WorldWideScience

Sample records for laser-welded v-cr-ti alloys

  1. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    Science.gov (United States)

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (pTIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  2. Feasibility of correlating V-Cr-Ti alloy weld strength with weld chemistry. CRADA final report

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Odom, R.W.

    1998-06-01

    The mechanical properties of refractory metals such as vanadium are determined to a large extent by the interstitial impurities in the alloy. In the case of welding, interstitial impurities are introduced in the welding process from the atmosphere and by dissolution of existing precipitates in the alloy itself. Because of the necessity of having an ultra-pure atmosphere, a vacuum chamber or a glove box is necessary. In the V-Cr-Ti system, the titanium serves as a getter to control the concentration of oxygen and nitrogen in solid solution in the alloy. In this project the secondary ion mass spectrometry (SIMS) technique was used to detect, measure, and map the spacial distribution of impurity elements in welds in the alloy V-4Cr-4Ti. An attempt was then made to correlate the concentrations and distributions of the impurities with mechanical properties of the welds. Mechanical integrity of the welds was determined by Charpy V-notch testing. Welds were prepared by the gas-tungsten-arc (GTA) method. Charpy testing established a correlation between weld impurity concentration and the ductile to brittle transition temperature (DBTT). Higher concentrations of oxygen resulted in a higher DBTT. An exception was noted in the case of a low-oxygen weld which had a high hydrogen concentration resulting in a brittle weld. The concentrations and distributions of the impurities determined by SIMS could not be correlated with the mechanical properties of the welds. This research supports efforts to develop fusion reactor first wall and blanket structural materials

  3. Mechanical Properties of Laser Weldment of V-4Cr-4Ti Alloy

    International Nuclear Information System (INIS)

    Heo, Nam-Jin; Nagasaka, Takuya; Muroga, Takeo; Nishimura, Arata; Shinozaki, Kenji; Watanabe, Hideo

    2003-01-01

    The effect of the laser welding condition on properties of the weldment, such as bending, tensile and charpy impact properties were investigated in a V-4Cr-4Ti alloy (NIFS-HEAT- 2). The microstructural and microchemical development in the weldment was also investigated for mechanistic study of the impurity behavior during the welding. Increase in hardness occurred in the weld zone. The hardening was due to the dissolution of the large and small precipitates existed in the base metal before welding. The degree of hardening varied with a distance from the bead center. The absorption energy by the impact test increased with the decrease in the input power density during the laser welding. The impact absorption energy of the weld, which is similar to that of the base metal, was obtained by optimizing the welding condition

  4. The effect of laser welding process parameters on the mechanical and microstructural properties of V-4CR-4TI structural materials

    International Nuclear Information System (INIS)

    Reed, C. B.; Natesan, K.; Xu, Z.; Smith, D. L.

    1999-01-01

    V-Cr-Ti alloys are among the leading candidate materials for the frost wall and other structural materials applications in fusion power reactors because of several important advantages including inherently low irradiation-induced activity, good mechanical properties, good compatibility with lithium, high thermal conductivity and good resistance to irradiation-induced swelling and damage [1]. However, weldability of these alloys in general must be demonstrated, and laser welding, specifically, must be developed. Laser welding is considered to be an attractive process for construction of a reactor due to its high penetrating power and potential flexibility. This paper reports on a systematic study which was conducted to examine the use of a pulsed Nd:YAG laser to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the resulting joints. Deep penetration and defect-free welds were achieved under an optimal combination of laser parameters including focal length of lens, pulse energy, pulse repetition rate, beam travel speed, and shielding gas arrangement. The key for defect-free welds was found to be the stabilization of the keyhole and providing an escape path for the gas trapped in the weld. An innovative method was developed to obtain deep penetration and oxygen contamination free welds. Oxygen and nitrogen uptake were reduced to levels only a few ppm higher than the base metal by design and development of an environmental control box. The effort directed at developing an acceptable postwelding heat treatment showed that five passes of a diffuse laser beam over the welded region softened the weld material, especially in the root region of the weld

  5. A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate

    International Nuclear Information System (INIS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2013-01-01

    This paper reports on a study aiming at comparing properties of the Ti6Al4V titanium alloy joints between pulsed Nd:YAG laser welding and traditional fusion welding. To achieve the research purpose, Ti6Al4V titanium alloy plates with a thickness of 0.8 mm were welded using pulsed Nd:YAG laser beam welding (LBW) and gas tungsten arc welding (TIG), respectively. Residual distortions, weld geometry, microstructure and mechanical properties of the joints produced with LBW and TIG welding were compared. During the tensile test, with the aid of a high speed infrared camera, evolution of the plastic strain within tensile specimens corresponding to LBW and TIG welding were recorded and analyzed. Compared with the TIG, the welded joint by LBW has the characters of small overall residual distortion, fine microstructure, narrow heat-affected zone (HAZ), high Vickers hardness. LBW welding method can produce joints with higher strength and ductility. It can be concluded that Pulsed Nd:YAG laser welding is much more suitable for welding the thin Ti6Al4V titanium alloy plate than TIG welding.

  6. Laser welding of Ti-Ni type shape memory alloy

    International Nuclear Information System (INIS)

    Hirose, Akio; Araki, Takao; Uchihara, Masato; Honda, Keizoh; Kondoh, Mitsuaki.

    1990-01-01

    The present study was undertaken to apply the laser welding to the joining of a shape memory alloy. Butt welding of a Ti-Ni type shape memory alloy was performed using 10 kW CO 2 laser. The laser welded specimens showed successfully the shape memory effect and super elasticity. These properties were approximately identical with those of the base metal. The change in super elasticity of the welded specimen during tension cycling was investigated. Significant changes in stress-strain curves and residual strain were not observed in the laser welded specimen after the 50-time cyclic test. The weld metal exhibited the celler dendrite. It was revealed by electron diffraction analysis that the phase of the weld metal was the TiNi phase of B2 structure which is the same as the parent phase of base metal and oxide inclusions crystallized at the dendrite boundary. However, oxygen contamination in the weld metal by laser welding did not occur because there was almost no difference in oxygen content between the base metal and the weld metal. The transformation temperatures of the weld metal were almost the same as those of the base metal. From these results, laser welding is applicable to the joining of the Ti-Ni type shape memory alloy. As the application of laser welding to new shape memory devices, the multiplex shape memory device of welded Ti-50.5 at % Ni and Ti-51.0 at % Ni was produced. The device showed two-stage shape memory effects due to the difference in transformation temperature between the two shape memory alloys. (author)

  7. Development of laser welding techniques for vanadium alloys

    International Nuclear Information System (INIS)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-01-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO 2 laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m 3 /s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to ∼180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000 degrees C for 1 h in vacuum reduced the DBTT to <-25 degrees C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study

  8. The effect of laser welding process parameters on the mechanical and microstructural properties of V-4Cr-4Ti structural materials

    International Nuclear Information System (INIS)

    Reed, C.; Natesan, K.; Xu, Z.; Smith, D.

    2000-01-01

    This paper reports on a systematic study which was conducted to examine the use of a pulsed Nd:YAG laser to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the resulting joints. Deep penetration and defect-free welds were achieved under an optimal combination of laser parameters including focal length of lens, pulse energy, pulse repetition rate, beam travel speed, and shielding gas arrangement. The key for defect-free welds was found to be the stabilization of the keyhole and providing an escape path for the gas trapped in the weld. An innovative method was developed to obtain deep penetration and oxygen contamination free welds. Oxygen and nitrogen uptake were reduced to levels only a few ppm higher than the base metal by design and development of an environmental control box. Effort directed at developing an acceptable postwelding heat treatment showed that five passes of a diffuse laser beam over the welded region softened the weld material, especially in the root region of the weld

  9. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  10. Metallurgical Bonding Development of V-4Cr-4Ti Alloy for the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Trester, P.W.

    1998-01-01

    General Atomics (GA), in conjunction with the Department of Energy's (DOE) DIII-D Program, is carrying out a plan to utilize a vanadium alloy in the DIII-D tokamak as part of the DIII-D Radiative Divertor (RD) upgrade. The V-4Cr-4Ti alloy has been selected in the U.S. as the leading candidate vanadium alloy for fusion applications. This alloy will be used for the divertor fabrication. Manufacturing development with the V-4Cr-4Ti alloy is a focus of the DIII-D RD Program. The RD structure, part of which will be fabricated from V-4Cr-4Ti alloy, will require many product forms and types of metal/metal bonded joints. Metallurgical bonding methods development on this vanadium alloy is therefore a key area of study by GA. Several solid state (non-fusion weld) and fusion weld joining methods are being investigated. To date, GA has been successful in producing ductile, high strength, vacuum leak tight joints by all of the methods under investigation. The solid state joining was accomplished in air, i.e., without the need for a vacuum or inert gas environment to prevent interstitial impurity contamination of the V-4Cr-4Ti alloy

  11. Hydrogen isotopes mobility and trapping in V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Budylkin, N.; Voloschin, L.; Mironova, E.; Riazantseva, N.; Tebus, V.

    1996-01-01

    In the last years the V-Ti-Cr alloys were considered as candidate materials for different structures of fusion reactors (blanket, first wall, divertor and so on) due to their advantages over other structure materials. Mobility and trapping parameters of hydrogen are essential characteristics for an assessment of using the V-Ti-Cr alloys in FR. In this paper: hydrogen problems for V-Ti-Cr alloys are formulated; V-H system data base is analyzed; study results of the hydrogen mobility and trapping in V-4Ti-4Cr and V-10Ti-5Cr alloys are given; the classification of V-alloys as radioactive waste according to the Russian Federation waste management rules is developed taking into account the residual amount of tritium ('inventory'). (orig.)

  12. Electrical resistivity of V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  13. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    Science.gov (United States)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  14. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  15. Modified section method for laser-welding of ill-fitting cp Ti and Ni-Cr alloy one-piece cast implant-supported frameworks.

    Science.gov (United States)

    Tiossi, R; Falcão-Filho, H; Aguiar Júnior, F A; Rodrigues, R C; Mattos, M da G; Ribeiro, R F

    2010-05-01

    This study aimed to verify the effect of modified section method and laser-welding on the accuracy of fit of ill-fitting commercially pure titanium (cp Ti) and Ni-Cr alloy one-piece cast frameworks. Two sets of similar implant-supported frameworks were constructed. Both groups of six 3-unit implant-supported fixed partial dentures were cast as one-piece [I: Ni-Cr (control) and II: cp Ti] and evaluated for passive fitting in an optical microscope with both screws tightened and with only one screw tightened. All frameworks were then sectioned in the diagonal axis at the pontic region (III: Ni-Cr and IV: cp Ti). Sectioned frameworks were positioned in the matrix (10-Ncm torque) and laser-welded. Passive fitting was evaluated for the second time. Data were submitted to anova and Tukey-Kramer honestly significant difference tests (P screws tightened, one-piece cp Ti group II showed significantly higher misfit values (27.57 +/- 5.06 microm) than other groups (I: 11.19 +/- 2.54 microm, III: 12.88 +/- 2.93 microm, IV: 13.77 +/- 1.51 microm) (P screw-tightened test, with readings on the opposite side to the tightened side, Ni-Cr cast as one-piece (I: 58.66 +/- 14.30 microm) was significantly different from cp Ti group after diagonal section (IV: 27.51 +/- 8.28 microm) (P 0.05). Results showed that diagonally sectioning ill-fitting cp Ti frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves passivity levels of the same frameworks when compared to one-piece cast structures.

  16. Relationship of microstructure and mechanical properties for V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Gazda, J.; Nowicki, L.J.; Smith, D.L.; Danyluk, S.

    1993-08-01

    Relation of composition, number density, and diameter of precipitates in microstructures of unalloyed V and V-Cr-Ti alloys to the yield strength, hardness, creep stress, and ductile-brittle transition temperature (DBTT) for these materials was determined from analytical electron microscopy analyses of precipitates in these materials and from mechanical properties data. Unalloyed V and V-Cr-Ti alloys with ≤3 wt. % Ti contained VC and TI(CNO) precipitates that were coherent with the matrix. The most common precipitates in the alloys were Ti(C 1-x-y N x O y ) that were non-coherent with the matrix. The number density of non-coherent precipitates was maximum in V-3Ti and V-5Cr-3Ti alloys, and the average diameter of non-coherent precipitates was minimum in V-(1--3)Ti and V-5Cr-3Ti alloys. The increase of yield strength and hardness of V on alloying with Ti and Cr was shown to be primarily due to coherent precipitate, solute-atom misfit, and shear-modulus difference effects. The creep stress for rupture in 1000 hours was related to the number density of precipitates, whereas the DBTT was related to the volume fraction of precipitates

  17. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  18. Grain boundary migration induced segregation in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Ohnuki, S.; Takahashi, H. [Univ. of Hokkaido (Japan)

    1996-10-01

    Analytical electron microscopy results are reported for a series of vanadium alloys irradiated in the HFIR JP23 experiment at 500{degrees}C. Alloys were V-5Cr-5Ti and pure vanadium which are expected to have transmuted to V-15Cr-5Ti and V-10Cr following irradiation. Analytical microscopy confirmed the expected transmutation occurred and showed redistribution of Cr and Ti resulting from grain boundary migration in V-5Cr-5Ti, but in pure V, segregation was reduced and no clear trends as a function of position near a boundary were identified.

  19. Laser Welding of Shape Memory Alloys

    Science.gov (United States)

    Oliveira, Joao Pedro de Sousa

    Joining of shape memory alloys is of great importance for both functional and structural applications as it can provide an increased design flexibility. In this work similar NiTi/NiTi, CuAlMn/CuAlMn and dissimilar NiTi/Ti6Al4V joints were produced by Nd:YAG laser. For the NiTi/NiTi joints the effect of process parameters (namely the heat input) on the superelastic and shape memory effects of the joints was assessed and correlated to its microstructure. Microstructural analysis was performed by means of X-ray diffraction using synchrotron radiation, which allowed for fine probing of the welded material. It was noticed the presence of martensite in the thermally affected regions, while the base material remained fully austenitic. The mechanisms for the formation of martensite, at room temperature, due to the welding procedure are presented and the influence of this phase on the functional properties of the joints is discussed. Additionally, the residual stresses were determined using synchrotron X-ray diffraction. For the dissimilar NiTi/Ti6Al4V joints, a Niobium interlayer was used to prevent the formation undesired brittle intermetallic compounds. Additionally, it was observed that positioning of the laser beam was of significant importance to obtain a sound joint. The mechanisms responsible for the joint formation are discussed based on observations with advanced characterization techniques, such as transmission electron microscopy. At the NiTi/Nb interface, an eutectic reaction promotes joining of the two materials, while at the Ti6Al4V/Nb interface fusion and, subsequent solidification of the Ti6Al4V was responsible for joining. Short distance diffusion of Nb to the fusion zone of Ti6Al4V was observed. Although fracture of the dissimilar welded joints occurred at a stress lower than the minimum required for the stress induced transformation, an improvement on the microstructure and mechanical properties, relatively to existing literature, was obtained. Finally

  20. A Comparative Study on the Laser Welding of Ti6Al4V Alloy Sheets in Flat and Horizontal Positions

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2017-04-01

    Full Text Available Laser welding has been increasingly utilized to manufacture a variety of components thanks to its high quality and speed. For components with complex shapes, the welding position needs be continuously adjusted during laser welding, which makes it necessary to know the effects of the welding position on the quality of the laser welds. In this paper, the weld quality under two (flat and horizontal welding positions were studied comparatively in the laser welding of Ti6Al4V titanium alloy, in terms of weld profiles, process porosity, and static tensile strengths. Results show that the flat welding position led to better weld profiles, less process porosity than that of the horizontal welding position, which resulted from the different actions of gravity on the molten weld metals and the different escape routes for pores under different welding positions. Although undercuts showed no association with the fracture positions and tensile strengths of the welds, too much porosity in horizontal laser welds led to significant decreases in the strengths and specific elongations of welds. Higher laser powers and travel speeds were recommended, for both flat and horizontal welding positions, to reduce weld porosity and improve mechanical properties.

  1. Laser beam welding of NiTi-shape memory alloys; Laserstrahl-Schweissen von NiTi-Formgedaechtnislegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Haas, T.

    1996-04-01

    Using a Nd:YAG laser, the weldability of binary nickel-titanium shape memory alloys containing 50.0 and 48.5 at.-% Ti respectively was investigated. By tensile tests within a temperature range of -80 C to +200 C the mechanical properties of the laser welded joints were examined. Changes in the transformation behaviour were detected by calorimetric measurements (DSC method). The stress-strain behaviour was attributed to the microstructure of the welds, revealed by optical microscopy and transmission electron microscopy (TEM). Using a scanning electron microscope (SEM), the mechanisms of failure were examined. Joints of the martensitic Ti-rich alloy were brittle, showing an ultimate tensile strength of 600 MPa, corresponding to half of the value of the base material. The reduction in strength was explained by the formation of Ti{sub 2}Ni precipitations along grain boundaries in the weld. Since the welds still exhibited twin deformation, pseudoplastic strains of 7% were achieved. Ultimate strength data showed a very low scatter. Therefore it was possible to use the shape memory effect up to a strain of 6% without failure. After a total elongation to 6% strain, the laser welded joints showed a free recovery with an amnesia of 0.3%. The shape memory effect was shown to be retained in the laser welded joints. 154 refs.

  2. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi (Japan); Nagasaka, Takuya; Muroga, Takeo [National Inst. for Fusion Science, Toki, Gifu (Japan); Shibayama, Tamaki [Center for Advanced Research of Energy Technology, Hokkaido University, Sapporo, Hokkaido (Japan); Tomiyama, Shigeki [Daido Bunseki Research Inc., Nagoya, Aichi (Japan); Sakata, Masafumi [Daido Steel Co. Ltd., Nagoya (Japan)

    2000-09-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  3. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    International Nuclear Information System (INIS)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori; Nagasaka, Takuya; Muroga, Takeo; Shibayama, Tamaki; Tomiyama, Shigeki; Sakata, Masafumi

    2000-01-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  4. Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-10-01

    Full Text Available Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets were joined using resistance spot welding, and the weld nugget formation, mechanical properties (including tensile strength and hardness, and microstructure features of the resistance spot-welded joints were analyzed and evaluated. The visible indentations on the weld nugget surfaces caused by the electrode force and the surface expulsion were severe due to the high welding current. The weld nugget width at the sheets’ faying surface was mainly affected by the welding current and welding time, and the welded joint height at weld nugget center was chiefly associated with electrode force. The maximum tensile load of welded joint was up to 14.3 kN in the pullout failure mode. The hardness of the weld nugget was the highest because of the coarse acicular α′ structure, and the hardness of the heat-affected zone increased in comparison to the base metal due to the transformation of the β phase to some fine acicular α′ phase.

  5. Design of Laser Welding Parameters for Joining Ti Grade 2 and AW 5754 Aluminium Alloys Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Mária Behúlová

    2017-01-01

    Full Text Available Joining of dissimilar Al-Ti alloys is very interesting from the point of view of weight reduction of components and structures in automotive or aerospace industries. In the dependence on cooling rate and chemical composition, rapid solidification of Al-Ti alloys during laser welding can lead to the formation of metastable phases and brittle intermetallic compounds that generally reduce the quality of produced weld joints. The paper deals with design and testing of welding parameters for preparation of weld joints of two sheets with different thicknesses from titanium Grade 2 and AW 5754 aluminium alloy. Temperature fields developed during the formation of Al-Ti butt joints were investigated by numerical simulation in ANSYS software. The influence of laser welding parameters including the laser power and laser beam offset on the temperature distribution and weld joint formation was studied. The results of numerical simulation were verified by experimental temperature measurement during laser beam welding applying the TruDisk 4002 disk laser. The microstructure of produced weld joints was assessed by light microscopy and scanning electron microscopy. EDX analysis was applied to determine the change in chemical composition across weld joints. Mechanical properties of weld joints were evaluated using tensile tests and Vickers microhardness measurements.

  6. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Shamini Janasekaran

    2016-06-01

    Full Text Available Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW, low-power Ytterbium (Yb-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on weld morphology and properties was investigated using scanning electron microscopy (SEM and X-ray diffraction (XRD, respectively. XRD analysis revealed the presence of intermetallic layers containing NiTi and NiTi2 at the skin-stringer joint. The strength of the joints was evaluated using pull testing, while the hardness of the joints was analyzed using Vickers hardness measurement at the base metal (BM, fusion zone (FZ and heat-affected zone (HAZ. The results showed that the highest force needed to break the samples apart was approximately 150 N at a laser welding power of 250 W, welding speed of 40 mm/s and overlapping factor of 50%. During low-power single-sided laser welding, the properties of the T-joints were affected by the overlapping factor and laser welding speed.

  7. Assessment of the radiation-induced loss of ductility in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Alloys based on the V-Cr-Ti system are attractive candidates for structural applications in fusion systems because of their low activation properties, high thermal stress factor (high thermal conductivity, moderate strength, and low coefficient of thermal expansion), and their good compatibility with liquid lithium. The U.S. program has defined a V-4Cr-4Ti (wt %) alloy as a leading candidate alloy based upon evidence from laboratory-scale (30 kg) heats covering the approximate composition range 0-8 wt % Ti and 5 to 15 wt % Cr. A review of the effects of neutron displacement damage, helium, and hydrogen generation on mechanical behavior, and of compatibility with lithium, water, and helium environments was presented at the ICFRM-5 conference at Clearwater in 1991. The results of subsequent optimization studies, focusing on the effects of fast reactor irradiation on tensile and impact properties of a range of alloys, were presented at the ICFRM-6 conference at Stresa in 1993. The primary conclusion of this work was that the V-4Cr-4Ti alloy composition possessed a near-optimal combination of physical and mechanical properties for fusion structural applications. Subsequently, a production-scale (500 kg) heat of V-4Cr-4Ti (Heat No. 832665) was procured from Teledyne Wah-Chang, together with several 15 kg heats of alloys with small variations in Cr and Ti. Further testing has been carried out on these alloys, including neutron irradiation experiments to study swelling and mechanical property changes. This paper discusses ductility measurements from some of these tests which are in disagreement with earlier work.

  8. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.

    1998-01-01

    A systematic study has been initiated at Argonne National Laboratory to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, the principal effort has focused on the V-4Cr-4Ti alloy of heat identified as BL-71; however other alloys (V-5Cr-5Ti alloy of heats BL-63, and T87, plus V-4Cr-4Ti alloy from General Atomics [GA]) are also being evaluated. Other variables of interest are the effect of initial grain size on the tensile behavior of the alloys. Experiments conducted on specimens of various V-Cr-Ti alloys exposed to pH 2 levels of 0.01 and 3 x 10 -6 torr showed negligible effect of H 2 on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed to 1.0 torr H 2 pressure. Preliminary data from sequential exposures of the materials to low-pO 2 and several low-pH 2 environments did not reveal an adverse effect on the maximum engineering stress or on uniform and total elongation. Further, tests in H 2 environments on specimens annealed at different temperatures showed that grain-size variation by a factor of ∼2 had little or no effect on tensile properties

  9. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  10. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    OpenAIRE

    Samar Reda Al-Sayed Ali; Abdel Hamid Ahmed Hussein; Adel Abdel Menam Saleh Nofal; Salah Elden Ibrahim Hasseb Elnaby; Haytham Abdelrafea Elgazzar; Hassan Abdel Sabour

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resist...

  11. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-04-01

    Full Text Available Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  12. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-04-20

    Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  13. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  14. Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr; Grevey, D.; Sallamand, P.

    2015-01-12

    Successful continuous laser joining of AISI 316L stainless steel with Ti6Al4V titanium alloy through pure vanadium interlayer has been performed. Three welding configurations were tested: one-pass welding involving all three materials and two pass and double spot welding involving creation of two melted zones separated by remaining solid vanadium. For the most relevant welds, the investigation of microstructure, phase content and mechanical properties has been carried out. In case of formation of a single melted zone, the insertion of steel elements into V-based solid solution embrittles the weld. In case of creation of two separated melted zones, the mechanical resistance of the junction is determined by annealing of remaining vanadium interlayer, which can be witnessed by observing the increase of grain size and decrease of UTS. The two pass configuration allows attain highest mechanical resistance: 367 MPa or 92% of UTS of annealed vanadium. Double spot configuration produces excessive heat supply to vanadium interlayer, which results in important decrease of tensile strength down to 72% of UTS of annealed vanadium. It was found that undesirable σ phase which forms between Fe and V is not created during the laser welding process because of high cooling rates. However, the zones whose composition corresponds to σ homogeneity range are crack-susceptible, so the best choice is to reduce the V content in steel/vanadium melted zone below σ phase formation limit. In the same time, the proportion between V and Ti in Ti6Al4V/vanadium melted zones does not influence mechanical properties as these elements form ideal solid solution.

  15. Laser and electron beam welding of Ti-alloys: Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Cam, G; Santos, J.F. dos; Kocak, M [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1998-12-31

    The welding of titanium alloys must be conducted in completely inert or vacuum environments due to the strong affinity of titanium to oxygen. Residual stresses in titanium welds can greatly influence the performance of a fabricated aerospace component by degrading fatigue properties. Moreover, distortion can cause difficulties in the final assembly and operation of high-tolerance aerospace systems. Power beam welding processes, namely laser and electron beam welding, offer remarkable advantages over conventional fusion welding processes and have a great potential to produce full-penetration, single-pass autogenous welds with minimal component distortion due to low heat input and high reproducibility of joint quality. Moreover, electron beam welding process, which is conducted in a vacuum chamber, inherently provides better atmospheric protection. Although considerable progress has been made in welding of titanium alloys by power beam processes, there is still a lack of a complete set of mechanical properties data of these joints. Furthermore, the problem of solid-state cracking in fusion welding of {gamma}-TiAl intermetallic alloys due to their low ductility is still to be overcome. The purpose of this literature review is to outline the progress made in this area and to provide basic information for the Brite-Euram project entitled assessment of quality of power beam weld joints ``ASPOW``. (orig.) 31 refs.

  16. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiao-Long; Liu, Jing; Zhang, Lin-Jie, E-mail: zhanglinjie@mail.xjtu.edu.cn; Zhang, Jian-Xun

    2014-07-01

    The effect of the overlapping factor on the microstructures and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V alloy sheets was investigated by microstructural observations, microhardness tests, tensile tests and fatigue tests. A microstructural examination shows that by increasing the overlapping factor, the grains in the fusion zone become coarser, and the width of the heat affected zone increases. As overlapping factor increases, the width of region composed completely of martensite α′ and the secondary α phase in the heat affected zone increases, consequently the gradient of microstructure along the direction from the fusion zone to base metal decreases, so does the gradient of microhardness. The results of tensile and fatigue tests reveal that the joints made using medium overlapping factor exhibit better mechanical properties than those welded with low and high overlapping factors. Based on the experimental results, it can be stated that a sound weld of Ti6Al4V alloy can be obtained if an appropriate overlapping factor is used. - Highlights: • The weld quality of Ti6Al4V alloy under various overlapping factors was assessed. • Tensile and fatigue tests were conducted with as-welded specimen. • Localized strain across the weld was measured using DIC photogrammetry system. • A sound weld of Ti6Al4V alloy is obtained by using right overlapping factor.

  17. Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process

    International Nuclear Information System (INIS)

    Chen Shuhai; Li Liqun; Chen Yanbin; Huang Jihua

    2011-01-01

    Research highlights: → The microstructures of interfacial zones were confirmed in detail by transmission electron microscope (TEM). Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti 7 Al 5 Si 12 and serration-shaped TiAl 3 . For the first time, obvious stacking fault structure in intermetallic phase TiAl 3 was found when the thickness of the reaction layer was very thin (approximately below 1 μm). → Metallurgical characteristics for laser welding-brazing process in the environment of far from equilibrium was expounded by microstructures of the joints, the characteristics of thermal process and element diffusion behavior. - Abstract: Joining mechanism of Ti/Al dissimilar alloys was investigated during laser welding-brazing process with automated wire feed. The microstructures of fusion welding and brazing zones were analysed in details by transmission electron microscope (TEM). It was found that microstructures of fusion welding zone consist of α-Al grains and ternary near-eutectic structure with α-Al, Si and Mg 2 Si. Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti 7 Al 5 Si 12 and serration-shaped TiAl 3 . For the first time, apparent stacking fault structure in intermetallic phase TiAl 3 was found when the thickness of the reaction layer was very thin (approximately less than 1 μm). Furthermore, crystallization behavior of fusion zone and mechanism of interfacial reaction were discussed in details.

  18. Laser welding of NiTi shape memory alloy: Comparison of the similar and dissimilar joints to AISI 304 stainless steel

    Science.gov (United States)

    Mirshekari, G. R.; Saatchi, A.; Kermanpur, A.; Sadrnezhaad, S. K.

    2013-12-01

    The unique properties of NiTi alloy, such as its shape memory effect, super-elasticity and biocompatibility, make it ideal material for various applications such as aerospace, micro-electronics and medical device. In order to meet the requirement of increasing applications, great attention has been given to joining of this material to itself and to other materials during past few years. Laser welding has been known as a suitable joining technique for NiTi shape memory alloy. Hence, in this work, a comparative study on laser welding of NiTi wire to itself and to AISI 304 austenitic stainless steel wire has been made. Microstructures, mechanical properties and fracture morphologies of the laser joints were investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), Vickers microhardness (HV0.2) and tensile testing techniques. The results showed that the NiTi-NiTi laser joint reached about 63% of the ultimate tensile strength of the as-received NiTi wire (i.e. 835 MPa) with rupture strain of about 16%. This joint also enabled the possibility to benefit from the pseudo-elastic properties of the NiTi component. However, tensile strength and ductility decreased significantly after dissimilar laser welding of NiTi to stainless steel due to the formation of brittle intermetallic compounds in the weld zone during laser welding. Therefore, a suitable modification process is required for improvement of the joint properties of the dissimilar welded wires.

  19. Volatility of V15Cr5Ti fusion reactor alloy

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.

    1986-01-01

    One potential hazard from the presence of activation products in fusion facilities is accidental oxidation-driven volatility of those activation products. Scoping experiments were conducted to investigate the oxidation and elemental volatility of candidate fusion reactor alloy V15Cr5Ti as a function of time, temperature, and test atmosphere. Experiments in air and in argon carrier gases containing 10 4 to 10 1 Pa (10 -1 to 10 -4 atm) oxygen were conducted to investigate the lower oxygen partial pressure limit for the formation of a low melting point (approximately 650 0 C), high volatility, oxide layer and its formation rate. Experiments to determine the elemental volatility of alloy constituents in air at temperatures of 700 0 C to greater than 1600 0 C. Some of these volatility experiments used V15Cr5Ti that was arc-remelted to incorporate small quantities (<0.1 wt. %) of Sc and Ca. Incorporation of Sc and Ca in test specimens permitted volatility measurement of radioactive constituents present only after activation of V15Cr5Ti

  20. Effect of time and temperature on grain size of V and V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Natesan, K.; Rink, D.L.

    1996-01-01

    Grain growth studies were conducted to evaluate the effect of time and temperature on the grain size of pure V, V-4 wt.%Cr-4 wt.%Ti, and V-5 wt.%Cr-5 wt.%Ti alloys. The temperatures used in the study were 500, 650, 800, and 1000 degrees C, and exposure times ranged between 100 and ∼5000 h. All three materials exhibited negligible grain growth at 500, 650, and 800 degrees C, even after ∼5000 h. At 1000 degrees C, pure V showed substantial grain growth after only 100 h, and V-4Cr-4Ti showed growth after 2000 h, while V-5Cr-5Ti showed no grain growth after exposure for up to 2000 h

  1. Manufacture of semifinished items of alloys V-4Ti-4Cr and V-10Ti-5Cr for use as a structural material in fusion applications

    International Nuclear Information System (INIS)

    Potapenko, M.M.; Drobishev, V.A.; Filkin, V.Y.; Gubkin, I.N.; Myasnikov, V.V.; Nikulin, A.D.; Shingarev, E.N.; Vedernikov, G.P.; Votinov, S.N.; Zurabov, V.S.; Zolotarev, A.B.

    1996-01-01

    Vanadium-titanium-chromium alloys are considered as structural materials with the most appropriate properties for fusion applications. However, the final ratio V-Ti-Cr in an alloy is not yet determined. On the one hand, it is offered to optimize structure on the basis of an alloy V-4Ti-4Cr. On the other hand, it is proposed that the optimum of total Ti and Cr content should be near 15%, and the Ti to Cr ratio should be 2:1. Melting, casting and processing by pressure of ingots of vanadium alloys V-4Ti-4Cr and V-10Ti-5Cr weighing as much as 50 kg are considered in the report. The ingots in diameters up to 130 mm were obtained by melting in vacuum-arc furnaces. Results on chemical uniformity and structure of the ingots are presented. A basic scheme of semifinished items manufacture is submitted. Rod and tube hot extrusion conditions are presented. A new technology for protection of ingot and billet surface from gases during hot processing is used to discard application of protective stainless steel and to lower temperature of processing. Sheet and tube products were made from extruded billets by cold rolling with intermediate heat treatment. The list of obtained products, including sheets 0.5-5 mm thick, rods 10-18 mm in diameter and tubes from 50 mm up to 6.0 mm in diameter is presented. The availability of large-scale ingots processing with weight above 300 kg is discussed. (orig.)

  2. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  3. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-02-01

    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  4. Comparison between pulsed Nd:YAG laser superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, A.G.; Reis, D.A.P.; Moura Neto, C.; Oliveira, H.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance. (author)

  5. Investigation and Optimization of Disk-Laser Welding of 1 mm Thick Ti-6Al-4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2015-01-01

    Full Text Available Ti-6Al-4V joints are employed in nuclear engineering, civil industry, military, and space vehicles. Laser beam welding has been proven to be promising, thanks to increased penetration depth and reduction of possible defects of the welding bead; moreover, a smaller grain size in the fusion zone is better in comparison to either TIG or plasma arc welding, thus providing an increase in tensile strength of any welded structures. In this frame, the regression models for a number of crucial responses are discussed in this paper. The study has been conducted on 1 mm thick Ti-6Al-4V plates in square butt welding configuration; a disk-laser source has been used. A three-level Box-Behnken experimental design is considered. An optimum condition is then suggested via numerical optimization with the response surface method using desirability functions with proper weights and importance of constraints. Eventually, Vickers microhardness testing has been conducted to discuss structural changes in fusion and heat affected zone due to welding thermal cycles.

  6. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

    International Nuclear Information System (INIS)

    Wu, Aiping; Song, Zhihua; Nakata, Kazuhiro; Liao, Jinsun; Zhou, Li

    2015-01-01

    Highlights: • Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6. • Welding parameters affect interfacial microstructure of the joint. • Welding parameters affect the mechanical property of joint and fracture position. • Joining mechanism of Ti6Al4V/A6061 dissimilar alloys by FSW is investigated. - Abstract: Titanium alloy Ti6Al4V and aluminum alloy 6061 dissimilar material joints were made with friction stir welding (FSW) method. The effects of welding parameters, including the stir pin position, the rotating rate and the travel speed of the tool, on the interface and the properties of the joints were investigated. The macrostructure of the joints and the fracture surfaces of the tensile test were observed with optical microscope and scanning electron microscope (SEM). The interface reaction layer was investigated with transmission electron microscopy (TEM). The factors affecting the mechanical properties of the joints were discussed. The results indicated that the tensile strength of the joints and the fracture location are mainly dependent on the rotating rate, and the interface and intermetallic compound (IMC) layer are the governing factor. There is a continuous 100 nm thick TiAl 3 IMC at the interface when the rotating rate is 750 rpm. When the welding parameters were appropriate, the joints fractured in the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) of the aluminum alloy and the strength of the joints could reach 215 MPa, 68% of the aluminum base material strength, as well as the joint could endure large plastic deformation

  7. Effects of Nd:YAG laser pulse frequency on the surface treatment of Ti 6Al 4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gursel, Ali [International University of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering

    2016-07-01

    The desirable properties of titanium and titanium alloys, including excellent corrosion resistance, high strength to weight ratio and high operating temperature, have led to their successful application in various fields such as the medical and aerospace industries. Among the reliable treatment techniques, laser welding can provide significant advantages for the titanium alloys because of its precision, rapid processing capability and ability to control the welding parameters and their effects. The morphology and the quality of pulsed seam welds are directly or synergistically influenced by the Nd:YAG laser parameters of pulse shape, energy, duration, travel speed, peak power and frequency of repetition. In this study, a 1.5 mm thick Ti-6Al-4V alloy sheet surface was treated by SigmaLaser {sup registered} 300 Nd:YAG pulsed laser. The influence of the pulse frequency on seam morphology and surface effects was then investigated. The seam and surface quality were characterized in terms of weld morphology and microhardness. The results showed that, for Nd:YAG laser seams used for surface treatment, pulse repetition was more effective on the cooling rate than had been expected.

  8. Comparative studies on ultrasonic, friction, laser and resistance pressure welding of NiTi shape memory alloys with high-alloy steels. Final report; Vergleichende Untersuchungen zum Ultraschall-, Reib-, Laserstrahl- und Widerstandspressschweissen von NiTi-Shape-Memory-Metall mit hochlegierten Staehlen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Zuckschwerdt, K.

    2000-04-01

    The suitability of different welding techniques for welding of NiTi shape memory alloys with high-alloy steel (C12CrNi17-7, X5CrNiNb19-9, X20Cr13) was investigated. The quality of the welds was analyzed using mechanical-technological, fractographic, metallographic and electron microscopy analysis. [German] Ziel dieses Forschungsvorhabens ist es, die Eignung der einzelnen Schweissverfahren fuer das Fuegen von NiTi-Formgedaechtnislegierungen mit hochlegiertem Stahl (X12CrNi17-7, X5CrNiNb19-9, X20Cr13) darzustellen und zu beurteilen. Die Qualitaet der Fuegeverbindungen wird mit Hilfe mechanisch-technologischer, fraktographischer, metallographischer und elektronenmikroskopischer Untersuchungen bewertet.

  9. Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi

    Science.gov (United States)

    Jo, Min-Gu; Kim, Han-Jin; Kang, Minjung; Madakashira, Phaniraj P.; Park, Eun Soo; Suh, Jin-Yoo; Kim, Dong-Ik; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    The high entropy alloy CrMnFeCoNi has been shown to have promising structural properties. For a new alloy to be used in a structural application it should be weldable. In the present study, friction stir welding (FSW) and laser welding (LW) techniques were used to butt weld thin plates of CrMnFeCoNi. The microstructure, chemical homogeneity and mechanical behavior of the welds were characterized and compared with the base metal. The tensile stress-strain behavior of the welded specimens were reasonable when compared with that of the base metal. FSW refined the grain size in the weld region by a factor of ˜14 when compared with the base metal. High-angle annular dark field transmission electron microscopy in combination with energy dispersive X-ray spectroscopy showed chemical inhomogeneity between dendritic and interdendritic regions in the fusion zone of LW. Large fluctuations in composition (up to 15 at%) did not change the crystal structure in the fusion zone. Hardness measurements were carried out in the weld cross section and discussed in view of the grain size, low angle grain boundaries and twin boundaries in FSW specimens and the dendritic microstructure in LW specimens.

  10. Tensile properties of aluminized V-5Cr-5Ti alloy after exposure in air environment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-08-01

    The objectives of this task are to (a) develop procedures to modify surface regions of V-Cr-Ti alloys in order to minimize oxygen uptake by the alloys when exposed to environments that contain oxygen, (b) evaluate the oxygen uptake of the surface-modified V-Cr-Ti alloys as a function of temperature an oxygen partial pressure in the exposure environment, (c) characterize the microstructures of oxide scales and oxygen trapped at the grain boundaries of the substrate alloys, and (d) evaluate the influence of oxygen uptake on the tensile properties of the modified alloys at room and elevated temperatures.

  11. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  12. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  13. Metallurgy and deformation of electron beam welded similar titanium alloys

    Science.gov (United States)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  14. Effect of trace solute hydrogen on the fatigue life of electron beam welded Ti-6Al-4V alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com; Ji, Longbo

    2017-01-27

    This paper describes an experimental hydrogenating treatment on a Ti-6Al-4V fatigue specimen containing an electron beam welding joint. The effect of trace solute hydrogen on the microstructures and fatigue behavior of welded Ti-6Al-4V alloy joints was investigated using an optical microscope, X-ray diffractometer, scanning electron microscope, transmission electron microscope and other methodologies. The results demonstrated that no hydride formed in the hydrogenated weld joint at a hydrogen concentration of less than 0.140 wt%. Internal hydrogen, which was present in the alloy in the form of solid solution atoms, caused lattice distortion in the β phase. The fatigue properties of the Ti-6Al-4V weld joint hydrogenated with trace solute hydrogen decreased significantly. The solute hydrogen led to an increase in the brittleness of the hydrogenated weld joint. The dislocation densities in the secondary α and β phase were higher. Fatigue cracks nucleated at the α/β interfaces. The effect of solute hydrogen accelerated the separation of the persistent slip bands, which decreased the threshold required for fatigue crack growth. Solute hydrogen also accelerated the fatigue crack growth rate. These two factors contributed to the degradation of the fatigue life in the electron beam welded Ti-6Al-4V alloy joints.

  15. Fatigue failure analysis of V-4Ti-4Cr alloy

    International Nuclear Information System (INIS)

    Aglan, H.; Gan, Y.X.; Grossbeck, M.

    1999-01-01

    In the present work, the fatigue fracture and failure behavior of a V-4Ti-4Cr has been studied. Static tests were conducted to study the overloading behavior and to select the magnitude of the stress level for the fatigue studies. Fatigue tests were performed using single edge notched (SEN) specimens under tension-tension load control conditions. Fatigue crack propagation (FCP) data such as the crack length, number of cycles, and hysteresis loops were recorded to calculate the crack speed, the energy release rate, and the change in work expended on damage formation and dissipative processes within the material. Parameters characterizing the fatigue fracture resistance of V-4Ti-4Cr alloy, namely the specific energy of damage (γ'), and the dissipative coefficient (β'), were determined from the fatigue data using the modified crack layer (MCL) theory. Fracture surface examination using scanning electron microscopy (SEM) revealed ductile failure mechanisms under tensile overloading conditions. The fatigue fracture surface of the V-4Ti-4Cr consists of three distinct regions, corresponding to the threshold, stable and unstable crack propagation stages. (orig.)

  16. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.

    Science.gov (United States)

    Wang, Pan; Feng, Yan; Liu, Fengchao; Wu, Lihong; Guan, Shaokang

    2015-06-01

    The Ti-15Zr-xCr (0≤x≤10, wt.%) alloys were investigated to develop new biomedical materials. It was found that the phase constitutions and mechanical properties strongly depended on the Cr content. The Ti-15Zr alloy was comprised of α' phase and a small fraction of β phase was detected with adding 1wt.% Cr. With addition of 5wt.% or more, the β phase was completely retained. In addition, the ω phase was detected in the Ti-15Zr-5Cr alloy and Ti-15Zr-7Cr alloy which exhibited the highest compressive Young's modulus and the lowest ductility. On the other hand, all the Ti-15Zr-xCr alloys without ω phase exhibited high microhardness, high yield strength and superior ductility. Furthermore, the elastic energy of Ti-15Zr-10Cr alloy (5.89MJ/m(3)) with only β phase and that of Ti-15Zr-3Cr alloy (4.04MJ/m(3)) with α' phase and small fraction of β phase was higher than the elastic energy of c.p. Ti (1.25MJ/m(3)). This study demonstrated that Ti-15Zr-3Cr alloy and Ti-15Zr-10Cr alloy with superior mechanical properties are potential materials for biomedical applications. Copyright © 2015. Published by Elsevier B.V.

  17. The development of the rotational friction welding process for the welding of γ-TiAl-casting alloy Ti-47Al-3.5(Mn+Cr+Nb)-0.8(B+Si) to Ti6Al4V. Pt. II; Prozessentwicklung zum Rotationsreibschweissen der γ-TiAl-Feingusslegierung Ti-47Al-3.5(Mn+Cr+Nb)-0.8(B+Si) mit Ti6Al4V. T. II

    Energy Technology Data Exchange (ETDEWEB)

    Ventzke, Volker; Riekehr, Stefan; Horstmann, Manfred; Kashaev, Nikolai; Brokmeier, Heinz-Guenter; Huber, Norbert [Helmholtz-Zentrum Geesthacht GmbH, Zentrum fuer Material- und Kuestenforschung, Geesthacht (Germany). Inst. fuer Werkstoffforschung, Werkstoffmechanik

    2014-07-01

    At process temperatures of T > T{sub β}, the globular and fine grained microstructure of the Titanium alloy Ti6Al4V supports the occurrence of super-plasticity and deformation within the β phase region. This led to one sided shortening of the welded joints combined with the formation of weld flash. As a result of this no evening out of temperature across the forging surface between the γ-TAB cast alloy and Ti6Al4V alloy sides of the joint was able to take place, as a result of which the friction weld seam produced became symmetrically wedge shaped about the axis of rotation. Thereby the γ-TAB cast alloy side of the joint became only slightly compressed exhibiting no appreciable signs of deformation. In the radial direction on the γ-TAB side of the joint close to the forged surface neither the hardness nor the microstructure were homogeneous. Without pre-heating the fine ground, lapped and homogenised γ-TAB weld specimens at a temperature of 800 C above the brittle - ductile transformation transition temperature it was not possible to prevent the occurrence of boundary surface cracking on the outside, micro-voids and inter-lamellar cracking on the γ-TAB side solely by varying the welding parameters. The pre-heating of the γ-TAB friction weld specimens was a necessary pre-requisite to support the deformation of the γ-TAB side of the welded joint and the formation of weld flash during the friction welding process. (orig.)

  18. On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chaia, N., E-mail: nabil.chaia@usp.br [Escola de Engenharia de Lorena, Universidade de São Paulo, Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Portebois, L., E-mail: leo.portebois@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); Mathieu, S., E-mail: stephane.mathieu@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); David, N., E-mail: nicolas.david@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); Vilasi, M., E-mail: michel.vilasi@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France)

    2017-02-15

    To provide protection against corrosion at high temperatures, silicide diffusion coatings were developed for the V-4Cr-4Ti alloy, which can be used as the fuel cladding in next-generation sodium-cooled fast breeder reactors. The multilayered coatings were prepared by halide-activated pack cementation using MgF{sub 2} as the transport agent and pure silicon (high activity) as the master alloy. Coated pure vanadium and coated V-4Cr-4Ti alloy were studied and compared as substrates. In both cases, the growth of the silicide layers (V{sub 3}Si, V{sub 5}Si{sub 3}, V{sub 6}Si{sub 5} and VSi{sub 2}) was controlled exclusively by solid-state diffusion, and the growth kinetics followed a parabolic law. Wagner's analysis was adopted to calculate the integrated diffusion coefficients for all silicides. The estimated values of the integrated diffusion coefficients range from approximately 10{sup −9} to 10{sup −13} cm{sup 2} s{sup −1}. Then, a diffusion-based numerical approach was used to evaluate the growth and consumption of the layers when the coated substrates were exposed at critical temperatures. The estimated lifetimes of the upper VSi{sub 2} layer were 400 h and 280 h for pure vanadium and the V-4Cr-4Ti alloy, respectively. The result from the numeric simulation was in good agreement with the layer thicknesses measured after aging the coated samples at 1150 °C under vacuum. - Highlights: • The pack cementation technique is implemented to study interdiffusion in V/Si and V-4Cr-4Ti/Si couples. • Interdiffusion coefficients of vanadium silicides were experimentally determined within the range 1100–1250 °C. • For either V/Si or V-4Cr-4Ti/Si couples, the VSi{sub 2} layer has the highest growth rate. • The Cr and Ti alloying elements mainly modified the V{sub 5}Si{sub 3} and V{sub 6}Si{sub 5} growth rate. • Numerical simulation allows for a confident assessment of the VSi{sub 2} coating lifetime on V-4Cr-4Ti.

  19. Identification of ultra-fine Ti-rich precipitates in V-Cr-Ti alloys irradiated below 300 deg. C by using positron CDB technique

    International Nuclear Information System (INIS)

    Fukumoto, Ken-ichi; Matsui, Hideki; Ohkubo, Hideaki; Tang, Zheng; Nagai, Yasuyoshi; Hasegawa, Masayuki

    2008-01-01

    Irradiation-induced Ti-rich precipitates in V-Ti and V-4Cr-4Ti alloys are studied by TEM and positron annihilation methods (positron lifetime, and coincidence Doppler broadening (CDB)). The characteristics of small defect clusters formed in V alloys containing Ti at irradiation temperatures below 300 deg. C have not been identified by TEM techniques. Strong interaction between vacancy and Ti solute atoms for irradiated V alloys containing Ti at irradiation temperatures from 220 to 350 deg. C are observed by positron lifetime measurement. The vacancy-multi Ti solute complexes in V-alloys containing Ti are definitely identified by using CDB measurement. It is suggested that ultra-fine Ti-rich precipitates or Ti segregation at periphery of dislocation loops are formed in V alloys containing Ti at irradiation temperatures below 300 deg. C

  20. Thermodynamical study of the vanadium-hydrogen system. The hydrogen effect on the mechanical properties of V-4Cr-4Ti and V-5Cr-5Ti alloys; Etude thermodynamique du systeme vanadium-hydrogene. Effets de l'hydrogene sur les proprietes mecaniques des alliages V-4Cr-4Ti et V-5Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Coulombeaux, O

    1998-07-01

    In the framework of the international research programs on fusion reactors, the vanadium alloys are among the most appropriate candidate to constitute the first wall. The author deals with the specific alloys V-4Cr-4Ti and V-5Cr-5Ti and study the hydrogen diffusion. Experimental results show that the induced hydrogen concentration in the sample by diffusion is higher, for the same partial pressure of exposure, in the case of the alloy than for the pure vanadium. He shows that this result can be explainedby the trapping for which the hydrogen is trapped by the titanium. (A.L.B.)

  1. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  2. Hydrogen release from vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh; Kulsartov, T.V.; Chikhray, E.V.; Romanenko, O.G.; Tazhibaeva, I.L.; Shestakov, V.P.

    1999-01-01

    The experiments on hydrogen loading of vanadium alloy with the following thermodesorption spectroscopy (TDS) measurements were carried out with the sample of the V-4Cr-4Ti vanadium alloy (Russia production). Hydrogen solubility was calculated from experimental TDS curves, obtained after equilibrium loading of the sample at the temperatures 673, 773, 873, 973, and 1073 K. The range of loading pressures was 10-100 Pa. The experiments carried out had an objective to determine the regimes (loading time, temperatures and pressures) for the experiment on in-pile loading of the vanadium alloy. (author)

  3. Performance of V-Cr-Ti alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W. K.

    2000-01-01

    A systematic study is underway at Argonne National Laboratory to evaluate the mechanical properties of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake by the samples and with the resulting influence on microstructures and tensile properties of the alloys. Other variables examined are specimen cooling rate and synergistic effects, if any, of oxygen and hydrogen on tensile behavior of the alloys. Experiments were conducted to evaluate the effect of pH 2 in the range of 3 x 10 -6 and 1 torr on tensile properties of two V-Cr-Ti alloys. Up to pH 2 of 0.05 torr, negligible effect of H was observed on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed at 500 C to 1.0 torr of H 2 pressure. Preliminary data from sequential exposures of the materials to low-pO 2 and several low-pH 2 environments did not reveal adverse effects on the maximum engineering stress or on uniform and total elongation when the alloy contained ∼ 2,000 wppm O and 16 wppm H. Furthermore, tests in H 2 -exposed specimens, initially annealed at various temperatures, showed that grain-size variation by a factor of ∼ 2 had little or no effect on tensile properties. Also, specimen cooling rate had a small effect, if any, on the tensile properties of the alloy

  4. Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser

    Science.gov (United States)

    Baitimerov, R. M.; Lykov, P. A.; Radionova, L. V.; Safonov, E. V.

    2017-10-01

    TiAl6V4 alloy is one of the widely used materials in powder bed fusion additive manufacturing technologies. In recent years selective laser melting (SLM) of TiAl6V4 alloy by fiber laser has been well studied, but SLM by CO2-lasers has not. SLM of TiAl6V4 powder by CO2-laser was studied in this paper. Nine 10×10×10 mm cubic specimens were fabricated using different SLM process parameters. All of the fabricated specimens have a good dense structure and a good surface finish quality without dimensional distortion. The lowest porosity that was achieved was about 0.5%.

  5. Modification of tribology and high-temperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Wang Huaming

    2006-01-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3 C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3 C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm x 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3 C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3 C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7 C 3 , TiC and both continuous and dense Al 2 O 3 , Cr 2 O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials

  6. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Marco Gabriele, E-mail: marcogabriele.poletti@unito.it [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Fiore, Gianluca [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Szost, Blanka A. [Strategic and Emerging Technologies Team (TEC-TS), European Space Agency, ESTEC, 1 Keplerlaan, 2201 AZ Noordwijk (Netherlands); Battezzati, Livio [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2015-01-25

    Highlights: • Composition of refractory high entropy alloys predicted. • Solid solutions found in VNbTaTiZr and AlNbTaTiZr. • Alloys containing Cr and Sn are multi-phased. - Abstract: High entropy alloys, i.e. solid solution phases, are sought in the X-NbTaTiZr equiatomic system where the X element was chosen as Al, Cr, V and Sn by applying recent criteria based on size and electronegativity mismatch of alloy components, number of itinerant and total valence electrons, and the temperature at which the free energy of mixing changes at the alloy composition. The alloys containing V and Al are mostly constituted by solid solutions in good agreement with prediction.

  7. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times. PMID:29036935

  8. Laser Powder Cladding of Ti-6Al-4V α/β Alloy.

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Hasseb Elnaby, Salah Elden Ibrahim; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-10-15

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm -2 . An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  9. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  10. Heat treatment effects on tensile properties of V-(4-5) wt.% Cr-(4-5) wt.% Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-08-01

    Effects of thermomechanical treatments on microstructures and mechanical properties are of interest for long term application of V-Cr-Ti alloys in fusion reactor systems. Influence of thermal annealing at 1050{degrees}C on stress/strain behavior, maximum engineering strength, and uniform and total elongation were evaluated. The results show that multiple annealing has minimal effect on the tensile properties of V-(4-5)Cr-(4-5)Ti alloys tested at room temperature and at 500{degrees}C.

  11. Cyclic hydrogenation stability of γ-hydrides for Ti{sub 25}V{sub 35}Cr{sub 40} alloys doped with carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chia-Chieh, E-mail: ccshen@saturn.yzu.edu.tw [Department of Mechanical Engineering, Yuan Ze University, Chungli 32003, Taiwan (China); Graduate School of Renewable Energy and Engineering, Yuan Ze University, Chungli 32003, Taiwan (China); Fuel Cell Center, Yuan Ze University, Chungli 32003, Taiwan (China); Li, Hsueh-Chih [Graduate School of Renewable Energy and Engineering, Yuan Ze University, Chungli 32003, Taiwan (China)

    2015-11-05

    An automatic Sievert's apparatus equipped with a temperature-programmed desorption spectrometer was constructed to study the stability of annealed Ti{sub 25}V{sub 35}Cr{sub 40}C{sub x} (x = 0 and 0.1) alloy under cyclic hydrogenation at 6 N H{sub 2}. The specimens were tested at 30 °C with a hydrogen loading of around 1.00 H/M, which enabled the phase transformation from β-to γ-hydrides. After 500 cycles, 83% and 90% of the initial hydrogen capacities were preserved for Ti{sub 25}V{sub 35}Cr{sub 40} and Ti{sub 25}V{sub 35}Cr{sub 40}C{sub 0.1}, respectively. Therefore, a small amount of C doping was effective in reducing the hydrogenation degradation of Ti{sub 25}V{sub 35}Cr{sub 40}. The hydrogenation degradation of Ti{sub 25}V{sub 35}Cr{sub 40} was examined by measuring the P–C isotherms, temperature-programmed desorption spectra, and X-ray diffraction patterns. The degradation was ascribed to intrinsic disproportionation, i.e., Ti{sub 0.25}V{sub 0.35}Cr{sub 0.40} + 0.88H{sub 2} → yTiH{sub 2} + Ti{sub 0.25−y}V{sub 0.35}Cr{sub 0.40}H{sub 1.76–2y}, where the coefficient y indicates the amount of Ti-rich precipitate. The better cyclic hydrogenation stability of Ti{sub 25}V{sub 35}Cr{sub 40}C{sub 0.1} was related to the suppression of intrinsic disproportionation by the presence of carbon atoms in the body-centered-cubic lattice. - Highlights: • The stability of γ-hydride for Ti{sub 25}V{sub 35}Cr{sub 40} alloys was examined for 500 cycles. • The γ-hydride of Ti{sub 25}V{sub 35}Cr{sub 40} alloy degraded by intrinsic disproportionation. • The disproportionation of γ-hydride can be suppressed through carbon inclusion.

  12. Structure and grindability of dental Ti-Cr alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Wu, S.-C.; Chiang, T.-Y.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure and microhardness of a series of binary Ti-Cr alloys with Cr contents up to 30 wt%. In addition, the grindability was also evaluated using an electric dental handpiece with SiC wheels, with the goal of developing a titanium alloy with better mechanical properties and machinability than commercially pure titanium (c.p. Ti), a metal generally considered to be difficult to machine. This study evaluated the phase and structure of Ti-Cr alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min. Results indicated that the structure of Ti-Cr alloys is sensitive to the Cr content. The cast c.p. Ti has a hexagonal α phase. With 5 wt% Cr, metastable β phase starts to be retained. With Cr contents higher than 10 wt%, the equi-axed β phase is almost entirely retained. In addition, athermal ω phase was found in the Ti-5Cr and Ti-10Cr alloys. The largest quantity of ω phase and highest microhardness were found in Ti-10Cr alloy. The grinding rate of the Ti-Cr alloys showed a similar tendency to the microhardness. The Ti-10Cr alloy exhibited the best grindability, especially at 1000 m/min, which presumably due to the brittle nature of the alloy containing the ω phase in the β matrix.

  13. Oxidation and microstrucure of V-Cr-Ti alloys exposed to oxygen-containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States); Uz, M. [Lafayette College, Easton, PA (United States); Ulie, T.

    1997-08-01

    The objectives of this task are to (a) evaluate the oxygen uptake of several V-Cr-Ti alloys as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen trapped at the grain boundaries in the substrate alloys, and (c) evaluate the influence of alloy composition on oxygen uptake and develop correlation(s) between alloy composition, exposure environment, and temperature.

  14. Oxidation and microstrucure of V-Cr-Ti alloys exposed to oxygen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.; Ulie, T.

    1997-01-01

    The objectives of this task are to (a) evaluate the oxygen uptake of several V-Cr-Ti alloys as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen trapped at the grain boundaries in the substrate alloys, and (c) evaluate the influence of alloy composition on oxygen uptake and develop correlation(s) between alloy composition, exposure environment, and temperature

  15. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Directory of Open Access Journals (Sweden)

    Samar Reda Al-Sayed Ali

    2017-10-01

    Full Text Available Laser cladding process was performed on a commercial Ti-6Al-4V (α + β titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD. The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  16. Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.

    Science.gov (United States)

    Paiva, Jose; Givan, Daniel A; Broome, James C; Lemons, Jack E; McCracken, Michael S

    2009-12-01

    The purpose of this study was to investigate the fit of cast alloy overdenture and laser-welded titanium-alloy bars by measuring induced strain upon tightening of the bars on a master cast as well as a function of screw tightening sequence. Four implant analogs were secured into Type IV dental stone to simulate a mandibular edentulous patient cast, and two groups of four overdenture bars were fabricated. Group I was four cast alloy bars and Group II was four laser-welded titanium bars. The cast alloy bars included Au-Ag-Pd, Pd-Ag-Au, Au-Ag-Cu-Pd, and Ag-Pd-Cu-Au, while the laser-welded bars were all Ti-Al-V alloy. Bars were made from the same master cast, were torqued into place, and the total strain in the bars was measured through five strain gauges bonded to the bar between the implants. Each bar was placed and torqued 27 times to 30 Ncm per screw using three tightening sequences. Data were processed through a strain amplifier and analyzed by computer using StrainSmart software. Data were analyzed by ANOVA and Tukey's post hoc test. Significant differences were found between alloy types. Laser-welded titanium bars tended to have lower strains than corresponding cast bars, although the Au-Ag-Pd bar was not significantly different. The magnitudes of total strain were the least when first tightening the ends of the bar. The passivity of implant overdenture bars was evaluated using total strain of the bar when tightening. Selecting a high modulus of elasticity cast alloy or use of laser-welded bar design resulted in the lowest average strain magnitudes. While the effect of screw tightening sequence was minimal, tightening the distal ends first demonstrated the lowest strain, and hence the best passivity.

  17. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  18. Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti–6%Al–4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Song, HyunJong; Joo, SungMin

    2013-01-01

    Highlights: • Hybrid friction stir welding for Al alloy and Ti alloy joint has been carried out. • Mechanical strength of dissimilar joint by HFSW and FSW has been compared. • Microstructure of dissimilar joint by HFSW and FSW has been compared. - Abstract: Hybrid friction stir butt welding of Al6061-T6 aluminum alloy plate to Ti–6%Al–4%V titanium alloy plate with satisfactory acceptable joint strength was successfully achieved using preceding gas tungsten arc welding (GTAW) preheating heat source of the Ti alloy plate surface. Hybrid friction stir welding (HFSW) joints were welded completely without any unwelded zone resulting from smooth material flow by equally distributed temperature both in Al alloy side and Ti alloy side using GTAW assistance for preheating the Ti alloy plate unlike friction stir welding (FSW) joints. The ultimate tensile strength was approximately 91% in HFSW welds by that of the Al alloy base metal, which was 24% higher than that of FSW welds without GTAW under same welding condition. Notably, it was found that elongation in HFSW welds increased significantly compared with that of FSW welds, which resulted in improved joint strength. The ductile fracture was the main fracture mode in tensile test of HFSW welds

  19. Tribocorrosion Study of Ordinary and Laser-Melted Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Danillo P. Silva

    2016-10-01

    Full Text Available Titanium alloys are used in biomedical implants, as well as in other applications, due to the excellent combination of corrosion resistance and mechanical properties. However, the tribocorrosion resistance of titanium alloy is normally not satisfactory. Therefore, surface modification is a way to improve this specific performance. In the present paper, laser surface-modified samples were tested in corrosion and pin-on-disk tribocorrosion testing in 0.90% NaCl under an average Hertzian pressure of 410 MPa against an alumina sphere. Laser-modified samples of Ti6Al4V were compared with ordinary Ti6Al4V alloy. Electrochemical impedance showed higher modulus for laser-treated samples than for ordinary Ti6Al4V ones. Moreover, atomic force microscopy revealed that laser-treated surfaces presented less wear than ordinary alloy for the initial exposure. For a further exposure to wear, i.e., when the wear depth is beyond the initial laser-affected layer, both materials showed similar corrosion behavior. Microstructure analysis and finite element method simulations revealed that the different behavior between the initial and the extensive rubbing was related to a fine martensite-rich external layer developed on the irradiated surface of the fusion zone.

  20. Neutron irradiation effect on the strength of jointed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Miya, Naoyuki

    2002-01-01

    In order to investigate applicability of Ti alloy to large scaled structural material for fusion reactors, irradiation effect on the mechanical properties of Ti-6Al-4V alloy and its TIG welded material was investigated after neutron irradiation (temperature: 746-788K, fluence: 2.8 x 10 23 n/m 2 (>0.18 MeV). The following results were obtained. (1) Irradiated Ti alloy shows about 20-30% increase of its tensile strength and large degradation of fracture elongation, comparing with those of unirradiated Ti alloy. (2) TIG welded material behaves as Ti alloy in its tensile test, however, shows 30% increase of area reduction in 373-473K, whereas 1/2 degradation of area reduction over 600K. (3) Irradiated TIG welded material behaves heavier embrittlement than that of irradiated Ti alloy. (4) Charpy impact properties of un- and irradiated Ti alloys shift to ductile from brittle fracture and transition temperature shift, ΔT was estimated as about 100K. (5) Remarkable increase of hardness was found, especially in HAZ of TIG welded material after irradiation. (author)

  1. Mechanical behaviour of Nd:YAG laser welded superelastic NiTi

    International Nuclear Information System (INIS)

    Vieira, L. Alberty; Fernandes, F.M. Braz; Miranda, R.M.; Silva, R.J.C.; Quintino, L.; Cuesta, A.; Ocana, J.L.

    2011-01-01

    Highlights: → The main innovations claimed are: understand rolling direction effect on mechanical cycling of laser welded NiTi. → Functionality confirmed by stabilization of hysteretic response up to 8% strain. → Welds tensile cycled exhibited superior functional mechanical behaviour. → For applied stresses of 50 MPa below UTS the joints showed superelastic behaviour. - Abstract: Joining techniques for shape memory alloys (SMA) has become of great interest, as their functional properties, namely shape memory effect (SME) and superelasticity (SE), present unique solutions for state-of-the-art applications, although limited results concerning mechanical properties are reported. This paper reports experimental work performed with Nd:YAG continuous wave laser welding of superelastic cold-rolled plates of NiTi 1 mm thick. The mechanical behaviour was evaluated by means of tensile tests performed both to failure and to cycling. The superelastic behaviour of the welded joints was observed for applied stresses close to about 50 MPa below the ultimate tensile strength of the welds. The functionality was confirmed by analyzing the stabilization of the mechanical hysteretic response to strain levels up to 8%. For tensile cycling involving strain levels larger than 6%, welded specimens were found to exhibit superior functional mechanical behaviour presenting larger recoverable strain levels. The fracture surfaces were observed by scanning electron microscopy (SEM) and the effect of the rolling direction on mechanical properties was evaluated and discussed, reinforcing the importance of joint design when laser welding these alloys.

  2. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    Science.gov (United States)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  3. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Grossbeck, M.L.; Goodwin, G.M.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This is a progress report on a continuing research project to acquire a fundamental understanding of the metallurgical processes in the welding of vanadium alloys. It also has the goal of developing techniques for welding structural vanadium alloys. The alloy V-4Cr-4Ti is used as a representative alloy of the group; it is also the prime candidate vanadium alloy for the U.S. Fusion Program at the present time. However, other alloys of this class were used in the research as necessary. The present work focuses on recent findings of hydrogen embrittlement found in vanadium alloy welds. It was concluded that the atmosphere in the inert gas glove box was insufficient for welding 6mm thick vanadium alloy plates.

  4. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.

    Science.gov (United States)

    Yan, Xiao-Jun; Yang, Da-Zhi

    2006-04-01

    The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio. (c) 2005 Wiley Periodicals, Inc.

  5. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    Science.gov (United States)

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  6. Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.

    1998-01-01

    A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment. Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation ∼500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after ∼2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after ∼250 h exposure at 500 C in environments with a pO 2 range of 1 x 10 -6 to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO 2 in the preexposure environment and was of 70--95 microm after 250--275 h exposure at 500 C

  7. Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2005-01-01

    Processing conditions for manufacturing Ti-6Al-4V components by welding using an electron beam source are known to influence the transformation microstructure in the narrow fusion and heat-affected zones of the weld region. This work examined the effect of multiple-sequence welding on the characteristics of the transformed beta microstructure, using laser scanning confocal microscopy to resolve the Widmanstaetten alpha-beta structure in the fusion zone. The evolution in the alpha interlamellar spacing and plate thickness with processing was then related to microhardness measurements in the weld region

  8. Oxidation performance of V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.

    2000-01-01

    Vanadium-base alloys are being considered as candidates for the first wall in advanced V-Li blanket concepts in fusion reactor systems. However, a primary deterrent to the use of these alloys at elevated temperatures is their relatively high affinity for interstitial impurities, i.e., O, N, H, and C. The authors conducted a systematic study to determine the effects of time, temperature, and oxygen partial pressure (pO 2 ) in the exposure environment on O uptake, scaling kinetics, and scale microstructure in V-(4--5) wt.% Cr-(4--5) wt.% Ti alloys. Oxidation experiments were conducted on the alloys at pO 2 in the range of 5 x 10 -6 -760 torr (6.6 x 10 -4 -1 x 10 5 Pa) at several temperatures in the range of 350--700 C. Models that describe the oxidation kinetics, oxide type and thickness, alloy grain size, and depth of O diffusion in the substrate of the two alloys were determined and compared. Weight change data were correlated with time by a parabolic relationship. The parabolic rate constant was calculated for various exposure conditions and the temperature dependence of the constant was described by an Arrhenius relationship. The results showed that the activation energy for the oxidation process is fairly constant at pO 2 levels in the range of 5 x 10 -6 -0.1 torr. The activation energy calculated from data obtained in the air tests was significantly lower, whereas that obtained in pure-O tests (at 760 torr) was substantially higher than the energy obtained under low-pO 2 conditions. The oxide VO 2 was the predominant phase that formed in both alloys when exposed to pO 2 levels of 6.6 x 10 -4 to 0.1 torr. V 2 O 5 was the primary phase in specimens exposed to air and to pure O 2 at 760 torr. The implications of the increased O concentration are increased strength and decreased ductility of the alloy. However, the strength of the alloy was not a strong function of the O concentration of the alloy, but an increase in O concentration did cause a substantial decrease

  9. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  10. Microstructural changes of Y-doped V-4Cr-4Ti alloys after ion and neutron irradiation

    Directory of Open Access Journals (Sweden)

    H. Watanabe

    2016-12-01

    Full Text Available High-purity Y-doped V-4Cr-4Ti alloys (0.1–0.2wt. % Y, manufactured by the National Institute for Fusion Science (NIFS, were used for this study. Heavy-ion and fission-neutron irradiation was carried out at temperatures 673–873K. During the ion irradiation at 873K, the microstructure was controlled by the formation of Ti(C,O,N precipitates lying on the (100 plane. Y addition effectively suppressed the growth of Ti(C,O,N precipitates, especially at lower dose irradiation to up to 4 dpa. However, at higher dose levels (12.0 dpa, the number density was almost at the same levels irrespective of the presence of Y. After neutron irradiation at 873K, fine titanium oxides were also observed in all V alloys. However, smaller oxide sizes were observed in the Y-doped samples under the same irradiation conditions. The detailed analysis of EDS showed that the center of the Ti(C,O,N precipitates was mainly enriched by nitrogen. The results showed that the contribution of not only oxygen atoms picked up from the irradiation environment but also nitrogen atoms is essential to understand the microstructural evolution of V-4Cr-4Ti-Y alloys.

  11. X-ray radiography of Ti6Al4V welded by plasma tungsten arc (PTA) welding

    Energy Technology Data Exchange (ETDEWEB)

    Dikbas, Halil; Caligulu, Ugur; Taskin, Mustafa; Turkmen, Mustafa [Firat Univ., Elazig (Turkey). Metallurgy Dept.

    2013-03-01

    In this study, X-ray radiographic tests of Ti6Al4V alloys welded by plasma tungsten arc welding (PTA) were investigated. PTA welding experiments were carried out under argon shielding gas atmosphere, at 1400-1600 W and 1800 W welding powers as well as 1 m/min, 0.75 m/min, and 0.50 m/min welding speeds. After this process, radiography of the welded joints was performed by X-ray diffraction. The result of the radiographic tests indicated that by increasing welding power the widths of deep penetration increased in all specimens. On the contrary, increasing welding speeds decreases the widths deep penetration. The best properties of Ti6Al4V joints were observed for specimens welded at 1800 W welding power and at 0.50 m/min welding speed. (orig.)

  12. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.D., E-mail: renxd@mail.ujs.edu.cn [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Zhou, W.F.; Liu, F.F.; Ren, Y.P. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Yuan, S.Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Ren, N.F.; Xu, S.D.; Yang, T. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-02-15

    Graphical abstract: The grain refinement process of Ti-6Al-4V alloy under LSP: (a) LDD in original grains; (b) Dislocations in β phase; (c) DTIs in α phase; (d) DTs transform into DCs; (e) DWs develop into sub-GBs; (f) GR accomplishes. - Highlights: • LSP could repair the surface defects and reduce the surface roughness. • Microstructure evolution of α phase in Ti-6Al-4V alloy processed by LSP is distinct from β phase. • Multidirectional twin intersections and subgrain boundaries are the main mechanism of grain refinement of Ti-6Al-4V alloy. • Grain refinement process of the Ti-6Al-4V alloy was illustrated. - Abstract: Microstructure evolution and grain refinement of Ti-6Al-4V alloy after laser shock processing (LSP) are systematically investigated in this paper. Laser shock waves were induced by a Q-switched Nd:YAG laser system operated with a wave-length of 1064 nm and 10 ns pulse width. The microstructures of LSP samples were characterized by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Present results indicate that the surface hardness of samples subjected to LSP impacts has significantly improved. Multidirectional twin intersections and dislocation movements lead to grain subdivision in α phase with ultra-high plastic deformation. High-density dislocations are found in β phase. Multidirectional twin intersections and division of sub-grain boundaries play an important role in the grain refinement of Ti-6Al-4V alloy under LSP loading conditions.

  13. Hydrogen release from irradiated vanadium alloy V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Klepikov, A.Kh. E-mail: klepikov@ietp.alma-ata.su; Romanenko, O.G.; Chikhray, Y.V.; Tazhibaeva, I.L.; Shestakov, V.P.; Longhurst, G.R. E-mail: gxl@inel.gov

    2000-11-01

    The present work is an attempt to obtain data concerning the influence of neutron and {gamma} irradiation upon hydrogen retention in V-4Cr-4Ti vanadium alloy. The experiments on in-pile loading of vanadium alloy specimens at the neutron flux density 10{sup 14} n/cm{sup 2} s, hydrogen pressure of 80 Pa, and temperatures of 563, 613 and 773 K were carried out using the IVG.1M reactor of the Kazakhstan National Nuclear Center. A preliminary set of loading/degassing experiments with non-irradiated material has been carried out to obtain data on hydrogen interaction with vanadium alloy. The, data presented in this work are related both to non-irradiated and irradiated samples.

  14. Hydrogen release from irradiated vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Romanenko, O.G.; Chikhray, Y.V.; Tazhibaeva, I.L.; Shestakov, V.P.; Longhurst, G.R.

    2000-01-01

    The present work is an attempt to obtain data concerning the influence of neutron and γ irradiation upon hydrogen retention in V-4Cr-4Ti vanadium alloy. The experiments on in-pile loading of vanadium alloy specimens at the neutron flux density 10 14 n/cm 2 s, hydrogen pressure of 80 Pa, and temperatures of 563, 613 and 773 K were carried out using the IVG.1M reactor of the Kazakhstan National Nuclear Center. A preliminary set of loading/degassing experiments with non-irradiated material has been carried out to obtain data on hydrogen interaction with vanadium alloy. The, data presented in this work are related both to non-irradiated and irradiated samples

  15. Microstructural evolution at the overlap zones of 12Cr martensitic stainless steel laser alloyed with TiC

    CSIR Research Space (South Africa)

    Adebiyi, DI

    2014-09-01

    Full Text Available are not obtainable in the single tracks. X12CrNiMo steel has been laser alloyed with TiC using a 4.4 kW continuous wave (CW) Nd:YAG laser. The process parameters were first optimised after which they were kept constant for overlap ratios of 50% and 75%. The depths...

  16. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  17. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  18. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  19. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    Science.gov (United States)

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  20. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  2. Structure and grindability of cast Ti-5Cr-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Pan, C.-H.; Wu, S.-C.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure, microhardness and grindability of Ti-5Cr and a series of ternary Ti-5Cr-xFe alloys with 0.1, 0.5, 1, 3 and 5 wt.% Fe, respectively. This study evaluated the phase and structure of Ti-5Cr and Ti-5Cr-xFe alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. In addition, grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min), with the goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The results showed that the structure of Ti-5Cr-xFe alloys is sensitive to the Fe content. With Fe contents higher than 0.5 wt.%, the equi-axed β phase is entirely retained, while ω phase was found in the Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The largest quantity of ω phase and highest microhardness were found in Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The grinding rates of the Ti-5Cr and Ti-5Cr-xFe alloys showed a similar tendency to the microhardness. The Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys exhibited the best grindability, especially at 500, 750 and 1000 m/min. Furthermore, the grindability of the tested metals increased in proportion to grinding speed up to 1000 m/min, with a decrease after 1200 m/min. This study concluded that Fe may be used to harden titanium and improve the grindability

  3. Morphology, deformation, and defect structures of TiCr2 in Ti-Cr alloys

    International Nuclear Information System (INIS)

    Chen, K.C.; Allen, S.M.; Livingston, J.D.

    1992-01-01

    The morphologies and defect structures of TiCr 2 in several Ti-Cr alloys have been examined by optical metallography, x-ray diffraction, and transmission electron microscopy (TEM), in order to explore the room-temperature deformability of the Laves phase TiCr 2 . The morphology of the Laves phase was found to be dependent upon alloy composition and annealing temperature. Samples deformed by compression have also been studied using TEM. Comparisons of microstructures before and after deformation suggest an increase in twin, stacking fault, and dislocation density within the Laves phase, indicating some but not extensive room-temperature deformability

  4. On the Correlation between Morphology of alpha and Its Crystallographic Orientation Relationship with TiB and Beta in Boron Containing Ti-5Al-5Mo-5V-3Cr-0.5Fe Alloy (Preprint)

    Science.gov (United States)

    2012-01-01

    orientation microscopy studies on a boron containing version of the commercial Ti- 5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. 15. SUBJECT TERMS Ti5553 ...of the commercial Ti-5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. Keywords: Ti5553 , TiB, EBSD, crystallography, orientation relationship. Paper There has...absence of orientation relationships between the α, β and TiB phases, on the morphology of α nucleating from TiB in the Ti5553 alloy.. The base

  5. Laser polishing of additive manufactured Ti alloys

    Science.gov (United States)

    Ma, C. P.; Guan, Y. C.; Zhou, W.

    2017-06-01

    Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 μm could be reduce to less than 1 μm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.

  6. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Squartini, Tiziano; He Qingshan

    2010-01-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3 Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3 Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3 Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  7. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming

    International Nuclear Information System (INIS)

    Ren, Y.M.; Lin, X.; Fu, X.; Tan, H.; Chen, J.; Huang, W.D.

    2017-01-01

    This work investigated the microstructure and tensile deformation behavior of Ti-6Al-4V alloy fabricated using a high-power laser solid forming (LSF) additive manufacturing. The results show that the post-fabricated heat-treated microstructure consists of coarse columnar prior-β grains (630–1000 μm wide) and α-laths (5–9 μm) under different scanning velocities (900 and 1500 mm/min), which caused large elongation (∼18%) superior to the conventional laser additive manufacturing Ti-6Al-4V alloy. The deformation behavior of the LSF Ti-6Al-4V alloy was investigated using in situ tensile test scanning electron microscopy. The results show that shear-bands appeared along the α/β interface and slip-bands occurred within the α-laths, which lead to cracks decaying in a zigzag-pattern in the LSF Ti-6Al-4V alloy with basket-weave microstructure. These results demonstrate that the small columnar prior-β grains and fine basket-weave microstructure exhibiting more α/β interfaces and α-laths can disperse the load and resist the deformation in the LSF Ti-6Al-4V components. In addition, a modified microstructure selection map of the LSF Ti-6Al-4V alloy was established, which can reasonably predict the microstructure evolution and relative grain size in the LSF process.

  8. Laser Cladding of Ti-6Al-4V Alloy with Ti-Al2O3 Coating for Biomedical Applications

    Science.gov (United States)

    Mthisi, A.; Popoola, A. P. I.; Adebiyi, D. I.; Popoola, O. M.

    2018-05-01

    The indispensable properties of Ti-6Al-4V alloy coupled with poor tribological properties and delayed bioactivity make it a subject of interest to explore in biomedical application. A quite number of numerous coatings have been employed on titanium alloys, with aim to overcome the poor properties exhibited by this alloy. In this work, the possibility of laser cladding different ad-mixed powders (Ti - 5 wt.% Al2O3 and Ti - 8wt.% Al2O3) on Ti-6Al-4V at various laser scan speed (0.6 and 0.8 m/min) were investigated. The microstructure, phase constituents and corrosion of the resultant coatings were characterized by scanning electron microscope (SEM), Optical microscope, X-Ray diffractometer (XRD) and potentiostat respectively. The electrochemical behaviour of the produced coatings was studied in a simulated body fluid (Hanks solution). The microstructural results show that a defect free coating is achieved at low scan speed and ad-mixed of Ti-5 wt. % Al2O3. Cladding of Ti - Al2O3 improved the corrosion resistance of Ti-6Al-4V alloy regardless of varying neither scan speed nor ad-mixed percentage. However, Ti-5 wt.% Al2O3 coating produced at low scan speed revealed the highest corrosion resistance among the coatings due to better quality coating layer. Henceforth, this coating may be suitable for biomedical applications.

  9. Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.P., E-mail: jp.oliveira@campus.fct.unl.pt [CENIMAT/i3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (Portugal); Braz Fernandes, F.M. [CENIMAT/i3N, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (Portugal); Miranda, R.M. [UNIDEMI, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (Portugal); Schell, N. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Ocaña, J.L. [Centro Láser UPM, Universidad Politécnica de Madrid, Edificio “La Arboleda”, Ctra. Valencia, km 7,300, Campus Sur UPM, 28031 Madrid (Spain)

    2016-09-15

    Although laser welding is probably the most used joining technique for NiTi shape memory alloys there is still a lack of understanding about the effects of laser welding parameters on the microstructural induced changes: in both the heat affected and fusion zones martensite may be present, while the base material is fully austenitic. Synchrotron X-ray diffraction was used for fine probing laser welded NiTi joints. Through Rietveld refinement the martensite and austenite phase fractions were determined and it was observed that the martensite content increases towards the weld centreline. This is related to a change of the local transformation temperatures on these regions, which occurs due to compositional variation in those regions. The martensite phase fraction in the thermally affected regions may have significant implications on functional properties on these joints. - Highlights: •Synchrotron X-ray diffraction was used for fine probing of the microstructure in laser welded NiTi joints. •Rietveld refinement allowed to determine the content of martensite along the heat affected and fusion zones. •The martensite content increases from the base material towards the weld centreline.

  10. The effect of advanced ultrasonic forging on fatigue fracture mechanisms of welded Ti-6A1-4V alloy

    Science.gov (United States)

    Smirnova, A.; Pochivalov, Yu.; Panin, V.; Panin, S.; Eremin, A.; Gorbunov, A.

    2017-12-01

    The current study is devoted to application of advanced postwelding ultrasonic forging to joints formed by laser welding of Ti-6A1-4V alloy in order to enhance their mechanical properties and fatigue durability. Low cycle fatigue tests were performed via digital image correlation technique used to obtain strain fields and in situ characterization of deformation, crack growth and fracture. Fracture surfaces were studied by SEM analysis accompanied with calculation of fracture patterns percentage. The fatigue tests demonstrate the high increase in the number of cycles until fracture (from 17 000 to 32 000 cycles) which could be explained by high ductility of welded material after treatment. This leads to lower fatigue crack growth rate due to higher energy dissipation. The obtained effect is attributable only for small cracks on micro-/mesoscales and fails to play a significant role for macro cracks.

  11. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  12. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  13. Fusion welding studies using laser on Ti-SS dissimilar combination

    Science.gov (United States)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  14. Comparison of mechanical properties and structure of vanadium alloys relevant to DEMO conditions of the first wall and blanket

    International Nuclear Information System (INIS)

    Budilkin, N.I.; Alekseev, A.B.; Golikov, I.V.; Kazennov, Yu.I.; Khramtsov, V.F.; Mironova, E.G.; Tselischev, A.V.

    1996-01-01

    Base metal flat specimens and specimens with weld joint of two vanadium alloys V-4Ti-4Cr and V-10Ti-5Cr were tested for a tension at 20-700 C. At all temperatures of tests V-10Ti-5Cr alloy specimens of base metal have higher values of yield stress and tensile strength than the same specimens of V-4Ti-4Cr alloy. Distinction of two alloys in value of specific elongation is less appreciable. The presence of weld joint does not lead to a significant change of the character of temperature dependence and tensile strength value, but reduces plasticity of alloys at 20-700 C. The effect of plasticity reduction of the alloy V-4Ti-4Cr depends on the method of welding, however the total elongation remains at a level 11.0-19.0% for gas tungsten arc (GTA) welding and 12.5-22.5% for electron beam (EB) welding. Fractography by a SEM method has shown a mixed (ductile-brittle) character of fracture of joint weld specimens with a less part of brittle component. (orig.)

  15. Laser Welding-Brazing of Immiscible AZ31B Mg and Ti-6Al-4V Alloys Using an Electrodeposited Cu Interlayer

    Science.gov (United States)

    Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai

    2018-03-01

    Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.

  16. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2

    International Nuclear Information System (INIS)

    Xiang, Zhan-Feng; Liu, Xiu-Bo; Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao; Shi, Gao-Lian; Wu, Shao-Hua

    2014-01-01

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF 2 were “in situ” synthesized in the coating. • The coating with the addition of CaF 2 possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF 2 coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF 2 coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF 2 particles. The wear rates of γ-NiCrAlTi/TiC/CaF 2 coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF 2 coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF 2 coating exhibited excellent friction-reducing and anti-wear properties at high temperature

  17. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Miao He; Wang Weiguo

    2010-01-01

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  18. Microstructure of V-4Cr-4Ti alloy after low-temperature irradiation by ions and neutrons

    International Nuclear Information System (INIS)

    Gazda, J.; Meshii, M.; Chung, H.M.

    1998-01-01

    Mechanical properties of V-4Cr-4Ti alloy were investigated after low-temperature ( ++ ) and dual ion beams (350-keV He + simultaneously with 4.5-MeV Ni ++ ). TEM observations showed the formation of a high density of point-defect clusters and dislocation loops (<30 nm diameter) distributed uniformly in the specimens. Mechanical-property testing showed embrittlement of the alloy. TEM investigations of deformed microstructures were used to determine the causes of embrittlement and yielded observation of dislocation channels propagating through the undeformed matrix. Channels are the sole slip paths and cause early onset of necking and loss of work-hardening in this alloy. Based on a review of the available literature, suggestions are made for further research of slip localization in V-base alloys

  19. Effect of Pulse Laser Welding Parameters and Filler Metal on Microstructure and Mechanical Properties of Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr Alloy

    Directory of Open Access Journals (Sweden)

    Irina Loginova

    2017-12-01

    Full Text Available The effect of pulse laser welding parameters and filler metal on microstructure and mechanical properties of the new heat-treatable, wieldable, cryogenic Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr alloy were investigated. The optimum parameters of pulsed laser welding were found. They were 330–340 V in voltage, 0.2–0.25 mm in pulse overlap with 12 ms duration, and 2 mm/s speed and ramp-down pulse shape. Pulsed laser welding without and with Al-5Mg filler metal led to the formation of duplex (columnar and fine grains as-cast structures with hot cracks and gas porosity as defects in the weld zone. Using Al-5Ti-1B filler metal for welding led to the formation of the fine grain structure with an average grain size of 4 ± 0.2 µm and without any weld defects. The average concentration of Mg is 2.8%; Mn, 0.2%; Zr, 0.1%; Sc, 0.15%; and Ti, 2.1% were formed in the weld. The ultimate tensile strength (UTS of the welded alloy with AlTiB was 260 MPa, which was equal to the base metal in the as-cast condition. The UTS was increased by 60 MPa after annealing at 370 °C for 6 h that was 85% of UTS of the base alloy.

  20. Laser welding of aluminium alloys

    OpenAIRE

    Forsman, Tomas

    2000-01-01

    This thesis treats laser welding of aluminium alloys from a practical perspective with elements of mathematical analysis. The theoretical work has in all cases been verified experimentally. The aluminium alloys studied are from the 5xxx and 6xxx groups which are common for example in the automotive industry. Aluminium has many unique physical properties. The properties which more than others have been shown to influence the welding process is its high reflection, high thermal conductivity, lo...

  1. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  2. Effect of phase transformations on laser forming of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Fan, Y.; Cheng, P.; Yao, Y.L.; Yang, Z.; Egland, K.

    2005-01-01

    In laser forming, phase transformations in the heat-affected zone take place under steep thermal cycles, and have a significant effect on the flow behavior of Ti-6Al-4V alloy and the laser-forming process. The flow-stress data of a material are generally provided as only dependent on strain, strain rate, and temperature, while phase transformations are determined by both temperature and temperature history. Therefore, effect of phase transformations on the flow behavior of materials in thermomechanical processing is not given necessary considerations. In the present work, both the α→β transformation during heating and the decomposition of β phase, producing martensite α ' or lamellae α dependent on cooling rate, are numerically investigated. The spatial distribution of volume fractions of phases is obtained by coupling thermal and phase transformation kinetic modeling. Consequently, the flow stress of Ti-6Al-4V alloy is calculated by the rule of mixtures based on the phase ratio and the flow stress of each single phase, which is also a function of temperature, strain, and strain rate. According to the obtained flow-stress data, the laser-forming process of Ti-6Al-4V alloy is modeled by finite element method, and the deformation is predicted. A series of carefully controlled experiments are conducted to validate the theoretically predicted results

  3. A study on wear resistance and microcrack of the Ti{sub 3}Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing, E-mail: ljnljn1022@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM-Department of Physics, Siena University, Siena 53100 (Italy); He Qingshan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China)

    2010-12-15

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti{sub 3}Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti{sub 3}Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti{sub 3}Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  4. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhan-Feng [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Liu, Xiu-Bo, E-mail: liuxiubo@suda.edu.cn [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Ren, Jia; Luo, Jian; Shi, Shi-Hong; Chen, Yao [School of Mechanical and Electric Engineering, Soochow University, 178 East Ganjiang Road, Suzhou 215006 (China); Shi, Gao-Lian; Wu, Shao-Hua [Suzhou Institute of Industrial Technology, Suzhou 215104 (China)

    2014-09-15

    Highlights: • A novel high temperature self-lubricating wear-resistant coating was fabricated. • TiC carbides and self-lubricant CaF{sub 2} were “in situ” synthesized in the coating. • The coating with the addition of CaF{sub 2} possessed superior properties than without. - Abstract: To improve the high-temperature tribological properties of Ti–6Al–4V alloy, γ-NiCrAlTi/TiC and γ-NiCrAlTi/TiC/CaF{sub 2} coatings were fabricated on Ti–6Al–4V alloy by laser cladding. The phase compositions and microstructure of the coatings were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS). The tribological behaviors were evaluated using a ball-on-disk tribometer from ambient temperature to 600 °C under dry sliding wear conditions and the corresponding wear mechanisms were discussed. The results indicated that the γ-NiCrAlTi/TiC/CaF{sub 2} coating consisted of α-Ti, the “in situ” synthesized TiC block particles and dendrite, γ-NiCrAlTi solid solution and spherical CaF{sub 2} particles. The wear rates of γ-NiCrAlTi/TiC/CaF{sub 2} coating were decreased greatly owing to the combined effects of the reinforced carbides and continuous lubricating films. Furthermore, the friction coefficients of γ-NiCrAlTi/TiC/CaF{sub 2} coating presented minimum value of 0.21 at 600 °C, which was reduced by 43% and 50% compared to the substrate and γ-NiCrAlTi/TiC coating respectively. It was considered that the γ-NiCrAlTi/TiC/CaF{sub 2} coating exhibited excellent friction-reducing and anti-wear properties at high temperature.

  5. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.

    1980-05-01

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO 2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  6. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  7. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.

    1997-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging

  8. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.

    1997-08-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor Program (RDP), has been completed by Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). CVN impact tests on sheet material indicate that the material has properties comparable to other previously-processed V-4Cr-4Ti and V-5Cr-5Ti alloys. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RDP, and research into several joining methods for fabrication of the RDP components, including resistance seam, friction, and electron beam welding, and explosive bonding is being pursued. Preliminary trials have been successful in the joining of V-alloy to itself by resistance, friction, and electron beam welding processes, and to Inconel 625 by friction welding. In addition, an effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625, in both tube-to-bar and sheet-to-sheet configurations, has been initiated, and results have been encouraging.

  9. Segregation in welded nickel-base alloys

    International Nuclear Information System (INIS)

    Akhtar, J.I.; Shoaib, K.A.; Ahmad, M.; Shaikh, M.A.

    1990-05-01

    Segregation effects have been investigated in nickel-base alloys monel 400, inconel 625, hastelloy C-276 and incoloy 825, test welded under controlled conditions. Deviations from the normal composition have been observed to varying extents in the welded zone of these alloys. Least effect of this type occurred in Monel 400 where the content of Cu increased in some of the areas. Enhancement of Al and Ti has been found over large areas in the other alloys which has been attributed to the formation of low melting slag. Another common feature is the segregation of Cr, Fe or Ti, most likely in the form of carbides. Enrichment of Al, Ti, Nb, Mb, Mo, etc., to different amounts in some of the areas of these materials is in- terpretted in terms of the formation of gamma prime precipitates or of Laves phases. (author)

  10. Performance of V-4Cr-4Ti Alloy Exposed to the JFT-2M Tokamak Environment

    International Nuclear Information System (INIS)

    Johnson, W.R.; Trester, P.W.; Sengoku, S.; Ishiyama, S.; Fukaya, K.; Eto, M.; Oda, T.; Hirohata, Y.; Hino, T.; Tsai, H.

    1999-01-01

    A long-term test has been conducted in the JFT-2M tokamak fusion device to determine the effects of environmental exposure on the mechanical and chemical behavior of a V-4Cr-4Ti alloy. Test specimens of the alloy were exposed in the outward lower divertor chamber of JFT-2M in a region away from direct contact with the plasma and were preheated to 300 C just prior to and during selected plasma discharges. During their nine-month residence time in JFT-2M, the specimens experienced approximately 200 lower single-null divertor shots at 300 C, during which high energy particle fluxes to the preheated test specimens were significant, and approximately 2,010 upper single-null divertor shots and non-diverter shots at room temperature, for which high energy particle fluxes to and expected particle retention in the test specimens were very low. Data from post-exposure tests have indicated that the performance of the V-4Cr-4Ti alloy would not be significantly affected by environmental exposure to gaseous species at partial pressures typical for tokamak operation. Deuterium retention in the exposed alloy was also low (<2 ppm). Absorption of interstitial by the alloy was limited to the very near surface, and neither the strength nor the Charpy impact properties of the alloy appeared to be significantly changed from the exposure to the JFT-2M tokamak environment

  11. CO2 and diode laser welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Zhu Jinhong; Li Lin; Liu Zhu

    2005-01-01

    Magnesium alloys are being increasingly used in automotive and aerospace structures. Laser welding is an important joining method in such applications. There are several kinds of industrial lasers available at present, including the conventional CO 2 and Nd:YAG lasers as well as recently available high power diode lasers. A 1.5 kW diode laser and a 2 kW CO 2 laser are used in the present study for the welding of AZ31 alloys. It is found that different welding modes exist, i.e., keyhole welding with the CO 2 laser and conduction welding with both the CO 2 and the diode lasers. This paper characterizes welds in both welding modes. The effect of beam spot size on the weld quality is analyzed. The laser processing parameters are optimized to obtain welds with minimum defects

  12. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Anna University, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected.

  13. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected

  14. Experimental study on the resistance to hydrogen embrittlement of NIFS-V4Cr4Ti alloy

    International Nuclear Information System (INIS)

    Chen Jiming; Xu Zengyu; Den Ying; Muroga, T.

    2002-01-01

    SWIP (Southwestern Institute of Physics) has joined an international collaboration on the hydrogen embrittlement resistance evaluation of the vanadium alloy. This paper presents some experiments on the tensile properties and Charpy impact properties of the NIFS-V4Cr4Ti alloy with high-level hydrogen concentration. The experiment results show different properties against hydrogen embrittlement in static tension and impact load. The critical hydrogen concentration required to embrittle the alloy was about 215 - 310 mg·kg -1 on static tension load, but less than 130 mg·kg -1 on impact loading

  15. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  16. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  17. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy

  18. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.; Trester, P.W.

    1997-04-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy, and processing into final sheet and rod product forms suitable for components of the DIII-D Radiative Divertor structure, has been completed at Wah Chang (formerly Teledyne Wah Chang) of Albany, Oregon (WCA). Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes, and to Inconel 625 by friction welding. An effort to investigate the explosive bonding of V-4Cr-4Ti alloy to Inconel 625 has also been initiated, and results have been encouraging. In addition, preliminary tests have been completed to evaluate the susceptibility of V-4Cr-4Ti alloy to stress corrosion cracking in DIII-D cooling water, and the effects of exposure to DIII-D bakeout conditions on the tensile and fracture behavior of V-4Cr-4Ti alloy.

  19. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  20. Effect of composition on the structure and properties of Ti-Co-Cr alloys

    Directory of Open Access Journals (Sweden)

    T. Matković

    2010-01-01

    Full Text Available The present work is a study of six as-cast Ti-Co-Cr alloys in the Ti-rich region with the purpose of examining the possibility of obtaining a new β-type Ti-alloys. Two experimental alloys Ti80Co10Cr10 and Ti70Co10Cr20 are nearly single-phases and are identified as bcc β-Ti phase. They also display the lowest hardness values and the best corrosion properties. The present study indicates that the region of biomedically-acceptable ternary Ti-rich alloys is situated within lower concentrations of alloying elements, i.e. about 10 at.% Co and 20 at. % Cr.

  1. Acoustic tests of elastic and microplastic properties of V-Ti-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V.M. [Fiziko-Ehnergeticheskij Institut, Obninsk (Russian Federation); Rezvoushkin, A.V. [Fiziko-Ehnergeticheskij Institut, Obninsk (Russian Federation); Kardashev, B.K. [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation)

    1996-10-01

    The non-linear acoustic properties of V-10Ti-5Cr alloy before and after proton irradiation (dose 2.2 x 10{sup 14} p/cm{sup 2}) were investigated using a composite oscillator technique at longitudinal vibration frequencies of about 100 kHz. Acoustic parameters (decrement and resonance frequency) of the samples demonstrated noticeable amplitude dependencies of hysteretic type both in undeformed and deformed states. An unusual influence of plastical pre-straining on irradiated sample was found which resulted in small decreases in damping and increases in resonance frequency, and hence, of the elastic modulus. Damping in an irradiated sample was higher and its resonant frequency was lower as compared with a non-irradiated sample. This acoustic effect correlated with the results of microhardness and yield strength measurements. The experimental results are discussed in the framework of a model which predicts the creation by proton irradiation of defects which aid the motion of dislocations in V-alloys. (orig.).

  2. Effect of helium on swelling and microstructural evolution in ion-irradiated V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Gerber, S.B.; Ayrault, G.

    1986-03-01

    An investigation was made on the effects of implanted helium on the swelling and microstructural evolution that results from energetic single- and dual-ion irradiation of the V-15Cr-5Ti alloy. Single-ion irradiations were utilized for a simulated production of the irradiation damage that might be expected from neutron irradiation of the alloy in a reactor with a fast neutron energy spectrum (E > 0.1 MeV). Dual-ion irradiations were utilized for a simulated production of the simultaneous creation of helium atoms and irradiation damage in the alloy in the MFR environment. Experimental results are also presented on the radiation-induced segregation of the constituent atoms in the single- and dual-ion irradiated alloy

  3. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level

  4. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Production Engineering, Sathyabama University, Old Mamallapuram Road, Chennai 600 119 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level.

  5. Welding of heat-resistant 20% Cr-5% Al steels

    International Nuclear Information System (INIS)

    Tusek, J.; Arbi, D.; Kosmac, A.; Nartnik, U.

    2002-01-01

    The paper treats welding of heat-resistant ferritic stainless steels alloyed with approximately 20% Cr and 5% Al. The major part of the paper is dedicated to welding of 20% Cr-5% Al steel with 3 mm in thickness. Welding was carried out with five different welding processes, i. e., manual metal-arc, MIG, TIG, plasma arc, and laser beam welding processes, using a filler material and using no filler material, respectively. The welded joints obtained were subjected to mechanical tests and the analysis of microstructure in the weld metal and the transition zone. The investigations conducted showed that heat-resistant ferritic stainless 20% Cr-5% Al steel can be welded with fusion welding processes using a Ni-based filler material. (orig.)

  6. Evolution of the electronic structure and physical properties of Fe2MeAl (Me = Ti, V, Cr) Heusler alloys

    International Nuclear Information System (INIS)

    Shreder, E; Streltsov, S V; Svyazhin, A; Makhnev, A; Marchenkov, V V; Lukoyanov, A; Weber, H W

    2008-01-01

    We present the results of experiments on the optical, electrical and magnetic properties and electronic structure and optical spectrum calculations of the Heusler alloys Fe 2 TiAl, Fe 2 VAl and Fe 2 CrAl. We find that the drastic transformation of the band spectrum, especially near the Fermi level, when replacing the Me element (Me = Ti, V, Cr), is accompanied by a significant change in the electrical and optical properties. The electrical and optical properties of Fe 2 TiAl are typical for metals. The abnormal behavior of the electrical resistivity and the optical properties in the infrared range for Fe 2 VAl and Fe 2 CrAl are determined by electronic states at the Fermi level. Both the optical spectroscopic measurements and the theoretical calculations demonstrate the presence of low-energy gaps in the band spectrum of the Heusler alloys. In addition, we demonstrate that the formation of Fe clusters may be responsible for the large enhancement of the total magnetic moment in Fe 2 CrAl

  7. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  8. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  9. A Comparison Between Mechanical And Electrochemical Tests on Ti6Al4V Welded By LBW

    Science.gov (United States)

    Serroni, G.; Bitondo, C.; Astarita, A.; Scala, A.; Gloria, A.; Prisco, U.; Squillace, A.; Bellucci, F.

    2011-05-01

    Titanium and its alloys are nowadays widely used in many sectors: in the medical field (orthopedic and dental ones), in the architectural field, in the chemical plants field and in aeronautic. In this last field it is more and more used both for its contribution to make lightweight and time durable structures and for its compatibility with new materials, first of all Carbon Fiber Reinforced Plastics (CFRP). To this aim, lots of researches are now focusing on new and emerging technologies capable to make titanium objects and, at the same time, reducing the scrap, since titanium alloys for aeronautic application are very expensive. This paper examines Grade 5 Titanium Alloy (Ti6Al4V) welded by Laser Beam (LBW) in butt-joint configuration. The source was Nd:YAG laser, moreover two inert gases were used, in order to provide a shield both on the top and on the bottom of the weld bead. The joints were studied by varying two process parameters: welding speed and power of the laser beam. It was not possible to realize a full experimental plan, due to technological limits in making titanium laser beam welds. The joints were tested to measure their mechanical properties and the corrosion resistance. The process parameters do not significantly affect the maximum static strength of the joints. Microscopic analysis showed that welds made with high power and low welding speed have a uniform weld bead, and no macroscopic defect occurs. Fatigue test results, instead, show a marked influence of the morphology of the weld bead: the occurrence of some defects, such as the undercut, both on the top and on the bottom of the weld bead, dramatically reduced fatigue resistance of the joints. Corrosion resistance was studied using the electrochemical micro cell technique, which allows to distinguish electrochemical properties of each zone of the weld bead, even when, as in this case, they are very narrow. By a general point of view, it has been demonstrated that the joints showing the best

  10. Impact of neutron irradiation on mechanical performance of FeCrAl alloy laser-beam weldments

    Science.gov (United States)

    Gussev, M. N.; Cakmak, E.; Field, K. G.

    2018-06-01

    Oxidation-resistant iron-chromium-aluminum (FeCrAl) alloys demonstrate better performance in Loss-of-Coolant Accidents, compared with austenitic- and zirconium-based alloys. However, further deployment of FeCrAl-based materials requires detailed characterization of their performance under irradiation; moreover, since welding is one of the key operations in fabrication of light water reactor fuel cladding, FeCrAl alloy weldment performance and properties also should be determined prior to and after irradiation. Here, advanced C35M alloy (Fe-13%Cr-5%Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions were characterized after neutron irradiation in Oak Ridge National Laboratory's High Flux Isotope Reactor at 1.8-1.9 dpa in a temperature range of 195-559 °C. Specimen sets included as-received (AR) materials and specimens after controlled laser-beam welding. Tensile tests with digital image correlation (DIC), scanning electron microscopy-electron back scatter diffraction analysis, fractography, and x-ray tomography analysis were performed. DIC allowed for investigating local yield stress in the weldments, deformation hardening behavior, and plastic anisotropy. Both AR and welded material revealed a high degree of radiation-induced hardening for low-temperature irradiation; however, irradiation at high-temperatures (i.e., 559 °C) had little overall effect on the mechanical performance.

  11. Atomic investigation of alloying Cr, Ti, Y additions in a grain boundary of vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Li, Xiaojie; Zhao, Jijun [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Zheng, Pengfei; Chen, Jiming [Southwestern Institute of Physics, Chengdu 610041 (China)

    2016-01-15

    The effect of alloying additions (Cr, Ti and Y) in a vanadium (V) ∑3 (111) grain boundary (GB) is investigated by first-principles calculations. To determine site preference and segregation properties of Cr, Ti and Y in the GB and bulk, we calculate the formation energies and segregation energies for different interstitial and substitutional sites. Cr/Ti/Y atom prefers to segregate to the substitutional sites of the GB from bulk environment, whereas Cr segregation to GB is very weak. Based on the Rice and Wang's model, Cr acts as the GB cohesion, while Ti and Y are strong embrittlers. The analysis of atomic and electronic structures provides a reasonable expansion for the embrittlement behavior. Moreover, the effect of Cr, Ti and Y in the GB on solution of interstitial impurities C, N, O, H, and He are determined. The results show that Cr restrains solution of these impurities in the GB, while Ti tends to form Ti–N complex by absorbing N impurities and Y can absorbs O and He impurities. The present calculations are helpful for understanding the behavior of alloying Cr, Ti, Y additions at the grain boundary of vanadium.

  12. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    Science.gov (United States)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  13. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    Science.gov (United States)

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  14. Welding shape memory alloys with NdYAG lasers Soldadura de ligas de memória de forma com laser Nd-YAG

    Directory of Open Access Journals (Sweden)

    Luisa Quintino

    2012-09-01

    Full Text Available The demand of emerging joining techniques for shape memory alloys (SMA has become of great importance, as their functional properties namely shape memory effect (SME and superelasticity (SE present unique solutions for state-of-the-art applications. Welding of SMAs is a challenge due to the risk of reduced mechanical performance after laser processing. The wider application of these alloys in various sectors as aerospace, medical or electronic industry is hindered by the limitations in its processing. The need to weld SMAs to other materials is pressing for applications in the above referred sectors. In dissimilar joints the need to understand materials behavior is even more challenging since base materials have different physical properties leading to different heat flow, convection processes and residual stress distribution. The chemical composition across the weld pool varies and intermetallic compounds are formed. Research detailing the effects of laser processing on NiTi is essential to overcome many of these challenges. The objectives of the current study are to analyze the effects of laser welding in the weld shape of both similar and dissimilar joints of NiTi to stainless steel and titanium alloys.A procura de técnicas de ligação para ligas de memória de forma tem-se revetido de importância crescente, devido ao desenvolvimento de aplicações deste material com particulares propriedades de memória de forma e superelasticidade. A soldadura de ligas de memória de forma é um desafio devido ao risco de emporbrecimento das propriedades mecânicas depois do processamento laser. A aplicação alargarda destas ligas em vários sectores como o aeroespacial, medico ou electrónico é prejudicado pelas limitações de processamento. A necessidade de soldar ligas de memória de forma a outros materiais é premente para estes sectores. Em juntas dissimilares, o entendimento do comportamento dos materaias é um desafio ainda maior uma vez que

  15. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate

    International Nuclear Information System (INIS)

    Huang, Can; Zhang, Yongzhong; Vilar, Rui; Shen, Jianyun

    2012-01-01

    Highlights: ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V) 5 Si 3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. -- Abstract: Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V) 5 Si 3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V) 5 Si 3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions.

  16. Microstructure and corrosion behavior of laser processed NiTi alloy.

    Science.gov (United States)

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dynamic globularization of a-phase in Ti6Al4V alloy during hot compression

    CSIR Research Space (South Africa)

    Mutombo, K

    2013-12-01

    Full Text Available composition dependence of the martensite start temperature (Ms) has been done for Ti-Fe, Ti-Cr, Ti-Mo, Ti-V, Ti-Nb, Ti-Zr and Ti-Al alloys [1], [2]. The beneficial effect on the formation of hexagonal-structured martensite (α′) of Al, Mn, Cr, Sn and Fe... alloying elements, has been discussed by Lin et al [4]. However, the formation of the orthorhombic-structured martensite (α′′) which is favoured by elements such as Nb, Mo, Zr, W and V (strong β stabilizers) or H (a strong β stabilizer), has been reported...

  18. Prevention of microcracking by REM addition to alloy 690 filler metal in laser clad welds

    International Nuclear Information System (INIS)

    Okauchi, Hironori; Saida, Kazuyoshi; Nishimoto, Kazutoshi

    2011-01-01

    Effect of REM addition to alloy 690 filler metal on microcracking prevention was verified in laser clad welding. Laser clad welding on alloy 132 weld metal or type 316L stainless steel was conducted using the five different filler metals of alloy 690 varying the La content. Ductility-dip crack occurred in laser clad welding when La-free alloy 690 filler metal was applied. Solidification and liquation cracks occurred contrarily in the laser cladding weld metal when the 0.07mass%La containing filler metal was applied. In case of laser clad welding on alloy 132 weld metal and type 316L stainless steel, the ductility-dip cracking susceptibility decreased, and solidification/liquation cracking susceptibilities increased with increasing the La content in the weld metal. The relation among the microcracking susceptibility, the (P+S) and La contents in every weld pass of the laser clad welding was investigated. Ductility-dip cracks occurred in the compositional range (atomic ratio) of La/(P+S) 0.99(on alloy 132 weld metal), >0.90 (on type 316L stainless steel), while any cracks did not occur at La/(P+S) being between 0.21-0.99 (on alloy 132 weld metal) 0.10-0.90 (on type 316L stainless steel). Laser clad welding test on type 316L stainless steel using alloy 690 filler metal containing the optimum La content verified that any microcracks did not occurred in the laser clad welding metal. (author)

  19. Tensile properties of V-5Cr-5Ti alloy after exposure in air environment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-04-01

    Oxidation studies were conducted on V-5Cr-5Ti alloy specimens in an air environment to evaluate the oxygen uptake behavior of the alloy as a function of temperature and exposure time. The oxidation rates, calculated from parabolic kinetic measurements of thermogravimetric testing and confirmed by microscopic analysis of cross sections of exposed specimens, were 5, 17, and 27 {mu}m per year after exposure at 300, 400, and 500{degrees}C, respectively. Uniaxial tensile tests were conducted at room temperature and at 500{degrees}C on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Correlations were developed between tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth of intergranular fracture zone, and transverse crack length.

  20. Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Liu, Xiu-Bo; Meng, Xiang-Jun; Liu, Hai-Qing; Shi, Gao-Lian; Wu, Shao-Hua; Sun, Cheng-Feng; Wang, Ming-Di; Qi, Long-Hao

    2014-01-01

    Highlights: • A novel high temperature self-lubricating anti-wear composite coating was fabricated. • Reinforced carbides as well as self-lubricating sulfides were in situ synthesized. • Microhardness of the Ti–6Al–4V substrate was significantly improved. • Friction coefficient and wear rate of the composite coating were greatly reduced. - Abstract: To enhance the wear resistance and friction-reducing capability of titanium alloy, a process of laser cladding γ-NiCrAlTi/TiC + TiWC 2 /CrS + Ti 2 CS coatings on Ti–6Al–4V alloy substrate with preplaced NiCr/Cr 3 C 2 –WS 2 mixed powders was studied. A novel coating without cracks and few pores was obtained in a proper laser processing. The composition and microstructure of the fabricated coating were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) techniques, and tribological properties were evaluated using a ball-on-disc tribometer under dry sliding wear test conditions at 20 °C (room-temperature), 300 °C, 600 °C, respectively. The results show that the coating has unique microstructure consisting of α-Ti, TiC, TiWC 2 , γ-NiCrAlTi, Ti 2 CS and CrS phases. Average microhardness of the composite coating is 1005 HV 0.2 , which is about 3-factor higher than that of Ti–6Al–4V substrate (360 HV 0.2 ). The friction coefficient and wear rate of the coating are greatly decreased due to the combined effects of the dominating anti-wear capabilities of reinforced TiC and TiWC 2 carbides and the CrS and Ti 2 CS sulfides which have excellent self-lubricating property

  1. First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2016-07-01

    Full Text Available This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni at the γ-Fe(111/Cr2N(0001 interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111/Cr2N(0001 interface and enhanced interfacial adhesive strength. By contrast, Ni and Mo were difficult to segregate at the γ-Fe(111/Cr2N(0001 interface. Moreover, the results of the work function demonstrated that alloying additives Mn reduced local electrochemical corrosion behavior of the γ-Fe(111/Cr2N(0001 interface by cutting down Volta potential difference (VPD between clean γ-Fe(111 and Cr2N(0001, while alloying additives V, Ti, Mo, and Ni at the γ-Fe(111/Cr2N(0001 interface magnified VPD between clean γ-Fe(111 and Cr2N(0001, which were low-potential sites that usually serve as local attack initiation points.

  2. Correlation of microstructure and fracture toughness of advanced 9Cr/CrMoV dissimilarly welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qian [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Fenggui, E-mail: Lfg119@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Xia [Shanghai Turbine Plant of Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240 (China); Yang, Renjie [Shanghai Turbine Works Company, Shanghai 200240 (China); Cui, Haichao [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Gao, Yulai, E-mail: ylgao@shu.edu.cn [State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai 200072 (China)

    2015-06-25

    In this paper, the fracture toughness and the related microstructure characteristics of dissimilarly welded joint manufactured by advanced 9Cr and CrMoV steels were systematically investigated. The dissimilarly welded joint was fabricated by narrow gap submerged arc welding (NG-SAW) applying multi-layer and multi-pass technique. Fracture toughness, as one of the most important property to assess the reliability of welded joint, was studied for different regions including CrMoV base metal (CrMoV-BM), heat affected zone (HAZ) of CrMoV side (CrMoV-HAZ), weld metal (WM), heat affected zone of 9Cr side (9Cr-HAZ) and 9Cr base metal (9Cr-BM). It was found that the fracture toughness of CrMoV-BM, CrMoV-HAZ and WM was better than that of 9Cr-HAZ and 9Cr-BM. In order to illustrate these results, the microstructure of the whole welded joint was observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM) detailedly. It was found that the fine high-temperature tempered martensite and bainite in WM, CrMoV-BM and CrMoV-HAZ contribute to the higher fracture toughness, while lower fracture toughness for 9Cr-BM and HAZ was caused by coarse tempered lath-martensite. Furthermore, the fracture morphology showed that ductile fracture occurred in WM and CrMoV side, while brittle fracture appeared in BM and HAZ of 9Cr side.

  3. Improved hardness of laser alloyed X12CrNiMo martensitic stainless steel

    CSIR Research Space (South Africa)

    Adebiyi, DI

    2011-07-01

    Full Text Available The improvement in hardness of X12CrNiMo martensitic stainless steel laser alloyed with 99.9% pure titanium carbide, stellite 6 and two cases of premixed ratio of titanium carbide and stellite 6 [TiC (30 wt.%)- stellite 6 (70 wt.%) and TiC (70 wt...

  4. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  5. The Transverse Rupture Strength in Ti-6Al-4V Alloy Manufactured by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Lai Pang-Hsin

    2015-01-01

    Full Text Available The objective of this study was to investigate the transverse rupture strength and apparent hardness of selective laser melted Ti-6Al-4V alloys manufactured in the vertical (V and horizontal (H directions. The microstructure and the distribution of alloy elements were examined by optical microscope and electron probe microanalysis, respectively. The results show that the columnar α′ grains are formed along the building direction, and the elemental distributions of Ti, Al, and V are homogeneous in the alloy. The building direction does not sufficiently affect the density and apparent hardness. However, the transverse rupture strengths (TRS are obviously dominated by the building directions investigated in this study. The TRS of an H specimen is significantly superior to that of a V specimen by 48%. This phenomenon can be mainly attributed to the presence of disc-shaped pores.

  6. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.

    Science.gov (United States)

    Guo, Sai; Lu, Yanjin; Wu, Songquan; Liu, Lingling; He, Mengjiao; Zhao, Chaoqian; Gan, Yiliang; Lin, Junjie; Luo, Jiasi; Xu, Xiongcheng; Lin, Jinxin

    2017-03-01

    In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti 2 Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. High-strength laser welding of aluminum-lithium scandium-doped alloys

    Science.gov (United States)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  8. Effects of La2O3 on microstructure and wear properties of laser clad γ/Cr7C3/TiC composite coatings on TiAl intermatallic alloy

    International Nuclear Information System (INIS)

    Liu Xiubo; Yu Rongli

    2007-01-01

    The effects of La 2 O 3 addition on the microstructure and wear properties of laser clad γ/Cr 7 C 3 /TiC composite coatings on γ-TiAl intermetallic alloy substrates with NiCr-Cr 3 C 2 precursor mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometer (EDS) and block-on-ring wear tests. The responding wear mechanisms are discussed in detail. The results are compared with that for composite coating without La 2 O 3 . The comparison indicates that no evident new crystallographic phases are formed except a rapidly solidified microstructure consisting of the primary hard Cr 7 C 3 and TiC carbides and the γ/Cr 7 C 3 eutectics distributed in the tough γ nickel solid solution matrix. Good finishing coatings can be achieved under a proper amount of La 2 O 3 -addition and a suitable laser processing parameters. The additions of rare-earth oxide La 2 O 3 can refine and purify the microstructure of coatings, relatively decrease the volume fraction of primary blocky Cr 7 C 3 to Cr 7 C 3 /γ eutectics, reduce the dilution of clad material from base alloy and increase the microhardness of the coatings. When the addition of La 2 O 3 is approximately 4 wt.%, the laser clad composite coating possesses the highest hardness and toughness. The composite coating with 4 wt.%La 2 O 3 addition can result the best enhancement of wear resistance of about 30%. However, too less or excessive addition amount of La 2 O 3 have no better influence on wear resistance of the composite coating

  9. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process

    International Nuclear Information System (INIS)

    Robert, Y.

    2007-09-01

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  10. Permeation of deuterium implanted into V-15Cr-5Ti

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1987-01-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4x10 -8 exp(-0.11 eV/kT)(m 2 /s), over the temperature range 723 K to 823 K. (orig.)

  11. Permeation of deuterium implanted into V-15Cr-5Ti

    Science.gov (United States)

    Anderl, R. A.; Longhurst, G. R.; Struttmann, D. A.

    1987-02-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D 3+ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4 × 10 -8 exp( -0.11 eV/ kT) (m 2/s), over the temperature range 723 K to 823 K.

  12. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  13. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  14. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  15. Welding Metallurgy of Alloy HR-160

    International Nuclear Information System (INIS)

    DuPont, J.N.; Michael, J.R.; Newbury, B.D.

    1999-01-01

    The solidification behavior and resultant solidification cracking susceptibility of autogenous gas tungsten arc fusion welds in alloy HR-160 was investigated by Varestraint testing, differential thermal analysis, and various microstructural characterization techniques. The alloy exhibited a liquidus temperature of 1387 degC and initiated solidification by a primary L - γ reaction in which Ni, Si, and Ti segregated to the interdendritic liquid and Co segregated to the γ dendrite cores. Chromium exhibited no preference for segregation to the solid or liquid phase during solidification. Solidification terminated at ∼ 1162 degC by a eutectic-type L - [γ+ (Ni,Co) 16 (Ti,Cr) 6 Si 7 ] reaction. The (Ni,Co) 16 (Ti,Cr) 6 Si 7 phase is found to be analogous to the G phase which forms in the Ni-Ti-Si and Co-Ti-Si ternary systems, and similarities are found to exist between the solidification behavior of this commercial multicomponent alloy and the simple Ni-Si and Ni-Ti binary systems. Reasonable agreement is obtained between the calculated and measured volume percent of the [γ +(Ni,Co) l6 (Ti,Cr) 6 Si 7 ] eutectic-typr constituent with the Scheil equation using experimentally determined k values for Si and Ti from electron microprobe data. The alloy exhibited a very high susceptibility to solidification cracking in the Varestraint test. This is attributed to a large solidification temperature range of 225 degC and the presence of 2 to 5 vol% solute rich interdendritic liquid which preferentially wets the grain boundaries and interdendritic regions

  16. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    International Nuclear Information System (INIS)

    Amaya-Vazquez, M.R.; Sánchez-Amaya, J.M.; Boukha, Z.; Botana, F.J.

    2012-01-01

    Highlights: ► Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. ► Microstructure, microhardness and corrosion of remelted samples are deeply analysed. ► Microstructural changes of laser remelted TiG2 lead to microhardness increase. ► Remelted Ti6Al4V presents microhardness increase and corrosion improvement. ► Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  17. Permeation of deuterium implanted into V-15Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1987-02-01

    Permeation and reemission of deuterium for the vanadium alloy, V-15Cr-5Ti, was investigated using 3 keV, D/sub 3//sup +/ ion beams from a small accelerator. The experiments consisted of measurement of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5 mm thick specimens heated to temperatures from 623 K to 823 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). For the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This is approximately 1000 times that seen in the austenitic stainless steel, PCA, and 200 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates that D = 1.4x10/sup -8/ exp(-0.11 eVkT)(m/sup 2/s), over the temperature range 723 K to 823 K.

  18. The Effect of Friction Stir Welding on Corrosion Behavior of Ti-6Al-4V

    Science.gov (United States)

    Nasresfahani, Ali Reza; Soltanipur, Abdol Reza; Farmanesh, Khosro; Ghasemi, Ali

    2017-09-01

    Fusion welding can deteriorate corrosion behavior of Ti-6Al-4V alloy. However, the use of friction stir welding leads to a more appropriate corrosion resistance. In this study, the corrosion resistance of welded zones of Ti-6Al-4V alloy using friction stir welding technique is evaluated. For these purposes, the study of structural characteristics using SEM and FESEM equipped with EDS micro-analyses was conducted. Micro-hardness test was also employed to estimate the hardness of welded zones. Corrosion behavior was investigated by a potentiostat instrument. SEM micrographs, EDS and XRD analyses confirmed non-uniformity of chemical composition within the welded zones. The results reveal that the stir zone contains typical alpha and prior beta phases. Nevertheless, thermomechanical zone included equiaxed and bimodal lamellae structure. Furthermore, the presence of different types of phases and microstructure in the thermomechanical zone led to reduced corrosion resistance. The corresponding values of corrosion current density in the stir zone, thermomechanical zone and base metal were 0.048, 0.55 and 0.032 µA, respectively. Corresponding corrosion potential for these zones was estimated as -207, -110 and -157 mV. Evidently, the results show that corrosion resistance of thermomechanical zone is less than that of the stir zone and both zones have lower value than the base metal.

  19. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  20. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    International Nuclear Information System (INIS)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho; Lee, Ki-Hyoung; Lee, Chang-Hee

    2011-01-01

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  1. Hydrogen storage study on Ti2CrV and ZrFe1.8V0.2 composite system

    International Nuclear Information System (INIS)

    Banerjee, S.; Kumar, A.; Pillai, C.G.S.; Sudarsan, V.

    2012-01-01

    Ti 2 CrV is reported to have one of the highest hydrogen storage capacities (more than 4 wt. %) among the bcc phase transition metal alloys. It has been found from the earlier study that Ti 2 CrV alloy shows quite good hydrogen absorption property but the desorption temperature is on the higher side. The in-situ temperature programmed desorption profile shows that the hydrogen desorption starts from 120℃ and the desorption peak comes at 180℃, which is slightly high for the vehicular application. On the other hand ZrFe 1.8 V 0.2 Laves phase alloy has low hydrogen absorption capacity, but at the room temperature it can desorp all its hydrogen. The pressure composition isotherm of ZrFe 1.8 V 0.2 alloy generated during the experiment shows the typical characteristics of the room temperature reversible hydride. The in-situ temperature programmed desorption shows that the hydride can desorb all the hydrogen below room temperature

  2. Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications

    Science.gov (United States)

    Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; Du Plessis, A.

    2018-03-01

    Rectangular Ti6Al4V extralow interstitials (ELI) samples were manufactured by laser powder bed fusion (LPBF) in vertical and horizontal orientations relative to the build platform and subjected to various heat treatments. Detailed analyses of porosity, microstructure, residual stress, tensile properties, fatigue, and fracture surfaces were performed based on x-ray micro-computed tomography, scanning electron microscopy, and x-ray diffraction methods. The types of fracture and the tensile fracture mechanisms of the LPBF Ti6Al4V ELI alloy were also studied. Detailed analysis of the microstructure and the corresponding mechanical properties were compared against standard specifications for conventional Ti6Al4V alloy for use in surgical implant applications. Conclusions regarding the mechanical properties and heat treatment of LPBF Ti6Al4V ELI for biomedical applications are made.

  3. A quasi-in-situ EBSD observation of the transformation from rolling texture to recrystallization texture in V-4Cr-4Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Lixia [Institute of Materials Research, China Academy of Engineering Physics, Jiangyou, Sichuan Province 621908 (China); Li, Xiongwei [Institute of Metal Research, China Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Fan, Zhijian [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan Province 621900 (China); Jiang, Chunli; Zhou, Ping [Institute of Materials Research, China Academy of Engineering Physics, Jiangyou, Sichuan Province 621908 (China); Lai, Xinchun, E-mail: laixinchun@caep.cn [Institute of Materials Research, China Academy of Engineering Physics, Jiangyou, Sichuan Province 621908 (China)

    2017-04-15

    Recrystallization texture evolution of rolled V-4Cr-4Ti alloy has been investigated by quasi-in-situ EBSD (electron back-scattering diffraction) method. Concurrently, the precipitates were characterized by SEM (Scanning Electron Microscopy). It was found that both the initial rolling textures and the distribution of the precipitates affected the formation of the recrystallization texture. It was revealed that the texture transformations of (558) 〈110〉 + (665) 〈110〉 to (334) 〈483〉 + (665) 〈1 1 2.4〉 were possibly attributed to the selective drag induced by the sparsely dispersed Ti-rich precipitates. While the densely distributed Ti-rich precipitates were responsible for the randomized recrystallization texture. Finally, when the precipitates were absent, the orientation changes from (112) 〈110〉 and (558) 〈110〉 to (111) 〈112〉 and (001) <110> to (001) <520> were observed. - Highlights: • Micro recrystallization texture evolution in V-4Cr-4Ti alloys is reported for the first time. • The volume fraction of Ti-rich precipitates has significant effect on the recrystallization texture evolution. • The dissolution of the Ti-rich precipitates above 1100 °C induces the strengthening of (111) <112> texture.

  4. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content

    International Nuclear Information System (INIS)

    Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.

    2005-01-01

    The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V

  5. Manipulation of the osteoblast response to a Ti 6Al 4V titanium alloy using a high power diode laser

    Science.gov (United States)

    Hao, L.; Lawrence, J.; Li, L.

    2005-07-01

    To improve the bone integration of titanium-based implants a high power diode laser (HPDL) was used to modify the material for improved osteoblast cell response. The surface properties of un-treated and HPDL treated samples were characterized. Contact angles for the un-treated and the HPDL modified titanium alloy (Ti-6Al-4V) were determined with selected biological liquids by the sessile drop technique. The analysis revealed that the wettability of the Ti-6Al-4V improved after HPDL laser treatment, indicating that better interaction with the biological liquids occurred. Moreover, an in vitro human fetal osteoblast cells (hFOB 1.19) evaluation revealed a more favourable cell response on the HPDL laser treated Ti-6Al-4V alloy than on either un-treated sample or a mechanically roughened sample. It was consequently determined that the HPDL provides more a controllable and effective technique to improve the biocompatibility of bio-metals.

  6. Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.

    Science.gov (United States)

    Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2010-06-01

    The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere.

  7. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaya-Vazquez, M.R. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M., E-mail: josemaria.sanchez@uca.es [Titania, Ensayos y Proyectos Industriales S.L., Ctra Sanlucar A-2001 Km 7,5, Parque Tecnologico TecnoBahia-Edif. RETSE Nave 4, 11500 El Puerto de Santa Maria, Cadiz (Spain); Departamento de Fisica Aplicada, CASEM, Avda. Republica Saharaui s/n, 11510-Puerto Real, Cadiz (Spain); Boukha, Z.; Botana, F.J. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. Black-Right-Pointing-Pointer Microstructure, microhardness and corrosion of remelted samples are deeply analysed. Black-Right-Pointing-Pointer Microstructural changes of laser remelted TiG2 lead to microhardness increase. Black-Right-Pointing-Pointer Remelted Ti6Al4V presents microhardness increase and corrosion improvement. Black-Right-Pointing-Pointer Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  8. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15

    Science.gov (United States)

    Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang

    2015-10-01

    Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.

  9. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  10. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    Science.gov (United States)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  11. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  12. Effect of fiber laser parameters on laser welded AZ31B Magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mat Salleh Naqiuddin

    2017-01-01

    Full Text Available Recently, the usage of Magnesium (Mg alloys has been hugely applied in the industrial application such as in automotive, marine, and electronic due to its advantages of recyclability and lightweight. This alloys required low heat input to be weld since it is easily evaporated due to the Magnesium Oxide (MgO at the surface and it also possesses lower melting point compared to steel. Laser welding is more convenient to weld Mg alloys due to its high power and lower heat input. AZ31B was selected since it has strong mechanical properties among others Mg alloys due to the major alloying elements; Aluminium (Al and Zinc (Zn. Low power fiber laser machine with wavelength of 900 nm was used in this experiment. The intention of this work was to investigate the effect of low power fiber laser parameters and effect of shielding gas on weld penetration and microstructure. Another aim in this work was to produce the joint for this thin sheets metal. Penetration depth and microstructure evaluation were emphasized in the analysis section. Bead-on-Plate (BOP and laser lap welding was conducted on AZ31B with thicknesses of 1.0 mm and 0.6 mm for feasibility study using pulsed wave (PW mode. Defocusing features was used in order to find better focal position, which has less occurrence of evaporation (underfill. The effect of different angle of irradiation was also investigated. Two types of shielding gases, Argon (Ar and Nitrogen (N2 were used in order to study the effect of shielding gas. Lastly, the effect of pulsed energy on penetration types and depth of BOP welded samples was investigated. Focus point was found at focal length of 156 mm with 393.75 μm. For BOP experiment, higher pulsed energy used contributes to melt through defect. Meanwhile, Ns shielding gas proved to be better shielding gas in laser welding the AZ31B. Higher angle of irradiation could reduce the underfill defect. Fillet Lap joint of similar metal was successfully done where 2.0 J of

  13. Slurry Erosion Behavior of AlxCoCrFeNiTi0.5 High-Entropy Alloy Coatings Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Jianhua Zhao

    2018-02-01

    Full Text Available High-entropy alloys (HEAs have gained extensive attention due to their excellent properties and the related scientific value in the last decade. In this work, AlxCoCrFeNiTi0.5 HEA coatings (x: molar ratio, x = 1.0, 1.5, 2.0, and 2.5 were fabricated on Q345 steel substrate by laser-cladding process to develop a practical protection technology for fluid machines. The effect of Al content on their phase evolution, microstructure, and slurry erosion performance of the HEA coatings was studied. The AlxCoCrFeNiTi0.5 HEA coatings are composed of simple face-centered cubic (FCC, body-centered cubic (BCC and their mixture phase. Slurry erosion tests were conducted on the HEA coatings with a constant velocity of 10.08 m/s and 16–40 meshs and particles at impingement angles of 15, 30, 45, 60 and 90 degrees. The effect of three parameters, namely impingement angle, sand concentration and erosion time, on the slurry erosion behavior of AlxCoCrFeNiTi0.5 HEA coatings was investigated. Experimental results show AlCoCrFeNiTi0.5 HEA coating follows a ductile erosion mode and a mixed mode (neither ductile nor brittle for Al1.5CoCrFeNiTi0.5 HEA coating, while Al2.0CoCrFeNiTi0.5 and Al2.5CoCrFeNiTi0.5 HEA coatings mainly exhibit brittle erosion mode. AlCoCrFeNiTi0.5 HEA coating has good erosion resistance at all investigated impingement angles due to its high hardness, good plasticity, and low stacking fault energy (SFE.

  14. Cyclic deformation of dissimilar welded joints between Ti–6Al–4V and Ti17 alloys: Effect of strain ratio

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.Q. [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 127 Youyi Road, Xi' an 710072 (China); Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Liu, J.H., E-mail: jinhliu@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 127 Youyi Road, Xi' an 710072 (China); Lu, Z.X. [Department of Materials Science and Engineering, Xi' an University of Technology, 5 Jinhuanan Road, Xi' an 710048 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-03-01

    Cyclic deformation characteristics of electron beam welded (EBWed) joints between Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys were evaluated via strain-controlled low-cycle fatigue tests at varying strain ratios at a constant strain amplitude. The welding led to a significant microstructural change across the dissimilar joint, with hexagonal close-packed (HCP) martensite α' and orthorhombic martensite α″ in the fusion zone (FZ), α' in the heat-affected zone (HAZ) of Ti–6Al–4V side, and coarse β in the HAZ of Ti17 side. A distinctive asymmetrical hardness profile across the joint was observed with the highest hardness in the FZ and a lower hardness in the HAZ of Ti17 side than in the Ti17 base metal (BM), indicating the presence of soft zone. The strength and ductility of the dissimilar joint lay in-between those of two base metals (BMs). Unlike wrought magnesium alloys, the Ti–6Al–4V BM, Ti17 BM, and joint basically exhibited symmetrical hysteresis loops in tension and compression in the fully reversed strain-controlled tests at a strain ratio of R{sub ε}=−1. At a strain ratio of R{sub ε}=0 and 0.5, a large amount of plastic deformation occurred in the ascending phase of the first cycle of hysteresis loops of Ti–6Al–4V BM, Ti17 BM, and joint due to the high positive mean strain values. Fatigue life of the joint was observed to be the longest at R{sub ε}=−1, and it decreased as the strain ratio deviated from R{sub ε}=−1. A certain degree of mean stress relaxation was observed in the non-fully reversed strain controlled tests (i.e., R{sub ε}≠−1). Fatigue failure of the dissimilar joints occurred in the Ti–6Al–4V BM, with crack initiation from the specimen surface or near-surface defect and crack propagation characterized by fatigue striations.

  15. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    Science.gov (United States)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  16. Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove

    International Nuclear Information System (INIS)

    Song, Zhihua; Nakata, Kazuhiro; Wu, Aiping; Liao, Jinsun

    2013-01-01

    Laser brazing of Ti6Al4V and A6061-T6 alloys with 2 mm thickness was conducted by focusing laser beam on aluminum alloy side, and the effect of laser offset distance on microstructure and mechanical properties of the dissimilar butt joint was investigated. Laser offset has a great influence on the thickness of interfacial intermetallic compound (IMC) layer and the mechanical property of joint. The thickness of interfacial IMC layer is less than 500 nm, and the average tensile strength of the joint reaches 64% of aluminum base material strength, when suitable welding conditions are used. The interfacial IMC is TiAl 3 . The formation of interfacial IMC layer and its effect on mechanical property of the joint are discussed in the present study.

  17. Laser cladding Ni-base composite coating on titanium alloy with pre-placed B4C+NiCoCrAlY

    International Nuclear Information System (INIS)

    Qingwu Meng; Lin Geng; Zhenzhu Zheng

    2005-01-01

    Using a CO 2 laser, a process of cladding Ni-base composite coating on Ti6Al4V with pre-placed B 4 C and NiCoCrAlY was studied. A good metallurgical bonding coating without cracks and pores was obtained in reasonable ratio of components and low energy laser process. Morphology and microstructure of the coating were analyzed with OM, XRD, SEM and EDS. It is certain that there was a reaction between B 4 C and Ti during in-situ producing TiB 2 and TiC. The Ni-base composite coating is strengthened with TiB 2 and TiC reinforcement phases. Vickers hardness tester measured that the average microhardness of the coating is HV1200 and it is 3.5 times of the Ti6Al4V substrate. The high hard coating containing several reinforcement phases greatly enhances wear resistance of titanium alloy. (orig.)

  18. Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates

    Science.gov (United States)

    Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe

    2016-01-01

    The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).

  19. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.; Schwingenschlö gl, Udo

    2016-01-01

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns

  20. Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hanchen; Yang, Jingjing; Yin, Jie; Wang, Zemin, E-mail: zmwang@hust.edu.cn; Zeng, Xiaoyan

    2017-05-17

    Near-fully dense Ti-6Al-4V and 304 stainless steel samples have been produced applying selective laser melting (SLM) in the present work. The microstructures, textures and microhardnesses on horizontal and vertical cross sections, as well as the tensile properties of horizontally and vertically SLMed samples are investigated. It is found that the microstructures of the two SLMed alloys are mainly composed of hexagonal close-packed (HCP) martensitic phase or face-centered cubic (FCC) austenitic phase within columnar structures in Ti-6Al-4V alloy and 304 stainless steel, respectively. For both SLMed alloys, the tensile properties and microhardnesses show anisotropic though the textures are weak. Especially, the Ti-6Al-4V samples show even stronger anisotropic mechanical properties compared with 304 stainless steel. The higher length-width ratios of the columnar structures, rather than the weaker textures or the less symmetry of HCP crystal structure in SLMed Ti-6Al-4V are believed to be responsible for the stronger mechanical anisotropies. As expected, heat treatment is an effective method to eliminate columnar structures and leads to nearly isotropic mechanical properties.

  1. Effect of Fe Content on the Microstructure and Mechanical Properties of Ti-Al-Mo-V-Cr-Fe Alloys

    Directory of Open Access Journals (Sweden)

    Bae K.C.

    2017-06-01

    Full Text Available To investigate the effect of Fe content on the correlation between the microstructure and mechanical properties in near-b titanium alloys, the Ti-5Al-5Mo-5V-1Cr-xFe alloy system has been characterized in this study. As the Fe content increased, the number of nucleation sites and the volume fraction of the α phase decreased. We observed a significant difference in the shape and size of the α phase in the matrix before and after Fe addition. In addition, these morphological deformations were accompanied by a change in the shape of the α phase, which became increasingly discontinuous, and changed into globular-type α phase in the matrix. These phenomena affected the microstructure and mechanical properties of Ti alloys. Specimen #2 exhibited a high ultimate tensile strength (1071 MPa, which decreased with further addition of Fe.

  2. Influence of scandium on the microstructure and strength properties of the welded joint at the laser welding of aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Golyshev, A. A.; Ivanova, M. Yu.

    2017-10-01

    Today, aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from lithium admixture. Various technologies of fusible welding of these alloys are being developed. Serious demands are imposed to the welded joints of aluminum alloys in respect to their strength characteristics. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint. The effect of scandium on the micro-and macro-structure has been studied as well as the strength characteristics of the welded joint. It has been found that scandium under in the laser welding process increases the welded joint elasticity for the system Al-Mg-Li, aluminum alloy 1420 by 20 %, and almost doubles the same for the system Al-Cu-Li, aluminum alloy 1441.

  3. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e. , no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  4. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  5. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  6. Mechanical properties and microstructure of laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chamanfar, A., E-mail: ahc215@lehigh.edu [Institute for Metal Forming, Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015 (United States); Pasang, T. [Department of Mechanical Engineering, Auckland University of Technology, Auckland (New Zealand); Ventura, A.; Misiolek, W.Z. [Institute for Metal Forming, Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015 (United States)

    2016-04-29

    Room temperature tensile properties and microhardness of a laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy sheet were examined and correlated to the microstructure evolution across the weld. Tensile testing integrated with the optical image correlation Instron® system indicated that the average yield strength (YS), ultimate tensile strength (UTS), and total elongation of the weldment were respectively 88%, 87%, and 69% of the corresponding base material (BM) values. Electron probe microanalysis (EPMA) demonstrated a uniform distribution of the main alloying elements across the weld. The hardness raised increasingly from the BM toward the heat affected zone (HAZ) and the fusion zone (FZ) due to mainly a higher α volume fraction in HAZ and acicular α′ martensite formation in the FZ. Because of the higher hardness of the HAZ and FZ, a higher YS for the weldment relative to the BM would be expected. However, the lower YS as well as the lower UTS of the weldment can be explained by presence of some porosity and underfill in the FZ. The lower total elongation of the weldment compared to the BM can be related to the higher hardness of the HAZ and FZ.

  7. Mechanical properties and microstructure of laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy

    International Nuclear Information System (INIS)

    Chamanfar, A.; Pasang, T.; Ventura, A.; Misiolek, W.Z.

    2016-01-01

    Room temperature tensile properties and microhardness of a laser welded Ti–6Al–2Sn–4Zr–2Mo (Ti6242) titanium alloy sheet were examined and correlated to the microstructure evolution across the weld. Tensile testing integrated with the optical image correlation Instron® system indicated that the average yield strength (YS), ultimate tensile strength (UTS), and total elongation of the weldment were respectively 88%, 87%, and 69% of the corresponding base material (BM) values. Electron probe microanalysis (EPMA) demonstrated a uniform distribution of the main alloying elements across the weld. The hardness raised increasingly from the BM toward the heat affected zone (HAZ) and the fusion zone (FZ) due to mainly a higher α volume fraction in HAZ and acicular α′ martensite formation in the FZ. Because of the higher hardness of the HAZ and FZ, a higher YS for the weldment relative to the BM would be expected. However, the lower YS as well as the lower UTS of the weldment can be explained by presence of some porosity and underfill in the FZ. The lower total elongation of the weldment compared to the BM can be related to the higher hardness of the HAZ and FZ.

  8. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  9. Microplasticity and fracture in a Ti-15V-3Cr-3Al-3Sn alloy

    International Nuclear Information System (INIS)

    Rabeeh, B.M.; Rokhlin, S.I.; Soboyejo, W.O.

    1996-01-01

    Linear Elasticity is generally considered to occur in most standard textbooks by the strengthening of chemical bonds in the regime below the proportional limit in most materials. In some cases, however, a number of researchers have recognized the possible role of localized microplasticity (microplasticity in this paper refers to localized plasticity on a microstructural level at stresses below the so-called bulk yield stress) in the so-called elastic deformation regime. There is, therefore, a need for careful studies of the micromechanisms of microplasticity in the so-called elastic regime. Micromechanisms of microplasticity will be presented in this paper for a metastable β Ti-15V-3Cr-3Al-3Sn (Ti-15-3) alloy deformed in incremental stages to failure under monotonic loading. Micromechanisms of tensile deformation and fracture will be elucidated for a Ti-15-3 plate with single phase β and Widmanstaetten α+β microstructures

  10. Electron beam welding of dissimilar metals

    International Nuclear Information System (INIS)

    Metzger, G.; Lison, R.

    1976-01-01

    Thirty-three two-memeber combinations of dissimilar metals were electron beam welded as square-groove butt joints in 0.08 and 0.12 in. sheet material. Many joints were ''braze welded'' by offsetting the electron beam about 0.02 in. from the butt joint to achieve fusion of the lower melting point metal, but no significant fusion of the other member of the pair. The welds were evaluated by visual and metallographic examination, transverse tensile tests, and bend tests. The welds Ag/Al, Ag/Ni15Cr7Fe, Cu/Ni15Cr7Fe, Cu/V, Cu20Ni/Ni15Cr7Fe, Fe18Cr8Ni/Ni, Fe18Cr8Ni/Ni15Cr7Fe, Nb/Ti, Nb/V, Ni/Ni15Cr7Fe, and Cb/V10Ti were readily welded and weld properties were excellent. Others which had only minor defects included the Ag/Cu20Ni, Ag/Ti, Ag/V, Cu/Fe18Cr8Ni, Cu/V10Ti, Cu20Ni/Fe18Cr8Ni, and Ti/Zr2Sn welds. The Cu/Ni weld had deep undercut, but was in other respects excellent. The mechanical properties of the Ag/Fe18Cr8Ni weld were poor, but the defect could probably be corrected. Difficulty with cracking was experienced with the Al/Ni and Fe18Cr8Ni/V welds, but sound welds had excellent mechanical properties. The remaining welds Al-Cu, Al/Cu20Ni, Al/Fe18Cr8Ni, Al/Ni15Cr7Fe, Cu20Ni/V, Cu20Ni/V10Ti, Cb/Zr2Sn, Ni/Ti, Ni15Cr7Fe/V, Ni15Cr7Fe/V10Ti, and Ti/V were unsuccessful, due to brittle phases, primarily at the weld metal-base metal interface. In addition to the two-member specimens, several joints were made by buttering. Longitudinal weld specimens of the three-member combination Al/Ni/Fe18Cr8Ni and the five member combination Fe18Cr8Ni/V/Cb/Ti/Zr2Sn showed good tensile strength and satisfactory elongation. 6 tables, 16 figures

  11. Revised ANL-reported tensile data for unirradiated and irradiated (FFTF, HFIR) V-Ti and V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Billone, M.C.

    1998-01-01

    The tensile data for all unirradiated and irradiated vanadium alloys samples tested at Argonne National Laboratory (ANL) have been critically reviewed and, when necessary, revised. The review and revision are based on reanalyzing the original load-displacement strip chart recordings by a methodology consistent with current ASTM standards. For unirradiated alloys (162 samples), the revised values differ from the previous values as follows: -11±19 MPa (-4±6%) for yield strength (YS), -3±15 MPa (-1±3%) for ultimate tensile strength (UTS), -5±2% strain for uniform elongation (UE), and -4±2% strain for total elongation (TE). Of these changes, the decrease in -1±6 MPa (0±1%) for UTS, -5±2% for UE, and -4±2% for TE. Of these changes, the decrease in UE values for alloys irradiated and tested at 400--435 C is the most significant. This decrease results from the proper subtraction of nongauge-length deformation from measured crosshead deformation. In previous analysis of the tensile curves, the nongauge-length deformation was not correctly determined and subtracted from the crosshead displacement. The previously reported and revised tensile values for unirradiated alloys (20--700 C) are tabulated in Appendix A. The revised tensile values for the FFTF-irradiated (400--600 C) and HFIR-irradiated (400 C) alloys are tabulated in Appendix B, along with the neutron damage and helium levels. Appendix C compares the revised values to the previously reported values for irradiated alloys. Appendix D contains previous and revised values for the tensile properties of unirradiated V-5Cr-5Ti (BL-63) alloy exposed to oxygen

  12. Study of the impact of treatment modes on hardness, deformability and microstructure of VT6 (Ti-6Al-4V and VV751P (Ni-15Co-10Cr alloy samples after selective laser sintering

    Directory of Open Access Journals (Sweden)

    Galkina Natalia V.

    2017-01-01

    Full Text Available Selective laser sintering is an advanced method for obtaining sophisticated products and assembly permanent joints. This is particularly relevant for heat resistant alloys employed in aviation equipment. Heat treatment modes traditionally applied to the products are chosen in accordance with conditions of further product operation. In this paper there are given the results of experimental study of hardness, deformability and microstructure of samples after selective laser sintering of Ni-15Co-10Cr and Ti–6Al–4V alloy powders. It has been determined that Ni-15Co-10Cr alloy ageing increases the hardness and deformability of samples; these characteristics decrease if the ageing lasts for 9-19 hours. Annealing of Ti–6Al–4V alloy samples results in preserving original hardness. After complete annealing, the hardness of samples decreases from 32 … 33HRC to 24 … 26HRC. Microstructural studies showed that there are cracks between layers in the surface of Ti–6Al–4V alloy samples after sintering and not complete annealing. After full annealing, cracks' width and length decreased. Cracks in Ni-15Co-10Cr alloy samples' microstructure were not detected.

  13. Effects of La{sub 2}O{sub 3} on microstructure and wear properties of laser clad {gamma}/Cr{sub 7}C{sub 3}/TiC composite coatings on TiAl intermatallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiubo [Laboratory for Laser Intelligent Manufacturing, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuanxi Road, Beijing 100080 (China) and School of Materials and Chemical Engineering, Zhongyuan Institute of Technology, 41 Zhongyuan Western Road, Zhengzhou 450007, Henan Province (China)]. E-mail: liubobo0828@yahoo.com.cn; Yu Rongli [School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100083 (China)

    2007-02-15

    The effects of La{sub 2}O{sub 3} addition on the microstructure and wear properties of laser clad {gamma}/Cr{sub 7}C{sub 3}/TiC composite coatings on {gamma}-TiAl intermetallic alloy substrates with NiCr-Cr{sub 3}C{sub 2} precursor mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometer (EDS) and block-on-ring wear tests. The responding wear mechanisms are discussed in detail. The results are compared with that for composite coating without La{sub 2}O{sub 3}. The comparison indicates that no evident new crystallographic phases are formed except a rapidly solidified microstructure consisting of the primary hard Cr{sub 7}C{sub 3} and TiC carbides and the {gamma}/Cr{sub 7}C{sub 3} eutectics distributed in the tough {gamma} nickel solid solution matrix. Good finishing coatings can be achieved under a proper amount of La{sub 2}O{sub 3}-addition and a suitable laser processing parameters. The additions of rare-earth oxide La{sub 2}O{sub 3} can refine and purify the microstructure of coatings, relatively decrease the volume fraction of primary blocky Cr{sub 7}C{sub 3} to Cr{sub 7}C{sub 3}/{gamma} eutectics, reduce the dilution of clad material from base alloy and increase the microhardness of the coatings. When the addition of La{sub 2}O{sub 3} is approximately 4 wt.%, the laser clad composite coating possesses the highest hardness and toughness. The composite coating with 4 wt.%La{sub 2}O{sub 3} addition can result the best enhancement of wear resistance of about 30%. However, too less or excessive addition amount of La{sub 2}O{sub 3} have no better influence on wear resistance of the composite coating.

  14. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  15. Oxidation behavior of V-Cr-Ti alloys in low-partial-pressure oxygen environments

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.

    1998-01-01

    A test program is in progress at Argonne National Laboratory to evaluate the effect of pO 2 in the exposure environment on oxygen uptake, scaling kinetics, and scale microstructure in V-Cr-Ti alloys. The data indicate that the oxidation process follows parabolic kinetics in all of the environments used in the present study. From the weight change data, parabolic rate constants were evaluated as a function of temperature and exposure environment. The temperature dependence of the parabolic rate constants was described by an Arrhenius relationship. Activation energy for the oxidation process was fairly constant in the oxygen pressure range of 1 x 10 -6 to 1 x 10 -1 torr for both the alloys. The activation energy for oxidation in air was significantly lower than in low-pO 2 environments, and for oxidation in pure O 2 at 760 torr was much lower than in low-pO 2 environments. X-ray diffraction analysis of the specimens showed that VO 2 was the dominant phase in low-pO 2 environments, while V 2 O 5 was dominant in air and in pure oxygen at 76f0 torr

  16. Low temperature heat treatments of AA5754-Ti6Al4V dissimilar laser welds: Microstructure evolution and mechanical properties

    Science.gov (United States)

    Leo, P.; D'Ostuni, S.; Casalino, G.

    2018-03-01

    This paper presents the effects of the post welding heat treatments (PWHT) performed at 350 °C and 450 °C on the microstructure evolution and mechanical properties of AA5754 and Ti6Al4V dissimilar laser welds. The microstructure and tensile properties of the welds before and after low temperature treatment were analyzed. The off-set welding technique was applied to limit the formation of brittle intermetallic compounds during the welding process. The laser beam was directed onto the titanium side at a small distance from the aluminum edge. The keyhole formed and the full penetration was reached in the titanium side of the weld. Thereafter, the aluminum side melted as the heat that formed the keyhole transferred from the titanium fused zone. Two different energy lines (32 J/mm and 76 J/mm) were used. In this manner, a fused and a heat affected zones was revealed on both sides of the weld. Several intermetallic compounds formed in the intermetallic layer between the two metals. The thickness and the composition of the intermetallic layer depended on the welding parameters and the post welding heat treatment. The hardness and tensile properties of the welds before and after the post welding heat treatment were measured and analyzed.

  17. Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

    OpenAIRE

    Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun

    2017-01-01

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the ph...

  18. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders

    International Nuclear Information System (INIS)

    Diao, Yunhua; Zhang, Kemin

    2015-01-01

    Highlights: • A TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB_2 composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB_2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB_2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  19. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    Science.gov (United States)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  20. Hydrogen absorption-desorption properties of Ti0.32Cr0.43V0.25 alloy

    International Nuclear Information System (INIS)

    Cho, Sung-Wook; Shim, Gunchoo; Choi, Good-Sun; Park, Choong-Nyeon; Yoo, Jeong-Hyun; Choi, Jeon

    2007-01-01

    Ti 0.32 Cr 0.43 V 0.25 alloy specimens were heat treated, and its various hydrogen storage properties were measured at 303 K to examine its potential as a hydrogen storage material. The heat treatment improved not only the total and the effective hydrogen storage capacities, but also the plateau flatness. The heat of hydride formation was approximately -36 kJ/mol H 2 . The effective hydrogen storage capacity remained at approximately 2 wt% after 1000 cycles of pressure swing cyclic tests. The hydrogen storage capacity could be recovered almost to the initial state by reactivating the alloy. The hydrogen absorption rate increased with the repetition of cycling for the first several cycles and remained almost constant afterward. At the 504th cycle, more than 98% of the hydrogen was absorbed within the first 2 min. X-ray diffraction (XRD) patterns showed that the crystal structure of the alloy became more amorphous as the number of cycles increased

  1. Electrochemical behaviour of laser-clad Ti6Al4V with CP Ti in 0.1 M oxalic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Obadele, Babatunde Abiodun, E-mail: obadele4@gmail.com [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Olubambi, Peter A. [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Andrews, Anthony [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Pityana, Sisa [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); National Laser Center, Council for Scientific and Industrial Research, Pretoria (South Africa); Mathew, Mathew T. [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 (United States)

    2015-10-15

    The relationship between the microstructure and corrosion behaviour of Ti6Al4V alloy and laser-clad commercially pure (CP) Ti coating was investigated. The microstructure, phases and properties of the clad layers were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Electrochemical measurement techniques including open circuit potential (OCP) and potentiodynamic polarisation were used to evaluate the corrosion behaviour of Ti6Al4V alloy in 0.1 M oxalic acid solution and the results compared to the behaviour of laser-clad CP Ti at varying laser scan speed. Results showed that laser-clad CP Ti at scan speed of 0.4 m/min formed a good cladding layer without defects such as cracks and pores. The phase present in the cladding layer was mostly α′-Ti. The microstructures of the clad layer were needle like acicular/widmanstätten α. An improvement in the microhardness values was also recorded. Although the corrosion potentials of the laser-clad samples were less noble than Ti6Al4V alloy, the polarisation measurement showed that the anodic current density was lower and also increases with increasing laser scanning speed. - Highlights: • The microstructure and corrosion behaviour of laser-clad CP Ti was investigated. • Laser-clad CP Ti 0.4 m/min scan speed gave a good coating without cracks and pores. • The phase present in the clad layer was mostly α′-Ti. • An improvement in the microhardness values was also recorded. • Anodic current density for coatings increases with increasing laser scan speed.

  2. Electrochemical behaviour of laser-clad Ti6Al4V with CP Ti in 0.1 M oxalic acid solution

    International Nuclear Information System (INIS)

    Obadele, Babatunde Abiodun; Olubambi, Peter A.; Andrews, Anthony; Pityana, Sisa; Mathew, Mathew T.

    2015-01-01

    The relationship between the microstructure and corrosion behaviour of Ti6Al4V alloy and laser-clad commercially pure (CP) Ti coating was investigated. The microstructure, phases and properties of the clad layers were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Electrochemical measurement techniques including open circuit potential (OCP) and potentiodynamic polarisation were used to evaluate the corrosion behaviour of Ti6Al4V alloy in 0.1 M oxalic acid solution and the results compared to the behaviour of laser-clad CP Ti at varying laser scan speed. Results showed that laser-clad CP Ti at scan speed of 0.4 m/min formed a good cladding layer without defects such as cracks and pores. The phase present in the cladding layer was mostly α′-Ti. The microstructures of the clad layer were needle like acicular/widmanstätten α. An improvement in the microhardness values was also recorded. Although the corrosion potentials of the laser-clad samples were less noble than Ti6Al4V alloy, the polarisation measurement showed that the anodic current density was lower and also increases with increasing laser scanning speed. - Highlights: • The microstructure and corrosion behaviour of laser-clad CP Ti was investigated. • Laser-clad CP Ti 0.4 m/min scan speed gave a good coating without cracks and pores. • The phase present in the clad layer was mostly α′-Ti. • An improvement in the microhardness values was also recorded. • Anodic current density for coatings increases with increasing laser scan speed

  3. Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C

    Science.gov (United States)

    Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon

    2018-04-01

    In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.

  4. Electron beam welding of heavy section 3Cr-1.5Mo alloy

    International Nuclear Information System (INIS)

    King, J.F.; David, S.A.; Nasreldin, A.

    1986-01-01

    Welding of thick section steels is a common practice in the fabrication of pressure vessels for energy systems. The fabrication cost is strongly influenced by the speed at which these large components can be welded. Conventional welding processes such as shielded metal arc (SMA) and submerged arc (SA) are time-consuming and expensive. Hence there is a great need to reduce welding time and the tonnage of weld metal deposited. Electron beam welding (EBW) is a process that potentially could be used to achieve dramatic reduction in the welding time and costs. The penetrating ability of the beam produces welds with high depth-to-width ratios at relatively high travel speeds, making it possible to weld thick sections with one or two passes without filler metals and other consumables. The paper describes a study that was undertaken to investigate the feasibility of using a high power electron beam welding machine to weld heavy section steel. The main emphasis of this work was concentrated on determining the mechanical properties of the resulting weldment, characterizing the microstructure of the various weldment regions, and comparing these results with those from other processes. One of the steels selected for the heavy section electron beam welding study was a new 3 Cr-1.5 Mo-0.1 V alloy. The steel was developed at the AMAX Materials Research Center by Wada and co-workers for high temperature, high pressure hydrogen service as a possible improved replacement for 2-1/4 Cr-1 Mo steels. The excellent strength and toughness of this steel make it a promising candidate for future pressure vessels such as those for coal gasifiers. The work was conducted on 102 mm (4 in.) thick plates of this material in the normalized-and-tempered condition

  5. Effect of heat treatment and impurity concentration on some mechanical properties V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Diercks, D.R.

    1986-03-01

    The effects of heat treatment and O, N, C, Si, and S impurity level on the yield strength, ductility, and fracture mode for specimens from four different heats of the V-15Cr-5Ti alloy are presented. The heat treatments for the alloy consisted of annealing as-rolled material for one hour at either 950, 1050, 1125, or 1200 0 C. The total oxygen, nitrogen, and carbon impurity concentration ranged from 400 to 1200 wppm. The Si concentration ranged from 300 to 1050 wppm, and the S concentration ranged from 440 to 1100 wppm. The yield strength and ductility for the alloy, regardless of impurity concentration, exhibited minimum and maximum values, respectively, for the 1125 0 C anneal. The primary mode of failure for the tensile specimens was transgranular fracture

  6. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  7. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Science.gov (United States)

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-01-01

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus. PMID:28972546

  8. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Directory of Open Access Journals (Sweden)

    Pavel Krakhmalev

    2017-10-01

    Full Text Available The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  9. Effect of Ti/Cr additive on helium diffusion and segregation in dilute vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Tingting [Information Science and Technology College, Dalian Maritime University, Dalian 116026 (China); Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Zhao, Jijun [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Zheng, Pengfei; Chen, Jiming [Southwestern Institute of Physics, Chengdu 610041 (China)

    2017-02-15

    Highlights: • He prefers to segregate to Ti region rather than Cr region in the vanadium alloys. • He diffusion barrier decreases towards Ti while it increases towards Cr. • The He{sub n}Ti complexes are more stable than the He{sub n}Cr complexes energetically. - Abstract: The effect of Ti/Cr additive on He diffusion and segregation properties in dilute vanadium alloys is investigated using first-principles calculations. First we determined the He preference site and investigated the He-Cr/He-Ti interactions. Energetically, He prefers to segregate to Ti regions rather than Cr regions. The most stable site for interstitial He is a tetrahedral site near Ti. He-Ti interactions have a weak attraction while He-Cr interactions have a weak repulsion. Kinetically, He diffusion to Ti has a lower energy barrier; contrarily the He barrier increases towards Cr. Furthermore, we discuss the stability of He{sub n}-Cr/Ti complexes and He{sub n}-vacancy-Cr and Ti complexes with n = 1–8. It is found that the He{sub n}Ti complexes are more stable than the He{sub n}Cr complexes while the He{sub n}-vacancy-Ti complexes are less favorable than He{sub n}-vacancy-Cr. The findings give a reference for understanding the mechanism of He embrittlement under irradiation.

  10. Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys

    Science.gov (United States)

    Ahuir-Torres, J. I.; Arenas, M. A.; Perrie, W.; de Damborenea, J.

    2018-04-01

    Laser texturing can be used for surface modification of metallic alloys in order to improve their properties under service conditions. The generation of textures is determined by the relationship between the laser processing parameters and the physicochemical properties of the alloy to be modified. In the present work the basic mechanism of dimple generation is studied in two alloys of technological interest, titanium alloy Ti6Al4V and aluminium alloy AA2024-T3. Laser treatment was performed using a pulsed solid state Nd: Vanadate (Nd: YVO4) laser with a pulse duration of 10 ps, operating at a wavelength of 1064 nm and 5 kHz repetition rate. Dimpled surface geometries were generated through ultrafast laser ablation while varying pulse energy between 1 μJ and 20 μJ/pulse and with pulse numbers from 10 to 200 pulses per spot. In addition, the generation of Laser Induced Periodic Surface Structures (LIPSS) nanostructures in both alloys, as well as the formation of random nanostructures in the impact zones are discussed.

  11. Weld metal grain refinement of aluminium alloy 5083 through controlled additions of Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, Philipp; Rethmeier, Michael [Federal Institute for Materials Research and Testing BAM, Berlin (Germany). Div. ' ' Safety of Joined Components' ' ; Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany). Dept. ' ' Joining and Coating Technology' ' ; Schwenk, Christopher; Cross, Carl Edward [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2011-07-01

    The refinement of the weld metal grain structure may lead to a significant change in its mechanical properties and in the weldability of the base metal. One possibility to achieve weld metal grain refinement is the inoculation of the weld pool. In this study, it is shown how additions of titanium and boron influence the weld metal grain structure of GTA welds of the aluminium alloy 5083 (Al Mg4.5Mn0.7). For this purpose, inserts consisting of base metal and additions of the master alloy Al Ti5B1 have been cast, deposited in the base metal and fused in a GTA welding process. The increase of the Ti and B content led to a significant decrease of the weld metal mean grain size and to a change in grain shape. The results provide a basis for a more precise definition of the chemical composition of commercial filler wires and rods for aluminium arc welding. (orig.)

  12. Peculiarities of single track formation from TI6AL4V alloy at different laser power densities by selective laser melting

    Directory of Open Access Journals (Sweden)

    Yadroitsava, I.

    2015-11-01

    Full Text Available This paper describes the geometrical characteristics of single tracks manufactured by selective laser melting (SLM at different laser powers (20-170 W and scanning speeds (0.1-2.0 m/s. Simulation of temperature distribution during processing is carried out. A conclusion about the optimal process parameters and peculiarities of selective laser melting of Ti6Al4V alloy at low and high laser powers and scanning speeds is reached. The analysis of temperature fields creates opportunities to build parts with the desired properties by using SLM.

  13. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling

    International Nuclear Information System (INIS)

    Panwisawas, Chinnapat; Perumal, Bama; Ward, R. Mark; Turner, Nathanael; Turner, Richard P.; Brooks, Jeffery W.; Basoalto, Hector C.

    2017-01-01

    High energy-density beam welding, such as electron beam or laser welding, has found a number of industrial applications for clean, high-integrity welds. The deeply penetrating nature of the joints is enabled by the formation of metal vapour which creates a narrow fusion zone known as a “keyhole”. However the formation of the keyhole and the associated keyhole dynamics, when using a moving laser heat source, requires further research as they are not fully understood. Porosity, which is one of a number of process induced phenomena related to the thermal fluid dynamics, can form during beam welding processes. The presence of porosity within a welded structure, inherited from the fusion welding operation, degrades the mechanical properties of components during service such as fatigue life. In this study, a physics-based model for keyhole welding including heat transfer, fluid flow and interfacial interactions has been used to simulate keyhole and porosity formation during laser welding of Ti-6Al-4V titanium alloy. The modelling suggests that keyhole formation and the time taken to achieve keyhole penetration can be predicted, and it is important to consider the thermal fluid flow at the melting front as this dictates the evolution of the fusion zone. Processing induced porosity is significant when the fusion zone is only partially penetrating through the thickness of the material. The modelling results are compared with high speed camera imaging and measurements of porosity from welded samples using X-ray computed tomography, radiography and optical micrographs. These are used to provide a better understanding of the relationship between process parameters, component microstructure and weld integrity.

  14. Fabrication of a 1200 kg Ingot of V-4Cr-4Ti for the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.

    1998-01-01

    Vanadium chromium titanium alloys are attractive materials for fusion reactors because of their high temperature capability and their potential for low neutron active and rapid activation decay. A V-4Cr-4Ti alloy has been selected in the U.S. as the current leading candidate vanadium alloy for future use in fusion reactor structural applications. General Atomics (GA), in conjunction with the Department of Energy's (DOE) DIII-D Program, is carrying out a plan for the utilization of this vanadium alloy in the DIII-D tokamak. The plan will culminate in the fabrication, installation, and operation of a V-4Ti alloy structure in the DIII-D Radiative Divertor (RD) upgrade. The deployment of vanadium alloy will provide a meaningful step in the development and technology acceptance of this advanced material for future fusion power devices. Under a GA contract and material specification, an industrial scale 1200 kg heat (ingot) of a V-4Cr-4Ti alloy has been produced and converted into product forms by Wah Chang of Albany, Oregon (WCA). To assure the proper control of minor and trace impurities which affect the mechanical and activation behavior of this vanadium alloy, selected lots of raw vanadium base metal were processed by aluminothermic reduction of high purity vanadium oxide, and were then electron beam melted into two high purity vanadium ingots. The ingots were then consolidated with high purity Cr and Ti, and double vacuum-arc melted to obtain a 1200 kg V-4Cr-4Ti alloy ingot. Several billets were extruded from the ingot, and were then fabricated into plate, sheet, and rod at WCA. Tubing was subsequently processed from plate material. The chemistry and fabrication procedures for the product forms were specified on the basis of experience and knowledge gained from DOE Fusion Materials Program studies on previous laboratory scale heats and a large scale ingot (500 kg)

  15. Carbon fiber reinforced magnesium alloy in a Ti-6Al-4V shell

    Directory of Open Access Journals (Sweden)

    Astanin Vasily

    2017-01-01

    Full Text Available Continuous carbon fiber reinforced magnesium alloy pieces in SMC Ti-6Al-4V shell have been fabricated using pressure infiltration. Similar temperatures (~700°C for superplastic formation of the shell and melting of the alloy allow this to be done in one step. The quality of infiltration of the molten alloys is found to be proportional to load. A limiting parameter in increasing the infiltration pressure is the strength of the welded bonds. Structure, fracture parameters and mechanical properties are discussed.

  16. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Yunhua, E-mail: 990722012@qq.com; Zhang, Kemin, E-mail: zhangkm@sues.edu.cn

    2015-10-15

    Highlights: • A TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB{sub 2} composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB{sub 2}. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB{sub 2} intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  17. Uniaxial creep behavior of V-4Cr-4Ti alloy

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.; Purohit, A.

    2002-01-01

    We are undertaking a systematic study at Argonne National Laboratory to evaluate the uniaxial creep behavior of V-Cr-Ti alloys in a vacuum environment as a function of temperature in the range of 650-800 deg. C and at applied stress levels of 75-380 MPa. Creep strain in the specimens is measured by a linear-variable-differential transducer, which is attached between the fixed and movable pull rods of the creep assembly. Strain is measured at sufficiently frequent intervals during testing to define the creep strain/time curve. A linear least-squares analysis function is used to ensure consistent extraction of minimum creep rate, onset of tertiary creep and creep strain at the onset of tertiary creep. Creep test data, obtained at 650, 700, 725 and 800 deg. C, showed power-law creep behavior. Extensive analysis of the tested specimens is conducted to establish hardness profiles, oxygen content and microstructural characteristics. The data are also quantified by the Larson-Miller approach, and correlations are developed to relate time to rupture, onset of tertiary creep, times for 1% and 2% strain, exposure temperature and applied stress

  18. Further Investigation Into the Use of Laser Surface Preparation of Ti-6Al-4V Alloy for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Crow, Allison; Zetterberg, Anna; Hopkins, John; Wohl, Christopher J.; Connell, John W.; Belcher, Tony; Blohowiak, Kay Y.

    2014-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires robust materials and processing methodologies before it can be incorporated in primary structures for aerospace applications. Surface preparation is widely recognized as one of the key steps to producing robust and predictable bonds. This report documents an ongoing investigation of a surface preparation technique based on Nd:YAG laser ablation as a replacement for the chemical etch and/or abrasive processes currently applied to Ti-6Al-4V alloys. Laser ablation imparts both topographical and chemical changes to a surface that can lead to increased bond durability. A laser based process provides an alternative to chemical-immersion, manual abrasion, and grit blast process steps which are expensive, hazardous, environmentally unfriendly, and less precise. In addition, laser ablation is amenable to process automation, which can improve reproducibility to meet quality standards for surface preparation. An update on work involving adhesive property testing, surface characterization, surface stability, and the effect of laser surface treatment on fatigue behavior is presented. Based on the tests conducted, laser surface treatment is a viable replacement for the immersion chemical surface treatment processes. Testing also showed that the fatigue behavior of the Ti-6Al-4V alloy is comparable for surfaces treated with either laser ablation or chemical surface treatment.

  19. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.

    Science.gov (United States)

    Samuel, Sonia; Nag, Soumya; Nasrazadani, Seifollah; Ukirde, Vaishali; El Bouanani, Mohamed; Mohandas, Arunesh; Nguyen, Kytai; Banerjee, Rajarshi

    2010-09-15

    While direct metal deposition of metallic powders, via laser deposition, to form near-net shape orthopedic implants is an upcoming and highly promising technology, the corrosion resistance and biocompatibility of such novel metallic biomaterials is relatively unknown and warrants careful investigation. This article presents the results of some initial studies on the corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys. These new generation beta titanium alloys are promising due to their low elastic modulus as well as due the fact that they comprise of completely biocompatible alloying elements. The results indicate that the corrosion resistance of these laser-deposited alloys is comparable and in some cases even better than the currently used commercially-pure (CP) titanium (Grade 2) and Ti-6Al-4V ELI alloys. The in vitro studies indicate that the Ti-Nb-Zr-Ta alloys exhibit comparable cell proliferation but enhanced cell differentiation properties as compared with Ti-6Al-4V ELI. (c) 2010 Wiley Periodicals, Inc.

  20. The characteristics of laser welded magnesium alloy using silver nanoparticles as insert material

    International Nuclear Information System (INIS)

    Ishak, M.; Maekawa, K.; Yamasaki, K.

    2012-01-01

    Highlights: ► Ag nanoparticles are used as insert material for welding Mg alloy with laser. ► We examine the microstructure and mechanical properties of welded Mg alloys. ► Nananoparticle promote grain refinement to the weld structure. ► Finer nanoparticle produces high weld efficiency and mechanical properties. - Abstract: This paper describes the characteristics of the laser welding of thin-sheet magnesium alloys using silver (Ag) nanoparticles as an insert material. The experiment was conducted using nanoparticles with 5 nm and 100 nm diameters that were welded with a Nd:YAG laser. The microstructure and mechanical properties of the specimens welded using inserts with different sizes of nanoparticles and without an insert material, were examined. Electron probe micro-analyzer (EPMA) analysis was conducted to confirm the existence of Ag in the welded area. The introduction of the Ag nanoparticle insert promoted large area of fine grain and broadened the acceptable range of scanning speed parameters compared to welds without an insert. Welds with 5 nm nanoparticles yielded the highest fracture load of up to 818 N while the lowest fracture load was found for weld specimens with 100 nm nanoparticles. This lower fracture load was due to larger voids and a smaller throat length, which contributed to a lower fracture load when using larger nanoparticles.

  1. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.

    Science.gov (United States)

    Wang, Song; Ma, Zheng; Liao, Zhenhua; Song, Jian; Yang, Ke; Liu, Weiqiang

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti-5Cu and Ti-6Al-4V-5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO2 counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti2Cu intermetallic compounds appeared in both Ti-5Cu and Ti-6Al-4V-5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti-5Cu and Ti-6Al-4V-5Cu alloys due to the precipitation of Ti2Cu. The results also indicated that both CP-Ti and Ti-5Cu behaved better wear resistance than Ti-6Al-4V and Ti-6Al-4V-5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti-5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti-6Al-4V and Ti-6Al-4V-5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

    Science.gov (United States)

    2006-05-01

    UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 3: Examples of electron beam melted net shape parts; powder bed [3]. 1.4 Laser Cladding ...description, www.arcam.com. [4] K.-H. Hermann, S. Orban, S. Nowotny, Laser Cladding of Titanium Alloy Ti6242 to Restore Damaged Blades, Proceedings...Property Investigation of Laser Cladded , Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research

  3. Influences of precursor constitution and processing speed on microstructure and wear behavior during laser clad composite coatings on γ-TiAl intermetallic alloy

    International Nuclear Information System (INIS)

    Liu Xiubo; Yu Rongli

    2009-01-01

    The effects of constitution of precursor mixed powders and scan speed on microstructure and wear properties were designed and investigated during laser clad γ/Cr 7 C 3 /TiC composite coatings on γ-TiAl intermetallic alloy substrates with NiCr-Cr 3 C 2 precursor mixed powders. The results indicate that both the constitution of the precursor mixed powders and the beam scan rate have remarkable influence on microstructure and attendant hardness as well as wear resistance of the formed composite coatings. The wear mechanisms of the original TiAl alloy and laser clad composite coatings were investigated. The composite coating with an optimum compromise between constitution of NiCr-Cr 3 C 2 precursor mixed powders as well as being processed under moderate scan speed exhibits the best wear resistance under dry sliding wear test conditions

  4. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-10-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide {approximately}800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding.

  5. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D - Annual report input for 1996

    International Nuclear Information System (INIS)

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-01-01

    V-4Cr-4Ti alloy has been selected for use in the manufacture of a portion of the DIII-D Radiative Divertor (RD) upgrade. The production of a 1200-kg ingot of V-4Cr-4Ti alloy has been completed at Teledyne Wah Chang of Albany, Oregon (TWCA) to provide ∼800-kg of applicable product forms, and two billets have been extruded from the ingot. Chemical compositions of the ingot and both extruded billets were acceptable. Material from these billets will be converted into product forms suitable for components of the DIII-D Radiative Divertor structure. Joining of V-4Cr-4Ti alloy has been identified as the most critical fabrication issue for its use in the RD Program, and research into several joining methods for fabrication of the RD components, including resistance seam, friction, and electron beam welding, is continuing. Preliminary trials have been successful in the joining of V-alloy to itself by electron beam, resistance, and friction welding processes and to Inconel 625 by friction welding

  6. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel

    Science.gov (United States)

    Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu

    2018-02-01

    In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.

  7. Performance of V-4Cr-4Ti material exposed to DIII-D tokamak environment

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Chung, H.M.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Test specimens made with the 832665 heat of V-4Cr-4Ti alloy were exposed in the DIII-D tokamak environment to support the installation of components made of a V-4Cr-4Ti alloy in the radiative divertor of the DIII-D. Some of the tests were conducted with the Divertor Materials Evaluation System (DiMES) to study the short-term effects of postvent bakeout, when concentrations of gaseous impurities in the DIII-D chamber are the highest. Other specimens were mounted next to the chamber wall behind the divertor baffle plate, to study the effects of longer-term exposures. By design, none of the specimens directly interacted with the plasma. Preliminary results from testing the exposed specimens indicate only minor degradation of mechanical properties. Additional testing and microstructural characterization are in progress.

  8. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  9. Pore formation during C.W.Nd: YAG laser welding of aluminum alloys for automotive applications

    International Nuclear Information System (INIS)

    Pastor, M.; Zhao, H.; DebRoy, T.

    2000-01-01

    Pore formation is an important concern in laser welding of automotive aluminum alloys. This paper investigates the influence of the laser beam defocusing on pore formation during continuous wave Nd:YAG laser welding of aluminum automotive alloys 5182 and 5754. It was found that the instability of the keyhole during welding was a dominant cause of pore formation while hydrogen rejection played an insignificant role. The defocusing of the laser beam greatly affected the stability of the keyhole. Finally, the mechanism of the collapse of the keyhole and pore formation is proposed. (Author) 45 refs

  10. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  11. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bingjing; Wang, Hong [Department of Stomatology, General Hospital of the PLA, Beijing (China); Department of Stomatology, The Second Affiliated Stomatological Hospital of Liaoning Medical University (China); Qiao, Ning [College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing (China); Wang, Chao [School of Medicine, Nankai University, Tianjin 300071 (China); Hu, Min, E-mail: humin48@vip.163.com [Department of Stomatology, General Hospital of the PLA, Beijing (China)

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (< 1.5 V) and EBM specimen was the best under the high electric potential (> 1.5 V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. - Highlights: • EBM and SLM Ti-6Al-4V alloy have good corrosion resistance, and both of them can be applied in vivo. • SLM Ti-6Al-4V alloy was more suitable for implantation in vivo than that of EBM Ti-6Al-4V alloy. • The crevice corrosion resistance of the EBM specimen is the best. • EBM and SLM specimens can form oxide film.

  12. Comparison between PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Silva, M.M.; Ueda, M.; Oliveira, V.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76 x 10 -3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance. (author)

  13. The Possibility Of Use Of Laser-Modified Ti6Al4V Alloy In Friction Pairs In Endoprostheses

    Directory of Open Access Journals (Sweden)

    Majkowska B.

    2015-06-01

    Full Text Available The purpose of this paper is to show results of laser treatment at cryogenic conditions of the Ti6Al4V alloy used for orthopedic applications. That modification process ought to bring beneficial changes of microstructure and residual stresses in the surface layer. The paper presents the abrasive wear of the base and laser remelted material in association with ceramics Al2O3. Despite the surface cracking after laser treatment the tribological properties in simulated body fluid have been substantially improved.

  14. Microstructure and tensile properties of Ti-6Al-4V alloys manufactured by selective laser melting with optimized processing parameters

    Science.gov (United States)

    Wang, L.; Ma, C.; Huang, J.; Ding, H. Y.; Chu, M. Q.

    2017-11-01

    Selective laser melting (SLM) is a precise additive manufacturing process that the metallic powders without binder are melted layer by layer to complex components using a high bright fiber laser. In the paper, Ti-6Al-4V alloy was fabricated by SLM and its microstructure and mechanical properties were investigated in order to evaluate the SLM process. The results show that the microstructure exists anisotropy between the horizontal and vertical section due to the occurrence of epitaxial growth, and the former microstructure seems equal-axis and the latter is column. Moreover, there is little difference in tensile test between the horizontal and vertical sections. Furthermore, the tensile properties of fabricated Ti-6Al-4V alloy by SLM are higher than the forged standard ones. However, the fatigue results show that there are some scatters, which need further investigation to define the fatigue initiation.

  15. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    International Nuclear Information System (INIS)

    García-Rosales, C.; López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N.; Koch, F.; Brinkmann, J.

    2014-01-01

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO 3 in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr 2 O 3 layer is found at the outer surface, below which a Cr 2 WO 6 scale and Ti 2 CrO 5 layers alternating with WO 3 are formed. The Cr 2 O 3 , Cr 2 WO 6 and Ti 2 CrO 5 scales act as protective barriers against fast inward O 2− diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W

  16. Neutron irradiation of V-Cr-Ti alloys in the BOR-60 fast reactor: Description of the fusion-1 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F. [Oak Ridge National Laboratory, TN (United States); Tsai, H.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    The FUSION-1 irradiation capsule was inserted in Row 5 of the BOR-60 fast reactor in June 1995. The capsule contains a collaborative RF/U.S. experiment to investigate the irradiation performance of V-Cr-Ti alloys in the temperature range 310 to 350{degrees}C. This report describes the capsule layout, specimen fabrication history, and the detailed test matrix for the U.S. specimens. A description of the operating history and neutronics will be presented in the next semiannual report.

  17. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    International Nuclear Information System (INIS)

    Mousavi, S. A. A. Akbari; Ebrahimzadeh, H.

    2011-01-01

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  18. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    Science.gov (United States)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  19. Computerized simulation of YAG pulse laser welding of titanium alloy (TA6V): experimental characterization and modelling of the thermomechanical aspects of this process; Simulation numerique du soudage du TA6V par laser YAG impulsionnel: caracterisation experimentale et modelisation des aspects thermomecanique associees a ce procede

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Y

    2007-09-15

    This work is a part of study which goal is to realize a computer modelling of the thermomechanical phenomena occurring during the YAG pulse laser welding of titanium alloy (TA6V). The filet welding has different heterogeneities (microstructural and mechanical). In fact, the temperature causes microstructural changes (phase transformations, precipitations) and modifies the mechanical properties. Thermomechanical modelling has thus to be established for the welding of TA6V. (author)

  20. Resistance of direct metal laser sintered Ti6Al4V alloy against growth of fatigue cracks

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Kunz, Ludvík; Bača, A.; Nicoletto, G.

    2017-01-01

    Roč. 185, NOV (2017), s. 82-91 ISSN 0013-7944 Institutional support: RVO:68081723 Keywords : Titanium alloys * Ti6Al4V * Fatigue crack growth * Threshold value of stress intensity factor * Direct metal laser sintering Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.151, year: 2016 http://www.sciencedirect.com/science/article/pii/S0013794417300292

  1. Material characteristic of Ti alloy (Ti-6Al-4V)

    International Nuclear Information System (INIS)

    Toyoshima, Noboru

    1997-03-01

    In regard to material characteristic of Ti alloy (Ti-6Al-4V), the following matters are provided by experiments. 1) In high temperature permeation behavior of implanted deuterium ion (0.5keV, 6.4 x 10 18 D + ions/m 2 s, ∼760deg K), the ratio of permeation flux to incident flux ranges from 3.3 x 10 -3 at 633deg K to 4.8 x 10 -3 at 753deg K. The activation energy of permeation is 0.12eV in this temperature region above 600deg K. At temperatures below 600deg K, the permeation flux of deuterium decreases drastically and the implanted ions remain in the alloy. 2) Radioactivation analysis using 14MeV fast neutron shows that Ti-6Al-4V alloy contains higher values of principal ingredients, Al, V, Fe, than that recorded at the chemical composition of Ti alloy, and also, contains impurities with Ni, Co and Mn. 3) Fraction of about 0.095wt% H 2 were absorbed in the test specimens, and tensile strength test was carried out. Under the condition of the hydrogen pressure 50 torr and temperature ∼500degC. The results show that there is no degradation in mechanical properties for absorption of with less than 0.04wt% H 2 . The tensile strength of wilding specimens have almost the same as that without wilding. Ti alloy, as a material of vacuum vessel of nuclear fusion device, must be selected to that with less impurities, particularly Co, by radioactivation analysis, and must be used under the temperature of 200-300degC, where hydrogen absorption does not make too progress. It is considered that Ti alloy can be used with less than 0.04wt% H 2 absorption in viewpoint of material mechanical strength. (author)

  2. Effects of combined plasma chromizing and shot peening on the fatigue properties of a Ti6Al4V alloy

    Science.gov (United States)

    Yu, Shouming; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing

    2015-10-01

    A plasma chromizing treatment was conducted on Ti6Al4V samples by employing the recently developed double glow plasma surface alloying technology. The Cr-alloyed layer consisted of four sub-layers, namely the Cr deposition, Cr2Ti, CrTi4, and Cr-Ti solid-solution layers. The local hardness and moduli were determined via nanoindentation. In addition, the fatigue properties of the samples were evaluated by using a rotating-bending fatigue machine under a given load. The results showed that the hardness or elastic moduli of the adjacent sub-layers differed significantly and the fatigue properties of the Ti6Al4V alloy deteriorated with the plasma chromizing treatment. This deterioration stemmed mainly from cracks initiated at the interfaces between the sub-layers and the microstructural changes of the substrate; these changes were induced by the high temperature used in the plasma chromizing process. However, the fatigue life of the plasma-chromized samples was increased by a shot peening post-treatment. The fatigue life of the samples resulting from this combination of treatments was slightly higher than that of the single-shot-peened Ti6Al4V substrate. In fact, the sample retaining only the Cr-Ti solid-solution layer (that is, the first three sub-layers were removed), when shot-peened, exhibited the highest fatigue life among all the tested samples; this was attributed to that sample having the highest residual compressive stress, the significant work hardening, and the good hardness to toughness balance.

  3. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  4. The Corrosion Resistance of Composite Arch Wire Laser-Welded By NiTi Shape Memory Alloy and Stainless Steel Wires with Cu Interlayer in Artificial Saliva with Protein

    Science.gov (United States)

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect. PMID:23801895

  5. Overlay welding of FeCrAl alloys

    OpenAIRE

    Rashid, Lezan

    2016-01-01

    In this master thesis different overlay welding methods suitable for boiler application has been investigated. The purpose of this project is to define advantages and disadvantages for each overlay welding methods and suggest some evaluation criteria on some commercial and experimental alloys aimed for overlay welding material. Many components in a boiler are made of low alloy steel and the atmosphere in the furnace region can be very complex; therefore many different types of corrosion can o...

  6. Laser and electron beam welding study on niobium based Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Kushwaha, R.P.; Tewari, R.; Dey, G.K.

    2016-01-01

    The refractory metal based alloys are most suitable for the structural applications in high temperature reactors envisaged to operate at temperature higher than 1000°C. The Nb-1Zr-0.1C (wt. %) is being considered for structural applications in the proposed Compact High Temperature Reactors (CHTR). The welding of this alloy is a difficult task due to its reactive nature and higher thermal conductivity. Laser and Electron Beam (EB) welds were produced on sheet of Nb-1Zr-0.1C alloy at various processing parameters and their effects on weld quality was studied by characterizing their optical and SEM micrographs and microhardness profile. The joining efficiency of both welding processes were also studied. The laser welds done in air with argon shielding showed higher hardness values compared to EB welds indicating need for adequate shielding. This study will help to find the optimized welding parameters to produce defect free welds of Nb-1Zr-0.1C alloy. (author)

  7. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    Science.gov (United States)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  8. Numerical simulation on temperature field of TIG welding for 0Cr18Ni10Ti steel cladding and experimental verification

    International Nuclear Information System (INIS)

    Luo Hongyi; Tang Xian; Luo Zhifu

    2015-01-01

    Aiming at tungsten inert gas (TIG) for 0Cr18Ni10Ti stainless steel cladding for radioactive source, the numerical calculation of welding pool temperature field was carried out through adopting ANSYS software. The numerical model of non-steady TIG welding pool shape was established, the heat enthalpy and Gaussian electric arc heat source model of surface distribution were introduced, and the effects of welding current and welding speed to temperature field distribution were calculated. Comparing the experimental data and the calculation results under different welding currents and speeds, the reliability and correctness of the model were proved. The welding technological parameters of 0Cr18Ni10Ti stainless steel were optimized based on the calculation results and the welding procedure was established. (authors)

  9. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    Science.gov (United States)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  10. Precipitation of grain boundary α in a laser deposited compositionally graded Ti-8Al-xV alloy - an orientation microscopy study

    International Nuclear Information System (INIS)

    Banerjee, R.; Bhattacharyya, D.; Collins, P.C.; Viswanathan, G.B.; Fraser, H.L.

    2004-01-01

    A graded ternary Ti-8Al-xV alloy (all compositions in wt%) has been deposited using the laser engineered net-shaping (LENS TM ) process. A compositional gradient in the alloy, from binary Ti-8Al to Ti-8Al-20V, has been achieved within a length of ∼25 mm. The feedstock used for depositing the graded alloy consisted of elemental Ti, Al, and V powders. Due to the columnar growth morphology of the β grains in these LENS TM deposited Ti alloys, the same prior β grain boundary often extends across lengths ∼10 mm. Using orientation microscopy techniques in a scanning electron microscope, the crystallography of precipitation of grain boundary α across the same boundary with changing composition has been investigated in detail. It was observed that while most grain boundary α precipitates maintain a Burgers or near-Burgers orientation relationship with only one of the β grains, a few of these precipitates develop a Burgers orientation relationship with the other β grain. In some rare instances, the grain boundary α did not develop a Burgers or near-Burgers orientation relationship with either β grains. Interestingly, in many cases while the grain boundary α maintained Burgers relationship with one of the β grains, precipitates of two different variants decorated the boundary, in a near-alternate fashion

  11. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing.

    Science.gov (United States)

    Matos, Irma C; Bastos, Ivan N; Diniz, Marília G; de Miranda, Mauro S

    2015-08-01

    Fixed prosthesis and partial dental prosthesis frameworks are usually made from welded Ni-Cr-based alloys. These structures can corrode in saliva and have to be investigated to establish their safety. The purpose of this study was to evaluate the corrosion behavior of joints joined by tungsten inert gas (TIG) welding and conventional brazing in specimens made of commercial Ni-Cr alloy in Fusayama artificial saliva at 37°C (pH 2.5 and 5.5). Eighteen Ni-Cr base metal specimens were cast and welded by brazing or tungsten inert gas methods. The specimens were divided into 3 groups (base metal, 2 welded specimens), and the composition and microstructure were qualitatively evaluated. The results of potential corrosion and corrosion current density were analyzed with a 1-way analysis of variance and the Tukey test for pairwise comparisons (α=.05). Base metal and tungsten inert gas welded material showed equivalent results in electrochemical corrosion tests, while the air-torched specimens exhibited low corrosion resistance. The performance was worst at pH 2.5. These results suggest that tungsten inert gas is a suitable welding process for use in dentistry, because the final microstructure does not reduce the corrosion resistance in artificial saliva at 37°C, even in a corrosion-testing medium that facilitates galvanic corrosion processes. Moreover, the corrosion current density of brazed Ni-Cr alloy joints was significantly higher (P<.001) than the base metal and tungsten inert gas welded joints. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Microstructure Of A SIC/(Ti/V/Cr/Sn/Al) Composite

    Science.gov (United States)

    Lerch, Bradley A.; Hull, David R.; Leonhardt, Todd A.

    1990-01-01

    NASA technical memorandum reports on analysis of composite material made of SiC fibers in matrix of 0.76 Ti/0.15 V/0.03 Cr/0.03 Sn/0.03 Al (parts by weight) alloy. Purposes of study to investigate suitability of some metallographic techniques for use on composite materials in general and to obtain information about macrostructure and microstructure of this specific composite to provide guidance for experimental and theoretical studies of more advanced composites.

  13. Microstructural examination of Zr-2.5%Nb alloy welds made by pulsed Nd:YAG laser and TIG welding technique

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Varma, P.V.S.; Panakkal, J.P.; Srivastava, D.; Dey, G.K.

    2009-01-01

    The paper describes the weld microstructure of Zr-2.5%Nb alloy material. Bead on plate welds were made using pulsed Nd:YAG laser and TIG welding technique at different parameters. These welds were characterized at macro and microstructural level. Weld pools of Pulsed Laser and TIG welds were not resolved by optical microscopy. SEM too did not reveal much. Orientation imaging microscopy could reveal the presence of fine martensite. It was observed that microstructure is very sensitive to welding parameters. Microhardness studies suggested formation of martensite in the weld pool. It was also observed that laser welds had very sharp weld pool boundary as compared to TIG welds. Variation in microhardness of the weldment is seen and is influenced by overlapping of weld spots causing thermal treatment of previously deposited spots. (author)

  14. Development and testing ov danadium alloys for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1996-10-01

    V base alloys have advantages for fusion reactor first-wall and blanket structure. To screen candidate alloys and optimize a V-base alloy, physical and mechanical properties of V-Ti, V-Cr-Ti, and V-Ti- Si alloys were studied before and after irradiation in Li environment in fast fission reactors. V-4Cr-4Ti containing 500-1000 wppM Si and <1000 wppM O+N+C was investigated as the most promising alloy, and more testing is being done. Major results of the work are presented in this paper. The reference V-4Cr-4Ti had the most attractive combination of the mechanical and physical properties that are prerequisite for first-wall and blanket structures: good thermal creep, good tensile strength/ductility, high impact energy, excellent resistance to swelling, and very low ductile-brittle transition temperature before and after irradiation. The alloy was highly resistant to irradiation-induced embrittlement in Li at 420-600 C, and the effects of dynamically charged He on swelling and mechanical properties were insignificant. However, several important issues remain unresolved: welding, low-temperature irradiation, He effect at high dose and high He concentration, irradiation creep, and irradiation performance in air or He. Initial results of investigation of some of these issues are also given.

  15. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    International Nuclear Information System (INIS)

    Wu, Qingjun; Lu, Fenggui; Cui, Haichao; Ding, Yuming; Liu, Xia; Gao, Yulai

    2014-01-01

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10 7 cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature

  16. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingjun [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Fenggui, E-mail: Lfg119@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Cui, Haichao [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Yuming; Liu, Xia [Shanghai Turbine Plant of Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240 (China); Gao, Yulai, E-mail: ylgao@shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China)

    2014-10-06

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10{sup 7} cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature.

  17. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    Energy Technology Data Exchange (ETDEWEB)

    García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Koch, F.; Brinkmann, J. [Max-Planck-Institut für Plasmaphysik (IPP), EURATOM Association, D-85748 Garching (Germany)

    2014-10-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO{sub 3} in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr{sub 2}O{sub 3} layer is found at the outer surface, below which a Cr{sub 2}WO{sub 6} scale and Ti{sub 2}CrO{sub 5} layers alternating with WO{sub 3} are formed. The Cr{sub 2}O{sub 3}, Cr{sub 2}WO{sub 6} and Ti{sub 2}CrO{sub 5} scales act as protective barriers against fast inward O{sup 2−} diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W.

  18. A model to describe the surface gradient-nanograin formation and property of friction stir processed laser Co-Cr-Ni-Mo alloy

    Science.gov (United States)

    Li, Ruidi; Yuan, Tiechui; Qiu, Zili

    2014-07-01

    A gradient-nanograin surface layer of Co-base alloy was prepared by friction stir processing (FSP) of laser-clad coating in this work. However, it is lack of a quantitatively function relationship between grain refinement and FSP conditions. Based on this, an analytic model is derived for the correlations between carbide size, hardness and rotary speed, layer depth during in-situ FSP of laser-clad Co-Cr-Ni-Mo alloy. The model is based on the principle of typical plastic flow in friction welding and dynamic recrystallization. The FSP experiment for modification of laser-clad Co-based alloy was conducted and its gradient nanograin and hardness were characterized. It shows that the model is consistent with experimental results.

  19. Comparative evaluation of cyclic strength of welded joints of titanium alloys

    International Nuclear Information System (INIS)

    Grigor'yants, A.G.; Florinskij, Yu.B.; Moryakov, V.F.; Kvasha, Yu.N.

    1983-01-01

    Results of comparative study of cyclic strength of titanium alloy PT-3V, fused by three ways of welding, are presented. It is established that the use of laser welding promotes the formation of favourable structure of weld metal and HAZ (heat affected zone), characterized by the formation of dislocation barriers. The results obtained permit to recommend laser technique instead of traditional ways of welding during product manufacturing of titanium allo

  20. Effects of surface treatments on bond strength of dental Ti-20Cr and Ti-10Zr alloys to porcelain

    International Nuclear Information System (INIS)

    Lin, Hsi-Chen; Wu, Shih-Ching; Ho, Wen-Fu; Huang, Ling-Hsiu; Hsu, Hsueh-Chuan

    2010-01-01

    The purpose of this study was to investigate the effect of surface treatments, including sandblasting and grinding, on the bond strength between a low-fusing porcelain and c.p. Ti, Ti-20Cr and Ti-10Zr alloys. The surface treatments were divided into 2 groups. Grinding surface treatment was applied to the first group, which served as the control, and sandblasting was applied to the second group. After treatment, low-fusing porcelain (Titankeramik) was fired onto the surface of the specimens. A universal testing machine was used to perform a 3-point bending test. The metal-ceramic interfaces were subjected to scanning electron microscopic analysis. Of the sandblasted samples, the debonding test showed that Ti-20Cr alloy had the strongest (31.50 MPa) titanium-ceramic bond (p < 005), followed by c.p. Ti (29.4 MPa) and Ti-10Zr (24.3 MPa). Of the grinded samples, Ti-20Cr alloy showed 27.3 MPa titanium-ceramic bond (p < 005), followed by c.p. Ti (14.3 MPa) and Ti-10Zr (failure). The SEM micrographs of the metal surface after debonding showed residual porcelain retained on all samples. On the whole, sandblasting surface treatment appears to have had a more beneficial effect on the Ti-ceramic bond strength than grinding surface treatment. Furthermore, surface treatment of Ti-20Cr with either grinding or sandblasting resulted in adequate bond strength, which exceeded the lower limit value in the ISO 9693 standard (25 MPa).

  1. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    Science.gov (United States)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  2. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  3. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  4. Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Wang Linzhi; Shen Jun; Xu Nan

    2011-01-01

    Highlights: → The weld penetration and the D/W ratio could be improved dramatically by increasing of the amount of the TiO 2 coating. → The average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 IMC transformed from granular structure to continuous structure with an increase of the amount of the TiO 2 coating. → With an increase of the amount of the TiO 2 coating, the microhardness of the FZ of the AZ31 magnesium alloy welded joints decreased slightly at first and then decreased sharply. → The UTS value of the welded joints increased with an increase of the amount of the TiO 2 coating. → However, too much TiO 2 coating caused a significant decrease of the UTS value of the welded joints. - Abstract: The effects of TiO 2 coating on the macro-morphologies, microstructures and mechanical properties of tungsten inert gas (TIG) welded AZ31 magnesium alloy joints were investigated by microstructural observations, microhardness tests and tensile tests. The results showed that an increase in the amount of the TiO 2 coating resulted in an increase in the weld penetration and the depth/width (D/W) ratio of the TIG welded AZ31 magnesium alloy seams. Moreover, the average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 intermetallic compound (IMC) was coarser in the case of higher amount of the TiO 2 coating. With an increase in the amount of the TiO 2 coating, the microhardness of the fusion zone (FZ) of the AZ31 magnesium alloy welded joints decreased slightly initially and then decreased sharply. In addition, with an increase in the amount of the TiO 2 coating, the ultimate tensile strength (UTS) value and elongation of the welded joints increased at first and then decreased sharply.

  5. Infrared temperature measurement and interference analysis of magnesium alloys in hybrid laser-TIG welding process

    International Nuclear Information System (INIS)

    Huang, R.-S.; Liu, L.-M.; Song, G.

    2007-01-01

    Infrared (IR) temperature measurement, as a convenient, non-contact method for making temperature field measurements, has been widely used in the fields of welding, but the problem of interference from radiant reflection is a complicating factor in applying IR temperature sensing to welding. The object of this research is to make a deep understand about the formation of interference, explore a new method to eliminate the interfering radiation during laser-TIG hybrid welding of magnesium alloys and to obtain the distribution of temperature field accurately. The experimental results showed that the interferences caused by radiant specular reflection of arc light, ceramic nozzle, electrode and laser nozzle were transferred out of welding seam while the IR thermography system was placed perpendicularly to welding seam. And the welding temperature distribution captured by IR termography system which had been calibrated by thermocouple was reliable by using this method in hybrid laser-TIG welding process of AZ31B magnesium alloy

  6. The speciation of Si and other alloying elements in the oxide surface film of galvanically corroded weld fusion zone of laser welded AA6061 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mujibur Rahman, A.B.M.; Kumar, Sunil [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095 (Australia); Gerson, Andrea R. [Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095 (Australia)], E-mail: Andrea.Gerson@unisa.edu.au

    2008-05-15

    It has recently been proposed that on galvanic corrosion of laser weldments of AA6061 aluminium alloy the temporal increase in galvanic corrosion resulted from either the build up of intermetallic phases in the surface oxide layer and/or a significant increase in the surface area of the cathodic weld fusion zone due to the porous nature of the surface layer. This proposition has motivated a comprehensive surface analytical study of the incorporation of alloying elements into the oxide surface film, which is composed predominately of alumina. Si is found to be present as silicate and silicides. The Gibbs free energy of formation, per cation, of silicate is more negative than that for alumina and hence silicate formation is thermodynamically, relatively, favourable. In contrast the Gibbs free energy for oxide formation, per cation, for the other alloying elements is less negative and hence relatively unfavourable compared to the formation of alumina. We propose therefore that Fe, Cu and Cr are present in the metallic form, possibly as silicides, within the oxide surface layer. Magnesium is found to be depleted relative to the weld fusion zone presumably due to dissolution within the electrolyte.

  7. The speciation of Si and other alloying elements in the oxide surface film of galvanically corroded weld fusion zone of laser welded AA6061 aluminium alloy

    International Nuclear Information System (INIS)

    Mujibur Rahman, A.B.M.; Kumar, Sunil; Gerson, Andrea R.

    2008-01-01

    It has recently been proposed that on galvanic corrosion of laser weldments of AA6061 aluminium alloy the temporal increase in galvanic corrosion resulted from either the build up of intermetallic phases in the surface oxide layer and/or a significant increase in the surface area of the cathodic weld fusion zone due to the porous nature of the surface layer. This proposition has motivated a comprehensive surface analytical study of the incorporation of alloying elements into the oxide surface film, which is composed predominately of alumina. Si is found to be present as silicate and silicides. The Gibbs free energy of formation, per cation, of silicate is more negative than that for alumina and hence silicate formation is thermodynamically, relatively, favourable. In contrast the Gibbs free energy for oxide formation, per cation, for the other alloying elements is less negative and hence relatively unfavourable compared to the formation of alumina. We propose therefore that Fe, Cu and Cr are present in the metallic form, possibly as silicides, within the oxide surface layer. Magnesium is found to be depleted relative to the weld fusion zone presumably due to dissolution within the electrolyte

  8. Microstructure of Ti-6Al-4V produced by selective laser melting

    International Nuclear Information System (INIS)

    Simonelli, M; Tse, Y Y; Tuck, C

    2012-01-01

    Ti-6Al-4V is the most widely used titanium alloy. Manufacturing of Ti-6Al-4V components using novel additive processing techniques such as selective laser melting is of great interest. This study focuses on the microstructure characterisation of Ti-6Al-4V components produced by selective laser melting (SLM) with full (Ti-6Al-4V base plate) and partial (Ti-6Al-4V needle-shaped bed) support. The starting material, a plasma atomised powder, and the component products are studied using various microscopy techniques including optical, scanning electron and transmission electron microscopy and electron backscattered diffraction (EBSD). Powder particles are fully dense, possess a spherical shape and are composed of acicular α phase. The as-built material shows oriented acicular martensitic phase with well defined columnar grains. The morphology of martensitic phase and microstructural evolution will be discussed in relation to the SLM processing parameters employed and the different cooling rates experienced by the components.

  9. Welding of the VNZh7-3 alloy with the VT1-0 titanium by laser beam

    International Nuclear Information System (INIS)

    Baranov, M.S.; Voshchinskij, M.L.; Fedorov, P.M.; Shilov, I.F.; Zytner, G.D.

    1980-01-01

    Found is the principle possibility of the laser welding of dissimilar metals and the optimum welding mode as well with the testing of quality and strength indices of welded joints and with mode test on structural elements. The possibility of laser welding of the sintered VNZh 7-3 alloy with the VT1-0 titanium in argon is shown. Studied is the technique of forming of welded edge joint of the above dissimilar metals. Established is the optimum method of laser beam setting at an angle of 20 deg to the butt surface and with the shift by 1/3 of diameter of welded point in the titanium direction. Shear tests of elementary and natural samples have shown that real strength of welded joint exceeds the VT1-0 titanium strength. Macro- and microstructure of welded joints has layer-vortex alloy structure on the base of the VT1-0 titanium inclusion of tungsten grains that indicates the intensive mixing of metals during the welding

  10. Characterization of the laser gas nitrided surface of NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Cui, Z.D.; Man, H.C.; Yang, X.J.

    2003-01-01

    Owing to its unique properties such as shape memory effects, superelasticity and radiopacity, NiTi alloy is a valuable biomaterial for fabricating implants. The major concern of this alloy for biological applications is the high atomic percentage of nickel in the alloy and the deleterious effects to the body by the corrosion and/or wears products. In this study, a continuous wave Nd-YAG laser was used to conduct laser gas nitriding on the substrate of NiTi alloy. The results show that a continuous and crack-free thin TiN layer was produced in situ on the NiTi substrate. The characteristics of the nitrided surface layer were investigated using SEM, XRD, XPS and AAS. No nickel signal was detected on the top surface of the laser gas nitrided layer. As compared with the mechanical polished NiTi alloy, the nickel ion release rate out of the nitrided NiTi alloy decreased significantly in Hanks' solution at 37 deg. C, especially the initial release rate

  11. Experimental Investigation on Electric Current-Aided Laser Stake Welding of Aluminum Alloy T-Joints

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-11-01

    Full Text Available In the present study, aluminum alloy T-joints were welded using the laser stake-welding process. In order to improve the welding quality of the T-joints, an external electric current was used to aid the laser stake-welding process. The effects of the process parameters on the weld morphology, mechanical properties, and microstructure of the welded joints were analyzed and discussed in detail. The results indicate that the aided electric current should be no greater than a certain maximum value. Upon increasing the aided electric current, the weld width at the skin and stringer faying surface obviously increased, but there was an insignificant change in the penetration depth. Furthermore, the electric current and pressing force should be chosen to produce an expected weld width at the faying surface, whereas the laser power and welding speed should be primarily considered to obtain an optimal penetration depth. The tensile shear specimens failed across the faying surface or failed in the weld zone of the skin. The specimens that failed in the weld of the skin could resist a higher tensile shear load compared with specimens that failed across the faying surface. The microstructural observations and microhardness results demonstrated that the tensile shear load capacity of the aluminum alloy welded T-joint was mainly determined by the weld width at the faying surface.

  12. The effect of aluminum content on phase constitution and heat treatment behavior of Ti-Cr-Al alloys for healthcare application

    International Nuclear Information System (INIS)

    Sugano, Daisuke; Ikeda, Masahiko

    2005-01-01

    As life expectancy steadily increases, developing reliable functional materials for healthcare applications gains importance. Titanium and its alloys, while attractive for such applications, are expensive. The present investigation suggests that it may be possible to reduce costs by using new, low-cost beta Ti alloys. To assess their reliability, the heat treatment behavior of beta Ti alloys, Ti-7 mass% Cr with varying Al content (0%, 1.5%, 3.0% and 4.5%), was investigated through electrical resistivity and Vickers hardness measurements. In the Ti-7Cr-0Al alloy quenched from 1173 K, only the beta phase was identified by X-ray diffraction (XRD). In Ti-7Cr-1.5 to 4.5 Al alloys, XRD detected both beta and orthorhombic martensite. On isochronal heat treatment behavior of Ti-7Cr-3.0, 4.5 Al alloys, resistivity at liquid nitrogen temperature and resistivity ratio increased between 423 and 523 K.These increases are due to reverse transformation of orthorhombic martensite to the metastable beta phase

  13. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  14. Mechanical properties and microstructure changes of low-activation 3Cr-2W-V-Ti ferritic steels developed for nuclear applications

    International Nuclear Information System (INIS)

    Asakura, Kentaro; Kohyama, Akira; Yamada, Takemi.

    1990-01-01

    The effects of alloying elements such as Cr, W, V and Mn on tensile strength at elevated temperatures, creep-rupture properties and toughness of low activation (2.25-3)Cr-(2-2.5)W-V-Ti steels were investigated together with their microstructure change during high temperature exposure. These steels were normalized to produce bainitic structures in the same manner as that for a conventional 2.25Cr-1Mo steel. They presented superior tensile strength at elevated temperatures and creep-rupture strength in comparison with a conventional 2.25Cr-1Mo steel. The creep-rupture strength of the steels at 500degC for 100 000 h demonstrated about twice that of the conventional 2.25Cr-1Mo steel. The 3Cr-2.5W-0.2V-0.01Ti steel is recommended as a potential low activation ferritic steel for nuclear applications with well optimized mechanical properties, such as tensile strength at elevated temperatures, creep-rupture strength and toughness. The effects of alloying elements were discussed with correlating microstructural and mechanical aspects. (author)

  15. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  16. Phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC and the formation of TiC in Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Kobayashi, Satoru; Schneider, Andre; Zaefferer, Stefan; Frommeyer, Georg; Raabe, Dierk

    2005-01-01

    In the context of the development of high-strength Fe 3 Al-based alloys, phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC phases in the Fe-Al-Cr-Ti-C quinary system and the formation of TiC were determined. A pseudo-eutectic trough (L α + L + TiC) exists at 1470 deg C at around Fe-26Al-5Cr-2Ti-1.7C on the vertical section between Fe-26Al-5Cr (α) and Ti-46C (TiC) in at.%. Large faceted TiC precipitates form from the melt after the formation of primary α phase even in hypoeutectic alloys. The TiC formation is thought to be due to the composition change of the liquid towards the hypereutectic compositions by solidification of the primary α. In order to remove the faceted TiC, which are unfavourable for strengthening the material, two different processing routes have been successfully tested: (i) solidification with an increased rate to reduce the composition variation of the liquid during solidification, and (ii) unidirectional solidification to separate the light TiC precipitates from the melt

  17. Effect of Mg and Cu on mechanical properties of high-strength welded joints of aluminum alloys obtained by laser welding

    Science.gov (United States)

    Annin, B. D.; Fomin, V. M.; Karpov, E. V.; Malikov, A. G.; Orishich, A. M.

    2017-09-01

    Results of experimental investigations of welded joints of high-strength aluminum-lithium alloys of the Al-Cu-Li and Al-Mg-Li systems are reported. The welded joints are obtained by means of laser welding and are subjected to various types of processing for obtaining high-strength welded joints. A microstructural analysis is performed. The phase composition and mechanical properties of the welded joints before and after heat treatment are studied. It is found that combined heat treatment of the welded joint (annealing, quenching, and artificial ageing) increases the joint strength, but appreciably decreases the alloy strength outside the region thermally affected by the welding process.

  18. Characterization of dissimilar welding: carbon steel E309L-E308L-ERNiCr3-ENiCrFe3 alloy 600

    International Nuclear Information System (INIS)

    Mucino G, O.

    2015-01-01

    Most BWR type reactors have internal support components, which need to be attached to the inner surface by welding. Specifically, in these joints two materials interact, such as stainless steel and nickel base alloys. Nickel base alloys such as alloy 82 (ERNiCr3) and alloy 182 (ENiCrFe-3) are used for the joining of both dissimilar materials. For joints made with both nickel base alloys, the alloy 182 is prone to stress corrosion cracking (SCC); so it is essential to carry out studies related to this contribution material. In the nuclear industry any study related to this alloy is of importance because experience is gained in its behavior when is part of a system of an operation reactor. This work presents the characterization of the weld deposit of a stainless steel coating (with electrodes E309L and E308L) on a carbon steel plate type A36 and the joining with an Inconel 600 plate, simulating the joining of the internal coating of vessel and the heel of the support leg of the envelope of a BWR reactor. In this work, the mechanical and micro-structural characterization of the alloy deposit 182 was performed. (Author)

  19. Phase stability and elastic properties of Cr-V alloys

    Science.gov (United States)

    Gao, M. C.; Suzuki, Y.; Schweiger, H.; Doǧan, Ö. N.; Hawk, J.; Widom, M.

    2013-02-01

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr-V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr-V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  20. Effect of Ti solute on the recovery of cold-rolled V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Munoz, A.; Pareja, R.

    1999-01-01

    The recovery characteristics of cold-rolled pure V and V-Ti alloys with compositions of 0.3, 1 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. The recovery is accomplished in two stages. Fifty percent cold rolling induces the formation of microvoids in V-0.3Ti and V-1Ti but not in V-4.5Ti. The first recovery stage in pure V, V-0.3Ti and V-1Ti starts with the dissolution of microvoids. The recovery curves of the annihilation parameters for the alloys indicate the formation of Ti-rich precipitates during the first recovery stage. These precipitates act as very efficient vacancy sinks. The second recovery stage starting for annealing temperatures above ≅1150 K is attributed to annealing of vacancies associated to the precipitates. (orig.)

  1. The electrochemical properties of Zr-Ti-V-Ni-Mn hydrogen storage alloys with various compositions for an electrode of Ni-MH secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Jun; Jung, So Yi; Park, Choong Nyeon [Dept. of Metallurgical Engineering, Chonnam National University, Kwangju (Korea)

    1999-12-01

    Effects of alloy modification for the Zr{sub 0.7}Ti{sub 0.3}V{sub 0.4}Ni{sub 1.2}Mn{sub 0.4} alloy as an electrode materials have been investigated. When Ti in the alloy was partially substituted by Zr, the hydrogen storage capacity and subsequently the discharge capacity increased significantly, however, the activation characteristic and rate capability decreased. By substituting Mn with other elements (Cr, Co and Fe) in the alloy, discharge capacity decreased but the cycle life and rate capability were improved. Considering both the discharge capacity, the high rate discharge property and cycle life, the Zaire.{sub 7}Ti{sub 0.3}V{sub 0.4}Ni{sub 1.2}Mn{sub 0.3}Cr{sub 0.1} alloy among the alloys subjected to the test was found to be a prominent alloy for a practical usage. 11 refs., 5 figs., 2 tabs.

  2. Interfacial reactions in Ti-6Al-4V with laser-embedded SiC particles and the origin of intergranular corrosion susceptibility of an Al-Mg alloy

    NARCIS (Netherlands)

    Kooi, BJ; De Hosson, JTM; Carter, CB; Hall, EL; Nutt,; Briant, CL

    2000-01-01

    In the first part of the paper the microstructure of Ti-6Al-4V with laser embedded SiC particle is explained. The interfacial reaction between Ti and SiC is responsible for the largely improved wear resistance of the Ti alloy. In the second part the phase responsible for the intergranular corrosion

  3. The porosity formation mechanism in the laser-MIG hybrid welded joint of Invar alloy

    Science.gov (United States)

    Zhan, Xiaohong; Gao, Qiyu; Gu, Cheng; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-10-01

    The porosity formation mechanism in the laser-metal inter gas (MIG) multi-layer hybrid welded (HW) joint of 19.05 mm thick Invar alloy is investigated. The microstructure characteristics and energy dispersive spectroscopy (EDS) are analyzed. The phase identification was conducted by the X-ray diffractometer (XRD). Experimental results show that the generation of porosity is caused by the relatively low laser power in the root pass and low current in the cover pass. It is also indicated that the microstructures of the welded joints are mainly observed to be columnar crystal and equiaxial crystal, which are closely related to the porosity formation. The EDS results show that oxygen content is significantly high in the inner wall of the porosity. The XRD results indicate that the BM and the WB of laser-MIG HW all are composed of Fe0.64Ni0.36 and γ-(Fe,Ni). When the weld pool is cooled quickly, [NiO] [FeO] and [MnO] are formed that react on C to generate CO/CO2 gases. The porosity of laser-MIG HW for Invar alloy is oxygen pore. The root source of metallurgy porosity formation is that the dissolved gases are hard to escape sufficiently and thus exist in the weld pool. Furthermore, 99.99% pure Argon is recommended as protective gas in the laser-MIG HW of Invar alloy.

  4. Aluminium alloys welding with high-power Nd:YAG lasers

    International Nuclear Information System (INIS)

    Garcia Orza, J.A.

    1998-01-01

    Aluminium alloys have good mechanical properties (high strength-to-weight ratio, corrosion resistance) and good workability. their applications are growing up, specially in the transportation industry. Weldability is however poorer than in other materials; recent advances in high power YAG laser are the key to obtain good appearance welds and higher penetration, at industrial production rates. Results of the combination of high power YAG beams with small fiber diameters and specific filler wires are presented. It is also characterized the air bone particulate material, by-product of the laser process: emission rates, size distribution and chemical composition are given for several aluminium alloys. (Author) 6 refs

  5. Tensile properties of V-Cr-Ti alloys after exposure in helium and low-partial-pressure oxygen environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-04-01

    A test program is in progress to evaluate the effect of oxygen at low pO{sub 2} on the tensile properties of V-(4-5)wt% Cr-(4-5)wt% Ti alloys. Some of the tensile specimens were precharged with oxygen at low pO{sub 2} at 500{degrees}C and reannealed in vacuum at 500{degrees}C in environments with various pO{sub 2} levels and subsequently tensile tested at room temperature. The preliminary results indicate that both approaches are appropriate for evaluating the effect of oxygen uptake on the tensile properties of the alloys. The data showed that in the relatively short-time tests conducted thus far, the maximum engineering stress slightly increased after oxygen exposure but the uniform and total elongation values exhibited significant decrease after exposure in oxygen-containing environments. The data for a specimen exposed to a helium environment were similar to those obtained in low pO{sub 2} environments.

  6. Tensile properties of V-Cr-Ti alloys after exposure in helium and low-partial-pressure oxygen environments

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.

    1997-01-01

    A test program is in progress to evaluate the effect of oxygen at low pO 2 on the tensile properties of V-(4-5)wt% Cr-(4-5)wt% Ti alloys. Some of the tensile specimens were precharged with oxygen at low pO 2 at 500 degrees C and reannealed in vacuum at 500 degrees C in environments with various pO 2 levels and subsequently tensile tested at room temperature. The preliminary results indicate that both approaches are appropriate for evaluating the effect of oxygen uptake on the tensile properties of the alloys. The data showed that in the relatively short-time tests conducted thus far, the maximum engineering stress slightly increased after oxygen exposure but the uniform and total elongation values exhibited significant decrease after exposure in oxygen-containing environments. The data for a specimen exposed to a helium environment were similar to those obtained in low pO 2 environments

  7. A study of oxidation resistant coating on TiAl alloys by Cr evaporation and pack cementation

    International Nuclear Information System (INIS)

    Jung, Dong Ju; Jung, Hwan Gyo; Kim, Kyoo Young

    2002-01-01

    A Cr+Al-type composite coating is applied to improve the properties of aluminide coating layers, AiAl 3 , formed on TiAl alloys. This method is performed by Cr evaporation on the TiAl-XNb(X= 1,6at%) substrate followed by pack aluminizing. The coating layer formed by the composite coating process consists of the outer layer of Al 4 Cr and the inner layer of TiAl 3 regardless of the Nb content. however, these coating layers are transformed to Ti(Al,Cr) 3 layers with Ll 2 structures during oxidation. In particular, as Nb content increases, the grain size of the inner TiAl 3 layer becomes smaller and the diffusion rate of Cr increases after oxidation. Faster formation of a Ti(Al,Cr) 3 layer with an Ll 2 structure through Nb addition is more effective to improve cracking resistance at the beginning of oxidation of TiAl alloys. However, growth of Ti(Al,Cr) 3 formed on the coating layer becomes slower as the Nb content in the coating layer is increased. As a result, the addition of a large amount of Nb to composite coating layer is not desirable due to poor ductility of the coating layer. A Ti(Al,Cr) 3 layer with an Ll 2 structure developed during oxidation showed much better ductility compared with other coating layers

  8. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Lin Zhaoqing; Squartini, Tiziano

    2011-01-01

    Research highlights: → In this study, Fe 3 Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. → Laser cladding of Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can increase wear resistance of substrate. → In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of Ti 3 Al and B. → This principle can be used to improve the Fe 3 Al + TiB 2 laser-cladded coating. - Abstract: Laser cladding of the Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of amount of Ti 3 Al and B. This principle can be used to improve the Fe 3 Al + TiB 2 laser cladded coating, it was found that with addition of Al 2 O 3 , the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  9. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  10. Effects of Insert Metal Type on Interfacial Microstructure During Dissimilar Joining of TiAl Alloy to SCM440 by Friction Welding

    Science.gov (United States)

    Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon

    2018-03-01

    Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.

  11. Effects of Insert Metal Type on Interfacial Microstructure During Dissimilar Joining of TiAl Alloy to SCM440 by Friction Welding

    Science.gov (United States)

    Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon

    2018-05-01

    Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.

  12. Surface Hardening of Ti-15V-3Al-3Cr-3Sn Alloy after Cyclic Hydrogenation and Subsequent Solution Treatment

    Directory of Open Access Journals (Sweden)

    Chia-Po Hung

    2014-01-01

    Full Text Available The as-received and preheated (1000°C-30 min. and 500°C-30 min. sheets of Ti-15V-3Al-3Cr-3Sn alloy (Ti-153 were treated according to the predetermined process including a cyclic electrolytic hydrogenation (at 50 mA/cm2 for 1 hr and at 5 mA/cm2 for 10 hrs combining a subsequent solution treatment to see the effects of various operating parameters on the evolution of microstructure and the variations of hardness. The hardening effect deriving from solid-solution strengthening of hydrogen eventually overrode that from precipitation hardening. The maximum hardness elevation was from 236.9 to 491.1 VHN.

  13. Temper-bead repair-welding of neutron-irradiated reactor (pressure) vessel by low-heat-input TIG and YAG laser welding

    International Nuclear Information System (INIS)

    Nakata, Kiyotomo; Ozawa, Masayoshi; Kamo, Kazuhiko

    2006-01-01

    Weldability in neutron-irradiated low alloy steel for reactor (pressure) vessel has been studied by temper-bead repair-welding of low-heat-input TIG and YAG laser welding. A low alloy steel and its weld, and stainless steel clad and nickel (Ni)-based alloy clad were irradiated in a materials test reactor (LVR-15, Czech Republic) up to 1.4 x 10 24 n/m 2 (>1 MeV) at 290degC, which approximately corresponds to the maximum neutron fluence of 60-year-operation plants' vessels. The He concentration in the irradiated specimens was estimated to be up to 12.9 appm. The repair-welding was carried out by TIG and YAG laser welding at a heat input from 0.06 to 0.86 MJ/m. The mechanical tests of tensile, impact, side bend and hardness were carried out after the repair-welding. Cracks were not observed in the irradiated low alloy steel and its weld by temper-bead repair-welding. Small porosities were formed in the first and second layers of the repair-welds of low alloy steel (base metal). However, only a few porosities were found in the repair-welds of the weld of low alloy steel. From the results of mechanical tests, the repair-welding could be done in the irradiated weld of low alloy steel containing a He concentration up to 12.9 appm, although repair-welding could be done in base metal of low alloy steel containing up to only 1.7 appmHe. On the other hand, cracks occurred in the heat affected zones of stainless steel and Ni-based alloy clads by repair-welding, except by YAG laser repair-welding at a heat input of 0.06 MJ/m in stainless steel clad containing 1.7 appmHe. Based on these results, the determination processes were proposed for optimum parameters of repair-welding of low alloy steel and clad used for reactor (pressure) vessel. (author)

  14. Tool material effect on the friction stir butt welding of AA2124-T4 Alloy Matrix MMC

    Directory of Open Access Journals (Sweden)

    Yahya Bozkurt

    2018-01-01

    Full Text Available The purpose of the present work is to study on the effect of material properties tool on friction stir butt welding of AA2124-T4 alloy matrix MMC. Uncoated tool, coated tool with a CrN, and coated tool with AlTiN were used to weld aluminum MMC plates. Macrostructure and microstructure observations, ultimate tensile strength, wear resistance, and chemical analysis were carried out to determine the appropriate tool for joining these composite plates. Results showed that the good welded joints could be obtained when a tool is coated with AlTiN.

  15. Effect of Ti/Cr content on the microstructures and hydrogen storage properties of Laves phase-related body-centered-cubic solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Young, K., E-mail: kwo.young@basf.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Wong, D.F. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering and Materials Science, Wayne State University, MI 48202 (United States); Wang, L. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States)

    2015-02-15

    Highlights: • Influences of Ti/Cr to BCC to hydrogen storage properties were reported. • A new activation using hydrogen pressure at 5 MPa was developed. • A discharge capacity of 463 mA h g{sup −1} was reported on a C14(36%)/BCC(64%) alloy. • Increase in Ti/Cr increases storage capacity and decreases high-rate performance. • The high-rate performance was dominated by the surface reaction. - Abstract: A series of BCC/C14 mixed phase alloys with the chemical composition of Ti{sub 13.6+x}Zr{sub 2.1}V{sub 44}Cr{sub 13.2−x}Mn{sub 6.9}Fe{sub 2.7}Co{sub 1.4}Ni{sub 15.7}Al{sub 0.3}, x = 0, 2, 4, 6, 8, 10, and 12, was fabricated, and their structural, gaseous phase and electrochemical hydrogen storage properties were studied. Raising the maximum pressure for measuring the gaseous hydrogen storage capacity allowed these alloys to reach full activation, and the maximum discharge capacities ranged from 375 to 463 mA h g{sup −1}. As the Ti/Cr ratio in the alloy composition increased, the maximum gaseous hydrogen storage capacity improved due to the expansion in both BCC and C14 unit cells. However, reversibility decreased due to the higher stability of the hydride phase, as indicated by the lower equilibrium pressures measured for these alloys. As with most other metal hydride alloys, the electrochemical capacities measured at 50 and 4 mA g{sup −1} fell between the boundaries set by the maximum and reversible gaseous hydrogen storage capacities. The poorer high-rate dischargeability observed with higher Ti/Cr ratios was attributed to the lower surface exchange current (less catalytic). Two other negative impacts observed with higher Ti/Cr ratios in the alloy composition are poorer cycle stability and lower open-circuit voltage.

  16. Microstructure and mechanical properties of direct metal laser sintered TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten Hermann

    2015-05-01

    Full Text Available Direct metal laser sintering (DMLS is a selective laser melting (SLM manufacturing process that can produce near net shape parts from metallic powders. A range of materials are suitable for SLM; they include various metals such as titanium, steel, aluminium, and cobalt-chrome alloys. This paper forms part of a research drive that aims to evaluate the material performance of the SLM-manufactured metals. It presents DMLS-produced Ti-6Al-4V, a titanium alloy often used in biomedical and aerospace applications. This paper also studies the effect of several heat treatments on the microstructure and mechanical properties of Ti-6Al-4V processed by SLM. It reports the achievable mechanical properties of the alloy, including quasi-static, crack growth behaviour, density and porosity distribution, and post-processing using various heat-treatment conditions.

  17. Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD

    International Nuclear Information System (INIS)

    Park, J.H.

    1998-04-01

    In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulating films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating

  18. Experimental study on the effect of welding speed and tool pin ...

    African Journals Online (AJOL)

    user

    Friction stir welding (FSW) is a novel solid state welding process for joining metallic alloys and ... compared with conventional welding methods such as TIG or MIG. ... Conventional fusion welding of aluminium alloys often produces a weld which .... Ti. 0.1%. Cr. 0.25%. Al. Balance. 3.1 Configuration of welding tool geometry.

  19. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  20. Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Hunan University, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha (China); Hunan Institute of Science and Technology, College of Mechanical Engineering, Yueyang (China); Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei [Hunan University, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha (China)

    2017-06-15

    The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters. (orig.)

  1. Effects of V and Cr on Laser Cladded Fe-Based Coatings

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2018-03-01

    Full Text Available Fe-based coatings with high V and Cr content were obtained by laser cladding using Fe-based powder with different Cr3C2 and FeV50 content. The results showed that Fe-based coatings were uniform and dense. The constituent phases were mainly composed of α-Fe solid solution with the increase of Cr3C2 and FeV50, γ-Fe and V8C7 phases were achieved. The microstructure of the coatings exhibited a typical dendrite structure. The concentration of C, V and Cr were saturated in dendritic areas, and the other alloying elements were mainly dissolved in the interdendritic areas. The hardness and wear resistance of Fe-based coatings were enhanced with the Cr3C2 and FeV50 addition. The specimen with 15% Cr3C2 and 16% FeV50 had the highest hardness of 66.1 ± 0.6 HRC, which was 1.05 times higher than the sample with 4.5% Cr3C2 and 5% FeV50, and the wear resistance of the former was three times greater than the latter.

  2. Gibbs free energy difference between the undercooled liquid and the beta phase of a Ti-Cr alloy

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1992-01-01

    The heat of fusion and the specific heats of the solid and liquid have been experimentally determined for a Ti60Cr40 alloy. The data are used to evaluate the Gibbs free energy difference, delta-G, between the liquid and the beta phase as a function of temperature to verify a reported spontaneous vitrification (SV) of the beta phase in Ti-Cr alloys. The results show that SV of an undistorted beta phase in the Ti60Cr40 alloy at 873 K is not feasible because delta-G is positive at the temperature. However, delta-G may become negative with additional excess free energy to the beta phase in the form of defects.

  3. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.

    Science.gov (United States)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P; Yang, Ke

    2016-10-01

    The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy

    Directory of Open Access Journals (Sweden)

    J. Wang

    2015-10-01

    Full Text Available When joining the aluminum alloys, one of the biggest challenges is the formation of porosity, which deteriorates mechanical properties of welds. In this study, the lap welding was conducted on an aluminum alloy 5754 metal sheets with a thickness of 2 mm. The effects of various laser welding parameters on the weld quality were investigated. The porosity content was measured by X-ray inspections. The key is to control the solidification duration of molten pool. When the solidification duration of molten pool is large enough, more bubbles can escape from the molten pool and less remain as porosity.

  5. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  6. Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants

    International Nuclear Information System (INIS)

    Samuel, Sonia; Nag, Soumya; Scharf, Thomas W.; Banerjee, Rajarshi

    2008-01-01

    The inherently poor wear resistance of titanium alloys limits their application as femoral heads in femoral (hip) implants. Reinforcing the soft matrix of titanium alloys (including new generation β-Ti alloys) with hard ceramic precipitates such as borides offers the possibility of substantially enhancing the wear resistance of these composites. The present study discusses the microstructure and wear resistance of laser-deposited boride reinforced composites based on Ti-Nb-Zr-Ta alloys. These composites have been deposited using the LENS TM process from a blend of elemental Ti, Nb, Zr, Ta, and boron powders and consist of complex borides dispersed in a matrix of β-Ti. The wear resistance of these composites has been compared with that of Ti-6Al-4V ELI, the current material of choice for orthopedic femoral implants, against two types of counterfaces, hard Si 3 N 4 and softer SS440C stainless steel. Results suggest a substantial improvement in the wear resistance of the boride reinforced Ti-Nb-Zr-Ta alloys as compared with Ti-6Al-4V ELI against the softer counterface of SS440. The presence of an oxide layer on the surface of these alloys and composites also appears to have a substantial effect in terms of enhanced wear resistance

  7. Nanostructured thin film formation on femtosecond laser-textured Ti-35Nb-xZr alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative and Prosthetic Dentistry and Primary Care, College of Dentistry, Ohio State University, Columbus, OH (United States)

    2011-05-31

    The aim of this study was to investigate the nanostructured thin film formation on femtosecond (FS) laser-textured Ti-35Nb-xZr alloy for biomedical applications. The initial surface roughening treatment involved irradiation with the FS laser in ambient air. After FS laser texturing, nanotubes were formed on the alloy surface using a potentiostat and a 1 M H{sub 3}PO{sub 4} solution containing 0.8 wt.% NaF with an applied cell voltage of 10 V for 2 h. The surface phenomena were investigated by FE-SEM, EDS, XRD, XPS and a cell proliferation test. It was found that nanostructured Ti-35Nb-xZr alloys after FS laser texturing had a hybrid surface topography with micro and nano scale structures, which should provide very effective osseointegration.

  8. Nanostructured thin film formation on femtosecond laser-textured Ti-35Nb-xZr alloy for biomedical applications

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2011-01-01

    The aim of this study was to investigate the nanostructured thin film formation on femtosecond (FS) laser-textured Ti-35Nb-xZr alloy for biomedical applications. The initial surface roughening treatment involved irradiation with the FS laser in ambient air. After FS laser texturing, nanotubes were formed on the alloy surface using a potentiostat and a 1 M H 3 PO 4 solution containing 0.8 wt.% NaF with an applied cell voltage of 10 V for 2 h. The surface phenomena were investigated by FE-SEM, EDS, XRD, XPS and a cell proliferation test. It was found that nanostructured Ti-35Nb-xZr alloys after FS laser texturing had a hybrid surface topography with micro and nano scale structures, which should provide very effective osseointegration.

  9. Phase stability and elastic properties of Cr-V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M

    2013-01-23

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr–V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr–V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  10. Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G., E-mail: fieldkg@ornl.gov; Gussev, Maxim N., E-mail: gussevmn@ornl.gov; Yamamoto, Yukinori, E-mail: yamamotoy@ornl.gov; Snead, Lance L., E-mail: sneadll@ornl.gov

    2014-11-15

    Ferritic-structured Fe–Cr–Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe–(13–17.5)Cr–(3–4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  11. Laser processing of materials

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The initial foundation of laser theory was laid by Einstein [11]. ..... general definition and scope of the processes as understood in conventional practice, but is ..... [54]. Laser welding of Ti-alloys. Welding. 2001 TiNi shape memory alloys. CW–CO2. Study corrosion, mechanical and shape memory properties of weldments.

  12. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud

    It is advantageous for the transportation industry to use lightweight components in the structure in order to save mass and reduce CO2 emissions. One of the lightest structural metals, magnesium, fulfills the need for mass reduction within the automotive industry. Many of the body structure components in the automotive industry are assembled using joining processes such as fusion welding. Furthermore, laser welding offers a low heat impact, high process rate, joining method which is becoming increasingly popular as the cost for laser systems continues to decrease. However, there is a limited body of work investigating the laser welding of magnesium and therefore, in the current study, different techniques and methods for laser welding of magnesium alloys are numerically and experimentally studied in order to optimize process parameters to achieve high quality welds. A feasibility study was designed in order to study the effect of various laser welding process parameters (such as laser power levels and welding speeds) on weld quality. Three regression models were developed to find the best fit model that relates process parameters to the shear load of the weld. Furthermore, to understand the effect of laser welding parameters on temperature distribution in laser welding of AZ31B magnesium alloy, a numerical model was developed. A rotary Gaussian volumetric body heat source was applied in this study to obtain the temperature history during the laser welding process. Cross-sectional views of the weld beads, temperature history recorded by thermocouples, and temperature history recorded by infrared camera were used to validate the numerical model. In order to study the real-time dynamic behavior of the molten pool and the keyhole during the welding process, a high speed charge-coupled device (CCD) assisted with a green laser as an illumination source was used. In order to observe the presence of pores, prior studies destructively evaluated the weld bead however; in the

  13. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    In this paper, some research and develop-ment activities within pulsed laser welding technology at the Tech-nical University of Denmark will be described. The laser group at the Insti-tute for Manufacturing Technology has nearly 20 years of experience in laser materials process-ing. Inter......-nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...

  14. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunming; Cai, Yuanzheng; Hu, Chongjing; Zhang, Xiong; Yan, Fei; Hu, Xiyuan [Huazhong University of Science and Technology, Wuhan (China)

    2017-05-15

    The experimental laser welding of GH909 alloy was conducted in this study. The morphology, microstructure, and mechanical properties of laser-welded joints were analyzed by scanning electron microscopy, energy diffraction spectroscopy, and other techniques. Results revealed that the microstructure of the welded joints mainly consisted of tiny cellular structures, dendritic structures, and equiaxed crystals. Pores appeared in the interdendritic regions because of the insufficient local feeding of molten metal during solidification. Nb segregation in the heat-affected zone caused liquation cracking, whereas C segregation further induced the formation of carbide precipitates along the grain boundaries during the welding thermal cycle. The instability of the keyhole significantly promoted the escape of the metal vapor/plasma from the hole; as a result, porosity defects formed in the weld. The average tensile strength of the test joints was 756 MPa, which is 93.1 % of that of the base metal. The average microhardness of the weld zone (250 HV) was higher than that of the GH909 alloy substrate (208 HV), peaking at 267 HV. Microcracks appeared along the grain boundaries, proving that the grain boundaries were the weakest areas in the joint.

  15. Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique

    Science.gov (United States)

    Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.

  16. Characteristics of plasma plume in fiber laser welding of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ming; Chen, Cong; Hu, Ming; Guo, Lianbo; Wang, Zemin, E-mail: zmwang@mail.hust.edu.cn; Zeng, Xiaoyan

    2015-01-30

    Highlights: • Spectroscopic properties of fiber laser induced Al plasma plume are measured. • The plume is usually a metal vapor dominated weakly ionized plasma. • The plume is a strongly ionized plasma after laser power is higher than 5 kW. • Plasma shielding effect must be considered after laser power reaches 5 kW. • Plasma shielding effect is dominated by inverse bremsstrahlung absorption. - Abstract: To understand the laser–matter interaction in fiber laser welding of aluminum alloys, the effects of laser power on the characteristics of fiber laser induced plasma plume were studied by emission spectroscopic analysis firstly. The plasma characteristic parameters including electron temperature, electron density, ionization degree, and inverse bremsstrahlung linear absorption coefficient were computed according to the spectral data. It was found that the laser power of 5 kW is a turning point. After the laser power reaches 5 kW, the plume changes from a metal vapor dominated weakly ionized plasma to a strongly ionized plasma. The corresponding phenomena are the dramatic increase of the value of characteristic parameters and the appearance of strong plasma shielding effect. The calculation of effective laser power density demonstrated that the plasma shielding effect is dominated by inverse bremsstrahlung absorption. The finding suggested the plasma shielding effect must be considered in fiber laser welding of aluminum alloys, rather than is ignored as claimed in previous view.

  17. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    Science.gov (United States)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  18. Mechanical evaluation of linear friction welds in titanium alloys through indentation experiments

    International Nuclear Information System (INIS)

    Corzo, M.; Casals, O.; Alcala, J.; Mateo, A.; Anglada, M.

    2005-01-01

    This article shows the results of a project that focuses on the characterization of the weld interface region of dissimilar joints between titanium alloys for aeronautical applications, specifically Ti-6Al-2Sn-4Zr-6Mo with Ti-6Al-4V, and Ti-6Al-2Sn-4Zr-6Mo with Ti-6Al-2Sn-4Zr-2Mo. The uniaxial flow stress and hardening response of the material containing the weld were analyzed following the finite elements simulations and mathematical formulations to correlate hardness and the amount of pile-up and sinking-in phenomena around sharp indenters with uniaxial mechanical properties. This allows to accurately stablishing the influence that welding process has on the mechanical response of the parts. Tests performed on these friction-welded specimens showed that the fine grained microstructures in the welds exhibited better properties than the base materials. (Author) 12 refs

  19. Influence of small particles inclusion on selective laser melting of Ti-6Al-4V powder

    Science.gov (United States)

    Gong, Haijun; Dilip, J. J. S.; Yang, Li; Teng, Chong; Stucker, Brent

    2017-12-01

    The particle size distribution and powder morphology of metallic powders have an important effect on powder bed fusion based additive manufacturing processes, such as selective laser melting (SLM). The process development and parameter optimization require a fundamental understanding of the influence of powder on SLM. This study introduces a pre-alloyed titanium alloy Ti-6Al-4V powder, which has a certain amount of small particles, for SLM. The influence of small particle inclusion is investigated through microscopy of surface topography, elemental and microstructural analysis, and mechanical testing, compared to the Ti-6Al-4V powder provided by SLM machine vendor. It is found that the small particles inclusion in Ti-6Al-4V powder has a noticeable effect on extra laser energy absorption, which may develop imperfections and deteriorate the SLM fatigue performance.

  20. Microstructure and mechanical performance of autogenously fibre laser beam welded Ti-6242 butt joints

    Energy Technology Data Exchange (ETDEWEB)

    Kashaev, Nikolai, E-mail: nikolai.kashaev@hzg.de; Pugachev, Dmitry; Ventzke, Volker; Fomin, Fedor; Burkhardt, Irmela; Enz, Josephin; Riekehr, Stefan

    2017-05-10

    This work deals with the effects of laser beam power, focus position and advance speed on the geometry, microstructure and mechanical properties such as the tensile strength and microhardness of autogenously fibre laser beam welded Ti-6Al-2Sn-4Zr-2Mo (denoted as Ti-6242) butt joints used for high temperature applications. The Ti-6242 sheet employed here is characterized by a globular (α+β) microstructure. Laser beam welded butt joints consisted of a martensitic fusion zone, inhomogeneous heat affected zones and equiaxed base materials. The microhardness increased from 330 HV 0.3 in base material to 430 HV 0.3 in fusion zone due to the martensitic transformation. Butt joints showed the base material level of strength in tensile test. The local increase in microhardness provided a shielding effect that protected the Ti-6242 butt joint against mechanical damage during the static tensile load test. The predicted critical total underfill depth that does not reduce the tensile strength of the weld was determined to be 25% of the specimen thickness. - Highlights: • Autogenous fibre LBW of Ti-6242 was successfully achieved. • Butt joints showed low levels of porosity and an appropriate seam geometry. • Base material level of strength achieved for tensile strength. • Predicted critical underfill depth is 25% of the specimen thickness.

  1. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  2. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo.

    Science.gov (United States)

    Zhao, Bingjing; Wang, Hong; Qiao, Ning; Wang, Chao; Hu, Min

    2017-01-01

    The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (1.5V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    CSIR Research Space (South Africa)

    Akhter, R

    2006-01-01

    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  4. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  5. Effects of heat treatments on laser welded Mg-rare earth alloy NZ30K

    International Nuclear Information System (INIS)

    Dai Jun; Huang Jian; Li Min; Li Zhuguo; Dong Jie; Wu Yixiong

    2011-01-01

    Highlights: → Firstly find the tadpole-shape precipitates in the welding joint. → The precipitation strengthening can account for 79% of the total strength. → The results can provide some insights on the application of Mg-RE alloy. - Abstract: In this study, the effects of heat treatments on the quality of laser welded Mg-rare earth alloy NZ30K were systematically studied. The microstructure and mechanical properties of joints, welded by a 15 kW high power CO 2 laser, under different heat treatments had been tested and analyzed. The results indicated that the heat treatment plays an important role in the mechanical strength of laser welded joint of NZ30K. The microstructure of samples after the solution treatment as well as aging treatment is different from that of the as-received welded joint. For solution treatment, although the microstructure is much different from that of as-received welded joint, the solution strengthening effect is not obvious. There are lots of precipitates in the fusion zone after the aging treatment, which will significantly enhance the ultimate tensile strength (UTS) and the yield tensile strength (YTS) of the welding joint. 79% of YTS is caused by precipitation strengthening. Therefore, the results implied that the UTS and YTS can be greatly improved by proper heat treatment.

  6. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  7. Hydrogenation Properties of Mg-5 wt.% TiCr_10NbX (x=1,3,5) Composites by Mechanical Alloying Process

    International Nuclear Information System (INIS)

    Kim, Kyeong-Il; Hong, Tae-Whan

    2011-01-01

    Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develop kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). Mg-TiCr_10Nb systems were evaluated for hydrogen kinetics by Sievert’s type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

  8. Calculation of phase equilibria in Ti-Al-Cr-Mn quaternary system for developing lower cost titanium alloys

    International Nuclear Information System (INIS)

    Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.

    2011-01-01

    Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).

  9. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    Science.gov (United States)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  10. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  11. Growth (AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system

    Science.gov (United States)

    Chang, Kai-Sheng; Chen, Kuan-Ta; Hsu, Chun-Yao; Hong, Po-Da

    2018-05-01

    This paper determines the optimal settings in the deposition parameters for (AlCrNbSiTiV)N high-entropy alloy (HEAs) nitride films that are deposited on CBN cutting tools and glass substrates. We use direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HIPIMS), with Ar plasma and N2 reactive gases. Experiments with the grey-Taguchi method are conducted to determine the effect of deposition parameters (deposition time, substrate DC bias, DC power and substrate temperature) on interrupted turning 50CrMo4 steel machining and the films' structural properties. Experimental result shows that the multiple performance characteristics for these (AlCrNbSiTiV)N HEAs film coatings can be improved using the grey-Taguchi method. As can be seen, the coated film is homogeneous, very compact and exhibits perfect adherence to the substrate. The distribution of elements is homogeneous through the depth of the (AlCrNbSiTiV)N film, as measured by an auger electron nanoscope. After interrupted turning with an (AlCrNbSiTiV)N film coated tool, we obtain much longer tool life than when using uncoated tools. The correlation of these results with microstructure analysis and tool life indicates that HIPIMS discharge induced a higher (AlCrNbSiTiV)N film density, a smoother surface structure and a higher hardness surface.

  12. Welding and corrosion resistance of the new nitrogen alloyed steel X2 CrNiMnMoN241764

    International Nuclear Information System (INIS)

    Arit, N.; Henser, H.; GroB, V.

    1994-01-01

    Remanit 4565 S is a new developed nitrogen alloyed austenitic stainless steel. Characteristic features are: improved strength and toughness, delayed precipitation of carbides and intermetallic phases, improved corrosion resistance. Welding fabrication is possible without the risk of pore formation. TIG-welded joints are as resistant as the base metal, using filler metal SG-NiCr 20 Mo 15 (Thermanit Nimo C) respectively SG-NiCr 28 Mo(Thermanit 30/40 E) according to the area of application. (Author) 8 refs

  13. Effect of CeO₂ on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding.

    Science.gov (United States)

    Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun

    2017-12-31

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO₂ powders as the basic pre-placed materials. A certain amount of CeO₂ powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO₂ additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO₂ on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO₂. With the increase of CeO₂ additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO₂ additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings.

  14. Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy

    Science.gov (United States)

    Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.-H.; Wilthan, B.; Pottlacher, G.

    2006-03-01

    Ti-6Al-4V (TA6V) titanium alloy is widely used in industrial applications such as aeronautic and aerospace due to its good mechanical properties at high temperatures. Experiments on two different resistive pulse heating devices (CEA Valduc and TU-Graz) have been carried out in order to study thermophysical properties (such as electrical resistivity, volume expansion, heat of fusion, heat capacity, normal spectral emissivity, thermal diffusivity, and thermal conductivity) of both solid and liquid Ti-6Al-4V. Fast time-resolved measurements of current, voltage, and surface radiation and shadowgraphs of the volume have been undertaken. At TU-Graz, a fast laser polarimeter has been used for determining the emissivity of liquid Ti-6Al-4V at 684.5 nm and a differential scanning calorimeter (DSC) for measuring the heat capacity of solid Ti-6Al-4V. This study deals with the specific behavior of the different solid phase transitions (effect of heating rate) and the melting region, and emphasizes the liquid state ( T > 2000 K).

  15. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  16. Development of Cr,Nd:GSGG laser as a pumping source of Ti:sapphire laser

    International Nuclear Information System (INIS)

    Tamura, Koji; Arisawa, Takashi

    1999-08-01

    Since efficiency of Cr,Nd doped gadolinium scandium gallium garnet (GSGG) laser is in principle higher than that of Nd:YAG laser, it can be a highly efficient pumping source for Ti:sapphire laser. We have made GSGG laser, and measured its oscillation properties. It was two times more efficient than Nd:YAG laser at free running mode operation. At Q-switched mode operation, fundamental output of 50 mJ and second harmonics output of 8 mJ were obtained. The developed laser had appropriate spatial profile, temporal duration, long time stability for solid laser pumping. Ti:sapphire laser oscillation was achieved by the second harmonics of GSGG laser. (author)

  17. Effect of micromorphology at the fatigue crack tip on the crack growth in electron beam welded Ti-6Al-4V joint

    International Nuclear Information System (INIS)

    Tao, Junhui; Hu, Shubing; Ji, Longbo

    2016-01-01

    In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases and a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.

  18. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    Science.gov (United States)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-03-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized-β grains.

  19. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    Science.gov (United States)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-06-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.

  20. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    International Nuclear Information System (INIS)

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-01-01

    Plate impact experiments were conducted on a γ-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics

  1. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    Science.gov (United States)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  2. a Study on Microstructure Characteristics of IN SITU Formed TiC Reinforced Composite Coatings

    Science.gov (United States)

    Liu, Peng; Guo, Wei; Luo, Hui

    2012-04-01

    In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrate, and the micro-hardness of the Al-Ni-Cr-C laser-cladded coating was in the range of 1200-1450 HV0.2, which was 3-4 times higher than that of Ti-6Al-4V substrate. Furthermore, the reinforcement of theAl-Ni-Cr-C laser-cladded coating were mainly contributed to the action of the TiC, Ti3Al, Cr7C3, Al8Cr5 phases and the solution strengthening.

  3. Laser cladding of Ti-6Al-4V with various carbide powders

    International Nuclear Information System (INIS)

    Folkes, J.A.; Shibata, K.

    1994-01-01

    Laser cladding Ti-6Al-4V can be achieved with various weight percentages of different carbide powders. The microstructure and morphology of the clad layer is determined by the cladding powder composition, for a given set of laser parameters, such that 10 and 20 wt% Cr 3 C 2 results in a β + TiC clad microstructure; 10 and 20 wt% WC results in an α + TiC clad microstructure (plus some original WC); and Mo 2 C gives an α + β + TiC or β + TiC structure, depending on the weight percentage of Mo 2 C. The morphology of the TiC in all cases is dendritic or feathery, depending on the carbide content. The microstructure observed in all cases agreed well with that theoretically predicted from the energetics of carbide formation and β-stabilizing properties of each element

  4. Texture characterisation of hexagonal metals: Magnesium AZ91 alloy, welded by laser processing

    International Nuclear Information System (INIS)

    Kouadri, A.; Barrallier, L.

    2006-01-01

    Cooled and cast magnesium AZ91 alloy was welded using a CO 2 laser. The changes in the microstructure were analysed by optical and scanning electron microscopy and X-ray diffraction. Modification of the anisotropic properties was evaluated by the characterization of the texture in the base metal, in the core of the welded zone and in the welded zone close to the surface. In the two former zones, we have not observed a texture. Laser welding only leads to a change of the grain size and a disappearance of the eutectic phase. By contrast, in the welded zone close to the surface, the laser process leads both to a finer microstructure, to a loss of the Al-content and to the presence of several texture components. In this zone, our results showed that these textures are on pyramidal {101-bar 1} and prismatic {101-bar 0} planes. Much of the explanation for such texture rests with the fact that during the laser welding, material solidifies in strong non-equilibrium conditions. The kinetics of the nucleation and the growth are partly controlled by the high-rise and high fall of the temperature and the power produced by the laser process. The nature of the texture has been explained by the presence of a columnar to equiaxed transition in the welded zone

  5. Laser welding of aluminum alloy sheet test%铝合金薄板激光焊接试验

    Institute of Scientific and Technical Information of China (English)

    王中林; 杨晟; 石金发

    2011-01-01

    The purpse of Technology testing is to find a relatively economical and practical method of laser welding of aluminum alloy for the modem industrial assembly technology to provide new ideas to promote productivity improvement and cost reduction. Analyzed the characteristics of aluminum alloy laser welding technology, technical difficulties and Solutions, recording using 300W single - beam laser welding of aluminum alloy with the relevant parameters and tile welding effect, to build dual - beam laser welding test platform for high - power dual - beam and record the total about 500W into two beams of laser welding and related parameters during the test. By laser and argon arc welding test mixture. On the part of the welded samples were quantitatively analyzed. After analysis, made of aluminum alloy laser welding technology improvements.%工艺试验的目的是寻求相对经济实用的铝合金激光焊接方法,为现代工业装配生产提供新的工艺思路,促进生产效率的提升和成本的降低。分析了铝合金激光焊接的工艺特性、技术难点和解决思路,记录利用300W激光对铝合金进行单光束焊接的有关参数和焊接效果,搭建双光束激光焊接试验平台,记录较高功率双光束和总量约500W激光分成双光束焊接试验过程及有关参数。进行了激光、氩弧混合焊接试验。对部分焊接样品进行了定量分析。经过分析研究,提出了铝合金激光焊接工艺改进意见。

  6. Electrochemical hydrogen storage of Ti-V-based body-centered-cubic phase alloy surface-modified with AB5 nanoparticles

    International Nuclear Information System (INIS)

    Yu, X.B.; Walker, G.S.; Grant, D.M.; Wu, Z.; Xia, B.J.; Shen, J.

    2005-01-01

    A composite of Ti-V-based bcc phase alloy surface-modified with AB 5 nanoparticles was prepared by ball milling. The composite showed significantly improved electrochemical hydrogen release capacities. For example, the 30 min ball milled Ti-30V-15Mn-15Cr+10 wt %AB 5 showed a discharge capacity in the first cycle, at 353 K, of 886 mA h g -1 , corresponding to 3.38 wt % of hydrogen, with a 45 mA g -1 discharge current. It is thought that this high capacity is due to the enhanced electrochemical-catalytic activity from the alloy surface covered with AB 5 nanoparticles, which not only have better charge-discharge capacity themselves, acting as both an electrocatalyst and a microcurrent collector, but also result in the greatly enhanced hydrogen atomic diffusivities in the nanocrystalline relative to their conventional coarse-grained counterparts. These results provide new insight for use of Ti-V-based bcc phase alloy for high-energy batteries

  7. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  8. Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

    Science.gov (United States)

    Wang, Haojun

    2017-01-01

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO2 on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO2. With the increase of CeO2 additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO2 additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings. PMID:29301218

  9. Microstructure and microhardness of Ti6246 linear friction weld

    International Nuclear Information System (INIS)

    Guo, Yina; Jung, Taenam; Chiu, Yu Lung; Li, Hangyue; Bray, Simon; Bowen, Paul

    2013-01-01

    The microhardness and microstructure of linear friction welded Ti–6Al–2Sn–4Zr–6Mo (Ti6246) alloys were studied, in both as-welded and post-weld heat-treated conditions. It has been found that the as-welded Ti6246 has a lower microhardness value of about 360 HV in the central weld zone than that of the base material of about 420 HV. Post-weld heat-treatment of the Ti6246 weld at 600 °C for 1 h has led to the hardness increase of about 180 HV at the central weld zone. Transmission electron microscopy studies show that the microstructure at the central weld zone of the as-welded Ti6246 consists of fine grains with dense acicular orthorhombic α″ martensite. The soft α″ martensite is believed to account for the low hardness measured in the as-welded conditions. Phase transformation from orthorhombic α″ to hexagonal α occurred during the PWHT, resulting in the observed hardness increase.

  10. Research of the welding of amorphous Co-based alloys in shape of foils with Nd: YAG-LASER

    International Nuclear Information System (INIS)

    Runchev, Dobre

    1996-01-01

    In this study the results concerning the research of the welding of amorphous Co-based alloys in form of foils, with impulsive Nd: YAG LASER are given. The welding was effected on alloys with manufactured sign VAC 6025, VAC 6030, VAC 6150 as well as with different chemical structure and dimensions. Two overlapped foils of the same alloy have been connected with 6 welded spots, under laboratory conditions and in air surrounding. The welding was effected only with negative focus position (-Def.). The basic aim of the researches is the production of a spot welded joints by preserving the amorphous structure of the material. To achieve this purpose, examinations of the optical characteristics of the welded alloys were effected, by measuring the reflective energy of the laser beam from the surface of the AMF. The quality of the spot welded joint is established by shearing examination, measuring of the microhardness, metallographic examinations of the structure by both light microscope and SEM, as well as measuring of the welded spot diameter. After the examinations and the analysis of the achieved results, it is defined that the welding of AMF A and B the established aim was achieved. The welded spots ware with good quality, the structure remained amorphous and the mechanical characteristics, such as Rm and HV0, 2 were at the level of the basic materials. During the welding of AMF C, D and E, the established aim was not achieved. The welded spots ware with bad quality, as a result of the appeared crystal structure in the welded spots. The experimental researches presented in this study, have been carried out in the Technical University in Berlin. (author)

  11. Microstructure and microhardness of Ti6246 linear friction weld

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yina; Jung, Taenam [School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Chiu, Yu Lung, E-mail: y.chiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Li, Hangyue [School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Bray, Simon [Rolls-Royce plc, PO Box 31, Derby DE24 8BJ (United Kingdom); Bowen, Paul [School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT (United Kingdom)

    2013-02-01

    The microhardness and microstructure of linear friction welded Ti-6Al-2Sn-4Zr-6Mo (Ti6246) alloys were studied, in both as-welded and post-weld heat-treated conditions. It has been found that the as-welded Ti6246 has a lower microhardness value of about 360 HV in the central weld zone than that of the base material of about 420 HV. Post-weld heat-treatment of the Ti6246 weld at 600 Degree-Sign C for 1 h has led to the hardness increase of about 180 HV at the central weld zone. Transmission electron microscopy studies show that the microstructure at the central weld zone of the as-welded Ti6246 consists of fine grains with dense acicular orthorhombic {alpha} Double-Prime martensite. The soft {alpha} Double-Prime martensite is believed to account for the low hardness measured in the as-welded conditions. Phase transformation from orthorhombic {alpha} Double-Prime to hexagonal {alpha} occurred during the PWHT, resulting in the observed hardness increase.

  12. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  13. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Z.; Meng, X.K., E-mail: mengdetiankong10@126.com; Huang, S.; Sheng, J.; Lu, J.Z.; Yang, Z.R.; Su, C.

    2015-09-03

    This study focused on the effects of warm laser peening (WLP) on the fatigue behavior of Ti6Al4V titanium alloy during low-cycle fatigue (LCF) tests. The Ti6Al4V specimens were treated by laser peening at room temperature (RT-LP) and WLP at elevated temperatures from 100 °C to 400 °C. The residual stress relaxation (RSR) tests and LCF tests were conducted subsequently. In addition, the microstructure analysis of fracture surfaces was performed using scanning electron microscope (SEM). Finally, the fracture mechanism of the untreated, RT-LPed and 300 °C-WLPed samples during LCF was revealed. It is found that although the compressive residual stress (CRS) induced by WLP decreases at elevated temperatures, the depth and stability of CRS increase with the increasing treatment temperature, which help to retard the early fatigue crack initiation. Moreover, for the 300 °C-WLPed specimens, the growth rate of effective cracks is decreased and the lengths of crack growth paths are increased by the induced high angle boundaries (HABs) and nano-precipitates. Therefore, specimens treated by WLP at 300 °C are found to have a significantly extended fatigue life when subjected to low-cycle loads. This extended fatigue life is attributed to the great depth and stability of introduced CRS, as well as the enhanced fracture toughness. It can be concluded that 300 °C is the optimal temperature for WLP of Ti6Al4V titanium alloy from the perspective of LCF improvement.

  14. Creep behavior of plasma carburized Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Oliveira, Veronica Mara Cortez Alves de; Barboza, Miguel Justino Ribeiro; Silva, Mariane Capellari Leite da; Pinto, Catia Gisele; Suzuki, Paulo Atsushi; Machado, Joao Paulo B.

    2010-01-01

    This paper aims to evaluate the effect of plasma carburizing on the Ti-6Al-4V alloy submitted to creep tests. The results showed that the alloy Ti-6Al-4V had a hardness of 334 ± 18 HV. After treatment thermochemical by plasma, was observed the formation of a layer of average thickness of 1,5 μm and hardness of 809 ± 79 HV due to the presence of TiC phase identified by X-ray diffraction. The treatment increased the values of average roughness of 1,28 to 2,02 μm. The creep properties of carburized specimens were improved in comparison with those of the uncarburized Ti-6Al-4V alloy. (author)

  15. Method for laser welding a fin and a tube

    Science.gov (United States)

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  16. Welding of refractory alloys

    International Nuclear Information System (INIS)

    Lessmann, G.G.

    1984-01-01

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  17. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting.

    Science.gov (United States)

    Hedberg, Yolanda S; Qian, Bin; Shen, Zhijian; Virtanen, Sannakaisa; Wallinder, Inger Odnevall

    2014-05-01

    Selective laser melting (SLM) is increasingly used for the fabrication of customized dental components made of metal alloys such as CoCrMo. The main aim of the present study is to elucidate the influence of the non-equilibrium microstructure obtained by SLM on corrosion susceptibility and extent of metal release (measure of biocompatibility). A multi-analytical approach has been employed by combining microscopic and bulk compositional tools with electrochemical techniques and chemical analyses of metals in biologically relevant fluids for three differently SLM fabricated CoCrMo alloys and one cast CoCrMo alloy used for comparison. Rapid cooling and strong temperature gradients during laser melting resulted in the formation of a fine cellular structure with cell boundaries enriched in Mo (Co depleted), and suppression of carbide precipitation and formation of a martensitic ɛ (hcp) phase at the surface. These features were shown to decrease the corrosion and metal release susceptibility of the SLM alloys compared with the cast alloy. Unique textures formed in the pattern of the melting pools of the three different laser melted CoCrMo alloys predominantly explain observed small, though significant, differences. The susceptibility for corrosion and metal release increased with an increased number (area) of laser melt pool boundaries. This study shows that integrative and interdisciplinary studies of microstructural characteristics, corrosion, and metal release are essential to assess and consider during the design and fabrication of CoCrMo dental components of optimal biocompatibility. The reason is that the extent of metal release from CoCrMo is dependent on fabrication procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Lee, Changhee; Lee, D.M.; Sun, J.H.; Shin, S.Y.; Bae, J.C.

    2007-01-01

    Pulsed Nd:YAG laser was used to weld Cu 54 Ni 6 Zr 22 Ti 18 (numbers indicate at.%) metallic glass with glass forming ability of 6 mm. Through a single pulse irradiation on the glassy plate, the pulse condition for welding without crystallization was investigated. Under the selected pulse condition, the Cu 54 Ni 6 Zr 22 Ti 18 plate was periodically welded with different welding speeds. For the welding speed of 60 mm/min, no crystallization was observed in both weldment and heat-affected zone. For the 20 mm/min, the crystallized areas with a band shape were observed along the welding direction

  19. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

    Science.gov (United States)

    Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.

    2017-11-01

    Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

  20. Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy

    Science.gov (United States)

    Wu, Dongsheng; Hua, Xueming; Ye, Youxiong; Huang, Lijin; Li, Fang; Huang, Ye

    2018-05-01

    A laser welding experiment with glass is conducted to directly observe the keyhole behavior and spatter formation in fiber laser welding of aluminum alloy. A 3D model is developed to investigate the spatter formation and composition change. An additional conservation equation is introduced to describe the Mg element distribution, and the Mg element loss due to evaporation is also considered. Based on numerical and experimental results, it is found that the keyhole geometry in laser welding of aluminum alloy is different from that in laser welding of steel. There are three required steps for spatter formation around the keyhole. The high momentum of the molten metal, the high recoil pressure and vapor shear stress, and the low surface tension around the keyhole contribute to the easy formation of spatter. The in-homogeneous distribution of Mg element in the weld can be attributable to the continuous evaporation of Mg element at the top surface of keyhole rear, the upward flow of low Mg element region from the bottom of the keyhole to the top surface of keyhole rear along the fusion line, the collapse of the keyhole, and the ejection of spatters.

  1. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  2. Multifunctional Beta Ti Alloy with Improved Specific Strength

    Science.gov (United States)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  3. Recovery characteristics of neutron-irradiated V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Pareja, R.

    2000-01-01

    The recovery characteristics of neutron-irradiated pure V and V-Ti alloys with 1.0 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. Microvoid formation during irradiation at 320 K is produced in pure V and V-1Ti but not in V-4.5Ti. The results are consistent with a model of swelling inhibition induced by vacancy trapping by solute Ti during irradiation. The temperature dependencies of the parameter S in the range 8-300 K indicate a large dislocation bias for vacancies and solute Ti. This dislocation bias prevents the microvoid nucleation in V-4.5Ti, and the microvoid growth in V-1Ti, when vacancies become mobile during post-irradiation annealing treatments. A characteristic increase of the positron lifetime is found during recovery induced by isochronal annealing. It is attributed to a vacancy accumulation into the lattice of Ti oxides precipitated during cooling down, or at their matrix/precipitate interfaces. These precipitates could be produced by the decomposition of metastable phases of Ti oxides formed during post-irradiation annealing above 1000 K

  4. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite

    Science.gov (United States)

    Ochonogor, O. F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A. P. I.

    2012-12-01

    Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV0.1for the substrate reaching a peak as high as 922.2 HV0.1 for 60%Ti + 40%TiC and the least 665.3 HV0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  5. Methods for improving weld strength of two-phase titanium alloys

    International Nuclear Information System (INIS)

    Zamkov, V.N.; Kushnirenko, N.A.; Topol'ski , V.F.; Khorev, A.I.

    1980-01-01

    The methods for improving the strength and impact toughness of welded joints of two-phase α+β martensitic titanium alloys (VT14, VT6, VT6S, VT23, VT22) are discussed. Thermal hardening of of welded joints under conditions recommended for the basic metal is shown to lead to the decrease of their ductibility. It has been established that the high quality of welded joints is obtained by the usage of the additional wire of Ti-Al-Mo-V-Nb-Zr-Re system in heat treatment under optimum conditions, in particular, after the low-temperature aging

  6. Role of butter layer in low-cycle fatigue behavior of modified 9Cr and CrMoV dissimilar rotor welded joint

    International Nuclear Information System (INIS)

    Wu, Qingjun; Lu, Fenggui; Cui, Haichao; Liu, Xia; Wang, Peng; Tang, Xinhua

    2014-01-01

    Highlights: • Modified 9Cr–CrMoV dissimilar turbine rotor was successfully welded by NG-SAW. • LCF properties of both welded joints were approximate at smaller strain amplitude. • Tempered martensite with amounts of carbides in HAZ contributed to weakest zones. • Matched BL determined LCF properties of whole joint for dissimilar welded rotor. - Abstract: The present work aims at studying the role of butter layer (BL) in low-cycle fatigue (LCF) behavior of modified 9Cr steel and CrMoV steel dissimilar welded joint. The significant difference of the chemical composition of base metals (BMs) makes it a challenge to achieve sound welded joint. Therefore, buttering was considered to obtain a transition layer between the dissimilar steels. The LCF tests of two kinds of specimens without and with butter layer were performed applying strain-controlled cyclic load with different axial strain amplitudes. The test results indicated that the number of cycles at higher strain amplitudes of welded joint without butter layer was greatly higher than that of the joint with butter layer, while the fatigue lifetime to crack initiation (2N f ) became closer to each other at low and middle strain amplitudes. The failure was in the tempered heat affected zone (HAZ) at the CrMoV side for specimens without BL, while the fracture occurred at the tempered HAZ in the BL for specimens with BL. The microstructure details of BM, BL, HAZ and weld metals (WMs) were revealed by optical microscopy (OM). It was found that the tempered martensite was major microstructure for welded joint and much more carbides were observed in tempered HAZ than other parts due to the repeated tempering. Microhardness test indicated a softest zone existing tempered HAZ of BL and also there was a softer zone in tempered HAZ at the CrMoV side due to repeated tempering during welding and post weld heat treatment (PWHT). And scanning electron microscopy (SEM) was applied to observe the fractography. It was

  7. Metallurgical and Mechanical Characterization of High Temperature Titanium Alloys Joined by Friction Stir Welding

    Science.gov (United States)

    Gangwar, Kapil Dev

    In the world of joining, riveting and additive manufacturing, weight reduction, and omission of defects (at both macro and micro level) remain of paramount. Therefore, in the wake of ubiquitous fusion welding (FW) and widely accepted approach of riveting using Inconel bolts to resist corrosion at higher temperature, friction stir welding (FSW) has emerged as a novice jewel in friction based additive manufacturing industry. With advancements in automation of welding process and tool material, FSW of materials with higher work hardening such as steel and titanium has also become probable. Process and property relations associated with FSW are inevitable in case of dissimilar titanium alloys, due to presence of heterogeneity (whether atrocious or advantageous) in and around the weld nugget. These process property relationships are needed to be studied and addressed properly in order to optimize the processing window for improved mechanical and metallurgical properties. In this study FSWed similar and dissimilar butt joints of α+β, and near α titanium, alloys have been produced for varying processing conditions in order to study the effect of rotation speed (rpm) and traverse speed (TS; mm-min-1). The aim of this study is to assess the effect of tool geometry, tool rpm, TS on microstructure and mechanical properties of most widely used α+β titanium alloy, Ti-6Al-4V (Ti-64), standard grain and fine grain in addition to α+β,Ti-5Al-4V (T-54M), standard grain, and near α, Ti-6Al-2Mo-4Zr-2Sn (Ti-6242), standard grain (SG) and fine grain (FG). During FSW, a unique α+β fine-grained microstructure has been formed depending on whether or not the peak temperature in the weld nugget (WN) reached above or below β transus temperature. The resulting microstructure consists of acicular α+β, emanating from the prior β grain boundary as the weld cools off. The changes in the microstructure are observed by optical microscopy (OM). Later, a detailed analysis of material

  8. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    Science.gov (United States)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  9. The Analysis of the General Performance and Mechanical Behavior of Unirradiated FeCrAl Alloys Before and After Welding

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-06-03

    The present report summarizes and discusses the preliminary results for the in-depth characterization of the modern, nuclear-grade FeCrAl alloys currently under development. The alloys were designed for enhanced radiation tolerance and weldability, and the research is currently being pursued by the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Last year, seven candidate FeCrAl alloys with well-controlled chemistry and microstructures were designed and produced; welding was performed under well-controlled conditions. The structure and general performance of unirradiated alloys were assessed using standardized and advanced microstructural characterization techniques and mechanical testing. The primary objective is to identify the best candidate alloy, or at a minimum to identify the contributing factors that increase the weldability and radiation tolerance of FeCrAl alloys, therefore enabling future generations of FeCrAl alloys to deliver better performance parameters. This report is structured so as to describe these critical assessments of the weldability; radiation tolerance will be reported on in later reports from this program.

  10. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Osoba, L.O. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada); Ding, R.G. [Department of Metallurgy and Materials Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Ojo, O.A., E-mail: ojo@cc.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)

    2012-03-15

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.

  11. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  12. Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. Part II: resistance to fatigue crack propagation and fracture

    Energy Technology Data Exchange (ETDEWEB)

    Horstmann, M.; Ventzke, V.; Petrovski, B.; Kocak, M. [GKSS Research Centre Geesthacht, Institute of Materials Research, Materials Mechanics, Geesthacht (Germany); Kocik, R.; Tempus, G. [AIRBUS Deutschland GmbH, Metal Technology, Bremen (Germany); Vaidya, W.V.

    2009-10-15

    Investigations were continued on the dissimilar laser beam welds of AA6056 and Ti6Al4V, fabricated by inserting Ti-sheet into the profiled Al-sheet and melting AA6056 alone. By using microstructure, hardness and strength as the criteria, sites exhibiting non-uniform microstructure and localized plastic deformation due to strength mismatch were investigated in two orientations: crack parallel to the weld and crack perpendicular to the weld for fatigue crack propagation and fracture toughness at room temperature. Effect of temper of AA6056 on these properties was studied for two conditions; welding in T4 followed by post weld heat treatment T6, and welding in T6 and naturally aged for a defined period. The orientation ''crack parallel to the weld'' was investigated in 3 locations on the side of AA6056: the interface and the two changeovers on the Al-side. Firstly, between the fusion zone and the heat affected zone (3 mm from the interface) and secondly, between (primary) heat affected zone and towards the base material (7 mm from the interface). Although brittle intermetallic TiAl{sub 3} had been formed at the interface, uncontrolled separation or debonding at the interface was not observed. Insofar the bond quality of the weld was good. However, the ranking of interface was the lowest since fatigue crack propagation was relatively faster than that in the fusion zone and heat affected zone, and fracture toughness was low. Therefore, unstable fatigue crack propagation is observed when the crack propagates perpendicular to the weld from AA6056 towards Ti6Al4V. The results have shown that the dissimilar joints exhibit improved performance when laser beam welded in the T6 condition. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Teil II: Widerstand gegen Ermuedungsrissausbreitung und Bruch Die Untersuchungen an der laserstrahlgeschweissten Mischverbindung aus AA6056 und Ti6Al4V wurden fortgesetzt. Fuer die Ermuedungsrissausbreitungs

  13. Laser alloying of Al with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-11-01

    Full Text Available Laser alloying of aluminium AA1200 was performed with a 4.4kW Rofin Sinar Nd:YAG laser to improve the surface hardness. Alloying was carried out by depositing Ni, Ti and SiC powders of different weight ratios on the aluminium substrate. The aim...

  14. Laser Welding Characterization of Kovar and Stainless Steel Alloys as Suitable Materials for Components of Photonic Devices Packaging

    International Nuclear Information System (INIS)

    Fadhali, M. M. A.; Zainal, Saktioto J.; Munajat, Y.; Jalil, A.; Rahman, R.

    2010-01-01

    The weldability of Kovar and stainless steel alloys by Nd:YAG laser beam is studied through changing of some laser beam parameters. It has been found that there is a suitable interaction of the pulsed laser beam of low power laser pulse with both the two alloys. The change of thermophysical properties with absorbed energy from the laser pulse is discussed in this paper which reports the suitability of both Kovar and stainless steel 304 as the base materials for photonic devices packaging. We used laser weld system (LW4000S from Newport) which employs Nd:YAG laser system with two simultaneous beams output for packaging 980 nm high power laser module. Results of changing both laser spot weld width and penetration depth with changing both the pulse peak power density, pulse energy and pulse duration show that there are good linear relationships between laser pulse energy or peak power density and pulse duration with laser spot weld dimensions( both laser spot weld width and penetration depth). Therefore we concluded that there should be an optimization for both the pulse peak power and pulse duration to give a suitable aspect ratio (laser spot width to penetration depth) for achieving the desired welds with suitable penetration depth and small spot width. This is to reduce the heat affected zone (HAZ) which affects the sensitive optical components. An optimum value of the power density in the order of 10 5 w/cm 2 found to be suitable to induce melting in the welded joints without vaporization. The desired ratio can also be optimized by changing the focus position on the target material as illustrated from our measurements. A theoretical model is developed to simulate the temperature distribution during the laser pulse heating and predict the penetration depth inside the material. Samples have been investigated using SEM with EDS. The metallographic measurements on the weld spot show a suitable weld yield with reasonable weld width to depth ratio.

  15. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  16. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Na; Li, Yajiang; Wang, Juan [Shandong Univ., Jinan (CN). Key Lab. for Liquid - Solid Structural Evolution and Processing of Materials (Ministry of Education)

    2012-06-15

    High nickel austenitic alloy, 6 mm thick, and Cr18-Ni8 stainless steel with a thickness of 0.6 mm were joined by pulsed current tungsten inert gas arc welding without filler metal in this work. Metallographic examination, microhardness measurement and electron microprobe analysis were used to reveal microstructural characteristics in the joint. The results indicated that the weld metal consisted of {gamma}-austenite, {delta}-ferrite and carbides without the appearance of martensite. There were dendrite crystals at the edge of the weld metal near the high nickel austenitic alloy and isometric crystals in the center of the weld metal. The microhardness of the weld metal was the highest due to the existence of carbides and its finer structure. Graphite flakes were still embedded in the austenite matrix of the heat-affected zone without the formation of martensite. (orig.)

  17. Phase constituents and microstructure of laser cladding Al{sub 2}O{sub 3}/Ti{sub 3}Al reinforced ceramic layer on titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong, E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Lin Zhaoqing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM - Department of Physics, Siena University, Siena 53100 (Italy)

    2011-04-07

    Research highlights: > In this study, Fe{sub 3}Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. > Laser cladding of Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can increase wear resistance of substrate. > In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of Ti{sub 3}Al and B. > This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser-cladded coating. - Abstract: Laser cladding of the Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of amount of Ti{sub 3}Al and B. This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser cladded coating, it was found that with addition of Al{sub 2}O{sub 3}, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  18. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of γ-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation γ-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed

  19. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  20. Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Shi Shihong; Guo Jian; Fu Geyan; Wang Mingdi

    2009-01-01

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF 2 in the preparation of precursor NiCr-Cr 3 C 2 -CaF 2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al 4 C 3 carbides reinforcement as well as fine isolated spherical CaF 2 solid lubrication particles uniformly dispersed in the NiCrAlTi (γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF 2 and the increasing of it's wettability with the NiCrAlTi (γ) matrix during the laser cladding process

  1. Characterization of an Additive Manufactured TiAl Alloy—Steel Joint Produced by Electron Beam Welding

    Directory of Open Access Journals (Sweden)

    Gloria Basile

    2018-01-01

    Full Text Available In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at % alloy part was produced by Electron Beam Melting (EBM. This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti3Al followed by Al3NiTi2 and AlNi2Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  2. Microstructure and Corrosion Behavior of Laser Synthesized Cobalt Based Powder on Ti-6Al-4V

    Science.gov (United States)

    Adesina, O. S.; Popoola, A. P. I.; Pityana, S. L.; Oloruntoba, D. T.

    2018-05-01

    The corrosion behavior of titanium alloys when used for various dynamic offshore components has been a major concern of titanium drilling risers in deepwater energy extraction. A way of achieving specified requirement is the development of coatings suitable to protect the base material against corrosion. In this work, laser cladding technique which is known as a leading edge due to its distinctive properties and outcomes was used in synthesizing Co-based powder on titanium alloy. The processing parameters used were laser power of 900W; scan speed of 0.6 to 1.2 m/min; powderfeedrate1.0g/min;beamspotsize3mm;gasflowrate1.2L/min.The effects of cobalt addition and laser parameters on corrosion behavior of laser clad Ti6AL4V coating in 0.5M sulfuric medium were investigated using linear potentiodynamic polarization. The changes in microstructure and corrosion behavior were analyzed using scanning electron microscopy (SEM) while the X –ray diffraction (XRD) indicates the intermetallics in the coatings. Results showed that the coatings displayed good metallurgical bonding with dendritic formations between the coatings and the substrate. The anodic current density increased with lower scan speed. However, the corrosion current densities of laser-clad samples were lower than Ti6Al4V alloy.

  3. Numerical Simulations on the Laser Spot Welding of Zirconium Alloy Endplate for Nuclear Fuel Bundle Assembly

    Science.gov (United States)

    Satyanarayana, G.; Narayana, K. L.; Boggarapu, Nageswara Rao

    2018-03-01

    In the nuclear industry, a critical welding process is joining of an end plate to a fuel rod to form a fuel bundle. Literature on zirconium welding in such a critical operation is limited. A CFD model is developed and performed for the three-dimensional non-linear thermo-fluid analysis incorporating buoyancy and Marnangoni stress and specifying temperature dependent properties to predict weld geometry and temperature field in and around the melt pool of laser spot during welding of a zirconium alloy E110 endplate with a fuel rod. Using this method, it is possible to estimate the weld pool dimensions for the specified laser power and laser-on-time. The temperature profiles will estimate the HAZ and microstructure. The adequacy of generic nature of the model is validated with existing experimental data.

  4. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  5. Strength, ductility, and ductile-brittle transition temperature for MFR candidate vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Lee, R.H.; Smith, D.L.

    1988-01-01

    The dependence of the yield strength, tensile strength, elongation, and reduction in area on temperature for the V-15Ti-7.5Cr, V-20Ti, V-15Cr-5Ti, V-12Cr-5Ti, V-10Cr-5Ti, and V-3Ti-1Si alloys was determined from tensile tests at temperatures ranging from 25 to 700 0 C. The strength of the alloys increased with an increase of the combined Cr and Ti concentration. The total elongation for the alloys ranged between 20 and 38%. The reduction in area ranged from 30 to 90%. The DBTT, which was determined from the temperature dependence of the reduction in area, was less than 25 0 C for the V-15Ti-7.5Cr, V-20Ti, and V-3Ti-1Si alloys. The DBTT for the V-10Cr-5Ti, V-12Cr-5Ti, and V-15Cr-5Ti alloys was also less than 25 0 C if these alloys were annealed to reduce the hydrogen concentration prior to the tensile test. If these latter alloys were not annealed prior to the tensile test, the DBTT ranged from 40 to 90 0 C and the DBTT increased with an increase of the Cr concentration. A Cr/Ti concentration ratio of 0-0.5 in these alloys was found to cause the alloys to be less susceptible to hydrogen embrittlement. (orig.)

  6. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Lai, Pang-Hsin

    2016-03-21

    Selective laser melting (SLM) is a versatile additive manufacturing process for fabricating solid or porous metallic materials with complicated three-dimensional shapes. SLM Ti alloys, particularly Ti-6Al-4V, and other alloys have been manufactured and analyzed in numerous studies. However, the high anisotropy of the microstructures and inconsistent mechanical properties of SLM materials have been extensively reported, and these disadvantages could prohibit its widespread use. To clarify how to alleviate the anisotropic behaviors of SLM materials, the main objective of this study was to evaluate the influences of hot isostatic pressing (HIP) on the microstructure, densification, bending strength, impact toughness, and fracture behavior of the as-built Ti-6Al-4V alloy. The results showed that the vertical and horizontal building directions obviously affect the bending and impact properties of as-built alloys. The transverse rupture strength (TRS) and impact energy of the horizontally-built alloy were respectively found to be 48% and 100% higher than those of the vertically-built one. In the vertically-built alloy, disc-shaped building defects, identified by X-ray computed tomography (CT) and microscopy, obviously reduce the effective load-bearing cross-section and deteriorate the bending and impact performances. After HIP at 1000 °C/150 MPa, the α′-martensite structure in the as-built alloy is transformed into an α+β lamellar one, and the disc-shaped building defects are evidently eliminated. As a result, the impact energies of as-built vertical and horizontal specimens are improved by 28 J (560%) and 19 J (190%), respectively, and the TRS of the as-built vertical alloy is raised by 550 MPa (37%). Consequently, the discrepancies in TRS and impact energy between the HIPed vertical and horizontal specimens are merely 3% and 14%, respectively, and the anisotropic behaviors of the SLM Ti-6Al-4V alloy are thus substantially lessened.

  7. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Wu, Ming-Wei; Lai, Pang-Hsin

    2016-01-01

    Selective laser melting (SLM) is a versatile additive manufacturing process for fabricating solid or porous metallic materials with complicated three-dimensional shapes. SLM Ti alloys, particularly Ti-6Al-4V, and other alloys have been manufactured and analyzed in numerous studies. However, the high anisotropy of the microstructures and inconsistent mechanical properties of SLM materials have been extensively reported, and these disadvantages could prohibit its widespread use. To clarify how to alleviate the anisotropic behaviors of SLM materials, the main objective of this study was to evaluate the influences of hot isostatic pressing (HIP) on the microstructure, densification, bending strength, impact toughness, and fracture behavior of the as-built Ti-6Al-4V alloy. The results showed that the vertical and horizontal building directions obviously affect the bending and impact properties of as-built alloys. The transverse rupture strength (TRS) and impact energy of the horizontally-built alloy were respectively found to be 48% and 100% higher than those of the vertically-built one. In the vertically-built alloy, disc-shaped building defects, identified by X-ray computed tomography (CT) and microscopy, obviously reduce the effective load-bearing cross-section and deteriorate the bending and impact performances. After HIP at 1000 °C/150 MPa, the α′-martensite structure in the as-built alloy is transformed into an α+β lamellar one, and the disc-shaped building defects are evidently eliminated. As a result, the impact energies of as-built vertical and horizontal specimens are improved by 28 J (560%) and 19 J (190%), respectively, and the TRS of the as-built vertical alloy is raised by 550 MPa (37%). Consequently, the discrepancies in TRS and impact energy between the HIPed vertical and horizontal specimens are merely 3% and 14%, respectively, and the anisotropic behaviors of the SLM Ti-6Al-4V alloy are thus substantially lessened.

  8. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    International Nuclear Information System (INIS)

    Wang, Hong-bin; Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao; Lu, Xiong-gang; Li, Chong-he

    2016-01-01

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr 2 Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  9. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-bin [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China); Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xiong-gang; Li, Chong-he [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China)

    2016-08-30

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr{sub 2}Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  10. First-principles study of L10 Ti-Al and V-Al alloys

    International Nuclear Information System (INIS)

    Chubb, S.R.; Papaconstantopoulos, D.A.; Klein, B.M.

    1988-01-01

    As a first step towards understanding the reduced embrittlement of L1 0 Ti-Al alloys which accompanies the introduction of small concentrations of V, we have determined from first principles, using full-potential linearized--augmented-plane-wave calculations, the equilibrium values of the structural parameters and the associated electronic structure for the stoichiometric (L1 0 ) Ti-Al (tetragonal) compound. Our calculated values of c/a and a are in good agreement with experiment. Using the same method of calculation, we have also studied the electronic structure associated with the (hypothetical) L1 0 V-Al alloy that would form when V is substituted for Ti. We find that (1) the electronic structures of these V-Al alloys are relatively insensitive to variations of c/a and a; (2) near the Ti-Al equilibrium geometry, the electronic structures of the V-Al and Ti-Al alloys are very similar; and (3) that a rigid-band model involving substitution of V for Ti can be used to gain a qualitative understanding of the reduction in c/a which accompanies the introduction of small concentrations of V. We relate the reduction in c/a to important changes in the bonding that accompany the occupation of bands immediately above the Fermi level of the stoichiometric Ti-Al compound

  11. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    International Nuclear Information System (INIS)

    Moon, I.H.; Lee, J.H.; Lee, K.M.; Kim, Y.D.

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al 3 Ti phase, where the formation of the fine Al 3 Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al 3 Ti as well as Al 4 C 3 and Al 2 O 3 , of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature

  12. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    Science.gov (United States)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-03-01

    The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks' solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  13. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy

    Science.gov (United States)

    Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine

    2017-09-01

    This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.

  14. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate

    Science.gov (United States)

    Nabhani, Mohammad; Razavi, Reza Shoja; Barekat, Masoud

    2018-03-01

    In this article, Ti-6Al-4V powder alloy was directly deposited on Ti-6Al-4V substrate using laser cladding process. In this process, some key parameters such as laser power (P), laser scanning rate (V) and powder feeding rate (F) play important roles. Using linear regression analysis, this paper develops the empirical-statistical relation between these key parameters and geometrical characteristics of single clad tracks (i.e. clad height, clad width, penetration depth, wetting angle, and dilution) as a combined parameter (PαVβFγ). The results indicated that the clad width linearly depended on PV-1/3 and powder feeding rate had no effect on it. The dilution controlled by a combined parameter as VF-1/2 and laser power was a dispensable factor. However, laser power was the dominant factor for the clad height, penetration depth, and wetting angle so that they were proportional to PV-1F1/4, PVF-1/8, and P3/4V-1F-1/4, respectively. Based on the results of correlation coefficient (R > 0.9) and analysis of residuals, it was confirmed that these empirical-statistical relations were in good agreement with the measured values of single clad tracks. Finally, these relations led to the design of a processing map that can predict the geometrical characteristics of the single clad tracks based on the key parameters.

  15. Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y_2O_3 by laser cladding on Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Weng, Fei; Yu, Huijun; Chen, Chuanzhong; Liu, Jianli; Zhao, Longjie

    2015-01-01

    In this study, TiN reinforced composite coatings were fabricated on Ti–6Al–4V substrate by laser cladding with Co42 self-fluxing alloy, TiN and Y_2O_3 mixed powders. Microstructures and wear resistance of the cladding coatings with and without Y_2O_3 addition were investigated comparatively. Results showed that the coatings were mainly comprised of γ-Co/Ni, TiN, CoTi, CoTi_2, NiTi, TiC, Cr_7C_3, TiB, Ti_5Si_3 and TiC_0_._3N_0_._7 phases. The coatings showed metallurgical bonding free of pores and cracks with the substrate. Compared with the Ti–6Al–4V substrate, the microhardness and wear resistance of the coatings was enhanced by 3–4 times and 9.5–11.9 times, respectively. With 1.0 wt.% Y_2O_3 addition, the microstructure of the coating was refined significantly, and the microhardness and dry sliding wear resistance were enhanced further. The effects of Y_2O_3 were attributed to the residual Y_2O_3 and decomposed Y atoms. - Graphical abstract: The diagram illustration for the action mechanism of Y_2O_3: (a) dissolution of Y_2O_3 and TiN, (b) re-formation of TiN and in situ formation of TiC, (c) growth of TiN, TiC and the distribution of Y atoms. - Highlights: • Coatings showing metallurgical bonding with the substrate were fabricated. • The effect of Y_2O_3 on the refinement of the microstructure is notable. • A kind of Y_2O_3 centered core–shell structure was picked out in the coating. • Microhardness and wear resistance of the coatings was enhanced significantly.

  16. Amorphous alloys in the U-Cr-V system

    International Nuclear Information System (INIS)

    Ray, R.; Musso, E.

    1979-01-01

    Amorphous uranium-chromium-vanadium alloys and a method of producing them are described. The uranium content of the alloys may vary between 60 and 80 atom percent, and chromium and vanadium between 0 and 40 atom percent, most particularly between 20 and 40 atom percent. A maximum of 10 atom percent of Cr or V may be replaced by other alloying elements, including metalloids and at least one transtion metal element. (LL)

  17. Alloying element effect on the mechanical properties of high-strength stainless steels and welds

    International Nuclear Information System (INIS)

    Pustovit, A.I.; Yushchenko, K.A.; Fortunatova, N.N.

    1977-01-01

    Experimental steels containing 11-17% Cr, 3-13% Ni, 0-2% Mo, 0-1% Ti, 1-2% Cu, 0-4% Co, 0-1% He, < 0.03% C and their welded joints have been studied. The ''MRA-1'' program was used to obtain mathematical description (in the form of regression equations) of the effect of alloying elements on strength and plasticity of the steels and the welded joints at 20...-196 deg C. The dependences obtained make it possible to predict the properties of the steels and the joints in a satisfactory agreement with their actual behaviour at 20...-196 deg C

  18. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  19. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    International Nuclear Information System (INIS)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P.; Yang, Ke

    2016-01-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  20. Laser melt injection of hard ceramic particles into Al and Ti alloys - processing, microstructure and mechanical behaviour

    NARCIS (Netherlands)

    Ocelik, V.; Nijman, S.; van Ingen, R.; Oliveira, U.; de Hosson, J.T.M.; Brebbia, CA; DeHosson, JTM; Nishida, SI

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6A14V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG. The formation of a relatively thick aluminium oxide layer on

  1. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  2. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    Science.gov (United States)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  3. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  4. Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys

    International Nuclear Information System (INIS)

    Zhang, K B; Fu, Z Y; Zhang, J Y; Wang, W M; Lee, S W; Niihara, K

    2011-01-01

    Novel CoCrFeNiTiAl x (x:molar ratio, other elements are equimolar) high-entropy alloys were prepared by vacuum arc melting and these alloys were subsequently annealed at 1000 deg. C for 2 h. The annealing effects on structure and mechanical properties were investigated. Compared with the as-cast alloys, there are many complex intermetallic phases precipitated from the solid solution matrix in the as-annealed alloys with Al content lower than Al 1.0 . Only simple BCC solid solution structure appears in the as-annealed Al 1.5 and Al 2.0 alloys. This kind of alloys exhibit high resistance to anneal softening. Most as-annealed alloys possess even higher Visker hardness than the as-cast ones. The as-annealed Al 0.5 alloys shows the highest compressive strength while the Al 0 alloy exhibits the best ductility, which is about 2.6 GPa and 13%, respectively. The CoCrFeNiTiAl x high-entropy alloys possess integrated high temperature mechanical property as well.

  5. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2009-11-01

    In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.

  6. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Cupid, Damian M. [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Seifert, Hans J. [Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Ebrahimi, Fereshteh, E-mail: febra@mse.ufl.edu [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States)

    2010-05-15

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  7. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Michael [University of Florida, Gainesville; Goyel, Sonalika [University of Florida, Gainesville; Rios, Orlando [ORNL; Cupid, Damian M [Freiberg University of Mining and Technology; Seifert, Hans J [Freiberg University of Mining and Technology; Ebrahimi, Fereshteh [University of Florida, Gainesville

    2010-01-01

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 C to 1600 C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  8. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    International Nuclear Information System (INIS)

    Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando; Cupid, Damian M.; Seifert, Hans J.; Ebrahimi, Fereshteh

    2010-01-01

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single β-phase and transformed to γ + σ phases upon slow cooling. The addition of Cr did not affect the β → γ transformation temperature upon slow cooling. In contrast, the temperature, at which the σ-phase formed, was reduced noticeably. Upon heating, the temperature at which the β-phase evolves from the γ + σ microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the γ-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the β-phase to room temperature. These results are explained by the partitioning of Cr into the β-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  9. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    Science.gov (United States)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  10. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  11. Adhesion measurement of highly-ordered TiO2 nanotubes on Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Masoud Sarraf

    2017-12-01

    Full Text Available Self-assembled nanotubular arrays on Ti alloys could be used for more effective implantable devices in various medical approaches. In the present work, the adhesion of TiO2 nanotubes (TiO2 NTs on Ti-6Al-4V (Ti64 was investigated by laser spallation and scratch test techniques. At first, electrochemical anodization was performed in an ammonium fluoride solution dissolved in a 90:10 ethane-1,2-diol (ethylene glycol and water solvent mixture. This process was performed at room temperature (23 °C at a steady potential of 60 V for 1 h. Next, the TiO2 nanotubes layer was heat-treated to improve the adhesion of the coating. The formation of selforganized TiO2 nanotubes as well as the microstructural evolution, are strongly dependent on the processing parameters and subsequent annealing. From microscopic analysis, highly oriented arrays of TiO2 nanotubes were grown by thermal treatment for 90 min at 500 °C. Further heat treatment above 500 °C led to the detachment of the nanotubes and the complete destruction of the nanotubes occurred at temperature above 700 °C. Scratch test analysis over a constant scratch length (1000 µm indicated that the failure point was shifted from 247.4 to 557.9 µm while the adhesion strength was increased from ∼862 to ∼1814 mN after annealing at 500 °C. The adhesion measurement determined by laser spallation technique provided an intrinsic adhesion strength of 51.4 MPa for the TiO2 nanotubes on the Ti64 substrate.

  12. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy

    Science.gov (United States)

    Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.

    2017-12-01

    The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.

  13. The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements

    Science.gov (United States)

    Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe

    2014-04-01

    The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.

  14. XPS study on the electronic structure of hydrided Ti-V, Ti-Nb and Ti-Mo alloys

    International Nuclear Information System (INIS)

    Tanaka, Kazuhide; Aoki, Hiromasa

    1989-01-01

    Effects of hydrogenation on the core and valence electronic structures of β(bcc)-stabilized Ti-25at%V, Ti-50at%Nb and Ti-20at%Mo alloys are studied with XPS technique using monochromatized Al K α radiation. Small but uniform binding-energy shifts are observed upon hydrogenation for all the core spectra measured. Their valence-band spectra are significantly distorted, providing an evidence of the formation of metal-hydrogen bonding bands in these Ti alloys. Interrelations between the core binding-energy shifts and the valence-band distortion are discussed. (orig.)

  15. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some σ phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs

  16. Tribological coating of titanium alloys by laser processing

    Science.gov (United States)

    Pang, Wang

    Titanium-based alloys have been used for aerospace materials for many years. Recently, these alloys are now being increasingly considered for automotive, industrial and consumer applications. Their excellent creep resistance, corrosion resistance and relative higher specific strength ratio are attractive for many applications. However, the main obstacle for the wide adoption of Ti alloys in various industries is their poor tribological properties. In slide wear, Ti deforms and adhesive wear readily occurs. Their poor tribological properties are mainly due to low hardness and absolute values of tensile and shear strength. Different surface modification techniques have been studied in order to improve the tribological characteristics of Ti alloys, i.e. PVD, nitrding, carburizing, boriding, plating etc. Coatings produced by these techniques have their own limitations such as thermal distortion and grain growth. A different approach is to introduce hard particles in the Ti alloy matrix to form a MMC coating, which has tailor-made hardness and wear resistance properties. Laser cladding or laser alloying techniques facilitate the fabrication of surface MMC on Ti alloys without thermal distortion to the substrate. In this project, the fabrication of hard and wear resistant layers of metal matrix composite on titanium alloys substrate by laser surface alloying was investigated. Powder mixtures of Mo and WC were used to form the MMC layer. By optimizing the processing parameters and pre-placed powder mixture compositions, surface MMC of different properties have been successfully fabricated on CP-Ti and Ti6A14V respectively. The structure and characteristics of the MMC surface were investigated by metallography, SEM, XRD, and E-DAX. It was found that the hardness of the laser alloyed Mo/WC MMC surface was 300% higher than that of the CP-Ti substrate Excellent metallurgical bonding with the MMC layer of the substrate has been achieved. The relative kinetic frictional tests

  17. Laser melt injection of hard ceramic particles into Al and Ti alloys - processing, microstructure and mechanical behavior

    NARCIS (Netherlands)

    Ocelik, V; Nijman, S.; van Ingen, R; Oliveira, U; De Hosson, J Th M

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied exptl. and theor. by FEM calcns. The laser employed is a high power Nd:YAG. The formation of a relatively thick aluminum oxide layer on the Al melt surface

  18. Amorphization of C-implanted Fe(Cr) alloys

    International Nuclear Information System (INIS)

    Knapp, J.A.; Follstaedt, D.M.; Sorensen, N.R.; Pope, L.E.

    1991-01-01

    The amorphous phase formed by implanting C into Fe alloyed with Cr, which is a prototype for the amorphous phase formed by implanting C into stainless steels, is compared to that formed by implanting C and Ti into Fe and steels. The composition range of the phase has been examined; higher Cr and C concentrations are required than needed with Ti and C. The friction and wear benefits obtained by implanting stainless steels with C only do not persist for the long durations and high wear loads found with Ti and C. However, the amorphous Fe-Cr-C alloys exhibit good aqueous corrosion resistance. (orig.)

  19. High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy

    International Nuclear Information System (INIS)

    Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.

    1993-01-01

    The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control

  20. Improvement of corrosion resistance of vanadium alloys in high-temperature pressurized water

    International Nuclear Information System (INIS)

    Fujiwara, Mitsuhiro; Sakamoto, Toshiya; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori; Kaiuchi, Kazuo; Furuya, Takemi

    2005-01-01

    Corrosion tests in pressurized and vaporized water were conducted for V-based high Cr and Ti alloys and V-4Cr-4Ti type alloys containing minor elements such as Si, Al and Y. Weight losses were observed for every alloy after corrosion tests in pressurized water. It was apparent that addition of Cr effectively reduced the weight change in pressurized water. The weight loss of V-4Cr-4Ti type alloys in corrosion tests in vaporized water was also reduced as Cr content increased. The V-20Cr-4Ti alloy had a slight weight gain, almost same as that of SUS316, which had the best corrosion properties in the tested alloys. The elongation of alloys with in excess of 10% Cr was reduced as Cr content increased. The elongations of the V-12Cr-4Ti and the V-15Cr-4Ti alloys were significantly reduced by corrosion and cleavage fracture was observed reflecting hydrogen embrittlement. The reduced elongations of the alloys of the alloys were recovered to the same level of as annealed conditions after hydrogen degassing. After corrosion, the V-15Cr-4Ti-0.5Y alloy still kept enough elongation, suggesting that the addition of Y is effective to reduce the hydrogen embrittlement. (author)

  1. Strength, ductility, and ductile-brittle transition temperature for MFR [magnetic fusion reactor] candidate vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Lee, R.H.; Smith, D.L.; Peterson, J.R.

    1987-09-01

    The dependence of the yield strength, tensile strength, elongation, and reduction in area on temperature for the V-15Ti-7.5Cr, V-20Ti, V-15Cr-5Ti, V-12Cr-5Ti, V-10Cr-5Ti, and V-3Ti-1Si alloys was determined from tensile tests at temperatures ranging from 25 to 700 0 C. The strength of the alloys increased with an increase of the combined Cr and Ti concentration. The total elongation for the alloys ranged between 20% and 38%. The reduction in area ranged from 30% to 90%. The DBTT, which was determined from the temperature dependence of the reduction in area, was less than 25 0 C for the V-15Ti-7.5Cr, V-20Ti, and V-3Ti-1Si alloys. The DBTT for the V-10Cr-5Ti, V-12Cr-5Ti, and V-15Cr-5Ti alloys was also less than 25 0 C if these alloys were annealed to reduce the hydrogen concentration prior to the tensile test. If these latter alloys were not annealed prior to the tensile test, the DBTT ranged from 40 0 C to 90 0 C and the DBTT increased with an increase of the Cr concentration. A Cr/Ti concentration ratio of 0 to 0.5 in these alloys was found to cause the alloys to be less susceptible to hydrogen embrittlement. 14 refs., 4 figs., 3 tabs

  2. Characterization of Friction Welded Titanium Alloy and Stainless Steel with a Novel Interlayer Geometry

    Science.gov (United States)

    Kumar, R.; Balasubramanian, M.

    The main purpose of the current research work is to identify and investigate a novel method of holding an intermediate metal and to evaluate its metallurgical and mechanical properties. Copper was used as an interlayer material for the welding of this dissimilar Ti-6Al-4V (Ti alloy) and 304L stainless steel (SS). The study shows that the input parameters and surface geometry played a very significant role in producing a good quality joints with minimum heat affected zone and metal loss. A sound weld was achieved between Ti-6Al-4V and SS304L, on the basis of the earlier experiments conducted by the authors in their laboratory, by using copper rod as intermediate metal. Box-Behnken method was used for performing a minimum number of experiments for the study. In the present study, Ti-6Al-4V alloy and SS304L were joined by a novel method of holding the interlayer and new surface geometry for the interlayer. Initially, the drop test was used for determining the quality of the fabricated joint and, subsequently, non-destructive techniques like radiography and C-scan were used. Further optical micrograph, SEM-EDS, hardness and tensile test were done for understanding the performance of the joint.

  3. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2008-10-01

    In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.

  4. Heat treatments of TiAl-Cr-V casting alloy

    International Nuclear Information System (INIS)

    Pu, Z.J.; Ma, J.L.; Wu, K.H.

    1995-01-01

    The need to investigate various kinds of fine microstructure based on casting TiAl alloy led to development of a multiple-stage heat treatment procedure. The first stage required the transformation of as-cast lamellar structure into near-gamma structure, followed by required transformation of near-gamma structure into various kinds of fine microstructure. The as-cast lamellar structure can be changed into near-gamma structure by annealing the alloy at 1,200 C for at least 50 hours. During the annealing process, two mechanisms are involved in transforming the lamellar structure into a near-gamma structure. One is the discontinuous coarsening (DC) process, and the other is the continuous coarsening (CC) process. With the near-gamma structure as an initial structure, the alloy being heat-treated in the γ + α and in the α fields can produce various kinds of microstructure with fine grain size. These microstructure significantly differ from the microstructure produced by heat-treating the deformed lamellar structure. Results of the investigation show that careful control of the time of the heat-treatment process in the single a field can produce a fine fully lamellar structure

  5. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping

    Energy Technology Data Exchange (ETDEWEB)

    Kunce, I., E-mail: ikunce@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Polanski, M.; Karczewski, K. [Department of Advanced Materials and Technology, Military University of Technology, 2 Kaliskiego Str., 01-908 Warsaw (Poland); Plocinski, T.; Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw (Poland)

    2015-11-05

    Laser engineered net shaping (LENS) was used to produce thin-walled samples of the high-entropy alloy AlCoCrFeNi from a prealloyed powder. To determine the effect of the cooling rate during solidification on the microstructure of the alloy, different laser scanning rates were used. A microstructural study of the surfaces of the sample walls was performed using X-ray diffraction analysis and optical and scanning/transmission electron microscopy. The crystal structure of the alloy was determined to be a body-centred cubic (bcc)-derivative B2-ordered type. The microstructure of the alloy produced by LENS was dendritic. Further, it was found that with an increase in the laser scanning rate from 2.5 to 40 mm s{sup −1}, the average grain size decreased from 108.3 ± 32.4 μm to 30.6 ± 9.2 μm. The maximum cooling rate achieved during the laser cladding of the alloy was 44 × 10{sup 3} K s{sup −1}. The electron microscopy study of the alloy showed the presence of precipitates. The morphology of the disordered bcc (Fe, Cr)-rich precipitates in the ordered B2 (Al, Ni)-rich matrix changed in the dendritic and interdendritic regions from fine and spherical (with a diameter of less 100 nm) to spinodal (with the thickness being less than 100 nm). The LENS- produced AlCoCrFeNi alloy exhibited an average microhardness of approximately 543 HV0.5; this was approximately 13% higher than the hardness in the as-cast state and can be attributed to the grain refinemet in the LENS- produced alloy. Moreover, it was found that increasing the cooling rate during laser cladding increasess the microhardness of the alloy. - Highlights: • Laser-engineered net shaping is used to produce samples of AlCoCrFeNi alloy. • The alloy has a body-centred cubic (bcc)-derivative B2-ordered crystal structure. • Electron microscopy images of the alloy show the presence of precipitates. • The microhardness of the laser-clad alloy is higher than that of the as-cast alloy. • The cooling rate

  6. Residual stresses in 2 1/4Cr1Mo welds

    International Nuclear Information System (INIS)

    Fidler, R.; Jerram, K.

    1978-01-01

    Two separate investigations, initiated in an attempt to explain the large amount of residual stress scatter previously observed in the weld metal of eighteen nominally identical thick-section 2 1/4Cr1Mo butt welds, are described in this paper. The first examined the detailed surface residual stress distributions in 2 1/4Cr1Mo manual arc circumferential butt welds in 80mm and 100mm thick 1/2Cr1/2Mo1/4V steam pipe. High residual stresses were found in the regions of overlap between adjacent weld beads, with low values in virgin weld metal. The second utilised single pass manual metal arc bead-in-groove welds to investigate the effects of preheat and weld metal composition on weld metal residual stresses. In four weld metals, mild steel, 1/2Cr1/2Mo1/4V, 1Cr1/2Mo, and 2 1/4Cr1Mo, the residual stresses were very similar, becoming less tensile (or more compressive) with increase of preheat, while the residual stresses in the fifth weld metal (12Cr) were significantly different, being compressive and less affected by preheat. In both investigations the effects have been described in terms of the basic metallurgical phenomena occurring in the weld metal. (author)

  7. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub project 1 - Ex-serviced parent metal and virgin weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Weilin Zang

    2006-10-15

    Many existing power generating and process plants, where low alloy heat resistant CrMo(V) steels are extensively used for critical components, have exceeded their design lifetime of usually 100,000 hours. Assessment of residual lifetime and extension of economic life by weld repair have become increasingly important and attractive. This project aims at i) performing weld repair and determining the degree of mismatching, ii) evaluating the creep properties of weld repairs, iii) analysing creep behaviour of weld repair and providing necessary data for further reliable simulations of weld repair creep behaviour in long term service, and iv), simulating and assessing lifetime and creep damage evolution of weld repair. Weld repair using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables has been carried out in a service-exposed 10 CrMo 9 10 pipe. Creep specimens have been extracted from the service-exposed 10 CrMo 9 10 parent metal (PM), from the virgin 10 CrMo 9 10 weld metal (WM), from the virgin 13 CrMo 4 4 WM as well as from the virgin 15 Mo 3 WM. Iso-thermal uniaxial creep tests have been performed at 540 deg C in air. Pre- and post-metallography are carried out on the selected samples. FEM simulations using obtained creep data are executed. Pre-test metallography shows normal and acceptable weld repairs at given welding conditions. Creep tests demonstrate that the virgin 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 WMs have apparently longer creep lifetime than the service-exposed CrMo 9 10 PM at higher stresses than 110 MPa. Among the weld metals, the longest creep lifetime is found in 10 CrMo 9 10. Higher creep strength and lower creep strain rate in the weld metals indicate an overmatch weld. At 95 MPa, however, lifetime of 13 CrMo 4 4 WM is surprisingly short (factors which may shorten lifetime are discussed and one more test will start to verify creep strength at low stress) and tests are still running for other two weld metals. More results regarding low stress

  8. Friction Stir Welding (FSW) of Aged CuCrZr Alloy Plates

    Science.gov (United States)

    Jha, Kaushal; Kumar, Santosh; Nachiket, K.; Bhanumurthy, K.; Dey, G. K.

    2018-01-01

    Friction Stir Welding (FSW) of Cu-0.80Cr-0.10Zr (in wt pct) alloy under aged condition was performed to study the effects of process parameters on microstructure and properties of the joint. FSW was performed over a wide range of process parameters, like tool-rotation speed (from 800 to 1200 rpm) and tool-travel speed (from 40 to 100 mm/min), and the resulting thermal cycles were recorded on both sides (advancing and retreating) of the joint. The joints were characterized for their microstructure and tensile properties. The welding process resulted in a sound and defect-free weld joint, over the entire range of the process parameters used in this study. Microstructure of the stir zone showed fine and equiaxed grains, the scale of which varied with FSW process parameters. Grain size in the stir zone showed direct correlation with tool rotation and inverse correlation with tool-travel speed. Tensile strength of the weld joints was ranging from 225 to 260 MPa, which is substantially lower than that of the parent metal under aged condition ( 400 MPa), but superior to that of the parent material under annealed condition ( 220 MPa). Lower strength of the FSW joint than that of the parent material under aged condition can be attributed to dissolution of the precipitates in the stir zone and TMAZ. These results are presented and discussed in this paper.

  9. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  10. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-01-01

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni 2 (Mo,Cr) 4 (Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni 3 (Mo,Cr) 3 (Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld metal

  11. Tribological Characteristic of Titanium Alloy Surface Layers Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-06-01

    Full Text Available In order to improve the tribological properties of titanium alloy Ti6Al4V composite surface layers Ti/TiN were produced during laser surface gas nitriding by means of a novel high power direct diode laser with unique characteristics of the laser beam and a rectangular beam spot. Microstructure, surface topography and microhardness distribution across the surface layers were analyzed. Ball-on-disk tests were performed to evaluate and compare the wear and friction characteristics of surface layers nitrided at different process parameters, base metal of titanium alloy Ti6Al4V and also the commercially pure titanium. Results showed that under dry sliding condition the commercially pure titanium samples have the highest coefficient of friction about 0.45, compared to 0.36 of titanium alloy Ti6Al4V and 0.1-0.13 in a case of the laser gas nitrided surface layers. The volume loss of Ti6Al4V samples under such conditions is twice lower than in a case of pure titanium. On the other hand the composite surface layer characterized by the highest wear resistance showed almost 21 times lower volume loss during the ball-on-disk test, compared to Ti6Al4V samples.

  12. A STUDY ON MICROSTRUCTURE CHARACTERISTICS OF IN SITU FORMED TiC REINFORCED COMPOSITE COATINGS

    OpenAIRE

    PENG LIU; WEI GUO; HUI LUO

    2012-01-01

    In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrat...

  13. Characterization of laser deposited Ti6Al4V/TiC composite powders on a Ti6Al4V substrate

    CSIR Research Space (South Africa)

    Mahamood, RM

    2014-01-01

    Full Text Available This paper reports the material characterization of Ti6Al4V/TiC composite produced by laser metal deposition. The Ti6Al4V/TiC composites were deposited with a composition ratio of 50 wt.% Ti64l4V and 50 wt.% TiC. The depositions were achieved...

  14. Characterization of the dissimilar welding - austenitic stainless steel with filler metal of the nickel alloy

    International Nuclear Information System (INIS)

    Soares, Bruno Amorim; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa

    2007-01-01

    In elevated temperature environments, austenitic stainless steel and nickel alloy has a superior corrosion resistance due to its high Cr content. Consequently, this alloys is widely used in nuclear reactors components and others plants of energy generation that burn fossil fuel or gas, chemical and petrochemical industries. The object of the present work was to research the welding of AISI 304 austenitic stainless steel using the nickel alloy filler metals, Inconel 625. Gas tungsten arc welding, mechanical and metallographic tests, and compositional analysis of the joint were used. A fundamental investigation was undertaken to characterize fusion boundary microstructure and to better understand the nature and character of boundaries that are associated with cracking in dissimilar welds. The results indicate that the microstructure of the fusion zone has a dendritic structure, inclusions, and precipitated phases containing Ti and Nb are present in the inter-dendritic region. In some parts near to the fusion line it can be seen a band in the weld, probably a eutectic phase with lower melting point than the AISI 304, were the cracking may be beginning by stress corrosion. (author)

  15. Fusion zone microstructure of laser beam welded directionally solidified Ni3Al-base alloy IC6

    International Nuclear Information System (INIS)

    Ding, R.G.; Ojo, O.A.; Chaturvedi, M.C.

    2006-01-01

    The fusion zone microstructure of laser welded alloy IC6 was examined. Extensive weld-metal cracking was observed to be closely associated with non-equilibrium eutectic-type microconstituents identified as consisting of γ, γ' and NiMo (Y) phases. Their formation has been related to modification of primary solidification path due to reduced solutal microsegregation

  16. Experimental characterization of behavior laws for titanium alloys: application to Ti5553

    OpenAIRE

    Wagner , Vincent; Baili , Maher; Dessein , Gilles; Lallement , Daniel

    2010-01-01

    International audience; The aim of this paper is to study the machinability of a new titanium alloy: Ti-5AL-5Mo-5V-3CR used for the production of new landing gear. First, the physical and mechanical properties of this material will be presented. Second, we show the relationship between material properties and machinability. Third, the Ti5553 will be compared to Ti64. Unless Ti64 is α+β alloy group and Ti5553 is a metastable, we have chosen to compare these two materials. Ti64 is the most popu...

  17. Comparative study on laser welding and TIG welding of semi-solid high pressure die cast A356 aluminium alloy

    CSIR Research Space (South Africa)

    Govender, G

    2007-07-01

    Full Text Available components. The low porosity levels in SSM high pressure die castings (HPDC) improves the weldability of these components. The aim of the current research was to perform a comparative study of laser and TIG welding of SSM HPDC aluminium alloy A356. SSM...

  18. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  19. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting.

    Science.gov (United States)

    Antanasova, Maja; Kocjan, Andraž; Kovač, Janez; Žužek, Borut; Jevnikar, Peter

    2018-04-01

    The aim has been to determine the effect of thermo-mechanical cycling on shear-bond-strength (SBS) of dental porcelain to Co-Cr and Ti-based alloys fabricated by casting, computer-numerical-controlled milling, and selective-laser-melting (SLM). Seven groups (n=22/group) of metal cylinders were fabricated by casting (Co-Cr and commercially pure-cpTi), milling (Co-Cr, cpTi, Ti-6Al-4V) or by SLM (Co-Cr and Ti-6Al-4V) and abraded with airborne-particles. The average surface roughness (R a ) was determined for each group. Dental porcelain was applied and each metal-ceramic combination was divided into two subgroups - stored in deionized water (24-h, 37°C), or subjected to both thermal (6000-cycles, between 5 and 60°C) and mechanical cycling (10 5 -cycles, 60N-load). SBS test-values and failure modes were recorded. Metal-ceramic interfaces were analyzed with a focused-ion-beam/scanning-electron-microscope (FIB/SEM) and energy-dispersive-spectroscopy (EDS). The elastic properties of the respective metal and ceramic materials were evaluated by instrumented-indentation-testing. The oxide thickness on intact Ti-based substrates was measured with Auger-electron-spectroscopy (AES). Data were analyzed using ANOVA, Tukey's HSD and t-tests (α=0.05). The SBS-means differed according to the metal-ceramic combination (p<0.0005) and to the fatigue conditions (p<0.0005). The failure modes and interface analyses suggest better porcelain adherence to Co-Cr than to Ti-based alloys. Values of R a were dependent on the metal substrate (p<0.0005). Ti-based substrates were not covered with thick oxide layers following digital fabrication. Ti-based alloys are more susceptible than Co-Cr to reduction of porcelain bond strength following thermo-mechanical cycling. The porcelain bond strength to Ti-based alloys is affected by the applied metal processing technology. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  20. A review on the effect of welding on the corrosion of magnesium alloys

    Science.gov (United States)

    Mohamed, N. S.; Alias, J.

    2017-10-01

    Welding is an important joining technique for lightweight alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. The applications of lightweight alloys particularly magnesium alloys increased rapidly due to their beneficial properties such as low density, high strength-to-mass ratio, good dimensional stability, electromagnetic shielding and good recyclability. The effect of welding on the corrosion of magnesium alloys are reviewed in this paper, which closely related to the developed microstructure by the welding process. The paper focuses particularly on friction stir and laser welding. The basic principles of friction stir and laser welding are discussed, to present the likelihood of defects which significantly affect the corrosion of magnesium alloy. The finding in corrosion demonstrated the morphology of corrosion occurrence on each welded region, and observation on the potential and current values are also included.

  1. 钛合金表面激光熔覆NiCrBSi(Ti)-TiC涂层%Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy

    Institute of Scientific and Technical Information of China (English)

    孙荣禄; 郭立新; 董尚利; 杨德庄

    2001-01-01

    在TC4合金表面进行了激光熔覆NiCrBSi-TiC,Ti-TiC金属陶瓷复合涂层的试验,对涂层的组织和显微硬度进行了分析和测试.结果表明,NiCrBSi-TiC涂层的组织是在初晶γ-Ni和γ-Ni,Ni3B,M23(CB)6,CrB多元共晶的基底上均匀地分布着TiC颗粒,在激光熔覆过程中TiC颗粒只是边缘发生了溶解或熔化;在Ti-TiC涂层中,TiC颗粒全部溶解或熔化,冷却时以枝晶形式重新析出.NiCrBSi-TiC涂层的显微硬度(HV900~1100)明显高于Ti-TiC的涂层的显微硬度(HV500~700).

  2. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  3. Microstructure and mechanical properties of cast Ti-47Al-2Cr-2Nb alloy melted in various crucibles

    Directory of Open Access Journals (Sweden)

    Wang Ligang

    2012-02-01

    Full Text Available The main factors limiting the mass production of TiAl-based components are the high reactivity of TiAl-based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y2O3 ceramic crucibles and water-cooled copper crucible were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAl alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.

  4. Effects of composition and heat treatments on the strength and ductility of Fe-Cr-Co alloys

    International Nuclear Information System (INIS)

    Kubarych, K.G.

    1980-06-01

    The relationship between the microstructure and mechanical properties of spinodally decomposed Fe-Cr-Co ductile permanent magnet alloys was investigated using transmission electron microscopy, electron diffraction, tensile testing, and Charpy impact testing. Isothermal aging and step aging of four alloys (Fe-28 wt % Cr-15 wt % Co, Fe-23 wt % Cr-15-wt % Co-5 wt % V, Fe-23 wt % Cr-15 wt % Co-3 wt % V-2 wt % Ti, and Fe-31 wt % Cr-23 % Co) resulted in decomposition into two phases, an Fe-Co rich (α 1 ) phase and a Cr rich (α 2 ) phase. The microstructural features of the decomposition products were consistent with those expected from a spinodal reaction and agree with the reported work on the Fe-Cr-Co system. An Fe-23 wt % Cr-15 wt % Co-5 wt % V alloy was found to have, among the four alloys, the best combinations of strength and ductility

  5. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219

    Science.gov (United States)

    Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan

    2017-11-01

    This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.

  6. Single track and single layer formation in selective laser melting of niobium solid solution alloy

    Directory of Open Access Journals (Sweden)

    Yueling GUO

    2018-04-01

    Full Text Available Selective laser melting (SLM was employed to fabricate Nb-37Ti-13Cr-2Al-1Si (at% alloy, using pre-alloyed powders prepared by plasma rotating electrode processing (PREP. A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance. Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density (LED, i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLM-processing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys. Keywords: Additive manufacturing, Melt pool, Niobium alloy, Powder metallurgy, Selective laser melting

  7. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  8. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-03-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  9. Diffusion and retention of hydrogen in vanadium in presence of Ti and Cr: First-principles investigations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Zou, Tingting [Information Science and Technology College, Dalian Maritime University, Dalian 116026 (China); Zhao, Jijun [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Zheng, Pengfei; Chen, Jiming [Southwestern Institute of Physics, Chengdu 610041 (China)

    2017-02-15

    We systemically investigated diffusion and retention of hydrogen (H) in vanadium (V) in presence of Ti/Cr and determined the stability of H{sub n} clusters and H{sub n}-vacancy clusters (n = 1–6) near Cr/Ti using first-principles calculations. H prefers a tetrahedral site near Ti than other interstitial sites. H-Cr interactions have a weak repulsion contrarily H-Ti interactions have a weak attraction. Kinetically, H diffusion barrier decreases towards Ti, while it increases towards Cr. Ti and Cr block H mobility in V alloys. Moreover, H{sub n} Ti clusters are quite stable while H{sub n}Cr clusters are less stable. Ti enhances H retention by acting as a trapping site for multiple H atoms in similar with vacancy, and a Ti atom can trap at least six H atoms. The stability of H-vacancy-Cr/Ti complexes and vacancy-Cr/Ti trapping for multiple H atoms are discussed. The findings are valuable for understanding the mechanism of H bubble nucleation and H embrittlement under irradiation. - Highlights: • Ti enhances H retention by trapping for multiple H atoms in similar with vacancy. • H prefers the tetrahedral sites near Ti than other interstitial sites. • H diffusion barrier decreases towards Ti, while it increases towards Cr.

  10. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    Science.gov (United States)

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  11. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    International Nuclear Information System (INIS)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-01-01

    Graphical abstract: - Highlights: • Laser technology is a fast, clean and flexible method for surface hardening of TNZT. • Laser can form a protective hard layer on TNZT surface without altering surface roughness. • The laser-formed layer is metallurgically bonded to the substrate. • Laser-treated TNZT is highly resistant to corrosion and wear in Hank's solution. - Abstract: The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti–Nb–Zr–Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti–35.3Nb–7.3Zr–5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  12. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis

    Directory of Open Access Journals (Sweden)

    Mamoun Fellah

    2014-01-01

    Full Text Available The aim of the study is to evaluate the friction and wear behavior of high-strength alloys Ti-6Al-7Nb used in femoral stem and compare it with a Ti-6Al-4V alloy cylindrical bar corresponding to ISO 5832-3 part 3/01-07-199 standard. The tribological behavior was investigated by wear tests, using ball-on-disc and pin-on-disc tribometers. These tests consisted of measuring the weight loss and the friction coefficient of samples. The oscillating friction and wear tests have been carried out in ambient with oscillating tribotester in accordance with standards ISO 7148, ASTM G99-95a, and ASTM G133-95 under different conditions of normal loads (3, 6, and 10 N and sliding speeds (1, 15, and 25 mm·s−1. As counter pairs, a 100Cr6 steel ball with 10 mm in diameter was used. Results show that the two alloys had similar friction and wear performance, although their grain structures and compositions are different. Occurrence of large frictional occurred, is probably caused by formation and periodic, localized fracture of a transfer layer. Higher friction with larger fluctuation and higher wear rate was observed at the higher siding speed. The Ti-6Al-4V wear mechanism transforms from ploughing and peeling off wear at low sliding speed to plastic deformation and adhesive wear.

  13. Ti-3Al-2.5V for seawater piping applications

    International Nuclear Information System (INIS)

    Caplan, I.L.

    1984-01-01

    Copper-nickel alloys and steel are the materials most commonly used for piping applications in a seawater environment. For situations where reduced weight, incraesed flexibility, and excellent corrosion-erosion resistance are desired, titanium is an extremely attractive alternate material. Commercially pure grades of titanium can be used for seawater piping, but are rather low in strength. However, by taking advantage of the high specific strength possible with alloys of titanium, substantial weight savings can be achieved. Based upon screening studies, Ti-3Al-2.5V was selected for investigation as a candidate alloy for this application. Plate 25.4-mm (1-in.) thick, extruded from Ti-3Al-2.5V billet at a 10:1 reduction ratio, was used for heat treatment and property studies. In addition, double-vee butt weldments of this plate were prepared by the automatic cold-wire gas tungsten arc welding process. The results of mechanical property tests are presented for both Ti-3Al-2.5V plate and weldments. Results to date indicate that the Ti-3Al-2.5V alloy possesses a highly desirable suite of properties that make it a very attractive candidate for piping and machinery applications in the seawater environment

  14. Fretting Corrosion Behavior of Experimental Ti-20Cr Compared to Titanium.

    Science.gov (United States)

    Sawada, Tomofumi; Schille, Christine; Almadani, Atif; Geis-Gerstorfer, Jürgen

    2017-02-17

    Experimental cast titanium alloys containing 20 mass% chromium (Ti-20Cr) show preferable mechanical properties and a good corrosion resistance. This study evaluated the fretting corrosion behavior of Ti-20Cr. Ti-20Cr ( n = 4) and commercially pure titanium (CP-Ti, n = 6) disk specimens were used. The fretting corrosion test was performed by electrochemical corrosion at 0.3 V in 0.9% saline solution and mechanical damage using 10 scratching cycles with three different scratching speeds (10-40 mm/s) at 10 N. After testing, the activation peak, repassivation time and surface morphology of each specimen were analyzed. The differences between the results were tested by parametric tests (α = 0.05). The average activation peaks were significantly higher in CP-Ti than in Ti-20Cr ( p Ti. Slight differences in the repassivation time were observed between the materials at every scratching speed; faster scratching speeds showed shorter repassivation times in both materials ( p Ti showed severe damage and significantly higher wear depth than Ti-20Cr ( p < 0.05). In conclusion, adding chromium to titanium reduced surface damage and improved the fretting corrosion resistance.

  15. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite

    Energy Technology Data Exchange (ETDEWEB)

    Ochonogor, O.F. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa); Meacock, C. [Council for Scientific and Industrial Research, National Laser Centre, Pretoria (South Africa); Abdulwahab, M. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa); Pityana, S. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa); Council for Scientific and Industrial Research, National Laser Centre, Pretoria (South Africa); Popoola, A.P.I., E-mail: popoolaapi@tut.ac.za [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The wear resistance of the laser clad surfaces was enhanced significantly with fifteen-folds wear rate reduction. Black-Right-Pointing-Pointer Micro-hardness of the clad zones indicated a significant improvement of over two-folds greater than the substrate. Black-Right-Pointing-Pointer Microstructures showed fine crystal grains distribution of ceramic particles that formed interstitial carbides in the titanium matrix composites. - Abstract: Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV{sub 0.1}for the substrate reaching a peak as high as 922.2 HV{sub 0.1} for 60%Ti + 40%TiC and the least 665.3 HV{sub 0.1} for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  16. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    Science.gov (United States)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  17. SURFACE PROPERTIES OF THE IN SITU FORMED CERAMICS REINFORCED COMPOSITE COATINGS ON TI-3AL-2V ALLOYS

    OpenAIRE

    PENG LIU; WEI GUO; DAKUI HU; HUI LUO; YUANBIN ZHANG

    2012-01-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was obser...

  18. Laser beam welding of high strength aluminium-lithium alloys; Laserstrahlschweissen von hochfesten Aluminium-Lithium Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Enz, Josephin

    2012-07-01

    The present development in aircraft industry determined by the demand for a higher cost-effectiveness. Laser beam welding is one of the most promising joining technologies for the application in the aircraft industry through the considerable reduction of the production costs. Furthermore the weight of an aircraft structure can be reduced by the use of light and high strength aluminium alloys. This paper deals with the development of a process for the laser beam welding of a skin-stringer-joint where the Al-Li-alloy AA2196 is used as stringer material and the Al-Li-alloy AA2198 is used as skin and stringer material. By the use of design of experiments the optimal welding process parameters for different material combinations were determined which will be used for the welding of a 5-stringer panel. Therefore the weld seams of the joints were tested for irregularities and microstructural characteristics. In addition several mechanical tests were performed, which define the quality of the welded joint. Furthermore the influence of the oxide layer and the welding preparation on the welding performance was investigated. (orig.) [German] Die derzeitigen Entwicklungen im Flugzeugbau werden durch die allgemeine Forderung nach einer Steigerung der Wirtschaftlichkeit bestimmt. Das Laserstrahlschweissen ist dabei eines der vielversprechendsten Fuegeverfahren fuer die Anwendung im Flugzeugbau durch das die Herstellungskosten deutlich reduziert werden koennen. Zudem kann durch die Verwendung von leichten und hochfesten Aluminium-Legierungen das Gewicht einer Flugzeugstruktur zusaetzlich reduziert werden. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Prozesses zum Laserstrahlschweissen einer Skin-Stringer-Verbindung aus den Aluminium-Lithium-Legierungen AA2196 (als Stringer-Werkstoff) und AA2198 (als Skin- und Stringer-Werkstoff). Unter Verwendung der statistischen Versuchsplanung wurden die optimalen Einstellungen der Schweissprozessparameter fuer die

  19. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensile specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.

  20. Early evaluation of hydrogen isotopes separation by V4Cr4Ti-based sorbents at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kulsartov, Timur, E-mail: tima@physics.kz [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan); Shestakov, Vladimir; Chikhray, Yevgen; Kenzhina, Inesh; Askerbekov, Saulet [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Gordienko, Yuriy; Ponkratov, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan)

    2016-12-15

    This paper presents the results of experiments on hydrogen isotopes sorption with V4Cr4Ti vanadium alloys from a mixture of hydrogen isotopes. The studies were carried out at temperatures of 353 K, 393 K, 423 K; and pressures of 10{sup 3}–10{sup 4} Pa in gas mixture of hydrogen isotopes. The α-phase domain of V-H (D) system was studied, where the concentration of hydrogen isotopes atoms should not exceed 0.015H (D) atoms per metal atom. The separation parameters were derived for several saturation conditions accordingly to registered time dependences of hydrogen isotopes partial pressure drop. The conclusion was made about the prospects of using vanadium alloys in hydrogen isotopes separation and purification systems.

  1. Welding repair of the high-intermediate pressure steam casings made of Cr-Mo and Cr-Mo-V steel

    International Nuclear Information System (INIS)

    Mazur, Z.; Cristalinas, V.; Kubiak, J.

    1996-01-01

    An analysis of typical failure causes and their location at high-intermediate pressure steam turbine casing, and weldability analysis of the Cr-Mo and Cr-Mo-V steels, is carried out. basing on the steam turbine of 158 MW capacity, the internal high pressure casing failures and development of in situ repair welding technology is described. After repair, the casing was put back into service

  2. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Aleksander Lisiecki

    2015-01-01

    Full Text Available A high power direct diode laser, emitting in the range of near infrared radiation at wavelength 808–940 nm, was applied to produce a titanium matrix composite on a surface layer of titanium alloy Ti6Al4V by laser surface gas nitriding. The nitrided surface layers were produced as single stringer beads at different heat inputs, different scanning speeds, and different powers of laser beam. The influence of laser nitriding parameters on the quality, shape, and morphology of the surface layers was investigated. It was found that the nitrided surface layers consist of titanium nitride precipitations mainly in the form of dendrites embedded in the titanium alloy matrix. The titanium nitrides are produced as a result of the reaction between molten Ti and gaseous nitrogen. Solidification and subsequent growth of the TiN dendrites takes place to a large extent at the interface of the molten Ti and the nitrogen gas atmosphere. The direction of TiN dendrites growth is perpendicular to the surface of molten Ti. The roughness of the surface layers depends strongly on the heat input of laser nitriding and can be precisely controlled. In spite of high microhardness up to 2400 HV0.2, the surface layers are crack free.

  3. Correlation between stresses and adhesion of oxide scales on Si and Ti containing NiCrAlY alloys

    International Nuclear Information System (INIS)

    Vosberg, V.; Quadakkers, W.J.; Schubert, F.; Nickel, H.

    1998-09-01

    The relation between mechanical stresses and the adhesion of alumina scales on Si- and Ti-containing NiCrAlY alloys has been investigated. Therefore the Si and Ti contents in model alloys with the base composition Ni-20Cr-10Al-Y, which were cast to achieve high purity, were varied from 0 to 2 m/0 . These solid samples were subjected to cyclic oxidation in the temperature range from 950 to 1100 C. Growth and spallation of the oxide scale were observed by gravimetry. The stresses, present at ambient temperature, were periodically determined by X-ray stress evaluation. Using these results a reasoning of the mechanisms for stress relief and damage of the scale was carried out. The addition of Silicon as well as of titanium has an evident influence on phase composition of Ni-20Cr-10Al-Y type alloys. Due to the variation of phase stability regions the thermal expansion is affected by these additions in the range from 950 to 1100 C. The expansion is enlarged by the addition of Si and lowered with increasing Ti content. (orig.)

  4. Assessment of The Cracking Properties of Stainless Steel Alloys and their Usability for Laser Welding in Production

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    2001-01-01

    Methods to assess stainless steel alloys’ cracking properties and usability for laser welding has been studied. Also tests to assess alloys’ susceptibility to hot cracking has been conducted. Among these is the so-called Weeter test which assesses the alloy by executing a number of spot welds...... to provoke cracking in the alloy. In this work the Weeter test has been modified and changed in order to develop a faster and easier test also applicable to small specimens. The new test, called a Groove test differs from the Weeter test by its procedure in which linear seam welds are conducted instead...... of spot welds. The Groove test has the advantage of an easier microscopy and analysis in the welds. Results from crack tests was partly confirmed by predictions made on the basis of the alloy’s constituents and solidification growth rate....

  5. Microstructure and wear behavior of {gamma}/Al{sub 4}C{sub 3}/TiC/CaF{sub 2} composite coating on {gamma}-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiubo [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China)], E-mail: liubobo0828@yahoo.com.cn; Shi Shihong [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China); Guo Jian [School of Materials and Chemical Engineering, Zhongyuan Institute of Technology, 41 Zhongyuan West Road, Zhengzhou 450007 (China); Fu Geyan; Wang Mingdi [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China)

    2009-03-15

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF{sub 2} in the preparation of precursor NiCr-Cr{sub 3}C{sub 2}-CaF{sub 2} mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al{sub 4}C{sub 3} carbides reinforcement as well as fine isolated spherical CaF{sub 2} solid lubrication particles uniformly dispersed in the NiCrAlTi ({gamma}) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF{sub 2} and the increasing of it's wettability with the NiCrAlTi ({gamma}) matrix during the laser cladding process.

  6. OPTIMIZATION OF STEEL SATURATION PROCESSES USING CARBIDE-FORMING ELEMENTS IN SYSTEMS BASED ON Cr-Ti-V AND Cr-Ti-Mn

    Directory of Open Access Journals (Sweden)

    A. A. Shmatov

    2007-01-01

    Full Text Available Optimization of saturating mixture compositions has been carried out in two three-component systems, namely: Cr-Ti-V and Cr-Ti-Mn in respect of micro-hardness and wear resistance of carbide coatings obtained by thermo-chemical treatment of high carbon steel. «Composition - properties» diagrams have been plotted using mathematical models. Treatment with optimum compositions of powder media permits to increase wear resistance of steel by factor of 30-70 as compared with untreated steel. 

  7. Stress distribution in Co-Cr implant frameworks after laser or TIG welding.

    Science.gov (United States)

    de Castro, Gabriela Cassaro; de Araújo, Cleudmar Amaral; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Nóbilo, Mauro Antônio de Arruda

    2013-01-01

    Lack of passivity has been associated with biomechanical problems in implant-supported prosthesis. The aim of this study was to evaluate the passivity of three techniques to fabricate an implant framework from a Co-Cr alloy by photoelasticity. The model was obtained from a steel die simulating an edentulous mandible with 4 external hexagon analog implants with a standard platform. On this model, five frameworks were fabricated for each group: a monoblock framework (control), laser and TIG welding frameworks. The photoelastic model was made from a flexible epoxy resin. On the photoelastic analysis, the frameworks were bolted onto the model for the verification of maximum shear stress at 34 selected points around the implants and 5 points in the middle of the model. The stresses were compared all over the photoelastic model, between the right, left, and center regions and between the cervical and apical regions. The values were subjected to two-way ANOVA, and Tukey's test (α=0.05). There was no significant difference among the groups and studied areas (p>0.05). It was concluded that the stresses generated around the implants were similar for all techniques.

  8. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  9. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  10. Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique

    International Nuclear Information System (INIS)

    Qi, Xiao-dong; Liu, Li-ming

    2012-01-01

    Highlights: → Hybrid Laser-TIG fusion welding technique was used for joining Mg to Al alloys. → Laser defocusing amount determined penetration depth inside Al alloy of joints. → The addition of Fe interlayer suppressed Mg-Al intermetallics greatly in joints. → A maximum joint strength with optimum thickness of Fe interlayer was obtained. → Excessive addition of Fe interlayer was adverse for the strength improvement. -- Abstract: AZ31B magnesium alloy and 6061-T6 aluminum alloy were lap joined together with the addition of Fe interlayer by fusion welding of hybrid laser-tungsten inert gas (TIG) technique. The influence of location of laser focal spot (LFS) on joint penetration depth and that of the depth on joint strength were investigated. The results showed that when the LFS was just on the surface of Al plate, the deepest penetration could be obtained, which contributed to the improvement of shear strength of Fe-added joints, but not to the elevation of the strength of Mg/Al direct joints. The addition of Fe interlayer suppressed massive production of Mg-Al intermetallics but produced Fe-Al intermetallics in the fusion zone of the joints, whose micro-hardness was extremely high and was also adverse for the enhancement of joint shear strength. The effect of Fe-interlayer thickness on the joint shear strength was also examined, and the maximum shear strength of Fe-added joint could achieve 100 MPa with 0.13 mm thick Fe interlayer. The fracture modes of 0.07 and 0.13 mm Fe-interlayer-added joints were both quasi-cleavage, while those of direct and 0.22 mm interlayer-added joints were completely cleavage. The theoretical shear strength of the Fe-added joints was also discussed.

  11. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available Department of Metallurgical & Materials Engineering, IIT Kharagpur, West Bengal, India 2National Laser Centre, CSIR, Pretoria, South Africa Abstract In the present study, laser surface alloying of aluminium with WC+Co+NiCr (in the ratio of 70... be used for dispersion of ceramic materials into metallic matrix and hence, form a ceramic dispersed metal matrix composite on metallic substrate [3]. The advantages of laser surface alloying include refinement of the microstructure, uniform dispersion...

  12. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure

    Directory of Open Access Journals (Sweden)

    T.S. Yang

    2018-01-01

    Full Text Available Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  13. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure.

    Science.gov (United States)

    Yang, T S; Yao, S H; Chang, Y Y; Deng, J H

    2018-01-08

    Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  14. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  15. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-01-01

    Highlights: ► A TiO 2 /graphite composite coating is produced on Ti alloy by one-step PEO process. ► The TiO 2 /graphite composite coating exhibits excellent self-lubricating behavior. ► The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  16. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  17. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  18. Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2009-09-01

    Full Text Available The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW, laser welding and friction stir welding (FSW, FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009, jointly funded by its member agencies.

  19. Functionally graded Ti6Al4V and Inconel 625 by Laser Metal Deposition

    Science.gov (United States)

    Pulugurtha, Syamala R.

    The objective of the current work was to fabricate a crack-free functionally graded Ti6Al4V and Inconel 625 thin wall structure by Laser Metal Deposition (LMD). One potential application for the current material system is the ability to fabricate a functionally graded alloy that can be used in a space heat exchanger. The two alloys, Inconel 625 and Ti6Al4V are currently used for aerospace applications. They were chosen as candidates for grading because functionally grading those combines the properties of high strength/weight ratio of Ti6Al4V and high temperature oxidation resistance of Inconel 625 into one multifunctional material for the end application. However, there were challenges associated with the presence of Ni-Ti intermetallic phases (IMPs). The study focused on several critical areas such as (1) understanding microstructural evolution, (2) reducing macroscopic cracking, and (3) reducing mixing between graded layers. Finite element analysis (FEA) was performed to understand the effect of process conditions on multilayer claddings for simplified material systems such as SS316L and Inconel 625 where complex microstructures did not form. The thermo-mechanical models were developed using Abaqus(TM) (and some of them experimentally verified) to predict temperature-gradients; remelt layer depths and residual stresses. Microstructure evolution along the functionally graded Ti6Al4V and Inconel 625 was studied under different processing and grading conditions. Thermodynamic modeling using Factsage (v 6.1) was used to construct phase diagrams and predict the possible equilibrium major/minor phases (verified experimentally by XRD) that may be present along the functionally graded Ti6Al4V and Inconel 625 thin wall structures.

  20. Heat affected zone microfissuring in a laser beam welded directionally solidified Ni3Al-base alloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Ding, R.G.; Chaturvedi, M.C.

    2006-01-01

    The laser beam weld heat affected zone (HAZ) microstructure of a newly developed aerospace alloy, IC 6, was examined. HAZ microfissuring was observed and found to be associated with grain boundary liquation facilitated by subsolidus eutectic-type transformation of the alloy's major phase, γ' precipitates, and interfacial melting of M 6 C-type carbide and (Mo 2 Ni)B 2 -type boride particles