WorldWideScience

Sample records for laser-driven flyer system

  1. Experimental method for laser-driven flyer plates for 1-D shocks

    International Nuclear Information System (INIS)

    Paisley, D. L.; Luo, S. N.; Swift, D. C.; Loomis, E.; Johnson, R.; Greenfield, S.; Peralta, P.; Koskelo, A.; Tonks, D.

    2007-01-01

    One-dimensional shocks can be generated by impacting flyer plates accelerated to terminal velocities by a confined laser-ablated plasma. Over the past few years, we have developed this capability with our facility-size laser, TRIDENT, capable of ≥500 Joules at multi-microsecond pulse lengths to accelerate 1-D flyer plates, 8-mm diameter by 0.1-2 mm thick. Plates have been accelerated to terminal velocities of 100 to ≥500 m/s, with full recovery of the flyer and target for post mortem metallography. By properly tailoring the laser temporal and spatial profile, the expanding confined plasma accelerates the plate away from the transparent sapphire substrate, and decouples the laser parameters from shock pressure profile resulting from the plate impact on a target. Since the flyer plate is in free flight on impact with the target, minimal collateral damage occurs to either. The experimental method to launch these plates to terminal velocity, ancillary diagnostics, and representative experimental data is presented

  2. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  3. Optical response in a laser-driven quantum pseudodot system

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, D. Gul [Physics Department, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, 35390 Izmir (Turkey); Sakiroglu, S., E-mail: serpil.sakiroglu@deu.edu.tr [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey); Ungan, F.; Yesilgul, U. [Department of Optical Engineering, Faculty of Technology, Cumhuriyet University, 58140 Sivas (Turkey); Kasapoglu, E. [Physics Department, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Sari, H. [Department of Primary Education, Faculty of Education, Cumhuriyet University, 58140 Sivas (Turkey); Sokmen, I. [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey)

    2017-03-15

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  4. Optical response in a laser-driven quantum pseudodot system

    International Nuclear Information System (INIS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-01-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  5. Development of an energy selector system for laser-driven proton beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Scuderi, V., E-mail: scuderiv@lns.infn.it [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Carpinelli, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cirrone, G.A.P. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Korn, G. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Licciardello, T. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell' Universit 2, Legnaro (Pd) (Italy); Margarone, D. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Pisciotta, P.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Stancampiano, C. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); and others

    2014-03-11

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 10{sup 11} particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  6. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    Science.gov (United States)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  7. Using scattering theory to compute invariant manifolds and numerical results for the laser-driven Hénon-Heiles system.

    Science.gov (United States)

    Blazevski, Daniel; Franklin, Jennifer

    2012-12-01

    Scattering theory is a convenient way to describe systems that are subject to time-dependent perturbations which are localized in time. Using scattering theory, one can compute time-dependent invariant objects for the perturbed system knowing the invariant objects of the unperturbed system. In this paper, we use scattering theory to give numerical computations of invariant manifolds appearing in laser-driven reactions. In this setting, invariant manifolds separate regions of phase space that lead to different outcomes of the reaction and can be used to compute reaction rates.

  8. Library Systems Office Organization. SPEC Kit and SPEC Flyer 211.

    Science.gov (United States)

    Muir, Scott P., Comp.

    The roles and responsibilities of the library systems officer continues to change as libraries move beyond the automation of library functions to offering resources in electronic formats and electronic access to information about collections beyond the walls of the home institution. This survey was designed to collect data and document some of the…

  9. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  10. Systems modeling for a laser-driven IFE power plant using direct conversion

    International Nuclear Information System (INIS)

    Meier, W R

    2008-01-01

    A variety of systems analyses have been conducted for laser driver IFE power plants being developed as part of the High Average Power Laser (HAPL) program. A key factor determining the economics attractiveness of the power plant is the net power conversion efficiency which increases with increasing laser efficiency, target gain and fusion-to-electric power conversion efficiency. A possible approach to increasing the power conversion efficiency is direct conversion of ionized target emissions to electricity. This study examines the potential benefits of increased efficiency when the expanding plasma is inductively coupled to an external circuit allowing some of the ion energy to be directly converted to electricity. For base case direct-drive targets with approximately 24% of the target yield in ions, the benefits are modest, especially for chamber designs that operate at high temperature and thus already have relatively high thermal conversion efficiencies. The reduction in the projected cost of electricity is ∼5-10%

  11. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinigardi, Stefano, E-mail: sinigardi@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Giove, Dario; De Martinis, Carlo [Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, Via F.lli Cervi 201, I-20090 Segrate (Italy); Bolton, Paul R. [Kansai Photon Science Institute (JAEA), Umemidai 8-1-7, Kizugawa-shi, Kyoto 619-0215 (Japan)

    2014-03-11

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  12. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Science.gov (United States)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  13. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    International Nuclear Information System (INIS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-01-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments

  14. Investigation toward laser driven IFE power plant

    International Nuclear Information System (INIS)

    Nakai, S.; Kozaki, Y.; Izawa, Y.

    2001-01-01

    Inertial fusion energy (IFE) is becoming feasible due to the increasing understanding of implosion physics. Reactor technology issues have begun to be developed. Based on the conceptual design of Laser Driven IFE Power Plant, the technical and physical issues have been examined. R and D on key issues that affect the feasibility of power plant have been proceeded taking into account the collaboration in the field of laser driver, fuel pellet, reaction chamber and system design. It is concluded that the technical feasibility of IFE power plant seems to be reasonably high. Coordination and collaboration scheme of reactor technology experts in Japan on Laser Driven IFE Power Plant is being proceeded. (author)

  15. Investigation toward laser driven IFE (inertial fusion energy) power plant

    International Nuclear Information System (INIS)

    Nakai, S.; Kozaki, Y.; Izawa, Y.; Yamanaka, M.; Kanabe, T.; Kato, Y.; Norimatsu, T.; Nagai, K.; Nakatsuka, M.; Jitsuno, T.; Yamanaka, T.

    2000-01-01

    Based on the conceptual design of Laser Driven IFE Power Plant, the technical and physical issues have been examined. R and D on key issues which affect the feasibility of power plant has been performed taking into account the collaboration in the field of laser driver, fuel pellet, reaction chamber and system design. The coordination and collaboration organization of reactor technology experts in Japan on Laser Driven IFE Power Plant are reviewed. (authors)

  16. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong, E-mail: huang@isas.de; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV–VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions. - Highlights: • Echelle spectrometer with a full frame CCD array detector • High and variable spectral resolution from λ/Δλ of 55,000 to 95,000 • Laser-driven continuum light source

  17. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    Faure, J.

    2009-06-01

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  18. Design, Construction and Calibration of a Near-Infrared Four-Color Pyrometry System for Laser-Driven High Pressure Experiments

    Science.gov (United States)

    Ali, S. J.; Jeanloz, R.; Collins, G.; Spaulding, D. K.

    2010-12-01

    Current dynamic compression experiments, using both quasi-isentropic and shock-compression, allow access to pressure-temperature states both on and off the principle Hugoniot and over a wide range of conditions of direct relevance to planetary interiors. Such studies necessitate reliable temperature measurements below 4000-5000 K. Such relatively low temperature states are also of particular interest for materials such as methane and water that do not experience much heating under shock compression. In order to measure these temperatures as a function of time across the sample, a four-color, near-infrared pyrometry system is being developed for use at the Janus laser facility (LLNL) with channels at wavelengths of 932nm-1008nm, 1008nm-1108nm, 1108nm-1208nm, and 1208nm-1300nm. Each color band is fiber-coupled to an InGaAs PIN photodiode with a rise time of less than 60 ps, read using an 18 GHz oscilloscope in order to ensure time resolutions of under 200 ps. This will allow for high temporal resolution measurements of laser-driven shock compression experiments with total durations of 5-15 ns as well as correlation with simultaneous time-resolved velocity interferometry and visual-wavelength pyrometry. Calibration of the system is being accomplished using quartz targets, as the EOS for quartz is well known, along with a calibrated integrating sphere of known spectral radiance.

  19. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  20. ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

    Directory of Open Access Journals (Sweden)

    Daniele Margarone

    2018-04-01

    Full Text Available The main direction proposed by the community of experts in the field of laser-driven ion acceleration is to improve particle beam features (maximum energy, charge, emittance, divergence, monochromaticity, shot-to-shot stability in order to demonstrate reliable and compact approaches to be used for multidisciplinary applications, thus, in principle, reducing the overall cost of a laser-based facility compared to a conventional accelerator one and, at the same time, demonstrating innovative and more effective sample irradiation geometries. The mission of the laser-driven ion target area at ELI-Beamlines (Extreme Light Infrastructure in Dolní Břežany, Czech Republic, called ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA , is to provide stable, fully characterized and tuneable beams of particles accelerated by Petawatt-class lasers and to offer them to the user community for multidisciplinary applications. The ELIMAIA beamline has been designed and developed at the Institute of Physics of the Academy of Science of the Czech Republic (IoP-ASCR in Prague and at the National Laboratories of Southern Italy of the National Institute for Nuclear Physics (LNS-INFN in Catania (Italy. An international scientific network particularly interested in future applications of laser driven ions for hadrontherapy, ELI MEDical applications (ELIMED, has been established around the implementation of the ELIMAIA experimental system. The basic technology used for ELIMAIA research and development, along with envisioned parameters of such user beamline will be described and discussed.

  1. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  2. Laser driven detonation waves above a solid target

    International Nuclear Information System (INIS)

    Emmony, D.C.

    1975-01-01

    The interaction of a TEA CO 2 laser pulse with a carbon target in an argon atmosphere (p approximately mmHg) is shown to produce a double detonation wave system. The laser driven detonation wave becomes the most important as the gas pressure is increased. Calculation of the energy in the detonation waves is in good agreement with the incident laser energy at different times during the main laser pulse and the long tail. The observation of the incident laser detonation wave accounts for the anomalous energies reported previously. (Auth.)

  3. Photonic laser-driven accelerator for GALAXIE

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

    2012-12-21

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  4. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  5. Laser driven single shock compression of fluid deuterium from 45 to 220 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D; Boehly, T; Celliers, P; Eggert, J; Moon, S; Meyerhofer, D; Collins, G

    2008-03-23

    The compression {eta} of liquid deuterium between 45 and 220 GPa under laser-driven shock loading has been measured using impedance matching to an aluminum (Al) standard. An Al impedance match model derived from a best fit to absolute Hugoniot data has been used to quantify and minimize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In deuterium below 100 GPa results show that {eta} {approx_equal} 4.2, in agreement with previous impedance match data from magnetically-driven flyer and convergent-explosive shock wave experiments; between 100 and 220 GPa {eta} reaches a maximum of {approx}5.0, less than the 6-fold compression observed on the earliest laser-shock experiments but greater than expected from simple extrapolations of lower pressure data. Previous laser-driven double-shock results are found to be in good agreement with these single-shock measurements over the entire range under study. Both sets of laser-shock data indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa.

  6. Exploratory laser-driven shock wave studies

    International Nuclear Information System (INIS)

    Solem, J.C.; Veeser, L.R.

    1977-11-01

    We show the results of a feasibility study for investigating shock structure and for measuring equation-of-state parameters using high-energy, short-pulse lasers. We discuss the temporal and spatial structure of the luminosity from laser-driven shock unloading in aluminum foils. We demonstrate that shock velocity can be measured by observing the time interval between shock emergence across two thicknesses and show data for shocks of 1.3 and 2.1 Mbar. The fact that we observe shock fronts cleanly breaking through steps as small as 3 μm indicates that the shock front thickness is very small in the few megabar region; this is the first experimental verification that these fronts are not more than a few micrometers thick. We present approximate measurements of free-surface velocity. Finally, we speculate on the use of these techniques to obtain detailed equation-of-state data

  7. Laser-Driven Mini-Thrusters

    International Nuclear Information System (INIS)

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-01-01

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse

  8. Laser-Driven Mini-Thrusters

    Science.gov (United States)

    Sterling, Enrique; Lin, Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B.

    2006-05-01

    Laser-driven mini-thrusters were studied using Delrin® and PVC (Delrin® is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  9. Laser-driven planar impact of miniature specimens of HY-100 steel

    International Nuclear Information System (INIS)

    Alexander, David J.; Robbins, David L.

    2002-01-01

    The deformation and fracture behavior of HY-100, a high-strength steel, under high strain-rate planar-impact conditions, has been studied with the Laser-Driven Miniflyer apparatus. Cold-rolled copper flyers 3 mm in diameter and either 50 or 100 microns thick have been laser-launched against HY-100 targets, 200 microns thick and nominally 10 mm square. The target specimens were sectioned from the 25-mm-thick HY-100 plate in three mutually perpendicular orientations, either parallel or perpendicular to the plate rolling direction. The back-surface response of the HY-100 targets was monitored with dual VISARs. The flyer velocity was varied to produce a range of behavior, from deformation at low velocities, to damage formation at intermediate velocities, and finally to complete spall failure at the highest velocities. The target specimens were sectioned after testing to examine the microstructure and failure processes of the deformed material. Spall strengths were calculated from the VISAR signals. The VISAR traces showed well-defined elastic precursors, which were similar for all orientations of the specimens. The spall strengths, as estimated from the magnitude of the pullback signal, were also similar for all three orientations. The spall strength increased as the flyer impact velocity increased, to values of about 4.6 GPa. Metallographic examination revealed that damage occurred at lower impact velocities in specimens loaded in the through-thickness direction of the plate, as compared to specimens oriented parallel to the plate thickness, but this difference was not reflected in the pull-back signal or the spall strengths

  10. Novel target design for enhanced laser driven proton acceleration

    Directory of Open Access Journals (Sweden)

    Malay Dalui

    2017-09-01

    Full Text Available We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  11. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  12. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  13. Magnetic Flyer Facility Correlation and UGT Simulation

    Science.gov (United States)

    1978-05-01

    assistance in this program from the following: Southern Research Institute - Material properties and C. Pears and G. Fornaro damage data Air Force ...techniques - flyer plate loading. The program was divided into two majur parts, the Facility Correlation Study and the UGT Simulation STudy. For the...current produces a magnetic field which then produces an accelerating force on the flyer plate, itself a current carry- ing part of the circuit. The flyer

  14. Laser-driven polarized sources of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Young, L.; Holt, R.J.; Green, M.C.; Kowalczyk, R.S.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin exchange optical pumping is described. The advantages of this method over conventional polarized sources for internal target experiments are presented. Technological difficulties which prevent ideal source operation are outlined along with proposed solutions. At present, the laser-driven polarized hydrogen source delivers 8 /times/ 10 16 atoms/s with a polarization (P/sub z/) of 24%. 9 refs., 2 figs

  15. Preliminary experiments using light-initiated high explosive for driving thin flyer plates

    International Nuclear Information System (INIS)

    Benham, R.A.

    1980-02-01

    Light-initiated high explosive, silver acelytide - silver-nitrate (SASN), has been used to produce simulated x ray blow-off impulse loading on reentry vehicles to study the system structural response. SASN can be used to accelerate thin flyer plates to high terminal velocities which, in turn, can deliver a pressure pulse that can be tailored to the target material. This process is important for impulse tests where both structural and material response is desired. The theories used to calculate the dynamic state of the flyer plate prior to impact are summarized. Data from several experiments are presented which indicate that thin flyer plates can be properly accelerated and that there are predictive techniques available which are adequate to calculate the motion of the flyer plate. Recommendations are made for future study that must be undertaken to make the SASN flyer plate technique usable

  16. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  17. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  18. Suppression of dissipation in a laser-driven qubit by white noise

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lei-Lei [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Jian-Qi [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Jing, Jun, E-mail: junjing@jlu.edu.cn [Institute of Atomic and Molecular Physics and Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012 (China); Feng, Mang, E-mail: mangfeng@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2015-10-16

    Decoherence of an open quantum system could be universally slowed down via ultra-fast modulation including regular, concatenated, random and even noisy control pulse sequences. We propose two noisy control schemes for a laser-driven qubit in order to suppress the dissipation induced by the environment, where employment of a weak driving laser is to alleviate the requirement for the control pulse strength down to the microwave regime. Calculations and analyses are based on a dynamical decoupling approach governed by the quantum-state-diffusion equation and the standard perturbation theory. The schemes can be applied to various systems, such as the cold atoms and quantum dots, manipulated by lasers for quantum information processing. - Highlights: • Two noisy control schemes for a laser-driven qubit are proposed. • Inspiring dissipation-suppression process is demonstrated both analytically and numerically. • The fidelity improvement is specified for the trapped ion by controlling the key parameters.

  19. Periodic thermodynamics of laser-driven molecular motor

    International Nuclear Information System (INIS)

    Li Dan; Zheng Wenwei; Wang Zhisong

    2008-01-01

    Operation of a laser-driven nano-motor inevitably generates a non-trivial amount of heat, which can possibly lead to instability or even hinder the motor's continual running. This work quantitatively examines the overheating problem for a recently proposed laser-operated molecular locomotive. We present a single-molecule cooling theory, in which molecular details of the locomotive system are explicitly treated. This theory is able to quantitatively predict cooling efficiency for various candidates of molecular systems for the locomotive, and also suggests concrete strategies for improving the locomotive's cooling. It is found that water environment is able to cool the hot locomotive down to room temperature within 100 picoseconds after photon absorption. This cooling time is a few orders of magnitude shorter than the typical time for laser operation, effectively preventing any overheating for the nano-locomotive. However, when the cooling is less effective in non-aqueous environment, residual heat may build up. A continuous running of the motor will then lead to a periodic thermodynamics, which is a common character of many laser-operated nano-devices

  20. Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits

    Science.gov (United States)

    Thom, Joseph; Yuen, Ben; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G.

    2018-05-01

    We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of > 104) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be logic gates to be below 10^{-6} per gate.

  1. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  2. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  3. First use of a laser-driven polarized H/D target at the IUCF cooler

    International Nuclear Information System (INIS)

    Bailey, K.; Brack, J.; Cadman, R. V.; Cummings, W. J.; Fedchak, J.; Fox, B.; Gao, H.; Grosshauser, C.; Holt, R. J.; Jones, C.; Kinney, E.; Kowalczyk, R.; Lu, Z.-T.; Miller, M. A.; Nagengast, W.; Owen, B.; Rith, K.; Schmidt, F.; Schulte, E.; Sowinski, J.; Sperisen, F.; Stenger, J.; Thorsland, E.; Williamson, S.

    1997-01-01

    The HERMES Laser-Driven Target Task Force (Argonne, Erlangen and Illinois) is charged with developing a polarized H/D target for use in the HERA ring at DESY. Rapid progress was made in the beginning of 1996, leading us to the decision to test the target in a realistic experimental environment. In particular, polarizations of 0.6 and flows above 10 18 atoms·s -1 have been achieved on the bench. The laser-driven target and a simple detector system are currently installed in Cooler storage ring at the Indiana University Cyclotron Facility in order to test its applicability to nuclear physics experiments. Target polarizations are being measured using the rvec H(p, p) and rvec D(p, p) reactions. Initial tests were reasonably successful and the target is well along toward becoming viable for nuclear physics

  4. The Argonne laser-driven D target: Recent developments and progress

    International Nuclear Information System (INIS)

    Fedchak, J.A.; Bailey, K.; Cummings, W.J.

    1997-01-01

    The first direct measurements of nuclear tensor polarization p zz in a laser-driven polarized D target have been performed at Argonne. We present p zz and electron polarization P e data taken at a magnetic field of 600 G in the optical pumping cell. These results are highly indicative that spin-temperature equilibrium is achieved in the system. To prevent spin relaxation of D and K atoms as well as the molecular recombination of D atoms, the walls of the laser-driven D target are coated with organosilane compounds. We discuss a new coating technique, the open-quotes afterwashclose quotes, developed at Argonne which has yielded stable atomic fraction results when the coating is exposed to K. We also present new coating techniques for glass and Cu substrates

  5. High-Mach number, laser-driven magnetized collisionless shocks

    International Nuclear Information System (INIS)

    Schaeffer, Derek B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.

    2017-01-01

    Collisionless shocks are ubiquitous in space and astrophysical systems, and the class of supercritical shocks is of particular importance due to their role in accelerating particles to high energies. While these shocks have been traditionally studied by spacecraft and remote sensing observations, laboratory experiments can provide reproducible and multi-dimensional datasets that provide complementary understanding of the underlying microphysics. We present experiments undertaken on the OMEGA and OMEGA EP laser facilities that show the formation and evolution of high-Mach number collisionless shocks created through the interaction of a laser-driven magnetic piston and magnetized ambient plasma. Through time-resolved, 2-D imaging we observe large density and magnetic compressions that propagate at super-Alfvenic speeds and that occur over ion kinetic length scales. Electron density and temperature of the initial ambient plasma are characterized using optical Thomson scattering. Measurements of the piston laser-plasma are modeled with 2-D radiation-hydrodynamic simulations, which are used to initialize 2-D particle-in-cell simulations of the interaction between the piston and ambient plasmas. The numerical results show the formation of collisionless shocks, including the separate dynamics of the carbon and hydrogen ions that constitute the ambient plasma and their effect on the shock structure. Furthermore, the simulations also show the shock separating from the piston, which we observe in the data at late experimental times.

  6. Laser-driven wakefield electron acceleration and associated radiation sources

    International Nuclear Information System (INIS)

    Davoine, X.

    2009-10-01

    The first part of this research thesis introduces the basic concepts needed for the understanding of the laser-driven wakefield acceleration. It describes the properties of the used laser beams and plasmas, presents some notions about laser-plasma interactions for a better understanding of the physics of laser-driven acceleration. The second part deals with the numerical modelling and the presentation of simulation tools needed for the investigation of laser-induced wakefield acceleration. The last part deals with the optical control of the injection, a technique analogous to the impulsion collision scheme

  7. Laser driven white light source for BRDF measurement

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    In this paper, we will present a setup with laser driven light source (LDLS) for measuring a 2D bidirectional reflectance distribution function (BRDF). We have carried out measurements to acquire the BRDF of different samples based on our setup: which consists of a new laser driven broadband light...... source (UV-VIS-NIR), spectroradiometer and sample holder stepper motor in a dark UV-protected environment. Here, we introduced a special kind of light source which has a bright, stable, broad spectral range and well collimated light output to give a very good angular resolution. The experimental results...

  8. Versatile Manipulation for Assistive Free-Flyers

    Data.gov (United States)

    National Aeronautics and Space Administration — Assistive Free-Flyers (AFFs) are flying robots designed to share the living space with human astronauts in orbit. These robots have shown the potential to assist...

  9. Emittance growth in laser-driven RF electron guns

    International Nuclear Information System (INIS)

    Kim, K.J.

    1989-01-01

    A simple analysis for the evolution of the electron-beam phase space distribution in laser-driven rf guns is presented. In particular, formulas are derived for the transverse and longitudinal emittances at the exit of the gun. The results are compared and found to agree well with those from simulation. (Author). 9 refs.; 4 figs

  10. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  11. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T. M., E-mail: willey1@llnl.gov; Champley, K., E-mail: champley1@llnl.gov; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Buuren, T. van [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Sanchez, N.; Jensen, B. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Iverson, A. [National Security Technologies, LLC, Las Vegas, Nevada 89193 (United States)

    2016-06-21

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ∼80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  12. Laser-driven soft-X-ray undulator source

    International Nuclear Information System (INIS)

    Fuchs, Matthias

    2010-01-01

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of ∝17 nm from a compact setup. Undulator spectra were detected in ∝70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of ∝10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  13. Laser-driven soft-X-ray undulator source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Matthias

    2010-08-04

    The experimental results described in this thesis demonstrate the successful synergy between the research fields described above: the development of an undulator source driven by laser-plasma accelerated electron beams. First efforts in this new field have led to the production of radiation in the visible to infrared part of the electromagnetic spectrum [Schlenvoigt et al., 2008]. In contrast to these early achievements, the experiment described here shows the successful production of laser-driven undulator radiation in the soft-X-ray range with a remarkable reproducibility. The source produced tunable, collimated beams with a wavelength of {proportional_to}17 nm from a compact setup. Undulator spectra were detected in {proportional_to}70% of consecutive driver-laser shots, which is a remarkable reproducibility for a first proof-of-concept demonstration using ultra-high intensity laser systems. This can be attributed to a stable electron acceleration scheme as well as to the first application of miniature magnetic quadrupole lenses with laseraccelerated beams. The lenses significantly reduce the electron beam divergence and its angular shot-to-shot fluctuations The setup of this experiment is the foundation of potential university-laboratory-sized, highly-brilliant hard X-ray sources. By increasing the electron energy to about 1 GeV, X-ray pulses with an expected duration of {proportional_to}10 fs and a photon energy of 1 keV could be produced in an almost identical arrangement. It can also be used as a testbed for the development of a free-electron laser of significantly smaller dimension than facilities based on conventional accelerators [Gruener et al., 2007]. Such compact sources have the potential for application in many fields of science. In addition, these developments could lead to ideal sources for ultrafast pump-probe experiments due to the perfect synchronization of the X-ray beam to the driver laser. (orig.)

  14. Intelligent Control for the BEES Flyer

    Science.gov (United States)

    Krishnakumar, K.; Gundy-Burlet, Karen; Aftosmis, Mike; Nemec, Marian; Limes, Greg; Berry, Misty; Logan, Michael

    2004-01-01

    This paper describes the effort to provide a preliminary capability analysis and a neural network based adaptive flight control system for the JPL-led BEES aircraft project. The BEES flyer was envisioned to be a small, autonomous platform with sensing and control systems mimicking those of biological systems for the purpose of scientific exploration on the surface of Mars. The platform is physically tightly constrained by the necessity of efficient packing within rockets for the trip to Mars. Given the physical constraints, the system is not an ideal configuration for aerodynamics or stability and control. The objectives of this effort are to evaluate the aerodynamics characteristics of the existing design, to make recommendaaons as to potential improvements and to provide a control system that stabilizes the existing aircraft for nominal flight and damaged conditions. Towards this several questions are raised and analyses are presented to arrive at answers to some of the questions raised. CART3D, a high-fidelity inviscid analysis package for conceptual and preliminary aerodynamic design, was used to compute a parametric set of solutions over the expected flight domain. Stability and control derivatives were extracted from the database and integrated with the neural flight control system. The Integrated Vehicle Modeling Environment (IVME) was also used for estimating aircraft geometric, inertial, and aerodynamic characteristics. A generic neural flight control system is used to provide adaptive control without the requirement for extensive gain scheduling or explicit system identification. The neural flight control system uses reference models to specify desired handling qualities in the roll, pitch, and yaw axes, and incorporates both pre-trained and on-line learning neural networks in the inverse model portion of the controller. Results are presented for the BEES aircraft in the subsonic regime for terrestrial and Martian environments.

  15. Laser-driven particle acceleration towards radiobiology and medicine

    CERN Document Server

    2016-01-01

    This book deals with the new method of laser-driven acceleration for application to radiation biophysics and medicine. It provides multidisciplinary contributions from world leading scientist in order to assess the state of the art of innovative tools for radiation biology research and medical applications of ionizing radiation. The book contains insightful contributions on highly topical aspects of spatio-temporal radiation biophysics, evolving over several orders of magnitude, typically from femtosecond and sub-micrometer scales. Particular attention is devoted to the emerging technology of laser-driven particle accelerators and their applicatio to spatio-temporal radiation biology and medical physics, customization of non-conventional and selective radiotherapy and optimized radioprotection protocols.

  16. Recent developments in laser-driven polarized sources

    International Nuclear Information System (INIS)

    Young, L.; Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Potterveld, D.H.; Zghiche, A.

    1990-01-01

    Recent progress in the performance of laser-driven sources of polarized hydrogen and deuterium is described. The current status of the prototype source, I = 2.5 x 10 17 s -1 , polarization = 0.29 (including atomic fraction), is comparable to classical Stern-Gerlach sources. A scheme to improve source performance by approximately an order of magnitude, using a combination of optical-pumping spin-exchange and RF transitions, is outlined. 8 refs., 2 figs., 1 tab

  17. Proposal of laser-driven automobile

    Science.gov (United States)

    Yabe, Takashi; Oozono, Hirokazu; Taniguchi, Kazumoto; Ohkubo, Tomomasa; Miyazaki, Sho; Uchida, Shigeaki; Baasandash, Choijil

    2004-09-01

    We propose an automobile driven by piston motion, which is driven by water-laser coupling. The automobile can load a solar-pumped fiber laser or can be driven by ground-based lasers. The vehicle is much useful for the use in other planet in which usual combustion engine cannot be used. The piston is in a closed system and then the water will not be exhausted into vacuum. In the preliminary experiment, we succeeded to drive the cylindrical piston of 0.2g (6mm in diameter) on top of water placed inside the acrylic pipe of 8 mm in inner diameter and the laser is incident from the bottom and focused onto the upper part of water by the lens (f=8mm) attached to the bottom edge.

  18. A laser driven source of spin polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.; Jones, C.E.; Kowalczyk, R.S.; Young, L.; Toporkov, D.

    1993-01-01

    Recent results from a laser-driven source of polarized hydrogen (H) and deuterium (D) are presented. The performance of the source is described as a function of atomic flow rate and magnetic field. The data suggest that because atomic densities in the source are high, the system can approach spin-temperature equilibrium although applied magnetic fields are much larger than the critical field of the atoms. The authors also observe that potassium contamination in the source emittance can be reduced to a negligible amount using a teflon-lined transport tube

  19. A frequent flyer program for nuclear mythology

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1997-01-01

    The anti-nuclear literature contains many erroneous and misleading allegations, collectively constituting a mythology. These are repeated endlessly, however often they are refuted, and are quoted uncritically by the media. Many are collected here, together with my rebuttals. For an explanation of the use here of the term 'frequent flyers', read on... (author)

  20. Laser-driven particle and photon beams and some applications

    International Nuclear Information System (INIS)

    Ledingham, K W D; Galster, W

    2010-01-01

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10 12 V m -1 with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  1. Laser-driven particle and photon beams and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Ledingham, K W D; Galster, W, E-mail: K.Ledingham@phys.strath.ac.u [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2010-04-15

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10{sup 12} V m{sup -1} with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  2. Fusion Yield Enhancement in Magnetized Laser-Driven Implosions

    International Nuclear Information System (INIS)

    Chang, P. Y.; Fiksel, G.; Hohenberger, M.; Knauer, J. P.; Marshall, F. J.; Betti, R.; Meyerhofer, D. D.; Seguin, F. H.; Petrasso, R. D.

    2011-01-01

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D 2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively.

  3. Diagnostic measurements related to laser driven inertial confinement fusion

    International Nuclear Information System (INIS)

    Campbell, D.E.

    1979-01-01

    Scientists at the Lawrence Livermore Laboratory have been conducting laser driven inertial confinement fusion experiments for over five years. The first proof of the thermonuclear burn came at the Janus target irradiation facility in the spring of 1975. Since that time three succeedingly higher energy facilities have been constructed at Livermore, Cyclops, Argus and Shiva, where increased fusion efficiency has been demonstrated. A new facility, called Nova, is now in the construction phase and we are hopeful that scientific break even (energy released compared to incident laser energy on target) will be demonstrated here in early 1980's. Projected progress of the Livermore program is shown

  4. Laser-driven polarized H/D sources and targets

    International Nuclear Information System (INIS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2005-01-01

    Traditionally, Atomic Beam Sources are used to produce targets of nuclear polarized hydrogen (H) or deuterium (D) for experiments using storage rings. Laser-Driven Sources (LDSs) offer a factor of 20-30 gain in the target thickness (however, with lower polarization) and may produce a higher overall figure of merit. The LDS is based on the technique of spin-exchange optical pumping where alkali vapor is polarized by absorbing circularly polarized laser photons. The H or D atoms are nuclear-polarized through spin-exchange collisions with the polarized alkali vapor and through subsequent hyperfine interactions during frequent H-H or D-D collisions

  5. Frequent flyer business travelers: major exposure hazards.

    Science.gov (United States)

    Tompkins, Olga S; Randolph, Susan A; Ostendorf, Judith S

    2005-02-01

    Bagshaw (2004) notes "the modern commercial aircraft cabin is maintained with adequate environmental control for the comfort of most healthy individuals" (p. 417). Occupational health nurses frequently deal with a population that may include unhealthy individuals or those with pre-existing conditions. It is critical for occupational health nurses to stay current with major hazards faced by frequent flyer business travelers to assist in identifying and preventing adverse health effects associated with these exposures.

  6. Laser-driven ion acceleration: methods, challenges and prospects

    Science.gov (United States)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  7. Dynamics of Laser-Driven Shock Waves in Solid Targets

    Science.gov (United States)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  8. Construction and characterization of a laser-driven proton beamline at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Busold, Simon

    2014-05-15

    The thesis includes the first experiments with the new 100 TW laser beamline of the PHELIX laser facility at GSI Darmstadt to drive a TNSA (Target Normal Sheath Acceleration) proton source at GSI's Z6 experimental area. At consecutive stages a pulsed solenoid has been applied for beam transport and energy selection via chromatic focusing, as well as a radiofrequency cavity for energy compression of the bunch. This novel laser-driven proton beamline, representing a central experiment of the German national LIGHT collaboration (Laser Ion Generation, Handling and Transport), has been used to create collimated, intense proton bunches at 10 MeV with 2.7% energy spread from the laser-driven source. Also, the feasibility of phase focusing experiments with this setup has been shown and simulations predict peak currents of 10{sup 10} protons/ns at this energy level. Furthermore, first quantitative measurements on the spectral properties of the also present co-moving electrons from such a proton source could be performed and their influence on the protons within the solenoid observed. Finally, permanent magnetic quadrupoles as an alternative first ion collimation system have been investigated experimentally.

  9. Time of Flight based diagnostics for high energy laser driven ion beams

    Science.gov (United States)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  10. Time of Flight based diagnostics for high energy laser driven ion beams

    International Nuclear Information System (INIS)

    Scuderi, V.; Margarone, D.; Schillaci, F.; Milluzzo, G.; Amico, A.G.; Cirrone, G.A.P.; Larosa, G.; Leanza, R.; Petringa, G.; Pipek, J.; Romano, F.; Alejo, A.; Doria, D.; Kar, S.; Borghesi, M.; Booth, N.; Green, J.; McKenna, P.; Padda, H.; Romagnani, L.

    2017-01-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  11. Design and optimization of a compact laser-driven proton beamline.

    Science.gov (United States)

    Scisciò, M; Migliorati, M; Palumbo, L; Antici, P

    2018-04-19

    Laser-accelerated protons, generated by irradiating a solid target with a short, energetic laser pulse at high intensity (I > 10 18  W·cm -2 ), represent a complementary if not outperforming source compared to conventional accelerators, due  to their intrinsic features, such as high beam charge and short bunch duration. However, the broadband energy spectrum of these proton sources is a bottleneck that precludes their use in applications requiring a more reduced energy spread. Consequently, in recent times strong effort has been put to overcome these limits and to develop laser-driven proton beamlines with low energy spread. In this paper, we report on beam dynamics simulations aiming at optimizing a laser-driven beamline - i.e. a laser-based proton source coupled to conventional magnetic beam manipulation devices - producing protons with a reduced energy spread, usable for applications. The energy range of investigation goes from 2 to 20 MeV, i.e. the typical proton energies that can be routinely obtained using commercial TW-power class laser systems. Our beamline design is capable of reducing the energy spread below 20%, still keeping the overall transmission efficiency around 1% and producing a proton spot-size in the range of 10 mm 2 . We briefly discuss the results in the context of applications in the domain of Cultural Heritage.

  12. A comparison of the Space Station version of ASTROMAG with two free-flyer versions

    International Nuclear Information System (INIS)

    Green, M.A.

    1992-06-01

    This Report compares the Space Station version of ASTROMAG with free-flyer versions of ASTROMAG which could fly on an Atlas lla rocket and a Delta rocket. Launch with either free-flyer imposes severe weight limits on the magnet and its cryogenic system. Both versions of ASTROMAG magnet which fly on free-flying satellites do not have to be charged more than once during the mission. This permits one to simplify the charging system and the cryogenic system. The helium ll pump loop which supplies helium to the gas cooled electrical leads can be eliminated in both of the free-flyer versions of the ASTROMAG magnet. This report describes the superconducting dipole moment correction coils which are necessary for the magnet to operate on a free-flying satellite

  13. Laser-driven injector of electrons for IOTA

    Science.gov (United States)

    Romanov, Aleksandr

    2017-03-01

    Fermilab is developing the Integrable Optics Test Accelerator (IOTA) ring for experiments on nonlinear integrable optics. The machine will operate with either electron beams of 150 MeV or proton beams of 2.5 MeV energies, respectively. The stability of integrable optics depends critically on the precision of the magnetic lattice, which demands the use of beam-based lattice measurements for optics correction. In the proton mode, the low-energy proton beam does not represent a good probe for this application; hence we consider the use of a low-intensity reverse-injected electron beam of matched momentum (70 MeV). Such an injector could be implemented with the use of laser-driven acceleration techniques. This report presents the consideration for a laser-plasma injector for IOTA and discusses the requirements determined by the ring design.

  14. Acceleration of polyethelene foils by laser driven ablation

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.; Burginyon, G.A.; Haas, R.A.

    1974-01-01

    The production of thermonuclear energy, by laser driven implosion of spherical DT shells, with achievable laser technology, requires the development of an efficient and stable implosion. Certain aspects of the acceleration of the spherical shells can be studied experimentally by irradiating thin, 5 to 25 μm, polyethelene foils. The results of foil acceleration experiments performed using a Nd:YAG-Glass laser capable of producing 150 J, 1 nsec pulses will be discussed. The dynamics of the accelerated foil, the ion blow off, high energy electron spectrum (6 to 180 keV), x-ray spectrum (1 to 150 keV) the spatial distribution of the x-ray emission, the laser beam focal spot energy distribution, the laser temporal pulse shape and spectrum for reflected and transmitted radiation have all been measured simultaneously. The results of these measurements are compared with detailed numerical simulations. (U.S.)

  15. Hydrodynamic analysis of laser-driven cylindrical implosions

    Energy Technology Data Exchange (ETDEWEB)

    Ramis, R. [E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid (Spain)

    2013-08-15

    Three-dimensional hydrodynamic simulations are performed to study laser-driven cylindrical implosions in the context of experiments (F. Perez et al., Plasma Phys. Controlled Fusion 51, 124035 (2009)) carried out at the Rutherford Appleton Laboratory in the framework of the HiPER project. The analysis is carried out by using the 3D version of the hydrocode MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475-505 (1988)). The influence of the main laser parameters on implosion performance and symmetry is consistently studied and compared with the results of 2D analysis. Furthermore, the effects of uncertainties in laser irradiation (pointing, focusing, power balance, and time jitter) on implosion performance (average peak density and temperature) are studied by means of statistical analysis.

  16. Laser-driven acceleration with Bessel and Gaussian beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Esarey, E.; Sprangle, P.

    1997-01-01

    The possibility of enhancing the energy gain in laser-driven accelerators by using Bessel laser beams is examined. Scaling laws are derived for the propagation length, acceleration gradient, and energy gain in various accelerators for both Gaussian and Bessel beam drivers. For equal beam powers, the energy gain can be increased by a factor of N 1/2 by utilizing a Bessel beam with N lobes, provided that the acceleration gradient is linearly proportional to the laser field. This is the case in the inverse free electron laser and the inverse Cherenkov accelerators. If the acceleration gradient is proportional to the square of the laser field (e.g., the laser wakefield, plasma beat wave, and vacuum beat wave accelerators), the energy gain is comparable with either beam profile. copyright 1997 American Institute of Physics

  17. Laser driven compression and neutron generation with spherical shell targets

    International Nuclear Information System (INIS)

    Campbell, P.M.; Hammerling, P.; Johnson, R.R.; Kubis, J.J.; Mayer, F.J.

    1977-01-01

    Laser-driven implosion experiments using DT-gas-filled spherical glass-shell targets are described. Neutron yields to 5 x 10 7 are produced from implosions of small ( -- 55 μm-diameter) targets spherically illuminated with an on-target laser power of 0.4 terawatt. Nuclear reaction product diagnostics, X-ray pinhole photographs, fast-ion spectra and X-ray measurements are used in conjunction with hydrodynamic computer code simulations to investigate the implosion phenomenology as well as the target corona evolution. Simulations using completely classical effects are not able to describe the full range of experimental data. Electron or radiation preheating may be required to explain some implosion measurements. (auth.)

  18. Laser-driven ICF experiments: Laboratory Report No. 223

    International Nuclear Information System (INIS)

    McCrory, R.L.

    1991-04-01

    Laser irradiation uniformity is a key issue and is treated in some detail. The basic irradiation uniformity requirements and practical ways of achieving these requirements are both discussed, along with two beam-smoothing techniques: induced spatial incoherence (ISI), and smoothing by spectral dispersion (SSD). Experiments to measure and control the irradiation uniformity are also highlighted. Following the discussion of irradiation uniformity, a brief review of coronal physics is given, including the basic physical processes and their experimental signatures, together with a summary of pertinent diagnostics and results from experiments. Methods of determining ablation rates and thermal transport are also described. The hydrodynamics of laser-driven targets must be fully understood on the basis of experiments. Results from implosion experiments, including a brief description of the diagnostics, are presented. Future experiments aimed at determining ignition scaling and demonstrating hydrodynamically equivalent physics applicable to high-gain designs

  19. Laser driven source of spin polarized atomic deuterium and hydrogen

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.

    1993-01-01

    Optical pumping of potassium atoms in the presence of a high magnetic field followed by spin exchange collisions with deuterium (hydrogen) is shown to yield a high flux of spin polarized atomic deuterium (hydrogen). The performance of the laser driven source has been characterized as a function of deuterium (hydrogen) flow rate, potassium density, pump laser power, and magnetic field. Under appropriate conditions, the authors have observed deuterium atomic polarization as high as 75% at a flow rate 4.2x10 17 atoms/second. Preliminary results suggest that high nuclear polarizations are obtained in the absence of weak field rf transitions as a result of a spin temperature distribution that evolves through frequent H-H (D-D) collisions

  20. Role of resistivity gradient in laser-driven ion acceleration

    Directory of Open Access Journals (Sweden)

    L. A. Gizzi

    2011-01-01

    Full Text Available It was predicted that, when a fast electron beam with some angular spread is normally incident on a resistivity gradient, magnetic field generation can occur that can inhibit beam propagation [A. R. Bell et al., Phys. Rev. E 58, 2471 (1998PLEEE81063-651X10.1103/PhysRevE.58.2471]. This effect can have consequences on the laser-driven ion acceleration. In the experiment reported here, we compare ion emission from laser irradiated coated and uncoated metal foils and we show that the ion beam from the coated target has a much smaller angular spread. Detailed hybrid numerical simulations confirm that the inhibition of fast electron transport through the resistivity gradient may explain the observed effect.

  1. Pulsed radiobiology with laser-driven plasma accelerators

    Science.gov (United States)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  2. What distinguishes passive recipients from active decliners of sales flyers

    DEFF Research Database (Denmark)

    Jensen, Birger Boutrup; Orquin, Jacob Lund; Bech-Larsen, Tino

    2014-01-01

    While sales flyer ad spending in Denmark has increased over the last decade ,the proportion of consumers declining to receive such flyers has been ever-increasing. To address this paradox, attitudinal and behavioural factors distinguishing passive recipients from active decliners of sales flyers ...... on the Internet.To reach the decliners, retailers could focus on the possibilities of the Internet, but to stop the trend of escalating numbers of decliners, retailers will have to address the perceived inconvenience and uselessness of sales flyers....

  3. Laser-driven magnetic reconnection in the multi-plasmoid regime

    Science.gov (United States)

    Totorica, Samuel; Abel, Tom; Fiuza, Frederico

    2017-10-01

    Magnetic reconnection is a promising candidate mechanism for accelerating the nonthermal particles associated with explosive astrophysical phenomena. Laboratory experiments are starting to probe multi-plasmoid regimes of relevance for particle acceleration. We have performed two- and three-dimensional particle-in-cell (PIC) simulations to explore particle acceleration for parameters relevant to laser-driven reconnection experiments. We have extended our previous work to explore particle acceleration in larger system sizes. Our results show the transition to plasmoid-dominated acceleration associated with the merging and contraction of plasmoids that further extend the maximum energy of the power-law tail of the particle distribution. Furthermore, we have modeled Coulomb collisions and will discuss the influence of collisionality on the plasmoid formation, dynamics, and particle acceleration.

  4. Design and construction of a DC high-brightness laser driven electron gun

    Science.gov (United States)

    Zhao, K.; Geng, R. L.; Wang, L. F.; Zhang, B. C.; Yu, J.; Wang, T.; Wu, G. F.; Song, J. H.; Chen, J. E.

    1996-02-01

    A DC high-brightness laser driven photoemissive electron gun is being developed at Peking University, in order to produce 50-100 ps electron bunches of high quality. The gun consists of a photocathode preparation chamber and a DC acceleration cavity. Different ways of fabricating photocathodes, such as chemical vapor deposition, ion beam implantation and ion beam enhanced deposition, can be adopted. The acceleration gap is designed with the aid of simulation codes EGUN and POISSON. The laser system is a mode-locked Nd-YAG oscillator proceeded by an amplifier at 10 Hz repetition rate, which can deliver three different wavelengths (1064/532/266 nm). The combination of a superconducting cavity with the photocathode preparation chamber is also discussed in this paper.

  5. Free-Flyer Capture - New Robotic Challenges from the International Space Station

    Science.gov (United States)

    Smith, C.; Seagram, J.

    The Japanese H-II Transfer Vehicle (HTV) will be the first free-flyer to visit the International Space Station (ISS) that will be captured by the Space Station Remote Manipulator System (SSRMS). Experience gained from the free-flyer captures completed previously by the Remote Manipulator System of the Space Shuttle has helped provide a foundation for the operational concept of capturing free-flyers. However, additional complications arise in the concept of free-flyer capture when carried out by the SSRMS from the ISS. Such issues include: ISS manoeuvrability and the difficulty of the ISS to quickly react to collision avoidance; current hardware and architecture design constraints of the SSRMS on-orbit; and HTV retreat and system limitations. This paper will discuss these issues and the numerous challenges they generate in trying to ensure that the safety of the ISS is maintained while trying to also guarantee the successful capture of the HTV; a vehicle containing potentially critical equipment and supplies for the ISS and its crew. As well, this paper will highlight the SSRMS system enhancements and innovative operational solutions that have enhanced the probability of mission success, and have been necessary to meet the failure tolerance and recovery requirements.

  6. A laser-driven source of polarized hydrogen and deuterium

    International Nuclear Information System (INIS)

    Young, L.; Holt, R.J.; Gilman, R.A.; Kowalczyk, R.; Coulter, K.

    1989-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin-exchange optical pumping is being developed. This source is designed to operate as an internal target in an electron storage ring for fundamental studies of spin-dependent structure of nuclei. It has the potential to exceed the flux from existing conventional sources (3 times 10 16/ s) by an order of magnitude. Currently, the source delivers hydrogen at a flux of 8 times 10 16 atoms/s with an atomic polarization of 24% and deuterium at 6 times 10 16 atoms/s with a polarization of 29%. Technical obstacles which have been overcome, with varying degrees of success are complete Doppler-coverage in the optical-pumping stage without the use of a buffer gas, wall-induced depolarization and radiation-trapping. Future improvements should allow achievement of the design goals of 4 times 10 17 atoms/s with a polarization of 50%. 8 refs., 2 figs

  7. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    Science.gov (United States)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  8. CO2 laser-driven Stirling engine. [space power applications

    Science.gov (United States)

    Lee, G.; Perry, R. L.; Carney, B.

    1978-01-01

    A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.

  9. Review on Recent Developments in Laser Driven Inertial Fusion

    Directory of Open Access Journals (Sweden)

    M. Ghoranneviss

    2014-01-01

    Full Text Available Discovery of the laser in 1960 hopes were based on using its very high energy concentration within very short pulses of time and very small volumes for energy generation from nuclear fusion as “Inertial Fusion Energy” (IFE, parallel to the efforts to produce energy from “Magnetic Confinement Fusion” (MCF, by burning deuterium-tritium (DT in high temperature plasmas to helium. Over the years the fusion gain was increased by a number of magnitudes and has reached nearly break-even after numerous difficulties in physics and technology had been solved. After briefly summarizing laser driven IFE, we report how the recently developed lasers with pulses of petawatt power and picosecond duration may open new alternatives for IFE with the goal to possibly ignite solid or low compressed DT fuel thereby creating a simplified reactor scheme. Ultrahigh acceleration of plasma blocks after irradiation of picosecond (PS laser pulses of around terawatt (TW power in the range of 1020 cm/s2 was discovered by Sauerbrey (1996 as measured by Doppler effect where the laser intensity was up to about 1018 W/cm2. This is several orders of magnitude higher than acceleration by irradiation based on thermal interaction of lasers has produced.

  10. Laser-driven ion acceleration with hollow laser beams

    International Nuclear Information System (INIS)

    Brabetz, C.; Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-01

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10 18  W cm −2 to 10 20  W cm −2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot

  11. Laser-driven ion acceleration with hollow laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Brabetz, C., E-mail: c.brabetz@gsi.de; Kester, O. [Goethe-Universität Frankfurt am Main, 60323 Frankfurt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Busold, S.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Cowan, T. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Deppert, O.; Jahn, D.; Roth, M. [Technische Universität Darmstadt, 64277 Darmstadt (Germany); Schumacher, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  12. Laser-driven nuclear-polarized hydrogen internal gas target

    International Nuclear Information System (INIS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-01-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10 18 atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells

  13. Fuel Cycle Requirements Code (FLYER). Summary report

    International Nuclear Information System (INIS)

    Gift, E.H.; Goode, W.D.

    1976-01-01

    Planning for, and the analysis of, the fuel requirements of the nuclear industry requires the ability to evaluate contingencies in many areas of the nuclear fuel cycle. The areas of nuclear fuel utilization, both uranium and plutonium, and of separative work requirements are of particular interest. The Fuel Cycle Requirements (FLYER) model has been developed to provide a flexible, easily managed tool for obtaining a comprehensive analysis of the nuclear fuel cycle. The model allows analysis of the interactions among the nuclear capacity growth rate, reactor technology and mix, and uranium and plutonium recycling capabilities. The model was initially developed as a means of analyzing nuclear growth contingencies with particular emphasis on the uranium feed and separative work requirements. It served to provide the planning group with analyses similar to the OPA's NUFUEL code which has only recently become available for general use. The model has recently been modified to account for some features of the fuel cycle in a more explicit manner than the NUFUEL code. For instance, the uranium requirements for all reactors installed in a given year are calculated for the total lifetime of those reactors. These values are cumulated in order to indicate the total uranium committed for reactors installed by any given year of the campaign. Similarly, the interactions in the back end of the fuel cycle are handled specifically, such as, the impacts resulting from limitations on the industrial capacity for reprocessing and mixed oxide fabrication of both light water reactor and breeder fuels. The principal features of the modified FLYER code are presented in summary form

  14. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    International Nuclear Information System (INIS)

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-01

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  15. Laser-driven hydrothermal process studied with excimer laser pulses

    Science.gov (United States)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  16. Solid hydrogen target for laser driven proton acceleration

    Science.gov (United States)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  17. Present status of laser driven fusion--fission energy systems

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.

    1978-01-01

    The potential of laser fusion driven hybrids to produce fissile fuel and/or electricity has been investigated in the laser program at the Lawrence Livermore Laboratory (LLL) for several years. Our earlier studies used neutronic methods of analysis to estimate hybrid performance. The results were encouraging, but it was apparent that a more accurate assessment of the hybrid's potential would require studies which treat the engineering, environmental, and economic issues as well as the neutronic aspects. More recently, we have collaborated with Bechtel and Westinghouse Corporations in two engineering design studies of laser fusion driven hybrid power plants. With Bechtel, we have been engaged in a joint effort to design a laser fusion driven hybrid which emphasizes fissile fuel production while the primary objective of our joint effort with Westinghouse has been to design a hybrid which emphasizes power production. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering their most important operational parameters

  18. Methods and system for controlled laser-driven explosive bonding

    Science.gov (United States)

    Rubenchik, Alexander M.; Farmer, Joseph C.; Hackel, Lloyd; Rankin, Jon

    2015-11-19

    A technique for bonding two dissimilar materials includes positioning a second material over a first material at an oblique angle and applying a tamping layer over the second martial. A laser beam is directed at the second material that generates a plasma at the location of impact on the second material. The plasma generates pressure that accelerates a portion of the second material to a very high velocity and towards the first material. The second material impacts the first material causing bonding of the two materials.

  19. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, F., E-mail: francesco.schillaci@eli-beams.eu [INFN-LNS, Catania (Italy); Maggiore, M. [INFN-LNL, Legnaro (Italy); Cirrone, G.A.P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F. [INFN-LNS, Catania (Italy); Scuderi, V. [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic)

    2016-11-21

    A first prototype of transport beam-line for laser-driven ion beams to be used for the handling of particles accelerated by high-power laser interacting with solid targets has been realized at INFN. The goal is the production of a controlled and stable beam in terms of energy and angular spread. The beam-line consists of two elements: an Energy Selection System (ESS), already realized and characterized with both conventional and laser-accelerated beams, and a Permanent Magnet Quadrupole system (PMQ) designed, in collaboration with SIGMAPHI (Fr), to improve the ESS performances. In this work a description of the ESS system and some results of its characterization with conventional beams are reported, in order to provide a complete explanation of the acceptance calculation. Then, the matching with the PMQ system is presented and, finally, the results of preliminary simulations with a realistic laser-driven energy spectrum are discussed demonstrating the possibility to provide a good quality beam downstream the systems.

  20. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    International Nuclear Information System (INIS)

    Schmid, Karl

    2009-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10 19 W/cm 2 propagates through the plasma with an electron density of 2 x 10 19 cm -3 and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 μm to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The electron accelerator

  1. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  2. Comparison study of in vivo dose response to laser-driven versus conventional electron beam.

    Science.gov (United States)

    Oppelt, Melanie; Baumann, Michael; Bergmann, Ralf; Beyreuther, Elke; Brüchner, Kerstin; Hartmann, Josefin; Karsch, Leonhard; Krause, Mechthild; Laschinsky, Lydia; Leßmann, Elisabeth; Nicolai, Maria; Reuter, Maria; Richter, Christian; Sävert, Alexander; Schnell, Michael; Schürer, Michael; Woithe, Julia; Kaluza, Malte; Pawelke, Jörg

    2015-05-01

    The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles.

  3. TOF technique for laser-driven proton beam diagnostics for the ELIMED beamline

    International Nuclear Information System (INIS)

    Milluzzo, G.; Scuderi, V.; Amico, A.G.; Cirrone, G.A.P.; Cuttone, G.; Larosa, G.; Leanza, R.; Petringa, G.; Pipek, J.; Romano, F.; Napoli, M. De; Dostal, J.; Margarone, D.; Schillaci, F.; Velyhan, A.

    2017-01-01

    The Time of Flight (TOF) method for laser-driven ion beam diagnostics has been extensively investigated so far for low energy ion diagnostics and several works, reported in literature [1,2], have shown its efficiency in the measurement of particle beam characteristics such as ion species, energy spectrum and current. Moreover, such technique allows obtaining a shot-to-shot on-line monitoring of optically accelerated particles, necessary to control the reproducibility of the accelerated beam and to deliver a beam suitable for any kind of applications. For this reason, the ELIMED beamline [3,4], which will be entirely developed at INFN-LNS and installed in 2017 within the ion beamline ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) experimental hall at ELI-Beamlines in Prague, will be equipped with an on-line diagnostics system composed by silicon carbide and diamond detectors, using the TOF technique. In this contribution, the procedure developed for TOF signal analysis will be briefly reported.

  4. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine; Assmann, Walter [Ludwig-Maximilians Universitaet Muenchen (Germany); Kneschaurek, Peter; Wilkens, Jan [MRI, Technische Universitaet Muenchen (Germany)

    2011-07-01

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 10{sup 7} particles /cm{sup 2}/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  5. Laser-driven short-duration heating angioplasty: dilatation performance in cadaver atherosclerotic femoral arteries

    Science.gov (United States)

    Shimazaki, Natsumi; Naruse, Sho; Arai, Tsunenori; Imanishi, Nobuaki; Aiso, Sadakazu

    2013-03-01

    The purpose of this study was to investigate the artery dilatation performance of the short-duration heating balloon catheter in cadaver stenotic arteries. We designed a prototype short-duration heating balloon catheter that can heat artery media to around 60 °C in 15-25 s by a combination of laser-driven heat generation and continuous fluid irrigation in the balloon. We performed ex vivo short-duration heating dilatation in the cadaver atherosclerotic femoral arteries (initial percent diameter stenosis was 36-98%), with the maximum balloon temperature of 65+/-5 °C, laser irradiation duration of 25 s, and balloon dilatation pressure of 3.5 atm. The artery lumen configurations before and after the dilatations were assessed with a commercial IVUS system. After the short-duration heating dilatations, the percent diameter stenosis was reduced below 30% without any artery tears or dissections. We estimated that the artery media temperature was raised to around 60 °C in which plaque thickness was below 0.8 mm by a thermal conduction calculation. The estimated maximum temperature in artery adventitia and surrounding tissue was up to 45 °C. We found that the short-duration heating balloon could sufficiently dilate the cadaver stenotic arteries, without thermal injury in artery adventitia and surroundings.

  6. Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device

    International Nuclear Information System (INIS)

    Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Gekelman, W.; Niemann, C.; Winske, D.

    2014-01-01

    The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilities is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations

  7. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.

  8. Measurement of pzz of the laser-driven polarized deuterium target

    International Nuclear Information System (INIS)

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S.; Buchholz, M.; Neal, J.; van den Brand, J.F.J.

    1993-01-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T → n + 4 He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described

  9. Studies on a laser driven photoemissive high-brightness electron source and novel photocathodes

    International Nuclear Information System (INIS)

    Geng Rongli; Song Jinhu; Yu Jin

    1997-01-01

    A laser driven photoemissive high-brightness electron source at Beijing University is reported. Through a DC accelerating gap of 100 kV voltage, the device is capable of delivering high-brightness electron beam of 35-100 ps pulse duration when irradiated with a mode-locked YAG laser. The geometry of the gun is optimized with the aid of simulation codes EGUN and POISSON. The results of experimental studies on ion implanted photocathode and cesium telluride photocathode are given. The proposed laser driven superconducting RF gun is also discussed

  10. Laser driven shock wave experiments for equation of state studies at megabar pressures

    CERN Document Server

    Pant, H C; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 mu m wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments.

  11. Bistable flapping of flexible flyers in oscillatory flow

    Science.gov (United States)

    Huang, Yangyang; Kanso, Eva

    2016-11-01

    Biological and bio-inspired flyers move by shape actuation. The direct control of shape variables for locomotory purposes is well studied. Less is known about indirect shape actuation via the fluid medium. Here, we consider a flexible Λ-flyer in oscillatory flow that is free to flap and rotate around its fixed apex. We study its motion in the context of the inviscid vortex sheet model. We first analyze symmetric flapping about the vertical axis of gravity. We find that there is a finite value of the flexibility that maximizes both the flapping amplitude and elastic energy storage. Our results show that rather than resonance, the flyer relies on fluidic effects to optimize these two quantities. We then perturb the flyer away from the vertical and analyze its stability. Four distinct types of rolling behavior are identified: mono-stable, bistable, bistable oscillatory rotations and chaotic dynamics. We categorize these types of behavior in terms of the flyer's and flow parameters. In particular, the transition from mono-stable to bistable behavior occurs at a constant value of the product of the flow amplitude and acceleration. This product can be interpreted as the ratio of fluidic drag to gravity, confirming the fluid role in this transition.

  12. Fingerprints as a Proxy for Readership of Sales Flyers

    DEFF Research Database (Denmark)

    Schmidt, Marcus J.; Krause, Niels; Solgaard, Hans Stubbe

    2007-01-01

      Can readership of sales flyers and free newspapers be estimated by revealing fingerprints? In this paper we report the results of an empirical analysis based on 4604 flyer-pages conducted to assess the feasibility of the method. Results are encouraging, and indicate that the method presently may...... serve as a conservative estimate of readership. Advertising management may thus use the fingerprints-approach as an alternative audience measure and thereby assess the convergent validity of the traditional interview method and the fingerprint approach. While the fingerprint method appears valid...

  13. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Hallouin, M.; Romain, J.P. (GRECO ILM, Laboratoire d' Enegetique et Detonique, ENSMA, 86 - Poitiers (France)); Fabbro, R.; Faral, B. (GRECO ILM, Laboratoire de Physique des Milieux Ionises, Ecole Polytechnique, 91 - Palaiseau (France))

    1984-11-01

    Laser-driven shock pressures up to 5 TPa at 0.26 ..mu..m wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil.

  14. UV laser-driven shock-wave experiments at ultrahigh-pressures up to 5 TPa

    International Nuclear Information System (INIS)

    Cottet, F.; Hallouin, M.; Romain, J.P.; Fabbro, R.; Faral, B.

    1984-01-01

    Laser-driven shock pressures up to 5 TPa at 0.26 μm wavelenth have been evaluated from measurements of shock velocity through thin metallic foils (Al, Au, Cu) by streak camera records of shock luminosity at the near face of the foil

  15. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    International Nuclear Information System (INIS)

    Favalli, Andrea; Roth, Markus

    2015-01-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  16. Laser-driven acceleration of protons from hydrogenated annealed silicon targets

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Margarone, Daniele; Krása, Josef; Velyhan, Andriy; Serra, E.; Bellutti, P.; Scarduelli, G.; Calliari, L.; Krouský, Eduard; Rus, Bedřich; Dapor, M.

    2010-01-01

    Roč. 92, č. 3 (2010), 34008/1-34008/5 ISSN 0295-5075 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-driven acceleration * laser ablation * plasma-material interactions * boundary layer effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.753, year: 2010

  17. Conceptual design of a bright electron injector based on a laser-driven photocathode rf electron gun

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Chen, Y.J.; Hopkins, D.; Kim, K.J.; Kung, A.; Miller, R.; Sessler, A.; Young, T.

    1988-09-01

    Conceptual design of a bright electron injector for the 1 GeV high gradient test experiment, envisaged by the LLNL-SLAC-LBL collaboration on the Relativistic Klystron is presented. The design utilizes a high-brightness laser-driven rf photocathode electron gun, similar to the pioneering LANL early studies in concept (different parametrically however), together with achromatic magnetic bunching and transport systems and diagnostics. The design is performed with attention to possible use in an FEL as well. A simple but realistic analytic model including longitudinal and transverse space-charge and rf effects and extensive computer simulation form the basis of the parametric choice for the source. These parameters are used as guides for the design of the picosecond laser system and magnetic bunching section. 4 refs., 5 figs., 2 tabs

  18. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher P., E-mail: cj0810@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brenner, Ceri M. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Stitt, Camilla A. [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Armstrong, Chris; Rusby, Dean R. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mirfayzi, Seyed R. [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wilson, Lucy A. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Alejo, Aarón; Ahmed, Hamad [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Allott, Ric [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Butler, Nicholas M.H. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Higginson, Adam [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Murphy, Christopher [Department of Physics, University of York, York YO10 5DD (United Kingdom); Notley, Margaret [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Paraskevoulakos, Charilaos [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Jowsey, John [Ground Floor North B582, Sellafield Ltd, Seascale, Cumbria CA20 1PG (United Kingdom); and others

    2016-11-15

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10{sup 7}–10{sup 9} neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm{sup 2} scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  19. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    International Nuclear Information System (INIS)

    Jones, Christopher P.; Brenner, Ceri M.; Stitt, Camilla A.; Armstrong, Chris; Rusby, Dean R.; Mirfayzi, Seyed R.; Wilson, Lucy A.; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M.H.; Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John

    2016-01-01

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10"7–10"9 neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm"2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  20. Position Control of an X4-Flyer Using a Tether

    Directory of Open Access Journals (Sweden)

    Yusuke Ouchi

    2016-05-01

    Full Text Available In Japan, aging of infrastructures, such as roads,bridges, and water and sewer services, etc. poses a problem, andit is required to extend the life-span of such infrastructures bymaintenance. Among infrastructures, especially bridges areperiodically inspected by short range visual observations, whichcheck the damage and deterioration of the surface. However,since there are some cases where the short range visualobservation is difficult, an alternative method is required so as toreplace the short range visual observation with it. So, "X4-Flyer"is very attractive because of realizing a movement at high altitudeeasily. The objective of this study is to develop a tethered X4-Flyer, so that the conventional short range visual observation ofbridges is replaced by it. In this paper, a method for themeasurement and control of the position is described by using atether for controlling the position of the X4-Flyer. In addition, itis checked whether the tethered X4-Flyer can control the positionusing the proposed method or not, letting it fly in a state in whicha tether is being attached

  1. Position Control of an X4-Flyer Using a Tether

    Directory of Open Access Journals (Sweden)

    , Keigo Watanabe

    2014-10-01

    Full Text Available In Japan, aging of infrastructures, such as roads, bridges, and water and sewer services, etc. poses a problem, and it is required to extend the life-span of such infrastructures by maintenance. Among infrastructures, especially bridges are periodically inspected by short range visual observations, which check the damage and deterioration of the surface. However, since there are some cases where the short range visual observation is difficult, an alternative method is required so as to replace the short range visual observation with it. So, "X4-Flyer" is very attractive because of realizing a movement at high altitude easily. The objective of this study is to develop a tethered X4- Flyer, so that the conventional short range visual observation of bridges is replaced by it. In this paper, a method for the measurement and control of the position is described by using a tether for controlling the position of the X4-Flyer. In addition, it is checked whether the tethered X4-Flyer can control the position using the proposed method or not, letting it fly in a state in which a tether is being attached.

  2. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  3. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  4. Evaluation of laser-driven ion energies for fusion fast-ignition research

    Science.gov (United States)

    Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.

    2017-10-01

    We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.

  5. An online, energy-resolving beam profile detector for laser-driven proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Karsch, L. [OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden (Germany)

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  6. LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1990-01-01

    We present the results of two-dimensional LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability. Our growth rates and eigenmodes for classical two- and three-fluid problems agree closely with the exact analytic expressions. We illustrate in several examples how perturbations feed through from one interface to another. For targets driven by a 1/4-μm laser at I=2x10 14 W/cm 2 our growth rates are 40--80 % of the classical case rates for wavelengths between 5 and 100 μm. We find that radiation transport has a stabilizing effect on the Rayleigh-Taylor instability, particularly at high intensities. A brief comparison with a laser-driven experiment is also presented

  7. Laser driven shock wave experiments for equation of state studies at megabar pressures

    International Nuclear Information System (INIS)

    Pant, H C; Shukla, M; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 μm wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments

  8. Laser driven inertial fusion: the physical basis of current and recently proposed ignition experiments

    International Nuclear Information System (INIS)

    Atzeni, S

    2009-01-01

    A brief overview of the inertial fusion principles and schemes is presented. The bases for the laser driven ignition experiments programmed for the near future at the National Ignition Facility are outlined. These experiments adopt indirect-drive and aim at central ignition. The principles of alternate approaches, based on direct-drive and different routes to ignition (fast ignition and shock ignition) are also discussed. Gain curves are compared and discussed.

  9. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  10. Construction and characterization of a laser-driven proton beamline at GSI

    OpenAIRE

    Busold, Simon

    2014-01-01

    The thesis includes the first experiments with the new 100 TW laser beamline of the PHELIX laser facility at GSI Darmstadt to drive a TNSA (Target Normal Sheath Acceleration) proton source at GSI's Z6 experimental area. At consecutive stages a pulsed solenoid has been applied for beam transport and energy selection via chromatic focusing, as well as a radiofrequency cavity for energy compression of the bunch. This novel laser-driven proton beamline, representing a central experiment of the...

  11. Design and Status of the ELIMED Beam Line for Laser-Driven Ion Beams

    Directory of Open Access Journals (Sweden)

    G. A. Pablo Cirrone

    2015-08-01

    Full Text Available Charged particle acceleration using ultra-intense and ultra-short laser pulses has gathered a strong interest in the scientific community and it is now one of the most attractive topics in the relativistic laser-plasma interaction research. Indeed, it could represent the future of particle acceleration and open new scenarios in multidisciplinary fields, in particular, medical applications. One of the biggest challenges consists of using, in a future perspective, high intensity laser-target interaction to generate high-energy ions for therapeutic purposes, eventually replacing the old paradigm of acceleration, characterized by huge and complex machines. The peculiarities of laser-driven beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles, due to the wide energy spread, the angular divergence and the extremely intense pulses. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical applications beamline, developed by INFN-LNS (Catania, Italy and installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams in multidisciplinary applications. ELIMED will represent the first user’s open transport beam line where a controlled laser-driven ion beam will be used for multidisciplinary and medical studies. In this paper, an overview of the beamline, with a detailed description of the main transport elements, will be presented. Moreover, a description of the detectors dedicated to diagnostics and dosimetry will be reported, with some preliminary results obtained both with accelerator-driven and laser-driven beams.

  12. New applications of laser-driven neutron sources in the car industry

    International Nuclear Information System (INIS)

    Kakeno, Mitsutaka

    2015-01-01

    New applications of LDNS (Laser-Driven Neutron Sources) are described. One of them is ib-DATA (in-beam Double Activation Tracer Analysis) with which we can measure mean drift velocity and mass flow rate in a variety of fluid. In ib-DATA, LDNS with very light and compact beam-head will be constructed to shoot pulsed neutrons into the fluid in pinpoint. (author)

  13. Targeted femtosecond laser driven drug delivery within HIV-1 infected cells: In-vitro studies [conference paper

    CSIR Research Space (South Africa)

    Maphanga, Charles

    2017-01-01

    Full Text Available of SPIE 10062, Optical Interactions with Tissue and Cells XXVIIISan Francisco, California, USA, 26 January - 03 February 2017 Targeted femtosecond laser driven drug delivery within HIV-1 infected cells: In-vitro studies Charles Maphanga 1, 2...

  14. Plasma jet generation by flyer disk collision with massive target

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Gus'kov, S. Yu.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Kálal, M.; Pisarczyk, P.

    2007-01-01

    Roč. 37, č. 1 (2007), s. 1-10 ISSN 0078-5466 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : Plasma jets * flyer targets * laser targets * laser ablation * shock waves * craters * PALS facility Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.284, year: 2007

  15. Laser - driven high - energy ions and their application to inertial confinement fusion

    International Nuclear Information System (INIS)

    Borghesi, M.

    2007-01-01

    The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short and intense laser pulses with solid targets has been one of the most important results of recent laser-plasma research [1]. The acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large (∼TV/m) space charge fields at the target interfaces. The properties of laser-driven ion beams (high brightness and laminarity, high-energy cut-off, ultrashort burst duration) distinguish them from lower energy ions accelerated in earlier experiments at moderate laser intensities, and compare favourably with those of 'conventional' accelerator beams. In view of these properties, laser-driven ion beams can be employed in a number of innovative applications in the scientific, technological and medical areas. We will discuss in particular aspects of interest to their application in an Inertial Confinement Fusion context. Laser-driven protons are indeed being considered as a possible trigger for Fast Ignition of a precompressed fuel.[2] Recent results relating to the optimization of beam energy and focusing will be presented. These include the use of laser-driven impulsive fields for proton beam collimation and focusing [3], and the investigation of acceleration in presence of finite-scale plasma gradient. Proposed target developments enabling proton production at high repetition rate will also be discussed. Another important area of application of proton beams is diagnostic use in a particle probing arrangement for detection of density non-homogeneities [4] and electric/magnetic fields [5]. We will discuss the use of laser-driven proton beams for the diagnosis of magnetic and electric fields in planar and hohlraum targets and for the detection of fields associated to relativistic electron propagation through dense matter, an issue of high relevance for electron driven Fast Ignition. [1] M

  16. Laser-driven polarized hydrogen and deuterium internal targets

    International Nuclear Information System (INIS)

    Jones, C.E.; Fedchak, J.A.; Kowalczyk, R.S.

    1995-01-01

    After completing comprehensive tests of the performance of the source with both hydrogen and deuterium gas, we began tests of a realistic polarized deuterium internal target. These tests involve characterizing the atomic polarization and dissociation fraction of atoms in a storage cell as a function of flow and magnetic field, and making direct measurements of the average nuclear tensor polarization of deuterium atoms in the storage cell. Transfer of polarization from the atomic electron to the nucleus as a result of D-D spin-exchange collisions was observed in deuterium, verifying calculations suggesting that high vector polarization in both hydrogen and deuterium can be obtained in a gas in spin temperature equilibrium without inducing RF transitions between the magnetic substates. In order to improve the durability of the system, the source glassware was redesigned to simplify construction and installation and eliminate stress points that led to frequent breakage. Improvements made to the nuclear polarimeter, which used the low energy 3 H(d,n) 4 He reaction to analyze the tensor polarization of the deuterium, included installing acceleration lenses constructed of wire mesh to improve pumping conductance, construction of a new holding field coil, and elimination of the Wien filter from the setup. These changes substantially simplified operation of the polarimeter and should have reduced depolarization in collisions with the wall. However, when a number of tests failed to show an improvement of the nuclear polarization, it was discovered that extended operation of the system with a section of teflon as a getter for potassium caused the dissociation fraction to decline with time under realistic operating conditions, suggesting that teflon may not be a suitable material to eliminate potassium from the target. We are replacing the teflon surfaces with drifilm-coated ones and plan to continue tests of the polarized internal target in this configuration

  17. ELIMED: a new hadron therapy concept based on laser driven ion beams

    Science.gov (United States)

    Cirrone, Giuseppe A. P.; Margarone, Daniele; Maggiore, Mario; Anzalone, Antonello; Borghesi, Marco; Jia, S. Bijan; Bulanov, Stepan S.; Bulanov, Sergei; Carpinelli, Massimo; Cavallaro, Salvatore; Cutroneo, Mariapompea; Cuttone, Giacomo; Favetta, Marco; Gammino, Santo; Klimo, Ondrej; Manti, Lorenzo; Korn, Georg; La Malfa, Giuseppe; Limpouch, Jiri; Musumarra, Agatino; Petrovic, Ivan; Prokupek, Jan; Psikal, Jan; Ristic-Fira, Aleksandra; Renis, Marcella; Romano, Francesco P.; Romano, Francesco; Schettino, Giuseppe; Schillaci, Francesco; Scuderi, Valentina; Stancampiano, Concetta; Tramontana, Antonella; Ter-Avetisyan, Sargis; Tomasello, Barbara; Torrisi, Lorenzo; Tudisco, Salvo; Velyhan, Andriy

    2013-05-01

    Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up

  18. Science, technology, and the industrialization of laser-driven processes

    International Nuclear Information System (INIS)

    Davis, J.I.; Paisner, J.A.

    1985-05-01

    Members of the laser program at Lawrence Livermore National Laboratory (LLNL) reviewed potential applications of lasers in industry, some of which are: isotope separation; cleanup of radioactive waste; trace impurity removal; selective chemical reactions; photochemical activation or dissociation of gases; control of combustion particulates; crystal and powder chemistry; and laser induced biochemistry. Many of these areas are currently under active study in the community. The investigation at LLNL focused on laser isotope separation of atomic uranium because of the large demand (> 1000 tonnes/year) and high product enrichment price (> $600/kg of product) for material used as fuel in commercial light-water nuclear power reactors. They also believed that once the technology was fully developed and deployed, it could be applied directly to separating many elements economically on an industrial scale. The Atomic Vapor Laser Isotope Separation (AVLIS) program at LLNL has an extensive uranium and plutonium program of >$100 M in FY85 and a minor research program for other elements. This report describes the AVLIS program conducted covering the following topics; candidate elements; separative work units; spectroscopic selectivety; major systems; facilities; integrated process model;multivariable sensitivety studies; world market; and US enrichment enterprise. 23 figs. (AT)

  19. New laser-driven nuclear excitation studies. Concepts and proposals

    International Nuclear Information System (INIS)

    Drska, L.; Hanus, V.; Sinor, M.

    2010-01-01

    Complete text of publication follows. There has been a great interest in the processes of nuclear excitation and triggering in high-parameter laser-produced plasmas in recent years. A series of papers devoted to the theory of this event has been published. Several experiments have already been attempted to study the excitation of the lowest nuclear levels of medium / high-Z nuclides (Ta 181, U 235 etc.), all the same unsuccessful or inconclusive. In the first part of this paper, the situation will be overviewed and analysis of the reasons of this unsatisfactory state of affairs will be accomplished. Prospects of the possible solving of the problem by using novel / projected laser facilities (esp. LIL / PETAL, XFEL, ELI-Phase) will be outlined. Potential of the future ELI Beam Facility in the Czech Republic in this area will be stressed. In the second part, some proposals for the excitation and triggering studies using combined high-power and high-intensity LIL / PETAL system (2012) with multi-kilojoule and multi-petawatt parameters will be discussed. Results of preliminary simulations supporting the thinking about potential projects will be shown and conditions essential for meaningful effort in this area will be analyzed. Problems of realistic simulations of such experiments will be addressed. Completely novel chances for the excitation / triggering studies would be started by constructed / projected facilities XFEL (coherent X-rays ∼ 12 keV, 2014) and ELI (multi-petawatt Phase 1, 2015). Application of intense / coherent high-energy X-rays and / or intense electron / ion beams allows new experimental schemes, extends the range of nuclides to be studied and (maybe) will enable to test some new triggering methods. In the last part of the presentation some possibilities in point (esp. for ELI Beamlines), will be drawn up. Acknowledgements. This research has been supported by the Research Program no. 6840770022 of the Ministry of Education, Youth and Sports of the

  20. Laser-driven proton beams applied to radiobiological experiments

    International Nuclear Information System (INIS)

    Yogo, Akifumi

    2012-01-01

    The proton accelerators based on the high intensity laser system generate shorter and higher pulse beams compared to the conventional particle accelerators used for the cancer therapy. To demonstrate the radiobiological effects of the new proton beams, the program to develop a biological irradiation instrument for the DNA double-strand break was started in the fiscal year 2008. A prototype instrument was made by making use of the J-KAREN (JAEA Kansai Advanced Relativistic Engineering) laser beam. Polyimide thin film targets were used to irradiate A-549 cells. The DNA double-strand break was tested by the fluorescence spectrometry. In the second year the quantitative yield of the DNA double-strand break and its proton dose dependence were measured. The results indicated that they were comparative to the cases of the conventional particle accelerators. In the fiscal year of 2010 the design of the magnetic field for the energy selection has been changed. The new irradiation instrument, the main part of which is only about 40 cm in length as illustrated in the figure, has been constructed and tested. The experiment has been carried out using the human cancer cells (HSG) and the relative biological effectiveness (RBE) has been quantitatively evaluated by the colony assay for varied distribution of the proton beam energy. The survival fractions plotted against the dose were in good agreement with the case of 3 He beam. RBE was found not to be changed up to 1x10 7 Gy/s. Stability of the energy peak, half width and the proton density has been confirmed for this very compact instrument. (S. Funahashi)

  1. Laser-Driven Calorimetry Measurements of Petroleum and Biodiesel Fuels.

    Science.gov (United States)

    Presser, Cary; Nazarian, Ashot; Millo, Amit

    2018-02-01

    Thermochemical characteristics were determined for several National Institute of Standards and Technology standard-reference-material petroleum and biodiesel fuels, using a novel laser-heating calorimetry technique. Measurements focused on the sample thermal behavior, specific heat release rate, and total specific heat release. The experimental apparatus consists of a copper sphere-shaped reactor mounted within a chamber, along with laser-beam-steering optical components, gas-supply manifold, and a computer-controlled data-acquisition system. At the center of the reactor, liquid sample is injected onto a copper pan substrate that rests and is in contact with a fine-wire thermocouple. A second thermocouple is in contact with the inner reactor sphere surface. The reactor is heated from opposing sides by a continuous-wave, near-infrared laser to achieve nearly uniform sample temperature. The change in temperature with time (thermogram) is recorded for both thermocouples, and compared to a baseline thermogram (without liquid in the pan). The thermograms are then processed (using an equation for thermal energy conservation) for the thermochemical information of interest. The results indicated that the energy reaching the pan is dominated by radiative heat transfer processes, while the dominant thermal process for the reactor sphere is the stored (internal) thermal energy within the sphere material. Sufficient laser power is necessary to detect the fuel thermal-related characteristics, and the required power can differ from one fuel to another. With sufficient laser power, one can detect the preferential vaporization of the lighter and heavier fuel fractions. The total specific heat release obtained for the different conventional and biodiesel fuels used in this investigation were similar to the expected values available in the literature.

  2. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Markus [Technische Univ. Darmstadt (Germany); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glenzer, Siegfried [Stanford Univ., CA (United States); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siders, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haefner, Constantin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-19

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron source the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >1010 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  3. Economic modeling and parametric studies for SOMBRERO - a laser-driven IFE power plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Rosenberg, C.W. Jr. von

    1992-01-01

    Economic modeling and parametric studies for the SOMBRERO laser-driven inertial fusion energy (IFE) electric power plant have been conducted to determine the most attractive operating point. Cost scaling relationships have been developed and integrated into a cost-performance model of the plant. The figure-of-merit for determining the most attractive design point is the constant-dollar cost of electricity. Results are presented as a function of the driver energy. The sensitivity of the results to variations in the assumed net electric output and target performance is also examined

  4. Third-harmonic generation of a laser-driven quantum dot with impurity

    Science.gov (United States)

    Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-06-01

    The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.

  5. Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises

    Institute of Scientific and Technical Information of China (English)

    Jin Guo-Xiang; Zhang Liang-Ying; Cao Li

    2009-01-01

    By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.

  6. Selection of high-brightness, laser-driven cathodes for electron accelerators and FELS

    International Nuclear Information System (INIS)

    Oettinger, P.E.

    1987-01-01

    Very intense, low emittance pulsed beams of electrons can be generated from laser-driven cathodes either by thermionic- or photo-emission. Several hundreds of amperes of electrons per square centimeter were observed for pulse lengths up to 50 ns. A normalized beam brightness of 10 7 A/cm 2 /rad 2 has been measured. These beams can be emission-gated at the cathode surface by modulating the laser-beam. Such beam bunching will generate picosecond-to-microsecond-long pulses at the source. A variety of cathodes are described, and a method of selection for specific applications is presented

  7. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Santos, J.J.; Bailly-Grandvaux, M.; Giuffrida, Lorenzo; Forestier-Colleoni, P.; Fujioka, H.; Zhang, Z.; Korneev, P.; Bouillaud, R.; Dorard, S.; Batani, D.; Chevrot, M.; Cross, J. E.; Crowston, R.; Dubois, J.L.; Gazave, J.; Gregori, G.; d'Humieres, E.; Hulin, S.; Ishihara, K.; Kojima, S.; Loyez, E.; Marqués, J.-R.; Morace, A.; Nicolaï, P.; Peyrusse, O.; Poyé, A.; Raffestin, D.; Ribolzi, J.; Roth, M.; Schaumann, G.; Serres, F.; Tikhonchuk, V.T.; Vacar, P.; Woolsey, N.

    2015-01-01

    Roč. 17, Aug (2015), s. 1-10, č. článku 083051. ISSN 1367-2630 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : strong magnetic field * laser-driven coil targets * laser-plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.570, year: 2015

  8. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P., E-mail: patrick.lee@u-psud.fr [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Audet, T.L. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Lehe, R.; Vay, J.-L. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Maynard, G.; Cros, B. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  9. New method for laser driven ion acceleration with isolated, mass-limited targets

    International Nuclear Information System (INIS)

    Paasch-Colberg, T.; Sokollik, T.; Gorling, K.; Eichmann, U.; Steinke, S.; Schnuerer, M.; Nickles, P.V.; Andreev, A.; Sandner, W.

    2011-01-01

    A new technique to investigate laser driven ion acceleration with fully isolated, mass-limited glass spheres with a diameter down to 8μm is presented. A Paul trap was used to prepare a levitating glass sphere for the interaction with a laser pulse of relativistic intensity. Narrow-bandwidth energy spectra of protons and oxygen ions have been observed and were attributed to specific acceleration field dynamics in case of the spherical target geometry. A general limiting mechanism has been found that explains the experimentally observed ion energies for the mass-limited target.

  10. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  11. Energy Efficiency of an Intracavity Coupled, Laser-Driven Linear Accelerator Pumped by an External Laser

    International Nuclear Information System (INIS)

    Neil Na, Y.C.; Siemann, R.H.; SLAC; Byer, R.L.; Stanford U., Phys. Dept.

    2005-01-01

    We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired

  12. A unified modeling approach for physical experiment design and optimization in laser driven inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiyan [Mechatronics Engineering School of Guangdong University of Technology, Guangzhou 510006 (China); Huang, Yunbao, E-mail: Huangyblhy@gmail.com [Mechatronics Engineering School of Guangdong University of Technology, Guangzhou 510006 (China); Jiang, Shaoen, E-mail: Jiangshn@vip.sina.com [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Jing, Longfei, E-mail: scmyking_2008@163.com [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Tianxuan, Huang; Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Highlights: • A unified modeling approach for physical experiment design is presented. • Any laser facility can be flexibly defined and included with two scripts. • Complex targets and laser beams can be parametrically modeled for optimization. • Automatically mapping of laser beam energy facilitates targets shape optimization. - Abstract: Physical experiment design and optimization is very essential for laser driven inertial confinement fusion due to the high cost of each shot. However, only limited experiments with simple structure or shape on several laser facilities can be designed and evaluated in available codes, and targets are usually defined by programming, which may lead to it difficult for complex shape target design and optimization on arbitrary laser facilities. A unified modeling approach for physical experiment design and optimization on any laser facilities is presented in this paper. Its core idea includes: (1) any laser facility can be flexibly defined and included with two scripts, (2) complex shape targets and laser beams can be parametrically modeled based on features, (3) an automatically mapping scheme of laser beam energy onto discrete mesh elements of targets enable targets or laser beams be optimized without any additional interactive modeling or programming, and (4) significant computation algorithms are additionally presented to efficiently evaluate radiation symmetry on the target. Finally, examples are demonstrated to validate the significance of such unified modeling approach for physical experiments design and optimization in laser driven inertial confinement fusion.

  13. Radiation reaction effect on laser driven auto-resonant particle acceleration

    International Nuclear Information System (INIS)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-01-01

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities

  14. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    Science.gov (United States)

    Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall

    2017-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.

  15. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly.

    Science.gov (United States)

    Tikhonchuk, V T; Bailly-Grandvaux, M; Santos, J J; Poyé, A

    2017-08-01

    Recent experiments are showing possibilities to generate strong magnetic fields on the excess of 500 T with high-energy nanosecond laser pulses in a compact setup of a capacitor connected to a single turn coil. Hot electrons ejected from the capacitor plate (cathode) are collected at the other plate (anode), thus providing the source of a current in the coil. However, the physical processes leading to generation of currents exceeding hundreds of kiloamperes in such a laser-driven diode are not sufficiently understood. Here we present a critical analysis of previous results and propose a self-consistent model for the high current generation in a laser-driven capacitor-coil assembly. It accounts for three major effects controlling the diode current: the space charge neutralization, the plasma magnetization between the capacitor plates, and the Ohmic heating of the external circuit-the coil-shaped connecting wire. The model provides the conditions necessary for transporting strongly super-Alfvenic currents through the diode on the time scale of a few nanoseconds. The model validity is confirmed by a comparison with the available experimental data.

  16. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F., E-mail: francesco.romano@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F.; Cirrone, G.A.P.; Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Giordanengo, S.; Guarachi, L. Fanola [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Universita' di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino (Italy); Korn, G. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Larosa, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Leanza, R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Universita' di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R.; Marchese, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Margarone, D. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); and others

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  17. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    Science.gov (United States)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  18. Laser-driven source of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.

    1995-01-01

    A laser-driven source of spin-polarized hydrogen (H) and deuterium (D) that relies on the technique of optical pumping spin exchange has been constructed. In this source, H or D atoms and potassium atoms flow continuously through a drifilm-coated spin-exchange cell where potassium atoms are optically pumped with circularly-polarized laser light in a high magnetic field. The H or D atoms become polarized through spin-exchange collisions with polarized potassium atoms. High electron polarization (∼80%) has been measured for H and D atoms at flow rates ∼2x10 17 atoms/s. Lower polarization values are measured for flow rates exceeding 1x10 18 atoms/s. In this paper, we describe the performance of the laser-driven source as a function of H and D atomic flow rate, magnetic field strength, alkali density and pump-laser power. Polarization measurements as a function of flow rate and magnetic field suggest that, despite a high magnetic field, atoms within the optical-pumping spin-exchange apparatus evolve to spin-temperature equilibrium which results in direct polarization of the H and D nuclei. (orig.)

  19. Shielded radiography with a laser-driven MeV-energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouyuan; Golovin, Grigory [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Miller, Cameron [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Clarke, Shaun; Pozzi, Sara [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Umstadter, Donald, E-mail: donald.umstadter@unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 10{sup 7} photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam’s inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  20. Profile modifications in laser-driven temperature fronts using flux-limiters and delocalization models

    Science.gov (United States)

    Colombant, Denis; Manheimer, Wallace; Busquet, Michel

    2004-11-01

    A simple steady-state model using flux-limiters by Day et al [1] showed that temperature profiles could formally be double-valued. Stability of temperature profiles in laser-driven temperature fronts using delocalization models was also discussed by Prasad and Kershaw [2]. We have observed steepening of the front and flattening of the maximum temperature in laser-driven implosions [3]. Following the simple model first proposed in [1], we solve for a two-boundary value steady-state heat flow problem for various non-local heat transport models. For the more complicated models [4,5], we obtain the steady-state solution as the asymptotic limit of the time-dependent solution. Solutions will be shown and compared for these various models. 1.M.Day, B.Merriman, F.Najmabadi and R.W.Conn, Contrib. Plasma Phys. 36, 419 (1996) 2.M.K.Prasad and D.S.Kershaw, Phys. Fluids B3, 3087 (1991) 3.D.Colombant, W.Manheimer and M.Busquet, Bull. Amer. Phys. Soc. 48, 326 (2003) 4.E.M.Epperlein and R.W.Short, Phys. Fluids B3, 3092 (1991) 5.W.Manheimer and D.Colombant, Phys. Plasmas 11, 260 (2004)

  1. Laser-driven shock-wave propagation in pure and layered targets

    International Nuclear Information System (INIS)

    Salzmann, D.; Eliezer, S.; Krumbein, A.D.; Gitter, L.

    1983-01-01

    The propagation properties of laser-driven shock waves in pure and layered polyethylene and aluminum slab targets are studied for a set of laser intensities and pulse widths. The laser-plasma simulations were carried out by means of our one-dimensional Lagrangian hydrodynamic code. It is shown that the various parts of a laser-driven compression wave undergo different thermodynamic trajectories: The shock front portion is on the Hugoniot curve whereas the rear part is closer to an adiabat. It is found that the shock front is accelerated into the cold material till troughly-equal0.8tau (where tau is the laser pulse width) and only later is a constant velocity propagation attained. The scaling laws obtained for the pressure and temperature of the compression wave in pure targets are in good agreement with those published in other works. In layered targets, high compression and pressure were found to occur at the interface of CH 2 on Al targets due to impedance mismatch but were not found when the layers were reversed. The persistence time of the high pressure on the interface in the CH 2 on Al case is long enough relative to the characteristic times of the plasma to have an appreciable influence on the shock-wave propagation into the aluminum layer. This high pressure and compression on the interface can be optimized by adjusting the CH 2 layer thickness

  2. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.; Hanton, F.; Naughton, K.; Lewis, C. L. S.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Brauckmann, S.; Giesecke, A. L.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany)

    2016-05-15

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  3. Design optimization and transverse coherence analysis for an x-ray free electron laser driven by SLAC LINAC

    International Nuclear Information System (INIS)

    Xie, M.

    1995-01-01

    I present a design study for an X-ray Free Electron Laser driven by the SLAC linac, the Linac Coherent Light Source (LCLS). The study assumes the LCLS is based on Self-Amplified Spontaneous Emission (SASE). Following a brief review of the fundamentals of SASE, I will provide without derivation a collection of formulas relating SASE performance to the system parameters. These formulas allow quick evaluation of FEL designs and provide powerful tools for optimization in multi-dimensional parameter space. Optimization is carried out for the LCLS over all independent system parameters modeled, subjected to a number of practical constraints. In addition to the optimizations concerning gain and power, another important consideration for a single pass FEL starting from noise is the transverse coherence property of the amplified radiation, especially at short wavelength. A widely used emittance criteria for FELs requires that the emittance is smaller than the radiation wavelength divided by 4π. For the LCLS the criteria is violated by a factor of 5, at a normalized emittance of 1.5 mm-mrad, wavelength of 1.5 angstrom, and beam energy of 15 GeV. Thus it is important to check quantitatively the emittance effect on the transverse coherence. I will examine the emittance effect on transverse coherence by analyzing different transverse modes and show that full transverse coherence can be obtained even at the LCLS parameter regime

  4. Configuring and Characterizing X-Rays for Laser-Driven Compression Experiments at the Dynamic Compression Sector

    Science.gov (United States)

    Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.

  5. Towards a novel laser-driven method of exotic nuclei extraction−acceleration for fundamental physics and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nishiuchi, M., E-mail: sergei@jaea.go.jp; Sakaki, H.; Esirkepov, T. Zh. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Nishio, K. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Pikuz, T. A.; Faenov, A. Ya. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Skobelev, I. Yu. [Russian Academy of Sciences, Joint Institute for High Temperature (Russian Federation); Orlandi, R. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Koura, H. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Kando, M. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Yamauchi, T. [Graduate School of Maritime Sciences (Japan); Watanabe, Y. [Kyushu University, Interdisciplinary Graduate School of Engineering Sciences (Japan); Bulanov, S. V., E-mail: svbulanov@gmail.com; Kondo, K. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); and others

    2016-04-15

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction–acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  6. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  7. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  8. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    International Nuclear Information System (INIS)

    Popp, Antonia

    2011-01-01

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10 18 cm -3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm

  9. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  10. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    Czech Academy of Sciences Publication Activity Database

    Cirrone, G.A.P.; Romano, F.; Scuderi, Valentina; Amato, A.; Candiano, G.; Cuttone, G.; Giove, D.; Korn, Georg; Krása, Josef; Leanza, R.; Manna, R.; Maggiore, M.; Marchese, V.; Margarone, Daniele; Milluzzo, G.; Petringa, G.; Sabini, M.G.; Schillaci, F.; Tramontana, A.; Valastro, L.; Velyhan, Andriy

    2015-01-01

    Roč. 796, Oct (2015), s. 99-103 ISSN 0168-9002 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE2.3.30.0057 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : laser-driven ion * beam-transport * Faraday cup dosimetry * absolute dosimetry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.200, year: 2015

  11. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Czech Academy of Sciences Publication Activity Database

    Romano, F.; Schillaci, F.; Cirrone, G.A.P.; Cuttone, G.; Scuderi, Valentina; Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G.; Giordanengo, S.; Guarachi, L.F.; Korn, Georg; Larosa, G.; Leanza, R.; Manna, R.; Marchese, V.; Marchetto, F.; Margarone, Daniele; Milluzzo, G.; Petringa, G.; Pipek, J.; Pulvirenti, S.; Rizzo, D.; Sacchi, R.; Salamone, S.; Sedita, M.; Vignati, A.

    2016-01-01

    Roč. 829, Sep (2016), s. 153-158 ISSN 0168-9002 R&D Projects: GA MŠk LQ1606; GA MŠk EF15_008/0000162; GA MŠk EE2.3.30.0057; GA ČR(CZ) GA15-02964S; GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057; ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : laser-driven beams * beam handling Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.362, year: 2016

  12. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    Science.gov (United States)

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  13. Nano and micro structured targets to modulate the spatial profile of laser driven proton beams

    Czech Academy of Sciences Publication Activity Database

    Giuffrida, Lorenzo; Svensson, K.; Pšikal, Jan; Margarone, Daniele; Lutoslawski, P.; Scuderi, Valentina; Milluzzo, G.; Kaufman, Jan; Wiste, Tuomas; Dalui, M.; Ekerfelt, H.; Gallardo Gonzalez, I.; Lundh, O.; Persson, A.; Picciotto, A.; Crivellari, M.; Bagolini, A.; Bellutti, P.; Magnusson, J.; Gonoskov, A.; Klimša, Ladislav; Kopeček, Jaromír; Laštovička, Tomáš; Cirrone, G.A.P.; Wahlström, C.-G.; Korn, Georg

    2017-01-01

    Roč. 12, Mar (2017), s. 1-6, č. článku C03040. ISSN 1748-0221. [Medical and Multidisciplinary Applications of Laser -Driven Ion Beams at Eli-Beamlines. Catania, 07.09.2016-10.09.2016] R&D Projects: GA ČR(CZ) GA15-02964S; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : accelerator Applications * Beam dynamics Subject RIV: BH - Optics, Masers, Laser s OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.220, year: 2016

  14. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    International Nuclear Information System (INIS)

    Sawada, H.; Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S.; Shiroto, T.; Ohnishi, N.; Sunahara, A.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.

    2016-01-01

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm"2. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  15. Flower-Like Squeezing in the Motion of a Laser-Driven Trapped Ion

    Science.gov (United States)

    Nguyen, Ba An; Truong, Minh Duc

    We investigate the Nth order amplitude squeezing in the fan-state |ξ2k,f>F which is a linear superposition of the 2k-quantum nonlinear coherent states. Unlike in usual states where an ellipse is the symbol of squeezing, a 4k-winged flower results in the fan state. We first derive the analytical expression of squeezing for arbitrary k, N, f and then study in detail the case of a laser-driven trapped ion characterized by a specific form of the nonlinear function f. We show that the lowest order in which squeezing may appear and the number of directions along which the amplitude may be squeezed depend only on k whereas the precise directions of squeezing are determined also by the other physical parameters involved. Finally, we present a scheme to produce such fan-states.

  16. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B., E-mail: bruno.albertazzi@polytechnique.edu [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Québec J3X 1S2 (Canada); Graduate School of Engineering, Osaka University, Suita, Osaka 565-087 (Japan); D' Humières, E. [CELIA, Universite de Bordeaux, Talence 33405 (France); Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Lancia, L.; Antici, P. [Dipartimento SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 16, 00161 Roma (Italy); Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J., E-mail: Julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Böcker, J.; Swantusch, M.; Willi, O. [Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf D-40225 (Germany); Bonlie, J.; Cauble, B.; Shepherd, R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T. [CELIA, Universite de Bordeaux, Talence 33405 (France); Chen, S. N. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  17. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H. [Department of Physics, University of Nevada Reno, Reno, Nevada 89557 (United States); Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Shiroto, T.; Ohnishi, N. [Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi (Japan); Sunahara, A. [Institute of Laser Technology, Nishi-ku, Osaka (Japan); Beg, F. N. [University of California San Diego, La Jolla, California 92093 (United States); Theobald, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Pérez, F. [LULI, Ecole Polytechnique, Palaiseau, Cedex (France); Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  18. Volume ignition of laser driven fusion pellets and double layer effects

    International Nuclear Information System (INIS)

    Cicchitelli, L.; Eliezer, S.; Goldsworthy, M.P.; Green, F.; Hora, H.; Ray, P.S.; Stening, R.J.; Szichman, H.

    1988-01-01

    The realization of an ideal volume compression of laser-irradiated fusion pellets opens the possibility for an alternative to spark ignition proposed for many years for inertial confinement fusion. A re-evaluation of the difficulties of the central spark ignition of laser driven pellets is given. The alternative volume compression theory, together with volume burn and volume ignition, have received less attention and are re-evaluated in view of the experimental verification generalized fusion gain formulas, and the variation of optimum temperatures derived at self-ignition. Reactor-level DT fusion with MJ-laser pulses and volume compression to 50 times the solid-state density are estimated. Dynamic electric fields and double layers at the surface and in the interior of plasmas result in new phenomena for the acceleration of thermal electrons to suprathermal electrons. Double layers also cause a surface tension which stabilizes against surface wave effects and Rayleigh-Taylor instabilities. (author)

  19. Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser

    International Nuclear Information System (INIS)

    Zhang Pin-Liang; Tang Xiu-Zhang; Li Ye-Jun; Wang Zhao; Tian Bao-Xian; Yin Qian; Lu Ze; Xiang Yi-Huai; Gao Zhi-Xing; Li Jing; Hu Feng-Ming; Gong Zi-Zheng

    2015-01-01

    The HEAVEN-I laser is used for direct drive quasi-isentropic compression up to ∼18 GPa in samples of aluminum without being temporal pulse shaped. The monotonically increasing loading is with a rise time over 17 ns. The compression history is well reproduced by the 1D radiation hydrodynamics simulation. We find that a small shock precursor where the backward integration method cannot process is formed at the beginning of illumination. We compare the loading process of HEAVEN-I with the typical profile (concave down, prefect pulse shape), the results show that a typical profile can obtain more slowly rising and higher pressure, and the shock precursor has significant effects on temperature and entropy production. However, it is demonstrated that the HEAVEN-I is an excellent optical source for direct laser-driven quasi-isentropic compression, even if it produces more temperature rise and entropy than the typical profile. (paper)

  20. On the way to stabilized laser-driven GeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shao-wei; Weineisen, Tobias; Fuchs, Matthias; Popp, Antonia; Major, Zsuzsanna; Weingartner, Raphael; Ahmad, Izhar; Schmid, Karl; Marx, Benjamin; Krausz, Ferenc; Gruener, Florian; Karsch, Stefan [Max-Planck Institute of Quantum Optics, Munich (Germany); Ludwig-Maximilians University, Munich (Germany); Osterhoff, Jens [LOASIS Program, Lawrence Livermore National Laboratory, Livermore (United States); Schroeder, Hartmut; Haas, Harald [Max-Planck Institute of Quantum Optics, Munich (Germany); Rowlands-Rees, Tom; Hooker, Simon [University of Oxford, Oxford (United Kingdom)

    2010-07-01

    Laser-driven-wakefield electron accelerators have shown electron beams with energies of up to 1 GeV from a centimeter-scale plasma accelerator. In order to achieve higher electron energies, these acceleration distances need to be increased. This can be realized with a discharge capillary. However, a discharge typically introduces instabilities on both pointing and energy of the generated electrons. In order to improve the stability, we demonstrate a preliminary test of a modified discharge which includes a pre-pulse circuit before the firing of the main pulse. We also show gas density shaping by a laser- machined nozzle which should be able to make a more precise injection in the capillary accelerator thus reducing the energy instability.

  1. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  2. Basic design considerations for free-electron lasers driven by electron beams from RF accelerators

    Science.gov (United States)

    Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.

    A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.

  3. Characterization of a high repetition-rate laser-driven short-pulsed neutron source

    Science.gov (United States)

    Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2018-05-01

    We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.

  4. Micron-size hydrogen cluster target for laser-driven proton acceleration

    Science.gov (United States)

    Jinno, S.; Kanasaki, M.; Uno, M.; Matsui, R.; Uesaka, M.; Kishimoto, Y.; Fukuda, Y.

    2018-04-01

    As a new laser-driven ion acceleration technique, we proposed a way to produce impurity-free, highly reproducible, and robust proton beams exceeding 100 MeV using a Coulomb explosion of micron-size hydrogen clusters. In this study, micron-size hydrogen clusters were generated by expanding the cooled high-pressure hydrogen gas into a vacuum via a conical nozzle connected to a solenoid valve cooled by a mechanical cryostat. The size distributions of the hydrogen clusters were evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed mathematically based on the Mie scattering theory combined with the Tikhonov regularization method. The maximum size of the hydrogen cluster at 25 K and 6 MPa in the stagnation state was recognized to be 2.15 ± 0.10 μm. The mean cluster size decreased with increasing temperature, and was found to be much larger than that given by Hagena’s formula. This discrepancy suggests that the micron-size hydrogen clusters were formed by the atomization (spallation) of the liquid or supercritical fluid phase of hydrogen. In addition, the density profiles of the gas phase were evaluated for 25 to 80 K at 6 MPa using a Nomarski interferometer. Based on the measurement results and the equation of state for hydrogen, the cluster mass fraction was obtained. 3D particles-in-cell (PIC) simulations concerning the interaction processes of micron-size hydrogen clusters with high power laser pulses predicted the generation of protons exceeding 100 MeV and accelerating in a laser propagation direction via an anisotropic Coulomb explosion mechanism, thus demonstrating a future candidate in laser-driven proton sources for upcoming multi-petawatt lasers.

  5. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  6. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    International Nuclear Information System (INIS)

    Brenner, C M; Rusby, D R; Armstrong, C; Wilson, L A; Clarke, R; Haddock, D; McClymont, A; Notley, M; Oliver, P; Allott, R; Hernandez-Gomez, C; Neely, D; Mirfayzi, S R; Alejo, A; Ahmed, H; Kar, S; Butler, N M H; Higginson, A; McKenna, P; Murphy, C

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification. (paper)

  7. Intification and modelling of flight characteristics for self-build shock flyer type UAV

    Science.gov (United States)

    Rashid., Z. A.; Dardin, A. S. F. Syed.; Azid, A. A.; Ahmad, K. A.

    2018-02-01

    The development of an autonomous Unmanned Aerial Vehicle (UAV) requires a fundamentals studies of the UAV's flight characteristic. The aim of this study is to identify and model the flight characteristic of a conventional fixed-wing type UAV. Subsequence to this, the mode of flight of the UAV can be investigated. One technique to identify the characteristic of a UAV is a flight test where it required specific maneuvering to be executed while measuring the attitude sensor. In this study, a simple shock flyer type UAV was used as the aircraft. The result shows that the modeled flight characteristic has a significant relation with actual values but the fitting value is rather small. It is suggested that the future study is conducted with an improvement of the physical UAV, data filtering and better system identification methods.

  8. Radiation exposure profile and dose estimates to flyers en route Frankfurt to Mumbai

    International Nuclear Information System (INIS)

    Rao, D.D.; Hegde, A.G.

    2010-01-01

    The earth is continuously bombarded by the high energy radiation (galactic radiation) from solar system commonly known as cosmic radiation. Intensity of cosmic ray radiation exposures change with altitude and increases rapidly with the increase in altitude from the earth. Passenger and cargo flights fly at different altitudes and therefore the crew and passengers are exposed to radiation levels significantly higher than the average background levels on the earth. A typical commercial jet aircraft fly at an altitude of 30,000 - 40,000 feet (9-12 km) and at these heights radiation exposure rates increase by about 100 times from the background levels. European countries have guidelines and suggestions on radiation exposure to air crew members in sectors that may potentially expose them to levels exceeding 1 mSv per annum. The paper details the radiation exposure profile recorded in Frankfurt-Dubai-Mumbai sector and evaluation of average radiation exposure received by the flyers and air crew members

  9. Investigation of the dynamic behavior in materials submitted to sub-picosecond laser driven shock

    International Nuclear Information System (INIS)

    Cuq-Lelandais, Jean-Paul

    2010-01-01

    Laser driven shocks allow to investigate materials behavior at high strain rate and present a great interest for research and industrial applications. The latest laser technologies evolutions provide an access to shorter regimes in duration, below the picosecond. This work, which results from a collaboration between the P' institute, the PIMM laboratory and the CEA-DAM, is dedicated to the characterization of the metallic material behavior in this ultra-short mode (aluminium, tantalum), leading to extreme dynamic solicitation in the target (>10 7 s -1 ). The study includes the validation of experimental results obtained on the LULI 100 TW facility by comparison with numerical model. First, the study is orientated to the femtosecond (fs) laser-matter interaction, which is different from what happens in nanosecond regime. Indeed, the characteristic duration scale is comparable to several molecular phenomena like non-equilibrium electrons-ions states. The aim is to determine the equivalent pressure loading induced by the laser pulse on the target. Then, the shock wave propagation within the target has been studied and particularly its pressure decay, notably strong in this regime. In this configuration, the spalls observed are thin, a few μm order, and show a planar rupture morphology. The results obtained by post-mortem observation show that the spall thickness is thinner if the target thickness is reduced. The spalls are characterized by the VISAR measurement. Within the framework of dynamic damage modeling and rupture criteria dimensioning, particularly those which have been validated in the ns regime as Kanel, shots with different thicknesses have been carried out to determine the damage properties in function of strain rate and validate the parameters by prolongation to the ultra-shorts modes. Then, the study has been generalized to the 2D propagation waves, which can explain the spall diameter evolutions. Meanwhile, microscopic simulations of ultra-short laser

  10. The Nervous Flyer: Nerves, Flying and the First World War.

    Science.gov (United States)

    Shaw Cobden, Lynsey

    2018-02-02

    This is not an article about 'shell-shock'. It explores the military medical response to nervous disorders in the Royal Flying Corps. The First World War exposed the propensity of pilots to the nervous and psychological rigours of aerial warfare, but their unique experiences have been overlooked in favour of 'trauma' in infantrymen. This represents a critical lacuna in the historiography of military medicine, for flying personnel were studied apart from 'shell-shocked' soldiers. This article will show that flyers were believed to be medically different, and what set them apart from men in the trenches was their unique employment. The war necessitated, and provided the conditions for, the study of the medical problems of flying, including the significant nervous strains. Medical officers quickly established that flying not only affected bodily functions, but also 'wore down' the nerves that regulated psychological responses. This article will therefore present the medical view. It will study the research of air-minded medical officers and the conclusions reached on the nervous disorders of flying personnel.

  11. On the potential of laser driven isotope generation at ELI-NP for positron emission tomography

    Science.gov (United States)

    Cucoanes, A. S.; Balabanski, D. L.; Canova, F.; Cuong, P.; Negoita, F.; Puicea, F.; Tanaka, K. A.

    2017-05-01

    The huge progress made in the laser driven ion acceleration had open the possibility of using ions generated in high power laser interactions with solid targets for the production of medical isotopes. Indeed, lasers could provide several key features with respect to the traditional method where the target activation is produced by particle beams delivered by cyclotrons. The price and the dimensions of high power lasers are on a descendant slope and the quality of the produced ion beams is continuously increasing. However, in order to compete with cyclotrons, the average proton current intensity has to be increased for example by increasing the frequency of the laser pulses. In our contribution, we review the general ideas of the laser-based radioisotope production and we present our analysis on the potential of the medical isotope generation at ELI-NP with a focus on 18F. We use estimations of the proton beam parameters and a code implemented in Geant4 for computing the yield of the main production channel taking into account the experimental conditions available soon at ELI-NP. The obtained results are compatible with previous studies and will be verified by experiments foreseen at the future ELI-NP facility, under construction now in Magurele, Romania.

  12. Cost reduction study for the LANL KrF laser-driven LMF design

    International Nuclear Information System (INIS)

    1989-01-01

    This report is in fulfillment of the deliverable requirements for the optical components portions of the LANL-KrF Laser-Driven LMF Design Cost Reduction Study. This report examines the future cost reductions that may accrue through the use of mass production, innovative manufacturing techniques, and new materials. Results are based on data collection and survey of optical component manufacturers, BDM experience, and existing cost models. These data provide a good representation of current methods and technologies from which future estimates can be made. From these data, a series of scaling relationships were developed to project future costs for a selected set of technologies. The scaling relationships are sensitive to cost driving parameters such as size and surface figure requirements as well as quantity requirements, production rate, materials, and manufacturing processes. In addition to the scaling relationships, descriptions of the selected processes were developed along with graphical representations of the processes. This report provides a useful tool in projecting the costs of advanced laser concepts at the component level of detail. A mix of the most diverse yet comparable technologies was chosen for this study. This yielded a useful, yet manageable number of variables to examine. The study has resulted in a first-order cost model which predicts the relative cost behavior of optical components within different variable constraints

  13. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    Directory of Open Access Journals (Sweden)

    Moein Fakhari

    2017-04-01

    Full Text Available We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  14. Time-dependent quantum chemistry of laser driven many-electron molecules

    International Nuclear Information System (INIS)

    Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy; Sainjon, Amaury

    2014-01-01

    A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied to calculate the detailed, sub-cycle electronic dynamics of BeH 2 , treated in a 3–21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10 15 W/cm 2 ), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics

  15. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  16. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  17. Laser driven supersonic flow over a compressible foam surface on the Nike laser

    International Nuclear Information System (INIS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Velikovich, A. L.; Weaver, J. L.; Plewa, T.

    2010-01-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  18. Etching of LiNbO/sub 3/ by laser-driven fusion of salts

    International Nuclear Information System (INIS)

    Ashby, C.I.H.; Brannon, P.J.

    1987-01-01

    Lithium niobate exhibits low reactivity with most chemical etchants. Consequently, etching a LiNbO/sub 3/ surface to produce optical structures such as ridge waveguides or grooves for fiber coupling normally requires relatively slow processes such as ion milling. The authors have developed a laser-driven chemical etching process for etching highly unreactive ionic solids based on the fusion of salts in the molten phase and show that the etch rate can be more than 100 times faster than ion milling rates. This process involves spatially localized melting of LiNbO/sub 3/ by high-power density laser pulses with photon energies in excess of the band gap of LiNbO/sub 3/. While molten, LiNbO/sub 3/ undergoes reaction with a surface coating of KF to form niobium oxyfluoride anions by fusion of the salts. The resulting solid is highly water soluble. The insolubility of LiNbO/sub 3/ permits subsequent removal of only the irradiated area by rinsing in water. Surface morphology is determined by laser power density. The process exhibits a wavelength dependence

  19. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    Science.gov (United States)

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  20. Study of laser-driven shock wave propagation in Plexiglas targets

    International Nuclear Information System (INIS)

    Dhareshwar, L.J.; Naik, P.A.; Pant, H.C.; Kaushik, T.C.

    1992-01-01

    An experimental study of laser-driven shock wave propagation in a transparent material such as Plexiglas using a high-speed optical shadowgraphy technique is presented in this paper. A Nd: glass laser was used to produce laser intensity in the range 10 12 -10 14 W/cm 2 on the target. Optical shadowgrams of the propagating shock front were recorded with a second-harmonic (0.53-μm) optical probe beam. Shock pressures were measured at various laser intensities, and the scaling was found to agree with the theoretically predicted value. Shock pressure values have also been obtained from a one-dimensional Lagrangian hydrodynamic simulation, and they match well with experimental results. Shadowgrams of shock fronts produced by nonuniform spatial laser beam irradiation profiles have shown complete smoothing when targets with a thin coating of a material of high atomic number such as gold were used. Shock pressures in such coated targets are also found to be considerably higher compared with those in uncoated targets. (Author)

  1. Ultrafast probing of magnetic field growth inside a laser-driven solenoid

    Science.gov (United States)

    Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.

  2. Does laser-driven heat front propagation depend on material microstructure?

    Science.gov (United States)

    Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.

    2016-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).

  3. Development and characterization of plasma targets for controlled injection of electrons into laser-driven wakefields

    Science.gov (United States)

    Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2012-10-01

    Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.

  4. Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, K.P.; Wu, Z.; /SLAC; Cowan, B.M.; /Tech-X, Boulder; Hanuka, A.; /SLAC /Technion; Makasyuk, I.V.; /SLAC; Peralta, E.A.; Soong, K.; Byer, R.L.; /Stanford U.; England, R.J.; /SLAC

    2016-06-27

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm-1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  5. Stimulated scattering in laser driven fusion and high energy density physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a kλ{sub D} range of 0.15 < kλ{sub D} < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and λ{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ∼ (kλ{sub D}){sup −4} for kλ{sub D} ≳ 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for kλ{sub D} < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for kλ{sub D} between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.

  6. An evaluation of the various aspects of the progress in clinical applications of laser driven ionizing radiation

    Science.gov (United States)

    Hideghéty, K.; Szabó, E. R.; Polanek, R.; Szabó, Z.; Ughy, B.; Brunner, S.; Tőkés, T.

    2017-03-01

    There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in

  7. First Observation of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    CERN Document Server

    Plettner, Tomas; Colby, Eric R; Cowan, Benjamin; Sears, Chris M S; Siemann, Robert; Smith, Todd I; Spencer, James

    2005-01-01

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transition radiation process.

  8. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    Czech Academy of Sciences Publication Activity Database

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A.D.; Scuderi, Valentina; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G.A.P.

    2016-01-01

    Roč. 11, Jul (2016), s. 1-16, č. článku T07005. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : cceleration cavities and magnets superconducting * beam dynamics * Accelerator modelling and simulations * Beam Optics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  9. Development of an energy selector system for laser-driven proton beam applications

    Czech Academy of Sciences Publication Activity Database

    Scuderi, Valentina; Bijan Jia, S.; Carpinelli, M.; Cirrone, G.A.P.; Cuttone, G.; Korn, Georg; Licciardello, T.; Maggiore, Mario; Margarone, Daniele; Pisciotta, P.; Romano, F.; Schillaci, Francesco; Stancampiano, C.; Tramontana, A.

    2014-01-01

    Roč. 740, Mar (2014), 87-93 ISSN 0168-9002 R&D Projects: GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087; GA MŠk EE2.3.30.0057 Grant - others:LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : accelerated proton * therapy * plasma * pulses Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.216, year: 2014

  10. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    Science.gov (United States)

    Hansen, E. C.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Davies, J. R.; Glebov, V. Yu; Knauer, J. P.; Peebles, J.; Regan, S. P.; Sefkow, A. B.

    2018-05-01

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1D code LILAC was used to model the central region of the implosion, and results were compared to 2D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysis shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.

  11. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    Science.gov (United States)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  12. Locomotion of a bioinspired flyer powered by one pair of pitching foils

    Science.gov (United States)

    Zhang, Xiang; He, Guowei; Wang, Shizhao; Zhang, Xing

    2018-01-01

    We numerically investigate the flight dynamics and aerodynamics of a two-dimensional model for the jellyfishlike ornithopter recently devised by Ristroph and Childress [L. Ristroph and S. Childress, J. R. Soc. Interface 11, 20130992 (2014), 10.1098/rsif.2013.0992]. This simplified model is composed of two rigid thin foils which are forced to pitch in antiphase fashion. The Navier-Stokes equations for the fluid and the dynamics equations for the flyer are solved together in the simulations. We first consider the constrained-flying condition where the flyer model is only allowed to move in the vertical direction. The influences of the control parameters on the hovering performance are studied. With the variations in parameter values, three different locomotion states, i.e., ascending, descending, and approximate hovering, are identified. The wake structures corresponding to these three locomotion states are explored. It is found that the approximate hovering state cannot persist due to the occurrence of wake symmetry breaking after long-time simulation. We then consider the free-flying condition where the motions in three degrees of freedom are allowed. We study the postural stability of a flyer, with its center of gravity located at the geometric center. The responses of the flyer at different locomotion states to physical and numerical perturbations are examined. Our results show that the ascending state is recoverable after the perturbation. The descending state is irrecoverable after the perturbation and a mixed fluttering and tumbling motion which resembles that of a falling card emerges. The approximate hovering state is also irrecoverable and it eventually transits to the ascending state after the perturbation. The research sheds light on the lift-producing mechanism and stability of the flyer and the results are helpful in guiding the design and optimization of the jellyfishlike flying machine.

  13. Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire

    2000-11-01

    We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.

  14. First observation of density profile in directly laser-driven polystyrene targets for ablative Rayleigh-Taylor instability research

    International Nuclear Information System (INIS)

    Fujioka, Shinsuke; Shiraga, Hiroyuki; Nishikino, Masaharu; Shigemori, Keisuke; Sunahara, Atsushi; Nakai, Mitsuo; Azechi, Hiroshi; Nishihara, Katsunobu; Yamanaka, Tatsuhiko

    2003-01-01

    The temporal evolution of the density profile of a directly laser-driven polystyrene target was observed for the first time using an x-ray penumbral imaging technique coupled with side-on x-ray backlighting at the GEKKO XII [C. Yamanaka et al., IEEE J. Quantum Electron. QE-17, 1639 (1981)]-High Intensity Plasma Experimental Research laser facility (I L =0.7x10 14 W/cm 2 , λ L =0.35 μm). This density measurement makes it possible to experimentally confirm all physical parameters [γ(k),k,g,m,ρ a ,L m ] appearing in the modified Takabe formula for the growth rate of the ablative Rayleigh-Taylor instability. The measured density profiles were well reproduced by a one-dimensional hydrodynamic simulation code. The density measurement contributes toward fully understanding the ablative Rayleigh-Taylor instability

  15. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    Science.gov (United States)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  16. Frequent flyer business travelers. The role of the occupational health nurse.

    Science.gov (United States)

    Tompkins, Olga S; Randolph, Susan A; Ostendorf, Judith S

    2005-03-01

    When managing frequent flyer business travelers, occupational health nurses focus on health promotion and health protection goals. The three types of prevention (i.e., primary, secondary, tertiary) follow a timeline beginning with complete prevention, and proceeding through and ending with management of a disease process. Occupational health nurses design and implement practice strategies based on this progression. Travel health nursing is rapidly expanding as the number of travelers, immunizations, and modes of transportation increase. Physicians focus on disease, industrial hygienists focus on hazard exposure, and safety professionals address occupational issues related to illnesses and injuries. Occupational health nurses are the professionals who focus on all three areas, in addition to health promotion and health protection. Frequent flyer business travelers have specific and complex needs that occupational health nurses are in a unique position to address.

  17. Yield strength measurement of shock-loaded metal by flyer-impact perturbation method

    Science.gov (United States)

    Ma, Xiaojuan; Shi, Zhan

    2018-06-01

    Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-impact experiments on targets with machined grooves on the impact surface of shock 6061-T6 aluminum to between 32 and 61 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of 6061-T6 aluminum to be 1.31-1.75 GPa. These results are in agreement with values obtained from reshock and release wave profiles. We conclude that the flyer-impact perturbation method is indeed a new means to measure material strength.

  18. Stochastic resonance in a gain-noise model of a single-mode laser driven by pump noise and quantum noise with cross-correlation between real and imaginary parts under direct signal modulation

    Institute of Scientific and Technical Information of China (English)

    Chen Li-Mei; Cao Li; Wu Da-Jin

    2007-01-01

    Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR)separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ and the deterministic steady-state intensity I0.In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of τand λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.

  19. Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Feinaeugle, M., E-mail: m.feinaeugle@utwente.nl [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Gregorčič, P. [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000, Ljubljana (Slovenia); Heath, D.J. [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Mills, B., E-mail: bm602@orc.soton.ac.uk [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Eason, R.W. [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2017-02-28

    Highlights: • Laser-induced backward transfer was investigated by time-resolved shadowgraphy. • Flyer velocity was a function of carrier, donor thickness, delay and fluence. • We investigated the fluence window for intact transfer and the role of the receiver. • Donor-crater profile variation was studied for different ejection regimes. • Conditions for intact and fragmented flyers were determined. - Abstract: We have studied the transfer regimes and dynamics of polymer flyers from laser-induced backward transfer (LIBT) via time-resolved shadowgraphy. Imaging of the flyer ejection phase of LIBT of 3.8 μm and 6.4 μm thick SU-8 polymer films on germanium and silicon carrier substrates was performed over a time delay range of 1.4–16.4 μs after arrival of the laser pulse. The experiments were carried out with 150 fs, 800 nm pulses spatially shaped using a digital micromirror device, and laser fluences of up to 3.5 J/cm{sup 2} while images were recorded via a CCD camera and a spark discharge lamp. Velocities of flyers found in the range of 6–20 m/s, and the intact and fragmented ejection regimes, were a function of donor thickness, carrier and laser fluence. The crater profile of the donor after transfer and the resulting flyer profile indicated different flyer ejection modes for Si carriers and high fluences. The results contribute to better understanding of the LIBT process, and help to determine experimental parameters for successful LIBT of intact deposits.

  20. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  1. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Energy Technology Data Exchange (ETDEWEB)

    Girardeau-Montaut, J.-P. E-mail: jean-pierre.girardeau@univ-lyonl.fr; Kiraly, Bela; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-21

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of {approx}11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of {approx}0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed.

  2. An efficient, selective collisional ejection mechanism for inner-shell population inversion in laser-driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    SCHROEDER,W. ANDREAS; NELSON,THOMAS R.; BORISOV,A.B.; LONGWORTH,J.W.; BOYER,K.; RHODES,C.K.

    2000-06-07

    A theoretical analysis of laser-driven collisional ejection of inner-shell electrons is presented to explain the previously observed anomalous kilovolt L-shell x-ray emission spectra from atomic Xe cluster targets excited by intense sub-picosecond 248nrn ultraviolet radiation. For incident ponderomotively-driven electrons photoionized by strong above threshold ionization, the collisional ejection mechanism is shown to be highly l-state and significantly n-state (i.e. radially) selective for time periods shorter than the collisional dephasing time of the photoionized electronic wavefunction. The resulting preference for the collisional ejection of 2p electrons by an ionized 4p state produces the measured anomalous Xe(L) emission which contains direct evidence for (i) the generation of Xe{sup 27+}(2p{sup 5}3d{sup 10}) and Xe{sup 28+}(2p{sup 5}3d{sup 9}) ions exhibiting inner-shell population inversion and (ii) a coherent correlated electron state collision responsible for the production of double 2p vacancies. For longer time periods, the selectivity of this coherent impact ionization mechanism is rapidly reduced by the combined effects of intrinsic quantum mechanical spreading and dephasing--in agreement with the experimentally observed and extremely strong {minus}{lambda}{sup {minus}6} pump-laser wavelength dependence of the efficiency of inner-shell (2p) vacancy production in Xe clusters excited in underdense plasmas.

  3. Quantification of uncertainty in photon source spot size inference during laser-driven radiography experiments at TRIDENT

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Benjamin John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaniyappan, Sasikumar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautier, Donald Cort [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mendez, Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burris-Mog, Trevor John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Chengkun K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Espy, Michelle E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schmidt, Derek William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sefkow, Adam [Univ. of Rochester, NY (United States); Shimada, Tsutomu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-24

    Images of the R2DTO resolution target were obtained during laser-driven-radiography experiments performed at the TRIDENT laser facility, and analysis of these images using the Bayesian Inference Engine (BIE) determines a most probable full-width half maximum (FWHM) spot size of 78 μm. However, significant uncertainty prevails due to variation in the measured detector blur. Propagating this uncertainty in detector blur through the forward model results in an interval of probabilistic ambiguity spanning approximately 35-195 μm when the laser energy impinges on a thick (1 mm) tantalum target. In other phases of the experiment, laser energy is deposited on a thin (~100 nm) aluminum target placed 250 μm ahead of the tantalum converter. When the energetic electron beam is generated in this manner, upstream from the bremsstrahlung converter, the inferred spot size shifts to a range of much larger values, approximately 270-600 μm FWHM. This report discusses methods applied to obtain these intervals as well as concepts necessary for interpreting the result within a context of probabilistic quantitative inference.

  4. Measurements of the temporal onset of mega-Gauss magnetic fields in a laser-driven solenoid

    Science.gov (United States)

    Goyon, Clement; Polllock, B. B.; Turnbull, D. T.; Hazi, A.; Ross, J. S.; Mariscal, D. A.; Patankar, S.; Williams, G. J.; Farmer, W. A.; Moody, J. D.; Fujioka, S.; Law, K. F. F.

    2016-10-01

    We report on experimental results obtained at Omega EP showing a nearly linear increase of the B-field up to about 2 mega-Gauss in 0.75 ns in a 1 mm3 region. The field is generated using 1 TW of 351 nm laser power ( 8*1015 W/cm2) incident on a laser-driven solenoid target. The coil target converts about 1% of the laser energy into the B-field measured both inside and outside the coil using proton deflectometry with a grid and Faraday rotation of probe beam through SiO2 glass. Proton data indicates a current rise up to hundreds of kA with a spatial distribution in the Au solenoid conductor evolving in time. These results give insight into the generating mechanism of the current between the plates and the time behavior of the field. These experiments are motivated by recent efforts to understand and utilize High Energy Density (HED) plasmas in the presence of external magnetic fields in areas of research from Astrophysics to Inertial Confinement Fusion. We will describe the experimental results and scale them to a NIF hohlraum size. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  5. Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources

    International Nuclear Information System (INIS)

    Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Carroll, D.C.; Clarke, R.J.; Neely, D.; Scott, G.G.

    2016-01-01

    Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z / A , a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.

  6. Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources

    Science.gov (United States)

    Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Carroll, D. C.; Clarke, R. J.; Neely, D.; Scott, G. G.; Borghesi, M.; Kar, S.

    2016-10-01

    Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z/A, a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.

  7. Biological effects of single HZE-particles of the cosmic radiation: Free Flyer Biostack

    International Nuclear Information System (INIS)

    1989-01-01

    The Free Flyer Biostack is designed as a passive, longer term experiment for investigations into the dosimetry of cosmic HZE particles (high-charge energetic particles), the effects of single HZE particles on isolated biological samples, and the synergistic effects of conditions in space, as e.g. zero gravity and presence of a permanent, weakly ionizing component of the cosmic radiation. For the experiments summarized in this project report, the AgCl detector type developed in Frankfurt has been used, consisting of monocrystalline AgCl films, about 130-150 μm thick, and doped with 5000 ppm of Cd. (DG) With 9 figs [de

  8. Ionizing radiation measurements on LDEF: A0015 Free flyer biostack experiment

    Science.gov (United States)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Csige, I.; Frigo, L. A.

    1995-01-01

    This report covers the analysis of passive radiation detectors flown as part of the A0015 Free Flyer Biostack on LDEF (Long Duration Exposure Facility). LET (linear energy transfer) spectra and track density measurements were made with CR-39 and Polycarbonate plastic nuclear track detectors. Measurements of total absorbed dose were carried out using Thermoluminescent Detectors. Thermal and resonance neutron dose equivalents were measured with LiF/CR-39 detectors. High energy neutron and proton dose equivalents were measured with fission foil/CR-39 detectors.

  9. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Science.gov (United States)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  10. Infrared laser driven double proton transfer. An optimal control theory study

    Science.gov (United States)

    Abdel-Latif, Mahmoud K.; Kühn, Oliver

    2010-02-01

    Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.

  11. Computational Design of Short Pulse Laser Driven Iron Opacity Measurements at Stellar-Relevant Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madison E. [Univ. of Florida, Gainesville, FL (United States)

    2017-05-20

    Opacity is a critical parameter in the simulation of radiation transport in systems such as inertial con nement fusion capsules and stars. The resolution of current disagreements between solar models and helioseismological observations would bene t from experimental validation of theoretical opacity models. Overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.

  12. Sensitivity Characterization of Pressed Energetic Materials using Flyer Plate Mesoscale Simulations

    Science.gov (United States)

    Rai, Nirmal; Udaykumar, H. S.

    Heterogeneous energetic materials like pressed explosives have complicated microstructure and contain various forms of heterogeneities such as pores, micro-cracks, energetic crystals etc. It is widely accepted that the presence of these heterogeneities can affect the sensitivity of these materials under shock load. The interaction of shock load with the microstructural heterogeneities may leads to the formation of local heated regions known as ``hot spots''. Chemical reaction may trigger at the hot spot regions depending on the hot spot temperature and the duration over which the temperature can be maintained before phenomenon like heat conduction, rarefaction waves withdraws energy from it. There are different mechanisms which can lead to the formation of hot spots including void collapse. The current work is focused towards the sensitivity characterization of two HMX based pressed energetic materials using flyer plate mesoscale simulations. The aim of the current work is to develop mesoscale numerical framework which can perform simulations by replicating the laboratory based flyer plate experiments. The current numerical framework uses an image processing approach to represent the microstructural heterogeneities incorporated in a massively parallel Eulerian code SCIMITAR3D. The chemical decomposition of HMX is modeled using Henson-Smilowitz reaction mechanism. The sensitivity characterization is aimed towards obtaining James initiation threshold curve and comparing it with the experimental results.

  13. Near and long term pulse power requirements for laser driven inertial confinement fusion

    International Nuclear Information System (INIS)

    Gagnon, W.L.

    1979-01-01

    At the Lawrence Livermore Laboraory, major emphasis has been placed upon the development of large, ND:glass laser systems in order to address the basic physics issues associated with light driven fusion targets. A parallel program is directed toward the development of lasers which exhibit higher efficiencies and shorter wavelengths and are thus more suitable as drivers for fusion power plants. This paper discusses the pulse power technology which has been developed to meet the near and far term needs of the laser fusion program at Livermore

  14. Simple laser-driven, metal photocathodes as cold, high-current electron sources

    International Nuclear Information System (INIS)

    Saunders, J.D.; Ringler, T.J.; Builta, L.A.; Kauppila, T.J.; Moir, D.C.; Downey, S.W.

    1987-01-01

    Recent developments in excimer laser design have made near ultraviolet light intensities of several MWcm 2 possible in unfocused beams. These advances and recent experiments indicate that high-current, simple-metal photoemissive electron guns are now feasible. Producing more than 50 Acm 2 of illuminated cathode surface, the guns could operate at vacuums of 10 -6 torr with no complicated system components inside the vacuum enclosure. The electron beam produced by such photoemission guns would have very low emittance and high brightness. This beam would also closely follow the temporal characteristics of the laser pulse, making fast risetime, ultrashort electron beam pulses possible

  15. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    International Nuclear Information System (INIS)

    Williams, George J.; Gilland, James H.

    2009-01-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I SP (>10 5 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  16. Acceleration{endash}deceleration process of thin foils confined in water and submitted to laser driven shocks

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P.; Auroux, E. [Laboratoire de Combustion et de Detonique (UPR 9028 CNRS), ENSMA, BP 109, Teleport 2, Chasseneuil du Poitou, 86960 Futuroscope Cedex (France)

    1997-08-01

    An experimental, numerical, and analytical study of the acceleration and deceleration process of thin metallic foils immersed in water and submitted to laser driven shocks is presented. Aluminum and copper foils of 20 to 120 {mu}m thickness, confined on both sides by water, have been irradiated at 1.06 {mu}m wavelength by laser pulses of {approximately}20ns duration, {approximately}17J energy, and {approximately}4GW/cm{sup 2} incident intensity. Time resolved velocity measurements have been made, using an electromagnetic velocity gauge. The recorded velocity profiles reveal an acceleration{endash}deceleration process, with a peak velocity up to 650 m/s. Predicted profiles from numerical simulations reproduce all experimental features, such as wave reverberations, rate of increase and decrease of velocity, peak velocity, effects of nature, and thickness of the foils. A shock pressure of about 2.5 GPa is inferred from the velocity measurements. Experimental points on the evolution of plasma pressure are derived from the measurements of peak velocities. An analytical description of the acceleration{endash}deceleration process, involving multiple shock and release waves reflecting on both sides of the foils, is presented. The space{endash}time diagrams of waves propagation and the successive pressure{endash}particle velocity states are determined, from which theoretical velocity profiles are constructed. All characteristics of experimental records and numerical simulations are well reproduced. The role of foil nature and thickness, in relation with the shock impedance of the materials, appears explicitly. {copyright} {ital 1997 American Institute of Physics.}

  17. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.

    Science.gov (United States)

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul

    2012-09-01

    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  18. Laser driven electron-positron pair creation-kinetic theory versus analytical approximations

    International Nuclear Information System (INIS)

    Smolyansky, S.A.; Prozorkevich, A.V.; Bonitz, M.

    2013-01-01

    The dynamical Schwinger effect of vacuum pair creation driven by an intense external laser pulse is studied on the basis of quantum kinetic theory. The numerical solutions of these kinetic equations exhibit a complex time dependence which makes an analysis of the physical processes difficult. In particular, the question of secondary effects, such as creation of secondary annihilation photons from the focus spot of the colliding laser beams, remains an important open problem. In the present work we, therefore, develop a perturbation theory which is able to capture the dominant time dependence of the produced electron-positron pair density. The theory shows excellent agreement with the exact kinetic results during the laser pulse, but fails to reproduce the residual pair density remaining in the system after termination of the pulse. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Romano, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Scuderi, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Amato, A. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Candiano, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Cuttone, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Giove, D. [INFN Sezione di Milano, Via Celoria 16, Milano (Italy); Korn, G.; Krasa, J. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Leanza, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Maggiore, M. [INFN-LNL, Viale dell' Universitá 2 - 35020 Legnaro (PD) (Italy); Marchese, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Margarone, D. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Milluzzo, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Petringa, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Sabini, M.G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Azienda Ospedaliera Cannizzaro, Via Messina 829 - 95100 Catania (Italy); Schillaci, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); and others

    2015-10-01

    Within 2017, the ELIMED (ELI-Beamlines MEDical applications) transport beam-line and dosimetric systems for laser-generated beams will be installed at the ELI-Beamlines facility in Prague (CZ), inside the ELIMAIA (ELI Multidisciplinary Applications of laser–Ion Acceleration) interaction room. The beam-line will be composed of two sections: one in vacuum, devoted to the collecting, focusing and energy selection of the primary beam and the second in air, where the ELIMED beam-line dosimetric devices will be located. This paper briefly describes the transport solutions that will be adopted together with the main dosimetric approaches. In particular, the description of an innovative Faraday Cup detector with its preliminary experimental tests will be reported.

  20. A new Thomson Spectrometer for high energy laser-driven beams diagnostic

    International Nuclear Information System (INIS)

    Cirrone, G A P; Tramontana, A; Candiano, G; Cavallaro, S; Cutroneo, M; Cuttone, G; Pisciotta, P; Romano, F; Schillaci, F; Scuderi, V; Torrisi, L; Carpinelli, M; Martinis, C De; Giove, D; Krása, J; Korn, G; Margarone, D; Prokůpek, J; Velyhan, A; Maggiore, M

    2014-01-01

    Thomson Spectrometers (TPs) are widely used for beam diagnostic as they provide simultaneous information on charge over mass ratio, energy and momentum of detected ions. A new TP design has been realized at INFN-LNS within the LILIA (Laser Induced Light Ion Acceleration) and ELIMED (MEDical application at ELI-Beamlines) projects. This paper reports on the construction details of the TP and on its experimental tests performed at PALS laboratory in Prague, with the ASTERIX IV laser system. Reported data are obtained with polyethylene and polyvinyl alcohol solid targets, they have been compared with data obtained from other detectors. Consistency among results confirms the correct functioning of the new TP. The main features, characterizing the design, are a wide acceptance of the deflection sector and a tunability of the, partially overlapping, magnetic and electric fields that allow to resolve ions with energy up to about 40 MeV for protons

  1. Development and characterization of femtosecond laser driven soft x-ray lasers

    International Nuclear Information System (INIS)

    Bettaibi, I.

    2005-06-01

    Coherent soft x-ray sources have an important potential for scientific, medical and industrial applications. The development of high intensity laser systems allowed the realization of new coherent and fast soft x-ray sources like high order harmonic generation and soft x-ray lasers. These sources are compact, cheaper than traditional sources such as synchrotrons, and are thus interesting. This thesis presents the study of a new soft x-ray laser pumped by a femto-second laser beam working at 10 Hz. The circularly polarized ultra intense laser is longitudinally focused in a cell filled with xenon or krypton, to obtain the amplification of two lasing lines at 41.8 nm and 32.8 nm in Pd-like xenon and Ni-like krypton respectively. We carry out an experimental and numerical study of the source to understand the importance of different parameters such as the laser intensity and polarization, the gas pressure and the cell length. We have also spatially and temporally characterized the soft x-ray laser beam. To compensate the refraction of the driving laser we have investigated guiding techniques consisting in creating a plasma channel by electric discharge or using the multiple reflections of the driving laser on the internal walls of the dielectric tubes of sapphire or glass. A spectacular improvement of the source performances has been observed in both cases. Finally, we present a preliminary study on a different x-ray scheme: the inner shell photo pumping of neutral atoms. We have developed an optical system, which should create the appropriate conditions for the realisation of short wavelength x-ray amplifier. (author)

  2. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    Science.gov (United States)

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  3. The interaction of laser driven shock waves with a spherical density perturbation

    International Nuclear Information System (INIS)

    Bach, D.R; Budil, K.S.; Klein, R.I.; Perry, T.S.

    1999-01-01

    Strong shock waves produced by illumination of a CH target by laser produced x-rays were driven through a copper sphere. The motion and deformation of the sphere were measured using radiographs generated by backlighting the sphere with a large area backlighter. The sphere became non-spherical after the passage of the shock, having a complicated down-stream structure. This was an instability-induced structure that was predicted by calculations. The experiment is a convenient laboratory model of the complicated interactions occurring in much larger systems such as in astrophysics in the interaction of shocks formed in the interstellar medium with various types of clouds. In particular, the experiment is a useful tool for checking the computational ability of the new generation ASCI computers, as it requires three-dimensional modeling. This experiment has shown that three dimensional calculations seem to be necessary to describe major features observed in the experiment. Any attempt to explain hydrodynamic behavior with similar instabilities must take into account these three dimensional effects

  4. Post-acceleration of laser driven protons with a compact high field linac

    Science.gov (United States)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  5. MBARI's 2001 Hawaii Expedition using the R/V Western Flyer and ROV Tiburon

    Science.gov (United States)

    Clague, D. A.; Paull, C. K.; Greene, H. G.; Jordahl, K.; Davis, A. S.

    2001-12-01

    The MBARI research vessel Western Flyer with the Tiburon remotely operated vehicle (ROV) spent 36 days at sea doing mainly geologic investigations offshore the Hawaiian Islands during March to May 2001. During these operational days we conducted 57 dives at depths ranging from 150 m to 3820 m and collected 1198 volcanic and carbonate rock samples; 185 sediment samples using sediment scoops, push-cores and short vibracores; and assorted megafauna. We occupied 32 closely spaced heat flow stations, and collected 167 water filtration samples for radium analysis. We also recorded about 280 hours of digital beta format video of the bottom. Heat flow and in-situ thermal conductivity was measured on the northwest flank of Oahu. The radium samples were collected during all of the dives east of Oahu by filtering about 200 liters of seawater on the ROV using a new pump/filtration system. The dives addressed a range of research topics that can be roughly subdivided into four groups. Volcanologic observations and petrologic sampling of constructional volcanic features were done on eruptive fissures on the Kohala terrace west of Hawaii, cones on Kilauea's Puna Ridge and the west rift of Kahoolawe, rejuvenated stage cones and flat-topped cones offshore Oahu, Kauai, and Niihau, and postshield stage cones offshore Niihau. The analyzed lavas from the Puna Ridge are tholeiitic basalts with 4.8-6.4% MgO. The samples from the west rift of Kahoolawe are submarine-erupted, high-SiO2, tholeiitic basalt and tuff. The analyzed rejuvenated and postshield stage lavas and tuffs are alkalic and submarine erupted. The subsidence history of the islands and paleoclimatic history were addressed by sampling old shoreline feature such as drowned coral reefs and drowned beaches. Dives with this objective were done on six terraces on the Kohala terrace, one on East Kohala, four south and southwest of Lanai, one north of Molokai, one south of Oahu, one on the Kaena Ridge, and one northwest of Niihau. We

  6. Pump-probe study of atoms and small molecules with laser driven high order harmonics

    Science.gov (United States)

    Cao, Wei

    A commercially available modern laser can emit over 1015 photons within a time window of a few tens of femtoseconds (10-15second), which can be focused into a spot size of about 10 mum, resulting in a peak intensity above 1014W/cm2. This paves the way for table-top strong field physics studies such as above threshold ionization (ATI), non-sequential double ionization (NSDI), high order harmonic generation (HHG), etc.. Among these strong laser-matter interactions, high order harmonic generation, which combines many photons of the fundamental laser field into a single photon, offers a unique way to generate light sources in the vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) region. High order harmonic photons are emitted within a short time window from a few tens of femtoseconds down to a few hundreds of attoseconds (10 -18second). This highly coherent nature of HHG allows it to be synchronized with an infrared (IR) laser pulse, and the pump-probe technique can be adopted to study ultrafast dynamic processes in a quantum system. The major work of this thesis is to develop a table-top VUV(EUV) light source based on HHG, and use it to study dynamic processes in atoms and small molecules with the VUV(EUV)-pump IR-probe method. A Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) apparatus is used for momentum imaging of the interaction products. Two types of high harmonic pump pulses are generated and applied for pump-probe studies. The first one consists of several harmonics forming a short attosecond pulse train (APT) in the EUV regime (around 40 eV). We demonstrate that, (1) the auto-ionization process triggered by the EUV in cation carbon-monoxide and oxygen molecules can be modified by scanning the EUV-IR delay, (2) the phase information of quantum trajectories in bifurcated high harmonics can be extracted by performing an EUV-IR cross-correlation experiment, thus disclosing the macroscopic quantum control in HHG. The second type of high harmonic source

  7. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  8. Clinical and research activities at the CATANA facility of INFN-LNS: fom the conventional hadrontherapy to the laser-driven approach

    Czech Academy of Sciences Publication Activity Database

    Cirrone, G.A.P.; Cuttone, G.; Raffaele, L.; Salamone, S.; Avitabile, T.; Privitera, G.; Spatola, C.; Margarone, Daniele; Patti, V.; Petringa, G.; Romano, F.; Russo, A.; Russo, An.; Sabini, M.G.; Scuderi, Valentina; Schillaci, F.; Valastro, L.

    2017-01-01

    Roč. 7, Sep (2017), 1-13, č. článku 223. ISSN 2234-943X R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : proton therapy * dosimetry * clinical follow-up * Monte Carlo * laser -driven * ELIMED Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics)

  9. A High-Power Laser-Driven Source of Sub-nanosecond Soft X-Ray Pulses for Single-Shot Radiobiology Experiments

    Czech Academy of Sciences Publication Activity Database

    Davídková, Marie; Juha, Libor; Bittner, Michal; Koptyaev, Sergey; Hájková, Věra; Krása, Josef; Pfeifer, Miroslav; Štísová, Viktorie; Bartnik, A.; Fiedorowicz, H.; Mikolajczyk, J.; Ryc, L.; Pína, L.; Horváth, M.; Babánková, Dagmar; Cihelka, Jaroslav; Civiš, Svatopluk

    2007-01-01

    Roč. 168, č. 3 (2007), s. 382-387 ISSN 0033-7587 R&D Projects: GA ČR GA202/05/2316; GA MŠk(CZ) LC528; GA MŠk 1P04LA235; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100523; CEZ:AV0Z20430508; CEZ:AV0Z40400503 Keywords : soft X-rays * radiation damage to DNA * laser-driven source Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.599, year: 2007

  10. LESM: a laser-driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples

    Czech Academy of Sciences Publication Activity Database

    Labate, L.; Andreassi, M.G.; Baffigi, F.; Bizzarri, B.M.; Borghini, A.; Bussolino, G.C.; Fulgentini, L.; Ghetti, F.; Giulietti, A.; Köster, P.; Lamia, D.; Levato, Tadzio; Oishi, Y.; Pulignani, S.; Russo, G.; Sgarbossa, A.; Gizzi, L.A.

    2016-01-01

    Roč. 49, č. 27 (2016), s. 1-9, č. článku 275401. ISSN 0022-3727 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : laser-driven electron accelerators * sub-MeV electron sources * ultrahigh dose rate * radiobiology * cell radiation damage Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics ) Impact factor: 2.588, year: 2016

  11. Nonlinear Absorption-Gain Response and Population Dynamics in a Laser-Driven Four-Level Dense Atomic System

    International Nuclear Information System (INIS)

    Li Jiahua; Liu Jibing; Luo Jinming; Xie Xiaotao

    2006-01-01

    We theoretically investigate the response of nonlinear absorption and population dynamics in optically dense media of four-level atoms driven by a single-mode probe laser, via taking the density-dependent near dipole-dipole (NDD) interactions into consideration. The influence of the NDD effects on the absorption of the probe field and population dynamics is predicted via numerical calculations. It is shown that the NDD effects can reduce gradually to transient absorption with the increase of the strengths of the NDD interactions, and transient amplification can be achieved. In the steady-state limit, the probe field exhibits transparency for strong NDD interactions. Alternatively, the population entirely remains at the ground state due to the NDD effects.

  12. General-Purpose Heat Source Safety Verification Test program: Edge-on flyer plate tests

    International Nuclear Information System (INIS)

    George, T.G.

    1987-03-01

    The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of 238 Pu α-decay to an array of thermoelectric elements. Each module contains four 238 PuO 2 -fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-T0) plate is approximately 140 m/s

  13. Survey of On-Orbit Sleep Quality: Short-Duration Flyers

    Science.gov (United States)

    Locke, J.; Leveton, L.; Keeton, K.; Whitmire, A.; Patterson, H.; Faulk, J.

    2010-01-01

    The NASA Human Research Program (HRP) Behavioral Health and Performance Element (BHP), in conjunction with the NASA Space Medicine Division, is currently completing the largest systematic, subjective assessment of shuttle astronauts sleep behaviors and sleep quality on Earth, during training periods, and during space flight missions. Since July 2009, a total of 66 astronauts have completed a secure online survey regarding specific sleep strategies, crew policies, and mitigation effectiveness. In addition to the survey, each astronaut participant met individually with trained BHP and SD representatives for a structured, follow-up interview. Data are currently being assessed and the study s principal investigator will be providing some preliminary findings at the Investigators Workshop. Additional analyses will be conducted in the following months to examine predictors of optimal sleep in space, and to evaluate the differences in countermeasure effectiveness between groups based on their sleep experience on the ground and on orbit. A revised survey for a subsequent investigation on the experiences of long-duration flyers will be developed in the Spring and implemented in the Summer of 2010. Findings from both of these investigations will inform countermeasure strategies for astronauts, medical operations, and habitat designers for future exploration missions, as well as upcoming shuttle and ISS missions.

  14. The Nervous Flyer: Nerves, Flying and the First World War1

    Science.gov (United States)

    Shaw Cobden, Lynsey

    2018-01-01

    This is not an article about ‘shell-shock’. It explores the military medical response to nervous disorders in the Royal Flying Corps. The First World War exposed the propensity of pilots to the nervous and psychological rigours of aerial warfare, but their unique experiences have been overlooked in favour of ‘trauma’ in infantrymen. This represents a critical lacuna in the historiography of military medicine, for flying personnel were studied apart from ‘shell-shocked’ soldiers. This article will show that flyers were believed to be medically different, and what set them apart from men in the trenches was their unique employment. The war necessitated, and provided the conditions for, the study of the medical problems of flying, including the significant nervous strains. Medical officers quickly established that flying not only affected bodily functions, but also ‘wore down’ the nerves that regulated psychological responses. This article will therefore present the medical view. It will study the research of air-minded medical officers and the conclusions reached on the nervous disorders of flying personnel. PMID:29528049

  15. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    Science.gov (United States)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  16. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    International Nuclear Information System (INIS)

    Alejo, A.; Kar, S.; Ahmed, H.; Doria, D.; Green, A.; Jung, D.; Lewis, C. L. S.; Nersisyan, G.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Green, J. S.; Notley, M.; Fernandez, J.; Fuchs, J.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.

    2014-01-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C 6+ , O 8+ , etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser

  17. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    Science.gov (United States)

    Alejo, A.; Kar, S.; Ahmed, H.; Krygier, A. G.; Doria, D.; Clarke, R.; Fernandez, J.; Freeman, R. R.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Lewis, C. L. S.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Nersisyan, G.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Ruiz, J. A.; Vassura, L.; Zepf, M.; Borghesi, M.

    2014-09-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6 +, O8 +, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  18. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, A.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Doria, D.; Green, A.; Jung, D.; Lewis, C. L. S.; Nersisyan, G. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Krygier, A. G.; Freeman, R. R. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Clarke, R.; Green, J. S.; Notley, M. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fernandez, J. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, 28006 Madrid (Spain); Fuchs, J. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); and others

    2014-09-15

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C{sup 6+}, O{sup 8+}, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  19. Characterization and optimization of laser-driven electron and photon sources in keV and MeV energy ranges

    International Nuclear Information System (INIS)

    Bonnet, Thomas

    2013-01-01

    This work takes place in the framework of the characterization and the optimization of laser-driven electron and photon sources. With the goal of using these sources for nuclear physics experiments, we focused on 2 energy ranges: one around a few MeV and the other around a few tens of keV. The first part of this work is thus dedicated to the study of detectors routinely used for the characterization of laser-driven particle sources: Imaging Plates. A model has been developed and is fitted to experimental data. Response functions to electrons, photons, protons and alpha particles are established for SR, MS and TR Fuji Imaging Plates for energies ranging from a few keV to several MeV. The second part of this work present a study of ultrashort and intense electron and photon sources produced in the interaction of a laser with a solid or liquid target. An experiment was conducted at the ELFIE facility at LULI where beams of electrons and photons were accelerated up to several MeV. Energy and angular distributions of the electron and photons beams were characterized. The sources were optimized by varying the spatial extension of the plasma at both the front and the back end of the initial target position. In the optimal configuration of the laser-plasma coupling, more than 1011 electrons were accelerated. In the case of liquid target, a photon source was produced at a high repetition rate on an energy range of tens of keV by the interaction of the AURORE Laser at CELIA (10 16 W.cm -2 ) and a melted gallium target. It was shown that both the mean energy and the photon number can be increased by creating gallium jets at the surface of the liquid target with a pre-pulse. A physical interpretation supported by numerical simulations is proposed. (author)

  20. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    A. T. Wieg

    2016-12-01

    Full Text Available We introduce high thermal conductivity aluminum nitride (AlN as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l’Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  1. Ultra-short pulse, ultra-high intensity laser improvement techniques for laser-driven quantum beam science

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Kando, Masaki

    2014-01-01

    Recent development activities of the Quantum Beam Research Team in JAEA are reported. The downsized, petawatt and femtosecond pulse laser is described at first. The process of the system development and utilization effort of so-called J-KAREN is explained with its time and space control system. For high contrast, OPCPA (Optical Parametric Chirped Pulse Amplification) preamplifier is adopted by using the titanium-sapphire laser system in which only the seed light pulses can be amplified. In addition, high contrast is obtained by adopting the high energy seed light to the amplifier. The system configuration of J-KAREN laser is illustrated. Typical spectra with and without OPCPA, as well as the spectra with OPCPA adjustment and without one are shown. The result of the recompressed pulses is shown in which the pulse width of 29.5 femtoseconds is close to the theoretical limit. Considering the throughput of the pulse compressor is 64 percent it is possible to generate high power laser beam of about 600 terawatts. In the supplementary budget of 2012, it has been approved to cope with the aging or obsoleteness of the system and at the same time to further sophisticate the laser using system. The upgraded laser system is named as J-KAREN-P in which the repetition rate is improved and another booster amplifier is added to increase the power. The system configuration of J-KAREN-P after the upgrading is illustrated. (S. Funahashi)

  2. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  3. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    International Nuclear Information System (INIS)

    Buice, E.S.; Alger, E.T.; Antipa, N.A.; Bhandarkar, S.D.; Biesiada, T.A.; Conder, A.D.; Dzenitis, E.G.; Flegel, M.S.; Hamza, A.V.; Heinbockel, C.L.; Horner, J.; Johnson, M.A.; Kegelmeyer, L.M.; Meyer, J.S.; Montesanti, R.C.; Reynolds, J.L.; Taylor, J.S.; Wegner, P.J.

    2011-01-01

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 (micro)m diameter glass-core fill-tube that tapers down to a 10(micro) diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1σ), which corresponds to approximately 5 (micro)m linear error on the capsule surface.

  4. Laser driven X-ray parametric amplification in neutral gases-a new brilliant light source in the XUV

    International Nuclear Information System (INIS)

    Aurand, B.; Seres, J.; Bagnoud, V.; Ecker, B.; Hochhaus, D.C.; Neumayer, P.; Seres, E.; Spielmann, C.; Zielbauer, B.; Zimmer, D.; Kuehl, T.

    2011-01-01

    In this paper we present the experimental setup and results showing a new type of strong-field parametric amplification of high-order harmonic radiation. With a simple semi-classical model, we can identify the most important experimental parameters, the spectral range and the small signal gain in gases. Using a single stage amplifier, a small signal gain of 8000 has been obtained in argon for the spectral range of 40-50 eV, using 350 fs, 7 mJ pulses at 1.05 μm. An outlook for an experiment employing a double stage gas system will be given.

  5. Laser driven X-ray parametric amplification in neutral gases-a new brilliant light source in the XUV

    Energy Technology Data Exchange (ETDEWEB)

    Aurand, B., E-mail: b.aurand@gsi.de [GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt (Germany); ExtreMe Matter Institute, Planckstr. 1, 64291 Darmstadt (Germany); Johannes Gutenberg University Mainz, Saarstr. 21, 55099 Mainz (Germany); Seres, J. [Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Bagnoud, V. [GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt (Germany); Ecker, B. [GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt (Germany); Helmholtz Institut Jena, Helmholtzweg 4, 07743 Jena (Germany); Johannes Gutenberg University Mainz, Saarstr. 21, 55099 Mainz (Germany); Hochhaus, D.C.; Neumayer, P. [GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt (Germany); ExtreMe Matter Institute, Planckstr. 1, 64291 Darmstadt (Germany); Johann-Wolfgang von Goethe University, 60325 Frankfurt (Germany); Seres, E.; Spielmann, C. [Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Zielbauer, B. [GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt (Germany); Helmholtz Institut Jena, Helmholtzweg 4, 07743 Jena (Germany); Zimmer, D. [GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt (Germany); Kuehl, T. [GSI Helmholtz Centre for Heavy Ion Research, Planckstr. 1, 64291 Darmstadt (Germany); ExtreMe Matter Institute, Planckstr. 1, 64291 Darmstadt (Germany); Johannes Gutenberg University Mainz, Saarstr. 21, 55099 Mainz (Germany)

    2011-10-11

    In this paper we present the experimental setup and results showing a new type of strong-field parametric amplification of high-order harmonic radiation. With a simple semi-classical model, we can identify the most important experimental parameters, the spectral range and the small signal gain in gases. Using a single stage amplifier, a small signal gain of 8000 has been obtained in argon for the spectral range of 40-50 eV, using 350 fs, 7 mJ pulses at 1.05 {mu}m. An outlook for an experiment employing a double stage gas system will be given.

  6. Healthy or Unhealthy on Sale? A cross-sectional study on the proportion of healthy and unhealthy foods promoted through flyer advertising by supermarkets in the Netherlands

    NARCIS (Netherlands)

    Ravensbergen, E.A.H.; Waterlander, W.E.; Kroeze, W.; Steenhuis, I.H.M.

    2015-01-01

    Background: It is generally assumed that supermarkets promote unhealthy foods more heavily than healthy foods. Promotional flyers could be an effective tool for encouraging healthier food choices; however, there is a lack of good-quality evidence on this topic. Therefore, the aim of this study was

  7. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate.

    Science.gov (United States)

    Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric

    2012-11-15

    High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.

  8. Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage

    Science.gov (United States)

    Pérez del Pino, A.; György, E.; Alshaikh, I.; Pantoja-Suárez, F.; Andújar, J. L.; Pascual, E.; Amade, R.; Bertran-Serra, E.

    2017-09-01

    Carbon nanotubes-transition metal oxide systems are intensively studied due to their excellent properties for electrochemical applications. In this work, an innovative procedure is developed for the synthesis of vertically aligned multi-walled carbon nanotubes (VACNTs) coated with transition metal oxide nanostructures. VACNTs are grown by plasma enhanced chemical vapor deposition and coated with a manganese-based metal organic precursor (MOP) film based on manganese acetate solution. Subsequent UV pulsed laser irradiation induces the effective heating-decomposition of the MOP leading to the crystallization of manganese oxide nanostructures on the VACNT surface. The study of the morphology, structure and composition of the synthesized materials shows the formation of randomly oriented MnO2 crystals, with few nanometers in size, and to their alignment in hundreds of nm long filament-like structures, parallel to the CNT’s long axis. Electrochemical measurements reveal a significant increase of the specific capacitance of the MnO2-VACNT system (100 F g-1) as compared to the initial VACNT one (21 F g-1).

  9. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongsheng [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Graduate School, China Academy of Engineering Physics, Beijing 100088 (China); Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Lan, Ke; Ye, Wenhua, E-mail: ye-wenhua@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zhang, Weiyan [China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-07-15

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting “tent.” Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  10. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    Science.gov (United States)

    Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan

    2016-07-01

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting "tent." Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  11. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    International Nuclear Information System (INIS)

    Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan

    2016-01-01

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting “tent.” Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  12. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma

    Science.gov (United States)

    Colvin, J. D.; Matsukuma, H.; Brown, K. C.; Davis, J. F.; Kemp, G. E.; Koga, K.; Tanaka, N.; Yogo, A.; Zhang, Z.; Nishimura, H.; Fournier, K. B.

    2018-03-01

    This work was motivated by previous findings that the measured laser-driven heat front propagation velocity in under-dense TiO2/SiO2 foams is slower than the simulated one [Pérez et al., Phys. Plasmas 21, 023102 (2014)]. In attempting to test the hypothesis that these differences result from effects of the foam microstructure, we designed and conducted an experiment on the GEKKO laser using an x-ray streak camera to compare the heat front propagation velocity in "equivalent" gas and foam targets, that is, targets that have the same initial density, atomic weight, and average ionization state. We first discuss the design and the results of this comparison experiment. To supplement the x-ray streak camera data, we designed and conducted an experiment on the Trident laser using a new high-resolution, time-integrated, spatially resolved crystal spectrometer to image the Ti K-shell spectrum along the laser-propagation axis in an under-dense TiO2/SiO2 foam cylinder. We discuss the details of the design of this experiment, and present the measured Ti K-shell spectra compared to the spectra simulated with a detailed superconfiguration non-LTE atomic model for Ti incorporated into a 2D radiation hydrodynamic code. We show that there is indeed a microstructure effect on heat front propagation in under-dense foams, and that the measured heat front velocities in the TiO2/SiO2 foams are consistent with the analytical model of Gus'kov et al. [Phys. Plasmas 18, 103114 (2011)].

  13. An alternative laser driven photodissociation mechanism of pyrrole via πσ*1∕S0 conical intersection.

    Science.gov (United States)

    Nandipati, K R; Lan, Z; Singh, H; Mahapatra, S

    2017-06-07

    A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S 0 - 1 πσ * (A21) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the πσ*1 state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the πσ*1 photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.

  14. An alternative laser driven photodissociation mechanism of pyrrole via π*1σ/S0 conical intersection

    Science.gov (United States)

    Nandipati, K. R.; Lan, Z.; Singh, H.; Mahapatra, S.

    2017-06-01

    A first principles quantum dynamics study of N-H photodissociation of pyrrole on the S0-1π σ*(A12) coupled electronic states is carried out with the aid of an optimally designed UV-laser pulse. A new photodissociation path, as compared to the conventional barrier crossing on the π*1σ state, opens up upon electronic transitions under the influence of pump-dump laser pulses, which efficiently populate both the dissociation channels. The interplay of electronic transitions due both to vibronic coupling and the laser pulse is observed in the control mechanism and discussed in detail. The proposed control mechanism seems to be robust, and not discussed in the literature so far, and is expected to trigger future experiments on the π*1σ photochemistry of molecules of chemical and biological importance. The design of the optimal pulses and their application to enhance the overall dissociation probability is carried out within the framework of optimal control theory. The quantum dynamics of the system in the presence of pulse is treated by solving the time-dependent Schrödinger equation in the semi-classical dipole approximation.

  15. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins

    2016-12-09

    -called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help of a numerically exactly solvable model helium atom in laser fields. In the special case of time-dependent two-electron systems the two-particle density matrix in terms of ONs and NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable truncation of the number of RNOs per particle taken into account in the simulation. It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states, Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high harmonic generation, non-sequential ionization, and single-photon double ionization in excellent agreement with the corresponding TDSE results.

  16. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    International Nuclear Information System (INIS)

    Brics, Martins

    2016-01-01

    -called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help of a numerically exactly solvable model helium atom in laser fields. In the special case of time-dependent two-electron systems the two-particle density matrix in terms of ONs and NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable truncation of the number of RNOs per particle taken into account in the simulation. It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states, Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high harmonic generation, non-sequential ionization, and single-photon double ionization in excellent agreement with the corresponding TDSE results.

  17. Laser driven hydrodynamic instability experiments

    International Nuclear Information System (INIS)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-01-01

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes

  18. Laser driven hydrodynamic instability experiments

    International Nuclear Information System (INIS)

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1992-01-01

    We have conducted an extensive series of experiments on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime; multimode foils allow an assessment of the degree of mode coupling; and surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes. Experimental results and comparisons with theory and simulations are presented

  19. Laser-driven grating linac

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1982-01-01

    I would like to consider a 50 TeV on 50 TeV collider. Even a hadron machine with such an energy seems unrealistic with current technology. Magnetic fields higher than 10 Tesla are difficult and at this field the circumference would be 120 km. I conclude that only a high gradient Linac could be practical and that one should aim for 10 GeV/meter so as to keep the total length down to the order ot 10 km. Currently it is only plausible to obtain such fields using the very high energy densities produced by lasers. The luminosity is another issue. I aim for 10 33 to 10 34 but I am conscious that higher luminosities than even these are really desired, especially for an e + e - machine. I tend to assume that the machine is an e + e - machine but it will also accept hadrons

  20. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1981-01-01

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  1. Laser driven fusion fission hybrids

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1977-11-01

    The role of the fusion-fission hybrid reactor (FFHR) as a fissile fuel and/or power producer is discussed. As long range options to supply the world energy needs, hybrid-fueled thermal-burner reactors are compared to liquid metal fast breeder reactors (LMFBR). A discussion of different fuel cycles (thorium, depleted uranium, and spent fuel) is presented in order to compare the energy multiplication, the production of fissile fuel, the laser efficiency and pellet gain requirements of the hybrid reactor. Lawrence Livermore Laboratory (LLL) has collaborated with Bechtel Corporation and with Westinghouse in two engineering design studies of laser fusion driven hybrid power plants. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering operational parameters, such as energy multiplication, power density, burn-up and plutonium production as a function time

  2. Mars Electric Reusable Flyer

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the main issues with a Mars flight vehicle concept that can be reused and cover long distances for maximum surface data gathering is its ability to take off,...

  3. Wright Flyer Project

    Science.gov (United States)

    2004-01-01

    The wind tunnel test results have been published in the literature as summarized at the end of this report. As part of the education program, an introduction to engineering course module was designed and tested on 80 freshman engineering students at Old Dominion University. The five-week module required that five-person teams design, build and fly a radio-controlled airplane using only the wind tunnel data developed by the Wright brothers in 1902. That module is described in Sparks and Ash (2001). The Principal Investigator has co-authored one dozen publications resulting from this research, as listed at the end of this report. The Principal Investigator has given fourteen lectures on the Wright brother testing program and has appeared in two documentary television programs (summarized at the end of this report). Speaking invitations have continued since the completion of the project.

  4. Healthy or Unhealthy on Sale? A cross-sectional study on the proportion of healthy and unhealthy foods promoted through flyer advertising by supermarkets in the Netherlands.

    Science.gov (United States)

    Ravensbergen, Eva A H; Waterlander, Wilma E; Kroeze, Willemieke; Steenhuis, Ingrid H M

    2015-05-06

    It is generally assumed that supermarkets promote unhealthy foods more heavily than healthy foods. Promotional flyers could be an effective tool for encouraging healthier food choices; however, there is a lack of good-quality evidence on this topic. Therefore, the aim of this study was to determine the proportions of healthy and unhealthy foods on promotion in Dutch supermarket flyers. Supermarket food promotions were assessed using the weekly promotional flyers of four major Dutch supermarkets over a period of eight weeks. All promotions were evaluated for healthiness, price discount, minimum purchase amount, product category and promotion type. The level of healthiness consists of a 'healthy' group; products which have a positive effect on preventing chronic diseases and can be eaten every day. The 'unhealthy' group contain products which have adverse effects on the prevention of chronic diseases. Data were analysed using ANOVA, independent t-tests and chi-square tests. A total of 1,495 promotions were included in this study. There were more promotions in the unhealthy category; 70% of promotions were categorised as unhealthy. The price discount was greater for the healthy promotions (mean 29.5%, SD 12.1) than for the two categories of unhealthy promotions (23.7%, SD 10.8; 25.4%, SD 10.5, respectively), a tendency which was mainly due to discounts in the fruit and vegetables category. To obtain the advertised discount, a significantly higher number of products had to be purchased in the unhealthy category than in the healthier categories. Promotions in the category meat, poultry and fish category occurred frequently. Compared to traditional supermarkets, discounter supermarkets had higher percentages of unhealthy food discounts, lower discount levels and lower minimum purchase amounts. This research confirmed that unhealthy foods are more frequently advertised than healthier foods in Dutch supermarket flyers. Moreover, consumers had to buy more products to

  5. Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Roensch, Juliane

    2010-01-15

    The Photoinjector Test facility at DESY, Zeuthen site, (PITZ) is aiming for the optimization of electron guns for SAS-FELs. For this it is necessary to investigate the characteristics of the six dimensional phase space of the bunch produced by a photoinjector. This thesis is focused on the analysis of the longitudinal properties of the electron bunch distribution, this means the temporal current distribution and the momentum distribution as well as the correlation of both properties. The complete distribution of the electron bunch in longitudinal phase space of a photoinjector was measured directly for the first time at a beam momentum of about 5 MeV/c, using an existing apparatus. This system had been designed for an accelerating gradient of 40 MV/m. Its subcomponents were analysed to understand sources of uncertainties of the measurement system. The usage of higher accelerating gradients in the gun (60 MV/m, resulting in a beam momentum of about 6.8 MeV/c) demands major modifications of the existing measurement system for the longitudinal phase space distribution. An upgrade of the facility by an additional accelerating cavity required the design of further longitudinal diagnostics systems for the analysis at higher momenta (up to 40 MeV/c). Measurements of the longitudinal beam properties to determine the influence of different operation parameters, like RF launch phase, charge, accelerating field gradient and laser distribution were performed and compared to simulations. (orig.)

  6. Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL

    International Nuclear Information System (INIS)

    Roensch, Juliane

    2010-01-01

    The Photoinjector Test facility at DESY, Zeuthen site, (PITZ) is aiming for the optimization of electron guns for SAS-FELs. For this it is necessary to investigate the characteristics of the six dimensional phase space of the bunch produced by a photoinjector. This thesis is focused on the analysis of the longitudinal properties of the electron bunch distribution, this means the temporal current distribution and the momentum distribution as well as the correlation of both properties. The complete distribution of the electron bunch in longitudinal phase space of a photoinjector was measured directly for the first time at a beam momentum of about 5 MeV/c, using an existing apparatus. This system had been designed for an accelerating gradient of 40 MV/m. Its subcomponents were analysed to understand sources of uncertainties of the measurement system. The usage of higher accelerating gradients in the gun (60 MV/m, resulting in a beam momentum of about 6.8 MeV/c) demands major modifications of the existing measurement system for the longitudinal phase space distribution. An upgrade of the facility by an additional accelerating cavity required the design of further longitudinal diagnostics systems for the analysis at higher momenta (up to 40 MeV/c). Measurements of the longitudinal beam properties to determine the influence of different operation parameters, like RF launch phase, charge, accelerating field gradient and laser distribution were performed and compared to simulations. (orig.)

  7. Magnetic field effect on the laser-driven density of states for electrons in a cylindrical quantum wire: transition from one-dimensional to zero-dimensional behavior

    International Nuclear Information System (INIS)

    Lima, C P; Lima, F M S; Fonseca, A L A; Nunes, O A C

    2011-01-01

    The influence of a uniform magnetic field on the density of states (DoS) for carriers confined in a cylindrical semiconductor quantum wire irradiated by a monochromatic, linearly polarized, intense laser field is computed here non-perturbatively, following the Green's function scheme introduced by some of the authors in a recent work (Lima et al 2009 Solid State Commun. 149 678). Besides the known changes in the DoS provoked by an intense terahertz laser field-namely, a significant reduction and the appearance of Franz-Keldysh-like oscillations-our model reveals that the inclusion of a longitudinal magnetic field induces additional blueshifts on the energy levels of the allowed states. Our results show that the increase of the blueshifts with the magnitude of the magnetic field depends only on the azimuthal quantum number m (m=0, 1, 2, ...), being more pronounced for states with higher values of m, which leads to some energy crossovers. For all states, we have obtained, even in the absence of a magnetic field, a localization effect that leads to a transition in the DoS from the usual profile of quasi-1D systems to a peaked profile typical of quasi-0D systems, as e.g. those found for electrons confined in a quantum dot.

  8. A paleo-aerodynamic exploration of the evolution of nature's flyers, man's aircraft, and the needs and options for future technology innovations

    Science.gov (United States)

    Kulfan, Brenda M.

    2009-03-01

    Insights and observations of fascinating aspects of birds, bugs and flying seeds, of inspired aerodynamic concepts, and visions of past, present and future aircraft developments are presented. The evolution of nature's flyers, will be compared with the corresponding evolution of commercial aircraft. We will explore similarities between nature's creations and man's inventions. Many critical areas requiring future significant technology based solutions remain. With the advent of UAVs and MAVs, the gap between "possible" and "actual" is again very large. Allometric scaling procedures will be used to explore size implications on limitations and performance capabilities of nature's creations. Biologically related technology development concepts including: bionics, biomimicry, neo-bionic, pseudo-mimicry, cybernetic and non-bionic approaches will be discussed and illustrated with numerous examples. Technology development strategies will be discussed along with the pros and cons for each. Future technology developments should include a synergistic coupling of "discovery driven", "product led" and "technology acceleration" strategies. The objective of this presentation is to inspire the creative nature existing within all of us. This is a summary all text version of the complete report with the same title that report includes approximately 80 figures, photos and charts and much more information.

  9. Inertial effects in laser-driven ablation

    International Nuclear Information System (INIS)

    Harrach, R.J.; Szeoke, A.; Howard, W.M.

    1983-01-01

    The gasdynamic partial differential equations (PDE's) governing the motion of an ablatively accelerated target (rocket) contain an inertial force term that arises from acceleration of the reference frame in which the PDE's are written. We give a simple, intuitive description of this effect, and estimate its magnitude and parametric dependences by means of approximate analytical formulas inferred from our computer hydrocode calculations. Often this inertial term is negligible, but for problems in the areas of laser fusion and laser equation of state studies we find that it can substantially reduce the attainable hydrodynamic efficiency of acceleration and implosion

  10. Laser driven implosion of gas filled microballoons

    International Nuclear Information System (INIS)

    Key, M.H.; Evans, R.G.; Nicholas, D.J.

    1978-01-01

    The characteristics of the exploding pusher compression process have been studied experimentally and by computer modelling. Time and space resolved imaging and spectroscopy of X-ray emission has been used to determine the plasma parameters in both the outer corona and the implosion core. Neutron yield has been applied as an ion temperature indicator. The data thus obtained are related to 1D computer modelling with emphasis on the role of hot electron energy transport. Physical processes in the plasma corona have been investigated through observations of fast ions, hard X-rays and harmonic generation. Diagnostic methods for dense implosion plasma will be discussed. (author)

  11. Laser-driven Ion Acceleration using Nanodiamonds

    Science.gov (United States)

    D'Hauthuille, Luc; Nguyen, Tam; Dollar, Franklin

    2016-10-01

    Interactions of high-intensity lasers with mass-limited nanoparticles enable the generation of extremely high electric fields. These fields accelerate ions, which has applications in nuclear medicine, high brightness radiography, as well as fast ignition for inertial confinement fusion. Previous studies have been performed with ensembles of nanoparticles, but this obscures the physics of the interaction due to the wide array of variables in the interaction. The work presented here looks instead at the interactions of a high intensity short pulse laser with an isolated nanodiamond. Specifically, we studied the effect of nanoparticle size and intensity of the laser on the interaction. A novel target scheme was developed to isolate the nanodiamond. Particle-in-cell simulations were performed using the EPOCH framework to show the sheath fields and resulting energetic ion beams.

  12. Miniature shock tube for laser driven shocks.

    Science.gov (United States)

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  13. Compression measurement in laser driven implosion experiments

    International Nuclear Information System (INIS)

    Attwood, D.T.; Cambell, E.M.; Ceglio, N.M.; Lane, S.L.; Larsen, J.T.; Matthews, D.M.

    1981-01-01

    This paper discusses the measurement of compression in the context of the Inertial Confinement Fusion Programs' transition from thin-walled exploding pusher targets, to thicker walled targets which are designed to lead the way towards ablative type implosions which will result in higher fuel density and pR at burn time. These experiments promote desirable reactor conditions but pose diagnostic problems because of reduced multi-kilovolt x-ray and reaction product emissions, as well as increasingly more difficult transport problems for these emissions as they pass through the thicker pR pusher conditions. Solutions to these problems, pointing the way toward higher energy twodimensional x-ray images, new reaction product imaging ideas and the use of seed gases for both x-ray spectroscopic and nuclear activation techniques are identified

  14. Laser-driven ultrafast antiproton beam

    Science.gov (United States)

    Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang

    2018-02-01

    Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.

  15. Modeling of laser-driven hydrodynamics experiments

    Science.gov (United States)

    di Stefano, Carlos; Doss, Forrest; Rasmus, Alex; Flippo, Kirk; Desjardins, Tiffany; Merritt, Elizabeth; Kline, John; Hager, Jon; Bradley, Paul

    2017-10-01

    Correct interpretation of hydrodynamics experiments driven by a laser-produced shock depends strongly on an understanding of the time-dependent effect of the irradiation conditions on the flow. In this talk, we discuss the modeling of such experiments using the RAGE radiation-hydrodynamics code. The focus is an instability experiment consisting of a period of relatively-steady shock conditions in which the Richtmyer-Meshkov process dominates, followed by a period of decaying flow conditions, in which the dominant growth process changes to Rayleigh-Taylor instability. The use of a laser model is essential for capturing the transition. also University of Michigan.

  16. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  17. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  18. Neutronics shielding analysis of the last mirror-beam duct system for a laser fusion power reactor

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Klein, A.C.

    1981-01-01

    A Monte Carlo three-dimensional neutronics analysis for the last mirror-beam duct system for the SOLASE conceptual laser-driven fusion power reactor design is presented. Detailed geometric configurations including the reactor cavity, the two last mirrors, and the three-section two-right-angle bends duct are modeled. Measurements are given of the dimensions and compositions of the reactor components, and of neutron scalar fluxes, spatial dependencies and neutron volumetric heating rates for the cases of aluminum or Boral as laser beam duct liners, and ordinary concrete or lead mortar as shield material. A three-dimensional modeling of laser-driven reactor penetrations is employed. The particle leakage is found to be excessively high for the configuration of the conceptual design considered and the advantages and disadvantages of various solutions, such as the use of Boral as a duct liner and the use of lead mortar instead of ordinary concrete as a shield material, are considered

  19. Nova Event Logging System

    International Nuclear Information System (INIS)

    Calliger, R.J.; Suski, G.J.

    1981-01-01

    Nova is a 200 terawatt, 10-beam High Energy Glass Laser currently under construction at LLNL. This facility, designed to demonstrate the feasibility of laser driven inertial confinement fusion, contains over 5000 elements requiring coordinated control, data acquisition, and analysis functions. The large amounts of data that will be generated must be maintained over the life of the facility. Often the most useful but inaccessible data is that related to time dependent events associated with, for example, operator actions or experiment activity. We have developed an Event Logging System to synchronously record, maintain, and analyze, in part, this data. We see the system as being particularly useful to the physics and engineering staffs of medium and large facilities in that it is entirely separate from experimental apparatus and control devices. The design criteria, implementation, use, and benefits of such a system will be discussed

  20. Observations of the Earth's magnetic field from the Space Station: Measurement at high and extremely low altitude using Space Station-controlled free-flyers

    Science.gov (United States)

    Webster, W., Jr.; Frawley, J. J.; Stefanik, M.

    1984-01-01

    Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.

  1. Final report for the NSF/DOE partnership in basic plasma science grant DE-FG02-06ER54906 'Laser-driven collisionless shocks in the Large Plasma Device'

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Christoph [UCLA, CA (United States); Gekelman, W. [UCLA, CA (United States); Winske, D. [LANL, NM (United States); Larsen, D. [LLNL, CA (United States)

    2012-12-14

    We have performed several thousand high-energy laser shots in the LAPD to investigate the dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (> 20 cm) diamagnetic cavity. We observed field compressions of up to B/B{sub 0} = 1.5 at the edge of the bubble, consistent with the MHD jump conditions, as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston to super-Alfvenic speeds and swept outside the bubble volume. Nonlinear shear-Alfven waves ({delta}B/B{sub 0} > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. While the data is consistent with a weak magneto-sonic shock, the experiments were severely limited by the low ambient plasma densities (10{sup 12} cm{sup -3}). 2D hybrid simulations indicate that future experiments with the new LAPD plasma source and densities in excess of 10{sup 13} cm{sup -3} will drive full-blown collisionless shocks with MA>10 over several c/wpi and shocked Larmor radii. In a separate experiment at the LANL Trident laser facility we have performed a proof-of-principle experiment at higher densities to demonstrate key elements of collisionless shocks in laser-produced magnetized plasmas with important implications to NIF. Simultaneously we have upgraded the UCLA glass-laser system by adding two large amplitude disk amplifiers from the NOVA laser and boost the on-target energy from 30 J to up to 1 kJ, making this one of the world’s largest university-scale laser systems. We now have the infrastructure in place to perform novel and unique high-impact experiments on collision-less shocks at the LAPD.

  2. Final report for the NSF/DOE partnership in basic plasma science grant DE-FG02-06ER54906 'Laser-driven collisionless shocks in the Large Plasma Device'™

    International Nuclear Information System (INIS)

    Niemann, Christoph; Gekelman, W.; Winske, D.; Larsen, D.

    2012-01-01

    We have performed several thousand high-energy laser shots in the LAPD to investigate the dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (> 20 cm) diamagnetic cavity. We observed field compressions of up to B/B 0 = 1.5 at the edge of the bubble, consistent with the MHD jump conditions, as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston to super-Alfvenic speeds and swept outside the bubble volume. Nonlinear shear-Alfven waves (δB/B 0 > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. While the data is consistent with a weak magneto-sonic shock, the experiments were severely limited by the low ambient plasma densities (10 12 cm -3 ). 2D hybrid simulations indicate that future experiments with the new LAPD plasma source and densities in excess of 10 13 cm -3 will drive full-blown collisionless shocks with MA>10 over several c/wpi and shocked Larmor radii. In a separate experiment at the LANL Trident laser facility we have performed a proof-of-principle experiment at higher densities to demonstrate key elements of collisionless shocks in laser-produced magnetized plasmas with important implications to NIF. Simultaneously we have upgraded the UCLA glass-laser system by adding two large amplitude disk amplifiers from the NOVA laser and boost the on-target energy from 30 J to up to 1 kJ, making this one of the world's largest university-scale laser systems. We now have the infrastructure in place to perform novel and unique high-impact experiments on collision-less shocks at the LAPD

  3. Emittance Measurements from a Laser Driven Electron Injector

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David A

    2003-07-28

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 {angstrom}, the LCLS requires an electron injector that can produce an electron beam with approximately 1 {pi} mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be {approx} 13 {pi} mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 {pi} mm-mrad.

  4. Laser-Driven Recollisions under the Coulomb Barrier.

    Science.gov (United States)

    Keil, Th; Popruzhenko, S V; Bauer, D

    2016-12-09

    Photoelectron spectra obtained from the ab initio solution of the time-dependent Schrödinger equation can be in striking disagreement with predictions by the strong-field approximation (SFA), not only at low energy but also around twice the ponderomotive energy where the transition from the direct to the rescattered electrons is expected. In fact, the relative enhancement of the ionization probability compared to the SFA in this regime can be several orders of magnitude. We show for which laser and target parameters such an enhancement occurs and for which the SFA prediction is qualitatively good. The enhancement is analyzed in terms of the Coulomb-corrected action along analytic quantum orbits in the complex-time plane, taking soft recollisions under the Coulomb barrier into account. These recollisions in complex time and space prevent a separation into sub-barrier motion up to the "tunnel exit" and subsequent classical dynamics. Instead, the entire quantum path up to the detector determines the ionization probability.

  5. Laser driven pellet refuelling for JET (and reactor) uses

    International Nuclear Information System (INIS)

    Spalding, I.J.

    1978-11-01

    Published estimates of pellet sizes and velocities required to refuel JET and post-JET experiments are summarized. Possible advantages and difficulties of accelerating solid, unconstrained hydrogenic (and also jacketed) pellets to these velocities using laser techniques are then discussed. An essential problem to be solved is adequate axial guidance of the pellet during its acceleration, since laser pulse durations of many sound-transit times (in the solid D 2 ) are necessary to avoid shock-heating the pellet. It is shown that Culham's multikilojoule CO 2 TROJAN laser facility is well suited to testing many of the concepts proposed. In particular it is shown that successful verification, and subsequent optimization, of such (novel) techniques would permit single shot tests of contemporary pellet ablation theories by the injection of approximately 1 mm diameter D 2 pellets at velocities 6 cm s -1 into the JET plasma. Means for scaling these techniques to repetition rates of order 10 Hz, and to the 1 cm pellet diameters possibly required in a working Tokamak reactor, are also discussed. (author)

  6. Integrated code development for studying laser driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Hideaki; Nagatomo, Hideo; Sunahara, Atsusi; Ohnishi, Naofumi; Naruo, Syuji; Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Present status and plan for developing an integrated implosion code are briefly explained by focusing on motivation, numerical scheme and issues to be developed more. Highly nonlinear stage of Rayleigh-Taylor instability of ablation front by laser irradiation has been simulated so as to be compared with model experiments. Improvement in transport and rezoning/remapping algorithms in ILESTA code is described. (author)

  7. Advanced scheme for high-yield laser driven nuclear reactions

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Picciotto, A.; Velyhan, Andriy; Krása, Josef; Kucharik, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, Jiří; Bellutti, P.; Korn, Georg

    2015-01-01

    Roč. 57, č. 1 (2015), s. 014030 ISSN 0741-3335 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional research plan: CEZ:AV0Z2043910 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser plasma * nuclear reaction * laser fusion Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 2.404, year: 2015

  8. Laser-driven acceleration at ELI Beamlines - radioprotection aspects

    International Nuclear Information System (INIS)

    Olsovcova, V.; Fasso, A; Versaci, R.

    2014-01-01

    The international research centre ELI Beamlines, which is under construction in the village of Dolni Brezany near Prague, will exploit high power lasers of PW class to generate and accelerate beams of charged particles (up to tens of GeVs in energy). The beams will be used for both fundamental and applied research by experts from various scientific fields, including biology, medicine, plasma physics but also dosimetry and radiation protection. As laboratories operating lasers do not belong among the traditional 'radiation workplaces', there are no suitable specialized recommendations or standards available. Therefore, it is necessary to newly implement the existing general recommendations. Further, the generated mixed fields possess unique properties due to their production methods. As a result, the routinely used detection methods are not reliable or fail completely. (authors)

  9. Explosive Nucleosynthesis Study Using Laser Driven γ-ray Pulses

    Directory of Open Access Journals (Sweden)

    Takehito Hayakawa

    2017-03-01

    Full Text Available We propose nuclear experiments using γ-ray pulses provided from high field plasma generated by high peak power laser. These γ-ray pulses have the excellent features of extremely short pulse, high intensity, and continuous energy distribution. These features are suitable for the study of explosive nucleosyntheses in novae and supernovae, such as the γ process and ν process. We discuss how to generate suitable γ-ray pulses and the nuclear astrophysics involved.

  10. Computer simulations of laser driven implosion of seeded hollow pellets

    International Nuclear Information System (INIS)

    Larsen, J.T.

    1974-01-01

    The use of a hollow pellet of high r/Δ r permits the successful generation of thermonuclear energy for a moderate laser input. Incorporation of a medium-z material is required for minimization of plasma instabilities and thus suppression of pathologically hot electrons. Designs of this nature are capable of giving yield ratios in excess of 20 for 100 kJ input. It is also likely that a lower-z material may be advantageous to minimize the x-rays radiation into the DT, but this will be at the sacrifice of using less laser power to remain below the plasma instability threshold. (U.S.)

  11. Efficient and stable laser-driven white lighting

    Directory of Open Access Journals (Sweden)

    Kristin A. Denault

    2013-07-01

    Full Text Available Laser-based white lighting offers a viable option as an efficient and color-stable high-power solid-state white light source. We show that white light generation is possible using blue or near-UV laser diodes in combination with yellow-emitting cerium-substituted yttrium aluminum garnet (YAG:Ce or a mixture of red-, green-, and blue-emitting phosphors. A variety of correlated color temperatures (CCT are achieved, ranging from cool white light with a CCT of 4400 K using a blue laser diode to a warm white light with a CCT of 2700 K using a near-UV laser diode, with respective color rendering indices of 57 and 95. The luminous flux of these devices are measured to be 252 lm and 53 lm with luminous efficacies of 76 lm/W and 19 lm/W, respectively. An estimation of the maximum efficacy of a device comprising a blue laser diode in combination with YAG:Ce is calculated and the results are used to optimize the device.

  12. Characterization of Particles Created By Laser-Driven Hydrothermal Processing

    Science.gov (United States)

    2016-06-01

    study for two reasons: (i) Both materials are compositionally high in SiO2 and (ii) form similarly to glass formed by a nuclear explosion, which...creates massive pressures and temperatures. As an example, trinitite is a glass formed by a post-nuclear event with SiO2 making up 50%-75% of its...processing, characterization, obsidian, tektite, natural glass 15. NUMBER OF PAGES 89 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT

  13. Emittance Measurements from a Laser Driven Electron Injector

    CERN Document Server

    Reis, D

    2003-01-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 pi mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the ...

  14. Possible ionization ''ignition'' in laser-driven clusters

    International Nuclear Information System (INIS)

    Rose-Petruck, C.; Schafer, K.J.; Barty, C.P.J.

    1995-01-01

    The authors use Classical Trajectory Monte Carlo (CTMC) simulations to study the ionization of small rare gas clusters in short pulse, high intensity laser fields. They calculate, for a cluster of 25 neon atoms, the ionization stage reached and the average kinetic energy of the ionized electrons as functions of time and peak laser intensity. The CTMC calculations mimic the results of the much simpler barrier suppression model in the limit of isolated atoms. At solid density the results give much more ionization in the cluster than that predicted by the barrier suppression model. They find that when the laser intensity reaches a threshold value such that on average one electron is ionized from each atom, the cluster atoms rapidly move to higher ionization stages, approaching Ne +8 in a few femtoseconds. This ignition process creates an ultrafast pulse of energetic electrons in the cluster at quite modest laser intensities

  15. Unlimited electron acceleration in laser-driven plasma waves

    International Nuclear Information System (INIS)

    Katsouleas, T.; Dawson, J.M.

    1983-01-01

    It is shown that the limitation to the energy gain of 2(ω/ω/sub p/) 2 mc 2 of an electron in the laser-plasma beat-wave accelerator can be overcome by imposing a magnetic field of appropriate strength perpendicular to the plasma wave. This accelerates particles parallel to the phase fronts of the accelerating wave which keeps them in phase with it. Arbitrarily large energy is theoretically possible

  16. Search for nuclear excitation by laser-driven electron motion

    International Nuclear Information System (INIS)

    Bounds, J.A.; Dyer, P.

    1992-01-01

    It has been proposed that a nucleus may be excited by first exciting the atom's electrons with UV photons. The incident photons couple to the electrons, which would then couple via a virtual photon to the nucleus. As a test case, experiments with 235 U have been performed. A pulsed infrared laser produces an atomic vapor of 235 U which is then bombarded by a high-brightness UV laser beam. The resulting ions are collected. The first excited nuclear state of 235 U has a 26-min half-life and decays by internal conversion, resulting in emission of an atomic electron. These conversion electrons are detected by a channel electron multiplier. An upper limit of 4.0x10 -5 has been obtained for the probability of exciting the nucleus of a 235 U atom that is in the 248-nm UV beam for 700 fs at an irradiance in the range of 1.0x10 15 to 2.5x10 15 W/cm 2

  17. Aerospace propulsion using laser-driven plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Daozhi (Beijing Univ. of Aeronautics and Astronautics (People' s Republic of China))

    1989-04-01

    The use of a remote pulsed laser beam for aerospace vehicle propulsion is suggested. The engine will be of variable cycle type using a plasma generator, and the vehicle will be of rotary plate type. It will be launched using an external radiated-heated VTOL thruster, lifted by an MHD fanjet, and accelerated by a rotary rocket pulsejet. It is speculated that, sending the same payload into low earth orbit, the vehicle mass at liftoff will be 1/20th that of the Space Shuttle, and the propellant mass carried by the new vehicle will be only 1/40th that of the Shuttle. 40 refs.

  18. Trailing vortices from low speed flyers

    Science.gov (United States)

    Waldman, Rye; Kudo, Jun; Breuer, Kenneth

    2009-11-01

    The structure and strength of the vortex wake behind a airplane or animal flying with a fixed or flapping wing contains valuable information about the aerodynamic load history. However, the amount of vorticity measured in the trailing vortex is not always in agreement with the known lift generated, and the behavior of these vortices at relatively low Reynolds numbers is also not well-understood. We present the results from a series of wind tunnel PIV experiments conducted behind a low-aspect ratio rectangular wing at a chord-Reynolds numbers of 30,000. In addition to wake PIV measurements measured in the cross-stream (Trefftz) plane, we measure the lift and drag directly using a six-axis force-torque transducer. We discuss how vortex size, shape, strength and position vary in time and downstream location, as well as the challenges associated with the use of PIV wake measurements to accurate determine aerodynamic forces.

  19. Epidemic Dynamics in Open Quantum Spin Systems

    Science.gov (United States)

    Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor

    2017-10-01

    We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.

  20. Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Goto, Hayato; Ichimura, Kouichi

    2007-01-01

    Coherent population transfer in a laser-driven four-level system in a tripod configuration is experimentally investigated with a rare-earth-metal-ion-doped crystal (Pr 3+ :Y 2 SiO 5 ). The population transfers observed here indicate that a main process inducing them is not optical pumping, which is an incoherent process inducing population transfer. Moreover, numerical simulation, which well reproduces the experimental results, also shows that the process inducing the observed population transfers is similar to stimulated Raman adiabatic passage (STIRAP) in the sense that this process possesses characteristic features of STIRAP

  1. Microscale Shock Wave Physics Using Photonic Driver Techniques; TOPICAL

    International Nuclear Information System (INIS)

    SETCHELL, ROBERT E.; TROTT, WAYNE M.; CASTANEDA, JAIME N.; FARNSWORTH JR.,A. V.; BERRY, DANTE M.

    2002-01-01

    This report summarizes a multiyear effort to establish a new capability for determining dynamic material properties. By utilizing a significant reduction in experimental length and time scales, this new capability addresses both the high per-experiment costs of current methods and the inability of these methods to characterize materials having very small dimensions. Possible applications include bulk-processed materials with minimal dimensions, very scarce or hazardous materials, and materials that can only be made with microscale dimensions. Based on earlier work to develop laser-based techniques for detonating explosives, the current study examined the laser acceleration, or photonic driving, of small metal discs (''flyers'') that can generate controlled, planar shockwaves in test materials upon impact. Sub-nanosecond interferometric diagnostics were developed previously to examine the motion and impact of laser-driven flyers. To address a broad range of materials and stress states, photonic driving levels must be scaled up considerably from the levels used in earlier studies. Higher driving levels, however, increase concerns over laser-induced damage in optics and excessive heating of laser-accelerated materials. Sufficiently high levels require custom beam-shaping optics to ensure planar acceleration of flyers. The present study involved the development and evaluation of photonic driving systems at two driving levels, numerical simulations of flyer acceleration and impact using the CTH hydrodynamics code, design and fabrication of launch assemblies, improvements in diagnostic instrumentation, and validation experiments on both bulk and thin-film materials having well-established shock properties. The primary conclusion is that photonic driving techniques are viable additions to the methods currently used to obtain dynamic material properties. Improvements in launch conditions and diagnostics can certainly be made, but the main challenge to future applications

  2. Design, development, optimization of 40GW/300-800 ps Nd: glass laser system and study of matter at extreme temperature and pressure

    International Nuclear Information System (INIS)

    Chaurasia, S.; Munda, D.S.; Murali, C.G.; Gupta, N.K.; Dhareshwar, L.J.; Vijayan, Rajasree; Narayan, B.S.

    2008-02-01

    Laser Plasma interaction studies and experiments related to laser driven shocks as well as inertial confinement fusion (ICF) has resulted in an ever increasing demand of development of high power nanosecond and sub-nanosecond laser. A 12J/300-800 ps (40 GW) laser chain has been developed at our laboratory and it is planned to upgrade it to 30 Joules. In this report we describe design and development of 12J/300-800 ps (40 GW) laser system built for laser-plasma related and laser driven shock related work. The laser is having focusable intensity of the order of 1014 W/cm 2 which is used to carry out various experiments in the frontier area of laser produced plasma. The development work described in this report discusses the design and developments of various subsystem such as Laser amplifiers, spatial filters and Faraday isolator, experimental chamber. The necessary electronics also has been described in brief. Theoretical simulation models developed over a period of time to analyze the laser plasma experiments are also summarized. A number of experiments have been carried out in the existing laser chain. Some of these experiments are also presented in the report. Enhancement of x-ray emission (better conversion efficiency) is prime task for the indirect drive inertial confinement fusion. We have done experiments to see the enhancement using various target geometry and the laser focusing geometry and a summary of these experiments is presented. (author)

  3. Bioinspired engineering of exploration systems for NASA and DoD

    Science.gov (United States)

    Thakoor, Sarita; Chahl, Javaan; Srinivasan, M. V.; Young, L.; Werblin, Frank; Hine, Butler; Zornetzer, Steven

    2002-01-01

    A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers.

  4. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    Science.gov (United States)

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  5. Fused Silica Final Optics for Inertial Fusion Energy: Radiation Studies and System-Level Analysis

    International Nuclear Information System (INIS)

    Latkowski, Jeffery F.; Kubota, Alison; Caturla, Maria J.; Dixit, Sham N.; Speth, Joel A.; Payne, Stephen A.

    2003-01-01

    The survivability of the final optic, which must sit in the line of sight of high-energy neutrons and gamma rays, is a key issue for any laser-driven inertial fusion energy (IFE) concept. Previous work has concentrated on the use of reflective optics. Here, we introduce and analyze the use of a transmissive final optic for the IFE application. Our experimental work has been conducted at a range of doses and dose rates, including those comparable to the conditions at the IFE final optic. The experimental work, in conjunction with detailed analysis, suggests that a thin, fused silica Fresnel lens may be an attractive option when used at a wavelength of 351 nm. Our measurements and molecular dynamics simulations provide convincing evidence that the radiation damage, which leads to optical absorption, not only saturates but that a 'radiation annealing' effect is observed. A system-level description is provided, including Fresnel lens and phase plate designs

  6. Time-resolved dynamics of two-channel molecular systems in cw laser fields: Wave-packet construction in the Floquet formalism

    International Nuclear Information System (INIS)

    Nguyen-Dang, T.T.; Chateauneuf, F.; Atabek, O.; He, X.

    1995-01-01

    The description of the wave-packet time-resolved dynamics in a two-channel molecular system driven by a cw laser field is considered within the time-independent Floquet representation. It is shown that, at high field intensity, the wave-packet motions are governed solely by the pair of adiabatic dressed potential-energy surfaces (PES's) associated with a single Brillouin zone. The same expressions of the wave-packet motions in terms of the adiabatic PES's are obtained within a short-time approximation, thereby furnishing a new numerical algorithm for the wave-packet propagation in a laser-driven two-channel system at any intensity. Numerical tests of this algorithm are presented. The numerical results establish unambiguously the adiabaticity of nuclear motions at high field intensities

  7. Enhancing Docking and Manipulation Capability for Microgravity Robotic Free Flyers

    Data.gov (United States)

    National Aeronautics and Space Administration — The risks and challenges of the space environment have logically led to proposals to use robots to perform tasks for efficiency and safety reasons. Robotic free...

  8. Ostial left main coronary stenosis in a frequent flyer.

    LENUS (Irish Health Repository)

    O'Sullivan, John F

    2009-05-15

    A 52 year old gentleman presented with chest pain, after a long distance flight from India; he had made long haul flights every 2 weeks over the last 5 years as part of his job. His ECG revealed T wave inversion in leads V1-3. Cardiac biomarkers including troponin were negative; we proceeded to exercise stress testing (EST). This revealed 2 mm ST depression at 2 min of the standard Bruce protocol, associated with chest pain. He was taken immediately to the coronary catheterization laboratory; engagement of the left main caused pressure damping with 6 French, then 5 French diagnostic Judkins left 4 catheters. An ostial left main stenosis was seen; the right and left coronary trees otherwise had no significant stenoses. He had normal LV function. He underwent inpatient CABG 7 days later.

  9. The small high-flyer; Der kleine Drueber-Flieger

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Martin

    2013-06-06

    The monitoring of PV plants is easier than ever before: by using mini-helicopters with built-in thermographic camera, which make defects visible in modules during operation. [German] Die Ueberwachung von PV-Anlagen ist bequem wie nie zuvor: Grund dafuer sind Mini-Helikopter, die mit eingebauten Waermebildkameras Fehler in Modulen im Betrieb sichtbar machen.

  10. Side Event Promo Flyer_Version 2.pub

    International Development Research Centre (IDRC) Digital Library (Canada)

    nlulham

    2015-12-03

    Dec 3, 2015 ... Scaling-up private sector financing ... short-term business planning; poor communication between the scientific climate change commu- nity and the private ... Speakers. • Michael Rantil, Climate Technology Initiative (CTI).

  11. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  12. Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks

    Science.gov (United States)

    de Rességuier, T.; Lescoute, E.; Sollier, A.; Prudhomme, G.; Mercier, P.

    2014-01-01

    When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, very high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates.

  13. A “slingshot” laser-driven acceleration mechanism of plasma electrons

    Energy Technology Data Exchange (ETDEWEB)

    Fiore, Gaetano, E-mail: gaetano.fiore@na.infn.it [Dip. di Matematica e Applicazioni, Università “Federico II”, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); De Nicola, Sergio [SPIN-CNR, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy)

    2016-09-01

    We briefly report on the recently proposed Fiore et al. [1] and Fiore and De Nicola [2] electron acceleration mechanism named “slingshot effect”: under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  14. Program to Research Laser-Driven Thermionic Electron Sources for Free Electron Lasers.

    Science.gov (United States)

    1988-01-01

    by sinal I lengths of coaxial cable. With the ’. corresponding charge to the diode also reduced, a series of temporall y sho rter -Ioctron pulse-s was...e combination of approximately 1.6 eV. With the Nd:glass laser beam pulse heating the cathode " and the charge supplied by 0.5/ F capacitor, a series ...available charge stored in the h-arg ing ’apar i tor. A series of experiments was performed wilh lowetr capacitances of sevoral tens of picofarads furnished

  15. A physics informed emulator for laser-driven radiating shock simulations

    KAUST Repository

    McClarren, Ryan G.; Ryu, D.; Paul Drake, R.; Grosskopf, Michael; Bingham, Derek; Chou, Chuan-Chih; Fryxell, Bruce; van der Holst, Bart; Paul Holloway, James; Kuranz, Carolyn C.; Mallick, Bani; Rutter, Erica; Torralva, Ben R.

    2011-01-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. © 2011 Elsevier Ltd. All rights reserved.

  16. Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J., E-mail: jun.zhu@desy.de [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Universität Hamburg, Hamburg (Germany); Assmann, R.W.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany)

    2016-09-01

    We present theoretical and numerical studies of matching sub-femtosecond space-charge-dominated electron bunch into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the SINBAD facility. The longitudinal space-charge (SC) effect induced growths of the energy spread and longitudinal phase-space chirp are major issues in the matching section, which will result in bunch elongation, emittance growth and spot size dilution. In addition, the transverse SC effect would lead to a mismatch of the beam optics if it were not compensated for. Start-to-end simulations and preliminary optimizations were carried out in order to understand the achievable beam parameters at the entrance of the plasma accelerator.

  17. Laser-Driven Hydrodynamic Experiments in the Turbulent Plasma Regime: from OMEGA to NIF

    International Nuclear Information System (INIS)

    Robey, H F; Miles, A R; Hansen, J F; Blue, B E; Drake, R P

    2003-01-01

    There is a great deal of interest in studying the evolution of hydrodynamic phenomena in high energy density plasmas that have transitioned beyond the initial phases of instability into an Ely developed turbulent state. Motivation for this study arises both in fusion plasmas as well as in numerous astrophysical applications where the understanding of turbulent mixing is essential. Double-shell ignition targets, for example, are subject to large growth of short wavelength perturbations on both surfaces of the high-Z inner shell. These perturbations, initiated by Richtmyer-Meshkov and Rayleigh-Taylor instabilities, can transition to a turbulent state and will lead to deleterious mixing of the cooler shell material with the hot burning fuel. In astrophysical plasmas, due to the extremely large scale, turbulent hydrodynamic mixing is also of wide-spread interest. The radial mixing that occurs in the explosion phase of core-collapse supernovae is an example that has received much attention in recent years and yet remains only poorly understood. In all of these cases, numerical simulation of the flow field is very difficult due to the large Reynolds number and corresponding wide range of spatial scales characterizing the plasma. Laboratory experiments on high energy density facilities that can access this regime are therefore of great interest. Experiments exploring the transition to turbulence that are currently being conducted on the Omega laser will be described. We will also discuss experiments being planned for the initial commissioning phases of the NIF as well as the enhanced experimental parameter space that will become available, as additional quads are made operational

  18. 2-D fluid dynamics models for laser driven fusion on IBM 3090 vector multiprocessors

    International Nuclear Information System (INIS)

    Atzeni, S.

    1988-01-01

    Fluid-dynamics codes for laser fusion are complex research codes, consisting of many distinct modules and embodying a variety of numerical methods. They are therefore good candidates for testing general purpose advanced computer architectures and the related software. In this paper, after a brief outline of the basic concepts of laser fusion, the implementation of the 2-D laser fusion fluid code DUED on the IBM 3090 VF vector multiprocessors is discussed. Emphasis is put on parallelization, performed by means of IBM Parallel FORTRAN (PF). It is shown how different modules have been optimized by using different features of PF: i) modules based on depth-2 nested loops exploit automatic parallelization; ii) laser light ray tracing is partitioned by scheduling parallel ICCG algorithm (executed in parallel by appropiately synchronized parallel subroutines). Performance results are given for separate modules of the code, as well as for typical complete runs

  19. A physics informed emulator for laser-driven radiating shock simulations

    International Nuclear Information System (INIS)

    McClarren, Ryan G.; Ryu, D.; Paul Drake, R.; Grosskopf, Michael; Bingham, Derek; Chou, Chuan-Chih; Fryxell, Bruce; Holst, Bart van der; Paul Holloway, James; Kuranz, Carolyn C.; Mallick, Bani; Rutter, Erica; Torralva, Ben R.

    2011-01-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. - Highlights: → Uncertainty quantification for two linked computer codes is investigated. → We perform physics-based dimension reduction on the code output. → This reduces the uncertain degrees of freedom from hundreds to tens.

  20. Temporal profile of betatron radiation from laser-driven electron accelerators

    Czech Academy of Sciences Publication Activity Database

    Horný, Vojtěch; Nejdl, Jaroslav; Kozlová, Michaela; Krůs, Miroslav; Boháček, Karel; Petržílka, Václav; Klimo, Ondřej

    2017-01-01

    Roč. 24, č. 6 (2017), č. článku 063107. ISSN 1070-664X R&D Projects: GA ČR GA15-03118S; GA MŠk LQ1606; GA MŠk(CZ) LM2015083; GA MŠk(CZ) LD14089 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; GA MŠk(CZ) LM2015042 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : X-ray betatron * laser * X-ray pulses Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 2.115, year: 2016 http://aip.scitation.org/doi/full/10.1063/1.4985687

  1. Revealing the Microscopic Real-Space Excursion of a Laser-Driven Electron

    Directory of Open Access Journals (Sweden)

    Heiko G. Kurz

    2016-08-01

    Full Text Available High-order harmonic spectroscopy allows one to extract information on fundamental quantum processes, such as the exit time in the tunneling of an electron through a barrier with attosecond time resolution and molecular structure with angstrom spatial resolution. Here, we study the spatial motion of the electron during high-order harmonic generation in an in situ pump-probe measurement using high-density liquid water droplets as a target. We show that molecules adjacent to the emitting electron-ion pair can disrupt the electron’s trajectory when positioned within the range of the maximum electronic excursion distance. This allows us to use the parent ion and the neighboring molecules as boundaries for the electronic motion to measure the maximum electronic excursion distance during the high-order harmonic generation process. Our analysis of the process is relevant for optimizing high-harmonic yields in dense media.

  2. Dynamics of laser-driven proton beam focusing and transport into solid density matter

    Science.gov (United States)

    Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.

    2016-10-01

    Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.

  3. Bright X-ray source from a laser-driven micro-plasma-waveguide

    CERN Document Server

    Yi, Longqing

    2016-01-01

    Bright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense ...

  4. Tolerance of laser-driven microshell targets to fluorescence and prepulse energy

    International Nuclear Information System (INIS)

    Leonard, T.; Moncur, N.K.; Sullivan, D.

    1976-01-01

    Glass-shell targets currently being used for laser-fusion experiments are susceptible to damage by preenergy from the laser. This energy can result from amplified spontaneous emission (ASE) throughout the laser chain during the period of high-population inversion or it can take the form of a short prepulse nanoseconds before the main laser pulse. We point out the energy levels which a typical target can tolerate in the form of ASE and prepulses. These energies are low enough that special precautions must be taken to prevent significant perturbations of the target or its environment before the main laser pulse

  5. Nano and micro structured targets to modulate the spatial profile of laser driven proton beams

    Czech Academy of Sciences Publication Activity Database

    Giuffrida, Lorenzo; Svensson, K.; Pšikal, Jan; Margarone, Daniele; Lutoslawski, P.; Scuderi, Valentina; Milluzzo, G.; Kaufman, Jan; Wiste, Tuomas; Dalui, M.; Ekerfelt, H.; Gonzalez, I.G.; Lundh, O.; Persson, A.; Picciotto, A.; Crivellari, M.; Bagolini, A.; Bellutti, P.; Magnusson, J.; Gonoskov, A.; Klimša, Ladislav; Kopeček, Jaromír; Laštovička, Tomáš; Cirrone, G.A.P.; Wahlström, C.-G.; Korn, Georg

    2017-01-01

    Roč. 12, Mar (2017), s. 1-6, č. článku C03040. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606; GA ČR(CZ) GA15-02964S EU Projects: European Commission(XE) 284464 - LASER LAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : accelerator applications * beam dynamics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  6. Gas filled dynamics for laser driven fusion reactors. Final report, August 4, 1981-December 31, 1983

    International Nuclear Information System (INIS)

    Moses, G.A.; McCarville, T.J.; Peterson, R.R.

    1983-10-01

    This report serves as documentation for the MF-FIRE computer code. This code is the same as the FIRE code described in University of Wisconsin Fusion Engineering Program Report UWFDM-407 except that a multifrequency flux limited diffusion radiative transfer option has been added. Hence this report is a reproduction of UWFDM-407 with the additional description of the multifrequency radiative transfer

  7. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  8. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  9. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    Science.gov (United States)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  10. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-01-01

    We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing to the high current ( and 10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered

  11. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

    Czech Academy of Sciences Publication Activity Database

    Guler, N.; Volegov, P.; Favalli, A.; Merrill, F.E.; Falk, Kateřina; Jung, D.; Tybo, J.L.; Wilde, C.H.; Croft, S.; Danly, C.; Deppert, O.; Devlin, M.; Fernandez, J.; Gautier, D.C.; Geissel, M.; Haight, R.; Hamilton, C.E.; Hegelich, B.M.; Henzlova, D.; Johnson, R. P.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Swinhoe, M.T.; Taddeucci, T.; Wender, S.A.; Wurden, G.A.; Roth, M.

    2016-01-01

    Roč. 120, č. 15 (2016), s. 1-12, č. článku 154901. ISSN 0021-8979 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : inertial confinement fusion * ion-beams * plasma interactions * reconstruction * acceleration * dynamics * targets * images Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.068, year: 2016

  12. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-06-15

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

  13. High repetition rate laser-driven MeV ion acceleration at variable background pressures

    Science.gov (United States)

    Snyder, Joseph; Ngirmang, Gregory; Orban, Chris; Feister, Scott; Morrison, John; Frische, Kyle; Chowdhury, Enam; Roquemore, W. M.

    2017-10-01

    Ultra-intense laser-plasma interactions (LPI) can produce highly energetic photons, electrons, and ions with numerous potential real-world applications. Many of these applications will require repeatable, high repetition targets that are suitable for LPI experiments. Liquid targets can meet many of these needs, but they typically require higher chamber pressure than is used for many low repetition rate experiments. The effect of background pressure on the LPI has not been thoroughly studied. With this in mind, the Extreme Light group at the Air Force Research Lab has carried out MeV ion and electron acceleration experiments at kHz repetition rate with background pressures ranging from 30 mTorr to >1 Torr using a submicron ethylene glycol liquid sheet target. We present these results and provide two-dimensional particle-in-cell simulation results that offer insight on the thresholds for the efficient acceleration of electrons and ions. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  14. Optically pumped ultraviolet and infrared lasers driven by exploding metal films and wires

    International Nuclear Information System (INIS)

    Jones, C.R.; Ware, K.D.

    1983-01-01

    The 342-nm molecular iodine and 1315-nm atomic iodine lasers have been optically pumped by intense light from exploding-metal-film and exploding-wire discharges. Brightness temperatures for the exploding-film discharges were approx. 25,000 K and for the wire discharges were approx. 30,000 K. For the I 2 laser the 3.5-cm-diameter by 40-cm-long pumped volume lies adjacent to the wire or film of the same length. Pressures of 1 to 6 torr I 2 and 1 to 3 atm SF, CF 4 , or Ar were used in the stainless-steel cell. Using 20-μF capacitance charged to 40 kV, a 0.25-mm tungsten wire, 3-torr I 2 , and a 2-atm SF 6 , an energy of 2 J was obtained from the laser in a pulse of 8-μs duration. The specific output energy was 7 J/l. Substitution of a cylindrical Al film for the wire, under otherwise similar conditions, led to a X10 output energies and efficiencies were obtained with similar input energy. An output pulse of 12 J and 12-μs duration was measured for a specific output energy of 18 J/l. A laser energy of 110 J in a 20-us-long pulse has been measured from atomic iodine using a wire discharge along the axis of a larger cell. The active volume available was 20 cm in diameter and 80 cm in length. Input energy was 32 kJ. In similar measurements using a cylindrical Al film for discharge initiation, the measured output energy was 40 J

  15. Ultrafast laser driven micro-lens to focus and energy select MeV protons

    International Nuclear Information System (INIS)

    Toncian, Toma

    2008-05-01

    A technique for simultaneous focusing and energy selection of high-current, MeV proton beams using radial, transient electric fields (10 7 -10 10 V/m) triggered on the inner wall of a hollow micro-cylinder by an intense, sub-picosecond laser-pulse is presented. Due to the transient nature of the radial focusing field, the proposed method allows selection of a desired range out of the spectrum of the poly-energetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, i.e. their broad spectrum and divergence at the source. This thesis presents both experimental and computational studies that led to the understanding of the physical processes driving the micro-lens. After an one side irradiation of a hollow metallic cylinder a radial electric field develops inside the cylinder. Hot electrons generated by the interaction between laser pulse and cylinder wall spread inside the cylinder generating a plasma at the wall. This plasma expands into vacuum and sustains an electric field that acts as a collecting lens on a proton beam propagating axially through the cylinder. Both focusing and the reduction of the intrinsic beam divergence from 20 deg to.3 deg for a narrow spectral range was demonstrated. By sub-aperturing the beam a narrow spectral range (δε/ε < 3%) was selected from the poly-energetic beam. The micro-lens properties are tunable allowing for optimization towards applications. Optical probing techniques and proton imaging were employed to study the spacial and temporal evolution of the field and revealed a complex physical scenario of the rise and decay of the radial electric field. Each aspect studied experimentally is interpreted using 2D PIC and ray tracing simulations. A very good agreement between the experimental and computational data is found. The PIC simulations are used to upscale the demonstrated micro-lens capabilities to the focusing of a 270 MeV proton beam, an energy relevant for medical applications such as the hadron therapy of deep-seated tumours. (orig.)

  16. Computer simulation of laser-driven implosion of DT-filled glass microballoons

    International Nuclear Information System (INIS)

    Larsen, J.T.

    1975-01-01

    The results of some experimental measurements of laser implosions are analyzed. Calculations are made of specific target irradiations and compared with experiments. A general description is given of exploding pushers and the physical processes involved are described

  17. Numerical modeling of laser-driven ion acceleration from near-critical gas targets

    Science.gov (United States)

    Tatomirescu, Dragos; Vizman, Daniel; d’Humières, Emmanuel

    2018-06-01

    In the past two decades, laser-accelerated ion sources and their applications have been intensely researched. Recently, it has been shown through experiments that proton beams with characteristics comparable to those obtained with solid targets can be obtained from gaseous targets. By means of particle-in-cell simulations, this paper studies in detail the effects of a near-critical density gradient on ion and electron acceleration after the interaction with ultra high intensity lasers. We can observe that the peak density of the gas jet has a significant influence on the spectrum features. As the gas jet density increases, so does the peak energy of the central quasi-monoenergetic ion bunch due to the increase in laser absorption while at the same time having a broadening effect on the electron angular distribution.

  18. Nanomedical science and laser-driven particle acceleration: promising approaches in the prethermal regime

    Science.gov (United States)

    Gauduel, Y. A.

    2017-05-01

    A major challenge of spatio-temporal radiation biomedicine concerns the understanding of biophysical events triggered by an initial energy deposition inside confined ionization tracks. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances in real-time radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to advanced techniques of ultrafast TW laser-plasma accelerator. Recent advances of powerful TW laser sources ( 1019 W cm-2) and laser-plasma interactions providing ultra-short relativistic particle beams in the energy domain 5-200 MeV open promising opportunities for the development of high energy radiation femtochemistry (HERF) in the prethermal regime of secondary low-energy electrons and for the real-time imaging of radiation-induced biomolecular alterations at the nanoscopic scale. New developments would permit to correlate early radiation events triggered by ultrashort radiation sources with a molecular approach of Relative Biological Effectiveness (RBE). These emerging research developments are crucial to understand simultaneously, at the sub-picosecond and nanometric scales, the early consequences of ultra-short-pulsed radiation on biomolecular environments or integrated biological entities. This innovating approach would be applied to biomedical relevant concepts such as the emerging domain of real-time nanodosimetry for targeted pro-drug activation and pulsed radio-chimiotherapy of cancers.

  19. Ultrafast laser driven micro-lens to focus and energy select MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Toncian, Toma

    2008-05-15

    A technique for simultaneous focusing and energy selection of high-current, MeV proton beams using radial, transient electric fields (10{sup 7}-10{sup 10} V/m) triggered on the inner wall of a hollow micro-cylinder by an intense, sub-picosecond laser-pulse is presented. Due to the transient nature of the radial focusing field, the proposed method allows selection of a desired range out of the spectrum of the poly-energetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, i.e. their broad spectrum and divergence at the source. This thesis presents both experimental and computational studies that led to the understanding of the physical processes driving the micro-lens. After an one side irradiation of a hollow metallic cylinder a radial electric field develops inside the cylinder. Hot electrons generated by the interaction between laser pulse and cylinder wall spread inside the cylinder generating a plasma at the wall. This plasma expands into vacuum and sustains an electric field that acts as a collecting lens on a proton beam propagating axially through the cylinder. Both focusing and the reduction of the intrinsic beam divergence from 20 deg to.3 deg for a narrow spectral range was demonstrated. By sub-aperturing the beam a narrow spectral range ({delta}{epsilon}/{epsilon} < 3%) was selected from the poly-energetic beam. The micro-lens properties are tunable allowing for optimization towards applications. Optical probing techniques and proton imaging were employed to study the spacial and temporal evolution of the field and revealed a complex physical scenario of the rise and decay of the radial electric field. Each aspect studied experimentally is interpreted using 2D PIC and ray tracing simulations. A very good agreement between the experimental and computational data is found. The PIC simulations are used to upscale the demonstrated micro-lens capabilities to the focusing of a 270 MeV proton beam, an energy relevant for medical applications such as the hadron therapy of deep-seated tumours. (orig.)

  20. A multi-frequency approach to free electron lasers driven by short electron bunches

    International Nuclear Information System (INIS)

    Piovella, Nicola

    1997-01-01

    A multi-frequency model for free electron lasers (FELs), based on the Fourier decomposition of the radiation field coupled with the beam electrons, is discussed. We show that the multi-frequency approach allows for an accurate description of the evolution of the radiation spectrum, also when the FEL is driven by short electron bunches, of arbitrary longitudinal profile. We derive from the multi-frequency model, by averaging over one radiation period, the usual FEL equations modelling the slippage between radiation and particles and describing the super-radiant regime in high-gain FELs. As an example of application of the multi-frequency model, we discuss the coherent spontaneous emission (CSE) from short electron bunches

  1. Experimental study of the interaction of two laser-driven radiative shocks at the PALS laser

    Czech Academy of Sciences Publication Activity Database

    Singh, R.L.; Stehlé, C.; Suzuki-Vidal, F.; Kozlová, Michaela; Larour, J.; Chaulagain, Uddhab P.; Clayson, T.; Rodriguez, R.; Gil, J.M.; Nejdl, Jaroslav; Krůs, Miroslav; Dostál, Jan; Dudžák, Roman; Barroso, P.; Acef, O.; Cotelo, M.; Velarde, P.

    2017-01-01

    Roč. 23, June (2017), s. 20-30 ISSN 1574-1818 R&D Projects: GA MŠk EE2.3.30.0057; GA MŠk EE2.3.20.0279; GA MŠk ED1.1.00/02.0061; GA MŠk(CZ) LM2015083 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : radiative shocks * hydrodynamics laser-plasmas * spectroscopy * laboratory astrophysics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  2. Time delay between singly and doubly ionizing wavepackets in laser-driven helium

    International Nuclear Information System (INIS)

    Parker, J S; Doherty, B J S; Meharg, K J; Taylor, K T

    2003-01-01

    We present calculations of the time delay between single and double ionization of helium, obtained from full-dimensionality numerical integrations of the helium-laser Schroedinger equation. The notion of a quantum mechanical time delay is defined in terms of the interval between correlated bursts of single and double ionization. Calculations are performed at 390 and 780 nm in laser intensities that range from 2 x 10 14 to 14 x 10 14 Wcm -2 . We find results consistent with the rescattering model of double ionization but supporting its classical interpretation only at 780 nm. (letter to the editor)

  3. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Edward L. Ginzton Lab.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  4. Laser-driven micro-Coulomb charge movement and energy conversion to relativistic electrons

    Czech Academy of Sciences Publication Activity Database

    Cobble, J. A.; Palaniyappan, S.; Johnson, R. P.; Shimada, T.; Huang, C.; Gautier, D. C.; Clark, D. D.; Falk, Kateřina; Jung, D.

    2016-01-01

    Roč. 23, č. 9 (2016), s. 1-12, č. článku 093113. ISSN 1070-664X R&D Projects: GA MŠk LQ1606; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : x-ray applications * ignition * plasma * fusion * gain * ionization * target Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.115, year: 2016

  5. Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks

    International Nuclear Information System (INIS)

    Rességuier, T. de; Lescoute, E.; Sollier, A.; Prudhomme, G.; Mercier, P.

    2014-01-01

    When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, very high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates

  6. CYCLAM - Recycling by a Laser-driven Drop Jet from Waste that Feeds AM

    Science.gov (United States)

    Kaplan, Alexander F. H.; Samarjy, Ramiz S. M.

    Additive manufacturing of metal parts is supplied by powder or wire. Manufacturing of this raw material causes additional costs and environmental impact. A new technique is proposed where the feeding directly originates from a metal sheet, which can even be waste. When cutting is done by laser-induced boiling, melt is continuously ejected downwards underneath the sheet. The ejected melt is deposited as a track on a substrate, enabling additive manufacturing by substrate movement along a desired path. The melt first flows downwards as a column and after a few millimeters separates into drops, here about 500 micrometer in diameter, as observed by high speed imaging. The drops incorporate sequentially and calmly into a long melt pool on the substrate. While steel drops formed regular tracks on steel and aluminium substrates, on copper substrate periodic drops solidified instead. For this new technique, called CYCLAM, the laser beam acts indirectly while the drop jet becomes the main tool. From imaging, properties like the width or fluctuations of the drop jet can be statistically evaluated. Despite oscillation of the liquid column, the divergence of the drop jet remained small, improving the precision and robustness. The melt leaves the cut sheet as a liquid column, 1 to 4 mm in length, which periodically separates drops that are transferred as a liquid jet to the substrate. For very short distance of 2 to 3 mm between the two sheets this liquid column can transfer the melt continuously as a liquid bridge. This phenomenon was observed, as a variant of the technique, but the duration of the bridge was limited by fluid mechanic instabilities.

  7. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  8. Laser-driven Mach waves for gigabar-range shock experiments

    Science.gov (United States)

    Swift, Damian; Lazicki, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph

    2017-10-01

    Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should be tested at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    International Nuclear Information System (INIS)

    Hetzheim, Henrik

    2009-01-01

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  10. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  11. Computational Study of Thrust Generation from Laser-Driven Blast Wave

    International Nuclear Information System (INIS)

    Ohnishi, Naofumi; Ogino, Yousuke

    2008-01-01

    We have performed axisymmetric simulations in order to investigate the thrust generation resulting from the interference between the projectile and the blast wave produced by a pulsed laser. The results obtained by our numerical code well agree for the pressure history and the momentum coupling coefficient with the experimental data. In such analysis, it is found that the approximate impulse estimated only by the pressure history at the projectile base is difficult to predict the actual one. Since the shock wave rapidly attenuates in low fill pressure, and the interaction with the projectile almost finishes in the shroud, a high momentum coupling coefficient can be achieved unlike the case of high fill pressure in which the projectile experiences the subsequent negative thrust

  12. Multiscale modeling of beryllium: quantum mechanics and laser-driven shock experiments using novel diagnostics

    International Nuclear Information System (INIS)

    Swift, D.C.; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan

    2002-01-01

    Ab initio quantum mechanics was used to construct a thermodynamically complete and rigorous equation of state for beryllium in the hexagonal and body-centred cubic structures, and to predict elastic constants as a function of compression. The equation of state agreed well with Hugoniot data and previously-published equations of state, but the temperatures were significantly different. The hexagonal/bcc phase boundary agreed reasonably well with published data, suggesting that the temperatures in our new equation of state were accurate. Shock waves were induced in single crystals and polycrystalline foils of beryllium, by direct illumination using the TRIDENT laser at Los Alamos. The velocity history at the surface of the sample was measured using a line-imaging VISAR, and transient X-ray diffraction (TXD) records were obtained with a plasma backlighter and X-ray streak cameras. The VISAR records exhibited elastic precursors, plastic waves, phase changes and spall. Dual TXD records were taken, in Bragg and Laue orientations. The Bragg lines moved in response to compression in the uniaxial direction. Because direct laser drive was used, the results had to be interpreted with the aid of radiation hydrodynamics simulations to predict the loading history for each laser pulse. In the experiments where there was evidence of polymorphism in the VISAR record, additional lines appeared in the Bragg and Laue records. The corresponding pressures were consistent with the phase boundary predicted by the quantum mechanical equation of state for beryllium. A model of the response of a single crystal of beryllium to shock loading is being developed using these new theoretical and experimental results. This model will be used in meso-scale studies of the response of the microstructure, allowing us to develop a more accurate representation of the behaviour of polycrystalline beryllium.

  13. Feasibility of a 5mN Laser-Driven Mini-Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a next-generation thruster under a Phase II SBIR which we believe can meet NASA requirements after some modifications and improvements. It is the...

  14. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    Science.gov (United States)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  15. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  16. Fabrication of advanced targets for laser driven nuclear fusion reactions through standard microelectronics technology approaches.

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Crivellari, M.; Bellutti, P.; Barozzi, M.; Kucharik, M.; Krása, Josef; Swidlovsky, A.; Malinowska, A.; Velyhan, Andriy; Ullschmied, Jiří; Margarone, Daniele

    2017-01-01

    Roč. 12, October (2017), č. článku P10001. ISSN 1748-0221 Grant - others:OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Nuclear instruments and methods for hot plasma diagnostics * Plasma generation (laserproduced, RF, x ray-produced) * Plasma diagnostics - charged-particle spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: 2.11 Other engineering and technologies; 2.11 Other engineering and technologies (FZU-D) Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/10/P10001/meta

  17. TOF technique for laser-driven proton beam diagnostics for the ELIMED beamline

    Czech Academy of Sciences Publication Activity Database

    Milluzzo, G.; Scuderi, Valentina; Amico, A.G.; Cirrone, Giuseppe A.P.; Cuttone, G.; De Napoli, M.; Dostál, Jan; Larosa, G.; Leanza, R.; Margarone, Daniele; Petringa, G.; Pipek, J.; Romano, F.; Schillaci, Francesco; Velyhan, Andriy

    2017-01-01

    Roč. 12, Mar (2017), s. 1-4, č. článku C03044. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA ČR(CZ) GA15-02964S; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : accelerator applications * instrumentation and methods for time-of-flight (TOF) spectroscopy * timing detectors * wake-field acceleration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  18. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    International Nuclear Information System (INIS)

    Schwinkendorf, Jan-Patrick

    2012-05-01

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  19. High field terahertz emission from relativistic laser-driven plasma wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zi-Yu, E-mail: Ziyu.Chen@uni-duesseldorf.de [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany); LSD, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999 (China); Pukhov, Alexander [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany)

    2015-10-15

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  20. Laser-driven relativistic electron dynamics in a cylindrical plasma channel

    Science.gov (United States)

    Geng, Pan-Fei; Lv, Wen-Juan; Li, Xiao-Liang; Tang, Rong-An; Xue, Ju-Kui

    2018-03-01

    The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition, the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475027, 11765017, 11764039, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).

  1. Energetic metallic ion implantation in polymers via cost-effective laser-driven ion source

    Science.gov (United States)

    Tahir, Muhammad Bilal; Rafique, M. Shahid; Ahmed, Rabia; Rafique, M.; Iqbal, Tahir; Hasan, Ali

    2017-07-01

    This research work reports the ions emission from the plasma generated by Nd:YAG laser having wavelength 1.064 μm, power 1.1 MW, pulse energy 10 mJ and intensity 1011 W/cm2 irradiated at 70° with respect to the target normal to the ions. These ions were accelerated through a home-made extraction assembly by means of a high voltage DC power supply. The energy of these ions were measured using Thomson parabola technique which utilizes Solid State Nuclear Track Detector (CR-39) and confirmed by Faraday cup as well that exploits a well-known technique known as time of flight. Interestingly, a significant increase in energy (from 490 to 730 keV) was observed with a discrete increase in acceleration potential from 0 to 18 kV. Polyethylene terephthalate (PET) and polypropylene were exposed to this recently developed ion source facility, to authenticate the reliability of this facility. The surface of the polymer is affected when energy of the irradiated ion is increased, which is evident from the optical micrographs. An increase in electrical conductivity was also observed with the increase in ion energy.

  2. Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks

    Energy Technology Data Exchange (ETDEWEB)

    Rességuier, T. de, E-mail: resseguier@ensma.fr [Institut PPRIME, UPR 3346, CNRS, ENSMA, Université de Poitiers, 1 ave. Clément Ader, 86961 Futuroscope Cedex (France); Lescoute, E.; Sollier, A.; Prudhomme, G.; Mercier, P. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-01-28

    When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, very high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates.

  3. Table-top solar flares produced with laser driven magnetic reconnections

    Directory of Open Access Journals (Sweden)

    Zhong J.Y.

    2013-11-01

    Full Text Available The American Nuclear Society (ANS has presented the prestigious Edward Teller award to Dr. Bruce A. Remington during the 2011 IFSA conference due to his “pioneering scientific work in the fields of inertial confinement fusion (ICF, and especially developing an international effort in high energy density laboratory astrophysics” [1,2]. This is a great acknowledgement to the subject of high energy density laboratory astrophysics. In this context, we report here one experiment conducted to model solar flares in the laboratory with intense lasers [3]. The mega-gauss –scale magnetic fields produced by laser produced plasmas can be used to make magnetic reconnection topology. We have produced one table-top solar flare in our laboratory experiment with the same geometric setup as associated with solar flares.

  4. Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production

    Science.gov (United States)

    Jansen, O.; Wang, T.; Stark, D. J.; d’Humières, E.; Toncian, T.; Arefiev, A. V.

    2018-05-01

    The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron–positron pair production via the linear Breit–Wheeler process by colliding two such dense beams. Presented simulations show that more than 103 pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams.

  5. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    Science.gov (United States)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  6. Unlimited Energy Gain in the Laser-Driven Radiation Pressure Dominant Acceleration of Ions

    OpenAIRE

    Bulanov, S. V.; Echkina, E. Yu.; Esirkepov, T. Zh.; Inovenkov, I. N.; Kando, M.; Pegoraro, F.; Korn, G.

    2009-01-01

    The energy of the ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region increasing the energy and the longitudinal velocity of remaining ions. In the relativistic limit, the ions become phase-locked with respect to the electromagnetic wave resulting in the unlimited ion energy gain. This effect and the ...

  7. A physics informed emulator for laser-driven radiating shock simulations

    KAUST Repository

    McClarren, Ryan G.

    2011-09-01

    This work discusses the uncertainty quantification aspect of quantification of margin and uncertainty (QMU) in the context of two linked computer codes. Specifically, we present a physics based reduction technique to deal with functional data from the first code and then develop an emulator for this reduced data. Our particular application deals with conditions created by laser deposition in a radiating shock experiment modeled using the Lagrangian, radiation-hydrodynamics code Hyades. Our goal is to construct an emulator and perform a sensitivity analysis of the functional output from Hyades to be used as an initial condition for a three-dimensional code that will compute the evolution of the radiating shock at later times. Initial attempts at purely statistical data reduction techniques, were not successful at reducing the number of parameters required to describe the Hyades output. We decided on an alternate approach using physical arguments to decide what features/locations of the output were relevant (e.g., the location of the shock front or the location of the maximum pressure) and then used a piecewise linear fit between these locations. This reduced the number of outputs needed from the emulator to 40, down from the O(1000) points in the Hyades output. Then, using Bayesian MARS and Gaussian process regression, we were able to build emulators for Hyades and study sensitivities to input parameters. © 2011 Elsevier Ltd. All rights reserved.

  8. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    International Nuclear Information System (INIS)

    Haseroth, Helmut; Hora, Heinrich; Regensburg Inst. of Tech.

    1996-01-01

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10 11 C 4+ ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ''hot'' electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author)

  9. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  10. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields

    Science.gov (United States)

    Gelfer, E. G.; Fedotov, A. M.; Weber, S.

    2018-06-01

    We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.

  11. Symmetry and illumination uniformity requirements for high density laser-driven implosions

    International Nuclear Information System (INIS)

    Mead, W.C.; Lindl, J.D.

    1976-01-01

    As laser capabilities increase, implosions will be performed to achieve high densities. Criteria are discussed for formation of a low-density corona, preheated supersonically, which increases the tolerance of high convergence implosions to non-uniform illumination by utilizing thermal smoothing. We compare optimized double shell target designs without and with atmosphere production. Two significant penalties are incurred with atmosphere production using 1 μm laser light. First, a large initial shock at the ablation surface limits the pulse shaping flexibility, and degrades implosion performance. Second, the mass and heat capacity of the atmosphere reduce the energy delivered to the ablation surface and the driving pressures obtained for a given input energy. Improvement is possible using 2 μm light for the initial phase of the implosion. We present results of 2-D simulations which evaluate combined symmetry and stability requirements. At l = 8, the improvement produced in the example is a factor of 10, giving tolerance of 10 percent

  12. Experiments on laser driven beatwave acceleration in a ponderomotively formed plasma channel

    International Nuclear Information System (INIS)

    Tochitsky, S.Ya.; Narang, R.; Filip, C.V.; Clayton, C.E.; Marsh, K.A.; Joshi, C.; Musumeci, P.; Yoder, R.B.; Rosenzweig, J.B.; Pellegrini, C.

    2004-01-01

    A 10 ps long beam of 12 MeV electrons is externally injected into a ∼3-cm long plasma beatwave excited in a laser ionized hydrogen gas. The electrons have been accelerated to 50 MeV with a gradient of ∼1.3 GeV/m. It is shown that when the effective plasma wave amplitude-length product is limited by ionization-induced defocusing (IID), acceleration of electrons is significantly enhanced by using a laser pulse with a duration longer than the time required for ions to move across the laser spot size. Both experiments and two-dimensional simulations reveal that, in this case, self-guiding of the laser pulse in a ponderomotively formed plasma channel occurs. This compensates for IID and drives the beatwave over the longer length compared to when such a channel is not present

  13. Laser-driven vehicles - from inner-space to outer-space

    International Nuclear Information System (INIS)

    Yabe, Takashi; Aoki, Keiichi; Phipps, Claude

    2002-06-01

    Laser supported propulsion of a micro-airplane with water-covered ablator is demonstrated. The repetitive use of overlay structure is experimentally demonstrated with specially-designed water supply. The various transparent overlay is investigated by the CIP-based hydrodynamic code and experiments by pendulum and semi-conductor load cell. The momentum coupling efficiency of 5000 N·sec/MJ has been achieved by ORION experiments that agree with the simulation code. With the maximum efficiency ∼ 10 5 N·sec/MJ predicted by the simulation, 30 pulses of MJ laser can give the sound speed to 10 tons airplane. The concept can also be used for driving a micro-ship inside human body a robot under the accidental circumstance of nuclear power reactor in which large amount of neutron source makes electronic device useless. (author)

  14. Calibration of time of flight detectors using laser-driven neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mirfayzi, S. R.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Green, A.; Alejo, A.; Jung, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Krygier, A. G.; Freeman, R. R. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Clarke, R. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fuchs, J.; Vassura, L. [LULI, Ecole Polytechnique, CNRS, Route de Saclay, 91128 Palaiseau Cedex (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt,Germany (Germany); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Norreys, P. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Oliver, M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Zepf, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Helmholtz Institut Jena, D-07743 Jena (Germany); Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic)

    2015-07-15

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  15. Calibration of time of flight detectors using laser-driven neutron source

    Science.gov (United States)

    Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Krygier, A. G.; Green, A.; Alejo, A.; Clarke, R.; Freeman, R. R.; Fuchs, J.; Jung, D.; Kleinschmidt, A.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.

    2015-07-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  16. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  17. Calibration of time of flight detectors using laser-driven neutron source

    International Nuclear Information System (INIS)

    Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Green, A.; Alejo, A.; Jung, D.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.

    2015-01-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil

  18. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target

    Czech Academy of Sciences Publication Activity Database

    Bulanov, S.S.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.; Bulanov, S.V.; Margarone, Daniele; Korn, Georg; Haberer, T.

    2015-01-01

    Roč. 18, č. 6 (2015), "061302-1"-"061302-6" ISSN 1098-4402 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : ion accelerators * tumor-therapy * proton * beams * plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.500, year: 2015

  19. Proton beam shaped by “particle lens” formed by laser-driven hot electrons

    International Nuclear Information System (INIS)

    Zhai, S. H.; Shen, B. F.; Wang, W. P.; Zhang, H.; Zhang, L. G.; Huang, S.; Xu, Z. Z.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q.; Zhang, B. H.

    2016-01-01

    Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.

  20. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  1. Direct Observation of Strong Ion Coupling in Laser-Driven Shock-Compressed Targets

    International Nuclear Information System (INIS)

    Ravasio, A.; Benuzzi-Mounaix, A.; Loupias, B.; Ozaki, N.; Rabec le Gloahec, M.; Koenig, M.; Gregori, G.; Daligault, J.; Delserieys, A.; Riley, D.; Faenov, A. Ya.; Pikuz, T. A.

    2007-01-01

    In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas

  2. Quantum–classical correspondence in chaotic dynamics of laser-driven atoms

    International Nuclear Information System (INIS)

    Prants, S V

    2017-01-01

    This paper is a review article on some aspects of quantum–classical correspondence in chaotic dynamics of cold atoms interacting with a standing-wave laser field forming an optical lattice. The problem is treated from both (semi)classical and quantum points of view. In both approaches, the interaction of an atomic electic dipole with the laser field is treated quantum mechanically. Translational motion is described, at first, classically (atoms are considered to be point-like objects) and then quantum mechanically as a propagation of matter waves. Semiclassical equations of motion are shown to be chaotic in the sense of classical dynamical chaos. Point-like atoms in an absolutely deterministic and rigid optical lattice can move in a random-like manner demonstrating a chaotic walking with typical features of classical chaos. This behavior is explained by random-like ‘jumps’ of one of the atomic internal variable when atoms cross nodes of the standing wave and occurs in a specific range of the atom-field detuning. When treating atoms as matter waves, we show that they can make nonadiabatic transitions when crossing the standing-wave nodes. The point is that atomic wave packets split at each node in the same range of the atom-field detuning where the classical chaos occurs. The key point is that the squared amplitude of those semiclassical ‘jumps’ equal to the quantum Landau–Zener parameter which defines the probability of nonadiabatic transitions at the nodes. Nonadiabatic atomic wave packets are much more complicated compared to adiabatic ones and may be called chaotic in this sense. A few possible experiments to observe some manifestations of classical and quantum chaos with cold atoms in horizontal and vertical optical lattices are proposed and discussed. (paper)

  3. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    Science.gov (United States)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  4. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  5. Mathematical and numerical analysis of hyper-elastic systems and introduction of plasticity; Analyse mathematique et numerique de systemes hyperelastiques et introduction de la plasticite

    Energy Technology Data Exchange (ETDEWEB)

    Kluth, G

    2008-12-15

    The goal is to model mathematically and numerically the dynamic phenomenons for solids in finite plasticity. We suggest a model that we call hyper-elasto-plastic based on hyper-elastic systems of conservation laws and on the use of an equation of state that we have constructed so as to achieve the plastic yield criterion of Von Mises. This model gives exact (analytic) solutions with shock split to flyer-plate experiments. The mathematical analysis of this model is done (hyperbolicity, characteristic fields, involutions and entropy). In the numerical part, we give 1D and 2D Lagrangian schemes which satisfy an entropy criterion. Moreover, thanks to a special discretization of the equations on deformation gradient, we satisfy some discrete involutions. In this work, the degeneracy of the solid model into hydrodynamic models is studied at the continuous level, and achieved at the numerical one. On different problems, we show the validity of our model and our numerical schemes. (author)

  6. Mathematical and numerical analysis of hyper-elastic systems and introduction of plasticity

    International Nuclear Information System (INIS)

    Kluth, G.

    2008-12-01

    The goal is to model mathematically and numerically the dynamic phenomenons for solids in finite plasticity. We suggest a model that we call hyper-elasto-plastic based on hyper-elastic systems of conservation laws and on the use of an equation of state that we have constructed so as to achieve the plastic yield criterion of Von Mises. This model gives exact (analytic) solutions with shock split to flyer-plate experiments. The mathematical analysis of this model is done (hyperbolicity, characteristic fields, involutions and entropy). In the numerical part, we give 1D and 2D Lagrangian schemes which satisfy an entropy criterion. Moreover, thanks to a special discretization of the equations on deformation gradient, we satisfy some discrete involutions. In this work, the degeneracy of the solid model into hydrodynamic models is studied at the continuous level, and achieved at the numerical one. On different problems, we show the validity of our model and our numerical schemes. (author)

  7. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    Science.gov (United States)

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  8. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    Science.gov (United States)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  9. Design and realization of a fast digital system for the protection of a linear accelerator

    International Nuclear Information System (INIS)

    Hamdi, A.

    2004-07-01

    The new generation of light sources based on SASE Free-Electron-Lasers driven by LINACs operate with electron beams with high beam currents and duty cycles. This is especially true for the superconducting machines like TTF 2 and the X-RAY FEL, under construction or planning at DESY. Elaborate fast protections systems are required not only to protect the machine from electron beams hitting and destroying the vacuum chamber, but also to prevent the machine from running at high loss levels, dangerous for components like the FEL undulator. This document presents the different protection systems currently under construction for TTF 2. The very fast systems, based on transmission measurements and distributed loss detection monitors, are described in detail. This description includes the fast electronics to collect and to transmit the different interlock and status signals: analog to digital converters, DSP and FPGA, interfaces, toroid protection system (TPS) card. The implementation and validation (simulation and tests) of the TPS card at DESY is presented

  10. Development of an X-ray imaging system within 10-30 keV spectral range based on organic or inorganic scintillator

    International Nuclear Information System (INIS)

    Turk, G.

    2011-01-01

    This thesis aims at developing an x-ray imaging system intended for the Laser Mega Joule, within the framework of Inertial Confinement Fusion (ICF) experiments. ICF aims at yielding thermonuclear energy through laser-driven fusion of a deuterium-tritium mix. The operational function of our system is to acquire an image of the 10-30 keV x-rays emitted by the maximally compressed micro-balloon, with spatial resolution better than 10 μm. The presented system is only a part of a complete diagnostic system, which normally includes an x-ray optical subsystem. Our system conception largely takes vulnerability into account. The ignition phase of ICF yields 10 16 neutrons, with energies scaling up to 14 MeV. The neutrons generate such a hard surrounding with effects scaling down from image degradation up to instrumentation destruction. The presented system consists in a scintillator which is focused on a CCD camera through a catadioptric image transport system. An innovation work has been lead on scintillators to provide an answer to specifications greatly influenced by vulnerability. Those thesis works lead to an imaging system allowing to deport the CCD camera by 4 meters from the scintillator, with 100 μm spatial resolution in the scintillator plane. Those works have paved the way to outlooks such as enhancement of organic loaded scintillators compositions and improvement of optical relay system. (author) [fr

  11. Design and realization of a fast digital system for the protection of a linear accelerator; Conception et realisation d'un systeme numerique rapide pour la protection d'un accelerateur lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, A

    2004-07-01

    The new generation of light sources based on SASE Free-Electron-Lasers driven by LINACs operate with electron beams with high beam currents and duty cycles. This is especially true for the superconducting machines like TTF 2 and the X-RAY FEL, under construction or planning at DESY. Elaborate fast protections systems are required not only to protect the machine from electron beams hitting and destroying the vacuum chamber, but also to prevent the machine from running at high loss levels, dangerous for components like the FEL undulator. This document presents the different protection systems currently under construction for TTF 2. The very fast systems, based on transmission measurements and distributed loss detection monitors, are described in detail. This description includes the fast electronics to collect and to transmit the different interlock and status signals: analog to digital converters, DSP and FPGA, interfaces, toroid protection system (TPS) card. The implementation and validation (simulation and tests) of the TPS card at DESY is presented.

  12. Target experimental area and systems of the Us national ignition facility

    International Nuclear Information System (INIS)

    Tobin, M.; Van Wonterghem, B.; MacGowan, B.J.; Hibbard, W.; Kalantar, D.; Lee, F.D.; Pittenger, L.; Wong, K.

    2000-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition we will describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools. (authors)

  13. Target experimental area and systems of the U.S. National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M; Van Wonterghem, B; MacGowan, B J; Hibbard, W; Kalantar, D; Lee, F D; Pittenger, L; Wong, K

    1999-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition the authors describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools

  14. Systems

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Papers in this session describe the concept of mined geologic disposal system and methods for ensuring that the system, when developed, will meet all technical requirements. Also presented in the session are analyses of system parameters, such as cost and nuclear criticality potential, as well as a technical analysis of a requirement that the system permit retrieval of the waste for some period of time. The final paper discusses studies under way to investigate technical alternatives or complements to the mined geologic disposal system. Titles of the presented papers are: (1) Waste Isolation System; (2) Waste Isolation Economics; (3) BWIP Technical Baseline; (4) Criticality Considerations in Geologic Disposal of High-Level Waste; (5) Retrieving Nuclear Wastes from Repository; (6) NWTS Programs for the Evaluation of Technical Alternatives or Complements to Mined Geologic Repositories - Purpose and Objectives

  15. systems

    Directory of Open Access Journals (Sweden)

    Alexander Leonessa

    2000-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  16. Microwave energy transmission system for solar power station

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi

    1988-05-05

    This paper deals with a microwave wireless energy transmission system which will be required for a solar power station under investigation, particularly, it describes its foundation and future investigation. It is supposed that for realization of microwave wireless transmission techniques, it is most important to investigate the effect of strong microwave beams on a plasma environment, establish control techniques for microwave beams in which a retro-directive system is combined with a computer control system, and develop a semiconductor transmission module. Institute of Space and Astronautical Science (Japan) made an experiment on the effect of microwaves on ionospheric plasma by using an observatory rocket. The institute has planned to make an experiment on a microwave energy transmission system which is to be mounted to a small-scale space flyer unit in order to examine the control of microwave beams and 10 KW power transmission, in addition to investigation on the interaction of microwave energy beams with a plasma environment. (4 figs, 3 tabs, 20 refs)

  17. Dynamic properties of nickel-titanium alloys

    International Nuclear Information System (INIS)

    Hackenberg, Robert; Thoma, Dan; Cooley, Jason; Swift, Damian; Paisley, Dennis; Bourne, Neil; Gray, George III; Hauer, Allan

    2004-01-01

    The shock response of near-equiatomic Ni-Ti alloys have been investigated to support studies of shock-induced martensitic transitions. The equation of state (EOS) and elasticity were predicted using ab initio quantum mechanics. Polycrystalline NiTi samples were prepared with a range of compositions, and thickesses between about 100 and 400 μm. Laser-driven flyer impact experiments were used to verify the EOS and to measure the flow stress from the amplitude of the elastic precursor; the spall strength was also obtained from these experiments. The laser flyer EOS data were consistent with Hugoniot points deduced from gas gun experiments. Decaying shocks were induced in samples, by direct laser irradiation with a variety of pressures and durations, to investigate the threshold for martensite formation

  18. Models of electron conductivity which lead to ablation stabilization of fluid instabilities in laser-driven implosions

    International Nuclear Information System (INIS)

    Lindl, J.D.; Mead, W.C.

    1975-01-01

    LASNEX calculations with a modified electron conductivity show the existence of a firepolishing stabilization effect. By modifying the thermal conductivity so that K α T/sup n//rho/sup m/, one is able to construct a situation in which the electrons deposit their energy in a thin layer at the ablation surface and closely match the zero order solutions assumed earlier. The firepolishing effect appears to require that a significant fraction of the total pressure be due to the ablation process itself rather than the thermal pressure in the corona gas. It also requires KL approximately 1 where L is the scale height for decay of thermal perturbations generated at the ablation surface. For classical electron conductivity, because the thermal flux depends linearly on the grams/cm 2 necessary to stop the electrons, (1/rho) nabla rho approximately (1/T) nabla T near the ablation surface so that the pressure is nearly constant across the ablation surface. Hence there is no ablation pressure as such and no firepolishing effect for electron-driven implosions

  19. Feasibility study of the plasma electron density measurement by electromagnetic radiation from the laser-driven plasma wave

    International Nuclear Information System (INIS)

    Jang, D G; Kim, J J; Suk, H; Hur, M S

    2012-01-01

    When an intense laser beam is focused in a plasma, a plasma wake wave is generated and the oscillatary motion of the plasma electrons produces a strong electromagnetic wave by a Cherenkov-like process. Spectrum of the genetated electromagnetic wave has dependence on the plasma density. In this paper, we propose to use the emitted electromagnetic radiation for plasma diagnostic, which may provide an accurate information for local electron densities of the plasma and will be very useful for three-dimensional plasma density profiles by changing the focal point location of the laser beam. Two-dimensional (2-D) particle-in-cell (PIC) simulation is used to study the correlation between the spectrum of the emitted radiation and plasma density, and the results demonstrate that this method is promising for the electron density measurement in the plasma.

  20. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-Ray Preheat

    International Nuclear Information System (INIS)

    Colvin, Jeffrey D.; Kalantar, Daniel H.

    2006-01-01

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, <<1013 W/cm2, compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flash-coating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe

  1. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-ray Preheat

    International Nuclear Information System (INIS)

    Colvin, J D; Kalantar, D H

    2005-01-01

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, 13 W/cm 2 , compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flashcoating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe

  2. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    Czech Academy of Sciences Publication Activity Database

    Schillaci, F.; Maggiore, M.; Cirrone, G.A.P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F.; Scuderi, Valentina

    2016-01-01

    Roč. 837, Nov (2016), s. 80-87 ISSN 0168-9002 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606; GA MŠk LM2015065 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : particle acceleration * quadrupoles * dipoles * magnetic lens * beam dynamics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.362, year: 2016

  3. Development of a Laser Driven Photocathode Injector and Femtosecond Scale Laser Electron Synchronization for Next Generation Light Sources

    CERN Document Server

    Le Sage, G P; Ditmire, T R; Rosenzweig, J

    2000-01-01

    A high brightness photoinjector has been developed at LLNL. This injector combined with the 100 TW FALCON laser and the LLNL 100 MeV S-Band RF linac will enable development of a high brightness, femtosecond-scale, tunable, hard x-ray probe for time-resolved material measurements, based on Thomson scattering. Short pulse x-rays enable time-resolved characterization of shock dynamics, and examination of materials under extremes of pressure and temperature. Examples include Equation of State characterization on high-density materials, Crystal disorganization and re-growth in shocked and heated materials, and measurement of short time scale phase transition phenomena. Single shot evaluation, requiring high peak flux, is important for complex experiments such as probing of laser shocked actinides. A low emittance electron beam synchronized with femtosecond accuracy to an intense laser will revolutionize x-ray dynamics studies of materials. This project will lead development of ultrafast x-ray dynamics research on ...

  4. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Dept. of Applied Physics. Edward L. Ginzton Lab.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  5. Laser-driven particle acceleration for radiobiology and radiotherapy: where we are and where we are going

    Science.gov (United States)

    Giulietti, Antonio

    2017-05-01

    Radiation therapy of tumors progresses continuously and so do devices, sharing a global market of about $ 4 billions, growing at an annual rate exceeding 5%. Most of the progress involves tumor targeting, multi-beam irradiation, reduction of damage on healthy tissues and critical organs, dose fractioning. This fast-evolving scenario is the moving benchmark for the progress of the laser-based accelerators towards clinical uses. As for electrons, both energy and dose requested by radiotherapy are available with plasma accelerators driven by lasers in the power range of tens of TW but several issues have still to be faced before getting a prototype device for clinical tests. They include capability of varying electron energy, stability of the process, reliability for medical users. On the other side hadron therapy, presently applied to a small fraction of cases but within an exponential growth, is a primary option for the future. With such a strong motivation, research on laser-based proton/ion acceleration has been supported in the last decade in order to get performances suitable to clinical standards. None of these performances has been achieved so far with laser techniques. In the meantime a rich crop of data have been obtained in radiobiological experiments performed with beams of particles produced with laser techniques. It is quite significant however that most of the experiments have been performed moving bio samples to laser labs, rather moving laser equipment to bio labs or clinical contexts. This give us the measure that laser community cannot so far provide practical devices usable by non-laser people.

  6. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  7. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2013-01-01

    We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...

  8. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    International Nuclear Information System (INIS)

    Zeitler, Benno Michael Georg

    2017-01-01

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured beam control achievable in conventional electron sources is combined with the huge gradients of a plasma booster stage. In this thesis, the concept of the external injection experiment at REGAE is presented. The physical foundations are illustrated and combined into an extensive start-to-end design study. Using the key constraints from this results, the required beam line design is developed. An injection into a plasma wave with the aim of diagnosing the accelerating field inevitably requires electron bunches which are much shorter then the period of the plasma wavelength. This reference length is typically on the order of a few ten microns. The conventionally accelerated particle distribution must therefore be compressed. At REGAE the so-called ballistic bunching scheme is applied, leading to bunches with a longitudinal extent of about 3 μm. Even better results can be obtained if nonlinearities arising in the compression are compensated. A novel method to achieve this, based on the controlled beam expansion, is the stretcher mode. It is developed and described in detail in the second part of this thesis. Simulations that verify the analytic model presented in the thesis suggest a possible decrease in bunch length by a factor of ten and more compared to the design parameters of REGAE. Electron bunch lengths below 300 nm, i.e., below one femtosecond (1 fs=10"-"1"5 s) duration, can be produced. In addition, an energy spread compensation leading to quasi mono-energetic beams can be achieved by this method. Importantly, the approach is not restricted to Regae or similar machines, but can be generalized to a variety of accelerators.

  9. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E.; Domröse, Till; Gatzmann, J. Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha, E-mail: sascha.schaefer@phys.uni-goettingen.de; Ropers, Claus, E-mail: claus.ropers@uni-goettingen.de

    2017-05-15

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. - Highlights: • First implementation of an ultrafast TEM employing a nanoscale photocathode. • Localized single photon-photoemission from nanoscopic field emitter yields low emittance ultrashort electron pulses. • Electron pulses focused down to ~9 Å, with a duration of 200 fs and an energy width of 0.6 eV are demonstrated. • Quantitative characterization of ultrafast electron gun emittance and brightness. • A range of applications of high coherence ultrashort electron pulses is shown.

  10. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, Benno Michael Georg [Hamburg Univ. (Germany). Fakultaet fuer Mathematik, Informatik und Naturwissenschaften

    2017-01-15

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured beam control achievable in conventional electron sources is combined with the huge gradients of a plasma booster stage. In this thesis, the concept of the external injection experiment at REGAE is presented. The physical foundations are illustrated and combined into an extensive start-to-end design study. Using the key constraints from this results, the required beam line design is developed. An injection into a plasma wave with the aim of diagnosing the accelerating field inevitably requires electron bunches which are much shorter then the period of the plasma wavelength. This reference length is typically on the order of a few ten microns. The conventionally accelerated particle distribution must therefore be compressed. At REGAE the so-called ballistic bunching scheme is applied, leading to bunches with a longitudinal extent of about 3 μm. Even better results can be obtained if nonlinearities arising in the compression are compensated. A novel method to achieve this, based on the controlled beam expansion, is the stretcher mode. It is developed and described in detail in the second part of this thesis. Simulations that verify the analytic model presented in the thesis suggest a possible decrease in bunch length by a factor of ten and more compared to the design parameters of REGAE. Electron bunch lengths below 300 nm, i.e., below one femtosecond (1 fs=10{sup -15} s) duration, can be produced. In addition, an energy spread compensation leading to quasi mono-energetic beams can be achieved by this method. Importantly, the approach is not restricted to Regae or similar machines, but can be generalized to a variety of accelerators.

  11. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    Clayton Cozzan

    2016-10-01

    Full Text Available With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min. The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  12. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source.

    Science.gov (United States)

    Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A

    2018-03-01

    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics

    Science.gov (United States)

    Chekhov, Alexander L.; Stognij, Alexander I.; Satoh, Takuya; Murzina, Tatiana V.; Razdolski, Ilya; Stupakiewicz, Andrzej

    2018-05-01

    Ultrafast all-optical control of spins with femtosecond laser pulses is one of the hot topics at the crossroads of photonics and magnetism with a direct impact on future magnetic recording. Unveiling light-assisted recording mechanisms for an increase of the bit density beyond the diffraction limit without excessive heating of the recording medium is an open challenge. Here we show that surface plasmon-polaritons in hybrid metal-dielectric structures can provide spatial confinement of the inverse Faraday effect, mediating the excitation of localized coherent spin precession with 0.41 THz frequency. We demonstrate a two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within the 100 nm layer in dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways towards non-thermal opto-magnetic recording at the nano-scale.

  14. Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit

    Science.gov (United States)

    Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong

    2018-06-01

    A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.

  15. Laser-Driven Ultra-Relativistic Plasmas - Nuclear Fusion in Coulomb Shock Waves, Rouge Waves, and Background Matter

    Science.gov (United States)

    2015-05-05

    the time-scale of Big Bang , and the most significant time scale posts on the road to it. In his work [2], this PI also proposed specific mechanisms and...recently: (1) fully QED/relativistic theory of light pressure of 15.  SUBJECT TERMS plasmas Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18...large moving man-made objects in the ocean. A 2D and 3D expansion of the theory may need to be developed for other potential appli- cations of G

  16. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    Science.gov (United States)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  17. Study of laser driven plasma based electron acceleration and Bremsstrahlung radiation emission using ultra-high intensity laser pulses

    International Nuclear Information System (INIS)

    Rao, B.S.

    2013-01-01

    High energy particle accelerators are one of the most important inventions of the twentieth century which have led to enormous advances in basic scientific understanding of world around us. Despite their grand success, the present day high energy accelerators are hitting practical limits due to their large size and cost. This is because the accelerating gradients in conventional radio-frequency (RF) accelerators are typically limited to < 50 MV/m by the field breakdown of the accelerating structure. To address this major issue, many advanced accelerator techniques have been proposed and some of them are being actively pursued. Laser wakefield acceleration (LWFA) in plasma medium is one of the techniques being most actively pursued world over due to extremely large acceleration gradients of the order of 100 GV/m possible in this scheme which promises significant reduction of the size and cost of the future high energy accelerators. The present thesis work mainly deals with laser wakefield acceleration (LWFA) of self-injected electrons to 10s of MeV energy in plasma medium of length of the order of 500 μm using the table-top 10 TW laser at Laser Plasma Division, Raja Ramanna Centre for Advanced Technology

  18. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Kar, S., E-mail: s.kar@qub.ac.uk [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Cantono, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Nersisyan, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Brauckmann, S. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Doria, D.; Gwynne, D. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Macchi, A. [Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Naughton, K. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Lewis, C.L.S.; Borghesi, M. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom)

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed. - Highlights: • Prompt charging of laser irradiated target generates ultra-short EM pulses. • Its ultrafast propagation along a wire was studied by self-proton probing technique. • Self-proton probing technique is the proton probing with one laser pulse. • Pulse temporal profile and speed along the wire were measured with high resolution.

  19. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Directory of Open Access Journals (Sweden)

    S. Busold

    2013-10-01

    Full Text Available Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 10^{9} particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30  mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  20. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  1. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  2. Ultrafast streak and framing technique for the observation of laser driven shock waves in transparent solid targets

    International Nuclear Information System (INIS)

    Van Kessel, C.G.M.; Sachsenmaier, P.; Sigel, R.

    1975-01-01

    Shock waves driven by laser ablation in plane transparent plexiglass and solid hydrogen targets have been observed with streak and framing techniques using a high speed image converter camera, and a dye laser as a light source. The framing pictures have been made by mode locking the dye laser and using a wide streak slit. In both materials a growing hemispherical shock wave is observed with the maximum velocity at the onset of laser radiation. (author)

  3. Design of a picosecond-laser-driven Ni-like Mo x-ray laser near 20 nm

    International Nuclear Information System (INIS)

    Nilsen, J.

    1997-01-01

    The gain is predicted for a solid molybdenum target illuminated by several joules of combined energy from a nanosecond laser pulse to create a preplasma followed by a picosecond laser pulse to drive the gain. Gains greater than 300cm -1 are predicted for the Ni-like Mo 4d 1 S 0 →4p 1 P 1 transition at 18.9 nm, which is driven by the monopole collisional excitation. High gain is also predicted for a self-photo-pumped 4f 1 P 1 →4d 1 P 1 transition at 22.0 nm and several other transitions driven by inner shell collisional ionization. copyright 1997 Optical Society of America

  4. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    Energy Technology Data Exchange (ETDEWEB)

    Smitherman, D.P.

    1998-04-01

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  5. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  6. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    International Nuclear Information System (INIS)

    Zhang, W. L.; Qiao, B.; Huang, T. W.; Shen, X. F.; You, W. Y.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-01-01

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I_0 = 3 × 10"2"0" W/cm"2 and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  7. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.; Shen, X. F.; You, W. Y. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China); Yan, X. Q. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wu, S. Z. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Zhou, C. T.; He, X. T. [Center for Applied Physics and Technology, HEDPS, and State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-07-15

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  8. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  9. The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells

    International Nuclear Information System (INIS)

    Manti, L.; Perozziello, F.M.; Romagnani, L.; Borghesi, M.; Doria, D.; Candiano, G.; Cirrone, G.A.P.; Leanza, R.; Romano, F.; Scuderi, V.; Tramontana, A.; Chaudhary, P.; Gwynne, D.; Prise, K. M.

    2017-01-01

    Accelerated proton beams have become increasingly common for treating cancer. The need for cost and size reduction of particle accelerating machines has led to the pioneering investigation of optical ion acceleration techniques based on laser-plasma interactions as a possible alternative. Laser-matter interaction can produce extremely pulsed particle bursts of ultra-high dose rates (≥ 10 9 Gy/s), largely exceeding those currently used in conventional proton therapy. Since biological effects of ionizing radiation are strongly affected by the spatio-temporal distribution of DNA-damaging events, the unprecedented physical features of such beams may modify cellular and tissue radiosensitivity to unexplored extents. Hence, clinical applications of laser-generated particles need thorough assessment of their radiobiological effectiveness. To date, the majority of studies have either used rodent cell lines or have focussed on cancer cell killing being local tumour control the main objective of radiotherapy. Conversely, very little data exist on sub-lethal cellular effects, of relevance to normal tissue integrity and secondary cancers, such as premature cellular senescence. Here, we discuss ultra-high dose rate radiobiology and present preliminary data obtained in normal human cells following irradiation by laser-accelerated protons at the LULI PICO2000 facility at Laser Lab Europe, France.

  10. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields

    Directory of Open Access Journals (Sweden)

    F. Schillaci

    2018-02-01

    Full Text Available A coil-capacitor target is modeled using FEM simulations and analytical calculations, which allow to explain the time evolution of such complex target during magnetic field production driven by the flow of an extremely high current generated through the interaction with a high power laser. The numerical model includes a detailed study of the magnetic field produced by the coil-capacitor target, both in the static and transient cases, as well as magnetic force and Joule heating. The model is validated by experimental data reported in literature and can be of interest for several applications. As an example, the combination of two synchronized nanosecond lasers with the purpose of producing a plasma responsible of the proton-boron (p+ + 11B → 8.5 MeV + 3α fusion reaction, and energizing two multi-turn coils with the main purpose of confining such a plasma could enhance the reaction rate. The preliminary conceptual design of a magnetic mirror configuration to be used for confining protons and boron ions up to a few MeV/u in a region of less than 1 mm2 is briefly reported.

  11. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields

    Science.gov (United States)

    Schillaci, F.; De Marco, M.; Giuffrida, L.; Fujioka, S.; Zhang, Z.; Korn, G.; Margarone, D.

    2018-02-01

    A coil-capacitor target is modeled using FEM simulations and analytical calculations, which allow to explain the time evolution of such complex target during magnetic field production driven by the flow of an extremely high current generated through the interaction with a high power laser. The numerical model includes a detailed study of the magnetic field produced by the coil-capacitor target, both in the static and transient cases, as well as magnetic force and Joule heating. The model is validated by experimental data reported in literature and can be of interest for several applications. As an example, the combination of two synchronized nanosecond lasers with the purpose of producing a plasma responsible of the proton-boron (p+ + 11B → 8.5 MeV + 3α) fusion reaction, and energizing two multi-turn coils with the main purpose of confining such a plasma could enhance the reaction rate. The preliminary conceptual design of a magnetic mirror configuration to be used for confining protons and boron ions up to a few MeV/u in a region of less than 1 mm2 is briefly reported.

  12. Assessing exposure to cosmic radiation aboard aircraft: the SIEVERT system

    International Nuclear Information System (INIS)

    Bottolier-Depois, J.F.; Clairand, I.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2005-01-01

    Full text: The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milliSieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - PaulEmile Victor (IPEV). This professional service is available since more than two years on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented: experimental validation, in particular for the ground level event model (large solar eruption), and statistics on routes and personal doses. (author)

  13. HERMES docking/berthing system pilot study. Quantitative assessment

    International Nuclear Information System (INIS)

    Munoz Blasco, J.; Goicoechea Sanchez, F.J.

    1993-01-01

    This study falls within the framework of the incorporation of quantitative risk assessment to the activities planned for the ESA-HERMES project (ESA/ CNES). The main objective behind the study was the analysis and evaluation of the potential contribution of so-called probabilistic or quantitative safety analysis to the optimization of the safety development process for the systems carrying out the safety functions required by the new and complex HERMES Space Vehicle. For this purpose, a pilot study was considered a good start in quantitative safety assessments (QSA), as this approach has been frequently used in the past to establish a solid base in large-scale QSA application programs while avoiding considerable economic risks. It was finally decided to select the HERMES docking/berthing system with Man Tender Free Flyer as the case-study. This report describes the different steps followed in the study, along with the main insights obtained and the general conclusions drawn from the study results. (author)

  14. Assessing exposure to cosmic radiation aboard aircraft: the Sievert system

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Biau, A.; Clairand, I.; Saint-Lo, D.; Valero, M.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2003-01-01

    The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milli-sieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - Paul-Emile Victor (IPEV). This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft Various results obtained are presented. (authors)

  15. SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Swarnalatha

    2013-01-01

    Full Text Available Risk analysis of urban aquatic systems due to heavy metals turns significant due to their peculiar properties viz. persis tence, non-degradab ility, toxicity, and accumulation. Akkulam Veli (AV, an urba n tropical lake in south India is subjected to various environmental stresses due to multiple waste discharge, sand mining, developmental activities, tour ism related activitie s etc. Hence, a comprehensive approach is adopted for risk assessment using modified degree of contamination factor, toxicity units based on numerical sediment quality guidelines (SQGs, and potentialecological risk indices. The study revealed the presence of toxic metals such as Cr, C d, Pb and As and the lake is rated under ‘low ecological risk’ category.

  16. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  17. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradeep [Goethe University, Frankfurt am Main (Germany); GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Eschke, Juergen [GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Facility for Anti-proton and Ion Research, GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Silicon Tracking System (STS) of the CBM experiment at FAIR is composed of 8 tracking stations comprising of 1292 double-sided silicon micro-strip sensors. A Laser Test System (LTS) has been developed for the quality assurance of prototype sensors. The aim is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. Several prototype sensors with strip pitch of 50 and 58 μm have been tested, as well as a prototype module with realistic mechanical arrangement of sensor and read-out cables. The LTS is designed to measure sensor response in an automatized procedure across the sensor with focused laser beam (spot-size ∼ 12 μm, wavelength = 1060 nm). The pulse with duration (∼ 10 ns) and power (∼ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Results from laser scans of prototype sensors and detector module are reported.

  18. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Ghosh, P.

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported

  19. Post-flight trajectory reconstruction of suborbital free-flyers using GPS raw data

    Science.gov (United States)

    Ivchenko, N.; Yuan, Y.; Linden, E.

    2017-08-01

    This paper describes the reconstruction of postflight trajectories of suborbital free flying units by using logged GPS raw data. We took the reconstruction as a global least squares optimization problem, using both the pseudo-range and Doppler observables, and solved it by using the trust-region-reflective algorithm, which enabled navigational solutions of high accuracy. The code tracking was implemented with a large number of correlators and least squares curve fitting, in order to improve the precision of the code start times, while a more conventional phased lock loop was used for Doppler tracking. We proposed a weighting scheme to account for fast signal strength variation due to free-flier fast rotation, and a penalty for jerk to achieve a smooth solution. We applied these methods to flight data of two suborbital free flying units launched on REXUS 12 sounding rocket, reconstructing the trajectory, receiver clock error and wind up rates. The trajectory exhibits a parabola with the apogee around 80 km, and the velocity profile shows the details of payloadwobbling. The wind up rates obtained match the measurements from onboard angular rate sensors.

  20. Post-flight trajectory reconstruction of suborbital free-flyers using GPS raw data

    Directory of Open Access Journals (Sweden)

    Ivchenko N.

    2017-08-01

    Full Text Available This paper describes the reconstruction of postflight trajectories of suborbital free flying units by using logged GPS raw data. We took the reconstruction as a global least squares optimization problem, using both the pseudo-range and Doppler observables, and solved it by using the trust-region-reflective algorithm, which enabled navigational solutions of high accuracy. The code tracking was implemented with a large number of correlators and least squares curve fitting, in order to improve the precision of the code start times, while a more conventional phased lock loop was used for Doppler tracking. We proposed a weighting scheme to account for fast signal strength variation due to free-flier fast rotation, and a penalty for jerk to achieve a smooth solution. We applied these methods to flight data of two suborbital free flying units launched on REXUS 12 sounding rocket, reconstructing the trajectory, receiver clock error and wind up rates. The trajectory exhibits a parabola with the apogee around 80 km, and the velocity profile shows the details of payloadwobbling. The wind up rates obtained match the measurements from onboard angular rate sensors.

  1. Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space

    Science.gov (United States)

    Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris; To, Vinh; Wheeler, D. W.; Mittman, David; Torres, R. Jay; Smith, Ernest

    2013-01-01

    Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free-flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.

  2. Low-Inertia STEM Arm (LISA) Manipulators for Assistive Free-Flyers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Altius Space Machines proposes the development of lightweight robotic manipulators, that utilize rollable composite STEM booms to provide a prismatic...

  3. Assistive Free-Flyers with Gecko-Inspired Adhesive Appendages for Automated Logistics in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Gecko-inspired adhesives provide a new capability for assistive free fliers (AFF) in space. In comparison with conventional grippers, they make it possible to attach...

  4. Diagnostic prénatal: quelles sont les techniques actuelles et futures ? (flyer)

    CERN Multimedia

    2002-01-01

    La majorité des bébés qui viennent au monde ne présentent pas d'anomalies particulières. Cependant, il faut savoir qu'environ 1 foetus 170 présente une anomalie chromosomique (défaut de la structure ou du nombre de chromosomes) qui va peser plus ou moins lourdement sur sa vie future et 1 foetus sur 100 présente une maladie génique due à un changement dans un gène. Le diagnostic prénatal a connu et connaît une formidable expansion grâce aux progrès technologiques en génétique et imagerie foetale.

  5. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    Science.gov (United States)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  6. A Proposed Incentive System for Jefferson County Teachers.

    Science.gov (United States)

    Schlechty, Phillip C.; Ingwerson, Donald W.

    1987-01-01

    Outlines a teacher incentive plan developed for the Jefferson County (Kentucky) Public Schools and scheduled for pilot testing during the 1987-88 school year. The program is modeled after airline frequent flyer programs and is designed to encourage cooperative action and individual incentive among teachers. (MD)

  7. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    International Nuclear Information System (INIS)

    Appel, H.

    2007-05-01

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f xc from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the propagation

  8. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    Energy Technology Data Exchange (ETDEWEB)

    Appel, H.

    2007-05-15

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the

  9. Particle-in-cell studies of laser-driven hot spots and a statistical model for mesoscopic properties of Raman backscatter

    International Nuclear Information System (INIS)

    Albright, B.J.; Yin, L.; Bowers, K.J.; Kline, J.L.; Montgomery, D.S.; Fernandez, J.C.; Daughton, W.

    2006-01-01

    The authors use explicit particle-in-cell simulations to model stimulated scattering processes in media with both solitary and multiple laser hot spots. These simulations indicate coupling among hot spots, whereby scattered light, plasma waves, and hot electrons generated in one laser hot spot may propagate to neighboring hot spots, which can be destabilized to enhanced backscatter. A nonlinear statistical model of a stochastic beam exhibiting this coupled behavior is described here. Calibration of the model using particle-in-cell simulations is performed, and a threshold is derived for 'detonation' of the beam to high reflectivity. (authors)

  10. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, Carl; Benedetti, Carlo; Bulanov, Stepan; Chen, Min; Esarey, Eric; Geddes, Cameron; Vay, J.; Yu, Lule; Leemans, Wim

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO 2 laser to drive the wake and a frequency-doubled Ti:Al 2 O 3 laser for ionization injection.

  11. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    Czech Academy of Sciences Publication Activity Database

    Alejo, A.; Kar, S.; Ahmed, H.; Krygier, A.G.; Doria, D.; Clarke, R.; Fernandez, J.; Freeman, R.R.; Fuchs, J.; Green, A.; Green, J.S.; Jung, D.; Kleinschmidt, A.; Lewis, C. L. S.; Morrison, J.T.; Najmudin, Z.; Nakamura, H.; Nersisyan, G.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Ruiz, J.A.; Vassura, L.; Zepf, M.; Borghesi, Marco

    2014-01-01

    Roč. 85, č. 3 (2014), , "093303-1"-"093303-7" ISSN 0034-6748 R&D Projects: GA MŠk EE2.3.20.0279; GA MŠk ED1.1.00/02.0061 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : acceleration driven * plasma interactions * ion-acceleration * generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.614, year: 2014

  12. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    Czech Academy of Sciences Publication Activity Database

    Alejo, A.; Kar, S.; Ahmed, H.; Krygier, A.G.; Doria, D.; Clarke, R.; Fernandez, J.; Freeman, R.R.; Fuchs, J.; Green, A.; Green, J.S.; Jung, D.; Kleinschmidt, A.; Lewis, C. L. S.; Morrison, J.T.; Najmudin, Z.; Nakamura, H.; Nersisyan, G.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Ruiz, J.A.; Vassura, L.; Zepf, M.; Borghesi, Marco

    2014-01-01

    Roč. 85, č. 9 (2014), , "093303-1"-"093303-7" ISSN 0034-6748 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : acceleration driven * plasma interactions * ion-acceleration * generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.614, year: 2014

  13. Laser-driven ablation through fast electrons in PALS experiment at the laser radiation intensity of 1–50 PW/cm2

    Czech Academy of Sciences Publication Activity Database

    Gus’kov, S.Yu.; Demchenko, N. N.; Kasperczuk, A.; Pisarczyk, T.; Kalinowska, Z.; Chodukowski, T.; Renner, Oldřich; Šmíd, Michal; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří; Ullschmied, Jiří; Pisarczyk, P.

    2014-01-01

    Roč. 32, č. 1 (2014), s. 177-195 ISSN 0263-0346 R&D Projects: GA MŠk LM2010014; GA MŠk EE2.3.20.0279 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:AVČR(CZ) M100101208; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : inertial confinement fusion * shock ignition * laser-produced plasma * three-frame interferometry * X-ray spectroscopy * fast electron generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.295, year: 2014

  14. Time-dependent restricted-active-space self-consistent eld theory: Formulation and application to laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    We have developed a new theoretical framework for time-dependent many-electron problems named time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory. The theory generalizes the multicongurational time-dependent Hartree-Fock (MCTDHF) theory by truncating the expansion...

  15. Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach.

    Science.gov (United States)

    Cirrone, Giuseppe A P; Cuttone, Giacomo; Raffaele, Luigi; Salamone, Vincenzo; Avitabile, Teresio; Privitera, Giuseppe; Spatola, Corrado; Margarone, Daniele; Patti, Valeria; Petringa, Giada; Romano, Francesco; Russo, Andrea; Russo, Antonio; Sabini, Maria G; Scuderi, Valentina; Schillaci, Francesco; Valastro, Lucia M

    2017-01-01

    The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) project is introduced and the main scientific aspects will be described.

  16. Modelling of Ne-like copper X-ray laser driven by 1.2 ps short pulse and 280 ps background pulse configuration

    International Nuclear Information System (INIS)

    Demir, A.; Kenar, N.; Goktas, H.; Tallents, G.J.

    2004-01-01

    Detailed simulations of Ne-like Cu x-ray laser are undertaken using the EHYBRID code. The atomic physics data are obtained using the Cowan code. The optimization calculations are performed in terms of the intensity of background and the time separation between the background and the short pulse. The optimum value is obtained for the conditions of a Nd:glass laser with 1.2 ps pulse at 4.4 x 10 15 W cm -2 irradiance pumping a plasma pre-formed by a 280 ps duration pulse at 5.4 x 10 12 W cm -2 with peak-to-peak pulse separation set at 300 ps. X-ray resonance lines between 6 A and 15 A emitted from copper plasmas have been simulated. Free-free and free-bound emission from the Si-, Al-, Mg-, Na-, Ne- and F-like ions is calculated in the simulation. (author)

  17. The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition

    International Nuclear Information System (INIS)

    Malekynia, B.; Razavipour, S. S.

    2013-01-01

    An accelerated skin layer may be used to ignite solid state fuels. Detailed analyses were clarified by solving the hydrodynamic equations for nonlinear force driven plasma block ignition. In this paper, the complementary mechanisms are included for the advanced fuel ignition: external factors such as lasers, compression, shock waves, and sparks. The other category is created within the plasma fusion as reheating of an alpha particle, the Bremsstrahlung absorption, expansion, conduction, and shock waves generated by explosions. With the new condition for the control of shock waves, the spherical deuterium-tritium fuel density should be increased to 75 times that of the solid state. The threshold ignition energy flux density for advanced fuel ignition may be obtained using temperature equations, including the ones for the density profile obtained through the continuity equation and the expansion velocity for the r ≠ 0 layers. These thresholds are significantly reduced in comparison with the ignition thresholds at x = 0 for solid advanced fuels. The quantum correction for the collision frequency is applied in the case of the delay in ion heating. Under the shock wave condition, the spherical proton-boron and proton-lithium fuel densities should be increased to densities 120 and 180 times that of the solid state. These plasma compressions are achieved through a longer duration laser pulse or X-ray. (physics of gases, plasmas, and electric discharges)

  18. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  19. Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes

    Science.gov (United States)

    Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro

    2018-03-01

    We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.

  20. Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach

    Science.gov (United States)

    Cirrone, Giuseppe A. P.; Cuttone, Giacomo; Raffaele, Luigi; Salamone, Vincenzo; Avitabile, Teresio; Privitera, Giuseppe; Spatola, Corrado; Amico, Antonio G.; Larosa, Giuseppina; Leanza, Renata; Margarone, Daniele; Milluzzo, Giuliana; Patti, Valeria; Petringa, Giada; Romano, Francesco; Russo, Andrea; Russo, Antonio; Sabini, Maria G.; Schillaci, Francesco; Scuderi, Valentina; Valastro, Lucia M.

    2017-01-01

    The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) project is introduced and the main scientific aspects will be described. PMID:28971066

  1. Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach

    Directory of Open Access Journals (Sweden)

    Giuseppe A. P. Cirrone

    2017-09-01

    Full Text Available The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications project is introduced and the main scientific aspects will be described.

  2. Elevated Psychosocial Stress at Work in Patients with Systemic Lupus Erythematosus and Rheumatoid Arthritis.

    Science.gov (United States)

    Richter, Jutta G; Muth, Thomas; Li, Jian; Brinks, Ralph; Chehab, Gamal; Koch, Tobias; Siegrist, Johannes; Angerer, Peter; Huscher, Dörte; Schneider, Matthias

    2018-02-01

    Psychosocial stress at work not only affects the healthy working population, but also workers with chronic diseases. We aimed to investigate the psychosocial work stress levels in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). A cross-sectional study applied the Effort-Reward Imbalance (ERI) questionnaire - an internationally established instrument that measures work stress - to patients with SLE and RA who were capable of work and to a group of controls without these diseases. Participants were recruited through rheumatologists in private practices, hospitals, and from self-help groups by personal communication, paper-based flyers, and online advertisements. Because very few studies tested the ERI's applicability in patient groups, with a lack of evidence in patients with inflammatory rheumatic diseases, internal consistency and construct validity of the ERI measure were evaluated. Data came from 270 patients with RA and 247 with SLE, and 178 controls. Patients showed elevated psychosocial stress at work compared to controls. Across the total sample and all groups, satisfactory internal consistencies of the scales effort, reward, and overcommitment were obtained (Cronbach's alpha coefficients > 0.70), and confirmatory factor analysis replicated the theoretical structure of the ERI model (goodness-of-fit index > 0.80). We found elevated psychosocial stress at work in patients with SLE and RA compared to controls by applying the ERI model. Despite some heterogeneity in the sample, we achieved satisfactory psychometric properties of the ERI questionnaire. Our results suggest that the ERI questionnaire is a psychometrically useful tool to be implemented in epidemiological studies of employed patients with SLE and RA.

  3. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    Science.gov (United States)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  4. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven optical cavity exhibits dispersive optical bistability. During such a process the system also shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low dimensional systems. In this paper we have ...

  5. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  6. Performance of Shiva as a laser fusion irradiation facility

    International Nuclear Information System (INIS)

    Speck, D.R.; Bliss, E.S.; Glaze, J.A.; Johnson, B.C.; Manes, K.R.; Ozarski, R.G.; Rupert, P.R.; Simmons, W.W.; Swift, C.D.; Thompson, C.E.

    1979-01-01

    Shiva is a 20 beam Nd:Glass Laser and Target Irradiation Facility at the Lawrence Livermore Laboratory. The laser system and integrated target facility evolved during the last year from a large, untested, experimental laser system to a target irradiation facility which has provided significant laser driven inertial confinement fusion data. The operation of the facility is discussed

  7. International Observe the Moon Night - An Opportunity to Participate in the Year of the Solar System While Sharing the Excitement of Lunar Science and Exploration with the Public

    Science.gov (United States)

    Bleacher, L.; Daou, D.; Day, B. H.; Hsu, B. C.; Jones, A. P.; Mitchell, B.; Shaner, A. J.; Shipp, S. S.

    2010-12-01

    International Observe the Moon Night (InOMN) is a multi-nation effort to share the excitement of recent lunar missions and new science results with education communities, amateur astronomers, space enthusiasts, and the general public. It is also intended to encourage the world to experience the thrill of observing Earth’s closest neighbor. The inaugural InOMN took place on September 18, 2010. People in over 26 countries gathered together in groups big and small to learn about the Moon through presentations by scientists, astronomers, and engineers; participate in hands-on activities; and observe the Moon through telescopes, binoculars, and the naked eye. Next year’s InOMN will take place on October 8, 2011 during the Year of the Solar System (YSS). The October 2011 YSS theme will be “Moons/Rings Across the Solar System.” InOMN is perfectly suited as an event that any museum, science center, planetarium, university, school, or other group can implement to celebrate YSS. The InOMN Coordinating Committee has developed a variety of resources and materials to make it easy to host an InOMN event of any size. Interested groups are encouraged to utilize the InOMN website (observethemoonnight.org) in planning their InOMN event for 2011/YSS. The website contains links to Moon resources, educational activities, suggestions for hosting an event, free downloads of logos and flyers for advertising an event, and contests. New for 2011 will be a discussion forum for event hosts to share their plans, tips, and experiences. Together, YSS and InOMN will enable the public to maintain its curiosity about the Moon and to gain a better understanding of the Moon’s formation, evolution, and place in the night sky.

  8. Establishment of a VISAR Measurement System for Material Model Validation in DSTO

    Science.gov (United States)

    2013-02-01

    and the flyer plate. The isentrope PT describes the rarefaction transition 3-4 resulting in the free surface velocity Uf recorded by the VISAR...tracer 2 curve has been shifted slightly to the left and raised. The comparison reveals a slight smearing of the ‘bulge’ feature behind the precursor...UNCLASSIFIED 20 UNCLASSIFIED DSTO-TR-2807 lateral rarefaction waves. The interaction results in asymmetric pressure zones seen at t = 3 µs (third

  9. Monte Carlo application based on GEANT4 toolkit to simulate a laser–plasma electron beam line for radiobiological studies

    Energy Technology Data Exchange (ETDEWEB)

    Lamia, D., E-mail: debora.lamia@ibfm.cnr.it [Institute of Molecular Bioimaging and Physiology IBFM CNR – LATO, Cefalù (Italy); Russo, G., E-mail: giorgio.russo@ibfm.cnr.it [Institute of Molecular Bioimaging and Physiology IBFM CNR – LATO, Cefalù (Italy); Casarino, C.; Gagliano, L.; Candiano, G.C. [Institute of Molecular Bioimaging and Physiology IBFM CNR – LATO, Cefalù (Italy); Labate, L. [Intense Laser Irradiation Laboratory (ILIL) – National Institute of Optics INO CNR, Pisa (Italy); National Institute for Nuclear Physics INFN, Pisa Section and Frascati National Laboratories LNF (Italy); Baffigi, F.; Fulgentini, L.; Giulietti, A.; Koester, P.; Palla, D. [Intense Laser Irradiation Laboratory (ILIL) – National Institute of Optics INO CNR, Pisa (Italy); Gizzi, L.A. [Intense Laser Irradiation Laboratory (ILIL) – National Institute of Optics INO CNR, Pisa (Italy); National Institute for Nuclear Physics INFN, Pisa Section and Frascati National Laboratories LNF (Italy); Gilardi, M.C. [Institute of Molecular Bioimaging and Physiology IBFM CNR, Segrate (Italy); University of Milano-Bicocca, Milano (Italy)

    2015-06-21

    We report on the development of a Monte Carlo application, based on the GEANT4 toolkit, for the characterization and optimization of electron beams for clinical applications produced by a laser-driven plasma source. The GEANT4 application is conceived so as to represent in the most general way the physical and geometrical features of a typical laser-driven accelerator. It is designed to provide standard dosimetric figures such as percentage dose depth curves, two-dimensional dose distributions and 3D dose profiles at different positions both inside and outside the interaction chamber. The application was validated by comparing its predictions to experimental measurements carried out on a real laser-driven accelerator. The work is aimed at optimizing the source, by using this novel application, for radiobiological studies and, in perspective, for medical applications. - Highlights: • Development of a Monte Carlo application based on GEANT4 toolkit. • Experimental measurements carried out with a laser-driven acceleration system. • Validation of Geant4 application comparing experimental data with the simulated ones. • Dosimetric characterization of the acceleration system.

  10. System Budgets

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1996-01-01

    The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....

  11. Fuel pellets and optical systems for inertially confined fusion

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    Current laser-driven ICF targets are complex sets of concentric spherical shells made from a variety of materials including the fuel (e.g., deuterium-tritium), glass, beryllium, gold, polymeric materials, organo-metallics, and several additional organic and inorganic materials depending on the particular experiments to be done. While it is not yet known what the reactor targets will be exactly, there is little reason to believe they will be just simple, low quality glass shells containing DT gas or simple spheres of deuterated polyethylene or other fuel. Consequently, many of the current targets, materials, and fabrication techniques are considered to be applicable to the long range problems of ICF reactor target fabrication. Many current material problems and fabrication techniques are discussed and various quality factors are presented in an attempt to bring an awareness of the possible fusion reactor target materials problems to the scientific and technical community

  12. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  13. Embedded Systems

    Indian Academy of Sciences (India)

    Embedded system, micro-con- troller ... Embedded systems differ from general purpose computers in many ... Low cost: As embedded systems are extensively used in con- .... operating systems for the desktop computers where scheduling.

  14. Thermal systems; Systemes thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [Valenciennes Univ. et du Hainaut Cambresis, LME, 59 (France); Lecoeuche, S. [Ecole des Mines de Douai, Dept. GIP, 59 - Douai (France)]|[Lille Univ. des Sciences et Technologies, 59 - Villeneuve d' Ascq (France); Ahmad, M.; Sallee, H.; Quenard, D. [CSTB, 38 - Saint Martin d' Heres (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Gascoin, N.; Gillard, P.; Bernard, S. [Laboratoire d' Energetique, Explosion, Structure, 18 - Bourges (France); Gascoin, N.; Toure, Y. [Laboratoire Vision et Robotique, 18 - Bourges (France); Daniau, E.; Bouchez, M. [MBDA, 18 - Bourges (France); Dobrovicescu, A.; Stanciu, D. [Bucarest Univ. Polytechnique, Faculte de Genie Mecanique (Romania); Stoian, M. [Reims Univ. Champagne Ardenne, Faculte des Sciences, UTAP/LTM, 51 (France); Bruch, A.; Fourmigue, J.F.; Colasson, S. [CEA Grenoble, Lab. Greth, 38 (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Voicu, I.; Mare, T.; Miriel, J. [Institut National des Sciences Appliquees (INSA), LGCGM, IUT, 35 - Rennes (France); Galanis, N. [Sherbrooke Univ., Genie Mecanique, QC (Canada); Nemer, M.; Clodic, D. [Ecole des Mines de Paris, Centre Energetique et Procedes, 75 (France); Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, Lab. de Thermocinetiquede Nantes, UMR-CNRS 6607, 44 (France)

    2005-07-01

    This session about thermal systems gathers 26 articles dealing with: neural model of a compact heat exchanger; experimental study and numerical simulation of the thermal behaviour of test-cells with walls made of a combination of phase change materials and super-insulating materials; hydraulic and thermal modeling of a supercritical fluid with pyrolysis inside a heated channel: pre-dimensioning of an experimental study; energy analysis of the heat recovery devices of a cryogenic system; numerical simulation of the thermo-hydraulic behaviour of a supercritical CO{sub 2} flow inside a vertical tube; mixed convection inside dual-tube exchangers; development of a nodal approach with homogenization for the simulation of the brazing cycle of a heat exchanger; chaotic exchanger for the cooling of low temperature fuel cells; structural optimization of the internal fins of a cylindrical generator; a new experimental approach for the study of the local boiling inside the channels of exchangers with plates and fins; experimental study of the flow regimes of boiling hydrocarbons on a bundle of staggered tubes; energy study of heat recovery exchangers used in Claude-type refrigerating systems; general model of Carnot engine submitted to various operating constraints; the free pistons Stirling cogeneration system; natural gas supplied cogeneration system with polymer membrane fuel cell; influence of the CRN coating on the heat flux inside the tool during the wood unrolling process; transport and mixture of a passive scalar injected inside the wake of a Ahmed body; control of a laser welding-brazing process by infrared thermography; 2D self-adaptative method for contours detection: application to the images of an aniso-thermal jet; exergy and exergy-economical study of an 'Ericsson' engine-based micro-cogeneration system; simplified air-conditioning of telephone switching equipments; parametric study of the 'low-energy' individual dwelling; brief synthesis of

  15. Data Systems vs. Information Systems

    OpenAIRE

    Amatayakul, Margret K.

    1982-01-01

    This paper examines the current status of “hospital information systems” with respect to the distinction between data systems and information systems. It is proposed that the systems currently existing are incomplete data dystems resulting in ineffective information systems.

  16. EXPERT SYSTEMS

    OpenAIRE

    Georgiana Marin; Mihai Catalin Andrei

    2011-01-01

    In recent decades IT and computer systems have evolved rapidly in economic informatics field. The goal is to create user friendly information systems that respond promptly and accurately to requests. Informatics systems evolved into decision assisted systems, and such systems are converted, based on gained experience, in expert systems for creative problem solving that an organization is facing. Expert systems are aimed at rebuilding human reasoning on the expertise obtained from experts, sto...

  17. High pressure generation by laser driven shock waves: application to equation of state measurement; Generation de hautes pressions par choc laser: application a la mesure d'equations d'etat

    Energy Technology Data Exchange (ETDEWEB)

    Benuzzi, A

    1997-12-15

    This work is dedicated to shock waves and their applications to the study of the equation of state of compressed matter.This document is divided into 6 chapters: 1) laser-produced plasmas and abrasion processes, 2) shock waves and the equation of state, 3) relative measuring of the equation of state, 4) comparison between direct and indirect drive to compress the target, 5) the measurement of a new parameter: the shock temperature, and 6) control and measurement of the pre-heating phase. In this work we have reached relevant results, we have shown for the first time the possibility of generating shock waves of very high quality in terms of spatial distribution, time dependence and of negligible pre-heating phase with direct laser radiation. We have shown that the shock pressure stays unchanged as time passes for targets whose thickness is over 10 {mu}m. A relative measurement of the equation of state has been performed through the simultaneous measurement of the velocity of shock waves passing through 2 different media. The great efficiency of the direct drive has allowed us to produce pressures up to 40 Mbar. An absolute measurement of the equation of state requires the measurement of 2 parameters, we have then performed the measurement of the colour temperature of an aluminium target submitted to laser shocks. A simple model has been developed to infer the shock temperature from the colour temperature. The last important result is the assessment of the temperature of the pre-heating phase that is necessary to know the media in which the shock wave propagates. The comparison of the measured values of the reflectivity of the back side of the target with the computed values given by an adequate simulation has allowed us to deduce the evolution of the temperature of the pre-heating phase. (A.C.)

  18. Multibody Systems

    DEFF Research Database (Denmark)

    Wagner, Falko Jens

    1999-01-01

    Multibody Systems is one area, in which methods for solving DAEs are of special interst. This chapter is about multibody systems, why they result in DAE systems and what kind of problems that can arise when dealing with multibody systems and formulating their corresponding DAE system....

  19. System dynamics

    International Nuclear Information System (INIS)

    Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan

    1999-02-01

    This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.

  20. WORKSHOP ON THE CHARACTERIZATION, MODELING, REMEDIATION AND MONITORING OF MINING-IMPACTED PIT LAKES, SANDS RGENCY CASINO HOTEL, DOWNTOWN RENO, NV. APRIL 4-6, 2000 (PROGRAM FLYER)

    Science.gov (United States)

    The purpose of this workshop is to provide a forum for the exchange of scientific infomation on current approaches for assessing the characterization, monitoring, treatment and/or remediation of impacts on aquatic ecosystems including pit lakes from mining-related contamination i...