (ELA) data from a climatically sensitive mountain glacier at Monte San Lorenzo (47°S), Central Patagonia. Twenty-four new cosmogenic 10Be exposure ages from moraines provide a comprehensive glacial record in the mid-latitudes of South America, which constrain the timing, spatial extent and magnitude of glacial fluctuations during the Antarctic Cold Reversal (ACR, ∼14.5-12.9 ka). Río Tranquilo glacier advanced and reached a maximum extent at 13.9 ± 0.7 ka. Three additional inboard moraines afford statistically similar ages, indicating repeated glacier expansions or marginal fluctuations over the ACR. Our record represents the northernmost robust evidence of glacial fluctuations during the ACR in southern South America, documenting not only the timing of the ACR maximum, but also the sequence of glacier changes within this climate event. Based on ELA reconstructions, we estimate a cooling of >1.6-1.8 °C at the peak of the ACR. The Río Tranquilo record along with existing glacial reconstructions from New Zealand (43°S) and paleovegetation records from northwestern (41°S) and central-west (45°S) Patagonia, suggest an uniform trans-Pacific glacier-climate response to an ACR trigger across the southern mid-latitudes. We posit that the equatorial migration of the southern westerly winds provides an adequate mechanism to propagate a common ACR signal across the Southern Hemisphere.

  3. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    Science.gov (United States)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  4. Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador

    NARCIS (Netherlands)

    Loughlin, N.J.D.; Gosling, W.D.; Coe, A.L.; Gulliver, P.; Mothes, P.; Montoya, E.

    2018-01-01

    Understanding the impact of landscape-scale disturbance events during the last glacial period is vital in accurately reconstructing the ecosystem dynamics of montane environments. Here, a sedimentary succession from the tropical montane cloud forest of the eastern Andean flank of Ecuador provides

  5. Enhancing rates of erosion and uplift through glacial perturbations

    Science.gov (United States)

    Norton, Kevin; Schlunegger, Fritz; Abbühl, Luca

    2010-05-01

    Research over the past decade has shown that the pattern of modern rock uplift in the Swiss Alps correlates with both long-term (thermochronometers) and short-term (cosmogenic nuclide-derived denudation rates, sediment loads, lake fills) measures of erosion. This correlation has been attributed alternately to isostatic causes (compensation to erosion and/or glacial unloading) and tectonic forces (ongoing collision and partial delamination). Of these potential driving forces, only isostatic compensation to erosion fits all available structural, geodetic, and flexural models. We explore this uplift-erosion relationship by analyzing river channel steepness for Alpine rivers. Zones of oversteepening, and hence enhanced stream power, are associated with glacial erosion and deposition during LGM and earlier glaciations, resulting in the focusing of erosion into the inner gorges which connect hanging tributary valleys to the main glacial trunk valley. These inner gorges are transient zones in which fluvial and hillslope processes are in the process of re-adjusting this glacially perturbed landscape. Bedrock properties also play a major role in the response time of these adjustments. Glacially generated knickzones are located within 5 km of the trunk stream in the Rhone valley where resistant lithologies dominate (gneiss), whereas the knickzones have migrated as much as 10 km or further in the less resistant rocks (buendnerschists) of the Rhine valley. We suggest that the rock uplift pattern is controlled by surface denudation as set by the glacial-interglacial history of the Alps. Rapid, focused erosion results in rapid rock uplift rates in the Central Swiss Alps, where glaciers were most active. An interesting ramification of this reasoning is that in the absence of glacial perturbation, both rock uplift rates and denudation rates would be substantially lower in this isostatically compensated mountain belt.

  6. Characterising Late-Holocene glacier variability in the southern tropical Andes

    Science.gov (United States)

    Bromley, G.; Winckler, G.; Hall, B. L.; Schaefer, J. M.

    2011-12-01

    Accurate resolution of both the timing and magnitude of Late-Holocene climate events, such as the Little Ice Age, is vital in order to test different hypotheses for the causes and propagation of such climate variability. However, in contrast to higher latitudes, well-dated records from the tropics are relatively rare and the overall climatic structure of the last millennium remains unresolved. Much of this uncertainty stems from difficulties associated with radiocarbon dating in these dry, often high-altitude environments, a situation that now is being addressed through the application and refinement of cosmogenic surface-exposure methods. We present detailed Late-Holocene moraine records, resolved with radiocarbon and surface-exposure dating, from sites across the Andes of southern Peru. Specifically, we describe glacial records from both the arid Western Cordillera, where glaciation is limited by moisture availability, and the humid Eastern Cordillera, where ablation is controlled primarily by air temperature. In both locations, the most recent advance is marked by two to three unweathered terminal moraines located several hundred metres beyond the modern ice margins. Our chronology indicates that, while the advance occurred broadly in step with the classic 'Little Ice Age', the maximum glacial extent in southern Peru was achieved relatively early on and that the 18th and 19th centuries were dominated by glacier retreat. In a broader temporal context, our data also confirm that, in contrast to northern temperate latitudes, the event in southern Peru was the most recent significant interruption in a progressive Holocene retreat. The consistency in glacier response between the different climate zones suggests (i) that this pattern of Late-Holocene climate variability was of at least regional extent and (ii) that temperature fluctuations were the primary driving mechanism.

  7. Quarrels over Sacred Space. The Tlajomulco Doctrina in the Late-Colonial Period

    Directory of Open Access Journals (Sweden)

    José Refugio de la Torre Curiel

    2004-04-01

    Full Text Available This article  explores how historical  actors who interact in a sacred space create, confront and rebuild it in several ways. The author chose to study the Tlajomulco doctrina in the  late colonial period in order to analyze some changes undergone during the secularization of a Franciscan doctrine. He also studies the institutional dimension of the doctrine in order to understand how the Guadalajara diocese  and  the Franciscan province of Jalisco related to this particular sacred  space. The  analysis of quarrels over property and authority over the doctrine enables the author to discuss what this sacred  space meant to ministers and  parishioners  and  to conclude that each form of interaction with a sacred  space represents a particular way of understanding society and, more specifically, religiosity.

  8. Late Quaternary landscape development at the margin of the Pomeranian phase (MIS 2) near Lake Wygonin (Northern Poland)

    Science.gov (United States)

    Hirsch, Florian; Schneider, Anna; Nicolay, Alexander; Błaszkiewicz, Mirosław; Kordowski, Jarosław; Noryskiewicz, Agnieszka M.; Tyszkowski, Sebastian; Raab, Alexandra; Raab, Thomas

    2015-04-01

    In Central Europe, Late Quaternary landscapes experienced multiple phases of geomorphologic activity. In this study,we used a combined geomorphological, pedological, sedimentological and palynological approach to characterize landscape development after the Last Glacial Maximum (LGM) near Lake Wygonin in Northern Poland. The pedostratigraphical findings from soil pits and drillings were extrapolated using ground-penetrating radar (GPR) and electric resistivity tomography (ERT). During the Pomeranian phase, glacial and fluvioglacial processes dominated the landscape near Lake Wygonin. At the end of the glacial period, periglacial processes became relevant and caused the formation of ventifacts and coversands containing coated sand grains. At approximately 15,290-14,800 cal yr BP, a small pond formed in a kettle hole (profile BWI2). The lacustrine sediments lack eolian sand components and therefore indicate the decline of eolian processes during that time. The increase of Juniperus and rock-rose (Helianthemum) in the pollen diagram is a prominent marker of the Younger Dryas. At the end of the Younger Dryas, a partial reshaping of the landscape is indicated by abundant charcoal fragments in disturbed lake sediments. No geomorphologic activity since the beginning of the Holocene is documented in the terrestrial and wetland archives. The anthropogenic impact is reflected in the pollen diagram by the occurrence of rye pollen grains (Cerealia type, Secale cereale) and translocated soil sediments dated to 1560-1410 cal yr BP, proving agricultural use of the immediate vicinity. With the onset of land use, gully incision and the accumulation of colluvial fans reshaped the landscape locally. Since 540-460 cal yr BP, further gully incision in the steep forest tracks has been associated with the intensification of forestry. Outside of the gully catchments, the weakly podzolized Rubic Brunic Arenosols show no features of Holocene soil erosion. Reprinted from CATENA, Volume 124

  9. Geochemical evidence for the origin of late Quaternary loess in central Alaska

    Science.gov (United States)

    Muhs, D.R.; Budahn, J.R.

    2006-01-01

    Loess is extensive in central Alaska, but there are uncertainties about its source and the direction of paleo-winds that deposited it. Both northerly and southerly winds have been inferred. The most likely sources of loess are the Tanana River (south), the Nenana River (southeast), and the Yukon River (north). Late Quaternary loess in central Alaska has immobile trace-element compositions (Cr/Sc, Th/Ta, Th/ Sc, Th/U, Eu/Eu*, GdN/YbN) that indicate derivation mostly from the Tanana River. However, other ratios (As/Sb, Zr/Hf, LaN/YbN) and quantitative modeling indicate that the Yukon River was also a source. During the last glacial period, there may have been a longer residence time of the Siberian and Canadian high-pressure cells, along with a strengthened Aleutian low-pressure cell. This would have generated regional-scale northeasterly winds and explains derivation of loess from the Yukon River. However, superim-posed upon this synoptic-scale circulation, there may have been strong, southerly katabatic winds from expanded glaciers on the northern flank of the Alaska Range. These winds could have provided eolian silt from the Tanana River. Yukon River and Tanana River sediments are highly calcareous, whereas Fairbanks-area loess is not. This suggests that carbonate leaching in loess kept ahead of sedimentation and that late Quaternary loess in central Alaska was deposited relatively slowly. ?? 2006 NRC Canada.

  10. Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska

    Science.gov (United States)

    Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

    2009-12-01

    The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

  11. Carbon isotopic changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns

    Science.gov (United States)

    Curry, W. B.; Lohmann, G. P.

    1982-09-01

    Oxygen- and carbon-isotopic analyses have been performed on the benthic foraminifer Planulina wuellerstorfi in seven Late Quaternary cores from the Vema Channel-Rio Grande Rise region. The cores are distributed over the water-depth interval of 2340 to 3939 m, which includes the present transition from North Atlantic Deep Water (NADW) to Antarctic Bottom Water (AABW). The carbon-isotopic records in the cores vary as a function of water depth. The shallowest and deepest cores show no significant glacial-interglacial difference in δ 13C. Four of the five cores presently located in the NADW have benthic foraminiferal δ 13C that is lower during glacial isotopic stages. Based on bathymetric gradients in δ 13C, we conclude that, like today, there were two water masses present in the Vema Channel during glacial intervals: a water mass enriched in 13C overlying another water mass depleted in 13C. The largest gradient of change of δ 13C with depth, however, occurred at 2.7 km, ˜ 1 km shallower than the present position of this gradient. On the basis of paleontologic and sedimentologic evidence, we consider it unlikely that the NADW:AABW transition shallowed to this level. Reduced carbon-isotopic gradients between the deep basins of the North Atlantic and Pacific Oceans during the last glaciation suggest that production of NADW was reduced. Lower production of NADW may have modified the local abyssal circulation pattern in the Vema Channel region.

  12. Glacial rebound and crustal stress in Finland

    International Nuclear Information System (INIS)

    Lambeck, K.; Purcell, A.

    2003-11-01

    The last ice age of Fennoscandinavia continues to have geological repercussions across Finland despite the last ice having retreated almost 10,000 years ago: land uplift, shoreline retreat, and the stress state of the crust continues to evolve. This report focusses on the glacial rebound signals for Finland and the Gulf of Bothnia and explores the consequences of the ongoing deformation. The rebound signals include the geological evidence as well as instrumental observations: the tide gauge and lake-level measurements of the past century, the changes in geodetic levels recorded in the repeat levelling surveys of the region and the direct measurement of crustal deformation (radial and horizontal) using high-precision space-geodesy measurements. These signals provide constraints on the Earth's rheology, its elasticity and viscosity, and the glacial history of the region. Once observationally constrained, the rebound models are used to predict both the ongoing evolution of shorelines and the changing state of stress within the crust. This report covers: (i) A review of glacial rebound modelling for Scandinavia (Sections 2 and 3). (ii) Review of observational evidence relating to sea-level change and crustal rebound (Section 4). (iii) New earth and ice-sheet model results from the inversion of the geological evidence for sea-level change, including models of shoreline evolution (Sections 5 and 6). (iv) Earth-model results from the inversion of the geodetic evidence for sea-level change (Section 7). (v) Development of crustal stress models for past and present stress states (Section 8). (vi) Conclusions and recommendations (Section 9). Specific conclusions reached pertain to: (i) Thickness of ice cover over Scandinavia since the Last Glacial Maximum, particularly for the Lateglacial period. (ii) Sea-level change and shoreline evolution for the Baltic area since the time the region became ice-free for the last time. (iii) The predicted rates of present-day crustal

  13. Late Pleistocene Stratigraphy and Palaeobotany of the Isles of Scilly

    Science.gov (United States)

    Scourse, J. D.

    1991-12-01

    surface, weathered granite once again became the dominant raw material for solifluction, this subsequent phase being represented by the Bread and Cheese Breccia in the northern Scillies and the upper Porthloo Breccia in the southern Scillies. The evidence therefore suggests that ice advanced at least as far as the northern Isles of Scilly during the Dimlington Stadial of the late Devensian Substage. This conflicts with previous interpretations which place the glacial deposits within the Wolstonian Stage. However, the late Devensian event was probably not the first glacial event to have influenced the Islands because erratics are widespread in some exposures of the Watermill Sands and Gravel; the age of this earlier event remains uncertain.

  14. Groundwater flow and transport modelling during the temperate period for the SR-Can assessment. Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Jackson, Peter; Joyce, Steve; McCarthy, Rachel; Swift, Ben [Serco Assurance, Harwell (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-12-15

    The focus of the study described in this report has been to perform numerical simulations of the geosphere from post-closure and throughout the temperate period up until the beginning of the next permafrost period at around 20,000 AD for the Laxemar area. Together with providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events.

  15. A Sensitive Period for Language in the Visual Cortex: Distinct Patterns of Plasticity in Congenitally versus Late Blind Adults

    Science.gov (United States)

    Bedny, Marina; Pascual-Leone, Alvaro; Dravida, Swethasri; Saxe, Rebecca

    2012-01-01

    Recent evidence suggests that blindness enables visual circuits to contribute to language processing. We examined whether this dramatic functional plasticity has a sensitive period. BOLD fMRI signal was measured in congenitally blind, late blind (blindness onset 9-years-old or later) and sighted participants while they performed a sentence…

  16. Breakup of last glacial deep stratification in the South Pacific

    Science.gov (United States)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  17. Magnetic Signature of Glacial Flour in Sediments From Bear Lake, Utah/Idaho

    Science.gov (United States)

    Rosenbaum, J. G.; Dean, W. E.; Colman, S. M.; Reynolds, R. L.

    2002-12-01

    Variations in magnetic properties within an interval of Bear Lake sediments correlative with oxygen isotope stage 2 (OIS 2) and OIS 3 provide a record of glacial flour production for the Uinta Mountains. Like sediments of the same age from Upper Klamath Lake (OR), these Bear Lake sediments have high magnetic susceptibilities (MS) relative to non-glacial-age sediments and contain well-defined millennial-scale variations in magnetic properties. In contrast to glacial flour derived from volcanic rocks surrounding Upper Klamath Lake, glacial flour derived from the Uinta Mountains and deposited in Bear Lake by the Bear River has low magnetite content but high hematite content. The relatively low MS values of younger and older non-glacial-age sediments are due entirely to dilution by non-magnetic endogenic carbonate and to the effects of sulfidic alteration of detrital Fe-oxides. Analysis of samples from streams entering Bear Lake and from along the course of the Bear River demonstrates that, in comparison to other areas of the catchment, sediment derived from the Uinta Mountains is rich in hematite (high HIRM) and aluminum, and poor in magnetite (low MS) and titanium. Within the glacial-age lake sediments, there are strong positive correlations among HIRM, Al/Ti, and fine sediment grain size. MS varies inversely with theses three variables. These relations indicate that the observed millennial-scale variations in magnetic and chemical properties arise from varying proportions of two detrital components: (1) very fine-grained glacial flour derived from Proterozoic metasedimentary rocks in the Uinta Mountains and characterized by high HIRM and low MS, and (2) somewhat coarser material, characterized by higher MS and lower HIRM, derived from widespread sedimentary rocks along the course of the Bear River and around Bear Lake. Measurement of glacial flour incorporated in lake sediments can provide a continuous history of alpine glaciation, because the rate of accumulation

  18. Vegetation history since the last glacial maximum in the Ozark highlands (USA): A new record from Cupola Pond, Missouri

    Science.gov (United States)

    Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.

    2017-08-01

    The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.

  19. Osteoporosis influences the middle and late periods of fracture healing in a rat osteoporotic model

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-wei; LI Wei; XU Shao-wen; YANG Di-sheng; WANG Yun; LIN Min; ZHAO Guang-feng

    2005-01-01

    Objective: To evaluate the influence of osteoporosis on the middle and late periods of fracture healing process through observing the histomorphological changes, bone mineral density and biomechanical properties in ovariectomized rats. Methods: Eighty-four female SD rats of 4 months old were randomly divided into osteoporosis group and sham operation group, 42 in each. Rats in osteoporosis group were performed ovariectomy operation while those in sham operation group were given sham operation. A midshaft tibia fracture model was established 10 weeks after ovariectomy. Tibias were harvested 2, 4, 6, 12, 18 weeks after fracture for bone mineral density, histomorphological and biomechanical evaluation. Results: Compared with the sham operation group, callus bone mineral density was 12.8%, 18.0%, 17.0% lower in osteoporosis group 6, 12, 18 weeks after fracture, respectively (P<0.05); callus failure load was 24.3%, 31.5%, 26.6%, 28.8% lower in osteoporosis group, and callus failure stress was 23.9%, 33.6%, 19.1%, 24.9% lower in osteoporosis group 4, 6, 12, 18 weeks after fracture, respectively (P<0.05). In osteoporosis group, endochondral bone formation was delayed, more osteoclast cells could be seen around the trabecula, and the new bone trabecula arranged loosely and irregularly. Conclusions: Osteoporosis influences the middle and late periods of fracture healing in the rat osteoporotic model. The impairment is considered to be the result of combined effects of prolonged endochondral calcification, high activated osteoclast cell and the deceleration of the increase in bone mineral density.

  20. Phylogeography and Ecological Niche Modeling Reveal Reduced Genetic Diversity and Colonization Patterns of Skunk Cabbage (Symplocarpus foetidus; Araceae From Glacial Refugia in Eastern North America

    Directory of Open Access Journals (Sweden)

    Seon-Hee Kim

    2018-05-01

    Full Text Available Alternating glacial and interglacial periods during the Quaternary have dramatically affected the distribution and population genetic structure of plant and animal species throughout the northern hemisphere. Surprisingly, little is known about the post-glacial recolonization history of wetland herbaceous perennials that are widely distributed in the understory of deciduous or mixed deciduous-evergreen forests in eastern North America. In this study, we investigated infraspecific variation among 32 populations of skunk cabbage, Symplocarpus foetidus, to test the hypothesis that the extant species diversity of skunk cabbage is the result of a post-glacial range expansion from southern refugia during the Quaternary Ice Age. A total of 4041 base pairs (bp of the chloroplast intergenic spacer region (cpDNA was sequenced from 485 individuals sampled from glaciated (18 populations, 275 individuals and unglaciated (14 populations, 210 individuals regions east and west of the Appalachian Mountains. Haplotype number, haplotype diversity, and nucleotide diversity were calculated, and genetic variation within and among populations was assessed by analysis of molecular variance (AMOVA. The geographic pattern of genetic differentiation was further investigated with a spatial analysis of molecular variance (SAMOVA. A total of eight haplotypes and three genetic groups (SAMOVA were recovered and a much higher haplotype number (eight haplotypes and haplotype diversity (0.7425 was observed in unglaciated compared to glaciated populations (five haplotypes, haplotype diversity = 0.6099. All haplotypes found in glaciated regions represented a subset of haplotypes found in unglaciated regions. Haplotypes of S. foetidus likely diverged during the Tertiary (mid-Miocene and late Pliocene, predating the last glacial maximum (LGM. Predictions based on ecological niche modeling (ENM suggested that there was considerably less suitable habitat for skunk cabbage during the LGM

  1. Rapid climate variability during warm and cold periods in polar regions and Europe

    DEFF Research Database (Denmark)

    Masson-Delmotte, V.; Landais, A.; Combourieu-Nebout, N.

    2005-01-01

    Typical rapid climate events punctuating the last glacial period in Greenland, Europe and Antarctica are compared to two rapid events occurring under warmer conditions: (i) Dansgaard-Oeschger event 25, the first abrupt warming occurring during last glacial inception; (ii) 8.2 ka BP event, the only...... rapid cooling recorded during the Holocene in Greenland ice cores and in Ammersee, Germany. The rate of warming during previous warmer interglacial periods is estimated from polar ice cores to 1.5 °C per millennium, without abrupt changes. Climate change expected for the 21st century should however...

  2. Seasonality intensification and long-term winter cooling as a part of the Late Pliocene climate development

    Science.gov (United States)

    Klotz, Stefan; Fauquette, Séverine; Combourieu-Nebout, Nathalie; Uhl, Dieter; Suc, Jean-Pierre; Mosbrugger, Volker

    2006-01-01

    A mutual climatic range method is applied to the Mediterranean marine pollen record of Semaforo (Vrica section, Calabria, Italy) covering the period from ∼2.46 Ma to ∼2.11 Ma. The method yields detailed information on summer, annual and winter temperatures and on precipitation during the nine obliquity and precession-controlled 'glacial' periods (marine isotope stages 96 to 80) and eight 'interglacial' periods (marine isotope stages 95 to 81) characterising this time interval. The reconstruction reveals higher temperatures of at least 2.8 °C in mean annual and 2.2 °C in winter temperatures, and 500 mm in precipitation during the 'interglacials' as compared to the present-day climate in the study area. During the 'glacials', temperatures are generally lower as compared to the present-day climate in the region, but precipitation is equivalent. Along the consecutive 'interglacials', a trend toward a reduction in annual and winter temperatures by more than 2.3 °C, and toward a higher seasonality is observed. Along the consecutive 'glacials', a trend toward a strong reduction in all temperature parameters of at least 1.6 °C is reconstructed. Climatic amplitudes of 'interglacial-glacial' transitions increase from the older to the younger cycles for summer and annual temperatures. The cross-spectral analyses suggest obliquity related warm/humid-cold/dry 'interglacial-glacial' cycles which are superimposed by precession related warm/dry- cold/humid cycles. A time displacement in the development of temperatures and precipitation is indicated for the obliquity band by temperatures generally leading precipitation change at ∼4 kyr, and on the precession band of ∼9.6 kyr in maximum.

  3. Weak oceanic heat transport as a cause of the instability of glacial climates

    Energy Technology Data Exchange (ETDEWEB)

    Colin de Verdiere, Alain [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans, Alain Colin de Verdiere, Brest 3 (France); Te Raa, L. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands); Netherlands Organisation for Applied Scientific Research TNO, The Hague (Netherlands)

    2010-12-15

    The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean - atmosphere - sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard - Oeschger events, may be internal instabilities of the climate system

  4. Photosynthetic characteristics and distribution of 14C assimilates in the winter wheat of late growing period in dry land

    International Nuclear Information System (INIS)

    Qing Huimin; Yu Guohua; Yin Xisheng; Zhan Shumin; Liu Xin

    1999-01-01

    The photosynthetic characteristics and distribution of 14 C assimilates of winter wheat in late growing period in the field of natural drought condition was studied. The results showed that photosynthetic rate of flag leaves was up to 14.24 μmol CO 2 ·m -2 ·s -1 , the ribulose-1,5-bisphosphate carboxylase (RUBpCase) activity of flag leaves in late growing period in field drought treatment was about 20∼23 μmol CO 2 ·min -1 ·g -1 dw when the water potential of flag leaves was about -1.8∼-2.1 MPa. The photosynthetic rate of flag leaves of control was 15.15 μmol CO 2 ·m -2 ·s -1 . The RUBpCase activity was about 22∼25 μmol CO 2 ·min -1 · -1 ·g -1 dw in the field of irrigated condition when the water potential of flag leaves was about -1.65∼-1.8 MPa, indicating that the RUBpCase activity of flag leaves in drought condition was not a major limiting factor. The total distribution rate of 14 C assimilates of flag leaves, flag leaf sheath, flag leaf node and awn to grain in drought treatment was about 44.8%, and that of control was about 40.2%. The results also showed that in late growing period the proportion of 14 C assimilates to roots in the both drought and control treatment was similar, about 2.0%. But the amount of 14 C assimilates in the roots in the soil layer of 120∼200 cm was up to 8.34% of the total 14 C assimilates in the roots, however, that of control was only about 3.6%

  5. Comparison of the glacial chronology of Eastern Baffin Island, East Greenland and Camp century accumulation record

    DEFF Research Database (Denmark)

    Andrews, John; Funder, Svend Visby; Hjort, Chritian

    1974-01-01

    ) an interval about 40,000 to 11,000 yr ago of restricted ice extent; and (5) a late glacial sladial belween 11,000 and 8,000 B.P. This record shows basic agreement with a chronology of snow accumulation at the Camp Century ice core site based on a revised chronostratigraphic interpretation. Fluctuations in sea...... level between 120,000 and 70,000 B.P. may well be related to glacierization of high arctic land masses under conditions of heavy snowfall. The subsequent reduction of accumulation in these high arctic areas then leads to a reduction of ice volume with a dry, cold interstadial correlative in time...

  6. Submarine glacial landforms on the Bay of Fundy–northern Gulf of Maine continental shelf

    Science.gov (United States)

    Todd, B.J.; Shaw, J.; Valentine, Page C.

    2016-01-01

    The Bay of Fundy–northern Gulf of Maine region surrounds the southern part of Nova Scotia, encompassing, from west to east, the Bay of Fundy, Grand Manan Basin, German Bank, Browns Bank, Northeast Channel and northeastern Georges Bank (Fig. 1a, b). During the last glacial maximum (c. 24–20 14C ka BP), the SE margin of the Laurentide Ice Sheet (LIS) occupied the study area, the rest of the Gulf of Maine and the continental Scotian Shelf off Atlantic Canada (see Dyke et al. 2002, fig. 1; Shaw et al. 2006, fig. 8; Hundert & Piper 2008, fig. 16). Early mapping of the glaciated region on the Scotian Shelf using side-scan sonar imagery and seismic-reflection profiles revealed topographic features interpreted to be recessional moraines indicative of retreat of the LIS (King et al. 1972; King 1996). Subsequently, multibeam sonar seafloor mapping of local-scale glacial landforms on the inner Scotian Shelf off Halifax, Nova Scotia (Fig. 1b) provided further information on the dynamics of the advance and retreat of the ice sheet (Loncarevic et al.1994). Interpretation of seismic-reflection profiles across Georges Bank revealed that the surficial sediment is a veneer of glacial debris transported to Georges Bank by the LIS during the late Pleistocene from continental areas to the north (Shepard et al. 1934; Knott & Hoskins 1968; Schlee 1973; Twichell et al. 1987; Fader et al. 1988). Recent high-resolution multibeam sonar surveys of German Bank and the Bay of Fundy mapped a complex of ice-advance and ice-retreat features attributed to the activity of the LIS (Todd et al. 2007; Todd & Shaw 2012).

  7. The late Holocene dry period: multiproxy evidence for an extended drought between 2800 and 1850 cal yr BP across the central Great Basin, USA

    Science.gov (United States)

    Mensing, Scott A.; Sharpe, Saxon E.; Tunno, Irene; Sada, Don W.; Thomas, Jim M.; Starratt, Scott W.; Smith, Jeremy

    2013-01-01

    Evidence of a multi-centennial scale dry period between ∼2800 and 1850 cal yr BP is documented by pollen, mollusks, diatoms, and sediment in spring sediments from Stonehouse Meadow in Spring Valley, eastern central Nevada, U.S. We refer to this period as the Late Holocene Dry Period. Based on sediment recovered, Stonehouse Meadow was either absent or severely restricted in size at ∼8000 cal yr BP. Beginning ∼7500 cal yr BP, the meadow became established and persisted to ∼3000 cal yr BP when it began to dry. Comparison of the timing of this late Holocene drought record to multiple records extending from the eastern Sierra Nevada across the central Great Basin to the Great Salt Lake support the interpretation that this dry period was regional. The beginning and ending dates vary among sites, but all sites record multiple centuries of dry climate between 2500 and 1900 cal yr BP. This duration makes it the longest persistent dry period within the late Holocene. In contrast, sites in the northern Great Basin record either no clear evidence of drought, or have wetter than average climate during this period, suggesting that the northern boundary between wet and dry climates may have been between about 40° and 42° N latitude. This dry in the southwest and wet in the northwest precipitation pattern across the Great Basin is supported by large-scale spatial climate pattern hypotheses involving ENSO, PDO, AMO, and the position of the Aleutian Low and North Pacific High, particularly during winter.

  8. Regulatory T Cells Show Dynamic Behavior During Late Pregnancy, Delivery, and the Postpartum Period.

    Science.gov (United States)

    Lima, Jorge; Martins, Catarina; Nunes, Glória; Sousa, Maria-José; Branco, Jorge C; Borrego, Luís-Miguel

    2017-07-01

    Regulatory T cells (Tregs) are critical immunomodulators during early pregnancy by preventing maternal T-cell activation against fetal cells. However, how populations of maternal Tregs vary during and after pregnancy in humans is still unclear. Therefore, we investigated Treg subsets in the peripheral blood of pregnant women from late pregnancy through the postpartum period. To accomplish this, the following circulating Treg subsets were analyzed in 43 healthy pregnant women and 35 nonpregnant women by flow cytometry during the third trimester, on the day of delivery, and postpartum: CD4 Dim CD25 Hi , CD4 + CD25 Hi Foxp3 + , and CD4 + CD25 Hi CD127 -/dim . Additionally, the expression levels of the transcription factor Foxp3 in CD4 Dim CD25 Hi Treg were analyzed. We have found that CD4 Dim CD25 Hi Treg subset significantly decreased in the pregnant women on the day of delivery relative to the third trimester ( P postpartum compared to the third trimester and the day of delivery ( P postpartum compared to the third trimester and the day of delivery ( P postpartum period. Our results offer an explanation for the possible effects of pregnancy on the clinical outcomes of some autoimmune diseases during the postpartum period.

  9. Vegetation, climate and fire-dynamics in East Africa inferred from the Maundi crater pollen record from Mt Kilimanjaro during the last glacial-interglacial cycle

    Science.gov (United States)

    Schüler, Lisa; Hemp, Andreas; Zech, Wolfgang; Behling, Hermann

    2012-04-01

    The pollen, charcoal and sedimentological record from the Maundi crater, located at 2780 m elevation on the south-eastern slope of Mt Kilimanjaro, is one of the longest terrestrial records in equatorial East Africa, giving an interesting insight into the vegetation and climate dynamics back to the early last Glacial period. Our sediment record has a reliable chronology until 42 ka BP. An extrapolation of the age-depth model, as well as matching with other palaeo-records from tropical East Africa, suggest a total age of about 90 ka BP at the bottom of the record. During the last Glacial the distribution as well as the composition of the vegetation belts classified as colline savanna, submontane woodland, montane forest, ericaceous belt, and alpine vegetation changed. The early last Glacial is characterized by high amounts of Poaceae and Asteraceae pollen suggesting a climatically dry but stable phase. Based on the absence of pollen grains in samples deposited around 70 ka BP, we assume the occurrence of distinct drought periods. During the pre-LGM (Last Glacial Maximum) a higher taxa diversity of the ericaceous and montane zone is recorded and suggests a spread of forest and shrub vegetation, thus indicating a more humid period. The taxa diversity increases steadily during the recorded time span. The decent of vegetation zones indicate dry and cold conditions during the LGM and seem to have been detrimental for many taxa, especially those of the forest vegetation; however, the early last Glacial seems to have been markedly drier than the LGM. The reappearance of most of the taxa (most importantly Alchemilla, Araliaceae, Dodonea, Hagenia, Ilex, Myrsine, Moraceae, Piperaceae) during the deglacial and Holocene period suggest a shift into humid conditions. An increase in ferns and the decrease in grasses during the Holocene also indicate increasing humidity. Fire played an important role in controlling the development and elevation of the ericaceous zone and the tree

  10. Do Pleistocene Glacial-Interglacial Cycles Control Methane Hydrate Formation? An Example from Green Canyon, Gulf of Mexico

    Science.gov (United States)

    Oryan, B.; Malinverno, A.; Goldberg, D.; Fortin, W.

    2017-12-01

    Well GC955-H was drilled in the Green Canyon region under the Gulf of Mexico Gas Hydrates Joint Industry Project in 2009. Logging-while-drilling resistivity logs obtained at the well indicate that the saturation of gas hydrate varies between high and low values in an alternating fashion. This trend is observed from 180 to 360mbsf, depths that correspond to the Late Pleistocene. Similar gas hydrate saturation patterns have been observed in other Gulf of Mexico locations (Walker Ridge sites WR313-G and 313-H) in Late Pleistocene sediments. Our hypothesis is that these variations in saturation can be explained by sea level changes through time during glacial-interglacial cycles. A higher amount of organic matter is deposited and buried in the sediment column during glacial intervals when sea level is low. Microbes in the sediment column degrade organic matter and produce methane gas as a byproduct. Higher availability of organic matter in the sediment column can increase the concentration of methane in the sediment pore water and in turn lead to the formation of gas hydrate. We use a time-dependent numerical model of the formation of gas hydrate to test this hypothesis. The model predicts the volume and distribution of gas hydrates using mass balance equations. Model inputs include in situ porosity determined from bulk density logs; local thermal gradient estimated from the depth of the bottom of the gas hydrate stability zone in proximity to the well; and sedimentation rate determined using the biostratigraphy of an industry well in the vicinity of GC955-H. Initial results show a good match between gas hydrate saturation predicted by the model and resistivity logs obtained in the well. We anticipate that this correlation will establish whether a causal link exists between the saturation of gas hydrate in this reservoir and glacioeustatic sea level changes in the Late Pleistocene.

  11. Glacial refugia and post-glacial colonization patterns in European bryophytes

    OpenAIRE

    Kyrkjeeide, Magni Olsen; Stenøien, Hans K.; Flatberg, Kjell Ivar; Hassel, Kristian

    2014-01-01

    Most species are assumed to have survived south or east of the ice sheet covering northern Europe during the last glacial maximum. Molecular and macrofossil evidence suggests, however, that some species may have survived in ice-free areas in Scandinavia. In plants, inbreeding and vegetative growth are associated with low genetic load and enhanced survival in small, isolated populations. These characteristics are often found in bryophytes, possibly allowing them to survive extreme conditions i...

  12. Depression in pregnancy and postpartum period.

    Science.gov (United States)

    Sood, Mamta; Sood, A K

    2003-01-01

    This prospective study was carried out in a service hospital, with the aim to study the prevalence and incidence of depression in pregnancy and postpartum period. Eighty Four consecutive patients attending the antenatal outpatient in the Obstetrics & Gynaecology department in their last trimester of pregnancy were recruited for the study. They were assessed on Beck Depression Inventory thrice viz. during third trimester of pregnancy, within 3 days of delivery (early postpartum period) & within 4-8 weeks of delivery (late postpartum period).The prevalence of depression was 8.3%, 20% and 12.8% respectively at three ratings. The incidence was 16% and 10% in the early & late postpartum period respectively. Further analysis revealed that depression in pregnancy correlated significantly with depression in early postpartum period, but not with late postpartum period. Depression in early postpartum period correlated with depression in late postpartum period.These findings have implications for early detection and care of women at risk for developing depression.

  13. Last Glacial vegetation and climate change in the southern Levant

    Science.gov (United States)

    Miebach, Andrea; Chen, Chunzhu; Litt, Thomas

    2015-04-01

    Reconstructing past climatic and environmental conditions is a key task for understanding the history of modern mankind. The interaction between environmental change and migration processes of the modern Homo sapiens from its source area in Africa into Europe is still poorly understood. The principal corridor of the first human dispersal into Europe and also later migration dynamics crossed the Middle East. Therefore, the southern Levant is a key area to investigate the paleoenvironment during times of human migration. In this sense, the Last Glacial (MIS 4-2) is particularly interesting to investigate for two reasons. Firstly, secondary expansions of the modern Homo sapiens are expected to occur during this period. Secondly, there are ongoing discussions on the environmental conditions causing the prominent lake level high stand of Lake Lisan, the precursor of the Dead Sea. This high stand even culminated in the merging of Lake Lisan and Lake Kinneret (Sea of Galilee). To provide an independent proxy for paleoenvironmental reconstructions in the southern Levant during the Last Glacial, we investigated pollen assemblages of the Dead Sea/Lake Lisan and Lake Kinneret. Located at the Dead Sea Transform, the freshwater Lake Kinneret is nowadays connected via the Jordan with the hypersaline Dead Sea, which occupies Earth's lowest elevation on land. The southern Levant is a transition area of three different vegetation types. Therefore, also small changes in the climate conditions effect the vegetation and can be registered in the pollen assemblage. In contrast to the Holocene, our preliminary results suggest another vegetation pattern during the Last Glacial. The vegetation belt of the fragile Mediterranean biome did no longer exist in the vicinity of Lake Kinneret. Moreover, the vegetation was rather similar in the whole study area. A steppe vegetation with dwarf shrubs, herbs, and grasses predominated. Thermophilous elements like oaks occurred in limited amounts. The

  14. Oman's low latitude "Snowball Earth" pole revisited: Late Cretaceous remagnetisation of Late Neoproterozoic carbonates in Northern Oman

    Science.gov (United States)

    Rowan, C. J.; Tait, J.

    2010-12-01

    Glaciogenic diamictites and associated ‘cap’ carbonates within the Neoproterozoic Huqf Supergroup of Oman record a period of extreme, possibly global, glaciations between 750-635 Ma (the "Snowball Earth"). We have performed high-resolution paleomagnetic sampling of two sections through ~635 Ma cap carbonates in the Jebel Akhdar region of northern Oman. Stepwise thermal demagnetisation reveals a low temperature component carried by goethite, and a high temperature component carried by haematite, that are both aligned with the modern dipole field direction. Occasional reversed polarity directions antipodal to the present day field indicate pervasive weathering of these outcrops over timescales of at least 1 Ma. Between these two overprints an intermediate component with typical unblocking temperatures of 300-550 C, probably carried by magnetite, can also be isolated in most samples. A robust fold test clearly demonstrates that this component was acquired after Paleozoic folding of the carbonates, and was most likely acquired during exhumation associated with emplacement of the Semail ophiolite during the Late Cretaceous (95-68 Ma). In geographic co-ordinates, the intermediate component has an almost horizontal NNW or SSE direction, similar to directions previously reported from outcrops of the ophiolite close to the Jebel Akhdar region, and from thermally altered basement rocks in the the Saih Hatat window further to the east [Feinberg et al. 1999]. Hints of an older, Permian, remagnetisation of the carbonates, which is also observed in the Saih Hatat basement rocks, have also produced a false polarity stratigraphy in one of the sampled sections. Our results contrast with the previously reported low latitude pole from the Huqf Supergroup [Kilner et al., 2005], which was considered to be amongst the more reliable paleomagnetic data supporting glaciations extending to low latitudes during the late Neoproterozoic. However, this interpretation was made on the basis

  15. An attempt at determining Des of glacial sediments using different luminescence methods

    International Nuclear Information System (INIS)

    Ou Xianjiao; Lai Zhongping; Zeng Lanhua

    2013-01-01

    Background: Absolute dating is the key technical issue of Quaternary glacial research. Optically stimulated luminescence (OSL) has been increasingly applied to Quaternary glacial dating in recent years. However, problems such as insufficient bleaching, low luminescence sensitivity, high thermal transfer effect, etc, still remain. Purpose: In order to investigate the applicability of equivalent dose (D e ) determination of glacial sediments by different OSL methods, six samples were collected from the Yingpu Valley of eastern Qinghai-Tibetan Plateau (two samples from modern glacial sediments, three from moraines and glacial terrace attributed to Neoglacial and one from a moraine attributed to the last glaciation). Methods: The D e s were determined by SAR combined SGC technique, using three methods: quartz large aliquot (6 mm) BSL, small aliquot (2/3 mm) BSL and polymineral IRSL. Results: D e s determined by SGC are consistent with D e s determined by SAR protocol. Comparison of three methods shows that IRSL D e >large aliquot BSL D e >small aliquot BSL D e . D e s of polymineral IRSL are obviously higher than quartz BSL. Conclusions: It is obviously that feldspar is more difficult to reset than quartz, thus is not suitable for dating glacial sediments in this region. Quartz large aliquot method is suitable for well bleached glacial samples. Due to the low luminescence sensitivity of quartz, small aliquot method showed poor luminescence characteristics. Moreover, this method cannot distinguish the poor bleached grains in this measurement. However, it is possible that quartz small aliquot, even single grain method could be used to date older or brighter glacial samples. More works are required to solve the problems we have encountered in dating low sensitivity glacial sediments. (authors)

  16. Reconstructing temperatures in the Maritime Alps, Italy, since the Last Glacial Maximum using cosmogenic noble gas paleothermometry

    Science.gov (United States)

    Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David

    2016-04-01

    The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.

  17. Late Quaternary Palaeoceanographic Changes in Sea Surface Conditions in the Tropical Atlantic

    Science.gov (United States)

    Fischel, Andrea; Seidenkrantz, Marit-Solveig; Kuijpers, Antoon; Nürnberg, Dirk

    2013-04-01

    Palaeoceanographic changes and the variability in surface water mass hydrography are reconstructed in order to track tropical ocean and climate variability and inter-hemispheric heat exchange through the last 42,000 year BP. Our studies are based on the relative abundance of planktonic foraminifera combined with sea surface temperature approximation based Mg/Ca measurements, XRF scanning and stable oxygen isotope analyses in a 5 m long gravity core Ga307-Win-12GC (17°50.80N, 64°48.7290W), retrieved in the Virgin Island Basin in approx. 3,960 m water depth. The Virgin Island Basin is the deepest part of the Anegada-Jungfern Passage in the northeast Caribbean, one of the most important pathways for water mass exchange between the Central Atlantic and the Caribbean Sea. Due to its bathymetry surface waters as well as deep water mass strata from the northern and southern hemisphere enter the basin, comprising Caribbean Surface Water (CSW), Antarctic Intermediate Water (AAIW), Atlantic Intermediate Water (AIW) and North Atlantic Deep Water (NADW). The planktonic foraminiferal assemblage suggests rather stable sea-surface conditions during the Holocene in the NE Caribbean. However, major changes in the hydrographic setting could be identified within the glacial period. During the glacial period, clear millennial-scale variability in sea-surface temperature and productivity are present. Fluctuations in the relative abundance of Globigerinoides ruber in the sediment core may be correlated to Dansgaard-Oeschger events in the northern North Atlantic. Furthermore an increase in relative abundance of Globorotalia rubescens occurs synchronous with ice rafted debris layers described from the North Atlantic. The faunal changes in the tropical Atlantic may thus be correlated to major climate changes in the North Atlantic, mainly D-O cyclicity as well as Heinrich events. Thus, the synchronous change in water mass distribution and hydrographic cyclicity suggests a possible linkage

  18. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    Science.gov (United States)

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  19. ESR Dating Research of Glacial Tills in Tibetan Plateau

    Science.gov (United States)

    Bi, W.; Yi, C.

    2016-12-01

    In recent years, Quaternary Glacial-chronology has been made remarkable progress in the Tibetan Platean(TP) with the development of several numeric dating techniques, such as cosmogenic nuclides(NC), optically stimulated luminescence(OSL) and 14C. In constrast, the dating of Quaternary glacial tills in 100,000 years even more than million-year has been a challenge, just because the techniques has defects themselves and the sediments were stransformed during the geological and geomorphology progress later. Electron Spin Resonance(ESR) has been becoming one of the key methods of Quaternary Glacial-chronology with wide range of dating, expecially for the sample older than 100,000 years up to million-year scale. The accurate measurement of equivalent dose significantly impacts on accuracy and reliability of ESR dating method. Therefore, the study of the mechanisms of resetting processes is fundamental for accurate and reliable ESR dating. To understand the mechanism and characteristics of quartz ESR signal resetting of different samples, a series of laboratory simulation and field observation studies were carried out, which made lots of important breakthrough. But the research in quartz ESR signal of moraines is less and the test of ESR dating method is still in the qualitative investigation. Therefor, we use ESR dating and study on the mechanism and characteristics of quartz ESR signals in tills in the Tibetan Platean. In the adjust method of Modern, the quartz ESR signals in Modern glacial tills represent residual values which can be adjusted signals in the older glacial tills. As a consequence, ESR dating of the quartz in moraines needs to be explored in deep with building models to adjust ages which are measured by ESR dating. Therefore, ESR dating will become the trusted one of the cross dating methods in Quaternary Glacial-chronology with the adjust mothod improving the accuracy of ESR dating ages.

  20. TRACEing Last Glacial Period (25-80 ka b2k) tephra horizons within North Atlantic marine cores and exploring links to the Greenland ice-cores

    Science.gov (United States)

    Abbott, P. M.; Davies, S. M.; Griggs, A. J.; Bourne, A. J.; Cook, E.; Pearce, N. J. G.; Austin, W. E. N.; Chapman, M.; Hall, I. R.; Purcell, C. S.; Scourse, J. D.; Rasmussen, T. L.

    2015-12-01

    Tephrochronology is a powerful technique for the correlation and synchronisation of disparate palaeoclimatic records from different depositional environments and has considerable potential for testing climatic phasing. For example, the relative timing of atmospheric and marine changes caused by the abrupt climatic events that punctuated the last glacial period within the North Atlantic region. Here we report on efforts to establish a framework of tephra horizons within North Atlantic marine sequences that can correlate these records and if traced in the Greenland ice-cores can act as isochronous tie-lines. Investigations have been conducted on a network of marine cores from a number of sites across the North Atlantic. Tephra horizons have been identified using cryptotephra extraction techniques more commonly applied to the study of terrestrial sequences. There are two main challenges with assessing cryptotephras in the glacial North Atlantic; i) determining the transportation processes and ii) assessing the influence of secondary reworking processes and the stratigraphic integrity of the isochrons. These processes and their influence are investigated for each cryptotephra using shard size variations, major element heterogeneity and co-variance of IRD input for some cores. Numerous Icelandic cryptophras have been successfully identified in the marine records and we will discuss the integration of a number of these with an isochronous nature into a marine tephra framework and how potential correlations to the Greenland ice-core tephra framework are determined. Spatial patterns in the nature of tephra records that are emerging from the core network will be highlighted to outline some of the key areas that could be explored in the future. In addition, the synchronisation of multiple North Atlantic records to the Greenland ice-cores using the North Atlantic Ash Zone II to test the synchroneity of an abrupt cooling in the North Atlantic will be discussed.

  1. A biomarker stable isotope record of late Quaternary climate and organic matter export in Southwestern Taiwan

    Science.gov (United States)

    Chang, Q.; Hren, M. T.; Lin, A. T.; Eley, Y.; Yu, S. W.; Harris, G.

    2017-12-01

    We present new leaf wax n-alkane hydrogen (δD) and carbon (δ13C) isotopic data from a 36-m-long core from off-shore southwestern Taiwan to evaluate late Quaternary changes in climate and the source of organic matter exported from the landscape. The core (MD178-3291) is located on the flank of the Gaoping Submarine Canyon that connects with the Gaoping river catchment in southwestern Taiwan. The sediment deposition in this core spans the last 26 kyr, providing a unique record of glacial-interglacial changes in organic matter export from the Taiwan orogen. The δD and δ13C both show a shift in isotopic compositions at 15 kyr, that coincides with the shift in planktonic foraminifera δ18O record from the same core as well as the global sea level. We therefore interpret this dominant shift as affected by the global glacial to interglacial transition. Following by this transition and through the interglacial period, both biomarker δD and δ13C data record fluctuations that we suggest result from short timescale changes in the distribution of organic inputs to the offshore site. This change in source is most likely caused by increases in storm and landslide frequency or intensity during warmer intervals. This interpretation is supported by terrestrial records that show an increase in landslides in the Gaoping catchment and evidence for enhanced rainfall intensity and a corresponding increase in the frequency of turbidity currents.

  2. Reconstructing Mid- to Late Holocene Sea-Level Change from Coral Microatolls, French Polynesia

    Science.gov (United States)

    Hallmann, N.; Camoin, G.; Eisenhauer, A.; Vella, C.; Samankassou, E.; Botella, A.; Milne, G. A.; Pothin, V.; Dussouillez, P.; Fleury, J.

    2017-12-01

    Coral microatolls are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level, and can be considered therefore as high-precision recorders of sea-level change. They are of pivotal importance to resolving the rates and amplitudes of millennial-to-century scale changes during periods of relative climate stability such as the Mid- to Late Holocene, which serves as an important baseline of natural variability prior to the Anthropocene. It provides therefore a unique opportunity to study coastal response to sea-level rise, even if the rates of sea-level rise during the Mid- to Late Holocene were lower than the current rates and those expected in the near future. Mid- to Late Holocene relative sea-level changes in French Polynesia encompassing the last 6,000 years were reconstructed based on the coupling between absolute U/Th dating of in situ coral microatolls and their precise positioning via GPS RTK (Real Time Kinematic) measurements. The twelve studied islands represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. A sea-level rise of less than 1 m is recorded between 6 and 3-3.5 ka, and is followed by a gradual fall in sea level that started around 2.5 ka and persisted until the past few centuries. In addition, growth pattern analysis of coral microatolls allows the reconstruction of low-amplitude, high-frequency sea-level change on centennial to sub-decadal time scales. The reconstructed sea-level curve extends the Tahiti last deglacial sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to

  3. The Last Glacial in Northern Iceland: geothermal and permafrost controls

    Science.gov (United States)

    Gudmundsson, A.; van Vliet-Lanoë, B.; Bourgeois, O.; Dauteuil, O.; Embry, J. C.; Guillou, H.; Schneider, J. L.

    2003-04-01

    This paper provides arguments for a multi-advance model of Weichselian glaciation-deglaciation of Northern Iceland considering the influence of the geothermal gradient and of the ice sheds on the different ice-stream outlets. This paper is based on morphological mapping , SPOT images analysis high resolution stratigraphy, palaeopedology, tephra petrography and Ar/K dating. The Last Glaciation Maximum has a limited extend in Northern Iceland, with cold-based characteristics, except in sectors of high thermal gradient which supported low profile ice streams, a main difference with MIS6. Ice sheet building started from MIS 5d with a limited extent. At MIS 5b the thickness of the ice is enough to enable the activity of the eastern hyalocastite ridge in the NVZ. The maximal extent is reached abruptly at the boundary stage 3/2, probably in relation with increased precipitation, with development of H3, followed by a drastic retreat, controlled by very low precipitation rate and cold-based glaciers. This period is responsible for long periglacial morphogenesis inland, on the nunataks and ice free areas, and for starved sedimentation on the shelf and in the fjords. From 17 ka or H2, precipitation rose again and a second maximal extent, the Fnjoskadalur Stadial, the so-called "Old Dryas", in retreat from the former one. The main deglaciation took place at the onset of the Bölling. A late glacial pulse of minimal intensity occurred with the Younger Dryas. The Pre-Boreal stadial is extremely limited in the North of Iceland in relation with the lower and colder conditions compared to the south coast inflenced by the Irminger current.

  4. Late-Quaternary glacial to postglacial sedimentation in three adjacent fjord-lakes of the Québec North Shore (eastern Canadian Shield)

    Science.gov (United States)

    Poiré, Antoine G.; Lajeunesse, Patrick; Normandeau, Alexandre; Francus, Pierre; St-Onge, Guillaume; Nzekwe, Obinna P.

    2018-04-01

    High-resolution swath bathymetry imagery allowed mapping in great detail the sublacustrine geomorphology of lakes Pentecôte, Walker and Pasteur, three deep adjacent fjord-lakes of the Québec North Shore (eastern Canada). These sedimentary basins have been glacio-isostatically uplifted to form deep steep-sided elongated lakes. Their key geographical position and limnogeological characteristics typical of fjords suggest exceptional potential for long-term high-resolution paleoenvironmental reconstitutions. Acoustic subbottom profiles acquired using a bi-frequency Chirp echosounder (3.5 & 12 kHz), together with cm- and m-long sediment core data, reveal the presence of four acoustic stratigraphic units. The acoustic basement (Unit 1) represents the structural bedrock and/or the ice-contact sediments of the Laurentide Ice Sheet and reveals V-shaped bedrock valleys at the bottom of the lakes occupied by ice-loaded sediments in a basin-fill geometry (Unit 2). Moraines observed at the bottom of lakes and in their structural valleys indicate a deglaciation punctuated by short-term ice margin stabilizations. Following ice retreat and their isolation, the fjord-lakes were filled by a thick draping sequence of rhythmically laminated silts and clays (Unit 3) deposited during glaciomarine and/or glaciolacustrine settings. These sediments were episodically disturbed by mass-movements during deglaciation due to glacial-isostatic rebound. AMS 14C dating reveal that the transition between deglaciation of the lakes Pentecôte and Walker watersheds and the development of para- and post-glacial conditions occurred around 8000 cal BP. The development of the lake-head river delta plain during the Holocene provided a constant source of fluvial sediment supply to the lakes and the formation of turbidity current bedforms on the sublacustrine delta slopes. The upper sediment succession (i.e., ∼4-∼6.5 m) consists of a continuous para-to post-glacial sediment drape (Unit 4) that contains

  5. [Effects of the periodical spread of rinderpest on famine, epidemic, and tiger disasters in the late 17th Century].

    Science.gov (United States)

    Kim, Dong Jin; Yoo, Han Sang; Lee, Hang

    2014-04-01

    This study clarifies the causes of the repetitive occurrences of such phenomena as rinderpest, epidemic, famine, and tiger disasters recorded in the Joseon Dynasty Chronicle and the Seungjeongwon Journals in the period of great catastrophe, the late 17th century in which the great Gyeongsin famine (1670~1671) and the great Eulbyeong famine (1695~1696) occurred, from the perspective that they were biological exchanges caused by the new arrival of rinderpest in the early 17th century. It is an objection to the achievements by existing studies which suggest that the great catastrophes occurring in the late 17th century are evidence of phenomena in a little ice age. First of all, rinderpest has had influence on East Asia as it had been spread from certain areas in Machuria in May 1636 through Joseon, where it raged throughout the nation, and then to the west part of Japan. The new arrival of rinderpest was indigenized in Joseon, where it was localized and spread periodically while it was adjusted to changes in the population of cattle with immunity in accordance with their life spans and reproduction rates. As the new rinderpest, which showed high pathogenicity in the early 17th century, was indigenized with its high mortality and continued until the late 17th century, it broke out periodically in general. Contrastively, epidemics like smallpox and measles that were indigenized as routine ones had occurred constantly from far past times. As a result, the rinderpest, which tried a new indigenization, and the human epidemics, which had been already indigenized long ago, were unexpectedly overlapped in their breakout, and hence great changes were noticed in the aspects of the human casualty due to epidemics. The outbreak of rinderpest resulted in famine due to lack of farming cattle, and the famine caused epidemics among people. The casualty of the human population due to the epidemics in turn led to negligence of farming cattle, which constituted factors that triggered

  6. Deglacial history of the Pensacola Mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating

    Science.gov (United States)

    Bentley, M. J.; Hein, A. S.; Sugden, D. E.; Whitehouse, P. L.; Shanks, R.; Xu, S.; Freeman, S. P. H. T.

    2017-02-01

    The retreat history of the Antarctic Ice Sheet is important for understanding rapid deglaciation, as well as to constrain numerical ice sheet models and ice loading models required for glacial isostatic adjustment modelling. There is particular debate about the extent of grounded ice in the Weddell Sea embayment at the Last Glacial Maximum, and its subsequent deglacial history. Here we provide a new dataset of geomorphological observations and cosmogenic nuclide surface exposure ages of erratic samples that constrain the deglacial history of the Pensacola Mountains, adjacent to the present day Foundation Ice Stream and Academy Glacier in the southern Weddell Sea embayment. We show there is evidence of at least two glaciations, the first of which was relatively old and warm-based, and a more recent cold-based glaciation. During the most recent glaciation ice thickened by at least 450 m in the Williams Hills and at least 380 m on Mt Bragg. Progressive thinning from these sites was well underway by 10 ka BP and ice reached present levels by 2.5 ka BP, and is broadly similar to the relatively modest thinning histories in the southern Ellsworth Mountains. The thinning history is consistent with, but does not mandate, a Late Holocene retreat of the grounding line to a smaller-than-present configuration, as has been recently hypothesized based on ice sheet and glacial isostatic modelling. The data also show that clasts with complex exposure histories are pervasive and that clast recycling is highly site-dependent. These new data provide constraints on a reconstruction of the retreat history of the formerly-expanded Foundation Ice Stream, derived using a numerical flowband model.

  7. Alpine glacial topography and the rate of rock column uplift

    DEFF Research Database (Denmark)

    Pedersen, Vivi Kathrine; Egholm, D.L.; Nielsen, S.B.

    2010-01-01

    The present study investigates the influence of alpine glacial erosion on the morphology and relief distribution of mountain regions associated with varying rock column uplift rates. We take a global approach and analyse the surface area distribution of all mountain regions affected by glacial er...

  8. The Late Quaternary history of climate and vegetation in East and southern Africa

    Directory of Open Access Journals (Sweden)

    E. M. van Zinderen Bakker Sr

    1983-11-01

    Full Text Available In the vast region of East and southern Africa the alternating glacial and interglacial periods of the Quaternarv were characterized by considerable changes in temperature and precipitation. During the last glacial maximum the influence of the ITCZ was limited, while the circulation systems were strengthened. The ocean surface waters were cooler and the Benguela Current was activated. In the montane areas of East Africa and also in southern Africa the temperature dropped by about 6°C. During this hypothermal period, rainfall on the east African plateau and mountains diminished. Summer precipitation could still penetrate the eastern half of southern Africa from the Indian Ocean, while the western half was arid to semi-arid. Cyclonic winter rain migrated further north beyond the latitude of the Orange River. The consequences of these climatic changes during the last glacial maximum were that the woodlands of East Africa opened up. On the plateau of South Africa austro-afroalpine vegetation dominated. The south coastal plain was very windy and cold to temperate, while the Namib and Kalahari were respectively hyper-arid and semi-humid. During hyperthermals the vegetation pattern resembled present-day conditions more closely.

  9. Groundwater chemistry around a repository for spent nuclear fuel over a glacial cycle. Evaluation for SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Auque, L.F.; Gimeno, M.J.; Gomez, J.B. [University of Zaragoza (Spain); Puigdomenech, I. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Smellie, J. [Conterra AB, Uppsala (Sweden); Tullborg, E.L. [Terralogica AB, Graabo (Sweden)

    2007-12-15

    The chemical composition of groundwater in the rock volume surrounding a spent nuclear fuel repository is of importance to many factors that affect repository performance. The geochemical characteristics of present-day Swedish groundwater systems are governed by successive mixing events of several waters during the post-glacial evolution of the sites. The expected development of groundwaters at two Swedish sites - Forsmark and Laxemar - during a glacial cycle has been evaluated within the SR-Can project, and the results are presented in this report. For the temperate period following repository closure, an approach is proposed here to investigate the spatial and temporal evolution of groundwater geochemistry by coupling hydrogeological and geochemical models in a sequential way. The procedure combines hydrogeological results obtained with CONNECTFLOW within the SR-Can project with a mixing and reaction path simulation using PHREEQC. The hydrological results contain mixing proportions of four component waters (a deep brine, glacial meltwater, marine water, and meteoric infiltration) at each time step and at every node of the D regional model domain. In this work the mixing fractions are fed into PHREEQC using software developed to build formatted input files and to extract the information from output files for subsequent plotting and analysis. The geochemical calculations included both chemical mixing and equilibrium reactions with selected minerals: calcite, chalcedony and an Fe(III) oxy-hydroxide. Results for the Forsmark and Laxemar sites are graphically presented as histograms and box-and-whisker plots. Cross sections, where each node is colour-coded with respect to an important variable (pH, Eh or concentrations of main elements), are used to visualize the future evolution of the site. Sensitivity analyses are made to evaluate the effects of the different reactions and/or assumptions. The results reflect the progressive inflow of meteoric waters into the sites

  10. Groundwater chemistry around a repository for spent nuclear fuel over a glacial cycle. Evaluation for SR-Can

    International Nuclear Information System (INIS)

    Auque, L.F.; Gimeno, M.J.; Gomez, J.B.; Puigdomenech, I.; Smellie, J.; Tullborg, E.L.

    2007-12-01

    The chemical composition of groundwater in the rock volume surrounding a spent nuclear fuel repository is of importance to many factors that affect repository performance. The geochemical characteristics of present-day Swedish groundwater systems are governed by successive mixing events of several waters during the post-glacial evolution of the sites. The expected development of groundwaters at two Swedish sites - Forsmark and Laxemar - during a glacial cycle has been evaluated within the SR-Can project, and the results are presented in this report. For the temperate period following repository closure, an approach is proposed here to investigate the spatial and temporal evolution of groundwater geochemistry by coupling hydrogeological and geochemical models in a sequential way. The procedure combines hydrogeological results obtained with CONNECTFLOW within the SR-Can project with a mixing and reaction path simulation using PHREEQC. The hydrological results contain mixing proportions of four component waters (a deep brine, glacial meltwater, marine water, and meteoric infiltration) at each time step and at every node of the D regional model domain. In this work the mixing fractions are fed into PHREEQC using software developed to build formatted input files and to extract the information from output files for subsequent plotting and analysis. The geochemical calculations included both chemical mixing and equilibrium reactions with selected minerals: calcite, chalcedony and an Fe(III) oxy-hydroxide. Results for the Forsmark and Laxemar sites are graphically presented as histograms and box-and-whisker plots. Cross sections, where each node is colour-coded with respect to an important variable (pH, Eh or concentrations of main elements), are used to visualize the future evolution of the site. Sensitivity analyses are made to evaluate the effects of the different reactions and/or assumptions. The results reflect the progressive inflow of meteoric waters into the sites

  11. Pleistocene Arid and Wet Climatic Variability: Imprint of Glacial Climate, Tectonics and Oceanographic Events in the Sediments of the se Indian Ocean, Western Australia

    Science.gov (United States)

    McHugh, C. M.; Castaneda, J.; Kominz, M. A.; Gallagher, S. J.; Gurnis, M.; Ishiwa, T.; Mamo, B. L.; Henderiks, J.; Christensen, B. A.; Groeneveld, J.; Yokoyama, Y.; Mustaque, S.; Iqbal, F.

    2017-12-01

    The interaction between the evolving tectonic configuration of the Indo Pacific region as a result of the northward migration of the Australian continent, and its collision with the Banda Arc began in the Late Miocene ( 8 Ma ago). This constriction played an important role in the diversion of the Indonesian Throughflow and initiation of the Leeuwin Current. These events coupled to Pleistocene glaciations left a significant imprint in the sediments offshore western Australia. The International Ocean Discovery Program Expedition 356 drilled in shelf depths of the Carnarvon and Perth Basins recovering a thick section of Pleistocene sediment from Sites U1461 (440 m thick) and U1460 (306 m), respectively. Analyses of the lithology (logs, grain size), chemistry (X-ray elemental analyses) and an initial age model constructed from biostratigraphy and radiocarbon ages were interpreted within the framework of multichannel seismic profiles. Radiocarbon ages provide control for MIS 1-4, and the identification of glacial cycles is based on shipboard biostratigraphy best developed for Site U1460. Arid and high productivity signals are linked with glacial stages. Wet conditions are associated with river discharge, terrigenous sediments and linked with interglacial stages. Except for one very pronounced interval the productivity signal during interglacials is low. High productivity during glacial stages is related to upwelling linked to the southward flowing Leeuwin Current. Comparison of the northernmost (U1461) with southernmost (U1460) sites reveals a strong arid and wet climatic variability beginning in the Pleistocene. This variability is most pronounced in the late Pleistocene post 0.8-1.0 Ma and can be correlated with glacial-interglacial cycles, especially in the more humid southern Site that was closer to the Subantarctic Front and influenced by the Westerlies. In Site U1461 we recovered the 135m thick Gorgon slide. Its occurrence at 1 Ma coincides with a rapid tectonic

  12. Effects of glacial meltwater on corrosion of copper canisters

    International Nuclear Information System (INIS)

    Ahonen, L.; Vieno, T.

    1994-08-01

    The composition of glacial meltwater and its reactions in the bedrock are examined. The evidences that there are or should be from past intrusions of glacial meltwater and oxygen deep in the bedrock are also considered. The study is concluded with an evaluation of the potential effects of oxygenated meltwater on the corrosion of copper canisters. (46 refs., 3 figs., 2 tabs.)

  13. Mammoths inside the Alps during the last glacial period: Radiocarbon constraints from Austria and palaeoenvironmental implications

    Science.gov (United States)

    Spötl, Christoph; Reimer, Paula J.; Göhlich, Ursula B.

    2018-06-01

    This study examines remains of the woolly mammoth (Mammuthus primigenius) found inside the Austrian Alps, an area occupied by an extensive ice-stream network during the Last Glacial Maximum. The data demonstrate that these cold steppe-adapted animals locally migrated several tens of kilometers into alpine valleys. Radiocarbon analyses constrain the age of these fossils to the first half of Marine Isotope Stage 3, documenting ice-free conditions in major valleys at that time. We also provide a list of all traceable Austrian sites of Mammuthus primigenius, totaling about 230 localities, compiled through 15 museums and collections in Austria. The vast majority of these findings are from the corridors of the Danube and Mur rivers and their tributaries and the adjacent loess-covered foreland of the Alps, areas that were never ice-covered during Pleistocene glaciations.

  14. Late Pleistocene climate drivers of early human migration

    Science.gov (United States)

    Timmermann, Axel; Friedrich, Tobias

    2016-10-01

    On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.

  15. Periodontal diseases at the transition from the late antique to the early mediaeval period in Croatia.

    Science.gov (United States)

    Vodanović, Marin; Peroš, Kristina; Zukanović, Amila; Knežević, Marjana; Novak, Mario; Slaus, Mario; Brkić, Hrvoje

    2012-10-01

    We tested the hypothesis that the transition from the late antique to the early mediaeval period in Croatia had a negative impact on the periodontal health. 1118 skulls were examined for dental calculus, alveolar bone resorption, fenestrations, dehiscences and root furcation involvement. The prevalence of teeth with calculus varied from 40.7% in the LA sample of continental parts of Croatia to 50.3% in the LA sample of Adriatic Croatia. The prevalence of alveolar bone resorption ranged between 21.2% in the EM sample from continental Croatia and 32.3% in the LA sample from Adriatic Croatia. The prevalence of individuals with alveolar bone dehiscences varied from 8.6% in the LA sample from continental Croatia up to 15.0% in the EM sample from Adriatic Croatia. The prevalence of individuals with alveolar bone fenestrations varied from 21.5% in the LA sample from Adriatic Croatia up to 36.2% in the LA sample from continental Croatia. The prevalence of individuals with exposed root bifurcations or trifurcations varied from 9.0% in the EM sample from Adriatic Croatia up to 20.7% in the EM sample from continental Croatia. Statistically significant differences were found between samples. The transition from the late antique to the early mediaeval period in Croatia did not have a negative impact on periodontal health. Studies of periodontal health of ancient populations should be performed to provide a better and more reliable reconstruction of living conditions in the past. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Multiple glacial refugia of the low-dispersal ground beetle Carabus irregularis: molecular data support predictions of species distribution models.

    Directory of Open Access Journals (Sweden)

    Katharina Homburg

    Full Text Available Classical glacial refugia such as the southern European peninsulas were important for species survival during glacial periods and acted as sources of post-glacial colonisation processes. Only recently, some studies have provided evidence for glacial refugia north of the southern European peninsulas. In the present study, we combined species distribution models (SDMs with phylogeographic analyses (using mitochondrial DNA = mtDNA to investigate if the cold-adapted, stenotopic and flightless ground beetle species, Carabus irregularis, survived the Last Glacial Maximum (LGM in classical and/or other refugia. SDMs (for both a western European and for a Carpathian subgroup were calculated with MAXENT on the basis of 645 species records to predict current and past distribution patterns. Two mtDNA loci (CO1 and ND5, concatenated sequence length: 1785 bp were analyzed from 91 C. irregularis specimens to reconstruct the phylogeography of Central and eastern European populations and to estimate divergence times of the given lineages. Strong intra-specific genetic differentiation (inter-clade ΦST values ranged from 0.92 to 0.99 implied long-term isolation of major clades and subsclades. The high divergence between the nominate subspecies and the Carpathian subspecies C. i. montandoni points to two independent species rather than subspecies (K-2P distance 0.042 ± 0.004; supposed divergence of the maternal lineages dated back 1.6 to 2.5 million years BP differing not only morphologically but also genetically and ecologically from each other. The SDMs also inferred classical as well as other refugia for C. irregularis, especially north of the Alps, in southeastern Europe and in the Carpathians. The coincidences between the results of both methods confirm the assumption of multiple glacial refugia for the studied species and the usefulness of combining methodological approaches for the understanding of the history of low-dispersal insect species.

  17. 76 FR 50476 - Application To Export Electric Energy; Glacial Energy of Texas, Inc.

    Science.gov (United States)

    2011-08-15

    ... DEPARTMENT OF ENERGY [OE Docket No. EA-382] Application To Export Electric Energy; Glacial Energy... Application. SUMMARY: Glacial Energy of Texas, Inc. (Glacial) has applied for authority to transmit electric... for authority to transmit electric energy from the United States to Mexico for five years as a power...

  18. Environmental inferences and chironomid-based temperature reconstructions from fragmentary records of the Weichselian Early Glacial and Pleniglacial periods in the Niederlausitz area (eastern Germany)

    NARCIS (Netherlands)

    Engels, S.; Bohncke, S.J.P.; Bos, J.A.A.; Heiri, O.; Vandenberghe, J.; Wallinga, J.

    2008-01-01

    We inferred past climate conditions from lacustrine sediments intercalated in Weichselian Early Glacial and Early Pleniglacial fluvial and aeolian sediments, exposed in two opencast lignite mines from the Niederlausitz area (eastern Germany). A chronology was established using radiocarbon and

  19. In and out of glacial extremes by way of dust‑climate feedbacks

    Science.gov (United States)

    Shaffer, Gary; Lambert, Fabrice

    2018-03-01

    Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial‑interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust‑climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust‑climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial‑interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust‑climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial‑interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles.

  20. Foraminifera Models to Interrogate Ostensible Proxy-Model Discrepancies During Late Pliocene

    Science.gov (United States)

    Jacobs, P.; Dowsett, H. J.; de Mutsert, K.

    2017-12-01

    Planktic foraminifera faunal assemblages have been used in the reconstruction of past oceanic states (e.g. the Last Glacial Maximum, the mid-Piacenzian Warm Period). However these reconstruction efforts have typically relied on inverse modeling using transfer functions or the modern analog technique, which by design seek to translate foraminifera into one or two target oceanic variables, primarily sea surface temperature (SST). These reconstructed SST data have then been used to test the performance of climate models, and discrepancies have been attributed to shortcomings in climate model processes and/or boundary conditions. More recently forward proxy models or proxy system models have been used to leverage the multivariate nature of proxy relationships to their environment, and to "bring models into proxy space". Here we construct ecological models of key planktic foraminifera taxa, calibrated and validated with World Ocean Atlas (WO13) oceanographic data. Multiple modeling methods (e.g. multilayer perceptron neural networks, Mahalanobis distance, logistic regression, and maximum entropy) are investigated to ensure robust results. The resulting models are then driven by a Late Pliocene climate model simulation with biogeochemical as well as temperature variables. Similarities and differences with previous model-proxy comparisons (e.g. PlioMIP) are discussed.

  1. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    Science.gov (United States)

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations

  2. Groundwater flow and transport modelling during the temperate period for the SR-Can assessment. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Jackson, Peter; Joyce, Steve; McCarthy, Rachel; Rodwell, William; Swift, Ben [Serco Assurance, Harwell (United Kingdom); Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-12-15

    The focus of the study described in this report has been to perform numerical simulations of the geosphere from post-closure and throughout the temperate period up until the beginning of the next permafrost period around 9,000 AD. Together with providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events. Additional calculations were performed to assess the impact of the effects of gas and heat generation in the repository on groundwater flow.

  3. Groundwater flow and transport modelling during the temperate period for the SR-Can assessment. Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Hartley, Lee; Hoch, Andrew; Jackson, Peter; Joyce, Steve; McCarthy, Rachel; Rodwell, William; Swift, Ben; Marsic, Niko

    2006-12-01

    The focus of the study described in this report has been to perform numerical simulations of the geosphere from post-closure and throughout the temperate period up until the beginning of the next permafrost period around 9,000 AD. Together with providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events. Additional calculations were performed to assess the impact of the effects of gas and heat generation in the repository on groundwater flow

  4. Investigations on Health Conditions of Chernobyl Nuclear Power Plant Accident Recovery Workers from Latvia in Late Period after Disaster

    Directory of Open Access Journals (Sweden)

    Reste Jeļena

    2016-10-01

    Full Text Available The paper summarises the main findings on Chernobyl Nuclear Power Plant (CNPP accident recovery workers from Latvia and their health disturbances, which have been studied by the authors during the last two decades. Approximately 6000 persons from Latvia participated in CNPP clean-up works in 1986–1991. During their work period in Chernobyl they were exposed to external as well as to internal irradiation, but since their return to Latvia they were living in a relatively uncontaminated area. Regular careful medical examinations and clinical studies of CNPP clean-up workers have been conducted during the 25 years after disaster, gathering knowledge on radiation late effects. The aim of the present review is to summarise the most important information about Latvian CNPP clean-up worker health revealed by thorough follow-up and research conducted in the period of 25 years after the accident. This paper reviews data of the Latvian State Register of Persons Exposed to Radiation due to CNPP Accident and gives insight in main health effects found by the researchers from the Centre of Occupational and Radiological Medicine (Pauls Stradiņš Clinical University Hospital and Rīga Stradiņš University in a number of epidemiological, clinical, biochemical, immunological, and physiological studies. Latvian research data on health condition of CNPP clean-up workers in the late period after disaster indicate that ionising radiation might cause premature ageing and severe polymorbidity in humans.

  5. Optimal tuning of a GCM using modern and glacial constraints

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, Lauren J.; Valdes, Paul J.; Payne, Antony J.; Kahana, Ron [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2011-08-15

    In climate models, many parameters used to resolve subgrid scale processes can be adjusted through a tuning exercise to fit the model's output to target climatologies. We present an objective tuning of a low resolution Atmosphere-Ocean General Circulation Model (GCM) called FAMOUS where ten model parameters are varied together using a Latin hypercube sampling method to create an ensemble of 100 models. The target of the tuning consists of a wide range of modern climate diagnostics and also includes glacial tropical sea surface temperature. The ensemble of models created is compared to the target using an Arcsin Mielke score. We investigate how the tuning method used and the addition of glacial constraints impact on the present day and glacial climates of the chosen models. Rather than selecting a single configuration which optimises the metric in all the diagnostics, we obtain a subset of nine 'good' models which display great differences in their climate but which, in some sense, are all better than the original configuration. In those simulations, the global temperature response to last glacial maximum forcings is enhanced compared to the control simulation and the glacial Atlantic Ocean circulation is more in agreement with observations. Our study demonstrates that selecting a single 'optimal' configuration, relying only on present day constraints may lead to misrepresenting climates different to that of today. (orig.)

  6. Spurious Additional Warming Reconstructed From Borehole Temperatures Corrected for the Effect of the Last Glacial Cycle

    Science.gov (United States)

    Šafanda, Jan

    2018-03-01

    Reconstructions of past ground surface temperature changes from temperature logs conducted in several hundred meter deep boreholes have proved to be a valuable independent source of information on climate variations over the last millennium. The reconstruction techniques have been evolving for more than two decades to extract optimally the climate signal of the last millennium contained in the temperature logs of different length performed in sites with different histories of the Last Glacial Cycle. This paper analyzes the method of the Last Glacial Cycle thermal effect removal from such borehole temperature profiles used by Beltrami et al. (2017, https://doi.org/10.1002/2016GL071317) in reconstructing the last 500 year history. I show that the reported results of additional warming in this period reconstructed from the corrected borehole data for North America are an artifact generated by the correction.

  7. Glacial lakes in Austria - Distribution and formation since the Little Ice Age

    Science.gov (United States)

    Buckel, J.; Otto, J. C.; Prasicek, G.; Keuschnig, M.

    2018-05-01

    Glacial lakes constitute a substantial part of the legacy of vanishing mountain glaciation and act as water storage, sediment traps and sources of both natural hazards and leisure activities. For these reasons, they receive growing attention by scientists and society. However, while the evolution of glacial lakes has been studied intensively over timescales tied to remote sensing-based approaches, the longer-term perspective has been omitted due a lack of suitable data sources. We mapped and analyzed the spatial distribution of glacial lakes in the Austrian Alps. We trace the development of number and area of glacial lakes in the Austrian Alps since the Little Ice Age (LIA) based on a unique combination of a lake inventory and an extensive record of glacier retreat. We find that bedrock-dammed lakes are the dominant lake type in the inventory. Bedrock- and moraine-dammed lakes populate the highest landscape domains located in cirques and hanging valleys. We observe lakes embedded in glacial deposits at lower locations on average below 2000 m a.s.l. In general, the distribution of glacial lakes over elevation reflects glacier erosional and depositional dynamics rather than the distribution of total area. The rate of formation of new glacial lakes (number, area) has continuously accelerated over time with present rates showing an eight-fold increase since LIA. At the same time the total glacier area decreased by two-thirds. This development coincides with a long-term trend of rising temperatures and a significant stepping up of this trend within the last 20 years in the Austrian Alps.

  8. Expanding Greenland’s Glacial Record

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker

    . On order to expand the glacial history of Greenland, this thesis explores physical and geological archives for evidence of the glaciers’ past response to climatic variations. Using aerial photographs, the dynamic history of the Greenland Ice Sheet is extended back to 1900 C.E. Glacier changes covering...

  9. Response of the Amazon rainforest to late Pleistocene climate variability

    Science.gov (United States)

    Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno

    2017-12-01

    Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.

  10. Late Holocene dune mobilizations in the northwestern Negev dunefield, Israel: A response to combined anthropogenic activity and short-term intensified windiness

    Science.gov (United States)

    Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.

    2013-04-01

    The study of the effects of past climates on ancient cultures is usually based on geologic records pertaining to rainfall and temperature fluctuations and shifts. This study proposes a paradigm of anthropogenic activity and windiness fluctuations to explain aeolian sedimentation and dune mobilization in the northwestern (NW) Negev Desert dunefield (Israel). The proposed paradigm contributes a different approach to estimating the effect of climate changes on the unprecedented agricultural and urban settlement expansion during the late Roman to Early Islamic period in the northern and central Negev Desert. This study builds upon the late Holocene cluster of luminescence ages of Roskin et al. (Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel), Quaternary Science Reviews 30 (2011), 1649-1674) coupled with analysis of archaeological finds and historical texts. We suggest that whereas the NW Negev dunefield was generally stable during the Holocene, intermittent dune mobilization during the late Holocene, at ~1.8 ka and mostly 1.4-1.1 ka (~600-900 CE), are linked to periods of human occupation. The idea that the last glacial dune encroachments alone that formed the NW Negev dunefield is connected to cold-event windy climates that may have intensified East Mediterranean cyclonic winter storms, cannot explain the late Holocene dune mobilizations. We conceptually model a connection between late Holocene dune mobilization, widespread anthropogenic occupation and activity, and windiness. We maintain that historic grazing and uprooting shrubs for fuel in the past by nomads and sedentary populations led to decimation of dune stabilizers, biogenic soil crusts and vegetation, causing dune erodibility and low-grade activity. Short-term events of amplified wind power in conjunction with periods of augmented anthropogenic activity that triggered major events of dune mobilization (elongation) and accretion have been preserved in the

  11. Sink detection on tilted terrain for automated identification of glacial cirques

    Science.gov (United States)

    Prasicek, Günther; Robl, Jörg; Lang, Andreas

    2016-04-01

    Glacial cirques are morphologically distinct but complex landforms and represent a vital part of high mountain topography. Their distribution, elevation and relief are expected to hold information on (1) the extent of glacial occupation, (2) the mechanism of glacial cirque erosion, and (3) how glacial in concert with periglacial processes can limit peak altitude and mountain range height. While easily detectably for the expert's eye both in nature and on various representations of topography, their complicated nature makes them a nemesis for computer algorithms. Consequently, manual mapping of glacial cirques is commonplace in many mountain landscapes worldwide, but consistent datasets of cirque distribution and objectively mapped cirques and their morphometrical attributes are lacking. Among the biggest problems for algorithm development are the complexity in shape and the great variability of cirque size. For example, glacial cirques can be rather circular or longitudinal in extent, exist as individual and composite landforms, show prominent topographic depressions or can entirely be filled with water or sediment. For these reasons, attributes like circularity, size, drainage area and topology of landform elements (e.g. a flat floor surrounded by steep walls) have only a limited potential for automated cirque detection. Here we present a novel, geomorphometric method for automated identification of glacial cirques on digital elevation models that exploits their genetic bowl-like shape. First, we differentiate between glacial and fluvial terrain employing an algorithm based on a moving window approach and multi-scale curvature, which is also capable of fitting the analysis window to valley width. We then fit a plane to the valley stretch clipped by the analysis window and rotate the terrain around the center cell until the plane is level. Doing so, we produce sinks of considerable size if the clipped terrain represents a cirque, while no or only very small sinks

  12. A Chronologic Dual-Hemisphere Approach to the Last Glacial Termination from the Southern Alps of New Zealand and the Altai Mountains of Western Mongolia

    Science.gov (United States)

    Strand, P.; Putnam, A. E.; Schaefer, J. M.; Denton, G.; Barrell, D.; Putnam, D.; Schwartz, R.; Sambuu, O.; Radue, M. J.; Lindsay, B. J.; Stevens, J.

    2017-12-01

    Understanding the processes that drove the last glacial termination in the tropics and mid-latitudes is a major unresolved problem in paleoclimate. The most recent glacial to interglacial transition represents the last great global warming and the last time CO2 rose by a substantial amount before the industrial period. Determining the speed of this warming will help refine the global climate system sensitivity to CO2 and will place ongoing global warming into a paleoclimatic context. Here, we test possible drivers of the last glacial termination by comparing chronologies of mountain glaciers, which are highly sensitive to changes in atmospheric temperature, in the middle latitudes of both polar hemispheres. The dating of glacier landforms, such as moraine ridges constructed along glacier margins, affords quantitative insight into past climate conditions. We present 10Be surface-exposure chronologies and glacial geomorphologic maps of mountain glacier recession since the Last Glacial Maximum in the Southern Alps of New Zealand (44°S, 170°E) and in the Altai Mountains of western Mongolia (49°N, 88°E). On the basis of these chronologies from opposing hemispheres, we evaluate the relative roles of rising atmospheric CO2, local insolation forcing, and ocean-atmosphere reorganizations in driving the global warming that ended the last ice age.

  13. Retear rate in the late postoperative period after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Kim, Jae Hwa; Hong, In Tae; Ryu, Keun Jung; Bong, Sun Tae; Lee, Yoon Seok; Kim, Jang Hwan

    2014-11-01

    Few clinical studies have evaluated the integrity of repaired tendons and identified the timing of retears through the use of serial imaging. Retears after arthroscopic rotator cuff repair are uncommon in the late postoperative period (after 3 months). Case series; Level of evidence, 4. Among 221 arthroscopic rotator cuff repairs that were performed at a single hospital between May 2010 and February 2012, 61 were involved in this study. Rotator cuff tears consisted of 12 small, 31 medium, 8 large, and 6 massive rotator cuff tears. Additionally, 4 isolated subscapularis tears were included. For clinical evaluation, all patients were assessed both preoperatively and postoperatively by use of the University of California-Los Angeles Shoulder Rating Scale, absolute and relative Constant scores, and American Shoulder and Elbow Surgeons score; active range of motion was assessed as well. For radiological evaluation, all 61 patients had a magnetic resonance imaging (MRI) evaluation at 3 months postoperatively. Among them, 23 patients were evaluated for repaired tendon integrity on postoperative MRI at a minimum of 1 year after surgery (mean, 14.1 months; range, 12-19 months), and results were classified according to the Sugaya classification: type I, sufficient thickness with homogeneously low intensity on each image; type II, sufficient thickness, partial high-intensity area; type III, less than half the thickness without discontinuity; type IV, minor discontinuity; and type V, major discontinuity. The remaining 38 patients, who refused to undergo MRI again for financial reasons, were evaluated through ultrasound. Statistically significant clinical improvements were observed after surgery. The MRI conducted at 3 months postoperatively identified 9 patients with Sugaya type I, 28 patients with type II, and 24 patients with type III repairs. No patients showed Sugaya type IV or V repairs at postoperative 3 months. Thirty-seven patients who had shown Sugaya type I or II

  14. Glacial Hazards in Chile: Processes, Assessment, Mitigation and Risk Management Strategies

    Science.gov (United States)

    Glasser, N. F.; Wilson, R.; Casassa, G., Sr.; Reynolds, J.; Harrison, S.; Shannon, S. R.; Schaefer, M.; Iribarran, P.

    2017-12-01

    Glacial Lake Outburst Floods (GLOFs) are capable of travelling considerable distances from their source and they represent one of the most important glacial hazards. In line with observations in other parts of the world, the frequency of GLOF events in Chile has increased in recent decades highlighting the need to quantify the flood risk posed to downstream areas. This poster presents the work of the `Glacial Hazards in Chile' project which aims to (1) better understand the processes that govern the development of GLOFs in Chile, (2) estimate the socio-economic effects of GLOFs in Chile, and (3) provide a GLOF risk assessment framework that can be applied to Chile and other lower income countries globally. As an initial step towards the completion of these aims, we have recently compiled the first glacial lake inventory for the central and Patagonian Andes, which details the temporal development of glacial lakes in this region over the past three decades. This analysis was used to identify two lakes of interest that were visited during a fieldwork expedition in February 2017. The first of these, Lago Chileno in Patagonia, has recently produced a large GLOF causing significant damage to the downstream floodplain, whilst the second was identified as one of the fastest growing lakes in the central Andes. Both these lakes were surveyed using aerial imagery acquired with a drone and a custom-built bathymetry boat, data from which will help to improve our understanding of the physical processes associated with glacial lake development and failure within the Chilean Andes.

  15. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    DEFF Research Database (Denmark)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo

    2017-01-01

    environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels......High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal...... in the period 10.3–9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea...

  16. Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon

    Science.gov (United States)

    Reynolds, R.L.; Rosenbaum, J.G.; Rapp, J.; Kerwin, M.W.; Bradbury, J.P.; Colman, S.; Adam, D.

    2004-01-01

    Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37-25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins

  17. Late post-operative hypoxaemia and organ dysfunction

    DEFF Research Database (Denmark)

    Kehlet, H; Rosenberg, J

    1995-01-01

    an adverse effect of tissue hypoxia on wound healing and on resistance to bacterial wound infections. Finally, mental confusion and surgical delirium may be related to inadequate arterial oxygenation during the late post-operative period. Late post-operative constant and episodic hypoxaemia may therefore......Constant and episodic hypoxaemia are common after major operations in the late post-operative period in the surgical ward. Recent studies have shown that hypoxaemia may be related to the development of myocardial ischaemia and cardiac arrhythmias. Experimental and clinical studies have demonstrated...

  18. Vegetation history since the last glacial maximum in the Ozark highlands (USA): A new record from Cupola Pond, Missouri

    Science.gov (United States)

    Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.

    2017-01-01

    The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.

  19. The sensitivity of the Late Saalian (140 ka) and LGM (21 ka) Eurasian ice sheets to sea surface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Florence [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); UJF, CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres Cedex (France); Stockholm University, Department of Geological Sciences, Stockhlom (Sweden); Liakka, Johan [Stockholm University, Department of Meteorology, Stockholm (Sweden); Krinner, Gerhard; Peyaud, Vincent [UJF, CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres Cedex (France); Jakobsson, Martin [Stockholm University, Department of Geological Sciences, Stockhlom (Sweden); Masina, Simona [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-08-15

    This work focuses on the Late Saalian (140 ka) Eurasian ice sheets' surface mass balance (SMB) sensitivity to changes in sea surface temperatures (SST). An Atmospheric General Circulation Model (AGCM), forced with two preexisting Last Glacial Maximum (LGM, 21 ka) SST reconstructions, is used to compute climate at 140 and 21 ka (reference glaciation). Contrary to the LGM, the ablation almost stopped at 140 ka due to the climatic cooling effect from the large ice sheet topography. Late Saalian SST are simulated using an AGCM coupled with a mixed layer ocean. Compared to the LGM, these 140 ka SST show an inter-hemispheric asymmetry caused by the larger ice-albedo feedback, cooling climate. The resulting Late Saalian ice sheet SMB is smaller due to the extensive simulated sea ice reducing the precipitation. In conclusion, SST are important for the stability and growth of the Late Saalian Eurasian ice sheet. (orig.)

  20. A palaeoenvironmental record of natural and human change from the Auckland Isthmus, New Zealand, during the Late Holocene

    International Nuclear Information System (INIS)

    Horrocks, M.; Deng, Y.; Nichol, S.L.; Shane, P.A.; Ogden, J.

    2002-01-01

    A multi-proxy analysis of a sediment core from Waiatarua, Auckland Isthmus, adds to an environmental history from the local wetland spanning the Late Glacial to modern times. Several distal tephra were recorded in the core: 8.5 ka Rotoma (reworked), 6.1 ka Tuhua (primary and reworked), most likely the 1.8 ka Taupo (the latter is previously unreported for the Auckland Isthmus), and one unidentified, possibly 665 yr BP Kaharoa. Pollen and diatom analyses of the core show that during the period c. 6000-c. 4800 yr BP, the site was a lake fringed with Cyperaceae/Leptospermum swamp. The lake became progressively shallower after c. 4800 yr BP, probably due to hydroseral infilling. Surrounding the lake was forest dominated by Dacrydium, Prumnopitys, Metrosideros, and Nestegis. Transition to the Polynesian era appears unclear because the site probably endured a hiatus due to destruction of peat by burning in European times. (author). 39 refs., 4 figs., 2 tabs

  1. Are glacials "dry" - and in what sense?

    Science.gov (United States)

    Scheff, J.; Seager, R.; Coats, S.; Liu, H.

    2016-12-01

    Glacial maxima during the Pleistocene are generally thought to be arid on land, with a few regional exceptions. Recent work on future climate change, however, has found that different wetness-related variables have opposite-signed responses over large portions of the continents, belying simple ideas of local "drying" or "wetting" with global temperature change in models. Here, we show that this behavior extends to simulations of the Last Glacial Maximum as well: the continents are modeled to have generally wetter topsoils and higher values of standard climate-wetness metrics in the LGM than in the preindustrial, as well as generally lower precipitation and ubiquitously lower photosynthesis (likely driven by the low CO2), with the streamflow response falling in between. Is this model-derived view of the LGM an accurate one? Using a large community pollen and plant-fossil compilation, we confirm that LGM grasslands and open woodlands grew at many sites of present potential forest, seasonal or dry forests at many sites of present potential rain- or seasonal forests, and so forth, while changes in the opposite sense were extremely few and spatially confined. We show that this strongly resembles the simulated photosynthesis changes, but not the simulated streamflow or soil moisture changes. Meanwhile, published LGM lake-level estimates resemble the simulated streamflow changes, but not the photosynthesis changes. Thus, the last glacial does not appear to be systematically "dry" outside the high latitudes, but merely carbon-starved. Similarly, local findings of reduced or more open vegetation at the LGM (e.g. from pollen, carbon isotopes, or dustiness) do not indicate local "aridity" unless corroborating hydrological proxies are also found. Finally, this work suggests that glacial-era evidence of open vegetation with high lake levels (as in the eastern Mediterranean) is not odd or paradoxical, but entirely consistent with climate model output.

  2. Paradoxical physiological transitions from aging to late life in Drosophila.

    Science.gov (United States)

    Shahrestani, Parvin; Quach, Julie; Mueller, Laurence D; Rose, Michael R

    2012-02-01

    In a variety of organisms, adulthood is divided into aging and late life, where aging is a period of exponentially increasing mortality rates and late life is a period of roughly plateaued mortality rates. In this study we used ∼57,600 Drosophila melanogaster from six replicate populations to examine the physiological transitions from aging to late life in four functional characters that decline during aging: desiccation resistance, starvation resistance, time spent in motion, and negative geotaxis. Time spent in motion and desiccation resistance declined less quickly in late life compared to their patterns of decline during aging. Negative geotaxis declined at a faster rate in late life compared to its rate of decline during aging. These results yield two key findings: (1) Late-life physiology is distinct from the physiology of aging, in that there is not simply a continuation of the physiological trends which characterize aging; and (2) late life physiology is complex, in that physiological characters vary with respect to their stabilization, deceleration, or acceleration in the transition from aging to late life. These findings imply that a correct understanding of adulthood requires identifying and appropriately characterizing physiology during properly delimited late-life periods as well as aging periods.

  3. New glacial evidences at the Talacasto paleofjord (Paganzo basin, W-Argentina) and its implications for the paleogeography of the Gondwana margin

    Science.gov (United States)

    Aquino, Carolina Danielski; Milana, Juan Pablo; Faccini, Ubiratan Ferrucio

    2014-12-01

    The Talacasto paleovalley is situated in the Central Precordillera of San Juan, Argentina, where upper Carboniferous-Permian rocks (Paganzo Group) rest on Devonian sandstones of the Punta Negra Formation. This outcrop is an excellent example of a glacial valley-fill sequence that records at least two high-frequency cycles of the advance and retreat of a glacier into the valley. The paleocurrent analysis shows transport predominantly to the south, indicating that at this site the ice flow differs from the other nearby paleovalleys. Evidence of the glacial origin of this valley can be seen in the glacial striae on the valley's sides, as well as the U-shape of the valley, indicated by very steep locally overhanging valley walls. Deglaciation is indicated by a set of retransported conglomerates deposited in a shallow-water environment followed by a transgressive succession, which suggests eustatic rise due to meltwater input to the paleofjord. The complete sedimentary succession records distinct stages in the evolution of the valley-fill, represented by seven stratigraphical units. These units are identified based on facies associations and their interpreted depositional setting. Units 1 to 5 show one cycle of deglaciation and unit 6 marks the beginning of a new cycle of glacier advance which is characterized by different types of glacial deposits. All units show evidence of glacial influence such as dropstones and striated clasts, which indicates that the glaciers were always present in the valley or in adjacent areas during sedimentation. The Talacasto paleofjord provides good evidence of the Late Paleozoic Gondwana glaciation in western Argentina and examples of sedimentary successions which have been interpreted as being deposited by a confined wet-based glacier in advance and retreat cycles, with eventual release of icebergs into the basin. The outcrop is also a key for reconstructing the local glacial paleogeography, and it suggests a new interpretation that is

  4. Early and late hot extremes, and elongation of the warm period over Greece

    Science.gov (United States)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2017-04-01

    The eastern Mediterranean has been assigned as one of the most responsive areas in climate change, mainly with respect to the occurrence of warmer and drier conditions. In Greece in particular, observations suggest prominent increases in the summer air temperature which in some areas amount to approximately 1 0C/decade since the mid 1970s, while Regional Climate Models simulate further increases in the near and distant future. These changes are coupled with simultaneous increase in the occurrence of hot extremes. In addition to changes in the frequency and intensity of hot extrems, timing of occurrence is also of special interest. Early heat waves in particular, have been found to increase thermal risk in humans. The study explores variations and trends in timing, namely the date of first and last occurrence of hot extremes within the year, and subsequently the hot extremes period (season), defined as the time interval (number of days) between first and last hot extremes occurrence, over Greece. A case study for the area of Athens covering a longer than 100-years period (1897-2015) was conducted first, which will be extended to other Greek areas. Several heat related climatic indices were used, based either on predefined temperature thresholds such as 'tropical days' (daily maximum air temperature, Tmax >30 0C), 'tropical nights' (daily minimum air temperature, Tmin >20 0C), 'hot days' (Tmax >35 0C), or on local climate statistics such as days with Tmax (or Tmin) > 95th percentile. The analysis revealed significant changes in the period of hot extremes and specifically elongation of the period, attributed to early rather than late hot extremes occurrence. An earlier shift of the first tropical day and the first tropical night occurrence by approximately 2 days/decade was found over the study period. An overall elongation of the 'hot days' season by 2.6 days/decade was also observed, which is more prominent since the early 1980s. Over the last three decades, earlier

  5. Modelling end-glacial earthquakes at Olkiluoto

    International Nuclear Information System (INIS)

    Faelth, B.; Hoekmark, H.

    2011-02-01

    The objective of this study is to obtain estimates of the possible effects that post-glacial seismic events in three verified deformation zones (BFZ100, BFZ021/099 and BFZ214) at the Olkiluoto site may have on nearby fractures in terms of induced fracture shear displacement. The study is carried out by use of large-scale models analysed dynamically with the three dimensional distinct element code 3DEC. Earthquakes are simulated in a schematic way; large planar discontinuities representing earthquake faults are surrounded by a number of smaller discontinuities which represent rock fractures in which shear displacements potentially could be induced by the effects of the slipping fault. Initial stresses, based on best estimates of the present-day in situ stresses and on state-of-the-art calculations of glacially-induced stresses, are applied. The fault rupture is then initiated at a pre-defined hypocentre and programmed to propagate outward along the fault plane with a specified rupture velocity until it is arrested at the boundary of the prescribed rupture area. Fault geometries, fracture orientations, in situ stress model and material property parameter values are based on data obtained from the Olkiluoto site investigations. Glacially-induced stresses are obtained from state-of-the-art ice-crust/mantle finite element analyses. The response of the surrounding smaller discontinuities, i.e. the induced fracture shear displacement, is the main output from the simulations

  6. Global late Quaternary megafauna extinctions linked to humans, not climate change.

    Science.gov (United States)

    Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian

    2014-07-22

    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132,000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial-interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary.

  7. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery

    International Nuclear Information System (INIS)

    Fujita, Koji; Sakai, Akiko; Nuimura, Takayuki; Yamaguchi, Satoru; Sharma, Rishi R

    2009-01-01

    Changes in the area and bathymetry of Imja Glacial Lake and in the elevation of its damming moraine, Khumbu region, Nepal Himalaya are investigated. Previously reported changes in the lake area have been updated by multi-temporal ASTER images, which revealed a decreased expansion rate after 2000. A provisional expansion of the lake observed in 2004, from which some studies concluded an accelerated lake expansion due to global warming, has, from 2005, subsided to the glacier surface. Bathymetric changes for the period 1992-2002 that were first obtained for Himalayan glacial lakes suggest that the melting of debris-covered ice beneath the lake is insignificant in terms of the increase in lake volume, and that the retreat of a glacier in contact with the lake by calving is essential for the lake's expansion. Changes in the height of a damming moraine for the period 2001-2007 suggest a continuous surface lowering near the lake, though the lowering rates are smaller than those for the period 1989-1994.

  8. Late Holocene spatio-temporal variability of the south Greenland Ice Sheet and adjacent mountain glaciers

    Science.gov (United States)

    Sinclair, G.; Carlson, A. E.; Rood, D. H.; Axford, Y.

    2017-12-01

    The late Holocene, with its spatially complex pattern of centennial-scale climate variation, is an ideal time period to test the response of the cryosphere to atmospheric and oceanic temperature changes. The south Greenland Ice Sheet (sGrIS), with its proximity to areas of North Atlantic Deep Water formation and a large spectrum of glaciological regimes over a relatively small area, provides an excellent location to examine the spatial heterogeneity of ice-sheet and glacier responses to climate change. Here, we will present 50 Be-10 surface exposure ages from eight moraines in six locations around the margin of the sGrIS. These moraines are located just outboard of historical moraines, and will therefore allow us to constrain the timing of the most extensive prehistoric late-Holocene advance and retreat of ice margins draining the sGrIS and independent valley glaciers. The dataset includes both marine- and land-terminating glaciers draining the sGrIS, the low-altitude Qassimiut lobe, the high-altitude alpine Julianhåb ice cap and isolated valley glaciers. This diverse dataset will allow us to determine to what extent late-Holocene centennial-scale behavior of the ice-sheet and glacier margins were synchronous, perhaps in response to an external climate forcing, or more stochastic, governed instead by local factors such as basal thermal regime, bedrock topography, or microclimates. This has implications for understanding the forcings and responses of cryospheric changes at timescales relevant to human society. In addition to providing context for paleoclimatic and glacial geologic investigations, this work will inform future sea-level projections by providing targets for validating high-resolution ice-sheet and glacier models.

  9. The Glacial-Interglacial summer monsoon recorded in southwest Sulawesi speleothems: Evidence for sea level thresholds driving tropical monsoon strength

    Science.gov (United States)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Di Nezio, P. N.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Rifai, H.

    2016-12-01

    Southwest Sulawesi lies within the Indo-Pacific Warm Pool (IPWP), at the center of atmospheric convection for two of the largest circulation cells on the planet, the meridional Hadley Cell and zonal Indo-Pacific Walker Circulation. Due to the geographic coincidence of these circulation cells, southwest Sulawesi serves as a hotspot for changes in tropical Pacific climate variability and Australian-Indonesian summer monsoon (AISM) strength over glacial-interglacial (G-I) timescales. The work presented here spans 386 - 127 ky BP, including glacial terminations IV ( 340 ky BP) and both phases of TIII (TIII 248 ky BP and TIIIa 217 ky BP). This record, along with previous work from southwest Sulawesi spanning the last 40 kyr, reveals coherent climatic features over three complete G-I cycles. The multi-stalagmite Sulawesi speleothem δ18O record demonstrates that on G-I timescales, the strength of the AISM is most sensitive to changes in sea level and its impact on the regional distribution of land and shallow ocean. Stalagmite δ18O and trace element (Mg/Ca) data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. TIV, TIII, TIIIa, and TI are each characterized by an abrupt 3‰ decrease in δ18O that coincides with sea level rise and flooding of the Sunda and Sahul shelves. Strong evidence for a sea level (flooding/exposure) threshold is found throughout the southwest Sulawesi record. This is most clearly demonstrated over the period 230 - 212 ky BP (MIS 7d-7c), when a sea level fall to only -80 to -60 m for 10 kyr results in a weakened AISM and glacial conditions, followed by a full termination. Taken together, both glaciations and glacial terminations imply a sea level threshold driving the AISM between two primary levels of intensity (`interglacial' & `glacial'). These massive, sea-level driven shifts in AISM strength are superimposed on precession-scale variability associated with boreal fall insolation at the equator, indicating

  10. Nannoplankton from RC9-156 in the southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.

    that the age of the sediment is late Quaternary. The alternate fossiliferous and unfossiliferous bands encountered in the core is attributed to the fluctuations in the rate of sedimentation by the river Indus during glacial and interglacial periods...

  11. Organic Matter Contents and Paleoproductivity Variation Within Late Pleistocene Japan Sea/East Sea Sediments: Results from IODP Expedition 346

    Science.gov (United States)

    Black, H. D.; Anderson, W. T., Jr.

    2017-12-01

    Inorganic and organic matter concentrations as well as the stable isotopes of nitrogen and organic carbon are presented for continuous sedimentary sequences collected during Integrated Ocean Drilling Program (IODP) Expedition 346 in the Japan Sea/East Sea in 2013. During major glacioeustatic sea level changes, the paleoceanographic conditions within the Japan Sea/East Sea widely vary due to the shallow, narrow straights connecting the sea to surrounding waters limiting an influx of oceanic currents. During glacial sea level low-stands the sea can be nearly isolated, creating a highly-stratified water column and hypoxic to anoxic bottom water conditions. Meanwhile during sea level high-stands, the Tsushima Warm Current (TWC) flows into the sea bringing warmer, nutrient-rich inputs, leading to vertical mixing and oxic conditions. This study aims to better understand the role of orbital cycling within the organic matter and stable isotope contents of these Late Pleistocene sediments. A total of 192 samples were analyzed each for %CaCO3, %TOC, δ13C, %N, and δ15N from two Expedition 346 sampling sites (U1426 and U1427) during the last 430,000 years and statistical analyses were completed using wavelet and time series analyses. Carbonate concentration ranges from 0-44.3%, total organic carbon 0.2 to 6.4%, δ13C -25.8 to -19.6‰, %N 0.04 to 0.4%, and δ15N 3.8 to 13.1‰. These results are well correlated with b* color values of the sediment and generally show increased productivity during interglacial periods, likely through increased vertical mixing and deepwater ventilation, when compared to glacial periods within the Japan Sea/East Sea when the sea may be partially isolated.

  12. Sea-level variability over five glacial cycles.

    Science.gov (United States)

    Grant, K M; Rohling, E J; Ramsey, C Bronk; Cheng, H; Edwards, R L; Florindo, F; Heslop, D; Marra, F; Roberts, A P; Tamisiea, M E; Williams, F

    2014-09-25

    Research on global ice-volume changes during Pleistocene glacial cycles is hindered by a lack of detailed sea-level records for time intervals older than the last interglacial. Here we present the first robustly dated, continuous and highly resolved records of Red Sea sea level and rates of sea-level change over the last 500,000 years, based on tight synchronization to an Asian monsoon record. We observe maximum 'natural' (pre-anthropogenic forcing) sea-level rise rates below 2 m per century following periods with up to twice present-day ice volumes, and substantially higher rise rates for greater ice volumes. We also find that maximum sea-level rise rates were attained within 2 kyr of the onset of deglaciations, for 85% of such events. Finally, multivariate regressions of orbital parameters, sea-level and monsoon records suggest that major meltwater pulses account for millennial-scale variability and insolation-lagged responses in Asian monsoon records.

  13. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records

    Directory of Open Access Journals (Sweden)

    M. Jakobsson

    2017-08-01

    Full Text Available The Bering Strait connects the Arctic and Pacific oceans and separates the North American and Asian landmasses. The presently shallow ( ∼  53 m strait was exposed during the sea level lowstand of the last glacial period, which permitted human migration across a land bridge today referred to as the Bering Land Bridge. Proxy studies (stable isotope composition of foraminifera, whale migration into the Arctic Ocean, mollusc and insect fossils and paleobotanical data have suggested a range of ages for the Bering Strait reopening, mainly falling within the Younger Dryas stadial (12.9–11.7 cal ka BP. Here we provide new information on the deglacial and post-glacial evolution of the Arctic–Pacific connection through the Bering Strait based on analyses of geological and geophysical data from Herald Canyon, located north of the Bering Strait on the Chukchi Sea shelf region in the western Arctic Ocean. Our results suggest an initial opening at about 11 cal ka BP in the earliest Holocene, which is later than in several previous studies. Our key evidence is based on a well-dated core from Herald Canyon, in which a shift from a near-shore environment to a Pacific-influenced open marine setting at around 11 cal ka BP is observed. The shift corresponds to meltwater pulse 1b (MWP1b and is interpreted to signify relatively rapid breaching of the Bering Strait and the submergence of the large Bering Land Bridge. Although the precise rates of sea level rise cannot be quantified, our new results suggest that the late deglacial sea level rise was rapid and occurred after the end of the Younger Dryas stadial.

  14. Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records

    Science.gov (United States)

    Jakobsson, Martin; Pearce, Christof; Cronin, Thomas M.; Backman, Jan; Anderson, Leif G.; Barrientos, Natalia; Bjork, Goran; Coxhall, Helen; de Boer, Agatha; Mayer, Larry; Morth, Carl-Magnus; Nilsson, Johan; Rattray, Jayne; Sranne, Christian; Semiletov, Igor; O'Regan, Matt

    2017-01-01

    The Bering Strait connects the Arctic and Pacific oceans and separates the North American and Asian landmasses. The presently shallow ( ∼  53 m) strait was exposed during the sea level lowstand of the last glacial period, which permitted human migration across a land bridge today referred to as the Bering Land Bridge. Proxy studies (stable isotope composition of foraminifera, whale migration into the Arctic Ocean, mollusc and insect fossils and paleobotanical data) have suggested a range of ages for the Bering Strait reopening, mainly falling within the Younger Dryas stadial (12.9–11.7 cal ka BP). Here we provide new information on the deglacial and post-glacial evolution of the Arctic–Pacific connection through the Bering Strait based on analyses of geological and geophysical data from Herald Canyon, located north of the Bering Strait on the Chukchi Sea shelf region in the western Arctic Ocean. Our results suggest an initial opening at about 11 cal ka BP in the earliest Holocene, which is later than in several previous studies. Our key evidence is based on a well-dated core from Herald Canyon, in which a shift from a near-shore environment to a Pacific-influenced open marine setting at around 11 cal ka BP is observed. The shift corresponds to meltwater pulse 1b (MWP1b) and is interpreted to signify relatively rapid breaching of the Bering Strait and the submergence of the large Bering Land Bridge. Although the precise rates of sea level rise cannot be quantified, our new results suggest that the late deglacial sea level rise was rapid and occurred after the end of the Younger Dryas stadial.

  15. Overdeepening development in a glacial landscape evolution model with quarrying

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.; Iverson, Neal R.

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified when considering bed abrasion, where rock debris transported in the basal ice drives erosion. However, the relation is not well...... supported when considering models for quarrying of rock blocks from the bed. Field observations indicate that the principal mechanism of glacial erosion is quarrying, which emphasize the importance of a better way of implementing erosion by quarrying in glacial landscape evolution models. Iverson (2012...... around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness, which is neglected in previous quarrying models. Sliding rate, effective pressure, and average bedslope...

  16. Penultimate Glacial-Interglacial Climate Variability in the Southern Great Plains of North America

    Science.gov (United States)

    Bartow-Gillies, E.; Maupin, C. R.; Roark, E. B.; Chou, Y. C.; White, K.; Kampen-Lewis, S. V.; Shen, C. C.

    2017-12-01

    Projections of changes in rainfall under future warming scenarios vary in their sign and intensity over the Southern Great Plains (SGP). A scarcity of local paleoclimate information before the Last Glacial Maximum (LGM) limits our understanding of regional climate responses to changes in mean state and forcing. Here, we present absolutely U/Th-dated oxygen and carbon isotope records from a calcite stalagmite near Georgetown, Texas (30°N, 98°W), spanning 98 to 209 kyr before present (kyr BP). SGP moisture is primarily sourced from the Gulf of Mexico, and precipitation exhibits clear seasonality, with a biannual rainy season divided into late boreal spring and fall. We interpret the oxygen isotopic composition of the stalagmite to reflect changes in rainwater δ18O composition, as well as cave temperature, through time. There are no clear kinetic isotope effects observed within the stalagmite. More negative (positive) δ18O values are a reflection of warmer and wetter (cooler and drier) conditions based on modern observations of rainwater δ18O at the study site. Variations in stalagmite δ13C may be driven by shifts in overlying vegetation type and changes in the rates of karst flow and prior calcite precipitation. The stalagmite records include Marine Isotope Stage (MIS) 5e, an interval where global temperatures may have been as much as 2°C warmer and sea level 4-6 m higher than present. Thus, our δ18O record provides context of unique importance for how SGP hydroclimate may respond to future warming. Prominent features in the δ18O record, including a warm and wet MIS 5e appear to be paced by precession, with the timing of δ18O minima (maxima) broadly consistent with that of maxima (minima) in monthly insolation at 30°N. The δ13C record exhibits a striking similarity to canonical, sawtooth records of glacial-interglacial variability, which suggests Great Plains vegetation communities may be sensitive to the status of Northern Hemisphere glaciation. Our SGP

  17. Last Glacial Maximum CO2 and d13C successfully reconciled

    NARCIS (Netherlands)

    Bouttes, N.; Paillard, D.; Roche, D.M.V.A.P.; Brovkin, V.; Bopp, L.

    2011-01-01

    During the Last Glacial Maximum (LGM, ∼21,000 years ago) the cold climate was strongly tied to low atmospheric CO2 concentration (∼190 ppm). Although it is generally assumed that this low CO2 was due to an expansion of the oceanic carbon reservoir, simulating the glacial level

  18. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods.

    Science.gov (United States)

    Amidon, William H; Fisher, G Burch; Burbank, Douglas W; Ciccioli, Patricia L; Alonso, Ricardo N; Gorin, Andrew L; Silverhart, Perri H; Kylander-Clark, Andrew R C; Christoffersen, Michael S

    2017-06-20

    Although Earth's climate history is best known through marine records, the corresponding continental climatic conditions drive the evolution of terrestrial life. Continental conditions during the latest Miocene are of particular interest because global faunal turnover is roughly synchronous with a period of global glaciation from ∼6.2-5.5 Ma and with the Messinian Salinity Crisis from ∼6.0-5.3 Ma. Despite the climatic and ecological significance of this period, the continental climatic conditions associated with it remain unclear. We address this question using erosion rates of ancient watersheds to constrain Mio-Pliocene climatic conditions in the south-central Andes near 30° S. Our results show two slowdowns in erosion rate, one from ∼6.1-5.2 Ma and another from 3.6 to 3.3 Ma, which we attribute to periods of continental aridity. This view is supported by synchrony with other regional proxies for aridity and with the timing of glacial ‟cold" periods as recorded by marine proxies, such as the M2 isotope excursion. We thus conclude that aridity in the south-central Andes is associated with cold periods at high southern latitudes, perhaps due to a northward migration of the Southern Hemisphere westerlies, which disrupted the South American Low Level Jet that delivers moisture to southeastern South America. Colder glacial periods, and possibly associated reductions in atmospheric CO 2 , thus seem to be an important driver of Mio-Pliocene ecological transitions in the central Andes. Finally, this study demonstrates that paleo-erosion rates can be a powerful proxy for ancient continental climates that lie beyond the reach of most lacustrine and glacial archives.

  19. A Complex System of Glacial Sub-Refugia Drives Endemic Freshwater Biodiversity on the Tibetan Plateau.

    Science.gov (United States)

    Clewing, Catharina; Albrecht, Christian; Wilke, Thomas

    2016-01-01

    Although only relatively few freshwater invertebrate families are reported from the Tibetan Plateau, the degree of endemism may be high. Many endemic lineages occur within permafrost areas, raising questions about the existence of isolated intra-plateau glacial refugia. Moreover, if such refugia existed, it might be instructive to learn whether they were associated with lakes or with more dynamic ecosystems such as ponds, wetlands, or springs. To study these hypotheses, we used pulmonate snails of the plateau-wide distributed genus Radix as model group and the Lake Donggi Cona drainage system, located in the north-eastern part of the plateau, as model site. First, we performed plateau-wide phylogenetic analyses using mtDNA data to assess the overall relationships of Radix populations inhabiting the Lake Donggi Cona system for revealing refugial lineages. We then conducted regional phylogeographical analyses applying a combination of mtDNA and nuclear AFLP markers to infer the local structure and demographic history of the most abundant endemic Radix clade for identifying location and type of (sub-)refugia within the drainage system. Our phylogenetic analysis showed a high diversity of Radix lineages in the Lake Donggi Cona system. Subsequent phylogeographical analyses of the most abundant endemic clade indicated a habitat-related clustering of genotypes and several Late Pleistocene spatial/demographic expansion events. The most parsimonious explanation for these patterns would be a scenario of an intra-plateau glacial refugium in the Lake Donggi Cona drainage system, which might have consisted of isolated sub-refugia. Though the underlying processes remain unknown, an initial separation of lake and watershed populations could have been triggered by lake-level fluctuations before and during the Last Glacial Maximum. This study inferred the first intra-plateau refugium for freshwater animals on the Tibetan Plateau. It thus sheds new light on the evolutionary history

  20. Thermodynamic and Dynamic Causes of Pluvial Conditions During the Last Glacial Maximum in Western North America

    Science.gov (United States)

    Morrill, Carrie; Lowry, Daniel P.; Hoell, Andrew

    2018-01-01

    During the last glacial period, precipitation minus evaporation increased across the currently arid western United States. These pluvial conditions have been commonly explained for decades by a southward deflection of the jet stream by the Laurentide Ice Sheet. Here analysis of state-of-the-art coupled climate models shows that effects of the Laurentide Ice Sheet on the mean circulation were more important than storm track changes in generating wet conditions. Namely, strong cooling by the ice sheet significantly reduced humidity over land, increasing moisture advection in the westerlies due to steepened humidity gradients. Additionally, the removal of moisture from the atmosphere by mass divergence associated with the subtropical high was diminished at the Last Glacial Maximum compared to present. These same dynamic and thermodynamic factors, working in the opposite direction, are projected to cause regional drying in western North America under increased greenhouse gas concentrations, indicating continuity from past to future in the mechanisms altering hydroclimate.

  1. Integration of ice-core, marine and terrestrial records for the Australian Last Glacial Maximum and Termination: a contribution from the OZ INTIMATE group

    Science.gov (United States)

    Turney, C. S. M.; Haberle, S.; Fink, D.; Kershaw, A. P.; Barbetti, M.; Barrows, T. T.; Black, M.; Cohen, T. J.; Corrège, T.; Hesse, P. P.; Hua, Q.; Johnston, R.; Morgan, V.; Moss, P.; Nanson, G.; van Ommen, T.; Rule, S.; Williams, N. J.; Zhao, J.-X.; D'Costa, D.; Feng, Y.-X.; Gagan, M.; Mooney, S.; Xia, Q.

    2006-10-01

    The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric teleconnection and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright

  2. Glacial wetland distribution and methane emissions estimated from PMIP2 climate simulations

    NARCIS (Netherlands)

    Weber, S.L.; Drury, A.J.; Toonen, W.H.J.; Weele, M. van

    2010-01-01

    The interglacial–glacial decrease in atmospheric methane concentration is often attributed to a strong decline in the wetland source. This seems consistent with the extreme coldness and vastly expanded ice sheets. Here we analyse coupled model simulations for the last glacial maximum from the

  3. Sediment core and glacial environment reconstruction - a method review

    Science.gov (United States)

    Bakke, Jostein; Paasche, Øyvind

    2010-05-01

    Alpine glaciers are often located in remote and high-altitude regions of the world, areas that only rarely are covered by instrumental records. Reconstructions of glaciers has therefore proven useful for understanding past climate dynamics on both shorter and longer time-scales. One major drawback with glacier reconstructions based solely on moraine chronologies - by far the most common -, is that due to selective preservation of moraine ridges such records do not exclude the possibility of multiple Holocene glacier advances. This problem is true regardless whether cosmogenic isotopes or lichenometry have been used to date the moraines, or also radiocarbon dating of mega-fossils buried in till or underneath the moraines themselves. To overcome this problem Karlén (1976) initially suggested that glacial erosion and the associated production of rock-flour deposited in downstream lakes could provide a continuous record of glacial fluctuations, hence overcoming the problem of incomplete reconstructions. We want to discuss the methods used to reconstruct past glacier activity based on sediments deposited in distal glacier-fed lakes. By quantifying physical properties of glacial and extra-glacial sediments deposited in catchments, and in downstream lakes and fjords, it is possible to isolate and identify past glacier activity - size and production rate - that subsequently can be used to reconstruct changing environmental shifts and trends. Changes in average sediment evacuation from alpine glaciers are mainly governed by glacier size and the mass turnover gradient, determining the deformation rate at any given time. The amount of solid precipitation (mainly winter accumulation) versus loss due to melting during the ablation-season (mainly summer temperature) determines the mass turnover gradient in either positive or negative direction. A prevailing positive net balance will lead to higher sedimentation rates and vice versa, which in turn can be recorded in downstream

  4. GLOFs in the WOS: bibliometrics, geographies and global trends of research on glacial lake outburst floods (Web of Science, 1979-2016)

    Science.gov (United States)

    Emmer, Adam

    2018-03-01

    Research on glacial lake outburst floods (GLOFs) - specific low-frequency, high-magnitude floods originating in glacial lakes, including jökulhlaups - is well justified in the context of glacier ice loss and glacial lake evolution in glacierized areas all over the world. Increasing GLOF research activities, which are documented by the increasing number of published research items, have been observed in the past few decades; however, comprehensive insight into the GLOF research community, its global bibliometrics, geographies and trends in research is missing. To fill this gap, a set of 892 GLOF research items published in the Web of Science database covering the period 1979-2016 was analysed. General bibliometric characteristics, citations and references were analysed, revealing a certain change in the publishing paradigm over time. Furthermore, the global geographies of research on GLOFs were studied, focusing on (i) where GLOFs are studied, (ii) who studies GLOFs, (iii) the export of research on GLOFs and (iv) international collaboration. The observed trends and links to the challenges ahead are discussed and placed in a broader context.

  5. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    Directory of Open Access Journals (Sweden)

    A. P. Medeu

    2013-01-01

    Full Text Available The river Khorgos (in Kazakhstan – Korgas is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance of political-economical value. Nowadays development of glacial lakes in the overhead part of Khorgos river basin has reached apogee. As a roof we can mention the maximum of total glacial lakes area (1,7 million m² in 41 lakes and emptied kettles of former glacial lakes. Six lakes reached highly dangerous outburst stage: the volume of lakes reached some million m³, maximum depth up to 30–40 m. Focal ground filtration of the water from lakes takes place. Development of glacial lakes in Khorgos river basin will continue, and these lakes give and will give real danger for the Center of Frontier Cooperation in case of outburst of naturally dammed lake Kazankol with the similar mechanism of Issyk lake outburst, occurred in 1963 in ZailijskiyAlatau (Ile Alatau.

  6. Mass occurrence and sporadic distribution of Corynocera ambigua Zetterstedt (Diptera, Chironomidae) in Danish lakes. Neo- and palaeolimnological records

    DEFF Research Database (Denmark)

    Brodersen, Klaus Peter; Lindegaard, C.

    1999-01-01

    Corynocera ambigua, Chironomidae, zoobenthos, charophytes, palaeolimnology, late-glacial, Denmark......Corynocera ambigua, Chironomidae, zoobenthos, charophytes, palaeolimnology, late-glacial, Denmark...

  7. From the Last Interglacial to the Anthropocene: Modelling a Complete Glacial Cycle (PalMod)

    Science.gov (United States)

    Brücher, Tim; Latif, Mojib

    2017-04-01

    We will give a short overview and update on the current status of the national climate modelling initiative PalMod (Paleo Modelling, www.palmod.de). PalMod focuses on the understanding of the climate system dynamics and its variability during the last glacial cycle. The initiative is funded by the German Federal Ministry of Education and Research (BMBF) and its specific topics are: (i) to identify and quantify the relative contributions of the fundamental processes which determined the Earth's climate trajectory and variability during the last glacial cycle, (ii) to simulate with comprehensive Earth System Models (ESMs) the climate from the peak of the last interglacial - the Eemian warm period - up to the present, including the changes in the spectrum of variability, and (iii) to assess possible future climate trajectories beyond this century during the next millennia with sophisticated ESMs tested in such a way. The research is intended to be conducted over a period of 10 years, but with shorter funding cycles. PalMod kicked off in February 2016. The first phase focuses on the last deglaciation (app. the last 23.000 years). From the ESM perspective PalMod pushes forward model development by coupling ESM with dynamical ice sheet models. Computer scientists work on speeding up climate models using different concepts (like parallelisation in time) and one working group is dedicated to perform a comprehensive data synthesis to validate model performance. The envisioned approach is innovative in three respects. First, the consortium aims at simulating a full glacial cycle in transient mode and with comprehensive ESMs which allow full interactions between the physical and biogeochemical components of the Earth system, including ice sheets. Second, we shall address climate variability during the last glacial cycle on a large range of time scales, from interannual to multi-millennial, and attempt to quantify the relative contributions of external forcing and processes

  8. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    OpenAIRE

    Jansen, Malte F.

    2016-01-01

    To understand climatic swings between glacial and interglacial climates we need to explain the observed fluctuations in atmospheric carbon dioxide (CO2), which in turn are most likely driven by changes in the deep ocean circulation. This study presents a model for differences in the deep ocean circulation between glacial and interglacial climates consistent with both our physical understanding and various proxy observations. The results suggest that observed changes in ocean circulation and s...

  9. The timing of Late Pleistocene glaciation at Mount Wilhelm, Papua New Guinea

    Science.gov (United States)

    Mills, Stephanie; Barrows, Timothy; Hope, Geoff; Pillans, Brad; Fifield, Keith

    2016-04-01

    The highlands of New Guinea were the most extensively glaciated area in the Asian tropical region during the Late Pleistocene. Evidence for glaciation is widespread on most of the mountain peaks above ~3500 m. Glacial landforms include both valley and ice cap forms, but the timing of glaciation remains constrained to only a few local areas. This paper focuses on Mount Wilhelm, which is situated in the central southern region of Papua New Guinea at 5.78°S and is the highest peak (4510 m a.s.l.) We focus on a south easterly valley (Pindaunde Valley) emanating from the peak, where large moraines indicate the maximum ice extent of a valley glacier ~5 km long. Within this extensive moraine complex, recessional moraines document the retreat of the glacier towards the summit region. In order to determine the timing of deglaciation, we collected samples for surface exposure dating using 36Cl and 10Be from diorite boulders positioned on moraine crests. The ages indicate that maximum ice extent was attained during the last glacial maximum (LGM) and that ice remained near its maximum extent until after 15 ka but persisted at higher elevations almost until the Holocene. These results are similar to those described from Mt Giluwe to the northwest of Mount Wilhelm, where an ice cap reached its maximum extent at the LGM and remained there for around 3-4,000 years. This indicates that full glacial conditions were only brief in this region of the tropics.

  10. Glacial Cycles and ice-sheet modelling

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    An attempt is made to simulate the Pleistocene glacial cycles with a numerical model of the Northern Hemisphere ice sheets. This model treats the vertically-integrated ice flow along a meridian, including computation of bedrock adjustment and temperature distribution in the ice. Basal melt water is

  11. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink.

    Science.gov (United States)

    Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf

    2015-09-18

    Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.

  12. Numerical investigations of subglacial hydrology as a direct and indirect driver of glacial erosion

    OpenAIRE

    Beaud, Flavien

    2017-01-01

    Glaciers shape high altitude and latitude landscapes in numerous ways. Erosion associated with glacial processes can limit the average height of mountain ranges, while creating the greatest relief on Earth and shaping the highest mountain peaks, but glaciers can also shield pre-existing topography. Glacial erosion processes, though still enigmatic, are central to the evolution of landscapes, particularly since the onset of the Pleistocene. Glacial erosion comprises three fundamental processes...

  13. Different nature of glacial CaCO3 constituents between MIS 2 and MIS 12 in the East Sea/Japan Sea and its paleoceanographic implication

    Science.gov (United States)

    Khim, Boo-Keun; Tada, Ryuji; Itaki, Takuya

    2014-05-01

    Two piston cores (PC-05 and PC-08) were collected on the Yamato Rise in the East Sea/Japan Sea during the KR07-12 cruise. A composite core was achieved with the successful replacement of almost half of the upper part of core PC-05 by the entirety of core PC-08 based on the co-equivalence of L* values and the dark layers, because an interval (170 cm to 410 cm) of core PC-05 was considerably disturbed due to fluidization during the core execution. Chronostratigraphy of the composite core was constructed by the direct comparison of L* values to the well-dated core MD01-2407 that was obtained in the Oki Ridge. The lower-bottom of the composite core reached back to Marine Isotope Stage (MIS) 14, based on the age estimate by LR04 stacks. Downcore opal variation of the composite core exhibited the distinct orbital-scale cyclic changes; high during the interglacial and low during the glacial periods. However, downcore CaCO3 variation showed no corresponding orbital-scale cyclic change between glacial and interglacial periods. Some intervals of both periods were high in CaCO3 content. Frequent and large fluctuations in CaCO3 content seemed to be more related to the presence of dark layers containing thin lamination (TL) within the glacial and interglacial intervals. It is worthy to note that MIS 2 and MIS 12 are characterized by distinctly high CaCO3 content, showing up to 18% and 73%, respectively, among the glacial periods. Furthermore, in terms of lithology, MIS 2 was characterized by a thick dark layer (low L* values) with TL, whereas MIS 12 preserved the distinctly light layer (high L* values) with parallel laminations. Another remarkable dissimilarity between MIS 2 and MIS 12 was the nature of their CaCO3 constituent; the CaCO3 constituent of MIS 2 consisted of mostly planktonic foraminifera, whereas that of MIS 12 was mostly dump of coccolithophorids, regardless the presence of planktonic foraminifera. The distinctness of the CaCO3 constituents between MIS 2 and MIS

  14. People of the ancient rainforest: late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka.

    Science.gov (United States)

    Perera, Nimal; Kourampas, Nikos; Simpson, Ian A; Deraniyagala, Siran U; Bulbeck, David; Kamminga, Johan; Perera, Jude; Fuller, Dorian Q; Szabó, Katherine; Oliveira, Nuno V

    2011-09-01

    Batadomba-lena, a rockshelter in the rainforest of southwestern Sri Lanka, has yielded some of the earliest evidence of Homo sapiens in South Asia. H. sapiens foragers were present at Batadomba-lena from ca. 36,000 cal BP to the terminal Pleistocene and Holocene. Human occupation was sporadic before the global Last Glacial Maximum (LGM). Batadomba-lena's Late Pleistocene inhabitants foraged for a broad spectrum of plant and mainly arboreal animal resources (monkeys, squirrels and abundant rainforest snails), derived from a landscape that retained equatorial rainforest cover through periods of pronounced regional aridity during the LGM. Juxtaposed hearths, palaeofloors with habitation debris, postholes, excavated pits, and animal and plant remains, including abundant Canarium nutshells, reflect intensive habitation of the rockshelter in times of monsoon intensification and biome reorganisation after ca. 16,000 cal BP. This period corresponds with further broadening of the economic spectrum, evidenced though increased contribution of squirrels, freshwater snails and Canarium nuts in the diet of the rockshelter occupants. Microliths are more abundant and morphologically diverse in the earliest, pre-LGM layer and decline markedly during intensified rockshelter use on the wane of the LGM. We propose that changing toolkits and subsistence base reflect changing foraging practices, from shorter-lived visits of highly mobile foraging bands in the period before the LGM, to intensified use of Batadomba-lena and intense foraging for diverse resources around the site during and, especially, following the LGM. Traces of ochre, marine shell beads and other objects from an 80 km-distant shore, and, possibly burials reflect symbolic practices from the outset of human presence at the rockshelter. Evidence for differentiated use of space (individual hearths, possible habitation structures) is present in LGM and terminal Pleistocene layers. The record of Batadomba-lena demonstrates

  15. Paleosoils and pedogenic calcretes formations in Fray Bentos (Oligocene - early miocene) Raigon (late pliocene and middle pleistocene) and Libertad (early - middle pleistocene)

    International Nuclear Information System (INIS)

    Tofalo, O.; Morras, H.; Sanchez-Bettucci, L.

    2012-01-01

    The Fray Bentos formation is composed by loessic deposits based on paleosoils and pedogenic calcretes (Oligocene - early miocene). In this deposits are tubular and lamellar formations which would have been formed in arid climates.The fluvial origen of Raigon Formation, (late pliocene and middle pleistocene) presents a paleosoil roof which is generated under a subhumid climate.The Libertad Formation during the glacial intervals consisted of loess deposits

  16. Influence of boundary conditions on the Southern Hemisphere atmospheric circulation during the last glacial maximum Influência das condições de fronteira na circulação atmosférica do Hemisfério Sul durante o último máximo glacial

    Directory of Open Access Journals (Sweden)

    F. Justino

    2008-12-01

    Full Text Available Based upon coupled climate simulations driven by present day and glacial boundary conditions, we demonstrate that although the ice sheet topography modifications during the glacial period are primarily placed in the Northern Hemisphere (NH, a climate simulation that employs the ICE-5G glacial topography delivers significantly enhanced climate anomalies in the Southern Hemisphere (SH as well. These conditions, in association with climate anomalies produced by the modification of the atmospheric CO² concentration characteristic of the Last Glacial Maximum (LGM interval, are shown to be the primary forcing of the SH climate during this epoch. Climate anomalies up to -6°C over the Antarctic region and -4°C over South America are predicted to occur in respect to present day conditions. Accompanying the SH cooling in the LGM simulation there exists a remarkable reduction in the specific humidity, which in turn enforces the overall Southern Hemisphere cooling due to the weaker greenhouse capacity of the dry atmosphere.Com base em simulações numéricas conduzidas com condições de fronteiras características dos períodos glaciais e atual, demonstra-se que embora as maiores anomalias da topografia da Terra no período glacial estejam no Hemisfério Norte, esta inclusão dos blocos de gelo leva a substanciais mudanças na circulação atmosférica austral para aquela época, indicando uma forte teleconexão inter-hemisférica. Em associação com a redução nos níveis de carbono atmosférico para 200 ppm, anomalias de temperatura de -6°C em torno da região antártica, e -4°C no continente sul-americano são simuladas para o último máximo glacial (UMG em relação a condições atuais. Concomitantemente, o UMG é caracterizado por uma drástica redução na umidade específica, que por sua vez intensifica o esfriamento inicial devido à mais fraca capacidade de estufa da atmosfera mais seca.

  17. Glacial morphology and depositional sequences of the Antarctic Continental Shelf

    Science.gov (United States)

    ten Brink, Uri S.; Schneider, Christopher

    1995-01-01

    Proposes a simple model for the unusual depositional sequences and morphology of the Antarctic continental shelf. It considers the regional stratal geometry and the reversed morphology to be principally the results of time-integrated effects of glacial erosion and sedimentation related to the location of the ice grounding line. The model offers several guidelines for stratigraphic interpretation of the Antarctic shelf and a Northern Hemisphere shelf, both of which were subject to many glacial advances and retreats. -Authors

  18. Pulmonary infections in the late period after allogeneic bone marrow transplantation: chest radiography versus computed tomography

    International Nuclear Information System (INIS)

    Schueller, Gerd; Matzek, Wolfgang; Kalhs, Peter; Schaefer-Prokop, Cornelia

    2005-01-01

    Purpose: To analyze the capabilities of chest roentgenogram (CXR) and computed tomography (CT) in the evaluation of pulmonary infectious disease in the late period (>100 days) after allogeneic bone marrow transplantation (BMT). Methods: Ninety-four matched CXR and CT examinations were performed for clinical suspicion of infectious lung disease. The time gap between CXR and CT was 48 h at maximum. The image pairs were correlated with the patients' clinical course and with the results of diagnostic bronchoalveolar lavage (BAL). An unremarkable clinical course over the subsequent seven days after imaging and/or negative microbiological culture served as the basis for excluding infectious lung disease. Positive microbiological culture and/or improvement of symptoms after antibiotic therapy were considered as evidence of infectious disease. Results: The correlation with the clinical course and/or BAL revealed a significantly higher sensitivity, negative predictive value, and accuracy for CT than for CXR (89% versus 58%, P < 0.0001; 78% versus 47%, P < 0.0001; 90% versus 68%, P < 0.0001, respectively). CT was significantly more diagnostic in BAL verified fungal and bacterial infections (P < 0.05). Conclusion: CT is significantly superior to CXR in the evaluation of infectious pulmonary disease in the late phase after BMT. Therefore, an unremarkable CXR should be followed by a CT scan to reliably detect or to accurately exclude early pulmonary infection in these patients

  19. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988...

  20. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Koji; Sakai, Akiko; Nuimura, Takayuki [Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601 (Japan); Yamaguchi, Satoru [Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Prevention, Nagaoka 940-0821 (Japan); Sharma, Rishi R [Department of Hydrology and Meteorology, Ministry of Environment, Science and Technology, Babar Mahal, Kathmandu (Nepal)

    2009-10-15

    Changes in the area and bathymetry of Imja Glacial Lake and in the elevation of its damming moraine, Khumbu region, Nepal Himalaya are investigated. Previously reported changes in the lake area have been updated by multi-temporal ASTER images, which revealed a decreased expansion rate after 2000. A provisional expansion of the lake observed in 2004, from which some studies concluded an accelerated lake expansion due to global warming, has, from 2005, subsided to the glacier surface. Bathymetric changes for the period 1992-2002 that were first obtained for Himalayan glacial lakes suggest that the melting of debris-covered ice beneath the lake is insignificant in terms of the increase in lake volume, and that the retreat of a glacier in contact with the lake by calving is essential for the lake's expansion. Changes in the height of a damming moraine for the period 2001-2007 suggest a continuous surface lowering near the lake, though the lowering rates are smaller than those for the period 1989-1994.