WorldWideScience

Sample records for laser welded aisi

  1. Laser Welding Of Thin Sheet Of AISI 301 Stainless Steel

    Science.gov (United States)

    Vilar, R.; Miranda, R. M.

    1989-01-01

    Preliminary results of an investigation on laser welding of AISI 301 stainless steel thin sheet are presented. Welds were made with a CO2 continuous wave laser, varying power density and welding speed. The welds were studied by optical and electron scanning microscopy, X-ray diffraction and hardness tests. Experimental results show that under appropriate conditions, sound welds are obtained, with a negligeable heat affected zoneanda fine microstructure in the fusion zone. The fusion zone shows a cellular - dendritic microstructure, with austenite and ferrite as the major constituents. Ferrite, whose content is 5 to 7%, is predominantly intradendritic with both vermicular and acicular morphologies. However some interdendritic ferrite may also be present. The characteristics of the structure suggest that the solidification mode of AISI 301 stainless steel is essentially ferritic.

  2. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  3. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  4. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  5. Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-02-01

    Laser welding is a potentially useful technique for joining two pieces of similar or dissimilar materials with high precision. In the present work, comparative studies on laser welding of similar metal of AISI 304SS and AISI 316SS have been conducted forming butt joints. A robotic control 600 W pulsed Nd:YAG laser source has been used for welding purpose. The effects of laser power, scanning speed and pulse width on the ultimate tensile strength and weld width have been investigated using the empirical models developed by RSM. The results of ANOVA indicate that the developed models predict the responses adequately within the limits of input parameters. 3-D response surface and contour plots have been developed to find out the combined effects of input parameters on responses. Furthermore, microstructural analysis as well as hardness and tensile behavior of the selected weld of 304SS and 316SS have been carried out to understand the metallurgical and mechanical behavior of the weld. The selection criteria are based on the maximum and minimum strength achieved by the respective weld. It has been observed that the current pulsation, base metal composition and variation in heat input have significant influence on controlling the microstructural constituents (i.e. phase fraction, grain size etc.). The result suggests that the low energy input pulsation generally produce fine grain structure and improved mechanical properties than the high energy input pulsation irrespective of base material composition. However, among the base materials, 304SS depict better microstructural and mechanical properties than the 316SS for a given parametric condition. Finally, desirability function analysis has been applied for multi-objective optimization for maximization of ultimate tensile strength and minimization of weld width simultaneously. Confirmatory tests have been conducted at optimum parametric conditions to validate the optimization techniques.

  6. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent ...... regain the corrosion resistance by desensitization....

  7. Weld-bead profile and costs optimisation of the CO 2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316

    Science.gov (United States)

    Ruggiero, A.; Tricarico, L.; Olabi, A. G.; Benyounis, K. Y.

    2011-02-01

    The dissimilar full depth laser-butt welding of low carbon steel and austenitic steel AISI 316 was investigated using CW 1.5 kW CO 2 laser. The effect of laser power (1.1-1.43 kW), welding speed (25-75 cm/min) and focal point position (-0.8 to -0.2 mm) on the weld-bead geometry (i.e. weld-bead area, A; upper width, Wu; lower width, Wl and middle width, Wm) and on the operating cost C was investigated using response surface methodology (RSM). The experimental plan was based on Box-Behnken design; linear and quadratic polynomial equations for predicting the weld-bead widthness references were developed. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used. The regression equations were used to find optimum welding conditions for the desired geometric criteria.

  8. Dimensional characteristics of welds performed on AISI 1045 steel by means of the application of high power diode laser; Caracteristicas dimensionales de soldadura formadas sobre el acero AISI 1045 mediante la aplicacion del laser diodo de alta potencia

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Castillo, A.; Pou, J.; Lusquinos, F.; Quintero, F.; Soto, R.; Boutinguiza, M.; Saavedra, M.; Perez-Amor, M.

    2004-07-01

    The named High Power diode Laser (HPDL), emits a beam of optical energy generated by diode stimulation and offers the capability of supplying levels of power up to 6 kW. The objective of this research work was to study the main welding variables and their effects on dimensional characteristics of the beads performed by means of application of this novel laser. The results obtained, show that HPDL, is an energy source able to perform welds on AISI 1045 steel plates under conduction mode, without any kind of mechanized preparation, preheating or post-weld treatment and, without filler metal application. (Author) 16 refs.

  9. The effect of CO{sub 2} laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Köse, Ceyhun, E-mail: ceyhun.kose@gop.edu.tr [Faculty of Natural Sciences and Engineering, Department of Mechanical Engineering, Gaziosmanpaşa University, Tokat (Turkey); Kaçar, Ramazan, E-mail: rkacar@karabuk.edu.tr [Faculty of Technology Department of Manufacturing Engineering, Karabuk University, Karabuk 78050 (Turkey); Zorba, Aslı Pınar, E-mail: aslipinarzorba@gmail.com [Graduate School of Natural and Applied Sciences, Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Bağırova, Melahat, E-mail: mbagir@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Allahverdiyev, Adil M., E-mail: adil@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey)

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO{sub 2} laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and

  10. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    Science.gov (United States)

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  11. Solidificação da zona de fusão na soldagem do AISI 304 com inconel 600 por laser de Nd: YAG Microstructure development in Nd: YAG laser welding of AISI 304 and Inconel 600

    Directory of Open Access Journals (Sweden)

    Maurício David M. das Neves

    2009-06-01

    Full Text Available Neste trabalho estudou-se a morfologia de solidificação da zona de fusão, numa junta formada a partir de materiais dissimilares, composta por aço inoxidável austenítico AISI 304 e por liga de níquel Inconel 600, soldada com laser pulsado de Nd:YAG. Os parâmetros do feixe laser e do sistema óptico foram selecionados, visando obter uma solda com penetração total e bom acabamento superficial. A caracterização microestrutural foi realizada por microscopia ótica, onde se observou uma zona de fusão com penetração total do tipo keyhole, a presença de pequenos poros e a ausência de trincas. As juntas soldadas foram caracterizadas também, por meio de microscopia eletrônica de varredura (MEV. Medidas realizadas por espectrometria de raios X por dispersão de energia na zona de fusão indicaram uma distribuição levemente heterogênea de níquel e ferro. Observou-se que o início de solidificação da zona de fusão ocorreu por meio de crescimento epitaxial. A morfologia de solidificação da ZF foi basicamente dendrítica e celular sendo, influenciada pelo gradiente de temperatura, velocidade de solidificação e composição química. As variações de composição química e da morfologia de solidificação não alteraram significativamente os valores de microdureza Vickers na zona de fusão. Resultados obtidos nos ensaios de tração indicaram valores de eficiência de soldagem adequados.An autogenous laser welding of dissimilar materials involving AISI 304 austenitic stainless steels and Inconel 600 nickel alloy was investigated in this study. Hence, the aim of this investigation was to study the solidification and microstructure of fusion zone when using a pulsed Nd:YAG laser. The laser and optical beam parameters were chosen to achieve a good weld with total penetration. Optical microscopy pictures showed a typical keyhole weld with total penetration, small pores and free of cracks. The x-ray spectrometry by energy dispersion

  12. Estimation of Fatigue Life of Laser Welded AISI304 Stainless Steel T-Joint Based on Experiments and Recommendations in Design Codes

    DEFF Research Database (Denmark)

    Lambertsen, Søren Heide; Damkilde, Lars; Kristensen, Anders Schmidt;

    2013-01-01

    In this paper the fatigue behavior of laser welded T-joints of stainless steel AISI304 is investigated experimentally. In the fatigue experiments 36 specimens with a sheet thickness of 1 mm are exposed to one-dimensional cyclic loading. Three different types of specimens are adopted. Three groups....... The non-welded specimens are used to study the influence of heat and surface effects on the fatigue life. The fatigue life from the experiments is compared to fatigue life calculated from the guidelines in the standards DNV-RP-C203 and EUROCODE 3 EN-1993-1-9. Insignificant differences in fatigue life...... of the welded and non-welded specimens are observed in the experiments and the largest difference is found in the High Cycle Fatigue (HCF) area. The specimens show a lower fatigue life compared to DNV-RP-C203 and EUROCODE 3 EN-1993-1-9 when the spe-cimens are exposed to less than 4.0 1E06 cycles. Therefore, we...

  13. Weldability of AISI 304 to copper by friction welding

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)

    2013-06-01

    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  14. Spectral analysis of the process emission during laser welding of AISI 304 stainless steel with disk and Nd:YAG laser

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.

    2009-01-01

    Optical emissions from the laser welding process can be obtained relatively easy in real-time. Such emissions come from the melt pool, keyhole, or plume during welding. Therefore it is very beneficial to establish a clear relation between characteristics of these emissions and the resulting weld qua

  15. Spectral analysis of the process emission during laser welding of AISI 304 stainless steel with disk and Nd:YAG laser

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.

    2009-01-01

    Optical emissions from the laser welding process can be obtained relatively easy in real-time. Such emissions come from the melt pool, keyhole, or plume during welding. Therefore it is very beneficial to establish a clear relation between characteristics of these emissions and the resulting weld

  16. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  17. The study on the properties of AISI 4140 and AISI 1040 steel rods welded by friction welding

    OpenAIRE

    Thanee Toomprasen; Chawalit Thinvongpituk; Sukangkana Talangkun

    2014-01-01

    This paper is aimed to investigate the properties of joint between AISI 4140 and AISI 1040 welded by friction welding. The specimens were prepared in round shape of 13 mm diameter and 100 mm long. They were welded by friction welding method under the following conditions; friction pressure of 183 MPa, friction time of 12 sec, upset pressure of 428 MPa, upset time of 7 sec. and rotational speed of 1400 rpm. The strength and hardness were tested on the welded area. The result showed finer grain...

  18. An investigation on weldability of AISI 304 and AISI 1040 steels on friction welding; Untersuchung der Schweisseignung von AISI 304 und AISI 1040 mittels Reibschweissen

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Sare; Ay, Irfan [Balikesir Univ., Cagis Campus (Turkey). Mechanical Eng. Dept.; Dinc, Dincer [General Directorate of Highways, Canakkale (Turkey); Yaman, Ramazan [Balikesir Univ., Cagis Campus (Turkey). Industrial Eng. Dept.

    2010-04-15

    In welding technology, joining processes of different materials, which have dissimilar crystal structures are difficult. Welding of different materials becomes very important to reduce costs. Furthermore, the friction welding method is processed in lower temperature than the melting temperature. Especially, this is a big advantage to overcome difficulties that occur in the heat affected zone during usage of conventional methods. In this study, the weldability of AISI 304 stainless steel and AISI 1040 carbon steel by friction welding is studied. During the welding process, temperature variations in the welding zones were measured with an infrared temperature measurement device. After welding of the samples, tensile and hardness experiments were carried out. For metallographic investigations, optical microscope and scanning electron microscope (SEM) pictures were taken. Energy dispersive spectroscopy (EDS) analysis was carried out for composition investigations on welding and heat affected zones. As a result, these two steels could be joined by friction welding for industrial usage.

  19. Weld Decay Recovery by Laser Beam Surfacing of Austenitic Stainless Steel Welded Joints

    OpenAIRE

    Isao, MASUMOTO; Takeshi, SHINODA; Toshimasa, HIRATE; Nagoya University, currently at Gifu Vocational Training College; Faculty of Engineering, Nagoya University; Nagoya University, currently at Toshiba Co. Ltd.

    1990-01-01

    This study is an attempt to improve corrosion resistance by laser beam surface treatment. AISI 304 type stainless steel welds were surface treated by laser and the effectivenesses of various treatment conditions were evaluated by acidic corrosion tests and metallurgical observation. It was found that laser treatment changed the morphology of carbide precipitates in the heat affected zone of AISI 304 austenitic steel MIG welded joints, and that it is possible to effect revovery from weld decay...

  20. The study on the properties of AISI 4140 and AISI 1040 steel rods welded by friction welding

    Directory of Open Access Journals (Sweden)

    Thanee Toomprasen

    2014-06-01

    Full Text Available This paper is aimed to investigate the properties of joint between AISI 4140 and AISI 1040 welded by friction welding. The specimens were prepared in round shape of 13 mm diameter and 100 mm long. They were welded by friction welding method under the following conditions; friction pressure of 183 MPa, friction time of 12 sec, upset pressure of 428 MPa, upset time of 7 sec. and rotational speed of 1400 rpm. The strength and hardness were tested on the welded area. The result showed finer grains. in the welded area. This is the result of friction pressure and upset pressure in the welding process. In addition, the observation result indicated some changes of Ferrite and Pearlite in welded zone. This phase change resulted in the increment of hardness in AISI 4140 at the contact area and adjacent. In part of AISI 1040, the portion of Pearlite and Ferrite are not significantly changed, therefore the value of hardness is almost constant.

  1. Linear friction welding of AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Bhamji, Imran, E-mail: imran.bhamji@postgrad.manchester.ac.uk [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, M1 7HS (United Kingdom); Preuss, Michael [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, M1 7HS (United Kingdom); Threadgill, Philip L. [Formerly with TWI Ltd., Cambridge, UK (now retired) (United Kingdom); Moat, Richard J. [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, M1 7HS (United Kingdom); Addison, Adrian C. [TWI Ltd., Cambridge (United Kingdom); Peel, Matthew J. [University of Bristol, Queens Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2010-12-15

    Research highlights: {yields} Linear friction welding is a feasible process for joining AISI316L. {yields} Most welds had tensile strengths superior to the parent material. {yields} Welding parameters had a significant impact on weld microstructure. {yields} Control of microstructure by controlling welding parameters is a process benefit. - Abstract: Linear friction welding is a solid state joining process established as a niche technology for the joining of aeroengine bladed disks. However, the process is not limited to this application, and therefore the feasibility of joining a common engineering austenitic steel, AISI 316L, has been explored. It was found that mechanically sound linear friction welds could be produced in 316L, with tensile properties in most welds exceeding those of the parent material. The mechanical properties of the welds were also found to be insensitive to relatively large changes in welding parameters. Texture was investigated in one weld using high energy synchrotron X-ray diffraction. Results showed a strong {l_brace}1 1 1{r_brace}< 1 1 2 > type texture at the centre of the weld, which is a typical shear texture in face centre cubic materials. Variations in welding parameters were seen to have a significant impact on the microstructures of welds. This was particularly evident in the variation of the fraction of delta ferrite, in the thermo-mechanically affected zone of the welds, with different process parameters. Analysis of the variation in delta ferrite, with different welding parameters, has produced some interesting insights into heat generation and dissipation during the process. It is hoped that a greater understanding of the process could help to make the parameter optimisation process, when welding 316L as well as other materials, more efficient.

  2. Metallurgical and Mechanical Research on Dissimilar Electron Beam Welding of AISI 316L and AISI 4340

    Directory of Open Access Journals (Sweden)

    A. R. Sufizadeh

    2016-01-01

    Full Text Available Dissimilar electron beam welding of 316L austenitic stainless steel and AISI 4340 low alloy high strength steel has been studied. Studies are focused on effect of beam current on weld geometry, optical and scanning electron microscopy, X-ray diffraction of the weld microstructures, and heat affected zone. The results showed that the increase of beam current led to increasing depths and widths of the welds. The optimum beam current was 2.8 mA which shows full penetration with minimum width. The cooling rates were calculated for optimum sample by measuring secondary dendrite arm space and the results show that high cooling rates lead to austenitic microstructure. Moreover, the metallography result shows the columnar and equiaxed austenitic microstructures in weld zone. A comparison of HAZ widths depicts the wider HAZ in the 316L side. The tensile tests results showed that the optimum sample fractured from base metal in AISI 316L side with the UTS values is much greater than the other samples. Moreover, the fractography study presents the weld cross sections with dimples resembling ductile fracture. The hardness results showed that the increase of the beam current led to the formation of a wide softening zone as HAZ in AISI 4340 side.

  3. Optimization of tensile strength of friction welded AISI 1040 and AISI 304L steels according to statistics analysis (ANOVA)

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Ozdemir, Niyazi; Firat, Emrah Hanifi; Caligulu, Ugur [Firat Univ., Elazig (Turkey)

    2013-06-01

    Materials difficult to weld by fusion welding processes can be successfully welded by friction welding. The strength of the friction welded joints is extremely affected by process parameters (rotation speed, friction time, friction pressure, forging time, and forging pressure). In this study, statistical values of tensile strength were investigated in terms of rotation speed, friction time, and friction pressure on the strength behaviours of friction welded AISI 1040 and AISI 304L alloys. Then, the tensile test results were analyzed by analysis of variance (ANOVA) with a confidence level of 95 % to find out whether a statistically significant difference occurs. As a result of this study, the maximum tensile strength is very close, which that of AISI 1040 parent metal of 637 MPa to could be obtained for the joints fabricated under the welding conditions of rotation speed of 1700 rpm, friction pressure of 50 MPa, forging pressure of 100 MPa, friction time of 4 s, and forging time of 2 s. Rotation speed, friction time, and friction pressure on the friction welding of AISI 1040 and AISI 304L alloys were statistically significant regarding tensile strength test values. (orig.)

  4. Mechanical and Microstructural Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel AISI 1060

    Directory of Open Access Journals (Sweden)

    Ates H.

    2014-10-01

    Full Text Available Rotary Friction welding is one of the most popular methods of joining similar and dissimilar materials. It is widely used with metals and thermoplastics in a wide variety of aviation, transport and aerospace industrial component designs. This study investigates the influence of friction and upsetting pressures on the hardness, tensile properties and microstructure of the welds. The experimental results showed that as the friction and upsetting pressures increased, the hardness and tensile strength values increased, as well. The tensile fracture of welded joint occurred in the AISI 1060 side. The friction processed joints were evaluated for their integrity and quality aspects by optical and scanning electron microscopy. For the perfect interfacial bonding, sufficient upsetting and friction pressures are necessary to reach the optimal temperature and severe plastic deformation to bring these materials within the attraction range.

  5. Activated flux tungsten inert gas welding of 8 mm-thick AISI 304 austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    刘观辉; 刘美华; 易耀勇; 张宇鹏; 罗子艺; 许磊

    2015-01-01

    AISI 304 stainless steel plates were welded with activated flux tungsten inert gas (A-TIG) method by utilizing self-developed activated flux. It is indicated from the experimental results that for 8 mm-thick AISI 304 stainless steel plate, weld joint of full penetration and one-side welding with good weld appearance can be obtained in a single pass without groove preparation by utilizing A-TIG welding. Moreover, activated flux powders do not cause significant effect on the microstructure of TIG weld and the mechanical properties of A-TIG weld joints are also superior to those of C-TIG (conventional TIG) welding.

  6. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    OpenAIRE

    Chen Ying An; Francisco Piorino Neto; Eder Paduan Alves

    2010-01-01

    The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW), which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results we...

  7. Laser welding in space

    Science.gov (United States)

    Kaukler, W. F.; Workman, G. L.

    1991-01-01

    Autogenous welds in 304 stainless steel were performed by Nd-YAG laser heating in a simulated space environment. Simulation consists of welding on the NASA KC-135 aircraft to produce the microgravity and by containing the specimen in a vacuum chamber. Experimental results show that the microgravity welds are stronger, harder in the fusion zone, have deeper penetration and have a rougher surface rippling of the weld pool than one-g welds. To perform laser welding in space, a solar-pumped laser concept that significantly increases the laser conversion efficiency and makes welding viable despite the limited power availability of spacecraft is proposed.

  8. Experimental study of mechanical properties of friction welded AISI 1021 steels

    Indian Academy of Sciences (India)

    Amit Handa; Vikas Chawla

    2013-12-01

    Friction welding is widely used as a mass production method in various industries. In the present study, an experimental set-up was designed in order to achieve friction welding of plastically deformed AISI 1021 steels. In this study, low alloy steel (AISI 1021) was welded under different welding parameters and afterwards the mechanical properties such as tensile strength, impact strength and hardness were experimentally determined. On the basis of the results obtained from the experimentation, the graphs were plotted. It is the strength of welded joints, which is fundamental property to the service reliability of the weldments and hence present work was undertaken to study the influence of axial pressure and rotational speed in friction welded joints. Axial pressure and rotational speed are the two major parameters which can influence the strength and hence the mechanical properties of the friction welded joints. Thus the axial pressure and rotational speed were taken as welding parameters, which reflect the mechanical properties.

  9. Laser power coupling efficiency in conduction and keyhole welding of austenitic stainless steel

    Indian Academy of Sciences (India)

    A K Nath; R Sridhar; P Ganesh; R Kaul

    2002-06-01

    Laser welding of thin sheets of AISI 304 stainless steel was carried out with high power CW CO2 laser. The laser power utilized in the welding process was estimated using the experimental results and the dimensionless parameter model for laser welding; and also the energy balance equation model. Variation of laser welding efficiency with welding speed and mode of welding was studied. Welding efficiency was high for high-speed conduction welding of thin sheets and also in keyhole welding process at high laser powers. Effect of pre-oxidization of the surface and powder as filler material on laser power coupling is also reported. The paper also discusses effect of microstructure on the cracking susceptibility of laser welds.

  10. Fine welding with lasers.

    Science.gov (United States)

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  11. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...... in the weld causing expulsion of the melt pool. Trailing beams were applied to melt additional material and ensure a melt pool. The method showed good results for increasing tolerances to impurities and reduction of scrapped parts from blowouts during laser welding....

  12. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cárcel-Carrasco

    2016-04-01

    Full Text Available This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds is analyzed. Welded material from inert Ar gas chamber TIG showed better characteristics and lesser irradiation damage effects.

  13. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2016-10-01

    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  14. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman

    2013-01-01

    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  15. Laser Impact Welding

    OpenAIRE

    Daehn, Glenn S.; Lippold, John; Liu, Deijan; Taber, Geoff; Wang, Huimin

    2012-01-01

    Laser impact welding is a solid-state, collision-based welding process. In this process, laser-generated optical energy is converted to kinetic energy through the ablation at the surface and confinement of the gas generated between a flyer and backing plate. The launch of the flyer can be affected by many factors, for example, backing material, ablative layer, and flyer thickness. In this paper, the effect of three backing materials: glass, polycarbonate and cellophane tape, we...

  16. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    OpenAIRE

    Klobčar, D.; J. Tušek; Bizjak, M.; S. Simončič; V. Lešer

    2016-01-01

    The paper presents the effects of flux assisted tungsten inert gas (A-TIG) welding of 4 (10) mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304) in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding a...

  17. Application of direct laser metal tooling for AISI H13 tool steel

    Institute of Scientific and Technical Information of China (English)

    Jae-Ho LEE; Jeong-Hwan JANG; Byeong-Don JOO; Hong-Sup YIM; Young-Hoon MOON

    2009-01-01

    In the die industry, it is commonly agreed that residual tool life can be successfully extended by timely repair of damaged surfaces. Traditionally, the main repair process is tungsten inert gas (TIG) welding, but a new process called direct laser metal tooling (DLMT) emerges. DLMT is a manual process, of which results depend on the materials of the powders and tools, the laser process and parameters. This technology is a direct-metal freeform fabrication technique in which a 200 W fiber laser is used. AISI H13 tool steel is a suitable material for die casting tools because of the high resistance to thermal fatigue and dimensional stability. In this research, AISI HI3 tool steel was melted with metal powder by fiber laser. Before melting AISI H13, the powders were analyzed with XRF equipment. Then, hardness distribution of laser melted zone was investigated. The microstructure in laser melted zone was discussed. In order to identify the effect of particle size of powder on the melted zone, two types of particle sizes of powders were used. Experimental results show that the mold repair process using DLMT can be applied in the mold repair industry.

  18. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  19. Friction welding of AA6061 to AISI 4340 using silver interlayer

    OpenAIRE

    Suresh D. Meshram; G. Madhusudhan Reddy

    2015-01-01

    The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanalysis, tensile test and microhardness. The study reveals that the presence of an intermetallic compound layer at the bonded interface exhibits poor tensile strength and elongation. Mg in AA6061 near to the interface is found to be favourable for the formation and growth of Fe2Al5 i...

  20. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    Directory of Open Access Journals (Sweden)

    Chen Ying An

    2010-09-01

    Full Text Available The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW, which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results were analyzed by means of tensile tests, Vickers microhardness, metallographic tests and SEM-EDX. The strength of the joints varied with increasing friction time and the use of different pressure values. Joints were obtained with superior mechanical properties of the AA1050 aluminum, with fracture occurring in the aluminum away from the bonding interface. The analysis by EDX at the interface of the junction showed that interdiffusion occurs between the main chemical components of the materials involved. The RFW proves to be a great method for obtaining joints between dissimilar materials, which is not possible by fusion welding processes.

  1. MICROSTRUCTURE AND FATIGUE PROPERTIES OF DISSIMILAR SPOT WELDED JOINTS OF AISI 304 AND AISI 1008

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2013-06-01

    Full Text Available Carbon steel and stainless steel composites are being more frequently used for applications requiring a corrosion resistant and attractive exterior surface and a high strength structural substrate. Spot welding is a potentially useful and efficient jointing process for the production of components consisting of these two materials. The spot welding characteristics of weld joints between these two materials are discussed in this paper. The experiment was conducted on dissimilar weld joints using carbon steel and 304L (2B austenitic stainless steel by varying the welding currents and electrode pressing forces. Throughout the welding process; the electrical signals from the strain sensor, current transducer and terminal voltage clippers are measured in order to understand each and every millisecond of the welding process. In doing so, the dynamic resistances, heat distributions and forging forces are computed for various currents and force levels within the good welds’ regions. The other process controlling parameters, particularly the electrode tip and weld time, remained constant throughout the experiment. The weld growth was noted for the welding current increment, but in the electrode force increment it causes an adverse reaction to weld growth. Moreover, the effect of heat imbalance was clearly noted during the welding process due to the different electrical and chemical properties. The welded specimens finally underwent tensile, hardness and metallurgical testing to characterise the weld growth.

  2. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  3. GAP WIDTH STUDY IN LASER BUTT-WELDING

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    In this paper the maximum allowable gap width in laser butt-welding is intensively studied. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.5-2.0 m/min, the laser...... to the welding speed, (2) the larger laser power leads to the bigger maximum allowable gap width and (3) the focal point position has very little influence on the maximum gap width....... power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely related...

  4. TIG AISI-316 welds using an inert gas welding chamber and different filler metals: Changes in mechanical properties and microstructure

    Directory of Open Access Journals (Sweden)

    Sánchez, A.

    2010-12-01

    Full Text Available This report analyses the influence of the use of an inert gas welding chamber with a totally inert atmosphere on the microstructure and mechanical properties of austenitic AISI 316L stainless steel TIG welds, using AISI ER316L, AISI 308L and Inconel 625 as filler metals. When compared with the typical TIG process, the use of the inert gas chamber induced changes in the microstructure, mainly an increase in the presence of vermicular ferrite and ferrite stringers, what resulted in higher yield strengths and lower values of hardness. Its effect on other characteristics of the joins, such as tensile strength, depended on the filler metal. The best combination of mechanical characteristics was obtained when welding in the inert gas chamber using Inconel 625 as filler metal.

    En este estudio se analiza la influencia que el uso de una cámara de soldadura de gas inerte tiene sobre la microestructura y las propiedades mecánicas de las soldaduras TIG en el acero inoxidable austenítico AISI-316L cuando se emplean AISI ER316L, AISI 308L e Inconel 625 como materiales de aporte. Cuando se compara con el típico proceso de TIG, el uso de una cámara de gas inerte induce cambios en la microestructura, incrementando la presencia de ferrita vermicular y de laminillas de ferrita, resultando en un aumento del límite elástico y una pérdida de dureza. Su influencia sobre otras características de las soldaduras como la carga de rotura depende de la composición del material de aporte. La mejor combinación de propiedades mecánicas se obtuvo usando el Inconel 625 como material de aporte y soldando en la cámara de gas inerte.

  5. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-03-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  6. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-05-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  7. Microstructural changes due to laser surface melting of an AISI 304 stainless steel

    Directory of Open Access Journals (Sweden)

    d?Oliveira A.S.C.M.

    2001-01-01

    Full Text Available Several techniques can be used to improve surface properties. These can involve changes on the surface chemical composition (such as alloying and surface welding processes or on the surface microstructure, such as hardening and melting. In the present work surface melting with a 3kW CO2 cw laser was done to alter surface features of an AISI 304 stainless steel. Microstructure characterisation was done by optical and scanning electron microscopy. Vickers and Knoop microhardness tests evaluated mechanical features after surface melting. Phase transformation during rapid solidification is analysed and discussed.

  8. Effect of the purging gas on properties of Ti stabilized AISI 321 stainless steel TIG welds

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Aykan, T. Serkan [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering

    2014-07-01

    Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N{sub 2}, Ar + N{sub 2} and N{sub 2} + 10% H{sub 2} were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

  9. Laser surface hardening of AISI H13 tool steel

    Institute of Scientific and Technical Information of China (English)

    Jae-Ho LEE; Jeong-Hwan JANG; Byeong-Don JOO; Young-Myung SON; Young-Hoon MOON

    2009-01-01

    An attempt was made to improve the surface hardness and wear properties of AISI H13 tool steel through solid solution hardening and refinement of microstructures using a 200 W fiber laser as a heat generating source. The hardness of laser melted zone was investigated. In order to identify the effect of heat input on the laser melting zone, scanning conditions were controlled. The results show that, the hardness of as-received AISI H13 tool steel is approximately Hv 240, and the hardness after laser surface heat treatment is around Hv 480-510. The hardening depth and width are increased with the increase in the heat input applied. Application of experimental results will be considered in tooling industry.

  10. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.

    2013-02-01

    A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.

  11. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  12. Friction welding of AA6061 to AISI 4340 using silver interlayer

    Directory of Open Access Journals (Sweden)

    Suresh D. Meshram

    2015-09-01

    Full Text Available The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanalysis, tensile test and microhardness. The study reveals that the presence of an intermetallic compound layer at the bonded interface exhibits poor tensile strength and elongation. Mg in AA6061 near to the interface is found to be favourable for the formation and growth of Fe2Al5 intermetallics. Introduction of silver as an interlayer through electroplating on AISI 4340 resulted in accumulation of Si at weld interface, replacing Mg at AA6061 side, thereby reducing the width of intermetallic compound layer and correspondingly increasing the tensile strength. Presence of silver at the interface results in partial replacement of Fe–Al based intermetallic compounds with Ag–Al based compounds. The presence of these intermetallics was confirmed by X-ray diffraction technique. Since Ag–Al phases are ductile in nature, tensile strength is not deteriorated and the silicon segregation at weld interface on AA6061 in the joints with silver interlayer acts as diffusion barrier for Fe and further avoids formation of Fe–Al based intermetallics. A maximum tensile strength of 240 MPa along with 4.9% elongation was obtained for the silver interlayer dissimilar metal welds. The observed trends in tensile properties and hardness were explained in relation to the microstructure.

  13. Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel

    Science.gov (United States)

    Rozenak, P.; Unigovski, Ya.; Shneck, R.

    The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.

  14. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...

  15. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    Institute of Scientific and Technical Information of China (English)

    Yan-Peng Wei; Mao-Hui Li; Gang Yu; Xian-Qian Wu; Chen-Guang Huang; Zhu-Ping Duan

    2012-01-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc.are critical for the engineering designs. The hardness,static and dynamic mechanical properties of AISI304 and AISI316L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB).The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side.However,the strain rate sensitivity has a strong dependence on laser power density.The value of strain rate factor decreases with the increase of laser power density.The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  16. Industrial laser welding evaluation study

    Science.gov (United States)

    Hella, R.; Locke, E.; Ream, S.

    1974-01-01

    High power laser welding was evaluated for fabricating space vehicle boosters. This evaluation was made for 1/4 in. and 1/2 in. aluminum (2219) and 1/4 in. and 1/2 in. D6AC steel. The Avco HPL 10 kW industrial laser was used to perform the evaluation. The objective has been achieved through the completion of the following technical tasks: (1) parameter study to optimize welding and material parameters; (2) preparation of welded panels for MSFC evaluation; and (3) demonstration of the repeatability of laser welding equipment. In addition, the design concept for a laser welding system capable of welding large space vehicle boosters has been developed.

  17. Shedding Light on Laser Welding

    NARCIS (Netherlands)

    Aalderink, B.J.; Aalderink, Benno; Aarts, Ronald G.K.M.; Jonker, Jan B.; Meijer, J.

    2005-01-01

    Nd:YAG laser welding is often used in industry to obtain high quality joints. This however does not mean that monitoring or control of this process is common practice. A few commercial products are available but none of these systems can be used for monitoring the laser welding process of aluminium.

  18. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    Science.gov (United States)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  19. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  20. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, Dimitrios; Aarts, Ronald; Meijer, Johan

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  1. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  2. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  3. Electrochemical Study of Welded AISI 304 and 904L Stainless Steel in Seawater in View of Corrosion

    Directory of Open Access Journals (Sweden)

    Richárd Székely

    2010-10-01

    Full Text Available This is a comparative study of the corrosion behaviour of welds in AISI 304 and AISI 904L stainless steels carried out in seawater model solution in the temperature range 5-35°C and the standard of corrosion testing of welds was followed. The corrosion rate and corrosion attack characteristics were determined for welds of the examined steels with several type of treatment. The aim of this work was to compare the steels based on their resistance against the corrosion in terms of pitting potential (Epit and repassivation potential (Erepass. Seawater is an electrochemically aggressive medium, which can initiate localised corrosion in welded stainless steels. Different electrochemical and testing methods were used, including cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy (EIS, pH measuring and penetration tests.

  4. Laser Welding in Electronic Packaging

    Science.gov (United States)

    2000-01-01

    The laser has proven its worth in numerous high reliability electronic packaging applications ranging from medical to missile electronics. In particular, the pulsed YAG laser is an extremely flexible and versatile too] capable of hermetically sealing microelectronics packages containing sensitive components without damaging them. This paper presents an overview of details that must be considered for successful use of laser welding when addressing electronic package sealing. These include; metallurgical considerations such as alloy and plating selection, weld joint configuration, design of optics, use of protective gases and control of thermal distortions. The primary limitations on use of laser welding electronic for packaging applications are economic ones. The laser itself is a relatively costly device when compared to competing welding equipment. Further, the cost of consumables and repairs can be significant. These facts have relegated laser welding to use only where it presents a distinct quality or reliability advantages over other techniques of electronic package sealing. Because of the unique noncontact and low heat inputs characteristics of laser welding, it is an ideal candidate for sealing electronic packages containing MEMS devices (microelectromechanical systems). This paper addresses how the unique advantages of the pulsed YAG laser can be used to simplify MEMS packaging and deliver a product of improved quality.

  5. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...

  6. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    Science.gov (United States)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.

    2013-05-01

    A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.

  7. Finite Element Simulation of Residual Stresses in Butt Welding of Two AISI 304 Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Gurinder Singh Brar

    2013-06-01

    Full Text Available Welding is one of the most reliable and efficient permanent metal joining processes in the industry. When two plates are joined by welding, a very complex thermal cycle is applied to the weldment. Thermal energy applied results in irreversible elastic-plastic deformation and consequently gives rise to the residual stresses in and around fusion zone and heat affected zone (HAZ. It is well established fact that structural integrity of components is substantially affected by the residual stresses when subjected to thermal and structural loads. Presence of residual stresses may be beneficial or harmful for the structural components depending on the nature and magnitude of residual stresses. Using finite element based commercially available software, coupled thermal-mechanical three dimensional finite element model was developed by making an approximate geometry of the butt welded joint. Finite element analysis was performed to understand the complete nature of residual stresses in manual metal arc welded joint of AISI 304 stainless steel plate. Variation of residual stress in the plates in the heat affected zone was also being studied. The results obtained by finite element method agree well with those from X-ray diffraction method as published in literature for the prediction of residual stresses.

  8. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  9. Laser welding of fused quartz

    Science.gov (United States)

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  10. Laser-Beam Welding Impact on the Deformation Properties of Stainless Steels When Used for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Evin Emil

    2016-09-01

    Full Text Available Materials other than standard and advanced high strength steels are remarkable for the thin-walled structures of the car-body in recent years in order to safety enhancement, weight and emission reduction, corrosion resistance improvement. Thus, there are presented in the paper the deformation properties of laser welded austenitic AISI 304 and ferritic AISI 430 stainless steels compared to these one measured for the high strength low alloyed steel H220PD. The properties were researched by tensile test and 3-point bending test with fixed ends on specimens made of basic material and laser welded one. The specimens were welded by solid state fiber laser YLS-5000 in longitudinal direction (the load direction. The deformation properties such as strength, stiffness and deformation work were evaluated and compared. The strength and stiffness were calculated from tensile test results and the deformation work was calculated from both, tensile test and 3-point bending test results. There has been found only minor effect of laser welding to the deformation properties for high strength low alloyed steel H220PD and austenitic stainless steel AISI 304. Otherwise, the laser welding strongly influenced the deformation work of the ferritic stainless steel AISI 430 as well as the elongation at tensile test.

  11. Optimization of laser butt welding parameters with multiple performance characteristics

    Science.gov (United States)

    Sathiya, P.; Abdul Jaleel, M. Y.; Katherasan, D.; Shanmugarajan, B.

    2011-04-01

    This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.

  12. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  13. Effect of Beam Oscillation on Microstructure and Mechanical Properties of AISI 316L Electron Beam Welds

    Science.gov (United States)

    Kar, Jyotirmaya; Roy, Sanat Kumar; Roy, Gour Gopal

    2017-02-01

    The properties of electron beam-welded AISI 316L stainless steel butt joints prepared with and without beam oscillation were evaluated by microstructural analysis, mechanical testing like microhardness measurements, tensile tests at room and elevated temperature 973 K (700 °C), three-point bend, and Charpy impact tests. All joints, irrespective of being prepared with or without beam oscillation, were found to be defect free. Welds produced by beam oscillation exhibited narrower fusion zone (FZ) with lathy ferrite morphology, while the weld without beam oscillation was characterized by wider FZ and skeletal ferrite morphology. During tensile tests at room and elevated temperature 973 K (700 °C), all samples fractured in the base metal (BM) and showed almost the same tensile properties as that of the BM. However, the notch tensile tests at room temperature demonstrated higher strength for joints prepared with the oscillating beam. Besides, face and root bend tests, as well as Charpy impact tests, showed higher bending strength and notch toughness, respectively, for joints prepared with beam oscillation.

  14. Effect of Beam Oscillation on Microstructure and Mechanical Properties of AISI 316L Electron Beam Welds

    Science.gov (United States)

    Kar, Jyotirmaya; Roy, Sanat Kumar; Roy, Gour Gopal

    2017-04-01

    The properties of electron beam-welded AISI 316L stainless steel butt joints prepared with and without beam oscillation were evaluated by microstructural analysis, mechanical testing like microhardness measurements, tensile tests at room and elevated temperature 973 K (700 °C), three-point bend, and Charpy impact tests. All joints, irrespective of being prepared with or without beam oscillation, were found to be defect free. Welds produced by beam oscillation exhibited narrower fusion zone (FZ) with lathy ferrite morphology, while the weld without beam oscillation was characterized by wider FZ and skeletal ferrite morphology. During tensile tests at room and elevated temperature 973 K (700 °C), all samples fractured in the base metal (BM) and showed almost the same tensile properties as that of the BM. However, the notch tensile tests at room temperature demonstrated higher strength for joints prepared with the oscillating beam. Besides, face and root bend tests, as well as Charpy impact tests, showed higher bending strength and notch toughness, respectively, for joints prepared with beam oscillation.

  15. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects

    Science.gov (United States)

    Katayama, Seiji; Kawahito, Yousuke; Mizutani, Masami

    The behavior and effect of a plasma plume on the weld penetration are greatly different between CO2 laser welding and YAG, disk or fiber laser welding. The effects of the power and the power density on the weld penetration are elucidated. Spattering leading to the formation of underfilled weld beads is controlled by inclining the laser beam. Porosity is formed from bubbles generated from the tip of the keyhole at low welding speed or from the middle part of the keyhole at high laser power density. Cracking easily occurs in pulsed spot welding of aluminum alloys.

  16. Evaluation of laser welding techniques for hydrogen transmission. Final report, September 1977-November 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mucci, J

    1980-05-01

    This program was established to determine the feasibility of laser beam welding as a fabrication method for hydrogen transmission and is a precursor in the effort to systematically provide the technological base necessary for large-scale, economic pipeline transmission of fuel for a hydrogen energy system. The study contributes to the technology base by establishing the effect of conventional weld processes and laser beam welding on the mechanical properties of two classes of steels in an air and high pressure gaseous hydrogen environment. Screening evaluation of the tensile, low-cycle fatigue and fracture toughness properties and metallurgical analyses provide the basis for concluding that laser beam welding of AISI 304L stainless steel and ASTM A106B carbon steel can produce weldments of comparable quality to those produced by gas-tungsten arc and electron beam welding and is at least equally compatible with 13.8 MPa (2000 psig) gaseous hydrogen environment.

  17. Tensile and Impact Properties of Shielded Metal Arc Welded AISI 409M Ferritic Stainless Steel Joints

    Institute of Scientific and Technical Information of China (English)

    K.Shanmugam; A.K.Lakshminarayanan; V.Balasubramanian

    2009-01-01

    The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the joints fabricated by austenitic stainless steel, ferritic stainless steel and duplex stainless steel filler metals were evaluated and the results were reported. From this investigation, it is found that the joints fabricated by duplex stainless steel filler metal showed higher tensile strength and hardness compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Joints fabricated by austenitic stainless steel filler metal exhibited higher ductility and impact toughness compared with the joints fabricated by ferritic stainless steel and duplex stainless steel filler metals.

  18. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  19. Laser welding of tailored blanks

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available Laser welding has an incrising role in the automotive industry, namely on the sub-assemblies manufacturing. Several sheet-shape parts are laser welded, on a dissimilar combination of thicknesses and materials, and are afterwards formed (stamped being transformed in a vehicle body component. In this paper low carbon CO2 laser welding, on the thicknesses of 1,25 and 0,75 mm, formability investigation is described. There will be a description of how the laser welded blanks behave in different forming tests, and the influence of misalignment and undercut on the formibility. The quality is evaluated by measuring the limit strain and limit effective strain for the laser welded sheets and the base material, which will be presented in a forming limit diagram.

    A soldadura laser assume um papel cada vez mais importante na indústria automóvel, principalmente para a fabricação de sub-conjuntos constituídos por varias partes de chapa de diferentes espessuras (e diferentes materiais, que depois de estampados constituem um componente para integrar num veículo. Descreve-se neste artigo o trabalho de investigação de enformabilidade de chapa de ac.o de baixo carbono soldada por laser de CO2, nas espessuras de 1,25 e 0,75 mm. Apresenta-se uma descrição do comportamento das chapas soldadas por laser em diferentes testes de enformação, e a influência dos defeitos das soldaduras (desalinhamento e queda do banho-undercut no comportamento à enformação. A qualidade é avaliada pela medição da extensão limite e da extensão limite efectiva no material base e no material soldado, que serão representadas num diagrama de limite de enformabilidade.

  20. A Review: Welding Of Dissimilar Metal Alloys by Laser Beam Welding & Friction Stir Welding Techniques

    Directory of Open Access Journals (Sweden)

    Ms. Deepika Harwani

    2014-12-01

    Full Text Available Welding of dissimilar metals has attracted attention of the researchers worldwide, owing to its many advantages and challenges. There is no denial in the fact that dissimilar welded joints offer more flexibility in the design and production of the commercial and industrial components. Many welding techniques have been analyzed to join dissimilar metal combinations. The objective of this paper is to review two such techniques – Laser welding and Friction stir welding. Laser beam welding, a high power density and low energy-input process, employs a laser beam to produce welds of dissimilar materials. Friction stir welding, a solid-state joining process, is also successfully used in dissimilar welding applications like aerospace and ship building industries. This paper summarizes the trends and advances of these two welding processes in the field of dissimilar welding. Future aspects of the study are also discussed.

  1. Optimisation of GTAW parameters for the tensile strength of AISI 304 stainless steel welds using the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Rukiye

    2012-07-01

    The influence of welding parameters, i. e. the welding current, root gap and the shielding gas flow rate, on the tensile strength of AISI 304 austenitic stainless steel welded with gas tungsten arc welding was investigated. To determine the optimum levels of the parameters, the Taguchi approach was used to increase the tensile strength. The results were analysed by investigating the variance by which welding parameters significantly affect the response. Mathematical models were developed to describe the influence of the selected parameters on the tensile strength. The results were confirmed by experiments. [German] Der Einfluss der Schweissparameter, d. h. der Schweissstromstaerke, des Wurzelspaltes und des Schutzgasdurchflusses, auf die Zugfestigkeit des WIG-geschweissten hochlegierten Stahles AISI 304 ist in der diesem Beitrag zugrunde liegenden Studie untersucht worden. Um die optimale Groesse der Parameter in Bezug auf eine Erhoehung der Zugfestigkeit zu bestimmen, wurde der Ansatz nach Taguchi gewaehlt. Die Ergebnisse wurden analysiert, indem die Varianz ermittelt wurde, mit der die Schweissparameter signifikant die Ergebnisse veraendern. Es wurden mathematische Modelle entwickelt, um den Einfluss der gewaehlten Parameter auf die Zugfestigkeit zu beschreiben. Die Ergebnisse wurden durch Experimente bestaetigt.

  2. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma...

  3. Review of laser hybrid welding

    DEFF Research Database (Denmark)

    Bagger, Claus

    2004-01-01

    In this artucle an overview og the hybrid welding process is given. After a short historic overview, a review of the fundamental phenomenon taking place when a laser (CO2 or Nd:YAG) interacts in the same molten pool as a more conventional source of energy, e.g. tungsten in-active gas, plasma...

  4. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  5. Effects of nitrogen and pulsed mean welding current in AISI 316 austenitic stainless steel solidification cracks; Efecto del nitrogeno y la corriente media pulsada de soldadura en la formacion de grietas de solidificacion en aceros inoxidables AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, R. E.; Braga, E.; Fals, H. C.

    2002-07-01

    An analysis of the influence of nitrogen concentration in the weld zone and the pulsed mean welding current in the solidification crack formation is presented in this paper. The AISI 316L austenitic stainless steel was employed as the metal base. The welding was done using CC+ pulsed flux cored are welding process and AWS E316L wire type. The tests were conducted using CO{sub 2} shielding gas with four different nitrogen levels (0,5; 10 and 15%) in order to induce different nitrogen weld metal concentrations. The pulsed mean welding current was varied in three levels and the. Transvarestraint tangential strain test was fixed of 5%. The results showed that the solidification cracking decreased as the pulsed mean welding current increase. It was also verified that an increase of the weld zone nitrogen level was associated with a decrease in both the total length of solidification crack and the amount of {delta} ferrite. (AUthor) 20 refs.

  6. YAG laser welding with surface activating flux

    Institute of Scientific and Technical Information of China (English)

    樊丁; 张瑞华; 田中学; 中田一博; 牛尾诚夫

    2003-01-01

    YAG laser welding with surface activating flux has been investigated, and the influencing factors and mechanism are discussed. The results show that both surface activating flux and surface active element S have fantastic effects on the YAG laser weld shape, that is to obviously increase the weld penetration and D/W ratio in various welding conditions. The mechanism is thought to be the change of weld pool surface tension temperature coefficient, thus, the change of fluid flow pattern in weld pool due to the flux.

  7. Laser welding of advanced high strength steels

    OpenAIRE

    Ahmed, Essam Ahmed Ali

    2011-01-01

    This research work focuses on characterization of CO2 laser beam welding (LBW) of dual phase (DP) and transformation induced plasticity (TRIP) steel sheets based on experimental, numerical simulation and statistical modeling approaches. The experimental work aimed to investigate the welding induced-microstructures, hardness, tensile properties and formability limit of laser welding butt joints of DP/DP, TRIP/TRIP and DP/TRIP steel sheets under different welding speeds. The effects of shieldin...

  8. Quality control of laser tailor welded blanks

    Science.gov (United States)

    Yan, Qi

    2008-03-01

    Tailor welded blanks were widely used in the automobile industry for their special advantages. A combination of different materials, thickness, and coatings could be welded together to form a blank for stamping car body panels. With the gradually growing consciousness on safety requirement of auto body structural, the business of laser tailor welded blanks is developing rapidly in China. Laser tailor welded blanks were just the semi products between steel factory and automobile manufacturers. As to the laser welding defects such as convexity and concavity, automobile industry had the strict requirement. In this paper, quality standard on laser tailor welded blanks were discussed. As for the production of laser tailor welded blanks, online quality control of laser tailor welded blanks was introduced. The image processing system for welding laser positioning and weld seam monitoring were used in the production of laser tailor welded blanks. The system analyzes images from the individual cameras and transmits the results to the machine control system via a CAN bus.

  9. Evolution of a Laser Hybrid Welding Map

    Science.gov (United States)

    Kaplan, Alexander F. H.; Frostevarg, Jan; Ilar, Torbjörn; Bang, Hee-Seon; Bang, Han-Sur

    Laser arc hybrid welding combines the advantages but also the complex physical mechanisms of gas metal arc welding and laser keyhole welding. From manifold mainly experimental but also theoretical research results a map with versatile functions was initiated for the first time. The purpose is to survey the overall context and to facilitate navigation to the various phenomena that are shown through case studies accompanied by theoretical explanations and guidelines for optimization. Though not complete, the map enables systematic and graphical navigation to relevant publications. Based on a fundamental structure of the map, which was decided early, it is inherently extendable in the future by adding existing and new knowledge, also from other research groups, enabling evolution. The fundament of the map structure comprises gouge thickness, joint type and metal grade, in coherence with product and weld designers' starting points. The next hierarchy level of the map offers options in the joint type as well as in hybrid welding techniques. The latter contains techniques like double-sided welding, pulse shaping management of the arc or laser, CMT arcs, tandem arcs, or remelting of undercuts. In addition to laser-arc hybrid welding, other hybrid laser techniques like multilayer hot-wire laser welding of narrow gaps or hybrid laser friction stir welding can be taken into account. At the other end of the hierarchy, the map offers via a database-like archive electronic navigation to research results like weld macrographs, high speed imaging or numerical simulation results of the welding process.

  10. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, SakaryaUniversity, Esentepe Campus, 54187Sakarya (Turkey); Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B, NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  11. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  12. Laser welding closed-loop power control

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    2003-01-01

    A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser.......A closed-loop control system is developed to maintain an even seam width on the root side of a laser weld by continually controlling the output laser power of a 1500 W CO2 laser....

  13. Parametric Optimization Of Gas Metal Arc Welding Process By Using Grey Based Taguchi Method On Aisi 409 Ferritic Stainless Steel

    Science.gov (United States)

    Ghosh, Nabendu; Kumar, Pradip; Nandi, Goutam

    2016-10-01

    Welding input process parameters play a very significant role in determining the quality of the welded joint. Only by properly controlling every element of the process can product quality be controlled. For better quality of MIG welding of Ferritic stainless steel AISI 409, precise control of process parameters, parametric optimization of the process parameters, prediction and control of the desired responses (quality indices) etc., continued and elaborate experiments, analysis and modeling are needed. A data of knowledge - base may thus be generated which may be utilized by the practicing engineers and technicians to produce good quality weld more precisely, reliably and predictively. In the present work, X-ray radiographic test has been conducted in order to detect surface and sub-surface defects of weld specimens made of Ferritic stainless steel. The quality of the weld has been evaluated in terms of yield strength, ultimate tensile strength and percentage of elongation of the welded specimens. The observed data have been interpreted, discussed and analyzed by considering ultimate tensile strength ,yield strength and percentage elongation combined with use of Grey-Taguchi methodology.

  14. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  15. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  16. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    -nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...... performed and is currently in progress in collaboration with a major Danish company, who currently is applying laser welding in several production lines. Furthermore some case stories from development work on laser welding for industri-al production will be described. One case story describes a current...

  17. Techniques for laser welding polymeric devices.

    Science.gov (United States)

    Jones, I A

    2003-04-01

    Recent advances in laser techniques mean that lasers are now being considered as an alternative to vibration, ultrasonic, dielectric, hot plate or hot bar welding, and adhesive bonding of plastics. The techniques required to put laser welding methods into practice are described for medical devices, tubular systems, films and synthetic fabrics.

  18. Laser welding in a reduced gravity environment

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1992-01-01

    Preliminary results on the effects of reduced gravity on laser welding of stainless steel and other materials are reported. Laser welding experiments using a low power (10-18 watts) Nd-YAG laser have been performed on the NASA KC-135, which flies parabolic maneuvers to simulate reduced gravity conditions. Experiments on 0.005-0.010 inch thick stainless steel samples displayed a pronounced change in weld bead width, depth of penetration and surface ripple with changes in gravity level.

  19. Effect of laser characteristics on the weld shape and properties of penetration laser weld of BT20 titanium alloy

    Institute of Scientific and Technical Information of China (English)

    陈俐; 巩水利; 姚伟; 胡伦骥

    2004-01-01

    The laser beam welding of BT20 titanium alloy was conducted to investigate the weld shape, microstructures and properties. The full penetration weld characteristics produced by CO2 laser and by YAG laser were compared. The results show that the full penetration weld of YAG laser welding closes to "X" shape, and weld of CO2 laser welding is "nail-head" shape. Those result from special heating mode of laser deep penetration welding. The tension strength of CO2 laser and YAG laser joints equal to that of the base metal, but the former has better ductility. All welds consist mainly of the acicular α phase and a few β phase in microstructure. The dendritic crystal of CO2 laser weld is a little finer than YAG laser weld. According the research CO2 laser is better than YAG laser for welding of BT20 titanium alloy.

  20. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Eder Paduan Alves

    2012-03-01

    Full Text Available The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materials: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained using a system called Thermocouple Data-Logger, which allowed monitoring and recording data in real-time operation. In the graph temperature versus time obtained, the heating rates, cooling were analyzed, and the maximum temperature was determined that occurred during welding, and characterized every phases of the process. The efficiency of this system demonstrated by experimental tests and the knowledge of the temperature at the bonding interface open new lines of research to understand the process of friction welding.

  1. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304 during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-12-01

    Full Text Available Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial mode is unacceptable due to its low load carrying and energy absorption capability. Strength tests with different static loading were performed in, to reveal the failure mechanisms for the lap-shear geometry and the cross-tension geometry. Based on the literature survey performed, venture into this work was amply motivated by the fact that a little research work has been conducted to joining of dissimilar materials like non ferrous to ferrous. Most of the research works concentrated on joining of different materials like steel to steel or aluminium alloy to aluminium alloy by resistance spot welding. In this work, an experimental study on the resistance spot weldability of aluminium alloy (Al 6063 and austenitic stainless steel (AISI304 sheets, which are lap joined by using a pedestal type resistance spot welding machine. Welding was conducted using a 45-deg truncated cone copper electrode with 10-mm face diameter. The weld nugget diameter, force estimation under lap shear test and T – peel test were investigated using digital type tensometer attached with capacitive displacement transducer (Mikrotech, Bangalore, Model: METM2000ER1. The results shows that joining of Al 6063 and AISI 304 thin sheets by RSW method are feasible for automotive structural joints where the loads are below 1000N act on them, it is observed that by increasing the spots per unit length, then the joint with standing strength to oppose failure is also increased linearly incase of

  2. Surface characterization and wear behaviour of laser surface melted AISI 316L stainless steel

    CSIR Research Space (South Africa)

    Kumar, A

    2010-01-01

    Full Text Available The present study concerns an in depth investigation of the influence of laser surface melting of AISI 316L stainless steel using Ar and N2 as shrouding atmosphere. Laser surface melting has been carried out using a 5 kW continuous wave (CW) fibre...

  3. Influence of austenitizing temperature on microstructure and mechanical properties of AISI 431 martensitic stainless steel electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhar, A. [Department of Mechanical Engineering, SVITS, Mahaboob Nagar 509 001 (India)], E-mail: adula.rajasekhar@rediffmail.com; Madhusudhan Reddy, G.; Mohandas, T. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Murti, V.S.R. [Department of Mechanical Engineering, SVITS, Mahaboob Nagar 509 001 (India)

    2009-05-15

    The relative effects of various austenitizing temperatures on microstructure and mechanical properties of electron beam welds of AISI 431martensitic stainless steel were studied. The post-weld heat treatments consist of austenitizing the weld samples for 1 h at various temperatures, i.e., at 950 deg. C, 1000 deg. C, 1050 deg. C, 1100 deg. C and at 1150 deg. C and air cooling followed by double tempering, i.e., tempering at 670 + 600 deg. C. In the as-welded condition the microstructure contains dendritic structure with ferrite network and retained austenite in a matrix of un-tempered martensite. The prior austenite grain size increased with increase in austenitizing temperature. Parent metal grain size was coarser as compared to grain size in the weld zone in respective conditions. Retained austenite content increased with increase in the austenitizing temperature. Presence of undissolved carbides was observed in welds and parent metal austenitized up to 1000 deg. C and they dissolved at austenitizing temperature {>=} 1050 deg. C. Coarsening of martensite laths was observed after tempering. The martensite laths were coarser in the samples subjected to higher austenitizing temperatures. Optimum mechanical properties, i.e., strength, hardness and toughness were observed when austenitized between 1050 deg. C and 1100 deg. C followed by tempering. Austenitizing at 1150 deg. C and tempering resulted in inferior mechanical properties. The mechanism for the observed trends is discussed in relation to the microstructure, fracture features and mechanical properties.

  4. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance

    Science.gov (United States)

    García-Rentería, M. A.; López-Morelos, V. H.; González-Sánchez, J.; García-Hernández, R.; Dzib-Pérez, L.; Curiel-López, F. F.

    2017-02-01

    The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.

  5. Comparison of laser welding conditions of Zircaloy-4 and stainless steel for nuclear fuel irradiation rig

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kahye; Hong, Jintae; Joung, Changyoung; Heo, Sungho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Various materials for Zircaloy-4, SUS 316L, such as Inconel, are used as a survey rig that has been produced for fuel irradiation testing. Precision sensors, thermocouples, LVDT, and SPND should also be assembled. Therefore, a welding device for connecting them is necessary. With a high density of energy, laser welding can be properly used in a deep permeation, and in precisely welding narrow and deep joints. In particular, it has been applied to other fields such as metal welding. Since the technology bears no pores or cavities, resulting in a clean surface after the welding process, it does not require an 'after-process' such as grinding or polishing, which is useful where high water-tightness is required. Therefore, we developed and researched a special fiber laser welding system for the production of a nuclear research rig. Through the above test, the different conditions of laser welding were found for Zircaloy-4 and AISI 316L used for producing a nuclear fuel research rig, performing the most optimal welding conditions according to the properties of the materials in the future.

  6. Effect of Welding Processes on Tensile and Impact Properties, Hardness and Microstructure of AISI 409M Ferritic Stainless Joints Fabricated by Duplex Stainless Steel Filler Metal

    Institute of Scientific and Technical Information of China (English)

    A K Lakshminarayanan; K Shanmugam; V Balasubramanian

    2009-01-01

    The effect of welding processes such as shielded metal arc welding, gas metal arc welding and gas tungsten arc welding on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade is studied. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the welded joints have been evaluated and the results are compared. From this investigatio.n, it is found that gas tungsten arc welded joints of ferritic stainless steel have superior tensile and impact properties compared with shielded metal are and gas metal arc welded joints and this is mainly due to the presence of finer grains in fusion zone and heat affected zone.

  7. Investigation of the Weld Properties of Dissimilar S32205 Duplex Stainless Steel with AISI 304 Steel Joints Produced by Arc Stud Welding

    Directory of Open Access Journals (Sweden)

    Aziz Barış Başyiğit

    2017-03-01

    Full Text Available UNS S32205 duplex stainless steel plates with a thickness of 3 mm are arc stud welded by M8 × 40 mm AISI 304 austenitic stainless steel studs with constant stud lifts in order to investigate the effects of welding arc voltages on mechanical and microstructural behaviors of the joints. As the welding arc voltage increases starting from 140 V, the tensile strength of the weldment also increases but the higher arc values results in more spatters around the weld seam up to 180 V. Conversely, the lower arc voltages causes poor tensile strength values to weldments. Tensile tests proved that all of the samples are split from each other in the welding zone but deformation occurs in duplex plates during the tensile testing of weldments so that the elongation values are not practically notable. The satisfactory tensile strength and bending values are determined by applying 180 volts of welding arc voltage according to ISO 14555 standard. Peak values of micro hardness occurred in weld metal most probably as a consequence of increasing heat input decreasing the delta ferrite ratios. As the arc voltage increases, the width of the heat affected zone increases. Coarsening of delta-ferrite and austenite grains was observed in the weld metal peak temperature zone but it especially becomes visible closer to the duplex side in all samples. The large voids and unwelded zones up to approximately 1 mm by length are observed by macro-structure inspections. Besides visual tests and micro-structural surveys; bending and microhardness tests with radiographic inspection were applied to samples for maintaining the correct welding parameters in obtaining well-qualified weldments of these two distinct groups of stainless steel materials.

  8. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  9. The 2D Finite Element Microstructure Evaluation of V-Shaped Arc Welding of AISI 1045 Steel

    Directory of Open Access Journals (Sweden)

    Omer Eyercioglu

    2017-02-01

    Full Text Available In the present study, V-shaped arc welding of the AISI 1045 steel is modeled by using 2D Finite Element Model (FEM. The temperature distribution, microstructure, grain growth, and the hardness of the heat-affected zone (HAZ of the welding are simulated. The experimental work is carried out to validate the FE model. The very close agreement between the simulation and experimental results show that the FE model is very effective for predicting the microstructure, the phase transformation, the grain growth and the hardness. The effect of preheat temperature on the martensite formation is analysed, and it is shown that 225 °C preheating completely eliminates the martensite formations for the 12 mm thick plate.

  10. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  11. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  12. Study on Laser Welding of Al Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of laser welding parameter on strength of welded joints were studied. The mechanism for loss of joint strength was analyzed. It was pointed out that an important factor affecting joint strength is the reaction between matrix and reinforced phase. On the basis of this, the concept of critical Si activity α[si]min was proposed. Using appropriate welding parameters and Si activity, high quality laser welded joints in an aluminum matrix composite SiCw/6061A1 can be successfully obtained.

  13. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system.

  14. Laser Welding Dissimilar Reflective Alloys

    Science.gov (United States)

    Mccay, M. H.; Gopinathan, S.; Kahlen, F.; Speigel, L.

    1993-01-01

    This project, jointly sponsored by Rocketdyne and CSTAR, involves the development of laser joining of materials which have heretofore been impractical to bond. Of particular interest are joints between stainless steel and copper and also aluminum 6061 to aluminum 2219. CSTAR has a unique opportunity in this area since both the process and development and diagnostics are of interest to industry. Initial results using the pulse tailored laser welding technique developed in CLA for joining crack sensitive materials have proven promising for the aluminum joints based upon metallurgical and electronic microprobe analysis. A declaration of success requires additional mechanical testing. A CW technique has been applied to the stainless-copper joining with some preliminary success. These joints are of significant interest for aeronautics and rocket propulsion applications and the project is expected to continue.

  15. Femtosecond fiber laser welding of dissimilar metals.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  16. Studies on CO2-laser Hybrid-Welding of Copper

    DEFF Research Database (Denmark)

    Nielsen, Jakob Skov; Olsen, Flemming Ove; Bagger, Claus

    2005-01-01

    CO2-laser welding of copper is known to be difficult due to the high heat conductivity of the material and the high reflectivity of copper at the wavelength of the CO2-laser light. THis paper presents a study of laser welding of copper, applying laser hybrid welding. Welding was performed...... as a hybrid CO2-laser and GTAW welding process in 2 mm pure copper sheets. The purpose was to identify maximum welding speeds for the three independent welding processes, i.e. GTAW alone, laser alone and combined processes. After welding, representative welds were quality assesed according to inernational...... norms. The paper describes the results obtained, showing significant productivity improvements and good weld qualities applying laser hybrid welding....

  17. Studies on CO2-laser Hybrid-Welding of Copper

    DEFF Research Database (Denmark)

    Nielsen, Jakob Skov; Olsen, Flemming Ove; Bagger, Claus

    2005-01-01

    CO2-laser welding of copper is known to be difficult due to the high heat conductivity of the material and the high reflectivity of copper at the wavelength of the CO2-laser light. THis paper presents a study of laser welding of copper, applying laser hybrid welding. Welding was performed...... as a hybrid CO2-laser and GTAW welding process in 2 mm pure copper sheets. The purpose was to identify maximum welding speeds for the three independent welding processes, i.e. GTAW alone, laser alone and combined processes. After welding, representative welds were quality assesed according to inernational...... norms. The paper describes the results obtained, showing significant productivity improvements and good weld qualities applying laser hybrid welding....

  18. The Advantage of Sensor Sealing Laser Welding

    Institute of Scientific and Technical Information of China (English)

    YAN Yezhi; XU yu

    2007-01-01

    @@ Laser Welding Inevitably Applied in Sen sor Production Certain kinds of sensors such as pressure sensor,temperature sensor, optic-electronic sensor etc. utilize welding seal according to different application environment. With precision components and IC which is isolated by inert gas inside, these sensors should be sealed and able to resist the pressure. So the welding process must avoid distortion and harm to the components and IC.

  19. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels

    2001-01-01

    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  20. Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy

    Science.gov (United States)

    Zhan, Xiaohong; Li, Yubo; Ou, Wenmin; Yu, Fengyi; Chen, Jie; Wei, Yanhong

    2016-11-01

    The invar36 alloy is suitable to produce mold of composite materials structure because it has similar thermal expansion coefficient with composite materials. In the present paper, the MIG welding and laser-MIG hybrid welding methods are compared to get the more appropriate method to overcome the poor weldability of invar36 alloy. According to the analysis of the experimental and simulated results, it has been proved that the Gauss and cone combined heat source model can characterize the laser-MIG hybrid welding heat source well. The total welding time of MIG welding is 8 times that of hybrid laser-MIG welding. The welding material consumption of MIG welding is about 4 times that of hybrid laser-MIG welding. The stress and deformation simulation indicate that the peak value of deformation during MIG welding is 3 times larger than that of hybrid laser-MIG welding.

  1. Plasma heating effects during laser welding

    Science.gov (United States)

    Lewis, G. K.; Dixon, R. D.

    Laser welding is a relatively low heat input process used in joining precisely machined components with minimum distortion and heat affects to surrounding material. The CO2 (10.6 (MU)m) and Nd-YAG (1.06 (MU)m) lasers are the primary lasers used for welding in industry today. Average powers range up to 20 kW for CO2 and 400 W for Nd-YAG with pulse lengths of milliseconds to continuous wave. Control of the process depends on an understanding of the laser-plasma-material interaction and characterization of the laser beam being used. Inherent plasma formation above the material surface and subsequent modulation of the incident laser radiation directly affect the energy transfer to the target material. The temporal and spatial characteristics of the laser beam affect the available power density incident on the target, which is important in achieving repeatability in the process. Other factors such as surface texture, surface contaminants, surface chemistry, and welding environment affect plasma formation which determines the weld penetration. This work involves studies of the laser-plasma-material interaction process and particularly the effect of the plasma on the coupling of laser energy to a material during welding. A pulsed Nd-YAG laser was used with maximum average power of 400 W.

  2. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Science.gov (United States)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  3. Gap Width Study and Fixture Design in Laser Butt-Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    This paper discusses some practical consideration for design of a mechanical fixture, which enables to accurately measure the width of a gap between two stainless steel workpieces and to steadfastly clamp the workpieces for butt-welding with a high power CO2 laser.With such a fixture, a series...... of butt-welding experiment is successfully carried out in order to find the maximum allowable gap width in laser butt-welding. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.......5-2.0 m/min, the laser power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely...

  4. Laser Welding of Ultra-Fine Grained Steel SS400

    Institute of Scientific and Technical Information of China (English)

    PENG Yun; TIAN Zhi-ling; CHEN Wu-zhu; WANG Cheng; BAO Gang

    2003-01-01

    The effects of laser welding on microstructure and mechanical properties of ultra-fine grained steel SS400 were studied. The plasma arc welding and MAG welding were conducted to make a comparison between these weldings and laser welding. The coarse grain heat-affected zone (HAZ) of laser welding was simulated using thermomechanical simulation machine, and the impact toughness was tested. The deep penetration laser welding produces weld of large depth and narrow width. The weld metal and HAZ of laser welding was heated and then cooled rapidly. The prior austenite grain size of coarse grain HAZ is 1/10 of that for arc welding. For laser welding, the toughness of weld metal is higher than that of base metal, and the toughness of the coarse grain HAZ of laser welding is on a level with that of base metal. Matching lower laser power with lower welding speed, the hardening tendency of the weld metal and the coarse grain HAZ can be decreased. There is no softened zone. The tensile strength of welded joint formed by laser is higher than that of base metal. The joint has good bending ductility.

  5. Laser powder technology for cladding and welding

    Science.gov (United States)

    Arnold, J.; Volz, R.

    1999-06-01

    Laser powder technology offers several advantages compared to conventional cladding and welding techniques and is attracting increasing industrial interest. The laser materials processing group of the German Aerospace Center at Stuttgart, Germany, is currently developing these new methods for application in industrial process engineering. Key areas of the work include the design and implementation of a modular working head that can be universally used for laser welding and surface treatment, the development of powder nozzles for cladding and welding, and the construction of new systems for special applications (e.g., for inner cladding). Some of these developments are described, as well as some important examples that highlight the potential of welding and surface treatment using laser powder techniques.

  6. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Jabbari, H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

    2015-11-15

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties of the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding

  7. Low distortion laser welding of cylindrical components

    Science.gov (United States)

    Kittel, Sonja

    2011-02-01

    Automotive components are for the most part cylindrical and thus the weld seams are of radial shape. Radial weld seams are usually produced by starting at a point on the component's surface rotating the component resulting in an overlap zone at the start/end of the weld. In this research, it is shown that the component's distortion strongly depends on the overlap of weld start and end. A correlation between overlap zone and distortion is verified by an experimental study. In order to reduce distortion generated by the overlap zone a special optics is used which allows shaping the laser beam into a ring shape which is then focused on the cylindrical surface and produces a radial ring weld seam simultaneously by one laser pulse. In doing this, the overlap zone is eliminated and distortion can be reduced. Radial weld seams are applied on precision samples and distortion is measured after welding. The distortion of the precision samples is measured by a tactile measuring method and a comparison of the results of welding with the ring optics to reference welds is done.

  8. Intraoral metal laser welding: a case report.

    Science.gov (United States)

    Fornaini, Carlo; Vescovi, Paolo; Merigo, Elisabetta; Rocca, Jean-Paul; Mahler, Patrick; Bertrand, Caroline; Nammour, Samir

    2010-03-01

    The possibility of laser welding of dental prostheses offers great advantages: first, the operator has the possibility of welding on the master model, which decreases the number of passages and thus the possibility of errors and damage, and secondly, the patient attends only a few sessions, and, due to the possibility of fixing the damaged prostheses, there is no need to resort to the technician's laboratory. In a previous study we described the experimental phases of intraoral welding, from the in vitro model on animal jaws with evaluations of the temperature variations during welding through thermal chamber and type K thermocouples. In this study we describe the intraoral welding in vivo on human subjects by using, as in the previous study, a fibre-delivered neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. The in vivo phase allowed a restored prosthesis to be positioned and intraorally welded in the upper central sector with optimal results both in patient's comfort and in aesthetic effects. This first in vivo test confirmed that the use of a laser technique for the intraoral welding of metal prostheses is possible, with no particular problems and risks for the biological structures close to the welding zone.

  9. Combination of laser keyhole and conduction welding: Dissimilar laser welding of niobium and Ti-6Al-4V

    Science.gov (United States)

    Torkamany, M. J.; Malek Ghaini, F.; Poursalehi, R.; Kaplan, A. F. H.

    2016-04-01

    Pulsed Nd:YAG laser welding of pure niobium plate to titanium alloy Ti-6Al-4V sheet in butt joint is studied regarding the laser/metal interaction modes. To obtain the optimized process parameters in dissimilar welding of Ti-6Al-4V/Nb, the melting ratio of laser beam energy for each weld counterpart is evaluated experimentally. Different laser welding modes of keyhole and conduction are predicted regarding the absorbed energy from the similar laser pulses on each weld counterpart. Laser keyhole and conduction welding were observed simultaneously through direct visualization of laser interaction with dissimilar metals using High Speed Imaging (HSI) system.

  10. Comparative study on interactions between laser and arc plasma during laser-GTA welding and laser-GMA welding

    Science.gov (United States)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa

    2016-10-01

    This paper describes an investigation on differences in interactions between laser and arc plasma during laser-gas tungsten arc (LT) welding and laser-gas metal arc (LM) welding. The characteristics of LT heat source and LM heat source, such as plasma behavior, heat penetration ability and spectral information were comparably studied. Based on the plasma discharge theory, the interactions during plasma discharge were modeled and analyzed. Results show that in both LT and LM welding, coupling discharge between the laser keyhole plasma and arc happens, which strongly enhance the arc. But, the enhancing effect in LT welding is much more sensitive than that in LM welding when parameters are adjusted.

  11. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  12. Effect of Laser Welding Parameters on Formation of NiTi Shape Memory Alloy Welds

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available In this work experimental trials of welding of NiTi flat plates with 2.0 mm thickness were conducted using a 4.5 kW continuous wave (CW Nd:YAG laser. The influences of laser output power, welding speed, defocus amount and side-blow shielding gas flow rate on the morphology, welding depth and width, and quality of the welded seam were investigated. Meanwhile, the effects of heat input on the mechanical and functional properties of welded joints were studied. The results show that laser welding can take better formation in NiTi alloys. The matching curves with laser power and welding speed affecting different formation of welds were experimentally acquired, which can provide references for laser welding and engineering application of NiTi alloy. The heat input has obvious effects on the ultimate tensile strength (UTS and shape memory behavior of the welded joints.

  13. Evaluación del comportamiento a fatiga de una unión soldada a tope de acero AISI 1015//Evaluation of the fatigue behaviour of a butt welded joint of AISI 1015 steel

    Directory of Open Access Journals (Sweden)

    Pavel Michel Almaguer‐Zaldivar

    2015-01-01

    Full Text Available Las uniones soldadas son un componente importante de una estructura, por lo que siempre es necesario conocer la respuesta de las mismas sometidas a cargas cíclicas. El objetivo de este trabajo es obtener la curva S-N de una unión soldada a tope de acero AISI 1015 y electrodo E6013 como material de aporte. Los ensayos a fatiga se realizaron de acuerdo a la norma ASTM en una máquina universal MTS810. Se utilizaron probetas de sección rectangular. El ciclo de carga fueasimétrico a tracción, con un coeficiente de asimetría de 0,1. Se obtuvo que la unión estudiada tiene un límite de resistencia a la fatiga de 178 MPa, a un punto de corte de 2 039 093 ciclos.Palabras claves: unión soldada, fatiga, curva S-N, AISI 1015, electrodo E6013._______________________________________________________________________________AbstractWelded joints are an important component in structures, by this reason is necessary to know the behaviour of these elements under cyclic loads. The objective of this work is to obtain the S-N curve of the butt welded joint of AISI 1015 steel and electrode E6013 as the contribution material. Fatiguetest was realized within the ASTM standard in the MTS810 testing machine. Rectangular cross section specimens was used. Cyclic loads was asymmetric tensile and the asymmetry ratio used was 0,1. In this study was obtained the fatigue limit equal to 178 MPa, at the cut point of 2 039 093 cycles.Key words: welded joint, fatigue, S-N curve, AISI 1015 steel, electrode E6013.

  14. Micro-structural strengthening mechanism of multiple laser shock processing impacts on AISI 8620 steel

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J.Z. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Zhong, J.W., E-mail: zjw1033@126.com [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Luo, K.Y.; Zhang, L.; Dai, F.Z. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Chen, K.M. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Q.W.; Zhong, J.S.; Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China)

    2011-07-25

    Highlights: {yields} LSP can clearly refine coarse grains in the shocked region by dislocation movement. {yields} Micro-structural evolution of AISI 8620 steel after LSP impacts is revealed. {yields} LSP on AISI 8620 steel have grain refinement and dispersion strengthening of carbon. {yields} The results can provide some insights on surface modification of low carbon steel. - Abstract: Micro-structural evolution in the near-surface region of AISI 8620 steel subjected to multiple laser shock processing (LSP) impacts were investigated by means of cross-sectional optical microscopy (OM) and transmission electron microscopy (TEM) observations. Micro-structural evolution process subjected to multiple LSP impacts can be described as follows: (i) the parallel lamellar pearlites are broken into bitty pearlites, and dislocation activities simultaneously led to the formation of dislocation lines (DLs) and dislocation pile-ups in original grains; (ii) bitty pearlites were all broken into Fe{sub 3}C granules, and dislocation movement made Fe{sub 3}C granules disperse near subgrain boundaries and led to subgrain boundaries separating individual cells, and (iii) subgrain boundaries were refined to grain boundaries. Multiple LSP impacts on AISI 8620 steel had dual-function: the refinement of coarse grains in the near-surface region by dislocation movement and dispersion strengthening of C atoms which cut cementite and diffused into the ferrite by moving dislocations.

  15. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  16. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  17. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  18. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-02-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  19. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...... are hybrid laser-arc welding (HLAW) and submerged arc welding (SAW). Both welding methods are applied for a full penetration butt-weld of 10 mm thick plates made of thermomechanically hot-rolled, low-carbon, fine-grain S355ML grade steel used in offshore steel structures. The welding residual stress state...

  20. [Clinical analysis of laser welding on porcelain bonded metal surface].

    Science.gov (United States)

    Weng, Jia-wei; Dai, Wen-an; Wu, Xue-ying

    2011-02-01

    To evaluate the clinical effect of laser-welded crowns and bridges. Two hundred defective crowns and bridges were welded by using Heraplus laser welding machine, and then restored by porcelain. After being welded ,those defective crowns and bridges of different materials fit well and their marginal areas were also satisfactory. During the follow up period of one year, no fractured porcelain and crack were found at welding spots. The technology of laser welding has no direct effect on welding spots between metal and porcelain and could be used to deal with the usual problems of the crowns and bridges.

  1. Plasma Bursts in Deep Penetration Laser Welding

    Science.gov (United States)

    Mrňa, L.; Šarbort, M.

    We present an experimental study of the deep penetration laser welding process which aims to analyze the plasma plume oscillations on a short time scale. Using the high-speed camera we show that the plasma comes out of the keyhole in the form of short bursts rather than the continuous flow. We detect these bursts as the short-time intensity oscillations of light emissions coming from the plasma plume. We determine the period of bursts using the statistical signal processing methods and the short-time frequency analysis. Finally, we compare the characteristics of plasma bursts and the geometry of resulting welds carried out on a 2 kW Yb:YAG laser welding machine for the steel workpiece and various welding parameters settings.

  2. Laser Welding of TC-1 Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    Hanbin DU; Lunji HU; Xiyuan HU; Jianhua LIU

    2003-01-01

    The technology of CO2 laser welding and joint properties of titanium alloy were investigated. The problem of moltenpool protection was resolved by designing a shielding trailer and a special clamp. Joints with silvery appearance wereobtained, which have no pore and crack. In addition, the welding speed could reach 3 m/min for the plate of 1.5 mmthickness being penetrated. The reason of the porosity formation in partial penetration joints is that the keyholescan be easily cut apart in the radial direction, which makes the gas enclosed in the molten pool. The surface oxideof specimens can not affect the porosity formation in welds directly.

  3. Welding with brilliant lasers: prospects and limitations

    Science.gov (United States)

    Kittel, Sonja; Dausinger, Friedrich

    2010-02-01

    Now that high brightness laser sources featuring high output power are commercially available, extremely small focal diameters and high power densities permit laser welding with a high aspect ratio at low heat input. With regard to an increase in productivity this implies a deeper weld depth at a higher feed rate and hence at a shorter processing time. In this research, a modular optical system generates focal diameters from 195 μm down to 15 μm for the purpose of identifying the prospects and limitations of the application of high brightness beam sources in laser welding. Metallographical analysis and observation using a high speed camera give information about the weld seam geometry and weld pool dynamics. Thus, the influence of minimizing focal diameters on process stability is evaluated: From the correlation of longitudinal cross-sections and high speed camera observation, an interrelationship between spiking and keyhole breakdown results. In dependence of the particular spot size and the beam quality of the laser source a new processing range arises. These observations are traced back to theoretical beam properties and a fundamental thesis about the applicability of a high brightness laser is derived. Eventually it shows that a small beam diameter is most advantageous for micro application.

  4. Effect of pulse duty cycle on Inconel 718 laser welds

    Science.gov (United States)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  5. Welding characteristics in different laser-TIG hybrid manners

    Institute of Scientific and Technical Information of China (English)

    陈彦宾; 雷正龙; 李俐群; 吴林

    2004-01-01

    An experiment for determining the laser-TIG hybrid welding characteristics was carried out in three kinds of hybrid methods: CO2 laser-TIG coaxial hybrid, CO2 laser-TIG paraxial hybrid and Nd: YAG laser-TIG paraxial hybrid. The experimental results indicate that hybrid welding has two welding mechanisms in CO2 laser-TIG hybrid welding: deep penetration welding and heat conduction welding. As the effect of the laser-induced keyhole, the arc root is condensed, the current density and penetration depth increase significantly, the welding characteristic is apt to deep penetration welding. When current increases to some degree, the keyhole induced by laser disappears, which produces a shallow penetration and wide bead. The weld exhibits heat conduction welding characteristics. Furthermore, the arc images and weld bead cross-sections of three kinds of hybrid manners were also compared and analyzed at different welding currents, which established the foundation for understanding the welding characteristics of laser-TIG hybrid welding comprehensively.

  6. Assisting Gas Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1996-01-01

    High quality laser welding is achieved under the condition of optimizing all process parameters. Assisting gas plays an important role for sound welds. In the conventional welding process assisting gas is used as a shielding gas to prevent that the weld seam oxidates. In the laser welding process...... assisting gas is also needed to control the laser induced plasma.Assisting gas is one of the most important parameters in the laser welding process. It is responsible for obtaining a quality weld which is characterized by deep penetration, no interior imperfections, i.e. porosity, no crack, homogeneous seam...... are applied with three different flow rates for each of the gases. A number of systematic laboratory experiments is carried out by employing various experimental designs, 33 and 32 Factorial Design. In the experiments a CO2 laser is used to weld thin sheets of mild steel. The welding specimens are evaluated...

  7. Laser welding of AZ61 magnesium-based alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Hongying; Li Zhijun; Zhang Yihui

    2006-01-01

    Laser welding of AZ61 magnesium alloys was carried out asing a CO2 laser weldingexperimental system.The welding properties of AZ61 sheets with different thickness were investigated.The effect of processing parameters including laser power, welding speed and protection gas flow was researched.The results show that laser power and welding speed have large effect on the weld width and joint dimensions.Protection gas flow has relatively slight effect on the weld width.The property test of three typical joints indicates that microhardness and tensile strength in weld zone are higher than that of AZ61 base metal.Joints with good appearance and excellent mechanical properties can be produced using CO2 laser welding method.The microstructure with small grains in weld zone is believed to be responsible for the excellent mechanical properties of AZ61 joints.

  8. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  9. CO2 laser welding of magnesium alloys

    Science.gov (United States)

    Dhahri, Mohammed; Masse, Jean Eric; Mathieu, J. F.; Barreau, Gerard; Autric, Michel L.

    2000-02-01

    Metallic alloys with a low mass density can be considered to be basic materials in aeronautic and automotive industry. Magnesium alloys have better properties than aluminum alloys in respect of their low density and high resistance to traction. The main problems of magnesium alloy welding are the inflammability, the crack formation and the appearance of porosity during the solidification. The laser tool is efficient to overcome the difficulties of manufacturing by conventional processing. Besides, the laser processing mainly using shielding gases allows an effective protection of the metal against the action of oxygen and a small heat affected zone. In this paper, we present experimental results about 5 kW CO2 laser welding of 4 mm-thick magnesium alloy plates provided by Eurocopter France. The focused laser beam has about 0.15 mm of diameter. We have investigated the following sample: WE43, alloy recommended in aeronautic and space applications, is constituted with Mg, Y, Zr, rare earth. More ductile, it can be used at high temperatures until 250 degrees Celsius for times longer than 5000 hours without effects on its mechanical properties. A sample of RZ5 (French Norm: GZ4TR, United States Norm ZE41) is composed of Mg, Zn, Zr, La, rare earth. This alloy has excellent properties of foundry and it allows to the realization of components with complex form. Also, it has a good resistance and important properties of tightness. The parameters of the process were optimized in the following fields: laser power: 2 to 5 kW, welding speed: 1 to 4.5 m/min, focal position: -3 mm to +3 mm below or on the top of the metal surface, shielding gas: helium with a flow of 10 to 60 l/min at 4 bars. Metallurgical analyses and mechanical control are made (macroscopic structure, microscopic structure, interpretations of the structures and localization of possible defects, analyse phases, chemical composition, hardness, tensile test etc.) to understand the parameters influence of welding

  10. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Mousavi, S.A.A. [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of)], E-mail: akbarimusavi@ut.ac.ir; Farhadi Sartangi, P. [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of)], E-mail: farhadi_pezhman@engmail.ut.ac.ir

    2009-03-15

    In explosive welding process, the controlled energy of explosives is used to create a metallurgical bond between two similar or dissimilar materials. This paper presents the analytical calculation for determination of weldability domain or welding window. The analytical calculations are in good agreement with experimental results. The welding conditions are tailored through parallel geometry route with different explosive loads. The study was also conducted to consider the effects of explosive loading on the bonding interface and the characterization of explosive welding experiments carried out under different conditions. Optical microscopy studies show that a transition from a smooth interface to a wavy one occurs with increase in explosive load. Scanning electron microscopy studies show that the interface was outlined by characteristic sharp transition between two materials, but local melted zones were also encountered in the front slope of waves in the interface at high explosive loads. XRD studies detected no intermetallic phases for specimen welded at low explosive load.

  11. Temperature control during laser vessel welding.

    Science.gov (United States)

    Springer, T A; Welch, A J

    1993-02-01

    A technique is described for the computer control of temperature during laser vessel welding. The technique is based on the use of thermal feedback from a calibrated IR sensor. The utilization of thermalfeedback makes it possible for welding to be performed at a quasiconstant temperature. An experimentalsystem based on this concept has been developed and evaluated in mock anastomoses with vasculartissue. A computer simulation of laser vessel welding with a one-dimensional heat conduction model hasbeen performed. Model parameters have been adjusted so that the relative effect of laser penetrationdepth and tissue dehydration as well as the role of thermal feedback in limiting the peak surfacetemperature can be studied. The results of the mock anastomoses are discussed in light of the computer model.

  12. Dye-enhanced laser tissue welding.

    Science.gov (United States)

    Chuck, R S; Oz, M C; Delohery, T M; Johnson, J P; Bass, L S; Nowygrod, R; Treat, M R

    1989-01-01

    For vascular anastomosis, use of topical photosensitizing dye enhances selective delivery of laser energy to target tissue, thus reducing the amount of collateral thermal injury and threshold power required for welding. For fluorescein isothiocyanate (FITC)--stained rabbit aorta in vitro, the threshold for tissue blanching was 15 seconds of 100 mW exposure of cw argon ion laser compared with 15 seconds at 300 mW for unstained tissue. The threshold power density needed for argon laser welding of abdominal aortotomies in rabbits in vivo was 3.8 W/cm2 with FITC and 7.6 W/cm2 without the dye. However, bursting pressures for the two groups (164 mm Hg with FITC, 147 mm Hg without FITC) were not significantly different. Histology revealed decreased collateral thermal damage in FITC-enhanced welds. Use of photosensitizing dyes for tissue welding is feasible and may allow arterial welding with lower power laser systems and cause less thermal trauma by lowering threshold power levels.

  13. Numerical Simulation Of The Laser Welding

    Directory of Open Access Journals (Sweden)

    Aleksander Siwek

    2008-01-01

    Full Text Available The model takes into consideration thermophysical and metallurgical properties of theremelting steel, laser beam parameters and boundary conditions of the process. As a resultof heating the material, in the area of laser beam operation a weld pool is being created,whose shape and size depends on convection caused by the Marangoni force. The directionof the liquid stream depends on the temperature gradient on the surface and on the chemicalcomposition as well. The model created allows to predict the weld pool shape depending onmaterial properties, beam parameters, and boundary conditions of the sample.

  14. Keyhole formation and its characteristics in laser welding mode transition

    Institute of Scientific and Technical Information of China (English)

    Qin Guoliang; Gao Jinqiang; Lin Shangyang

    2010-01-01

    Keyhole is the most important characteristic for laser deep penetration welding, and its formation indicates the beginning of laser deep penetration welding mode. The keyhole developing process was analyzed and the keyhole formation time was calculated according to welding speed and the length of weld bead formed in the keyhole formation process. The results showed that the keyhole forms in 40-70 ms at different rate of change of laser power. In laser deep penetration welding process, the variation of light intensity radiated by laser induced plasma can identify the keyhole formation, but it can not be used to estimate the keyhole formation time because of delay effect.

  15. Laser micro welding of copper and aluminum

    Science.gov (United States)

    Mys, Ihor; Schmidt, Michael

    2006-02-01

    Aluminum combines comparably good thermal and electrical properties with a low price and a low material weight. These properties make aluminum a promising alternative to copper for a large number of electronic applications, especially when manufacturing high volume components. However, a main obstacle for a wide use of this material is the lack of a reliable joining process for the interconnection of copper and aluminum. The reasons for this are a large misalignment in the physical properties and even more a poor metallurgical affinity of both materials that cause high crack sensitivity and the formation of brittle intermetallic phases during fusion welding. This paper presents investigations on laser micro welding of copper and aluminum with the objective to eliminate brittle intermetallic phases in the welding structure. For these purposes a combination of spot welding, a proper beam offset and special filler material are applied. The effect of silver, nickel and tin filler materials in the form of thin foils and coatings in a thickness range 3-100 μm has been investigated. Use of silver and tin filler materials yields to a considerable improvement of the static and dynamic mechanical stability of welded joints. The analysis of the weld microstructure shows that an application even of small amounts of suitable filler materials helps to avoid critical, very brittle intermetallic phases on the interface between copper and solidified melt in the welded joints.

  16. MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei

    2004-01-01

    The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.

  17. Microgalvanic corrosion of laser-welded HSLA steels

    NARCIS (Netherlands)

    Looi, Y.-M.

    2008-01-01

    Laser welding of galvanized high strength low alloy (HSLA) steels leads to the evaporation of zinc at the weld and the formation of a heat-affected-zone (HAZ). High heat input due to welding generates macro galvanic coupling between the weld and the parent metal as well as micro galvanic corrosion a

  18. Proposals for optimization of laser welding in prosthetic dentistry.

    Science.gov (United States)

    Bertrand, Caroline; Poulon-Quintin, Angeline

    2010-01-01

    This paper points out each key parameter involved in laser welding and discusses the parameters' effects on weld microstructure and defects detected inside the weld. Solutions are proposed to adjust the parameters to provide an optimal dental assembly. Metallurgical effects as well as defects are briefly discussed. A welding procedure adapted to different compositions of dental alloys is proposed.

  19. Microgalvanic corrosion of laser-welded HSLA steels

    NARCIS (Netherlands)

    Looi, Y.-M.

    2008-01-01

    Laser welding of galvanized high strength low alloy (HSLA) steels leads to the evaporation of zinc at the weld and the formation of a heat-affected-zone (HAZ). High heat input due to welding generates macro galvanic coupling between the weld and the parent metal as well as micro galvanic corrosion

  20. Differences between Laser and Arc Welding of HSS Steels

    Science.gov (United States)

    Němeček, Stanislav; Mužík, Tomáš; Míšek, Michal

    Conventional welding processes often fail to provide adequate joints in high strength steels with multiphase microstructures. One of the promising techniques is laser beam welding: working without filler metal and with sufficient capacity for automotive and transportation industry (where the amount of AHSS steels increases each year, as well as the length of laser welds). The paper compares microstructures and properties of HSS (high strength steel) joints made by MAG (Metal Active Gas) and laser welding. The effects of main welding parameters (heat input, welding speed and others) are studied on multiphase TRIP 900 steel tubes and martensitic sheets DOCOL 1200, advanced materials for seat frames and other automotive components. Whereas the strength of conventional welds is significantly impaired, laser welding leaves strength of the base material nearly unaffected. As the nature of fracture changes during loading and depending on the welding method, failure mechanisms upon cross tension tests have been studied as well.

  1. Estimation of embrittlement during aging of AISI 316 stainless steel TIG welds

    Indian Academy of Sciences (India)

    J Nayak; K R Udupa; K R Hebbar; H V S Nayak

    2004-12-01

    Weldments of AISI grade 316 stainless steel, having a ferrite content of 4–6% and a variety of nitrogen concentrations were prepared using a modified element implant technique. Charpy impact specimens prepared from these weldments were subjected to a variety of aging treatments. Impact toughness decreases with aging time at all aging temperatures. Nitrogen is found to be beneficial to toughness. An empirical relation connecting the aging temperature, aging time and nitrogen content with toughness has been developed which can be used to estimate the time for embrittlement.

  2. The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings

    NARCIS (Netherlands)

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    2011-01-01

    Shorter processing time has given impetus to laser cladding technology and therefore in this research the AISI 431 martensitic stainless steel coatings are laser deposited at high cladding speeds, i.e. up to 117 mm/s. The analysis of phase constitution and functional properties of the coatings are p

  3. Laser welding of polymers using high-power diode lasers

    Science.gov (United States)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2003-09-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented results concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the used laser systems the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  4. Latest Progress in Performance and Understanding of Laser Welding

    Science.gov (United States)

    Katayama, Seiji; Kawahito, Yousuke; Mizutani, Masami

    This paper describes a variety of fundamental research results of laser welding which the authors have recently performed. The behavior and characteristics of a laser-induced plume were elucidated. Especially, in remote welding with a fiber laser, the effect of a tall plume leading to shallow weld was interpreted by considering the interaction of an incident laser beam against the zone of a low refractive index from the Mickelson interferometer results. The laser absorption in the plate was higher in the case of a smaller focused beam of fiber laser, lower welding speed and higher power, and the reason was interpreted by considering the size and location of a keyhole inlet and a beam spot. High power tandem laser beams could produce deep penetration, and laser welding in vacuum was developed for production of deeply penetrated welds. Laser direct joining was also developed for joining of metal to plastic or CFRP.

  5. Improvement of Weld Quality Using a Weaving Beam in Laser Welding

    Institute of Scientific and Technical Information of China (English)

    Xudong ZHANG; Wuzhu CHEN; Gang BAO; Lin ZHAO

    2004-01-01

    This paper describes a way to improve the weld quality through suppressing the porosity formation and restraining the growth of columnar grains by using a weaving beam in laser welding. The experimental results show that the N2 porosity of beamweaving laser welding low carbon steel can be remarkably reduced with increasing weaving frequency, and porosity can be eliminated when the weaving amplitude is only 0.5 mm; and the Ar porosity in the weld metal is decreased with increasing weaving frequency and amplitude when the welding speed is higher than 0.5 m/min. The beam-weaving laser welding of ultrafine grained steel has been investigated. The experimental results show that beam-weaving laser welding with appropriate amplitude and frequency can partly restrain the growth of the columnar grain and improve the tensile strength of the weld metal.

  6. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor; Caracterizacion de soldaduras de acero inoxidable AISI 304L similares a las de la envolvente del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J{sub IC}) to ambient temperature for the base metal of 528 KJ/m{sup 2}, which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  7. Penetration control in laser welding of sheet metal

    NARCIS (Netherlands)

    Postma, S.; Aarts, R.G.K.M.; Meijer, Johan; Jonker, J.B.

    2002-01-01

    For economical reasons it is desirable to apply the highest possible speed during laser welding. Increasing the welding speed at a certain laser power might result in insufficient penetration of the weld. This work describes the design of a feedback controller, which is able to maintain full penetra

  8. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  9. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    OpenAIRE

    Sabina Luisa Campanelli; Giuseppe Casalino; Caterina Casavola; Vincenzo Moramarco

    2013-01-01

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the we...

  10. Laser welding of removable partial denture frameworks.

    Science.gov (United States)

    Brudvik, James S; Lee, Seungbum; Croshaw, Steve N; Reimers, Donald L; Reimers, Dave L

    2008-01-01

    To identify and measure distortions inherent in the casting process of a Class III mandibular cobalt-chromium (Co-Cr) framework to illustrate the problems faced by the laboratory technician and the clinician and to measure the changes that occur during the correction of the fit discrepancy using laser welding. Five identical castings of a Co-Cr alloy partial denture casting were made and measured between 3 widely separated points using the x, y, and z adjustments of a Nikon Measurescope. The same measurements were made after each of the following clinical and laboratory procedures: sprue removal, sectioning of the casting into 3 parts through the posterior meshwork, fitting the segments to the master cast, picking up the segments using resin, and laser welding of the 3 segments. Measurements of all 5 castings showed a cross-arch decrease after sprue removal, an increase after fitting the segments to the master cast, and a slight decrease after resin pickup and laser welding. Within the limitations of this study, the findings suggest that precise tooth-frame relations can be established by resin pickup and laser welding of segments of Co-Cr removable partial denture frameworks.

  11. Applications of robotics in laser welding

    NARCIS (Netherlands)

    de Graaf, M.W.; Aarts, Ronald G.K.M.; Katayama, Seiji

    2013-01-01

    This chapter describes how seam-tracking sensors can be integrated in a robotic laser welding system for automatic teaching of the seam trajectory as well as for correcting small errors from a pre-defined seam trajectory. Calibration procedures are required to derive accurate transformations of

  12. Mechanical properties of similar and dissimilar weldments of RAFMS and AISI 316L (N) SS prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.K., E-mail: shaju@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Das, C.R. [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute of Plasma Research, Gandhi Nagar (India); Mastanaiah, P.; Patel, M. [Defence Research and Development Laboratory, Hyderabad (India); Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Murthy, C.V.S. [Defence Research and Development Laboratory, Hyderabad (India); Kumar, Rajendra [Institute of Plasma Research, Gandhi Nagar (India)

    2014-10-15

    Highlights: • Increase of W content in RAFM steel can result in retention of delta ferrite in the EB weld of the steel. • Presence of delta ferrite seems to affect the ductile brittle transition temperature of the weld metal. • There is improper mixing of the two base metals in the fusion zone dissimilar welds of RAFM steel and austenitic stainless steel made by EB welding. - Abstract: Effect of weld metal composition on microstructure and toughness of weld metal is studied in this paper. Weld joints of reduced activation ferritic/martensitic (RAFM) steel containing 1.0 and 1.4 wt.% W were prepared using electron beam welding (EBW) process. Dissimilar weld joints between 1.0 wt.% W RAFM steel and AISI 316L (N) SS were also prepared using EBW process. The effect of post weld heat treatment (PWHT) temperatures on microstructure and mechanical properties was also studied. Microstructural observation reveals delta–ferrite in 1.4 wt.% W containing weld metal, which is absent in 1.0 wt.% W weld metal. In the case of the dissimilar weld metal, microstructure shows presence of lath martensite and retained austenite. Austenite was stable even after PWHT and its presence is attributed to high nickel (5–6 wt.%) content in the dissimilar weld metal. Hardness of RAFM steel weld metal was found to be 270–290 VHN after PWHT at 750 °C for 2 h. Impact toughness of both 1.0 and 1.4 wt.% W RAFM steel is high (>250 J) at ambient temperature. However, after PWHT, variation of toughness with temperature is more drastic for 1.4 wt.% W RAFM steel weld metal than the other. As a result, ductile brittle transition temperature (DBTT) for the 1.4 wt.% steel weld metal is close to 0 °C while that of the 1.0 wt.% W steel is close to that of the base metal (∼−80 °C)

  13. Optimization of pulsed current GTAW process parameters for sintered hot forged AISI 4135 P/M steel welds by simulated annealing and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Joby; Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)

    2016-01-15

    Abundant improvements have occurred in materials handling, especially in metal joining. Pulsed current gas tungsten arc welding (PCGTAW) is one of the consequential fusion techniques. In this work, PCGTAW of AISI 4135 steel engendered through powder metallurgy (P/M) has been executed, and the process parameters have been highlighted applying Taguchi's L9 orthogonal array. The results show that the peak current (Ip), gas flow rate (GFR), welding speed (WS) and base current (Ib) are the critical constraints in strong determinant of the Tensile strength (TS) as well as percentage of elongation (% Elong) of the joint. The practical impact of applying Genetic algorithm (GA) and Simulated annealing (SA) to PCGTAW process has been authenticated by means of calculating the deviation between predicted and experimental welding process parameters.

  14. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-04-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Lasers do not require a vacuum (as do electron beam welders) and the welds they produce high depth-to-width ratios. Scoping with a small pulsed 50 J YAG laser indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1 mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Following the initial scoping tests, a series of tests were preformed with a 6 kW continuous CO{sub 2} laser. Successful bead-on-plate welds were made on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys to depths of about 4 mm with this laser.

  15. Intraoral laser welding: ultrastructural and mechanical analysis to compare laboratory laser and dental laser.

    Science.gov (United States)

    Fornaini, Carlo; Passaretti, Francesca; Villa, Elena; Rocca, Jean-Paul; Merigo, Elisabetta; Vescovi, Paolo; Meleti, Marco; Manfredi, Maddalena; Nammour, Samir

    2011-07-01

    The Nd:YAG laser has been used since 1970 in dental laboratories to weld metals on dental prostheses. Recently in several clinical cases, we have suggested that the Nd:YAG laser device commonly utilized in the dental office could be used to repair broken fixed, removable and orthodontic prostheses and to weld metals directly in the mouth. The aim of this work was to evaluate, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and dynamic mechanical analysis (DMA), the quality of the weld and its mechanical strength, comparing a device normally used in dental laboratory and a device normally used in the dental office for oral surgery, the same as that described for intraoral welding. Metal plates of a Co-Cr-Mo dental alloy and steel orthodontic wires were subjected to four welding procedures: welding without filler metal using the laboratory laser, welding with filler metal using the laboratory laser, welding without filler metal using the office laser, and welding with filler metal using the office laser. The welded materials were then analysed by SEM, EDS and DMA. SEM analysis did not show significant differences between the samples although the plates welded using the office laser without filler metal showed a greater number of fissures than the other samples. EDS microanalysis of the welding zone showed a homogeneous composition of the metals. Mechanical tests showed similar elastic behaviours of the samples, with minimal differences between the samples welded with the two devices. No wire broke even under the maximum force applied by the analyser. This study seems to demonstrate that the welds produced using the office Nd:YAG laser device and the laboratory Nd:YAG laser device, as analysed by SEM, EDS and DMA, showed minimal and nonsignificant differences, although these findings need to be confirmed using a greater number of samples.

  16. Laser penetration spike welding : A microlaser welding technique enabling novel product designs and constructions

    NARCIS (Netherlands)

    Dijken, DK; Hoving, W; De Hosson, JTM

    2003-01-01

    A novel method for laser penetration microspot welding of sheet metal is presented. With this so called "laser spike-welding," large gap tolerances are allowed. Depending on the ratio of laser spot radius to top plate thickness, gaps of 100% of the top layer thickness and more can be bridged. With c

  17. Laser penetration spike welding : A microlaser welding technique enabling novel product designs and constructions

    NARCIS (Netherlands)

    Dijken, D.K; Hoving, W.; de Hosson, J.T.M.

    A novel method for laser penetration microspot welding of sheet metal is presented. With this so called "laser spike-welding," large gap tolerances are allowed. Depending on the ratio of laser spot radius to top plate thickness, gaps of 100% of the top layer thickness and more can be bridged. With

  18. A Laser-Based Vision System for Weld Quality Inspection

    Science.gov (United States)

    Huang, Wei; Kovacevic, Radovan

    2011-01-01

    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved. PMID:22344308

  19. Laser vision sensing based on adaptive welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhixiang; SONG Yonglun; ZHANG Jun; ZHANG Wanchun; JIANG Li; XIA Xuxin

    2007-01-01

    A laser vision sensing based on the adaptive tungsten inert gas(TIG)welding system for large-scale aluminum alloy components was established to fit various weld groove conditions.A new type of laser vision sensor was used to precisely measure the weld groove.The joint geometry data,such as the bevel angle,the gap,the area,and the mismatch,etc.,aided in assembling large-scale aerospace components before welding.They were also applied for automatic seam tracking,such as automatic torch transverse alignment and torch height adjustment in welding.An adaptive welding process was realized by automatically adjusting the wire feeding speed and the welding current according to the groove conditions.The process results in a good weld formation and high welding quality,which meet the requirements of related standards.

  20. An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel

    Science.gov (United States)

    Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza

    2014-11-01

    Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.

  1. Advanced Laser Transmission Welding Strategies for Fibre Reinforced Thermoplastics

    Science.gov (United States)

    Wippo, V.; Jaeschke, P.; Brueggmann, M.; Suttmann, O.; Overmeyer, L.

    Laser transmission welding can be used to join endless fibre reinforced thermoplastics. The welding temperature is affected by the heat conduction along carbon fibresand depends on the local orientation of the fibres in the weld seam and the laser welding technique itself. In these investigations the heat development during the welding with quasi-static temperature fields, which is a combination of two laser welding techniques, is evaluated and compared to welding with a homogenized intensity distribution. In order to optimize the temperature distribution over the weld seam width for both linear and curved weld seams, different scanning structures have beenadapted. The experiments were conducted with a diode laser emitting at a wavelength of 940 nm and the process was monitored by aninfrared camera. The used thermoplastics consist of laminates based on unidirectional carbon fibre reinforced polyphenylenesulfide. With the developed scanning structures, a near-homogeneous temperature distribution was generated over the width of the weld seam for curved weld seams, which is not possible by welding with a homogenized laser radiation intensity distribution.

  2. Seam tracking for laser welding with an industrial robot

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; van Amerongen, J.; Jonker, Jan B.; Jonker, J.B.; Regtien, Paulus P.L.; Regtien, P.

    2001-01-01

    Because of their construction and flexibility, industrial robots are suitable to be used, with a laser source and an optical fiber, for laser welding of 3D products. However, the positioning accuracy of robots are insufficient for laser welding. Also the product and clamping tolerances are too wide

  3. Seam tracking for laser welding with an industrial robot

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Amerongen, van J.; Jonker, J.B.; Regtien, P.P.L.

    2001-01-01

    Because of their construction and flexibility, industrial robots are suitable to be used, with a laser source and an optical fiber, for laser welding of 3D products. However, the positioning accuracy of robots are insufficient for laser welding. Also the product and clamping tolerances are too wide

  4. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers

    Science.gov (United States)

    Lu, J. Z.; Han, B.; Cui, C. Y.; Li, C. J.; Luo, K. Y.

    2017-02-01

    The effects of massive laser shock peening (LSP) treatment with different coverage layers on residual stress, pitting morphologies in a standard corrosive solution and electrochemical corrosion resistance of AISI 4145 steel were investigated by pitting corrosion test, potentiodynamic polarisation test, and SEM observations. Results showed massive LSP treatment can effectively cause an obvious improvement of pitting corrosion resistance of AISI 4145 steel, and increased coverage layer can also gradually improve its corrosion resistance. Massive LSP treatment with multiple layers was shown to influence pitting corrosion behaviour in a standard corrosive solution.

  5. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Institute of Scientific and Technical Information of China (English)

    Yanbin Chen; Zhenglong Lei; Liqun Li; Lin Wu

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and thedroplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stablehybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  6. Importance of Marangoni Convection in Laser Full-Penetration Welding

    Institute of Scientific and Technical Information of China (English)

    叶晓虎; 陈熙

    2002-01-01

    We study the effects of welding speed, Marangoni convection and natural convection on heat transfer and melt flow in a laser full-penetration welding using a three-dimensional modelling approach. The computed results demonstrate the importance of considering Marangoni convection. The predicted weld pool profile is favourably compared with experimental observation.

  7. Laser welding of maraging steel rocket motor casing

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-11-01

    Full Text Available This presentation looks at the experimental procedure and results of laser welding of maraging steel rocker motor casing. It concludes that a fracture occurred in weld metal of autogenous welding and that a fracture occurred in base material when...

  8. Measurement of Laser Weld Temperatures for 3D Model Input.

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl; GROSSETETE, GRANT; Maccallum, Danny O.

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  9. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  10. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  11. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David;

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  12. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  13. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I. [Idaho National Laboratory, Idaho Falls, ID 83415-3570 (United States); Todorov, E.; Levesque, S. [Edison Welding Institute, Columbus, OH (United States)

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  14. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    Science.gov (United States)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  15. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC

    Science.gov (United States)

    Zhang, Zhe; Yu, Ting; Kovacevic, Radovan

    2017-07-01

    Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%-40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V8C7, M7C3, and M23C6 were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content. No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. The corrosion resistance of the clads was decreased with the increase in the VC content, demonstrating the negative effect of VC on the corrosion resistance of AISI 420 stainless steel

  16. Investigation of the Mechanical Properties of AISI 316 Austenitic Stainless Steel and St 37 Low Carbon Steel Dissimilar Joint by Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    A.H. Khosrovaninezhad

    2015-07-01

    Full Text Available This paper reports on the mechanical properties of the dissimilar joints between AISI 316 austenitic stainless steel and St 37 low carbon steel achieved using friction stir welding technique. The welding was carried out by means of rotational speed of 800 rpm and linear speeds of 50,100,150 mm/min. EDS and XRD techniques were employed in order to determine possible phase transformations. Tensile test, shear punch test and microhardness measurements were conducted to evaluate the mechanical properties of the joints. The results of phase investigations showed that no carbide and brittle phase were detected at the joint boundary. Also, tensile test results demonstrated that failure occurred in the St 37 base metal. According to the shear punch test, the highest ultimate shear strength and yield shear strength was achieved for the sample welded at rotational speed of 800 rpm and linear speed of 150 mm/min, while this sample showed the least elongation. In addition, the highest microhardness was measured in the stir zone of austenitic stainless steel sample welded in the above mentioned welding condition, which can be attributed to the decrease in grain size caused by recrystallization process.

  17. Three thermal analysis models for laser, GMAW-P and Iaser+GMAW-P hybrid welding

    Institute of Scientific and Technical Information of China (English)

    XU Guoxiang; WU Chuansong; QIN Guoliang; WANG Xuyou; LIN Shangyang

    2009-01-01

    The temperature fields and the weld pool geometries for laser + GMA W-P hybrid welding, laser welding and pulsed gas metal arc welding (GMAW-P) are numerically simulated in quasi-steady state by using the developed heat source models, respectively. The calculated weld cross-sections of the three types of welding processes agree well with their respective measured results. Through comparison, it is found that the temperature distribution of laser+ GMAW-P hybrid welding possesses the advantages of those in both laser and GMA W-P welding processes so that the improvement of welding productivity and weld quality are ensured.

  18. Study on the effect of welding current during laser beam-resistance seam welding of aluminum alloy 5052

    Institute of Scientific and Technical Information of China (English)

    Li Yongqiang; Zhao Xihua; Zhao He; Cao Haipeng; Zhao Huanling

    2008-01-01

    The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld width,tensile shear load and the ratio of penetration depth to weld width of LB-RSW are bigger than those of laser beam welding(LBW) under the same conditions and the former three parameters increase as welding current rises. The weld shape of LB-RSW below 5 kA welding current is nearly the same as that of LBW. The weld morphology is protuberant under the condition of 5 kA welding current and 0.8 m/min welding speed. Furthermore, the microstructure of the weld seam of LB-RSW is coarser than that of LBW.

  19. Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach

    Science.gov (United States)

    dongxia, Yang; xiaoyan, Li; dingyong, He; zuoren, Nie; hui, Huang

    2012-10-01

    In the present work, laser welding with filler wire was successfully applied to joining a new-type Al-Mg alloy. Welding parameters of laser power, welding speed and wire feed rate were carefully selected with the objective of producing a weld joint with the minimum weld bead width and the fusion zone area. Taguchi approach was used as a statistical design of experimental technique for optimizing the selected welding parameters. From the experimental results, it is found that the effect of welding parameters on the welding quality decreased in the order of welding speed, wire feed rate, and laser power. The optimal combination of welding parameters is the laser power of 2.4 kW, welding speed of 3 m/min and the wire feed rate of 2 m/min. Verification experiments have also been conducted to validate the optimized parameters.

  20. Pre-Industry-Optimisation of the Laser Welding Process

    DEFF Research Database (Denmark)

    Gong, Hui

    This dissertation documents the investigations into on-line monitoring the CO2 laser welding process and optimising the process parameters for achieving high quality welds. The requirements for realisation of an on-line control system are, first of all, a clear understanding of the dynamic...... phenomena of the laser welding process including the behaviour of the keyhole and plume, and the correlation between the adjustable process parameters: laser power, welding speed, focal point position, gas parameters etc. and the characteristics describing the quality of the weld: seam depth and width......, porosity etc. Secondly, a reliable monitoring system for sensing the laser-induced plasma and plume emission and detecting weld defects and process parameter deviations from the optimum conditions. Finally, an efficient control system with a fast signal processor and a precise feed-back controller...

  1. Elucidation of phenomena in high-power fiber laser welding and development of prevention procedures of welding defects

    Science.gov (United States)

    Katayama, Seiji; Kawahito, Yousuke

    2009-02-01

    Fiber lasers have been receiving considerable attention because of their advantages of high power, high beam quality and high efficiency, and are expected as one of the desirable heat sources for high-speed and deep-penetration welding. In our researches, therefore, the effects of laser powers and their densities on the weld penetration and the formation of sound welds were investigated in welding of Type 304 austenitic stainless steel, A5052 aluminum alloy or high strength steel plates with four laser beams of about 0.12 to 1 mm in focused spot diameter, and their welding phenomena were observed with high-speed video cameras and X-ray transmission real-time imaging system. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, but on the other hand at low welding speeds deeper-penetration welds could be produced at higher power. Laser-induced plume behavior and its effect on weld penetration, and the mechanisms of spattering, underfilling, porosity and humping were elucidated, sound welds without welding defects could be produced under the improved welding conditions. In addition, importance of the development of focusing optics and the removal of a plume during remote welding will be emphasized in terms of the stable production of constant deep-penetration welds and the reduction in welding defects in high power laser welding.

  2. Laser Welding Of Contoured Thin-Wall Housings

    Science.gov (United States)

    Spiegel, Lyle B.; Oleksiak, Carl E.

    1991-01-01

    Superalloy parts joined with less distortion. Carbon dioxide laser beam directed by optics in numerically controlled robot arm welds shell-type turbopump housings having complicated shapes. 5-kW laser, following single programmed three-dimensional pass, produces high-quality, full-penetration weld pass in age-hardenable nickel superalloy. Operator easily programs robot by using teaching pendant to track weld joint and keeps laser focused on workpiece while following contour of shell. Shells welded in rapid succession, with minimal change in setup for each.

  3. Temperature field simulation of laser-TIG hybrid welding

    Institute of Scientific and Technical Information of China (English)

    陈彦宾; 李俐群; 方俊飞; 封小松; 吴林

    2003-01-01

    The three-dimensional transient temperature distribution of laser-TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid welding was studied and the coupling effect of the laser and arc in the hybrid process was fully considered. The temperature fields and weld cross-sections of the typical welding parameters are obtained using present model. The calculation results show that the model can indicate the relationship of energy match between laser and arc to joints cross-sections objectively, and the simulation results are well agreed with the experimental results.

  4. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    Science.gov (United States)

    Karthik, D.; Swaroop, S.

    2016-07-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  5. Mechanical behavior study of laser welded joints for DP steel

    Science.gov (United States)

    Yan, Qi

    2008-03-01

    Advanced High Strength Steels (AHSS) are gaining considerable market shares in the automotive industry. The development and application of Dual Phase (DP) steel is just a consistent step towards high-strength steel grades with improved mechanical behavior. Tailor welded blanks with DP steel are promoted in the application of Body-In-White (BIW) structure by the automotive industry. A tailor welded blank consists of several flat sheets that are laser welded together before stamping. Applied cases of tailor welded blanks of high strength steels on the automotive structural parts are investigated in this paper. The mechanical behavior of laser welded joints for DP steel is studied. Microstructure of laser welded joints for DP steel was observed by SEM. Martensite in the weld seam explains the higher strength of welded joints than the base metal. Results show that the strain safety tolerance of laser welded seam for high strength steel can meet the requirement of automobile parts for stamping if the location of laser welded seam is designed reasonably.

  6. Laser welding of stainless steel weld filler metals at high cooling rates

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J.M.; David, S.A.

    1988-01-01

    Several stainless steels were laser welded under conditions resulting in high cooling rates of the welds. Significant changes in the microstructures, compared to those produced by conventional welding techniques, were found. For alloys 304, 308, 309, 316 and 347, a general decrease in ferrite content with increasing cooling rate was found. For three alloys (304, 308, 347), a fully austenitic structure was obtained at the highest cooling rates. For alloys 312 and 446, the high cooling rates retarded the formation of austenite, resulting in higher ferrite contents and fully ferritic structures at the highest cooling rates. Only for alloy 310 was the microstructure after laser welding comparable to that found after conventional welding. The results are discussed in terms of their impact on the Schaeffler diagram and its applicability to laser welding. 11 refs., 7 figs.

  7. Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear

    Science.gov (United States)

    Peng, Chong; Xiao, Yuzhe; Wang, Yanzhong; Guo, Wei

    2017-09-01

    The effect of laser shock peening (LSP) on bending fatigue performance of AISI 9310 steel spur gear has been investigated in this study. To help to explain bending fatigue test results, residual stress distribution induced by LSP is studied by means of finite element modelling, results of which are verified by X-ray diffraction analysis. It is found that a compressive layer of desirable depth can be induced on the gear root fillet after LSP, and both magnitude and depth of compressive stress increase with laser energy. The bending fatigue test is conducted using the single-tooth bending method to compare fatigue performance of laser peened teeth and non-peened teeth, which is followed by relevant statistical analysis. S-N curves acquired from the fatigue test reveal that bending fatigue lives of gear teeth has been significantly improved after LSP in comparison with those non-peened teeth, and the bending fatigue limit is enhanced correspondingly. It is noticeable that higher laser energy does not necessarily lead to much better fatigue performance of test gears.

  8. Laser micropolishing of AISI 304 stainless steel surfaces for cleanability and bacteria removal capability

    Science.gov (United States)

    De Giorgi, Chiara; Furlan, Valentina; Demir, Ali Gökhan; Tallarita, Elena; Candiani, Gabriele; Previtali, Barbara

    2017-06-01

    In this work, laser micropolishing (LμP) was employed to reduce the surface roughness and waviness of cold-rolled AISI 304 stainless steel sheets. A pulsed fibre laser operating in the ns regime was used and the influence of laser parameters in a N2-controlled atmospheres was evaluated. In the optimal conditions, the surface remelting induced by the process allowed to reduce the surface roughness by closing cracks and defects formed during the rolling process. Other conditions that did not improve the surface quality were analysed for defect typology. Moreover, laser treatments allowed the production of more hydrophobic surfaces, and no surface chemistry modification was identified. Surface cleanability was investigated with Escherichia coli (E. coli), evaluating the number of residual bacteria adhering to the substrate after a washing procedure. These results showed that LμP is a suitable way to lower the average surface roughness by about 58% and average surface waviness by approximately 38%. The LμP process proved to be effective on the bacteria cleanability as approximately five times fewer bacteria remained on the surfaces treated with the optimized LμP parameters compared to the untreated surfaces.

  9. Welding And Cutting A Nickel Alloy By Laser

    Science.gov (United States)

    Banas, C. M.

    1990-01-01

    Technique effective and energy-efficient. Report describes evaluation of laser welding and cutting of Inconel(R) 718. Notes that electron-beam welding processes developed for In-718, but difficult to use on large or complex structures. Cutting of In-718 by laser fast and produces only narrow kerf. Cut edge requires dressing, to endure fatigue.

  10. Inspection of thick welded joints using laser-ultrasonic SAFT.

    Science.gov (United States)

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing.

  11. MODELLING AND CHARACTERIZATION OF LASER WELDED INCOLOY 800 HT JOINTS

    Directory of Open Access Journals (Sweden)

    Sathiya Paulraj

    2016-06-01

    Full Text Available This study aims at finding the effect of laser welding speed on incoloy 800 HT. This alloy is one of the potential materials for Generation IV nuclear plants. Laser welding has several advantages over arc welding such as low fusion zone, low heat input and concentrated heat intensity. Three different welding speeds were chosen and CO2 laser welding was performed. 2D modeling and simulation were done using ANSYS 15 to find out the temperature distribution at different welding speeds and it was found that an increase in the welding speed decreased the temperature. Mechanical properties such as tensile strength, toughness and hardness were evaluated. The effect of welding speed on metallurgical characteristics was studied using optical microscopy (OM, Scanning Electron Microscopy (SEM with EDS, X-Ray Diffraction (XRD technique and fractographic analysis. From the results it was found that high welding speed (1400 mm/min decreased the joint strength. The M23C6 and Ni3Ti carbides were formed in a discrete chain and in a globular form along the grain boundaries of the weld region which increased the strength of the grain boundaries. Fractographic evaluations of the tested specimens for welding speed (1000 and 1200 mm/min showed deep and wide dimples indicating ductile failures.

  12. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1996-10-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO{sub 2} laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m{sup 3}/s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to {approx}180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000{degrees}C for 1 h in vacuum reduced the DBTT to <{minus}25{degrees}C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study.

  13. Optimization of Fusion Zone Grain Size, Hardness, and Ultimate Tensile Strength of Pulsed Current Microplasma Arc Welded AISI 304L Sheets Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Siva Prasad Kondapalli

    2014-01-01

    Full Text Available Austenitic stainless steel sheets have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace, and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Microplasma Arc Welding (PCMPAW was found beneficial due to its advantages over the conventional continuous current process. The quality of welded joint depends on the grain size, hardness, and ultimate tensile strength, which have to be properly controlled and optimized to ensure better economy and desirable mechanical characteristics of the weld. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to grain size, and ultimate tensile strength in PCMPAW of AISI 304L sheets. The experiments were conducted based on a five-factor, five-level central composite rotatable design matrix. A genetic algorithm (GA was developed to optimize the process parameters for achieving the desired grain size, hardness, and ultimate tensile strength.

  14. Effect of prior cold work on the degree of sensitisation of welded joints of AISI 316L austenitic stainless steel studied by using an electrochemical minicell

    Energy Technology Data Exchange (ETDEWEB)

    De Tiedra, Pilar [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain); Martin, Oscar, E-mail: oml@eis.uva.es [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain); Garcia, Cristina; Martin, Fernando; Lopez, Manuel [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Double loop shows greater sensitivity to interdendritic corrosion than single loop. Black-Right-Pointing-Pointer Fusion line sensitisation is lower than that of weld metal for all prior cold works. Black-Right-Pointing-Pointer Heat affected zone sensitisation is maximum at a prior cold work of 10%. Black-Right-Pointing-Pointer Heat affected zone sensitisation Much-Less-Than base material sensitisation for a prior cold work of 20%. - Abstract: This work aims to assess the effect of prior cold work on the degree of sensitisation of each of the four welding zones of welded joints of AISI 316L subjected to post-welding sensitisation. Electrochemical potentiokinetic reactivation and double loop electrochemical potentiokinetic reactivation tests are performed on each of the four zones by using a small-scale electrochemical cell (minicell). The results show that the degree of sensitisation of heat affected zone, which achieves its maximum at a prior cold work level of 10%, is significantly lower than that of base material for a prior cold work of 20%.

  15. Picosecond laser welding of optical to metal components

    Science.gov (United States)

    Carter, Richard M.; Troughton, Michael; Chen, Jinanyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-03-01

    We report on practical, industrially relevant, welding of optical components to themselves and aluminum alloy components. Weld formation is achieved through the tight focusing of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. By selecting suitable surface preparation, clamping and laser parameters, the plasma can be confined, even with comparatively rough surfaces, by exploiting the melt properties of the glass. The short interaction time allows for a permanent weld to form between the two materials with heating limited to a region ~300 µm across. Practical application of these weld structures is typically limited due to the induced stress within the glass and, critically, the issues surrounding post-weld thermal expansion. We report on the measured strength of the weld, with a particular emphasis on laser parameters and surface preparation.

  16. Picosecond laser welding of similar and dissimilar materials.

    Science.gov (United States)

    Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P

    2014-07-01

    We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld.

  17. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    Science.gov (United States)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well

  18. Dynamic cooling during laser skin welding

    Science.gov (United States)

    Fried, Nathaniel M.; Walsh, Joseph T., Jr.

    1999-06-01

    Cryogen spray cooling of the tissue surface was investigated for laser welding applications. Benefits include reduced thermal damage to the papillary dermis and reduced operation time. Two-cm-long, full-thickness incisions were made on the backs of guinea pigs, in vivo. India ink was used as an absorber and clamps were used to appose the incision edges. Continuous-wave, 1.06-μm, Nd:YAG laser radiation was scanned over the incisions, producing ~100 ms pulses. A 4-mm-diameter laser spot was used with a constant power of 16 W. The total operation time was 60 or 120 s. Cryogen was delivered in spurt durations of 20, 60, or 100 ms, with 2 or 4 s between spurts. The working distance was approximately 12 cm, and the spray covered an area of about 5.0 x 5.0 cm. Control welds were irradiated for 20, 40, or 60 s. Total operation times were reduced from 10 min without dynamic cooling to 1 min with dynamic cooling. Optimal tensile strength was 1.7 +/- 0.7 kg/cm2, comparible to stengths of 2.1 +/- 0.7 kg/cm2 reported in previous studies without cryogen cooling (p>0.25). Thermal damage in the papillary dermis measured 320 +/- 80 μm.

  19. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    750º to 450º C. Initially, a simple analytical model was used to calculate the ideal energy contributions from a CO2 high power laser source together with an induction heat source such that the temperature can be kept at 600º C for 2.5 seconds. This knowledge was then used for the design......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...... of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...

  20. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...... 750º to 450º C. Initially, a simple analytical model was used to calculate the ideal energy contributions from a CO2 high power laser source together with an induction heat source such that the temperature can be kept at 600º C for 2.5 seconds. This knowledge was then used for the design...... of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...

  1. Selective laser melting of Fe-Ni-Cr layer on AISI H13 tool steel

    Institute of Scientific and Technical Information of China (English)

    Byeong-Don JOO; Jeong-Hwan JANG; Jae-Ho LEE; Young-Myung SON; Young-Hoon MOON

    2009-01-01

    An attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel was performed with selective laser melting. Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200 W fiber laser which can be focused to 80 μm and atmospheric chamber which can control atmospheric pressure with N2 or Ar. Coating layer was fabricated with various process parameters such as laser power, scan rate and fill spacing. Surface quality and coating thickness were measured and analyzed. Three different surface patterns, such as typeⅠ, typeⅡand type Ⅲ, are shown with various test conditions and smooth regular pattern is obtained under the conditions as 10 μm of fill spacing, 50-350 mm/s of scan rate and 40 μm of fill spacing, 10-150 mm/s of scan rate. The maximum coating thickness is increased with power elevation or scan rate drop, and average thickness of 10 μm fill spacing is lower than that of 40 μm fill spacing.

  2. Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening

    Energy Technology Data Exchange (ETDEWEB)

    Miokovic, T. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany); Schulze, V. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany)]. E-mail: volker.schulze@mach.uni-karlsruhe.de; Voehringer, O. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany); Loehe, D. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany)

    2007-01-15

    In recent years laser surface hardening using pulsed laser sources has become an increasingly established technology in engineering industry and has opened up wider possibilities for the application of selective surface hardening. However, the choice of the process parameters is generally based on experience rather than on their empirical influence on the resulting microstructure, and for hardening processes with cyclic temperature changes, almost no correlations between process parameters and hardening results are known. Therefore, some problems regarding the choice of the process parameters and their influence on the resulting microstructure still remain. In particular, there is a lack of data concerning the effect of cyclic temperature changes on hardening. To facilitate process optimization, this paper deals with a detailed characterization of the microstructures created in quenched and tempered AISI 4140 (German grade 42CrMo4) steel following a temperature-dependent laser surface hardening treatment. The structure properties were obtained from microhardness measurements, scanning electron microscopy investigations and X-ray diffraction analysis of retained austenite.

  3. A study of laser-beam welding conducted at the Centre for Laser Technologies of Metals

    Science.gov (United States)

    Antoszewski, Bogdan; Gradoń, Ryszard; Trela, Paweł; Cendrowicz, Edward

    2013-01-01

    The study reported here is part of a larger research project on laser-beam welding conducted at the Centre for Laser Technologies of Metals. The primary objectives were to compare laser-beam welding with a conventional process when used for longitudinal seams in street lamp posts, to select the process parameters for girth welds in cylindrical high-strength steel machine elements, and to assess whether laser-beam welding can be used for magnesium alloys. The paper includes recommendations for the selection of welding parameters.

  4. Laser Welding of Sub-assemblies before Forming

    DEFF Research Database (Denmark)

    Rasmussen, Mads; Olsen, Flemmming Ove; Pecas, Paulo

    1996-01-01

    This paper describes some experimental investigations of the formability of CO2-laser-welded 0.75 mm and 1.25 mm low carbon steel. There will be a description of how the laser welded blanks behave in different forming tests, and the influene of misalignment and undercut on the formability....... The quality is evalutated by measuring the imit strain and the limit effective strain for the laser welded sheets and the base material. These strains will be presented in a forming limit diagram (FLD). Finally the formability of the laser sheets is compared to that of the base materials....

  5. Autogeneous Laser and Hybrid Laser Arc Welding of T-joint Low Alloy Steel with Fiber Laser Systems

    Science.gov (United States)

    Unt, A.; Lappalainen, E.; Salminen, A.

    This paper is focused on the welding of low alloy steels S355 and AH36 in thicknesses 6, 8 and 10 mm in T-joint configuration using either autogeneous laser welding or laser-arc hybrid welding (HLAW) with high power fiber lasers. The aim was to obtain understanding of the factors influencing the size of the fillet and weld geometry through methodologically studying effects of laser power, welding speed, beam alignment relative to surface, air gap, focal point position and order of processes (in case of HLAW) and to get a B quality class welds in all thicknesses after parameter optimization.

  6. Nanosecond pulsed laser welding of high carbon steels

    Science.gov (United States)

    Ascari, Alessandro; Fortunato, Alessandro

    2014-03-01

    The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.

  7. Laser facial nerve welding in a rabbit model.

    Science.gov (United States)

    Bloom, Jason D; Bleier, Benjamin S; Goldstein, Stephen A; Carniol, Paul J; Palmer, James N; Cohen, Noam A

    2012-01-01

    To assess the feasibility of laser tissue welding for repair of facial nerve injury. In a prospective in vivo animal survival surgery model, rabbit facial nerve injury was followed by either standard suture neurorrhaphy or laser tissue welding using a diode laser (808 ± 1 nm) to weld biological solder. Rabbits were evaluated at 4, 8, 12, and 16 weeks by facial videography and electromyography. Histopathological analysis of the repair was performed at 4 and 16 weeks. Videographic analysis demonstrated the laser tissue welding repair trended toward superior outcomes compared with suture neurorrhaphy at all 4 time points. Electrophysiological analysis demonstrated similar or better results, with statistically significant improvement at week 16 (P laser nerve repair created a greater initial inflammatory reaction. An analysis of operative time demonstrated significantly decreased time and ease of use for laser tissue welding. This pilot study demonstrates that laser nerve welding may be an expedient, feasible, and safe method for facial nerve repair in a rabbit model. Further experiments with larger numbers are needed to provide additional evidence that laser tissue welding produces a neurorrhaphy that has functional, electrophysiological, and histological results that could rival traditional suture neurorrhaphy.

  8. Laser welding and syncristallization techniques comparison: "Ex vivo" study.

    Science.gov (United States)

    Fornaini, Carlo; Meleti, Marco; Vescovi, Paolo; Merigo, Elisabetta; Rocca, Jean-Paul

    2013-12-30

    Stabilization of implant abutments through electric impulses at high voltage for a very short time (electrowelding) was developed in the Eighties. In 2009, the same procedure was performed through the use of laser (laser welding) The aim of this study is to compare electrowelding and laser welding for intra-oral implant abutments stabilization on "ex vivo models" (pig jaws). Six bars were welded with two different devices (Nd:YAG laser and Electrowelder) to eighteen titanium implant abutment inserted in three pig jaws. During the welding process, thermal increase was recorded, through the use of k-thermocouples, in the bone close to the implants. The strength of the welded joints was evaluated by a traction test after the removal of the implants. For temperature measurements a descriptive analysis and for traction test "values unpaired t test with Welch's correction" were performed: the significance level was set at PLaser welding gives a lower thermal increase than Electrowelding at the bone close to implants (Mean: 1.97 and 5.27); the strength of laser welded joints was higher than that of Electrowelding even if nor statistically significant. (Mean: 184.75 and 168.29) CONCLUSION: Electrowelding seems to have no advantages, in term of thermal elevation and strength, while laser welding may be employed to connect titanium implants for immediate load without risks of thermal damage at surrounding tissues.

  9. Method for laser welding a fin and a tube

    Energy Technology Data Exchange (ETDEWEB)

    Fuerschbach, Phillip W. (Tijeras, NM); Mahoney, A. Roderick (Albuquerque, NM); Milewski, John O (Santa Fe, NM)

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  10. Effects of nitrogen and hydrogen in argon shielding gas on bead profile, delta-ferrite and nitrogen contents of the pulsed GTAW welds of AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Viyanit, Ekkarut [National Metal and Materials Technology Center (MTEC), Pathaumthani (Thailand). Failure Analysis and Surface Technology Lab; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkom University, Bangkok (Thailand). Dept. of Metallurgical Engineering,; Phakpeetinan, Panyasak; Chianpairot, Amnuysak

    2016-08-01

    The general effects of 1, 2, 3 and 4 vol.-% nitrogen and 1, 5 and 10 vol.-% hydrogen in argon shielding gas on weld bead profile (depth/width ratio: D/W) and the δ-ferrite content of AISI 316L pulsed GTAW welds were investigated. The limits for imperfections for the quality levels of welds were based on ISO 5817 B. The plates with a thickness of 6 mm were welded at the flat position and the bead on plate. Increasing hydrogen content in argon shielding gas increases the D/W ratio. Excessive hydrogen addition to argon shielding gas will result in incompletely filled groove and excessive penetration of weld. Increasing welding speed decreases the weld-metal volume and the D/W ratios. Nitrogen addition to argon shielding gas has no effect on the D/W ratio. The addition of a mixture of nitrogen and hydrogen to argon shielding gas on the D/W ratio does not show any interaction between them. An effect on the D/W ratio can be exclusively observed as a function of hydrogen content. Increasing hydrogen content in argon shielding gas increases the δ-ferrite content of weld metal. Increasing either nitrogen content in shielding gas or welding speed decreases the δ-ferrite content of weld metal. The nitrogen addition increases the weld metal nitrogen content, however, the hydrogen addition leads to a decrease of weld metal nitrogen content.

  11. Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple Constraints

    Science.gov (United States)

    2015-12-10

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--15-9665 Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Temperature Histories of Structural Steel Laser and Hybrid Laser-GMA Welds Calculated Using Multiple...202) 767-2601 Inverse thermal analyses of structural steel deep-penetration welds are presented. These analyses employ a methodology that is in terms of

  12. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  13. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Sabina Luisa Campanelli

    2013-12-01

    Full Text Available Friction Stir Welding (FSW is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  14. Process characteristics of fibre-laser-assisted plasma arc welding

    OpenAIRE

    Mahrle, A; SCHNICK, M; Rose, S; Demuth, C; Beyer, E.; Füssel, U

    2011-01-01

    Abstract Experimental and theoretical investigations on fibre-laser assisted plasma arc welding (LAPW) have been performed. Welding experiments were carried out on aluminium and steel sheets. In case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In case of aluminium weldin...

  15. Effect of Thermal and Diffusion Processes on Formation of the Structure of Weld Metal in Laser Welding of Dissimilar Materials

    Science.gov (United States)

    Turichin, G. A.; Klimova, O. G.; Babkin, K. D.; Pevzner, Ya. B.

    2014-01-01

    The thermal and diffusion processes in laser welding of dissimilar materials are simulated. The active LaserCAD model for welding of dissimilar materials is amended. The developed model is verified for the Fe - Cu system. The microstructure of a weld of tin bronze and low-carbon steel is studied and the elements in the diffusion zone are analyzed. The computed and experimental data for laser and electron-beam welding are shown to agree well.

  16. Eco-efficiency of laser welding applications

    Science.gov (United States)

    Kaierle, Stefan; Dahmen, Martin; Güdükkurt, Okan

    2011-05-01

    As widely known laser materials processing has some advantages regarding local heat input and controllability. In many fields applications were developed which are not accessible for conventional thermal processing. In other fields laser-supported manufacturing techniques are a valuable alternative. On the one hand laser techniques enable increased processing speed and less post-processing, leading to an increased productivity. On the other hand low efficiencies in the energy conversion seem to be a major drawback and apparently limit the range of applications. In the frame of conventional processing schemes laser beam welding requires a high utilization in order to run economically. Main advantages lie in the reduced consumption of material and the reduced efforts in post processing. Because of the locally concentrated heat input process emissions are lower which reduces energy and material consumption in the auxiliary chain. To make full use of the often-conjured flexibility a multitude of manufacturing schemes had been developed and adapted. In order to appraise the versatility of laser driven processing techniques a cost and benefit analysis based on a life-cycle approach is conducted including both, economics and ecology. Eco-efficiency is rated by a variation of the BASF method. Taking into account the reduced consumption of consumables, reduced effort for preparation and post-processing, and focusing on specific application ranges a positive environmental impact can be proven.

  17. Energetic peculiarities of metal heating under laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, M.I.; Nikiforov, G.D.; Fedorov, S.A. (Moskovskij Aviatsionnyj Tekhnologicheskij Inst. (USSR))

    1981-07-01

    A connection between the energy and thermal parameters of the welding process of laser welding is studied. It is established that the connection between energy and thermal parameters of laser welding regime is carried out through the coefficient of metal absorption. Experimental determination of absorption coefficients of various metals (aluminium alloys, copper, 12Kh18N10T steel, St 3 steel, 0T4 titanium alloy, VN2 niobium alloy) has permitted to develope the methodics of approximated thermal calculations and to built up a nomogram for determining parameters of lazer welding regime. Limits of the thickness of welded sheets of the above materials in dependence on the welding speed are determined according to the nomogram.

  18. Deflection load characteristics of laser-welded orthodontic wires.

    Science.gov (United States)

    Watanabe, Etsuko; Stigall, Garrett; Elshahawy, Waleed; Watanabe, Ikuya

    2012-07-01

    To compare the deflection load characteristics of homogeneous and heterogeneous joints made by laser welding using various types of orthodontic wires. Four kinds of straight orthodontic rectangular wires (0.017 inch × 0.025 inch) were used: stainless-steel (SS), cobalt-chromium-nickel (Co-Cr-Ni), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (12 mm long each) were made by Nd:YAG laser welding. Two types of welding methods were used: two-point welding and four-point welding. Nonwelded wires were also used as a control. Deflection load (N) was measured by conducting the three-point bending test. The data (n  =  5) were statistically analyzed using analysis of variance/Tukey test (P welded specimens showed lower deflection loads compared to corresponding control wires and exhibited higher deflection loads compared to heterogeneously welded combinations. For homogeneous combinations, Co-Cr-Ni/Co-Cr-Ni showed a significantly (P welded groups. In heterogeneous combinations, SS/Co-Cr-Ni and β-Ti/Ni-Ti showed higher deflection loads than those of the remaining heterogeneously welded combinations (significantly higher for SS/Co-Cr-Ni). Significance (P welding method). However, no significant difference in deflection load was found between four-point and two-point welding in each homogeneous or heterogeneous combination. Heterogeneously laser-welded SS/Co-Cr-Ni and β-Ti/Ni-Ti wires provide a deflection load that is comparable to that of homogeneously welded orthodontic wires.

  19. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  20. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    Science.gov (United States)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  1. Microstructural Aspects of Bifocal Laser Welding of Trip Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2017-06-01

    Full Text Available This work is concerned with comparative tests involving single-spot and twin-spot laser welding of thermomechanically rolled TRIP steel. The welding tests were carried out using keyhole welding and a solid state laser. In the case of twin-spot laser beam welding, the power distribution of beams was 50%:50%. The changes in macro- and microstructures were investigated using light and scanning electron microscopy. Three main zones subjected to the tests included the fusion zone, the heat affected zone and the intercritical heat affected zone (transition zone between the base material and the HAZ. Special attention was paid to the effect of various thermal cycles on the microstructure of each zone and on martensite morphology. The tests involved hardness measurements carried out in order to investigate the effect of different microstructures on mechanical properties of welds.

  2. Joining characteristics of orthodontic wires with laser welding.

    Science.gov (United States)

    Iijima, Masahiro; Brantley, William A; Yuasa, Toshihiro; Muguruma, Takeshi; Kawashima, Isao; Mizoguchi, Itaru

    2008-01-01

    Laser welding 0.016 x 0.022 in. beta-Ti, Ni-Ti, and Co-Cr-Ni orthodontic wires was investigated by measuring joint tensile strength, measuring laser penetration depth, determining metallurgical phases using micro X-ray diffraction (micro-XRD), and examining microstructures with an scanning electron microscope (SEM). Welding was performed from 150 to 230 V. Mean tensile strength for Ni-Ti groups was significantly lower (p laser-welded specimens. Although mean tensile strength for beta-Ti and Co-Cr-Ni was significantly lower than for control specimens joined by silver soldering, it was sufficient for clinical use. The beta-Ti orthodontic wire showed deeper penetration depth from laser welding than the Ni-Ti and Co-Cr-Ni orthodontic wires. Micro-XRD patterns of laser-welded beta-Ti and Ni-Ti obtained 2 mm from the boundary were similar to as-received specimens, indicating that original microstructures were maintained. When output voltages of 190 V and higher were used, most peaks from joint areas disappeared or were much weaker, perhaps because of a directional solidification effect, evidenced by SEM observation of fine striations in welded beta-Ti. Laser welding beta-Ti and Co-Cr-Ni wires may be acceptable clinically, since joints had sufficient strength and metallurgical phases in the original wires were not greatly altered.

  3. Thermal and molecular investigation of laser tissue welding

    Energy Technology Data Exchange (ETDEWEB)

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  4. Modeling and design of energy concentrating laser weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.O. [Los Alamos National Lab., NM (United States); Sklar, E. [OptiCad Corp., Santa Fe, NM (United States)

    1997-04-01

    The application of lasers for welding and joining has increased steadily over the past decade with the advent of high powered industrial laser systems. Attributes such as high energy density and precise focusing allow high speed processing of precision assemblies. Other characteristics of the process such as poor coupling of energy due to highly reflective materials and instabilities associated with deep penetration keyhole mode welding remain as process limitations and challenges to be overcome. Reflective loss of laser energy impinging on metal surfaces can in some cases exceed ninety five percent, thus making the process extremely inefficient. Enhanced coupling of the laser beam can occur when high energy densities approach the vaporization point of the materials and form a keyhole feature which can trap laser energy and enhance melting and process efficiency. The extreme temperature, pressure and fluid flow dynamics of the keyhole make control of the process difficult in this melting regime. The authors design and model weld joints which through reflective propagation and concentration of the laser beam energy significantly enhance the melting process and weld morphology. A three dimensional computer based geometric optical model is used to describe the key laser parameters and joint geometry. Ray tracing is used to compute the location and intensity of energy absorption within the weld joint. Comparison with experimentation shows good correlation of energy concentration within the model to actual weld profiles. The effect of energy concentration within various joint geometry is described. This method for extending the design of the laser system to include the weld joint allows the evaluation and selection of laser parameters such as lens and focal position for process optimization. The design of narrow gap joints which function as energy concentrators is described. The enhanced laser welding of aluminum without keyhole formation has been demonstrated.

  5. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann

    2013-01-01

    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  6. Assessment of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    2003-01-01

    Crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including (1) Application of known information to predict solidification phases, (2) Weld metal solidification rate...

  7. Comparative study on laser welding and TIG welding of semi-solid high pressure die cast A356 aluminium alloy

    CSIR Research Space (South Africa)

    Govender, G

    2007-07-01

    Full Text Available and micro-Vickers hardness (MVH) properties of the welds were investigated. It was found that the laser welding processes yielded a finer dendritic fusion zone and a much smaller heat affected zone (HAZ) compared to the TIG welds. The HAZ for both the laser...

  8. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    Science.gov (United States)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  9. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  10. Study on weld pool behaviors and ripple formation in dissimilar welding under pulsed laser

    Science.gov (United States)

    Liang, Rong; Luo, Yu

    2017-08-01

    A three-transient numerical model is developed to study the dissimilar metal welding under pulsed laser. The melting, resolidification and vaporization inducing recoil pressure are considered in this model. Their effects on molten pool dynamic and the weld bead formation are studied. The similar metal welding and dissimilar metal welding under pulsed laser are respectively simulated by using this model. It is found that surface ripples are caused mainly by the periodical laser and molten pool solidification. In the first, this model is validated by the weld bead geometry comparison between the simulated and experimental results in similar metal welding. Then, this model is applied to simulate the dissimilar metal welding under pulsed laser. The results show that the distributions of the temperature, melt-flow velocity and surface ripples are asymmetric due to the differences in physical properties of the materials. The higher pulse overlapping factor decreases the solidification rate, leading to the more uniform penetration depths and the finer ripples. Good agreements between the experimental observations and simulation results are obtained by the proposed model.

  11. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    Science.gov (United States)

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  12. Laser transmission welding of Clearweld-coated polyethylene glycol terephthalate by incremental scanning technique

    Science.gov (United States)

    Wang, Y. Y.; Wang, A. H.; Weng, Z. K.; Xia, H. B.

    2016-06-01

    Transmission laser welding using Incremental Scanning Technique(TWIST) mode and conventional contour welding mode were adopted to investigate laser transmission welding of 0.5 mm thick PET plate. A 1064 nm fiber laser was used to weld PET at the (TWIST) mode, and an 808 nm diode laser was applied to conduct the conventional contour welding. The Clearweld coating was used as laser absorbing material. The influences of laser parameters (i.e. defocusing distance, distance between two circles) on the quality of weld seams were analyzed by optical microscopy. Moreover, geometry and shear strength of the weld zone were tested to optimize laser parameters. Additionally, the water vapor permeability (WVP) of weld seams was measured to test hermetical capacity. Results show that the shear strength and hermetic capacity of weld seam by TWIST mode are at the same level in comparison with that of the conventional contour welding.

  13. Influence of shielding gas composition on weld profile in pulsed Nd:YAG laser welding of low carbon steel

    Directory of Open Access Journals (Sweden)

    M Jokar

    2014-12-01

    Full Text Available Weld area and weld depth/width ratio can be considered to be of the most important geometrical factors in pulsed laser welding. The effects of carbon dioxide and oxygen additions to the argon shielding gas on the weld properties in pulsed laser welding of low carbon steel is investigated. Presence of carbon dioxide and oxygen up to 10 and 15 percent respectively decreases the weld geometrical factors. But, at higher levels of additions, the weld geometrical factors will increase. It is observed that the plasma plume temperature decreases from 6000K to 5500K with the addition of 15% carbon dioxide but increases to 7700K with 25% carbon dioxide addition. Increase in laser absorption coefficient, laser energy absorption, formation of oxide layer on the work-piece surface, exothermic reactions and their competitive effects can be considered as the competing phenomena involved in such a behavior in the weld profile

  14. Comparative evaluation of tungsten inert gas and laser beam welding of AA5083-H321

    Indian Academy of Sciences (India)

    K Subbaiah; M Geetha; B Shanmugarajan; S R Koteswara Rao

    2012-10-01

    In this study, the bead-on-plate welds were made on AA5083-H321 alloy plates using both tungsten inert gas (TIG) welding and laser beam (LB) welding processes to study the enhancement of mechanical properties such as weld yield strength and hardness. The low heat input of laser beam welding effectively reduced the size of the fusion zone and heat affected zone compared to tungsten inert gas welding process. High speed LB welding and fast heating and cooling of LB welding process hinders grain growth compared to TIG welding process. The effect of vapourization of volatile alloying elements is also considered. It seems that magnesium evaporation is relatively less in LB welding compared to TIG welding. Tensile testing of the welded joints revealed that LB welding results in superior mechanical properties. It is concluded that LB welding process is more suitable to join AA5083-H321.

  15. Sensor development and integration for robotized laser welding

    NARCIS (Netherlands)

    Iakovou, Dimitrios

    2009-01-01

    Laser welding requires fast and accurate positioning of the laser beam over the seam trajectory. The task of accurate positioning of the laser tools is performed by robotic systems. It is therefore necessary to teach the robot the path it has to follow. Seam teaching is implemented in several ways:

  16. Modeling the field of laser welding melt pool by RBFNN

    CERN Document Server

    Bracic, A Borstnik; Grabec, I

    2007-01-01

    Efficient control of a laser welding process requires the reliable prediction of process behavior. A statistical method of field modeling, based on normalized RBFNN, can be successfully used to predict the spatiotemporal dynamics of surface optical activity in the laser welding process. In this article we demonstrate how to optimize RBFNN to maximize prediction quality. Special attention is paid to the structure of sample vectors, which represent the bridge between the field distributions in the past and future.

  17. Assessment of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    2003-01-01

    Crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including (1) Application of known information to predict solidification phases, (2) Weld metal solidification rate...... are given. Results from the solidification rate measurements had high variations. They do not show an expected correlation between the crack resistance and the solidification rate. The employment of pulsed seam welds is assessed not to be usable in the present measurement method. From evaluation of several...... crack tests, the Weeter spot weld test has been chosen to form a basis for the development of a practicable method to select specific alloys for welding applications. A new test, the Groove weld test was developed, which has reduced the time consumption and lightened the analysis effort considerably...

  18. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  19. The influence of laser line hardening of carbon steel AISI 1045 on the lubricated wear against steel AISI 52100

    NARCIS (Netherlands)

    Visscher, H.; Rooij, de M.B.; Vroegop, P.H.; Schipper, D.J.

    1995-01-01

    To diminish wear in tribological systems it is not always necessary to provide the entire surface with a wear resistant layer. Depending on the application it is sufficient to harden locally the load carrying areas which are subjected to wear. Such areas can be treated properly by a laser, either to

  20. Problems in laser repair welding of polished surfaces

    Directory of Open Access Journals (Sweden)

    A. Skumavc

    2014-10-01

    Full Text Available This paper presents problems in laser repair welding of the tools for injection moulding of plastics and light metals. Tools for injection moulding of the car headlamps are highly polished in order to get a desirable quality of the injected part. Different light metals, glasses, elastomers, thermoplastics and thermosetting polymers are injected into the die cavity under high pressures resulting in the surface damages of the tool. Laser welding is the only suitable repair welding technique due to the very limited sputtering during deposition of the filler metal. Overlapping of the welds results in inhomogeneous hardness of the remanufactured surface. Results have shown strong correlation between hardness and surface waviness after final polishing of the repair welded surface.

  1. The effect of laser pulse tailored welding of Inconel 718

    Science.gov (United States)

    Mccay, T. Dwayne; Mccay, Mary Helen; Sharp, C. Michael; Womack, Michael G.

    1990-01-01

    Pulse tailored laser welding has been applied to wrought, wrought grain grown, and cast Inconel 718 using a CO2 laser. Prior to welding, the material was characterized metallographically and the solid state transformation regions were identified using Differential Scanning Calorimetry and high temperature x-ray diffraction. Bead on plate welds (restrained and unrestrained) were then produced using a matrix of pulse duty cycles and pulsed average power. Subsequent characterization included heat affected zone width, penetration and underbead width, the presence of cracks, microfissures and porosity, fusion zone curvature, and precipitation and liquated region width. Pedigree welding on three selected processing conditions was shown by microstructural and dye penetrant analysis to produce no microfissures, a result which strongly indicates the viability of pulse tailored welding for microfissure free IN 718.

  2. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1999-01-01

    In a number of systematic laboratory experiments the critical gap distance that results in sound beads in laser butt welding is sought identified. By grinding the edges of the sheets, a number of "reference" welds are made and compared to the sheets with shear cut edges. In the tests the gap...... was set at 0.00, 0.02, 0.05, 0.08 and 0.10 mm. Mild steel (St 1203) with a thickness of 0.75 and 1.25 mm with and without zinc coating were analysed. A total of 120 welds were made at different welding speeds.As quality norm DIN 8563 was used to divide the welds into quality classes. A number of welds...... were also x-ray photographed.Of the weld combinations analysed 80 % were of high quality and 17 % of a non-acceptable quality. 90 % of the bad welds had a gap distance larger than 0.05 mm. The results showed that 85 % of the bad welds were shear cut and only 15 % grinded. Two third of the bad welds...

  3. Research on the properties of laser welded joints of aluminum killed cold rolled steel

    Institute of Scientific and Technical Information of China (English)

    阎启; 曹能; 俞宁峰

    2002-01-01

    Aluminum killed cold rolled steel used for automobiles was welded shows that high quality of welding can be realized at welding speed of laser welded joints for aluminum killed cold rolled steel increased compared to those of the base metal while the formability decreased. Forming limit diagram of joint material indicated that the laser weld seam should avoid the maximum deformation area of automobile parts during the designing period for the position of weld seam.

  4. Mechanical properties of thin films of laser-welded titanium and their associated welding defects.

    Science.gov (United States)

    Wu, Yulu; Xin, Haitao; Zhang, Chunbao; Tang, Zhongbin; Zhang, Zhiyuan; Wang, Weifeng

    2014-11-01

    The aim of this study was to evaluate the mechanical properties of thin films of laser-welded cast titanium using an interference strain/displacement gauge (ISDG) and to analyze factors that affect laser welding. Dog-bone-shaped small specimens of cast titanium were prepared by wire cutting after they were laser-welded. The specimens were divided into three groups according to the gap distance of the laser weld; the control was non-welded titanium. Small specimens without cast defects detected by X-ray screening were measured by a tensile test machine using ISDG, and stress-strain curves were drawn. Finally, the fracture texture was analyzed. The ultimate tensile strengths (UTSs) of specimens with a gap distance of 0.00, 0.25, and 0.50 mm were 492.16 ± 33.19, 488.09 ± 43.18, and 558.45 ± 10.80 MPa, respectively. There were no significant differences in UTS between the test groups and the control group (p > 0.05). However, the plastic deformation and the percent elongation increased as the gap distance increased. Incomplete penetration defects appeared in groups that had small gap distances, which may have affected the properties of the laser-welded titanium. However, the welding material was still pure titanium. These results suggest that an appropriate gap distance should be maintained to improve the application of dental laser welding.

  5. Comportamiento tribológico del acero AISI W112 con endurecimiento lineal mediante laser de ND:YAG.L. // Tribological behavior of AISI W112 steel with lineal hardening by means of ND:YAG laser.

    Directory of Open Access Journals (Sweden)

    R. Sagaró

    2001-07-01

    Full Text Available Para disminuir el desgaste en los sistemas tribológicos frecuentemente se acostumbra a endurecer localmente aquellaszonas sometidas a desgaste. En el presente trabajo, para incrementar la dureza y la resistencia al desgaste del acero AISIW112 se empleó un láser de Nd:YAG. Las características de fricción y desgaste del acero AISI W112 en condiciones decontacto deslizante en fricción seca con el acero 65MN4 fueron evaluadas para tratamientos convencionales luego de suirradiación con láser. En el trabajo se presentan además las transformaciones que ocurren durante el tratamiento con láser,así como la influencia de los parámetros operacionales del láser en la profundidad de la capa endurecida y lascaracterísticas tribológicas. El trabajo experimental corroboró que la resistencia al desgaste del acero AISI W112 es variasveces superior en comparación con los tratamientos convencionales.Palabras claves: Comportamiento tribológico, endurecimiento lineal, tratamiento superficial con láser._______________________________________________________________________________Abstract.Diminishing wear in tribological systems is usually done by locally hardening those areas subject to wear. In this paper ispresented the increasing of hardness and resistance to wear of AISI W112 steel by means of a Nd:YAG laser. Thecharacteristics of friction and wear of AISI W112 steel under sliding contact in dry friction conditions with the 65MN4steel were evaluated for conventional treatments and after laser irradiation. In the work are presented the transformationsthat take place during the laser treatment, as well as the influence of the laser operational parameters in the depth of thehardened layer and the tribological characteristics. The experimental work corroborated that the resistance to wear of AISIW112 steel is several times superior in comparison with conventional treatments.Key words: Tribological behavior , lineal hardening, laser superficial

  6. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj

    2011-04-01

    In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and thermal fluxes present in the turbulent pool are linked to diffusivity and Prandtl number variation. It was shown that below a critical value of Rayleigh number, the conduction mode of melt transfer signifying beam absorption becomes dominant. Above this value, convective heat transfer indicates melting and evaporation occurring in the weld pool during laser welding. The evaporative recoil pressure expels the liquid while surface tension and hydrostatic pressure help to retain the melt in the keyhole cavity in this high power laser beam welding. The understanding of several hydrodynamic phenomena occuring in the weld pool is valuable not only for understanding basic mechanistic aspects but also for process optimization involved in laser beam welding.

  7. Joint Performance for Laser Cutting-welding of Zinc-coated Tailored Blanks

    Institute of Scientific and Technical Information of China (English)

    WANG Chunming; HU Lunji; LIU Jianhua; HU Xiyuan; DU Hanbin

    2005-01-01

    The process of laser butt welding of zinc-coated steel ( SGCD3 and WLZn ) blanks was presented, whose edges were prepared by laser cutting. The properties of the butt joints, such as tensile strength, bending, stamping, weld shape, and corrosion- resistant were tested. The experiments of laser cutting and welding were carried out on a custom-made system designed, which is a set of equipment for wide sheet butt welding based on a laser cutting-welding combination process. The experiments proved the technological feasibility of laser butt welding for thin zinc coated steel sheets whose edges were prepared by laser cutting on the same equipment.

  8. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  9. Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding

    Science.gov (United States)

    Cai, Chuang; Li, Liqun; Tao, Wang; Peng, Genchen; Wang, Xian

    2016-09-01

    Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb)2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.

  10. Laser welding of polymers, compatibility and mechanical properties

    DEFF Research Database (Denmark)

    Nielsen, Steen Erik; Strange, Marianne; Kristensen, Jens Klæstrup

    2013-01-01

    Laser welding of polymers is today a commonly used industrial technology. It has shown obvious advantages compared to e.g. adhesive bonding in terms of higher productivity, better quality and easiness for automation. The ongoing development of lasers tailored for polymer welding in coordination....... There is an increasing industrial interest in joining dissimilar polymers. To overcome the challenges involved increased focus is set on the understanding of joining mechanisms, morphology and molecular structure behavior. Also the understanding of resulting mechanical and thermal properties is presently subject...... for research and development. This paper presents some research results related to laser welding of various polymer materials, including weld compatibility investigations related to the joining of different polymers. Theory for bonding mechanisms, strength development, mechanical properties testing and other...

  11. Investigation of laser tissue welding dynamics via experiment and modeling.

    Science.gov (United States)

    Small, W; Maitland, D J; Heredia, N J; Eder, D C; Celliers, P M; Da Silva, L B; London, R A; Matthews, D L

    1997-02-01

    An in vitro study of laser tissue welding mediated with a dye-enhanced protein solder was performed. Freshly harvested sections of porcine aorta were used for the experiments. Arteriotomies approximately 4 mm in length were treated using an 805 nm continuous-wave diode laser coupled to a 1-mm diameter fiber. Temperature histories of the surface of the weld site were obtained using a fiberoptic-based infrared thermometer. The experimental effort was complemented by the LATIS (LAser-TISsue) computer code, which numerically simulates the exposure of tissue to near-infrared radiation using coupled Monte Carlo, thermal transport, and mass transport models. Comparison of the experimental and simulated thermal results shows that the inclusion of water transport and evaporative losses in the model is necessary to determine the thermal distributions and hydration state in the tissue. The hydration state of the weld site was correlated with the acute weld strength.

  12. Laser-Hybrid welding, an innovative technology to join automotive body parts

    Science.gov (United States)

    Sieben, Manuel; Brunnecker, Frank

    The design of Tail lamps has been changed dramatically since cars built. At modern lamps, the lenses are absolutely transparent and allow a direct view onto the weld seam. Conventional welding technologies, such as vibration and hot plate welding cannot compete with this demand. Focused on this targeted application, LPKF Laser & Electronics AG has developed in cooperation with the Bavarian Laser Centre a unique Laser welding technology called hybrid welding.

  13. Laser Shock Processing of Metal Sheet and Welded Joints

    Institute of Scientific and Technical Information of China (English)

    ZOU Shi-kun; TAN Yong-sheng; ZHANG Xiao-bin; LIU Fang-jun

    2004-01-01

    In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of Al-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel 1Cr18Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about 1mm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test, the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding 1Cr18Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of 1Cr1 8Ni9Ti welded joints.

  14. Laser Shock Processing of Metal Sheet and Welded Joints

    Institute of Scientific and Technical Information of China (English)

    ZOUShi-kun; TANYong-sheng; ZHANGXiao-bin; LIUFang-jun

    2004-01-01

    In order to study the application of laser shock processing(LSP) as a post weld treatment technology and a strengthening technology, a series experiments and analysis were taken in this paper. The hardness of the laser shock processed zone of A1-Li alloy was measured, and the microstructure and mechanical properties of the welded joints of the Ni-based superalloy GH30 and the Austenitic stainless steel 1Crl8Ni9Ti were compared with those without LSP in this paper. The results showed that the size of strengthened zone was similar to that of laser spot and strengthened layer was about lmm deep, and the high intense dislocations and twins produced in the shocked zone. Plastic strain also gained surface residual compress stress, which is benefit for the fatigue properties of welded zones. In this test, the surface hardness of welding zone of the superalloy GH30 improved obviously and tensile strength increased by 12%, but the improvement of fatigue life was not obvious; Martensite phase is formed in plasma welding 1Crl8Ni9Ti, which reduced the effect of strain deformation martensite induced by laser shock processing, but the surface residual compress stress gained by laser shock processing can obviously improve the fatigue life of 1Crl 8Ni9Ti welded joints.

  15. Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum

    Science.gov (United States)

    von Witzendorff, P.; Kaierle, S.; Suttmann, O.; Overmeyer, L.

    2016-03-01

    Pulsed laser sources with pulse durations in the millisecond regime can be used for spot welding and seam welding of aluminum. Seam welds are generally produced with several overlapping spot welds. Hot cracking has its origin in the solidification process of individual spot welds which determines the cracking morphology along the seam welding. This study used a monitoring unit to capture the crack geometry within individual spot welds during seam welding to investigate the conditions for initiation, propagation and healing (re-melting) of solidification cracking within overlapping pulsed laser welds. The results suggest that small crack radii and high crack angles with respect to welding direction are favorable conditions for crack healing which leads to crack-free seam welds. Optimized pulse shapes were used to produce butt welds of 0.5 mm thick 6082 aluminum alloys. Tensile tests were performed to investigate the mechanical strength in the as-welded condition.

  16. Possibilities in optical monitoring of laser welding process

    Science.gov (United States)

    Horník, Petr; Mrňa, Libor; Pavelka, Jan

    2016-11-01

    Laser welding is a modern, widely used but still not really common method of welding. With increasing demands on the quality of the welds, it is usual to apply automated machine welding and with on-line monitoring of the welding process. The resulting quality of the weld is largely affected by the behavior of keyhole. However, its direct observation during the welding process is practically impossible and it is necessary to use indirect methods. At ISI we have developed optical methods of monitoring the process. Most advanced is an analysis of radiation of laser-induced plasma plume forming in the keyhole where changes in the frequency of the plasma bursts are monitored and evaluated using Fourier and autocorrelation analysis. Another solution, robust and suitable for industry, is based on the observation of the keyhole inlet opening through a coaxial camera mounted in the welding head and the subsequent image processing by computer vision methods. A high-speed camera is used to understand the dynamics of the plasma plume. Through optical spectroscopy of the plume, we can study the excitation of elements in a material. It is also beneficial to monitor the gas flow of shielding gas using schlieren method.

  17. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    Science.gov (United States)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  18. Experimental Development of Dual Phase Steel Laser-arc Hybrid Welding and its Comparison to Laser and Gas Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Wagner Duarte Antunes

    Full Text Available Abstract Dual phase DP600 steels have been used in many automobile structures and laser welding has been the standard method for the joining of different sections. This work proposed a comparison between laser welding with arc welding (GMAW and with hybrid laser-arc welding in order to access the microstructures and the mechanical behavior. The laser and hybrid welds are competitive in terms of microstructure and mechanical behavior, presenting both acceptable and tough welds. The maximum ductility of the laser and hybrid welds are very similar, around 14%, and near to the values observed in the base material. The GMAW presents low ductility due to the softening caused by tampering of the martensite, and thus is unacceptable as the welding procedure.

  19. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    Science.gov (United States)

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  20. Influence of weld stiffness on buckling strength of laser-welded web-core sandwich plates

    OpenAIRE

    Jelovica, Jasmin; Romanoff, Jani; Ehlers, Sören; Varsta, Petri

    2012-01-01

    This paper investigates the influence of weld rotation stiffness on the global bifurcation buckling strength of laser-welded web-core sandwich plates. The study is carried out using two methods, the first is the equivalent single-layer theory approach solved analytically for simply supported plates and numerically for clamped plates. First-order shear deformation theory is used. The second method is the three-dimensional model of a sandwich plate solved with finite element method. Both approa...

  1. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji [Joining and Welding Research Institute (JWRI), Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2007-10-07

    The fibre laser has been receiving great attention due to its advantages of high efficiency, high power and high beam quality, and is expected to be one of the most desirable heat sources for high-speed and deep-penetration welding. In this study, therefore, in bead-on-plate welding of Type 304 stainless steel plates with 6 kW fibre laser, the effects of laser power, power density and welding speed on the formation of sound welds were investigated with four laser beams of 130, 200, 360 and 560 {mu}m in spot diameter, and their welding phenomena were clarified with high-speed video cameras and an x-ray transmission real-time imaging system. The weld beads showed a keyhole type of penetration at any diameter, and the maximum penetration of 11 mm in depth was obtained at 130 {mu}m spot diameter and 0.6 m min{sup -1} welding speed. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, and sound partially penetrated welds without welding defects such as porosity, underfilling or humping could be produced at wide process windows of welding speeds between 4.5 and 10 m min{sup -1} with fibre laser beams of 360 {mu}m or 560 {mu}m in spot diameter. The high-speed video observation pictures and the x-ray images of the welding phenomena at 6 m min{sup -1} welding speed and 360 {mu}m spot diameter show that a sound weld bead was formed owing to a long molten pool suppressing and accommodating spattering and a stable keyhole generating no bubbles from the tip, respectively.

  2. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry

    Science.gov (United States)

    Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji

    2007-10-01

    The fibre laser has been receiving great attention due to its advantages of high efficiency, high power and high beam quality, and is expected to be one of the most desirable heat sources for high-speed and deep-penetration welding. In this study, therefore, in bead-on-plate welding of Type 304 stainless steel plates with 6 kW fibre laser, the effects of laser power, power density and welding speed on the formation of sound welds were investigated with four laser beams of 130, 200, 360 and 560 µm in spot diameter, and their welding phenomena were clarified with high-speed video cameras and an x-ray transmission real-time imaging system. The weld beads showed a keyhole type of penetration at any diameter, and the maximum penetration of 11 mm in depth was obtained at 130 µm spot diameter and 0.6 m min-1 welding speed. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, and sound partially penetrated welds without welding defects such as porosity, underfilling or humping could be produced at wide process windows of welding speeds between 4.5 and 10 m min-1 with fibre laser beams of 360 µm or 560 µm in spot diameter. The high-speed video observation pictures and the x-ray images of the welding phenomena at 6 m min-1 welding speed and 360 µm spot diameter show that a sound weld bead was formed owing to a long molten pool suppressing and accommodating spattering and a stable keyhole generating no bubbles from the tip, respectively.

  3. [The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].

    Science.gov (United States)

    Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao

    2016-01-01

    The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding.

  4. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  5. Molten pool and temperature field in CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Duan Aiqin; Chen Li; Wang Yajun; Hu Lunji

    2006-01-01

    Two measuring methods, high-speed camera and optical monitoring system, were used to study processes of laser welding. Molten pool, cooling time and temperature field were analyzed based on real measured images and optical signal data. The results show that the width of molten pool is almost equal to the width of weld, and length is about 7.8 mm. The solidification time is about 0. 5 s and the temperature gradient is great, so HAZ is very small. The method and results will be of benefit to build the relationship between welding parameters and microstructure.

  6. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304) during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    OpenAIRE

    Reddy Sreenivasulu

    2014-01-01

    Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial ...

  7. Seam gap bridging of laser based processes for the welding of aluminium sheets for industrial applications

    NARCIS (Netherlands)

    Aalderink, B.J.; Aalderink, Benno; Pathiraj, B.; Aarts, Ronald G.K.M.

    2010-01-01

    Laser welding has a large potential for the production of tailor welded blanks in the automotive industry, due to the low heat input and deep penetration. However, due to the small laser spot and melt pool, laser-based welding processes in general have a low tolerance for seam gaps. In this paper,

  8. Seam gap bridging of laser based processes for the welding of aluminium sheets for industrial applications

    NARCIS (Netherlands)

    Aalderink, Bernard Johan; Pathiraj, B.; Aarts, R.G.K.M.

    2010-01-01

    Laser welding has a large potential for the production of tailor welded blanks in the automotive industry, due to the low heat input and deep penetration. However, due to the small laser spot and melt pool, laser-based welding processes in general have a low tolerance for seam gaps. In this paper, f

  9. Parametric optimisation and microstructural analysis on high power Yb-fibre laser welding of Ti-6Al-4V

    Science.gov (United States)

    Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.

    2016-11-01

    In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.

  10. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  11. Butt weld of aluminum alloy plates 6063 and LY12 by laser beam

    Science.gov (United States)

    Xia, Jin'an; Cheng, Zhaogu; Xu, Guoliang; Li, Xianqin

    2000-02-01

    By means of a transverse flow 5 kW CO2 laser with low- order mode laser beam output, 1 - 4 mm thick aluminum alloy plates 6063 and LY12 were successfully butt welded. The result shows that the butt weldability and the weld quality of the aluminum alloy plates are mainly dependent on incident laser power density, laser beam defocused distance and shielding gas. The relationship between the weld quality of the aluminum alloy plates and the welding parameters is discussed. The macrostructure and microstructure of the welded seams are analyzed. The mechanical properties of the welded seams are discussed.

  12. Process characteristics of fibre-laser-assisted plasma arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Mahrle, A; Schnick, M; Rose, S; Demuth, C; Beyer, E; Fuessel, U, E-mail: achim.mahrle@iws.fraunhofer.de [Dresden University of Technology, Institute of Surface and Manufacturing Technology, PO Box, D-01062 Dresden (Germany)

    2011-08-31

    Experimental and theoretical investigations on fibre-laser-assisted plasma arc welding (LAPW) were performed. Welding experiments were carried out on aluminium and steel sheets. In the case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In the case of aluminium welding, a sharp decline in arc voltage and stabilization and guiding of the anodic arc root was observed whereas in steel welding the arc voltage was slightly increased after the laser beam was switched on. However, significant improvement of the melting efficiency with the combined action of plasma arc and laser beam was achieved for both types of material. Theoretical results of additional numerical simulations of the arc behaviour suggest that the properties of the arc plasma are mainly influenced not by a direct interaction with the laser radiation but by the laser-induced evaporation of metal. Arc stabilization with increased current densities is predicted for moderate rates of evaporated metal only whereas metal vapour rates above a certain threshold causes a destabilization of the arc and reduced current densities along the arc axis.

  13. Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints

    Science.gov (United States)

    Zhan, Xiaohong; Peng, Qingyu; Wei, Yanhong; Ou, Wenmin

    2017-09-01

    Laser beam welding technique offers obvious advantages over other fusion welding processes in terms of joining titanium alloy. The microstructure of welded seam and heat affected zone resulted from diverse welding speeds and laser powers were investigated after simulating welding heat treatment. The analysis of the thermal transport properties successfully explained the morphology. Optimal process parameters were obtained. The simulation results were consistent with the corresponding experimental observations.

  14. Joint performance of CO2 laser beam welding 5083-H321 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Qi Junfeng; Zhang Dongyun; Xiao Rongshi; Chen Kai; Zuo Tiechuan

    2007-01-01

    Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam autogenous welding and wire feed welding are conducted on 4mm thick 5083-H321 aluminum alloy sheets at different welding variables. The mechanical properties and microstructure characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Experimental results indicate that both the tensile strength and hardness of laser beam welds are affected by the constitution of filler material, except the yield strength. The soften region of laser beam welds is not in the heat-affected zone (HAZ). The tensile fracture of laser beam welded specimens takes place in the weld zone and close to the weld boundary because of different filler materials. Some pores are found on the fracture face, including hydrogen porosities and blow holes, but these pores have no influence on the tensile strength of laser beam welds. Tensile strength values of laser beam welds with filler wire are up to 345.57MPa, 93% of base material values, and yield strengths of laser beam welds are equivalent to those of base metal (264.50MPa).

  15. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    Science.gov (United States)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  16. Laser Welding and Syncristallization Techniques Comparison: In Vitro Study

    Directory of Open Access Journals (Sweden)

    C. Fornaini

    2012-01-01

    Full Text Available Background. Laser welding was first reported in 1967 and for many years it has been used in dental laboratories with several advantages versus the conventional technique. Authors described, in previous works, the possibility of using also chair-side Nd : YAG laser device (Fotona Fidelis III, =1064 nm for welding metallic parts of prosthetic appliances directly in the dental office, extra- and also intra-orally. Syncristallisation is a soldering technique based on the creation of an electric arc between two electrodes and used to connect implants to bars intra-orally. Aim. The aim of this study was to compare two different laser welding devices with a soldering machine, all of these used in prosthetic dentistry. Material and Methods. In-lab Nd : YAG laser welding (group A = 12 samples, chair-side Nd : YAG laser welding (group B = 12 samples, and electrowelder (group C = 12 samples were used. The tests were performed on 36 CrCoMo plates and the analysis consisted in evaluation, by microscopic observation, of the number of fissures in welded areas of groups A and B and in measurement of the welding strength in all the groups. The results were statistically analysed by means of one-way ANOVA and Tukey-Kramer multiple comparison tests. Results. The means and standard deviations for the number of fissures in welded areas were 8.12±2.59 for group A and 5.20±1.38 for group B. The difference was statistical significant (=0.0023 at the level 95%. On the other hand, the means and standard deviations for the traction tests were 1185.50±288.56 N for group A, 896.41±120.84 N for group B, and 283.58±84.98 N for group C. The difference was statistical significant (=0.01 at the level 95%. Conclusion. The joint obtained by welding devices had a significant higher strength compared with that obtained by the electrowelder, and the comparison between the two laser devices used demonstrated that the chair-side Nd : YAG, even giving a

  17. Laser welding and syncristallization techniques comparison: in vitro study.

    Science.gov (United States)

    Fornaini, C; Merigo, E; Vescovi, P; Meleti, M; Nammour, S

    2012-01-01

    Background. Laser welding was first reported in 1967 and for many years it has been used in dental laboratories with several advantages versus the conventional technique. Authors described, in previous works, the possibility of using also chair-side Nd : YAG laser device (Fotona Fidelis III, λ = 1064 nm) for welding metallic parts of prosthetic appliances directly in the dental office, extra- and also intra-orally. Syncristallisation is a soldering technique based on the creation of an electric arc between two electrodes and used to connect implants to bars intra-orally. Aim. The aim of this study was to compare two different laser welding devices with a soldering machine, all of these used in prosthetic dentistry. Material and Methods. In-lab Nd : YAG laser welding (group A = 12 samples), chair-side Nd : YAG laser welding (group B = 12 samples), and electrowelder (group C = 12 samples) were used. The tests were performed on 36 CrCoMo plates and the analysis consisted in evaluation, by microscopic observation, of the number of fissures in welded areas of groups A and B and in measurement of the welding strength in all the groups. The results were statistically analysed by means of one-way ANOVA and Tukey-Kramer multiple comparison tests. Results. The means and standard deviations for the number of fissures in welded areas were 8.12 ± 2.59 for group A and 5.20 ± 1.38 for group B. The difference was statistical significant (P = 0.0023 at the level 95%). On the other hand, the means and standard deviations for the traction tests were 1185.50 ± 288.56 N for group A, 896.41 ± 120.84 N for group B, and 283.58 ± 84.98 N for group C. The difference was statistical significant (P = 0.01 at the level 95%). Conclusion. The joint obtained by welding devices had a significant higher strength compared with that obtained by the electrowelder, and the comparison between the two laser devices used demonstrated that the chair-side Nd : YAG, even giving

  18. Microstructures and Toughness of Weld Metal of Ultrafine Grained Ferritic Steel by Laser Welding

    Institute of Scientific and Technical Information of China (English)

    Xudong ZHANG; Wuzhu CHEN; Cheng WANG; Lin ZHAO; Yun PENG; Zhiling TIAN

    2004-01-01

    3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120~480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists inheat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.

  19. Modelling and validation of multiple reflections for enhanced laser welding

    Science.gov (United States)

    Milewski, J.; Sklar, E.

    1996-05-01

    The effects of multiple internal reflections within a laser weld joint as functions of joint geometry and processing conditions have been characterized. A computer-based ray tracing model is used to predict the reflective propagation of laser beam energy focused into the narrow gap of a metal joint for the purpose of predicting the location of melting and coalescence to form a weld. Quantitative comparisons are made between simulation cases. Experimental results are provided for qualitative model validation. This method is proposed as a way to enhance process efficiency and design laser welds which display deep penetration and high depth-to-width aspect ratios without high powered systems or keyhole mode melting.

  20. Ultrasonic inspection of AA6013 laser welded joints

    Directory of Open Access Journals (Sweden)

    Adriano Passini

    2011-09-01

    Full Text Available Interest in laser beam welding for aerospace applications is continuously growing, mainly for aluminum alloys. The joints quality is usually assessed by non-destructive inspection (NDI. In this work, bead on plate laser welds on 1.6 mm thick AA6013 alloy sheets, using a 2 kW Yb-fiber laser were obtained and inspected by pulse/echo ultrasonic phased-array technique. Good and poor quality welds were inspected in order to verify the limits of inspection, comparing also to X-ray radiography and metallographic inspections. The results showed that ultrasonic phased array technique was able to identify the presence of grouped porosity, through the attenuation of the amplitude of the echo signal. This attenuation is attributed to the scattering of the waves caused by micro pores, with individual size below the resolution limit of the equipment, but when grouped, can cause a perceptive effect on the reflection spectra.

  1. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    Science.gov (United States)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  2. Applications and mechanisms of laser tissue welding in 1995: review

    Science.gov (United States)

    Godlewski, Guilhem; Prudhomme, Michel; Tang, Jing

    1996-01-01

    For several years laser tissue welding has appeared as a new alternative technique for tissue repair instead of manual sutures. It has been evaluated in different experimental models including blood vessels, skin, nerve, intestine, bile ducts, vas and fallopian tube. Different types of lasers with different sets of parameters have been used: carbon dioxide laser, Nd:YAG laser, argon and KTP laser and diode laser. Recent trends in tissue fusion promote near infrared lasers at low irradiance with intraoperative enhancement of light absorption by specific chromophores. As far as microvascular reconstruction is concerned, successful clinical applications are currently published. Although the molecular mechanism involved in welding is not completely understood, the tissular fusion is considered as a thermal phenomena. In laser assisted microvascular anastomosis, the best experimental model, the ultrastructural examination of arteries anastomosed with Nd:YAG, argon or diode laser revealed interdigitation of collagen fibers which appeared swollen, with modified striation and organized in irregular network. The mechanism of welding involving the formation of non covalent bands between collagen strands, is generally induced by a temperature of 60 - 63 degrees Celsius well adapted to collagen denaturation.

  3. Prediction du profil de durete de l'acier AISI 4340 traite thermiquement au laser

    Science.gov (United States)

    Maamri, Ilyes

    Les traitements thermiques de surfaces sont des procedes qui visent a conferer au coeur et a la surface des pieces mecaniques des proprietes differentes. Ils permettent d'ameliorer la resistance a l'usure et a la fatigue en durcissant les zones critiques superficielles par des apports thermiques courts et localises. Parmi les procedes qui se distinguent par leur capacite en terme de puissance surfacique, le traitement thermique de surface au laser offre des cycles thermiques rapides, localises et precis tout en limitant les risques de deformations indesirables. Les proprietes mecaniques de la zone durcie obtenue par ce procede dependent des proprietes physicochimiques du materiau a traiter et de plusieurs parametres du procede. Pour etre en mesure d'exploiter adequatement les ressources qu'offre ce procede, il est necessaire de developper des strategies permettant de controler et regler les parametres de maniere a produire avec precision les caracteristiques desirees pour la surface durcie sans recourir au classique long et couteux processus essai-erreur. L'objectif du projet consiste donc a developper des modeles pour predire le profil de durete dans le cas de traitement thermique de pieces en acier AISI 4340. Pour comprendre le comportement du procede et evaluer les effets des differents parametres sur la qualite du traitement, une etude de sensibilite a ete menee en se basant sur une planification experimentale structuree combinee a des techniques d'analyse statistiques eprouvees. Les resultats de cette etude ont permis l'identification des variables les plus pertinentes a exploiter pour la modelisation. Suite a cette analyse et dans le but d'elaborer un premier modele, deux techniques de modelisation ont ete considerees, soient la regression multiple et les reseaux de neurones. Les deux techniques ont conduit a des modeles de qualite acceptable avec une precision d'environ 90%. Pour ameliorer les performances des modeles a base de reseaux de neurones, deux

  4. Laser Tissue Welding - Poised for the New Millenium.

    Science.gov (United States)

    Poppas, Dix P; Rucker, G Bino; Scherr, Douglas S

    2000-10-01

    Laser tissue welding is a relatively new technique, which was initially described only about 30 years ago. Over the past 10 years, the implementation of protein solders has redefined the field. Alternative methods of wound closure and of tissue approximation have been quickly accepted in clinical medicine. The techniques and theory involved in performing laser tissue welding may soon be essential knowledge for all surgeons. Just as laparoscopy has become a mainstay for general surgeons and urologists, novel mechanisms of tissue approximation will continue to replace older, less efficacious techniques.

  5. Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    A.K. LAKSHMINARAYANAN; C.S.RAMACHANDRAN; V.BALASUBRAMANIAN

    2014-01-01

    An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic rein-forcement particulate mixtures are used for coating. The best friction stir welding tool selected based on tool wear analysis is used to fabricate the austenitic stainless steel joints.

  6. Refurbishment of damaged tools using the combination of GTAW and laser beam welding

    Directory of Open Access Journals (Sweden)

    J. Tušek

    2014-10-01

    Full Text Available This paper presents the use of two welding processes for the refurbishment of damaged industrial tools. In the first part the problem is presented followed by the comparison of GTAW and laser welding in terms of repair welding of damaged tools. The macrosections of the welds show the difference between both welding processes in repairing of damaged tools. At the conclusion the main findings are presented. In many cases it is useful to use both welding processes in order to achieve better weld quality and to make welding more economical. The order of the technology used depends on the tool material, the use of the tool and the tool damage.

  7. Sensor based robot laser welding - based on feed forward and gain sceduling algorithms

    DEFF Research Database (Denmark)

    Andersen, Henrik John

    2001-01-01

    A real-time control system forlaser welding of thick steel plates are developed and tested in a industrial environment. The robotic execution of the laser welding process is based on measure weld joint geometry and impirically established welding procedures. The influence of industrial production...

  8. High Power Laser Welding. [of stainless steel and titanium alloy structures

    Science.gov (United States)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  9. Evaluation of weld porosity in laser beam seam welds: optimizing continuous wave and square wave modulated processes.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew; Faraone, Kevin M. (Honeywell FM& T, Kansas City, MO); Roach, Robert Allen; Norris, Jerome T.

    2007-02-01

    Nd:YAG laser joining is a high energy density (HED) process that can produce high-speed, low-heat input welds with a high depth-to-width aspect ratio. This is optimized by formation of a ''keyhole'' in the weld pool resulting from high vapor pressures associated with laser interaction with the metallic substrate. It is generally accepted that pores form in HED welds due to the instability and frequent collapse of the keyhole. In order to maintain an open keyhole, weld pool forces must be balanced such that vapor pressure and weld pool inertia forces are in equilibrium. Travel speed and laser beam power largely control the way these forces are balanced, as well as welding mode (Continuous Wave or Square Wave) and shielding gas type. A study into the phenomenon of weld pool porosity in 304L stainless steel was conducted to better understand and predict how welding parameters impact the weld pool dynamics that lead to pore formation. This work is intended to aid in development and verification of a finite element computer model of weld pool fluid flow dynamics being developed in parallel efforts and assist in weld development activities for the W76 and future RRW programs.

  10. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Science.gov (United States)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  11. Highspeed laser welding of steel using a high-power single-mode continuous-wave fiber laser

    Science.gov (United States)

    Drechsel, J.; Loeschner, U.; Schwind, S.; Hartwig, L.; Schille, J.; Exner, H.; Huebner, P.; Eysert, A.

    2013-02-01

    Since a few years, high brilliance laser sources find their way into laser material processing. Laser micro processing by applying high brilliance laser radiation up to 3 kW of continuous wave laser power in combination with ultrafast beam deflection systems has been successfully demonstrated in 2008 for the first time. In the fields of laser welding, high brilliant laser radiation was mainly used for micro welding, but up to now the macro range is still insufficiently investigated. Hence, this study reports on detailed investigations of high speed laser welding of different steel grades, performed with a high power single mode fiber laser source. The laser beam was deflected relative to the sample by using both a fast galvanometer scanner system with f-theta focusing objective and a linear axis in combination with a welding optic, respectively. In the study, the mainly process influencing parameters such as laser power, welding speed, thickness of the metal sheets, angle of incidence and laser beam spot size were varied in a wide range. The weld seam quality was evaluated by structural analyses, static tensile tests and EDX measurements. Finally, the laser welding process has been optimized for different weld seam geometries, for example bead-on-plate welds and butt welds.

  12. Effect of Heat Input During Disk Laser Bead-On-Plate Welding of Thermomechanically Rolled Steel on Penetration Characteristics and Porosity Formation in the Weld Metal

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-03-01

    Full Text Available The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.

  13. Joining characteristics of titanium-based orthodontic wires connected by laser and electrical welding methods.

    Science.gov (United States)

    Matsunaga, Junko; Watanabe, Ikuya; Nakao, Noriko; Watanabe, Etsuko; Elshahawy, Waleed; Yoshida, Noriaki

    2015-01-01

    This study investigated the possibility of electrical and laser welding to connect titanium-based alloy (beta-titanium and nickel-titanium) wires and stainless-steel or cobalt-chromium alloy wires for fabrication of combination arch-wires. Four kinds of straight orthodontic rectangular wires (0.017 × 0.025 inch) were used: stainless-steel (S-S), cobalt-chromium (Co-Cr), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (15 mm long each) were made by electrical welding and laser welding. Non-welded wires (30 mm long) were also used as a control. Maximum loads at fracture (N) and elongation (%) were measured by conducting tensile test. The data (n = 10) were statistically analyzed using analysis of variance/Tukey test (P welding and those of the S-S/S-S and Co-Cr/Co-Cr specimens welded by laser. On the other hand, the laser-welded Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens exhibited higher values of the ML and EL compared to those of the corresponding specimens welded by electrical method. In the heterogeneously welded combinations, the electrically welded Ni-Ti/S-S, β-Ti/S-S and β-Ti/Co-Cr specimens showed significantly (P welded by laser. Electrical welding exhibited the higher values of maximum load at fracture and elongation for heterogeneously welded combinations than laser-welding.

  14. Intraoral Laser Welding (ILW) in Implant Prosthetic Dentistry: Case Report

    Science.gov (United States)

    Fornaini, Carlo; Merigo, Elisabetta; Cernavin, Igor; Lòpez de Castro, Gonzalo; Vescovi, Paolo

    2012-01-01

    The aim of this clinical study was to describe the possibility of using the Nd:YAG laser device utilized in the dental offices to weld metals intraorally. The authors, before applying this technique “in vivo” on human subjects, tested the “in vitro” metal welding efficacy of dental Nd:YAG device firstly by interferometry, SEM, and EDS and subsequently by thermal camera and thermocouples in order to record temperature changes during the welding process on bovine jaws. Four implants were inserted in the edentulous maxillary arch of a 67 years old male patient. Immediately after that, a bar previously made by the dental technician was intraorally welded to the abutments by Nd:YAG laser (Fidelis Plus III, Fotona, Slovenia) with these parameters: 9.90 mJ, 1 Hz, 15 msec, 0.6 mm spot. Then the prosthesis was connected to the bar with four OT Caps. This clinical study, even if preliminary, suggests that laser welding technique may be intraorally used without side effects. PMID:22924134

  15. Detection of transient reflections during laser beam welding of copper

    Science.gov (United States)

    Ganser, Andreas; Liebl, Stefan; Schmitz, Patrick; Zaeh, Michael F.

    2016-03-01

    The advantages of laser beam welding, such as its high flexibility, its high local energy input, and its fast processing speed, led to a substantial increase of industrial applications using this technology. However, only a portion of the laser energy is absorbed during welding due to reflections. These reflections can damage the system components and lead to a reduced process efficiency. Especially when welding copper materials with infrared laser beam sources, the reflections play a significant role, since the reflection coefficient of copper is very high at infrared wavelengths. Therefore, a formation of a keyhole is necessary for a stable and efficient welding process. A theoretical model for the calculation of the reflections on an arbitrary position above the process zone, as well as a radiation analyzer based on a modular set-up are presented. This device enables a time- and space-resolved measurement of the reflected radiation. Using the experimental results, characteristic positions on the hemisphere could be identified to calibrate the theoretical model. The calibrated model allows to analyze the reflected radiation during the welding process to determine the energy which is absorbed by the work piece.

  16. Intraoral Laser Welding (ILW in Implant Prosthetic Dentistry: Case Report

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini

    2012-01-01

    Full Text Available The aim of this clinical study was to describe the possibility of using the Nd:YAG laser device utilized in the dental offices to weld metals intraorally. The authors, before applying this technique “in vivo” on human subjects, tested the “in vitro” metal welding efficacy of dental Nd:YAG device firstly by interferometry, SEM, and EDS and subsequently by thermal camera and thermocouples in order to record temperature changes during the welding process on bovine jaws. Four implants were inserted in the edentulous maxillary arch of a 67 years old male patient. Immediately after that, a bar previously made by the dental technician was intraorally welded to the abutments by Nd:YAG laser (Fidelis Plus III, Fotona, Slovenia with these parameters: 9.90 mJ, 1 Hz, 15 msec, 0.6 mm spot. Then the prosthesis was connected to the bar with four OT Caps. This clinical study, even if preliminary, suggests that laser welding technique may be intraorally used without side effects.

  17. Phase transformations in an AISI 410S stainless steel observed in directional and laser-induced cooling regimes

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2012-02-01

    Full Text Available The applications of the chromium ferritic stainless steel AISI 410S have been considerably increased in the last years in many technical fields as chemical industries and oil or gas transportation. However, the phase transformation temperatures are, currently, unknown for this alloy. The aim of this work is to determine the alpha to gamma transformation temperatures of the AISI 410S alloy in different cooling conditions and to analyze them using continuous cooling theory. In order to achieve different cooling rates and thermal conditions, two complementary techniques were used: Bridgman furnace crystal growth and laser remelting technique. The measured solidification temperature was around 1730 and 1750 K. Plate-like and dendritic austenite precipitates were obtained in solid-state phase using growth rates between 5 and 10 µm/s in directional growth experiments. Only plate-like austenite phase was observed in the experiments using growth rates above 100 µm/s. The appearance of dendrites, with the consequent segregation of the elements, can be previously determined by the microstructure modeling currently proposed. Massive austenite can be produced from 0.3 to 10 mm/s rates at temperatures between 1100-1300 K. The structure might be less sensitive to corrosion because this phase is produced without microsegregation.

  18. Influence of Welding Current and Focal Position on the Resonant Absorption of Laser Radiation in a TIG Welding Arc

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.

    The work presents the influence of welding current and focal position on the resonant absorption of diode laser radiation in a TIG welding arc. The laser beam is guided perpendicular to the electrical arc to avoid an interaction with the electrodes. Laser power measurements have shown a reduction of the measured laser power up to 18% after passing the electrical arc. This reduction results from the interaction of argon shielding gas atoms and laser radiation at 810.4 nm and 811.5 nm. The interaction is strongly affected by the adjusted welding current and the adjustment of the laser beam and the electrical arc. Lowering the welding current or shifting the laser beam out of the centerline of the electrical arc reduces the ionization probability. An increased ionization is necessary to decrease the resistance of the electrical arc.

  19. Sheet metal welding using a pulsed Nd: YAG laser-robot

    Science.gov (United States)

    Huang, Qi; Kullberg, Gunnar; Skoog, Hans

    This paper presents a pulsed Nd: YAG laser-robot system for spot and seam welding of mild steel sheets. The study evaluates the laser beams behaviour for welding, and then investigates pulsed Nd: YAG laser spot and seam welding processes. High pulse power intensity is needed to initiate the key-hole welding process and a threshold pulse energy to reach full penetration. In seam welding, a weld consists of successive overlapping spots. Both high pulse energy and high average power are needed to keep the key-hole welding going. A 70% overlap is used to define overlapping spot welding as seam welding and to optimize process parameters because a high tensile strength joint compatible with the strength of the base material can be obtained when the overlap is ≥ 70%; at the same time a smooth seam with full penetration is obtained. In these cases, the joints in pulsed Nd: YAG laser welding are comparable in strength to those obtained with CO 2 laser welding. Robot positioning and motion accuracies can meet the demands of Nd: YAG laser sheet metal welding, but its cornering accuracy affects the welding processes. The purpose of the study is to evaluate the YAG laser-robot system for production in the automotive industry.

  20. Laser Welded versus Resistance Spot Welded Bone Implants: Analysis of the Thermal Increase and Strength

    Science.gov (United States)

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    Introduction. The first aim of this “ex vivo split mouth” study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Materials and Methods. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. Results. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Conclusion. Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength. PMID:25110731

  1. Activating Flux Design for Laser Welding of Ferritic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    马立; 胡绳荪; 胡宝; 申俊琦; 王勇慧

    2014-01-01

    The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investi-gated in this study. Some conventional oxides, halides and carbonates were applied in laser welding. The results showed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved the penetration more effectively at low power than that at high power. The uniform design was adopted to arrange the formula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to 2.23 times as large as that without flux, including 50%ZrO2, 12.09%CaCO3, 10.43%CaO and 27.48%MgO. Through the high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the pene-tration capability.

  2. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    Directory of Open Access Journals (Sweden)

    Stolecki M.

    2015-09-01

    Full Text Available This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301 austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614, and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.

  3. Deposición metálica de Stellite grado 6 sobre AISI 316 en superficies planas mediante soldadura por fricción. // Metallic deposition of Stellite degree 6 on AISI 316 in plane surfaces by means of friction welding.

    Directory of Open Access Journals (Sweden)

    J. Cabello Eras

    2003-01-01

    Full Text Available En el presente trabajo se realiza un estudio del proceso de deposición metálica de Stellite grado 6 sobre una superficie deacero inoxidable AISI 316 a través de la soldadura por fricción. Se estudiaron distintas combinaciones de parámetros desoldadura tales como, velocidad de rotación de la barra de material de aportación, velocidad transversal del sustrato, tiempode calentamiento, presión de apriete de la barra contra el sustrato y los depósitos obtenidos son sometidos a un análisismetalográfico en la zona de interfase y a una prueba de doblado para comprobar su adhesión al metal base.Palabras claves: Soldadura por fricción, depósitos metálicos._____________________________________________________________________________AbstractPresently work carried out a study of the process of metallic deposition of Stellite degree 6 on a surface of stainlesssteel AISI 316 through the welding by friction. Different combinations of welding parameters were studied as:rotation speed of the contribution material bar, sustain traverse speed, time of heating, pressure of the bar againstthe sustain. The obtained deposits are subject to metalografic analysis in the interface area and to bending test inorder to check their adhesion to the metal bases.Key words: Friction welding, metallic deposits.

  4. CO2 laser-micro plasma arc hybrid welding for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    C. H. KIM; Y. N. AHN; J. H. KIM

    2011-01-01

    A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal. which is steel. In the autogenous laser welding,the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-heat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap.The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces.Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.

  5. AISI/DOE Technology Roadmap Program: Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Chuko; Jerry Gould

    2002-07-08

    This report describes work accomplished in the project, titled ''Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels.'' The Phase 1 of the program involved development of in-situ temper diagrams for two gauges of representative dual-phase and martensitic grades of steels. The results showed that tempering is an effective way of reducing hold-time sensitivity (HTS) in hardenable high-strength sheet steels. In Phase 2, post-weld cooling rate techniques, incorporating tempering, were evaluated to reduce HTS for the same four steels. Three alternative methods, viz., post-heating, downsloping, and spike tempering, for HTS reduction were investigated. Downsloping was selected for detailed additional study, as it appeared to be the most promising of the cooling rate control methods. The downsloping maps for each of the candidate steels were used to locate the conditions necessary for the peak response. Three specific downslope conditions (at a fix ed final current for each material, timed for a zero-, medium-, and full-softening response) were chosen for further metallurgical and mechanical testing. Representative samples, were inspected metallographically, examining both local hardness variations and microstructures. The resulting downslope diagrams were found to consist largely of a C-curve. The softening observed in these curves, however, was not supported by subsequent metallography, which showed that all welds made, regardless of material and downslope condition, were essentially martensitic. CCT/TTT diagrams, generated based on microstructural modeling done at Oak Ridge National Laboratories, showed that minimum downslope times of 2 and 10 s for the martensitic and dual-phase grades of steels, respectively, were required to avoid martensite formation. These times, however, were beyond those examined in this study. These results show that downsloping is not an effective means of reducing HTS for

  6. Tomographical process monitoring of laser transmission welding with OCT

    Science.gov (United States)

    Ackermann, Philippe; Schmitt, Robert

    2017-06-01

    Process control of laser processes still encounters many obstacles. Although these processes are stable, a narrow process parameter window during the process or process deviations have led to an increase on the requirements for the process itself and on monitoring devices. Laser transmission welding as a contactless and locally limited joining technique is well-established in a variety of demanding production areas. For example, sensitive parts demand a particle-free joining technique which does not affect the inner components. Inline integrated non-destructive optical measurement systems capable of providing non-invasive tomographical images of the transparent material, the weld seam and its surrounding areas with micron resolution would improve the overall process. Obtained measurement data enable qualitative feedback into the system to adapt parameters for a more robust process. Within this paper we present the inline monitoring device based on Fourier-domain optical coherence tomography developed within the European-funded research project "Manunet Weldable". This device, after adaptation to the laser transmission welding process is optically and mechanically integrated into the existing laser system. The main target lies within the inline process control destined to extract tomographical geometrical measurement data from the weld seam forming process. Usage of this technology makes offline destructive testing of produced parts obsolete. 1,2,3,4

  7. Laser welding of copper and aluminium battery interconnections

    Science.gov (United States)

    De Bono, Paola; Blackburn, Jon

    2015-07-01

    The adoption of lithium-ion and/or super-capacitor battery technologies is a current hot topic in the automotive industry. For both battery types, the terminals and busbars are manufactured from copper (Cu) and/or aluminium-based (Al-based) alloys, as a result of their high electrical and thermal conductivities. Laser welding is considered an attractive process to industry due to its easy automotability, high processing speed and highly repeatable cost-effective processing. However, laser welding of Cu-Cu and Al-Al joints presents several difficulties due to the high surface reflectivity at infrared (IR) wavelengths. This behaviour becomes even more critical when processing thin sheets and foils.This paper summarises recent work performed to develop laser welding techniques suitable for monometallic joining of Cu-Cu and Al-Al electrical interconnections. Laser welding of multiple overlapped foils (with thickness in the range of 17μm-100μm) were investigated.

  8. Polyethylene laser welding based on optical absorption variations

    Science.gov (United States)

    Galtieri, G.; Visco, A.; Nocita, D.; Torrisi, L.; Ceccio, G.; Scolaro, C.

    2016-04-01

    Polymeric materials, both pure and containing nanostructures, can be prepared as thin sheets in order to produce joints with an interface between an optically transparent sheet and an optically absorbent substrate to be welded by infrared pulsed laser irradiation. The Laser Transmission Welding (LTW) technique has been successfully applied in order to join two or more thermoplastic polymeric sheets that must have a similar chemical composition. In this research work, polymeric joints of Ultra High Molecular Weight Polyethylene sheets were realized, characterized and welded. Some polymer sheets were doped, at different concentrations, with carbon nano-particles absorbent the laser radiation. A pulsed laser operating in the wavelength region 532 nm with intensity of the order of 109 Watt/cm2 was employed to be transmitted by the transparent polymer and to be absorbed by the carbon enriched surface. At the interface of the two polymers the released energy induces melting, that is assisted by pressure, producing a fast and resistant welding zone. Mechanical and optical characterizations and surface analyses are presented and discussed.

  9. Microstructural characteristics of the laser welded joint of ITER correction coil sub case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chao, E-mail: fangchao@ipp.ac.cn [ASIPP, Shushan Hu Road 350, Hefei, Anhui 230031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Yuntao; Wei, Jing; Xin, Jijun [ASIPP, Shushan Hu Road 350, Hefei, Anhui 230031 (China); Wu, Huapeng; Handroos, Hekki; Salminen, Antti [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Li, Hongwei [ITER China, 15B Fuxing Road, Beijing 100862 (China); Libeyre, Paul; Dolgetta, Nello [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France)

    2015-10-15

    Highlights: • The multi-pass laser welding was developed for the ITER CC case manufacture. • The laser welding procedure was studied and optimized. • The microstructural characteristic of the welded joint was discussed. - Abstract: The ITER correction coil (CC) case reinforces the winding packs against the electromagnetic loads, minimizes stresses and deformations to the winding pack. The cases are made of high strength and high toughness austenitic stainless steel (316LN) hot rolled heavy plate and have a thickness of 20 mm. Considering the small cross-section and large dimensions of the case, deformation of the case when welding becomes a challenge in the case manufacturing. Therefore, laser welding was developed as the main welding technology for manufacturing. In this paper, multi-pass laser welding technology is used, the laser weldability of a 20 mm thick 316LN austenitic stainless steel plate is studied and the microstructure of the welded joint is analyzed. The welding experiment used an YLS-6000 fiber laser (IPG) and weld filler of 316LMn to match the base metal was used. The result shows that the welded joint has no obvious surface and internal defects based on the optimized welding parameters. The weld joint have a fine austenite microstructure and display columnar dendrites and cellular grains with strong directional characteristics. No apparent heat affected zone is observed and approximately 2 μm an austenite microstructure of the fusion line is clearly presented.

  10. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    Science.gov (United States)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  11. Gap-bridging During Quasi-simultaneous Laser Transmission Welding

    Science.gov (United States)

    Schmailzl, Anton; Hierl, Stefan; Schmidt, Michael

    Tightness is often the main requirement for quasi-simultaneous laser transmission welds. However, remaining gaps cannot be detected by the used set-path monitoring. By using a pyrometer in combination with a 3D-scanner, weld seam interruptions can be localized precisely while welding, due to temperature deviations along the weld contour. To analyze the temperature signal in correlation to the progress of gap-bridging, T-joint samples with predefined gaps are welded. The set-path is measured synchronously. Additionally, the temperature distribution and the influence of the thermal expansion of the polymers are studied by a thermo-mechanical FEM-process simulation. On top of that, the melt blow-out of the welded samples is analyzed using μCT-measurements. The experiments have shown that closing of a gap can be identified reliably by the temperature signal and that the squeezed melt flow into the gap and the thermal expansion in the gap zone accelerates gap-bridging. Furthermore the inserted heat can be adapted in the fault zone, in order to avoid thermal damage.

  12. Effects of Sealing Run Welding with Defocused Laser Beam on the Quality of T-joint Fillet Weld

    Science.gov (United States)

    Unt, Anna; Poutiainen, Ilkka; Salminen, Antti

    Fillet weld is the predominant weld type used for connecting different elements e.g. in shipbuilding, offshore and bridge structures. One of prevalent research questions is the structural integrity of the welded joint. Post weld improvement techniques are being actively researched, as high stress areas like an incomplete penetration on the root side or fluctuations in penetration depth cannot be avoided. Development of laser and laser-arc hybrid welding processes have greatly contributed to increase of production capacity and reduction of heat-induced distortions by producing single pass full penetration welds in thin- and medium thickness structural steel parts. Present study addresses the issue of how to improve the quality of the fillet welds by welding the sealing run on the root side with defocused laser beam. Welds having incomplete or excessive penetration were produced with several beam angles and laser beam spot sizes on surface. As a conclusion, significant decrease or even complete elimination of the seam irregularities, which act as the failure starting points during service, is achieved.

  13. Welding of PMMA by a femtosecond fiber laser.

    Science.gov (United States)

    Volpe, Annalisa; Di Niso, Francesca; Gaudiuso, Caterina; De Rosa, Andrea; Vázquez, Rebeca Martínez; Ancona, Antonio; Lugarà, Pietro Mario; Osellame, Roberto

    2015-02-23

    Developing versatile joining techniques to weld transparent materials on a micrometer scale is of great importance in a growing number of applications, especially for the fabrication and assembly of biomedical devices. In this paper, we report on fs-laser microwelding of two transparent layers of polymethyl methacrylate (PMMA) based on nonlinear absorption and localized heat accumulation at high repetition rates. A fiber CPA laser system was used delivering 650-fs pulses at 1030 nm with repetition rates in the MHz regime. The laser-induced modifications produced by the focused beam into the bulk PMMA were firstly investigated, trying to find a suitable set of process parameters generating continuous and localized melting. Results have been evaluated based on existing heat accumulation models. Then, we have successfully laser welded two 1-mm-thick PMMA layers in a lap-joint configuration. Sealing of the sample was demonstrated through static and dynamic leakage tests. This fs-laser micro-welding process does not need any pre-processing of the samples or any intermediate absorbing layer. Furthermore, it offers several advantages compared to other joining techniques, because it prevents contamination and thermal distortion of the samples, thus being extremely interesting for application in direct laser fabrication of microfluidic devices.

  14. Electrophoretic mobility patterns of collagen following laser welding

    Science.gov (United States)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  15. Elements loss analysis based on spectral diagnosis in laser-arc hybrid welding of aluminum alloy

    Science.gov (United States)

    Chen, Yong; Chen, Hui; Zhu, Minhao; Yang, Tao; Shen, Lin

    2017-07-01

    Aluminum alloy has been widely used in automobiles, high-speed trains, aerospace and many other fields. The loss of elements during welding process causes welding defects and affects the microstructure and properties of the joints. This paper discusses the correlation between welding process, spectral intensity and loss of elements in laser-arc hybrid welding of Al alloys. The results show that laser power and arc current have a significant impact on the spectral intensity and loss of elements. Compared with the base metal, the contents of alloying elements in the weld area are lower. The burning losses of alloy elements increase with the welding heat input.

  16. Studies of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    During the present work crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including ·Application of known information to predict solidification phases from the alloy...... investigated and recommendations are given. From studies of literature it is found that the austenitic stainless steels have lowest crack susceptibility by a solidification course leaving approximately 15% rest ferrite in the weld metal. The alloys properties and the solidification rate determines the amount...

  17. Investigations on laser transmission welding of absorber-free thermoplastics

    Science.gov (United States)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  18. Experimental and computational laser tissue welding using a protein patch.

    Science.gov (United States)

    Small, W; Heredia, N J; Maitland, D J; Eder, D C; Celliers, P M; Da Silva, L B; London, R A; Matthews, D L

    1998-01-01

    An in vitro study of laser tissue welding mediated with a dye-enhanced protein patch was conducted. Fresh sections of porcine aorta were used for the experiments. Arteriotomies were treated using an indocyanine green dye-enhanced collagen patch activated by an 805-nm continuous-wave fiber-delivered diode laser. Temperature histories of the surface of the weld site were obtained using a hollow glass optical fiber-based two-color infrared thermometer. The experimental effort was complemented by simulations with the LATIS (LAser-TISsue) computer code, which uses coupled Monte Carlo, thermal transport, and mass transport models. Comparison of simulated and experimental thermal data indicated that evaporative cooling clamped the surface temperature of the weld site below 100 °C. For fluences of approximately 200 J/cm2, peak surface temperatures averaged 74°C and acute burst strengths consistently exceeded 0.14×106 dyn/cm (hoop tension). The combination of experimental and simulation results showed that the inclusion of water transport and evaporative losses in the computer code has a significant impact on the thermal distributions and hydration levels throughout the tissue volume. The solid-matrix protein patch provided a means of controllable energy delivery and yielded consistently strong welds. © 1998 Society of Photo-Optical Instrumentation Engineers.

  19. Effect of adhesive on molten pool structure and penetration in laser weld bonding of magnesium alloy

    Science.gov (United States)

    Liu, L. M.; Ren, D. X.

    2010-09-01

    Laser weld bonding (LWB) is a new hybrid technique that combines adhesive bonding with laser seam welding together, and can achieve higher joint strength than adhesive bonding or laser welding individually. Some new physical phenomena have been observed in this welding method, and the phenomena are different from the normal laser welding process, such as a remarkable deeper penetration in LWB than that in laser welding direct (LWD). The adhesive-induced gas can influence the molten pool structure in front of the keyhole, so that less energy is required for laser keyhole through the upper sheet; thus, higher laser power density can interact with the lower sheet, leading to deeper penetration. Simulation comparison experiments are set to indirectly verify these conclusions above.

  20. Study on laser welding of stainless steel/copper dissimilar materials

    Science.gov (United States)

    Besnea, D.; Dontu, O.; Avram, M.; Spânu, A.; Rizescu, C.; Pascu, T.

    2016-08-01

    In this paper stainless steel/copper laser welding was investigated by controlling the processing parameters like welding speed and laser power. Welding the dissimilar materials of stainless steel and copper presents a series of problems. Differences in the physical properties of the two metals, including the melting point, thermal conductivity and thermal dilatation are the main reasons for obtaining an inappropriate laser welding bead. Particularly, the laser welding process of copper is complex because of the very high reflectivity of cooper and in almost situations it requires a specific surface pre-treatment. The main objective of the study conducted in this work was to laser weld a structure used in pressure measuring and control equipments. In order to satisfy the conditions imposed by the sensor manufacturer, the difficulty of obtaining flawless joints was represented by the very small dimensions of the parts to be welded especially of the elastic spiral thickness made of steel.

  1. Laser guided and stabilized gas metal arc welding processes (LGS-GMA)

    Science.gov (United States)

    Hermsdorf, Jörg; Barroi, Alexander; Kaierle, Stefan; Overmeyer, Ludger

    2013-05-01

    The demands of the industry are cheap and fast production of highly sophisticated parts without compromises in product quality. To realize this requirement, we have developed a laser guided and stabilized gas metal arc process (LGS-GMA welding). The new welding process is based on a gas metal arc process using low power laser radiation for stabilization. The laser stabilization of gas metal arcs welding is applied to joint welding and cladding. With only 400 W laser power and a focal spot of 1.6 mm the laser radiation is mainly interacting with the arc plasma in order to guide and stabilize it. In joint welding up to 100% increase in welding speed is possible, at equal penetration depth. The guidance effect also enables the process to weld in challenging situations like different sheet thicknesses. Used for cladding, the enhanced process stability allows low penetration depth with dilutions of only 3%. Coatings with up to 63 HRC were achieved.

  2. Characteristics of laser beam welds of age-hardenable 6061-T6 aluminum alloy

    Science.gov (United States)

    Hirose, Akio; Kobayashi, Kojiro F.

    2003-03-01

    Laser beam welding is attractive for joining age-hardenable aluminum alloys, because its low over-all heat input results in a narrow weld heat affected zone (HAZ), where softening caused by dissolution of age precipitates occurs. In the present work, 1mm-thick 6061-T6 aluminum alloy plates were welded using a 2.5 kW CO2 laser and it was experimentally proved that the width of the softened region in the laser beam weld was less than 1/7 that of a TIG weld. Moreover the hardness in the softened region of the laser beam weld was found to be almost fully recovered to the base metal hardness by applying a post-weld aging treatment at 443 K for 28.8 ks without solution annealing unlike the TIG weld. These results characterize the advantage of laser beam welding in joining of the age-hardenable aluminum alloy as compared with the conventional arc welding. The hardness distributions in the HAZ were theoretically evaluated based on kinetic equations describing the dissolution of hardening β' (Mg2Si) precipitates and the precipitation of non-hardening β' (Mg2Si) precipitates during the weld thermal cycles to quantitatively prove above mentioned advantageous characteristics of laser beam welding.

  3. A Comparative Study on the Laser Welding of Ti6Al4V Alloy Sheets in Flat and Horizontal Positions

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2017-04-01

    Full Text Available Laser welding has been increasingly utilized to manufacture a variety of components thanks to its high quality and speed. For components with complex shapes, the welding position needs be continuously adjusted during laser welding, which makes it necessary to know the effects of the welding position on the quality of the laser welds. In this paper, the weld quality under two (flat and horizontal welding positions were studied comparatively in the laser welding of Ti6Al4V titanium alloy, in terms of weld profiles, process porosity, and static tensile strengths. Results show that the flat welding position led to better weld profiles, less process porosity than that of the horizontal welding position, which resulted from the different actions of gravity on the molten weld metals and the different escape routes for pores under different welding positions. Although undercuts showed no association with the fracture positions and tensile strengths of the welds, too much porosity in horizontal laser welds led to significant decreases in the strengths and specific elongations of welds. Higher laser powers and travel speeds were recommended, for both flat and horizontal welding positions, to reduce weld porosity and improve mechanical properties.

  4. Repairing an implant titanium milled framework using laser welding technology: a clinical report.

    Science.gov (United States)

    Prasad, Soni; Monaco, Edward A

    2009-04-01

    The application of laser welding technology allows titanium to be welded predictably and precisely to achieve accurate fit of a milled framework. Laser energy results in localized heat production, thereby reducing thermal expansion. Unlike soldering, laser energy can be directed to a small area, making it possible to laser weld close to acrylic resin or ceramic. This article describes the use of laser welding to repair an implant titanium milled fixed denture. A quick, cost-effective, accurate repair was accomplished, and the repaired framework possessed adequate strength and the same precise fit as the original framework.

  5. Modeling and validation of multiple joint reflections for ultra- narrow gap laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.; Keel, G. [Los Alamos National Lab., NM (United States); Sklar, E. [Opticad Corp., Santa Fe, New Mexico (United States)

    1995-12-01

    The effects of multiple internal reflections within a laser weld joint as a function of joint geometry and processing conditions have been characterized. A computer model utilizing optical ray tracing is used to predict the reflective propagation of laser beam energy focused into the narrow gap of a metal joint for the purpose of predicting the location of melting and coalescence which form the weld. The model allows quantitative analysis of the effects of changes to joint geometry, laser design, materials and processing variables. This analysis method is proposed as a way to enhance process efficiency and design laser welds which display deep penetration and high depth to width aspect ratios, reduced occurrence of defects and enhanced melting. Of particular interest to laser welding is the enhancement of energy coupling to highly reflective materials. The weld joint is designed to act as an optical element which propagates and concentrates the laser energy deep within the joint to be welded. Experimentation has shown that it is possible to produce welds using multiple passes to achieve deep penetration and high depth to width aspect ratios without the use of filler material. The enhanced laser melting and welding of aluminum has been demonstrated. Optimization through modeling and experimental validation has resulted in the development of a laser welding process variant we refer to as Ultra-Narrow Gap Laser Welding.

  6. Laser Beam Welding of Aluminum Alloys Under the Influence of an Electromagnetic Field

    Science.gov (United States)

    Schneider, A.; Avilov, V.; Gumenyuk, A.; Rethmeier, M.

    During laser beam welding of aluminum alloys an electromagnetic field may favour pore outgassing through the top oxide layer. High frequencies cause a small penetration depth and thus exert a stabilizing effect on the weld surface. The point at which the laser beam between the two magnetic poles hits the workpiece surface is crucial to the influence of the magnetic field on the weld surface roughness. Using analyzed parameters for different laser points of application cause a change in weld surface roughness could be observed. The weld surface roughness could be reduced by 50%. The outgassing effect in terms of a reduction of pores could be observed for all parameter sets investigated.

  7. Studies of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    During the present work crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including ·Application of known information to predict solidification phases from the alloy...... composition. ·Weld metal solidification rate measurements for prediction of phases. ·Various crack tests to assess the crack susceptibility of alloys. ·A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been...... investigated and recommendations are given. From studies of literature it is found that the austenitic stainless steels have lowest crack susceptibility by a solidification course leaving approximately 15% rest ferrite in the weld metal. The alloys properties and the solidification rate determines the amount...

  8. Study on welded seam recognition using circular laser vision sensor

    Institute of Scientific and Technical Information of China (English)

    Peiquan Xu; Xinhua Tang; Ri Na; Shun Yao

    2007-01-01

    A novel visual robotic arc welding system based on circular laser vision sensor is developed. After image de-noising, image segmentation, and image thinning, the relation of depth value of workpiece and off-axis angle γ, three-dimensional (3D) calculation, and seam tracking experiments are carried out. Finally, the error for seam tracking system is analyzed. The results show that 1) 3D information can be obtained using the proposed visual robotic arc welding system and the real-time seam tracking is realized; 2) the seam tracking error is small enough for gas tungsten arc welding (GTAW) process, and this system can be used for seam location and seam tracking or seam finder.

  9. Laser vision based adaptive fill control system for TIG welding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The variation of joint groove size during tungsten inert gas (TIG) welding will result in the non-uniform fill of deposited metal. To solve this problem, an adaptive fill control system was developed based on laser vision sensing. The system hardware consists of a modular development kit (MDK) as the real-time image capturing system, a computer as the controller, a D/A conversion card as the interface of controlled variable output, and a DC TIG welding system as the controlled device. The system software is developed and the developed feature extraction algorithm and control strategy are of good accuracy and robustness. Experimental results show that the system can implement adaptive fill of melting metal with high stability, reliability and accuracy. The groove is filled well and the quality of the weld formation satisfies the relevant industry criteria.

  10. System design of welding dynamic displacement measurement using laser ESPI

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the advantages of electronic speckle pattern interferometry(ESPI), such as non-contact, high precision, strong parasitic light resistance, and full-field measurement, a system for measuring welding dynamic displacement fields using ESPI was designed. The system consists of a 70mW He-Ne laser source, an optical path system, a computer-assisted frame grabber and a processing system. By measuring dynamic displacement fields on one LY2 aluminum alloy plate during an argon arc point welding, it can be proved that using ESPI to measure welding dynamic displacement fields is fully feasible, and this method can offer a solid experimental base for the structure mechanics.

  11. Laser-assisted direct joining of AISI304 stainless steel with polycarbonate sheets: Thermal analysis, mechanical characterization, and bonds morphology

    Science.gov (United States)

    Lambiase, F.; Genna, S.

    2017-02-01

    Laser-Assisted Metal and Plastic bonding (LAMP) of AISI304 sheets with polycarbonate sheets is investigated in this work. The process was performed by means of a high power diode laser with a maximum power of 200 W. The study introduces an integrated experimental approach aimed at understanding how the main process conditions (laser power and scanning speed) influence the direct-bonds quality, dimensions and presence of defects. To this end, the bonds dimension, shear strength, formation and dimension of bubbles in the bonded region were related to the temperature measurements and process parameters. According to the achieved results, the processing window that enables a good adhesion of the two materials is relatively small; this is due the activation of the adhesion phenomena that require overcoming an energy threshold. However, excessive energy levels reduce the bonds strength due to the increase in defects (bubbles) dimension that may combine (coalescence) leading to the formation of a central tunnel where the two substrates are completely detached.

  12. Low temperature corneal laser welding investigated by atomic force microscopy

    Science.gov (United States)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-02-01

    The structural modifications in the stromal matrix induced by low-temperature corneal laser welding were investigated by atomic force microscopy (AFM). This procedure consists of staining the wound with Indocyanine Green (ICG), followed by irradiation with a near-infrared laser operated at low-power densities. This induces a local heating in the 55-65 °C range. In welded tissue, extracellular components undergo heat-induced structural modifications, resulting in a joining effect between the cut edges. However, the exact mechanism generating the welding, to date, is not completely understood. Full-thickness cuts, 3.5 mm in length, were made in fresh porcine cornea samples, and these were then subjected to laser welding operated at 16.7 W/cm2 power density. AFM imaging was performed on resin-embedded semi-thin slices once they had been cleared by chemical etching, in order to expose the stromal bulk of the tissue within the section. We then carried out a morphological analysis of characteristic fibrillar features in the laser-treated and control samples. AFM images of control stromal regions highlighted well-organized collagen fibrils (36.2 +/- 8.7 nm in size) running parallel to each other as in a typical lamellar domain. The fibrils exhibited a beaded pattern with a 22-39 nm axial periodicity. Laser-treated corneal regions were characterized by a significant disorganization of the intralamellar architecture. At the weld site, groups of interwoven fibrils joined the cut edges, showing structural properties that were fully comparable with those of control regions. This suggested that fibrillar collagen is not denatured by low-temperature laser welding, confirming previous transmission electron microscopy (TEM) observations, and thus it is probably not involved in the closure mechanism of corneal cuts. The loss of fibrillar organization may be related to some structural modifications in some interfibrillar substance as proteoglycans or collagen VI. Furthermore, AFM

  13. Effects of argon gas flow rate on laser-welding.

    Science.gov (United States)

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2012-01-01

    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.

  14. A study on the porosity of CO2 laser welding of titanium alloy

    Institute of Scientific and Technical Information of China (English)

    Chen Li; Hu Lunji; Gong Shuili

    2006-01-01

    The CO2 laser welding of BT20 titanium alloy and Ti-23Al-17Nb titanium aluminide was conducted to investigate into the porosity in titanium alloy weld. The results show that there are two sorts of porosities observed in welds of titanium alloy laser welding based on the microscopic characteristics of the porosities. One is the metallurgical porosity with round and smooth inner wall, which results from the surface contamination. The other is the processing porosity with irregular and rough inner wall that displays the trace of the pool flowing, which results from the ruffle on the keyhole wall gathering together locally and closing down the gas in the keyhole into bubbles because of the keyhole fluctuating. The CO2 laser welding could break down easily the surface oxide film and produce little metallurgical porosity, but produces easily processing porosity when partial penetration or unstable-full penetration laser welding is conducted, which always occurs in the center of weld.

  15. Laser Beam Welding with High-Frequency Beam Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers

    Science.gov (United States)

    Kraetzsch, Mathias; Standfuss, Jens; Klotzbach, Annett; Kaspar, Joerg; Brenner, Berndt; Beyer, Eckhard

    Brilliant laser beam sources in connection with a high frequent beam oscillation make it now possible to join metallic material combinations, which have been conventionally non-laser weldable up to now. It concerns especially such combinations like Al- Cu, where brittle intermetallic phases occur. Extreme small weld seam with high aspect ratio leads to very short meld pool life time. These allow an extensive reduction of the heat input. On the other side the melting behavior at metallic mixed joint, seam geometry, meld pool turbulence and solidification behavior can be influenced by a high frequent time-, position- and powercontrolled laser beam oscillation.

  16. Caracterização microestrutural de soldas dissimilares dos aços ASTM A-508 e AISI 316L Characterization of dissimilar metal weld between low alloy steel ASTM A-508 and 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Luciana Iglésias Lourenço Lima

    2010-06-01

    Full Text Available As soldas dissimilares (dissimilar metal welds - DMWs são utilizadas em diversos segmentos da indústria. No caso específico de usinas nucleares, tais soldas são necessárias para conectar tubulações de aço inoxidável com componentes fabricados em aços baixa liga. Os materiais de adição mais utilizados neste tipo de solda são as ligas de níquel 82 e 182. Este trabalho consistiu na soldagem de uma junta dissimilar de aço baixa liga ASTM A-508 G3 e aço inoxidável austenítico AISI 316L utilizando as ligas de níquel 82 e 182 como metais de adição. A soldagem foi realizada manualmente empregando os processos de soldagem ao arco SMAW (Shielded Metal Arc Welding e GTAW (Gas Tungsten Arc Welding. Os corpos de prova foram caracterizados microestruturalmente utilizando-se microscópio óptico e microscópio eletrônico de varredura com microanálise por dispersão de energia de raios X (EDS e ensaios de microdureza Vickers. Observou-se uma microestrutura constituída de dendritas de austenita com a presença de precipitados com formas e dimensões definidas pelo aporte térmico e pela direção de soldagem. Não houve variação significativa da dureza ao longo da junta soldada, demonstrando a adequação dos parâmetros de soldagem utilizados.The dissimilar metal welds (DMWs are used in several areas of the industries. In the nuclear power plant, this weld using nickel alloy welding wires is used to connect stainless steel pipes to low alloy steel components on the reactor pressured vessels. The filler materials commonly used in this type of weld are nickel alloys 82 and 182.. In this study, dissimilar metal welds composed of low alloy steel ASTM A-508 G3, nickel alloys 82 e 182 as weld metals, and austenitic stainless steel AISI 316L were prepared by manual shielded metal arc welding (SMAW and gas tungsten arc welding techniques (GTAW. Samples were microstructural characterized by optical microscopy and scanning electron microscopy

  17. In vivo comparison of near infrared lasers for skin welding.

    Science.gov (United States)

    Tabakoğlu, Haşim Ozgür; Gülsoy, Murat

    2010-05-01

    The skin closure abilities of near infrared lasers and suturing were compared by histological examination and mechanical tensile tests during a 21-day healing period. One-centimeter incisions on the dorsal skin of Wistar rats were treated by one of the closing techniques: (a) soldering, using an 809 nm diode laser (0.5 W, 5 s) with 25% bovine serum albumin (BSA) and 2.5 mg/ml indocyanine green (ICG); (b) direct welding with a 980 nm diode laser (0.5 W, 5 s); (c) direct welding with a 1,070 nm fiber laser (0.5 W, 5 s); (d) suturing. Six spots (79.61 J/cm(2) for each spot) were applied through the incisions. Healing was inspected on the 1st, 4th, 7th, 14th, and 21st post-operative days. The closure index (CI), thermally altered area (TAA), granulation area (GA) and epidermal thickness (ET) were determined by histological examination. Tensile tests were performed at a 5 mm/min crosshead speed up to the first opening along the incision. Immediate superficial closure with high CI values was found for the laser-irradiated incisions at the early phase of recovery. Clear welds without thermal damage were observed for the group irradiated at 1,070 nm. For the sutured group, the incisions remained unclosed for the first day, and openings through the incision were observed. At the end of the 21-day recovery period, no differences between experimental groups were observed in terms of the CI, GA and ET values. However, the tensile strength of the groups irradiated at 980 nm and 1,070 nm was found to be higher than that of the sutured incisions. The laser welding techniques were found to be reliable in terms of immediate and mechanically strong closure compared with suturing. Of them, 1,070 nm laser welding yielded noticeably stronger bonds, with minimal scarring at the end of the 21-days of recovery.

  18. Laser welding of polymers, compatibility and mechanical properties

    DEFF Research Database (Denmark)

    Nielsen, Steen Erik; Strange, Marianne; Kristensen, Jens Klæstrup

    2013-01-01

    with the development of related absorbers added to the polymer materials provide the possibility of joining transparent and non-transparent materials. The automotive industry, the medical device industry and the electronic industry are just some of the areas where the technology is widely implemented......Laser welding of polymers is today a commonly used industrial technology. It has shown obvious advantages compared to e.g. adhesive bonding in terms of higher productivity, better quality and easiness for automation. The ongoing development of lasers tailored for polymer welding in coordination....... There is an increasing industrial interest in joining dissimilar polymers. To overcome the challenges involved increased focus is set on the understanding of joining mechanisms, morphology and molecular structure behavior. Also the understanding of resulting mechanical and thermal properties is presently subject...

  19. Experimental and simulation studies on laser conduction welding of AA5083 aluminium alloys

    Science.gov (United States)

    Tobar, M. J.; Lamas, M. I.; Yáñez, A.; Sánchez-Amaya, J. M.; Boukha, Z.; Botana, F. J.

    In this paper, a three-dimensional numerical model was developed to study laser welding in an aluminium alloy (AA5083). The CFD model was used to solve the governing equations of conservation of mass, momentum and energy, so as to obtain the morphology, velocity field and temperature field of the melted zone in steady state. The predicted dimensions of the weld pool agreed well with experimental results obtained on laser conduction welding with a (CW) high power diode laser. The study allowed to determine the effect of different surface treatment (sandblasting, black painting) on the laser absorptivity of the alloy and analyze the heat transfer mechanism within the weld pool.

  20. Macrostructural and microstructural features of 1 000 MPa grade TRIP steel joint by CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Wang Wenquan; Sun Daqian; Kang Chungyun

    2008-01-01

    Bead-on-plate CO2 laser welding of 1 000 MPa grade transformation induced plasticity (TRIP) steel was conducted under different welding powers, welding speeds and shield gases. The macrostructural and microstructural features of the welded joint were investigated. The increase of welding speed reduced the width of the weld bead and the porosities in the weld bead resulting from the different flow mode of melted metal in weld pool. The decrease of welding power or use of shield gas of helium also contributed to the reduction of porosity in the weld bead due to the alleviation of induced plasma formation, thus stabilizing the keyhole. The porosity formation intimately correlated with the evaporation of alloy element Mn in the base metal. The laser welded metal had same martensite microstructure as that of water-quenched base metal. The welding parameters which increased cooling rate all led to fine microstructures of the weld bead.

  1. INVESTIGATION OF LASER BEAM WELDING PROCESS OF AZ61 MAGNESIUM-BASED ALLOY

    Institute of Scientific and Technical Information of China (English)

    H.Y. Wang; Z.J. Li

    2006-01-01

    Laser welding process of AZ61 magnesium alloys is investigated using a special CO2 laser experimental system. The effect of processing parameters including laser power, welding speed,and protection gas flow at the top and bottom is researched The results show that an ideal weld bead can be formed by choosing the processing parameters properly. An optimized parameter range is obtained by a large number of experiments. Among them, laser power and welding speed are the two main parameters that determine the weld width and dimensions. The protect gas flow rate has a slight effect on the weld width, but it directly effects the surface color of the weld. The test results for typical welds indicate that the microhardness and tensile strength of the weld zone are better than that of the base metal. A fine-grained weld region has been observed and no obvious heat-affected zone is found. The weld zone mainly consists of small α-Mg phase, (α +Al12Mg17), and other eutectic phases. The small grains and the eutectic phases in the joint are believed to play an important role in the increase of the strength of welds for AZ61 magnesium alloys.

  2. Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =

    Science.gov (United States)

    Mirakhorli, Fatemeh

    High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.

  3. Laser-multi-pass-narrow-gap-welding of Hot Crack Sensitive Thick Aluminum Plates

    Science.gov (United States)

    Dittrich, D.; Schedewy, R.; Brenner, B.; Standfuß, J.

    Although the current process limitations for laser beam welding of thick aluminum plates (>10 mm) have been overcome by high brilliant multi-kilowatt laser, there are still difficulties resulting from the material physical properties, e.g. the high heat conductivity, the large heat capacity and the high thermal expansion coefficient of aluminum. Especially for very deep weld seams, insufficient dilution of filler wire material in the root of the weld seam and the danger of hot cracks increases. With a new welding technology, the Laser-Multi-Pass-Narrow-Gap-Welding, a innovative approach has been developed to weld thick aluminum plates with highest beam quality lasers and remarkably reduced laser power.

  4. Significance of the Resonance Condition for Controlling the Seam Position in Laser-assisted TIG Welding

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.; Kozakov, R.; Uhrlandt, D.

    As an energy-preserving variant of laser hybrid welding, laser-assisted arc welding uses laser powers of less than 1 kW. Recent studies have shown that the electrical conductivity of a TIG welding arc changes within the arc in case of a resonant interaction between laser radiation and argon atoms. This paper presents investigations on how to control the position of the arc root on the workpiece by means of the resonant interaction. Furthermore, the influence on the welding result is demonstrated. The welding tests were carried out on a cooled copper plate and steel samples with resonant and non-resonant laser radiation. Moreover, an analysis of the weld seam is presented.

  5. Low-temperature solder for laser tissue welding

    Science.gov (United States)

    Lauto, Antonio; Stewart, Robert B.; Felsen, D.; Foster, John; Poole-Warren, Laura; Poppas, Dix P.

    2003-12-01

    In this study, a two layer (TL) solid solder was developed with a fixed thickness to minimize the difference in temperature across the solder (ΔT) and to weld at low temperature. Solder strips comprising two layers (65% albumin, 35% water) were welded onto rectangular sections of dog small intestine by a diode laser (λ = 808 nm). The laser delivered a power of 170 +/- 10 mW through an optical fiber (spot size approximately 1 mm) for 100 seconds. A solder layer incorporated also a dye (carbon black, 0.25%) to absorb the laser radiation. A thermocouple and an infrared thermometer system recorded the temperatures at the tissue interface and at the external solder surface, during welding. The repaired tissue was tested for tensile strength by a calibrated tensiometer. The TL strips were able to minimize ΔT (12 +/- 4°C) and control the temperature at tissue-interface. The strips fused on tissue at 55=70°C for tissue repair, which cause more irreversible thermal damage.

  6. Open Source Laser Polymer Welding System: Design and Characterization of Linear Low-Density Polyethylene Multilayer Welds

    Directory of Open Access Journals (Sweden)

    John J. Laureto

    2016-07-01

    Full Text Available The use of lasers to weld polymer sheets provides a means of highly-adaptive and custom additive manufacturing for a wide array of industrial, medical, and end user/consumer applications. This paper provides an open source design for a laser polymer welding system, which can be fabricated with low-cost fused filament fabrication and off-the-shelf mechanical and electrical parts. The system is controlled with free and open source software and firmware. The operation of the machine is validated and the performance of the system is quantified for the mechanical properties (peak load and weld width of linear low density polyethylene (LLDPE lap welds manufactured with the system as a function of linear energy density. The results provide incident laser power and machine parameters that enable both dual (two layers and multilayer (three layers while welding only two sheets polymer welded systems. The application of these parameter sets provides users of the open source laser polymer welder with the fundamental requirements to produce mechanically stable LLDPE multi-layer welded products, such as heat exchangers.

  7. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  8. Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set

    Energy Technology Data Exchange (ETDEWEB)

    Samayoa, Jose

    2010-05-12

    Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber laser’s exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.

  9. Laser-welded V-Cr-Ti alloys: Microstructural and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Smith, D.L.; Sanders, P.G.; Leong, K.H. [Argonne National Lab., IL (United States)

    1998-03-01

    A systematic study has been initiated to examine the use of lasers to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the laser-welded materials. In addition, several post-welding heat treatments are being applied to the welded samples to evaluate their benefits, if any, to the structure and properties of the weldments. Hardness measurements are made across the welded regions of different samples to evaluate differences in the characteristics of various weldments.

  10. Thermal and mechanical response of steel sheets welded by laser process: Preanalysis made by ABAQUS code

    Energy Technology Data Exchange (ETDEWEB)

    Carmignani, B.; Daneri, A.; Giambuzzi, S.; Toselli, G. [ENEA, Bologna (Italy). Centro Ricerche Energia `E. Clementel` - Area Energetica

    1994-11-01

    In this work, the conclusive report on the activity, developed in the frame of the european project EUREKA-FASP (EU353), concerning the numerical simulation of the thermal and mechanical response of steel sheets, welded by a laser welding process, is presented. This type of welding process is of interest in the shipyard field. ABAQUS code, in its implicit version, has been used. Besides the description of the studies concerning more directly the laser welding, simulations of traditional welding processes, executed in order to single out particular aspects and calculation strategies to be utilized for the simulation of the process object of the study made, are presented and discussed.

  11. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  12. Ultrashort pulse laser micro-welding of cyclo-olefin copolymers

    Science.gov (United States)

    Roth, Gian-Luca; Rung, Stefan; Hellmann, Ralf

    2017-06-01

    We report on the joining of transparent thermoplastic polymers using infrared femtosecond laser pulses. Due to nonlinear absorption, the developed micro-welding process for cyclo-olefin copolymers does not require any intermediate absorbing layers or any surface pre-processing of the welding partners. In view of an optimized and stable micro-welding process, the influence of the welding speed and focal position on both, the quality and shear force strength are investigated. We highlight that welding seam widths of down to 65 μm are feasible for welding speeds of up to 75 mm/s. However, a variation of the welding speed affects the required focal position for a successful joining process. The shear force strength of the welding seam is determined to 37 MPa, which corresponds to 64% of the shear strength of the bulk material and is not affected by the welding speed.

  13. Robotic Nd:YAG Fiber Laser Welding of Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Ceyhun Köse

    2017-06-01

    Full Text Available In the present study, Ti6Al4V titanium alloy plates were joined using a robotic fiber laser welding method. The laser welding process was carried out at two different welding speeds. Effects of different heat input conditions on the microstructure and mechanical properties of robotic fiber laser welded joints were investigated. Some grain coarsening was observed in the microstructure of weld metal in samples joined using high heat input, compared to those using low heat input, and volume rates of primary α structures increased in the weld metal. The microstructure of weld metal in samples joined using low heat input was made of basket-weave or acicular α' grains and primary β grains in grain boundaries. Tensile and yield strength of samples joined using low heat input were higher than for those joined using high heat input, but their ductility was lower.

  14. Evaluation of anodic behavior of commercially pure titanium in tungsten inert gas and laser welds.

    Science.gov (United States)

    Orsi, Iara Augusta; Raimundo, Larica B; Bezzon, Osvaldo Luiz; Nóbilo, Mauro Antonio de Arruda; Kuri, Sebastião E; Rovere, Carlos Alberto D; Pagnano, Valeria Oliveira

    2011-12-01

    This study evaluated the resistance to corrosion in welds made with Tungsten Inert Gas (TIG) in specimens made of commercially pure titanium (cp Ti) in comparison with laser welds. A total of 15 circular specimens (10-mm diameter, 2-mm thick) were fabricated and divided into two groups: control group-cp Ti specimens (n = 5); experimental group-cp Ti specimens welded with TIG (n = 5) and with laser (n = 5). They were polished mechanically, washed with isopropyl alcohol, and dried with a drier. In the anodic potentiodynamic polarization assay, measurements were taken using a potentiostat/galvanostat in addition to CorrWare software for data acquisition and CorrView for data visualization and treatment. Three curves were made for each working electrode. Corrosion potential values were statistically analyzed by the Student's t-test. Statistical analysis showed that corrosion potentials and passive current densities of specimens welded with TIG are similar to those of the control group, and had lower values than laser welding. TIG welding provided higher resistance to corrosion than laser welding. Control specimens welded with TIG were more resistant to local corrosion initiation and propagation than those with laser welding, indicating a higher rate of formation and growth of passive film thickness on the surfaces of these alloys than on specimens welded with laser, making it more difficult for corrosion to occur. © 2011 by the American College of Prosthodontists.

  15. Technology of laser repair welding of nickel superalloy inner flaps of jet engine

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2011-07-01

    Full Text Available Purpose: of this paper: work out laser welding repair technology of cracked MIG 29 jet engine inner flaps made of cast nickel superalloy ŻS-3DK (ЖС-3ДК, Russian designation.Design/methodology/approach: The study were based on the analysis of laser HPDL powder INCONEL 625 welding of nickel superalloy using wide range of welding parameters to provide highest quality repair welds.Findings: Study of automatic welding technologies GTA, PTA and laser HPDL has shown that just laser welding can provide high quality repair welds. In order to establish the properties of welded joints repair cracks in the inner flap HPDL laser, studied the hardness, mechanical properties and erosive wear resistance.Research limitations/implications: It was found that only laser HPDL welding can provide high quality repair welds.Practical implications: The technology can be applied for repair cracked MIG 29 jet engine inner flaps.Originality/value: Repairing cracked MIG 29 jet engine inner flaps.

  16. Potassium titanyl phosphate laser welding following complete nerve transection.

    Science.gov (United States)

    Bhatt, Neel K; Mejias, Christopher; Kallogjeri, Dorina; Gale, Derrick C; Park, Andrea M; Paniello, Randal C

    2017-07-01

    Cranial nerve transection during head and neck surgery is conventionally repaired by microsuture reanastomosis. Laser nerve welding (LNW), using CO2 laser to spot-weld the epineurium of transected nerve endings, has been shown in animal models to be a novel alternative to microsuture repair. This method avoids needle/suture material and minimizes instrumentation of the nerve. We hypothesized that potassium titanyl phosphate (KTP) laser would be superior to CO2 laser in repairing transected nerves. Using a rat posterior tibial nerve injury model, we compared CO2 laser, KTP laser, and microsuture reanastomosis. Animal study. Animals underwent unilateral posterior tibial nerve transection. The injury was repaired by microsuture repair (n = 15), CO2 laser repair (n = 15), or KTP laser repair (n = 15). Weekly walking tracks were performed to measure functional recovery. Nerve segments were harvested for axon counting. At 6 weeks, the KTP LNW had the best functional recovery (92.4 ± 8.6%) compared to microsuture repair (84.5 ± 10.2%, difference 7.9%, 95% confidence interval [CI]: 0.84%-14.96%). CO2 laser repair had a functional recovery of 86.8 ± 11.2%. KTP LNW had better axon recovery compared to transection/repair (difference 530.7 axons, 95% CI: 329.9-731.5). Operative time for the microsuture repair was 18.2 ± 6.8 minutes, compared to 5.8 ± 3.7 minutes for the LNW groups (difference 12.4 minutes, 95% CI: 8.6-16.2 minutes). KTP, CO2 , and microsuture repair all showed good functional recovery following complete transection of the posterior tibial nerve. Following complete nerve transection during head and neck surgery, KTP LNW may be a novel alternative to microsuture repair. NA Laryngoscope, 127:1525-1530, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  17. Study of Laser Welding of HCT600X Dual Phase Steels

    Directory of Open Access Journals (Sweden)

    Švec Pavol

    2014-12-01

    Full Text Available The effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.

  18. Influence of Surface Coatings of Filler Wires on Weld Seam Properties of Laser Beam Welded Copper Connections

    Science.gov (United States)

    Mann, Vincent; Holzer, Matthias; Hofmann, Konstantin; Özkaya, Esra; Hugger, Florian; Roth, Stephan; Schmidt, Michael

    In laser beam welding of copper its material properties require high intensities of the laser beam for a stable process, which are often realized by small focal diameters. Thus conventional laser beam welding of copper is accompanied by small bridgeable gap widths. A way to increase tolerable gap widths is the use of filler wires, which leads to higher energy consumption per unit length of the process, as extra energy is necessary to melt the filler wire. As some surface coatings are known to reduce energy consumption in laser beam welding of copper, this paper investigates the influence of surface coated filler wires on weld seam properties of laser beam welded of copper alloys with the aim of improved usage of the energy provided for the process. For this reason different coating materials and thicknesses of the filler wires are used within the experiments. The resulting weld seams are evaluated by means of geometrical, electrical and mechanical properties of the joints, e.g. seam width, cross-sectional area, electrical resistance, tensile strength and strain.

  19. In-process monitoring and feedback control for stable production of full-penetration weld in continuous wave fibre laser welding

    Science.gov (United States)

    Kawahito, Yousuke; Ohnishi, Terumasa; Katayama, Seiji

    2009-04-01

    Laser micro-welding has been applied for device sealing in electronics and automobile industries. Welding of corners in goods and products is a problem owing to easier formation of a weld with burn-through, shallow penetration or a non-bonded part when a drastic change in the welding speed or laser power occurs. This research was therefore undertaken with the objective of obtaining a fundamental knowledge of in-process monitoring and feedback control for the stable production of a full-penetration weld with a constant bead width on the bottom surface irrespective of the changes in the laser power and the welding speed. Variation in weld penetration geometry was investigated by rapid deceleration and acceleration in the welding speed during lap welding of pure titanium thin sheets with a continuous wave (CW) single-mode fibre laser beam. The rapid deceleration in the welding speed led to a considerable change in the full-penetration weld geometry or a partially penetrated weld (if the power was accordingly reduced), resulting in the difficulty in the stable production of a full-penetration weld bead. The heat radiation intensity measured from the laser-irradiated area was useful as an in-process monitoring signal for detecting the molten pool size on the laser-irradiated surface. However, the utilization of monitoring of heat radiation was difficult for predicting the weld bead width on the bottom surface due to the formation of partial penetration or the change in the penetration shape. The laser power was controlled at a 4 ms interval according to the heat radiation signal in order to adjust the weld bead width on the laser-irradiated surface to the target weld penetration geometry affected by thermal storage. Consequently, the feedback-controlled laser power produced a stable full-penetration weld with the designed bead width on the bottom surface irrespective of the rapid deceleration of the welding speed and the corresponding decrease in laser power

  20. In-process monitoring and feedback control for stable production of full-penetration weld in continuous wave fibre laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Kawahito, Yousuke; Ohnishi, Terumasa; Katayama, Seiji, E-mail: kawahito@jwri.osaka-u.ac.j [Joining and Welding Research Institute (JWRI), Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2009-04-21

    Laser micro-welding has been applied for device sealing in electronics and automobile industries. Welding of corners in goods and products is a problem owing to easier formation of a weld with burn-through, shallow penetration or a non-bonded part when a drastic change in the welding speed or laser power occurs. This research was therefore undertaken with the objective of obtaining a fundamental knowledge of in-process monitoring and feedback control for the stable production of a full-penetration weld with a constant bead width on the bottom surface irrespective of the changes in the laser power and the welding speed. Variation in weld penetration geometry was investigated by rapid deceleration and acceleration in the welding speed during lap welding of pure titanium thin sheets with a continuous wave (CW) single-mode fibre laser beam. The rapid deceleration in the welding speed led to a considerable change in the full-penetration weld geometry or a partially penetrated weld (if the power was accordingly reduced), resulting in the difficulty in the stable production of a full-penetration weld bead. The heat radiation intensity measured from the laser-irradiated area was useful as an in-process monitoring signal for detecting the molten pool size on the laser-irradiated surface. However, the utilization of monitoring of heat radiation was difficult for predicting the weld bead width on the bottom surface due to the formation of partial penetration or the change in the penetration shape. The laser power was controlled at a 4 ms interval according to the heat radiation signal in order to adjust the weld bead width on the laser-irradiated surface to the target weld penetration geometry affected by thermal storage. Consequently, the feedback-controlled laser power produced a stable full-penetration weld with the designed bead width on the bottom surface irrespective of the rapid deceleration of the welding speed and the corresponding decrease in laser power

  1. Thermal degradation of PA66 during laser transmission welding

    Science.gov (United States)

    Wang, Xiao; Guo, Dehui; Chen, Guochun; Jiang, Hairong; Meng, Dongdong; Yan, Zhang; Liu, Huixia

    2016-09-01

    The thermal degradation of materials strongly influences the weld strength in laser transmission welding (LTW). Weld strength decreases at high temperatures because of material thermal degradation. Hence, it is necessary to investigate this phenomenon. Thermal degradation of polyamide 66 (PA66) was predicted by combining a pyrolysis kinetic model with a 3-D transient thermal model. Thermogravimetric analysis (TGA) was used to study the pyrolysis characteristic of PA66. The TGA data were used to obtain kinetic parameters of PA66 using an nth order model in MATLAB. In addition, material conversion as a function of temperature (time) was analyzed using this kinetic reaction model containing the relevant kinetic parameters. A 3-D transient thermal model based on a volumetric heat source was developed. The temperature-time data of the point located at the maximum temperature was predicted through this thermal analysis model under different weld parameters. This study demonstrates that the predicted power at which the material starts to degrade is generally consistent with the power at which shear strength begins to decrease. The present studies lay a theoretical foundation for the investigation of thermal degradation during LTW.

  2. Flexible solution of the fixturing problem in sheet metal laser butt welding

    Science.gov (United States)

    Olsen, Flemming O.

    1994-09-01

    In 20 years laser welding of sheet metal has been demonstrated as a possible high-tech metal joining process. However, the major obstacle to the introduction of laser welding in for example car body manufacturing has been and is the fixturing problem. In case of laser butt welding of 0.5 - 1 mm thick steel sheets, the maximum acceptable gab between the sheets to be welded is in the range of 40 - 50 micrometer. Out of this demand two major problems arise: (1) the high precision required in weld preparation in terms of precise shape of the two sheets to be welded. (2) the problem of maintaining a narrow gab under welding, where thermal distortions, even though they are relatively small in this process, still will open the gap as the welding beam proceeds along the seam. In this paper a unique technique to overcome these problems will be described. The results of the experimental work described in this paper demonstrates the technique in 2D welding, where high quality butt welds has been demonstrated with virtually no clamping forces applied by utilizing a special seam preparation technique. Possibilities in car body manufacturing and other 3D sheet metal assembly by means of the flexible laser welding technique will be discussed.

  3. Distortion and residual stresses in laser beam weld shaft-hub joints

    Science.gov (United States)

    Buschenhenke, F.; Hofmann, M.; Seefeld, T.; Vollertsen, F.

    In laser beam welding, a serious challenge is to control the distortion during the process. Understanding the whole process chain in view of different distortion potentials applied in each processing step provides the ability to control the distortion of the welded components. Every manufacturing step induces residual stresses in the component which can be released by the heat of the welding process, while further residual stresses are introduced into the welded parts upon cooling. The laser beam sources of the new generation permit a high power welding process and high beam quality at the same time. These laser beams are capable of producing deep and narrow seams. Thus the thermal strains of the joined parts are expected to be minimized. Especially axial welded shaft-hub joints show an irregular distribution of bending deformation, which is caused by the self-influencing welding gap. This work deals with the investigation of different laser beam sources and their effect on the welding distortion in axial welded shafthub joints made of steel (20MnCr5). The aim of the work done was to achieve minimal distortion after the welding process. To characterize the influences on the distortion behaviour of the welded parts, residual stresses have been determined by neutron diffraction.

  4. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    Science.gov (United States)

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure.

  5. Novel hybrid method: pulse CO2 laser-TIG hybrid welding by coordinated control

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Lei Zhenglong; Li Liqun; Wu Lin; Xie Cheng

    2006-01-01

    In continuous wave CO2 laser-TIG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method-pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.

  6. Comprehensive analysis of the capillary depth in deep penetration laser welding

    Science.gov (United States)

    Fetzer, Florian; Boley, Meiko; Weber, Rudolf; Graf, Thomas

    2017-02-01

    Laser welding is the state of the art joining technology regarding productivity and thermal loads and stress on the workpiece. In deep penetration laser welding the quality of the resultant welds strongly depends on the stability of the capillary. The highly dynamic depth fluctuations are of major influence on the controllability of the laser welding process and on the prevention of weld defects. In the present paper the capillary dynamics is investigated by means of time- and spatially resolved in-process X-ray imaging and optical coherence tomography. The X-ray diagnostics allows measuring the geometry of the capillary with frame rates of 1 kHz, while the optical coherence tomography enables the determination of the capillary depth with an acquisition rate of up to 70 kHz. These measurements are correlated to time varying input laser power to provide profound insight in the dynamics of the laser welding process. The measurements are performed for copper, aluminum and mild steel. The capillary depth resulting from arbitrary laser power modulation was investigated. Thereby, the response of the capillary depth to laser power changes was determined. Based on these measurements the changes of the capillary depth in deep penetration laser welding were described by methods known from control theory. These analyses can be utilized to optimize control strategies, to calibrate transient simulations of deep penetration laser welding and to identify the influence of material properties.

  7. Mechanism of laser welding on dissimilar metals between stainless steel and W-Cu alloy

    Institute of Scientific and Technical Information of China (English)

    Kai Chen; Zhiyong Wang; Rongshi Xiao; Tiechuan Zuo

    2006-01-01

    @@ CO2 laser is employed to join a piece of powder metallurgical material (PMM) to a stainless steel in butt joint welding mode. The powder Ni35, as a filler powder, is used. The weld metal comes from three parts of stainless steel, powder Ni35, and Cu in W-Cu PMM. It is indicated that some parts of the W-Cu base metal are heated by laser and the metal Cu at the width of 0.06-0.12 mm from the edge is melted into the melting pool in the laser welding process. The formation of firm weld joint is just because that the melting liquid metal could fill the position occupied by metal Cu and surround the metal W granules fully. The analysis results indicate that the mechanism of the laser welding for stainless steel and W-Cu alloy is a special mode of fusion-brazing welding.

  8. The fatigue life of a cobalt-chromium alloy after laser welding.

    Science.gov (United States)

    Al-Bayaa, Nabil Jalal Ahmad; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2011-03-01

    The aim of this study was to investigate the fatigue life of laser welded joints in a commercially available cast cobalt-chromium alloy. Twenty rod shaped specimens (40 mm x 1.5 mm) were cast and sand blasted. Ten specimens were used as controls and the remaining ten were sectioned and repaired using a pulsed Nd: YAG laser welder. All specimens were subjected to fatigue testing (30N - 2Hz) in a controlled environment. A statistically significant difference in median fatigue life was found between as-cast and laser welded specimens (p welded specimens despite 70% penetration of the weld.

  9. Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding

    Institute of Scientific and Technical Information of China (English)

    王腾; 高向东; Katayatna SEIJI; 金小莉

    2012-01-01

    High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface plasma region was developed in order to improve the accuracy of image processing. With a comparative analysis of the plasma features, i.e., area and height, and the characteristics of the welded seam, the relationship between the surface plasma and the stability of the laser welding process was characterized, which provides a basic understanding for the real-time monitoring of laser welding.

  10. Fibre Laser Welding of HY-80 Steel: Procedure Development and Testing

    Science.gov (United States)

    2010-09-01

    2 Welding The material used in this study was quenched and tempered martensitic HY80 steel which conforms to MIL-S-1621 [2]. The testing...Canada Fibre Laser Welding of HY-80 Steel Proceedure Development and Testing Christopher Bayley DLP Neil Aucoin DLP Xinjin Cao NRC IAR AMTC Technical...Memorandum DRDC Atlantic TM 2009-187 September 2010 This page intentionally left blank. Fibre Laser Welding of HY-80 Steel Procedure

  11. Structure-property-correlation in laser surface alloyed AISI 304 stainless steel with WC + Ni + NiCr

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, S. [Dept. of Met. and Mat. Engg., Indian Institute of Technology, Kharagpur 721302 (India); Pityana, Sisa [National Laser Centre, Council of Scientific and Industrial Research, Pretoria (South Africa); Dutta Majumdar, J., E-mail: jyotsna@metal.iitkgp.ernet.in [Dept. of Met. and Mat. Engg., Indian Institute of Technology, Kharagpur 721302 (India)

    2012-02-28

    Highlights: Black-Right-Pointing-Pointer Optimization of process parameters for development of WC dispersed composite with Ni + NiCr as binder. Black-Right-Pointing-Pointer Development of fine grained {gamma}-stainless steel with the dispersion of very fine carbides (WC, W{sub 2}C, M{sub 6}C and M{sub 23}C{sub 6}). Black-Right-Pointing-Pointer A significantly improved microhardness of the top surface (to 700-1350 VHN) as compared to as-received matrix (220 VHN) and its correlation with microstructures. Black-Right-Pointing-Pointer Detailed microstructural evolution of the alloyed zone and its correlation with process parameters. Black-Right-Pointing-Pointer Graded hardness distribution is achieved when lased with a low scan speed. - Abstract: The present study concerns a detailed investigation of the characteristics and properties of the alloyed zone formed in laser surface alloyed AISI 304 stainless steel with WC + Ni + NiCr (in the ratio of 70:15:15). Laser surface alloying has been carried out using a 5 kW continuous wave (CW) Nd:YAG laser (at a beam diameter of 4 mm), with the output power ranging from 1 to 3 kW and scan speed from 0.005 m/s to 0.1 m/s by simultaneous feeding of precursor powder (at a flow rate of 20 mg/s) and using Ar shroud at a gas flow rate of 5 l/min. The effect of laser power and scan speed on the characteristics of the surface alloyed layer (microstructures, phases and composition) and property (microhardness) have been investigated in details. Laser surface alloying leads to development of fine grained {gamma}-stainless steel with the dispersion of WC, W{sub 2}C, M{sub 6}C and M{sub 23}C{sub 6}. The microhardness of the alloyed zone is significantly improved to a maximum value of 1350 VHN as compared to 220 VHN of as-received {gamma}-stainless steel. The optimum parameters for laser processing were derived.

  12. Subtask 12B2: Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Keppler, E.E.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1995-03-01

    The development of techniques for joining vanadium alloys will be required for the construction of fusion devices utilizing the desirable properties of these alloys. The primary objective of this program is to develop of laser welding techniques for vanadium alloys, particularly for the manufacture of welded materials testing specimens. Laser welding is potentially advantageous because of its flexibility and the reduced amount of material effected by the weld. Lasers do not require a vacuum (as does electron beam welders) and the welds they produce have large depth-to-width ratios. Results of scoping tests using a small, pulsed laser (50 joule, YAG laser) indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1-mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Successful bead-on-plate welds have been made to depths of about 4-mm using a 6 kW continuous CO{sub 2} laser with argon purging. 2 figs.

  13. Effects of Laser Peening, and Shot Peening, on Friction Stir Welding

    Science.gov (United States)

    Hatamleh, Omar; Hackel, Lloyd; Rankin, Jon; Truong, Chanh; Walter, Matt

    2006-01-01

    A viewgraph presentation describing the effects of laser peening and shot peening on friction stir welding is shown. The topics include: 1) Background; 2) Friction Stir Welding (FSW); 3) Microstructure; 4) Laser & Shot Peening; 5) Residual Stresses; 6) Tensile Behavior; 7) Fatigue Life & Surface Roughness; 8) Crack Growth; and 9) Benefits.

  14. Mechanical properties of a dissimilar aluminum alloy joint welded by hybrid laser-MIG welding

    Science.gov (United States)

    Wang, Qiuying; Chen, Hui; Zhu, Zongtao; Cui, Yunlong

    2017-07-01

    Two dissimilar Al alloys, 5083-H111 and 6005A-T6, were joined by hybrid laser-MIG welding method. Mechanical properties of the welded joint were investigated and compared. The results show that the tensile strength of the dissimilar joint is 219.8 MPa, 11.7% higher than that of 6005A-T5 joint. After statistical analysis of the fatigue data, the P-S-N curves of the dissimilar joint were obtained. The mean fatigue strength at Nf = 107 of the dissimilar joint is 112.5 MPa. The fatigue strength at Nf = 107 of the dissimilar joint for a given 10% probability of failure, at a confidence level of 95%, is 101.4 MPa. The fatigue strength at Nf = 107 of the dissimilar joint is almost same as that of the 6005A-T6 joint. In welded structure designing, different P-S-N curves should be chosen according to the different service conditions and reliability requirements.

  15. Investigation on edge joints of Inconel 625 sheets processed with laser welding

    Science.gov (United States)

    Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.

    2017-08-01

    Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.

  16. Keyhole depth instability in case of CW CO2 laser beam welding of mild steel

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj

    2010-10-01

    The study of keyhole (KH) instability in deep penetration laser beam welding (LBW) is essential to understand welding process and appearance of weld seam defects. The main cause of keyhole collapse is the instability in KH dynamics during the LBW process. This is mainly due to the surface tension forces associated with the KH collapse and the stabilizing action of vapour pressure. A deep penetration high power CW CO2 laser was used to generate KH in mild steel (MS) in two different welding conditions i.e. ambient atmospheric welding (AAW) and under water welding (UWW). KH, formed in case of under water welding, was deeper and narrower than keyhole formed in ambient and atmospheric condition. The number and dimensions of irregular humps increased in case of ambient and under water condition due to larger and rapid keyhole collapse also studied. The thermocapillary convection is considered to explain KH instability, which in turn gives rise to irregular humps.

  17. Electrochemical behavior of YAG laser-welded NiTi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Xiao-jun; YANG Da-zhi; LIU Xiao-peng

    2006-01-01

    Electrochemical behaviors of laser-welded Ti-50.6%Ni(mole fraction) shape memory alloy and the base metal in 0.9% NaCl solution were investigated by electrochemical techniques as corrosion potential measurement, linear and potentiodynamic polarization. The results indicate that the laser-welded NiTi alloy is less susceptible to pitting and crevice corrosion than the base metal, which is demonstrated by the increase in polarization resistance(Rp) and pitting potential(ψpit) and decrease in corrosion current density(Jcorr) and mean difference between ψpit and ψprot values. It is confirmed by scanning electron microscope micrographs that pits could be observed on the surface of base metal but not on the surface of laser-welded alloy after potentiodynamic tests. An improvement of corrosion resistance of laser-welded NiTi alloy could be attributed to almost complete dissolution of inclusions upon laser welding.

  18. NIR-camera-based online diagnostics of laser beam welding processes

    Science.gov (United States)

    Dorsch, Friedhelm; Braun, Holger; Keßler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2012-03-01

    We have developed an on-axis camera-based online sensor system for laser beam welding diagnostics that detects the thermal radiation in the near-infrared (NIR) spectral range between 1200 and 1700 nm. In addition to a sensor in the visible (VIS) range, our camera detects the thermal radiation of the weld pool more clearly, and it is also sensible to the radiation of the solidified weld seam. The NIR images are analyzed by real-time image processing. Features are extracted from the images and evaluated to characterize the welding process. Keyhole and weld pool analysis complement VIS diagnostics, whereas the observation of the weld seam and heat affected zone with an NIR camera allows online heat flux thermography. By this means we are able to detect bad joints in overlap weldings ("false friends") online during the welding process.

  19. Influences of pulse laser parameters on properties of AISI316L stainless steel thin-walled part by laser material deposition

    Science.gov (United States)

    Wang, Xinlin; Deng, Dewei; Yi, Hongli; Xu, Haiyan; Yang, Shuhua; Zhang, Hongchao

    2017-07-01

    Laser material deposition (LMD) which combines laser cladding and rapid prototyping technique has been widely used to build full density metal parts directly without using modules or tools. There are many parameters affecting the quality and properties of the LMD parts through changing the energy distribution. Pulse laser provides the user an added degree of controlling over the energy distribution which seriously affects the solidification of molten pool and eventual part formation. In the present study, a series of AISI316L stainless steel thin-walled parts are successfully produced by LMD with different pulse laser parameters to investigate the effects of energy distribution on characteristics (microstructure, hardness, residual stress and tensile properties). The results show that the characteristics of LMD parts are obviously influenced by laser mode (pulse or continuous wave laser) and pulse laser parameters (T_pulse and T_pause). The microstructure of parts presents various grain sizes with the different pulse laser parameters. The different value (D-value) between the hardness of edge and central region varies considerably with the pulse laser parameters. The maximum D-value of hardness is presented in the part deposited by continuous wave laser. The maximum hardness is presented in item 4 (T_pulse=10 ms, T_pause=10 ms) and the minimum hardness is presented in part fabricated by continuous wave laser where the residual stress on Z-component presents tensile stress at the edge region and compress stress at the central region but opposite trend happens to the residual stress on Y-component. Tensile stress on Z-component at the edge region increases even presents compress tensile with the decrease of T_pulse. The stress on Y-component presents a periodic variation between tensile stress and compress stress in the Y-direction of the part fabricated by pulse laser. The ultimate tensile strength (UTS) of the part fabricated using pulse laser is higher than the

  20. Real-time monitoring of the optical spectrum in laser welding

    Science.gov (United States)

    Mueller, Robert E.; Duley, Walter W.

    1997-03-01

    Laser welding has become a standard manufacturing technique, particularly in industries where weld quality and performance are critical, such as the aerospace, nuclear, medical devices and automotive sectors. In many laser welding applications, flaws are not acceptable in the final product, so every weld must be inspected. Post-process inspection is time-consuming and, if a systematic problem develops, many flawed parts could be produced before the problem is identified and corrected. The preferred approach is therefore to perform in-process inspection as the weld is produced. This paper describes a weld process inspection system based on a compact, computer controlled optical spectrometer, which observes the laser welding plume in real time. From the plume spectrum, one is able to determine the temperature of the weld site and the elements present in the fusion zone. A sudden change in weld temperature may indicate a weld flaw, either from a loss of laser energy coupling and therefore a loss of fusion, or from excess energy input and burn-through. An indication of the elements present in the fusion zone can be used for seam tracking or penetration monitoring when dissimilar materials are being joined in the butt or lap configurations, respectively.

  1. Laser-welded V-Cr-Ti alloys: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Smith, D.L.; Xu, Z.; Leong, K.H. [Argonne National Lab., IL (United States)

    1998-09-01

    A systematic study has been in progress at Argonne National Laboratory to examine the use of YaG or CO{sub 2} lasers to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the laser-welded materials. In addition, several postwelding heat treatments are being applied to the welded samples to evaluate their benefits, if any, to the structure and properties of the weldments. Hardness measurements are made across the welded regions of different samples to evaluate differences in the characteristics of various weldments. Several weldments were used to fabricate specimens for four-point bend tests. Several additional weldments were made with a YaG laser; here, the emphasis was on determining the optimal weld parameters to achieve deep penetration in the welds. A preliminary assessment was then made of the weldments on the basis of microstructure, hardness profiles, and defects.

  2. Process Parameter Optimization for Wobbling Laser Spot Welding of Ti6Al4V Alloy

    Science.gov (United States)

    Vakili-Farahani, F.; Lungershausen, J.; Wasmer, K.

    Laser beam welding (LBW) coupled with "wobble effect" (fast oscillation of the laser beam) is very promising for high precision micro-joining industry. For this process, similarly to the conventional LBW, the laser welding process parameters play a very significant role in determining the quality of a weld joint. Consequently, four process parameters (laser power, wobble frequency, number of rotations within a single laser pulse and focused position) and 5 responses (penetration, width, heat affected zone (HAZ), area of the fusion zone, area of HAZ and hardness) were investigated for spot welding of Ti6Al4V alloy (grade 5) using a design of experiments (DoE) approach. This paper presents experimental results showing the effects of variating the considered most important process parameters on the spot weld quality of Ti6Al4V alloy. Semi-empirical mathematical models were developed to correlate laser welding parameters to each of the measured weld responses. Adequacies of the models were then examined by various methods such as ANOVA. These models not only allows a better understanding of the wobble laser welding process and predict the process performance but also determines optimal process parameters. Therefore, optimal combination of process parameters was determined considering certain quality criteria set.

  3. Albumin-genipin solder for laser tissue welding

    Science.gov (United States)

    Lauto, Antonio; Foster, John; Avolio, Albert; Poole-Warren, Laura

    2004-07-01

    Background. Laser tissue soldering (LTS) is an alternative technique to suturing for tissue repair. One of the major drawbacks of LTS is the weak tensile strength of the solder welds when compared to sutures. In this study, the possibility was investigated for a low cytotoxic crosslinker, acting on amino groups, to enhance the bond strength of albumin solders. Materials and Methods. Solder strips were welded onto rectangular sections of sheep small intestine by a diode laser. The laser delivered in continuous mode mode a power of 170 +/- 10 mW at λ=808 nm, through a multimode optical fiber (core size = 200 μm) to achieve a dose of 10.8 +/- 0.5 J/mg. The solder thickness and surface area were kept constant throughout the experiment (thickness = 0.15 +/- 1 mm, area = 12 +/- 1.2 mm2). The solder incorporated 62% bovine serum albumin, 0.38% genipin, 0.25% indocyanin green dye (IG) and water. Tissue welding was also performed with a similar solder, which did not incorporate genipin, as a control group. The repaired tissue was tested for tensile strength by a calibrated tensiometer. Results. The tensile strength of the "genipin" solder was twice as high as the strength of the BSA solder (0.21 +/- 0.04 N and 0.11 +/- 0.04 N respectively; p~10-15 unpaired t-test, N=30). Discussion. Addition of a chemical crosslinking agent, such as genipin, significantly increased the tensile strength of adhesive-tissue bonds. A proposed mechanism for this enhanced bond strength is the synergistic action of mechanical adhesion with chemical crosslinking by genipin.

  4. Evaluation of sheet mechanical response to laser welding processes

    Energy Technology Data Exchange (ETDEWEB)

    Carmignani, B.; Daneri, A.; Toselli, G. [ENEA, Bologna (Italy). Centro Ricerche Energia `E. Clementel` - Area Energia e Innovazione; Vitali, R.; Zanotelli, G.L. [Hibbit, Karlsson and Sorensen, Milan (Italy); Bellei, M. [Industrialconsult, Milan (Italy)

    1995-11-01

    The simulation of the mechanical response of steel sheets, due to the heating during welding processes by a laser source beam, obtained by Abaqus standard code, is discussed. Different hypotheses for the material behaviour at temperatures greater than the fusion one have been tested and compared; in particular, some tests have been made taking the annealing effect into account by means of an user routine UMAT developed ad hoc. This work was presented at the 8th international Abaqus Users` conference at Paris, 31 May - 2 June 1995.

  5. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    OpenAIRE

    Stolecki M.; Bijok H.; Kowal Ł.; Adamiec J.

    2015-01-01

    This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301) austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614), and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, ...

  6. Upgrade of laser and electron beam welding database

    CERN Document Server

    Furman, Magdalena

    2014-01-01

    The main purpose of this project was to fix existing issues and update the existing database holding parameters of laser-beam and electron-beam welding machines. Moreover, the database had to be extended to hold the data for the new machines that arrived recently at the workshop. As a solution - the database had to be migrated to Oracle framework, the new user interface (using APEX) had to be designed and implemented with the integration with the CERN web services (EDMS, Phonebook, JMT, CDD and EDH).

  7. Análisis térmico de soldadura GTAW sobre placa de acero AISI 316L empleando el método de elementos finitos GTAW welding thermal analysis on AISI 316L steel plate using the finite elements method

    Directory of Open Access Journals (Sweden)

    Juan A. Pozo-Morejón

    2011-09-01

    Full Text Available En el presente trabajo se realiza la modelación térmica de soldadura GTAW sobre placa de acero inoxidable AISI 316L. Se analizan los aspectos teóricos más relevantes a considerar durante la ejecución de un análisis de este tipo. En la simulación se emplea un software de análisis por elementos finitos de uso general y se enriquece una metodología, previamente desarrollada, para la modelación en 3D no lineal transitoria del proceso de soldeo. En dicha metodología se implementa una subrutina en lenguaje APDL, programada con el modelo volumétrico de fuente calor de doble elipsoide, en un sistema de coordenadas cartesiano. Se analiza la influencia del paso de tiempo seleccionado sobre los resultados de la simulación. Finalmente se valida la metodología enriquecida, en base a la correlación de los resultados del modelo respecto a los resultados experimentales.In the present work, thermal modeling of GTAW welding on AISI 316L stainless steel plate is presented. More relevant theoretical aspects to be considered during the implementation of an analysis of this type are discussed. For the simulation a general purpose finite element analysis software has been used. A previously developed methodology for 3D nonlinear transient modeling of welding process has also been improved. In this methodology a subroutine in APDL language is implemented, programmed with the double ellipsoid volumetric heat source model, in a Cartesian coordinated system. The influence of the selected time step on the simulation results is analyzed. The good correlation obtained among the results calculated by means of the model and the experimental data validates this improved methodology.

  8. Performance optimization of water-jet assisted underwater laser cutting of AISI 304 stainless steel sheet

    Science.gov (United States)

    Mullick, Suvradip; Madhukar, Yuvraj K.; Roy, Subhransu; Nath, Ashish K.

    2016-08-01

    Recent development of water-jet assisted underwater laser cutting has shown some advantages over the gas assisted underwater laser cutting, as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. Scattering is reported to be a dominant loss mechanism, which depends on the growth of vapor layer at cut front and its removal by water-jet. Present study reports improvement in process efficiency by reducing the scattering loss using modulated laser power. Judicious control of laser pulse on- and off-time could improve process efficiency through restricting the vapor growth and its effective removal by water-jet within the laser on- and off-time, respectively. Effects of average laser power, duty cycle and modulation frequency on specific energy are studied to get an operating zone for maximum efficiency. Next, the variation in laser cut quality with different process parameters are studied within this operating zone using Design of experiment (DOE). Response surface methodology (RSM) is used by implementing three level Box-Behnken design to optimize the variation in cut quality, and to find out the optimal process parameters for desired quality. Various phenomena and material removal mechanism involved in this process are also discussed.

  9. Laser-induced fluorescence applied to laser welding of austenitic stainless steel for dilute alloying element detection

    Science.gov (United States)

    Simonds, Brian J.; Sowards, Jeffrey W.; Williams, Paul A.

    2017-08-01

    Optical spectral analysis of the laser weld plume is a common technique for non-contact, in situ weld plume analysis. However, the low sensitivity of optical emission spectroscopy limits the available information during 1070 nm wavelength laser welding, which is becoming the standard in many industrial operations. Here we demonstrate an improved sensitivity of optical spectroscopy by applying laser-induced fluorescence (LIF) for probing the hot gas plume induced during fiber laser welding of 304L austenitic stainless steel. As a proof-of-principle, we show that LIF is capable of resolving a spectral signal from silicon being emitted during welding. Optical detection of such a low concentration alloying element has not previously been reported and shows the capability of LIF for increased sensitivity. Silicon atoms in the weld plume were excited in the ultraviolet at 221.09 nm and detected at 221.64 nm. We demonstrate the detection of silicon LIF down to laser welding powers of 600 W (210 kW cm-2) making this technique applicable even in low-power laser welding or additive manufacturing scenarios.

  10. Fine micro-welding of thin metal sheet by high speed laser scanning

    Science.gov (United States)

    Okamoto, Yasuhiro; Gillner, Arnold; Olowinsky, Alexander; Gedicke, Jens; Uno, Yoshiyuki

    2007-05-01

    Recently, since the size of component becomes smaller, then the welding of thin metal sheet has been required. Besides, the flexibility of process is important according to the accessibility especially for small components. Fraunhofer Institute for Laser Technology had developed the SHADOW ® welding technology, in which the high speed joining with small distortion is possible using pulsed Nd:YAG laser. The possibility of high speed and high quality welding had been reported by using single-mode fiber laser. The combination of micro beam and high speed laser scanning has the advantages for thin metal sheet welding. Therefore, the characteristics of micro-welding for thin metal sheet were investigated by high speed laser scanning, in which the welding was carried out by high speed scanner system with single-mode fiber laser and pulsed Nd:YAG laser. The proper welding region was narrow by the laser beam with a large focus diameter of 160 μm without pulse control, while a small focus diameter of 22 μm can control the welding state widely. A small focus diameter can perform the excellent welding seam from the extreme beginning without pulse control. The penetration depth can be controlled by the energy density with a small focus diameter of 22 μm at the energy densities less than 1 J/mm2. Besides, the unique periodic structure appeared at the high velocity of beam scanning with a small focus diameter. Moreover, the overlap welding of 25 μm thickness sheet can be performed regardless of small gap distance between two sheets by the laser beam with a small focus diameter of 22 μm.

  11. Effect of fiber laser parameters on laser welded AZ31B Magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mat Salleh Naqiuddin

    2017-01-01

    Full Text Available Recently, the usage of Magnesium (Mg alloys has been hugely applied in the industrial application such as in automotive, marine, and electronic due to its advantages of recyclability and lightweight. This alloys required low heat input to be weld since it is easily evaporated due to the Magnesium Oxide (MgO at the surface and it also possesses lower melting point compared to steel. Laser welding is more convenient to weld Mg alloys due to its high power and lower heat input. AZ31B was selected since it has strong mechanical properties among others Mg alloys due to the major alloying elements; Aluminium (Al and Zinc (Zn. Low power fiber laser machine with wavelength of 900 nm was used in this experiment. The intention of this work was to investigate the effect of low power fiber laser parameters and effect of shielding gas on weld penetration and microstructure. Another aim in this work was to produce the joint for this thin sheets metal. Penetration depth and microstructure evaluation were emphasized in the analysis section. Bead-on-Plate (BOP and laser lap welding was conducted on AZ31B with thicknesses of 1.0 mm and 0.6 mm for feasibility study using pulsed wave (PW mode. Defocusing features was used in order to find better focal position, which has less occurrence of evaporation (underfill. The effect of different angle of irradiation was also investigated. Two types of shielding gases, Argon (Ar and Nitrogen (N2 were used in order to study the effect of shielding gas. Lastly, the effect of pulsed energy on penetration types and depth of BOP welded samples was investigated. Focus point was found at focal length of 156 mm with 393.75 μm. For BOP experiment, higher pulsed energy used contributes to melt through defect. Meanwhile, Ns shielding gas proved to be better shielding gas in laser welding the AZ31B. Higher angle of irradiation could reduce the underfill defect. Fillet Lap joint of similar metal was successfully done where 2.0 J of

  12. Laser welding and syncristallization techniques comparison: “Ex vivo” study

    Science.gov (United States)

    Meleti, Marco; Vescovi, Paolo; Merigo, Elisabetta; Rocca, Jean-Paul

    2013-01-01

    Background and aims: Stabilization of implant abutments through electric impulses at high voltage for a very short time (electrowelding) was developed in the Eighties. In 2009, the same procedure was performed through the use of laser (laser welding) The aim of this study is to compare electrowelding and laser welding for intra-oral implant abutments stabilization on “ex vivo models” (pig jaws). Materials and methods: Six bars were welded with two different devices (Nd:YAG laser and Electrowelder) to eighteen titanium implant abutment inserted in three pig jaws. During the welding process, thermal increase was recorded, through the use of k-thermocouples, in the bone close to the implants. The strength of the welded joints was evaluated by a traction test after the removal of the implants. For temperature measurements a descriptive analysis and for traction test “values unpaired t test with Welch's correction” were performed: the significance level was set at PLaser welding gives a lower thermal increase than Electrowelding at the bone close to implants (Mean: 1.97 and 5.27); the strength of laser welded joints was higher than that of Electrowelding even if nor statistically significant. (Mean: 184.75 and 168.29) Conclusion: Electrowelding seems to have no advantages, in term of thermal elevation and strength, while laser welding may be employed to connect titanium implants for immediate load without risks of thermal damage at surrounding tissues. PMID:24511205

  13. Achieving High Strength Joint of Pure Copper Via Laser-Cold Metal Transfer Arc Hybrid Welding

    Science.gov (United States)

    Chen, Yulong; Chen, Cong; Gao, Ming; Zeng, Xiaoyan

    2016-06-01

    Fiber laser-cold metal transfer arc hybrid welding of pure copper was studied. Weld porosity was tested by X-ray nondestructive testing. Microstructure and fracture features were observed by scanning electron microscopy. Mechanical properties were evaluated by cross weld tensile test. Full penetrated and continuous welds were obtained by hybrid welding once the laser power reached 2 kW, while they could not be obtained by laser welding alone, even though the laser power reached 5 kW. The ultimate tensile strength (UTS), the yield strength (YS), and the elongation of the best hybrid weld material were up to 227, 201 MPa, and 21.5 pct, respectively. The joint efficiencies in UTS and YS of hybrid weld were up to 84 and 80 pct of the BM, respectively. The fracture location changes from the fusion zone to the heat-affected zone with the increase of laser power. Besides, the mechanisms of process stability and porosity suppression were clarified by laser-arc interaction and pool behavior. The strengthening mechanism was discussed by microstructure characteristics.

  14. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    Science.gov (United States)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  15. The effects of initial welding temperature and welding parameters on the crystallization behaviors of laser spot welded Zr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huei-Sen, E-mail: huei@mail.isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung County 84001, Taiwan (China); Chiou, Mau-Sheng; Chen, Hou-Guang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung County 84001, Taiwan (China); Jang, Jason Shian-Ching [Department of Mechanical Engineering, National Central University, Taoyuan County 32001, Taiwan (China)

    2011-09-15

    This study investigated the effects of the initial welding temperature (IWT) and welding parameters on the crystallization behaviors of laser spot welded (Zr{sub 53}Cu{sub 30}Ni{sub 9}Al{sub 8})Si{sub 0.5} bulk metallic glass (BMG). After the welding process, the microstructure evolution, glass-forming ability (GFA) and mechanical properties of the welded samples were determined by a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and the Vicker's micro-hardness test. The results showed that the heat-affected zone (HAZ) crystallization seemed avoidable under the room temperature welding process. However, with a combination of a lower energy input (welding Condition C) and a lower IWT (at 0 deg. C), a crystallization-free HAZ was finally obtained. Using the above welding condition into the refined heat flow equation, a critical retention time of 79 ms for the crystallization temperature interval was estimated. Moreover, as the laser welded samples came to crystallization in the HAZ, it was observed that a higher content of spherical-type crystalline precipitates tended to result in a higher value of glass transition temperature, T{sub g}. Therefore, the GFA indices, {Delta}T{sub x}, {gamma} and {gamma}{sub m}, were reduced. Furthermore, it was found that the micro-hardness value in the HAZ crystallization area was decreased due to the massive cracks formed in most parts of the crystalline precipitates. For a crystallization-free HAZ, the hardness seemed unaffected.

  16. [Plasma temperature calculation and coupling mechanism analysis of laser-double wire hybrid welding].

    Science.gov (United States)

    Zheng, Kai; Li, Huan; Yang, Li-Jun; Gu, Xiao-Yan; Gao, Ying

    2013-04-01

    The plasma radiation of laser-double wire hybrid welding was collected by using fiber spectrometer, the coupling mechanism of arc with laser was studied through high-speed photography during welding process, and the temperature of hybrid plasma was calculated by using the method of Boltzmann plot. The results indicated that with laser hybrid, luminance was enhanced; radiation intensity became stronger; arc was attracted to the laser point; cross section contracted and arc was more stable. The laser power, welding current and arc-arc distance are important factors that have great influence on electron temperature. Increase in the laser power, amplification of welding current and reduction of arc-arc distance can all result in the rise of temperature.

  17. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    Science.gov (United States)

    Hu, Haoyue; Eberhard, Peter

    2016-10-01

    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  18. High power laser welding of thick steel plates in a horizontal butt joint configuration

    Science.gov (United States)

    Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.

    2016-09-01

    In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.

  19. Combining femtosecond laser ablation and diode laser welding in lamellar and endothelial corneal transplants

    Science.gov (United States)

    Pini, Roberto; Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Yoo, Sonia H.; Parel, Jean-Marie

    2008-02-01

    Based on our previous clinical experiences in minimally invasive diode laser-induced welding of corneal tissue in penetrating keratoplasty (PK), i.e. full-thickness transplant of the cornea, we combined this technique with the use of a femtosecond laser for applications in lamellar (LK) and endothelial (EK) keratoplasty. In LK, the femtosecond laser was used to prepare donor button and recipient corneal bed; the wound edges were stained with a water solution of Indocyanine Green (ICG) and then irradiated with a diode laser emitting in CW mode to induce stromal welding. Intraoperatory observations and follow-up results up to 6 months indicated the formation of a smooth stromal interface, total absence of edema as well as inflammation, and reduction of post-operative astigmatism, as compared with conventional suturing procedures. In EK the femtosecond laser was used for the preparation of a 100 μm thick, 8.5mm diameter donor corneal endothelium flap. The flap stromal side was stained with ICG. After stripping the recipient Descemet's membrane and endothelium, the donor flap was positioned in the anterior chamber on the inner face of the cornea by an air bubble and secured to the recipient cornea by diode laser pulses delivered by means of a fiberoptic contact probe introduced in the anterior chamber, which produced welding spots of 200 μm diameter. Femtosecond laser sculpturing of the donor cornea provided lamellar and endothelial flaps of preset and constant thickness. Diode laserinduced welding showed a unique potential to permanently secure the donor flap in place, avoiding postoperative displacement and inflammation reaction.

  20. Effect of Laser Preheating AISI 4140 Specimens for Micro-Forging

    Directory of Open Access Journals (Sweden)

    Jung C.

    2017-06-01

    Full Text Available Many high performance and permanent service parts require suitable material characteristics-high fatigue strength is one of the most important characteristics. For this reason, surface treatment processes are essential to increase the material performance and avoid the use of costly ineffective material. There exist various surface treatment processes for various applications. Each process has advantages and disadvantages and hybridization can solve various problems. The micro-forging process delivers a controlled and uniform surface hardness, but the depth of the forged surface is limited. On the other hand, laser heat treatment can increase the hardness drastically, but the surface may become brittle, which reduces the fatigue life. Laser-assisted micro-forging is a novel hybrid process of laser heat treatment and micro-forging that has the potential to increase the forging depth and relax the stress caused by the high temperature of the forging process.

  1. Effects on mechanical properties in electron beam welding of TC4 alloy by laser shock processing

    Institute of Scientific and Technical Information of China (English)

    LU Jinzhong; ZHANG Yongkang; KONG Dejun; REN Xudong; GE Tao; ZOU Shikun

    2007-01-01

    The surface of TC4 titanium alloy welding line by electron beam welding (EBW) was processed by high power Q-switched and repetition-rate Nd: glass laser. Effects of laser power and spot diameter on residual stress and microhardness of the TC4 alloy welding line by laser shock processing (LSP) have been analyzed. Results show that residual stresses almost do not change as laser poweris 45.9 J,spot diameter is φ9 mm; While laser power is 45.9 J, spot diameter less than φ3 mm, the distribution of residual stress in welding line occurs obvious variation, which residual stress increase obviously with spot diameter decrease. When power density is bigger than 1.8×1010W/cm2, residual stresses of electron beam welding line occur change by LSP,which improve obviously residual stress distribution; while laser power is bigger than 1.2×1010W/cm2, the surface micro-hardness of electron beam welding line occurs change by LSP, which improve obviously micro-hardness distribution. Mechanical properties of TC4 titanium alloy welding line will be improved by LSP, which provides experimental foundation for further controlling the distributions of residual stress and micro-hardness during laser shock processing.

  2. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  3. Bending Properties and Fracture Behavior of Ti-23Al-17Nb Alloy Laser Beam Welding Joints

    Institute of Scientific and Technical Information of China (English)

    WANG Guoqing; WU Aiping; ZOU Guisheng; ZHAO Yue; CHEN Qiang; REN Jialie

    2009-01-01

    Ti-23Al-17Nb alloy is an important high temperature structural material used in the space and aerospace fields. Welding of this alloy is an indispensable processing method, so the microstructures and mechanical properties of these welded joints must be studied to improve the welds. Longitudinal three-point bending tests were conducted to measure the bending ductility of laser beam welded joints. The crack dis-tribution and fracture surface were investigated to further analyze the fracture behavior. The results indicate that the bending ductility decreases as the heat input by the laser beam welding increases. The crack in-ducing strain reaches 4.24%, while the fracturing strain exceeds 5% when the heat input is below 316 J/cm. If the columnar crystal grain of the weld metal exhibits a uniform orientation, the bending ductility is worse. The fractography analysis shows that the cracking propagates transgranularly and the fracture surface has a cleavage mode.

  4. Influence of Surface Pre-treatments on Laser Welding of Ti6Al4V Alloy

    Science.gov (United States)

    Sánchez-Amaya, J. M.; Amaya-Vázquez, M. R.; González-Rovira, L.; Botana-Galvin, M.; Botana, F. J.

    2014-05-01

    In the present study, Ti6Al4V samples have been welded under conduction regime by means of a high power diode laser. The main objective of the work has been to determine the actual influence of the surface pre-treatments on the laser welding process. Thus, six different pre-treatments were applied to Ti6Al4V samples before performing bead-on-plate and butt welding treatments. The depth, width, microstructure, and microhardness of the different weld zones were deeply analyzed. Grinding, sandblasting, and chemical cleaning pre-treatments lead to welds with the highest depth values, presenting high joint strengths. Treatments based on the application of dark coatings generate welds with lower penetration and worse mechanical properties, specially the graphite-based coating.

  5. Fatigue life of AISI 316L stainless steel welded joints, obtained by GMAW; Vida a la fatiga de juntas soldadas del acero inoxidable AISI 316L obtenidas mediante el proceso GMAW

    Energy Technology Data Exchange (ETDEWEB)

    Puchi-Cabrera, E. S.; Saya-Gamboa, R. A.; Barbera-Sosa, J. G. la; Staia, M. H.; Ignoto-Cardinale, V.; Berrios-Ortiz, J. A.; Mesmacque, G.

    2007-07-01

    An investigation has been conducted in order to determine the effect of both the metallic transfer mode (pulsed arc or short circuit) and the O{sub 2} content in the Ar/O{sub 2} gas mixture, of the gas-metal arc welding process (GMAW), on the fatigue life under uniaxial conditions of welded joints of 316L stainless. it has been concluded that the mixture of the protective gases employed in the process could have an important influence on the fatigue life of the welded joints of such steel in two different ways. firstly, through the modification of the radius of curvature at the joint between the welding tow and the base metal and, secondly, through a more pronounced degree of oxidation of the alloying elements induced by a higher O{sub 2} content in the mixture. As far as the metallic transfer mode is concerned, it has been determined that the welded joints obtained under a pulsed arc mode show a greater fatigue life in comparison with the joints obtained under short circuit for both gas mixtures. (Author) 25 refs.

  6. Joint performance of laser-TIG double-side welded 5A06 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-bin; MIAO Yu-gang; LI Li-qun; WU Lin

    2009-01-01

    The influence of welding parameters on mechanical properties and microstructure of the welds of laser-TIG double-side welded 5A06 aluminum alloy was investigated. The results show that the weld cross-sectional shape has an intimate relation with the mechanical properties and microstructure of the welds. The symmetrical "X" cross-section possesses a relatively higher tensile strength and elongation than the others, about 91% and 58% of those of base metal, respectively. The good weld profiles and free defects are responsible for the improvement of tensile properties. Due to low hardness of the fusion zone, this region is the weakest area in the tensile test and much easier to fracture. The loss of Mg element is responsible for the decrease of mechanical properties of the joints. The microstructure of "X" cross-section has an obvious difference along the direction of weld depth, and that of the "H" cross-section is consistent and coarse.

  7. Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

    Science.gov (United States)

    Zhang, Yan; Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei

    2017-06-01

    The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters.

  8. Development of Technology and Equipment of the Automated Laser Welding for Manufacturing Heat Exchanger Details of Marine Engines

    Directory of Open Access Journals (Sweden)

    Shelyagin, V.D.

    2014-09-01

    Full Text Available Based on the developed automated laser welding technology for flat tubes of copper-nickel alloys laser welding complex technological equipment, which can be applied on the enterprises of machine building, aerospace, shipbuilding and automobile industries, was designed and created. To control the integrity of welded flat tubes a technique, which consists in testing sample pressure and finding defective sections by laser interferometry in the automated mode, was developed. Specialized welding head was designed and manufactured for the industrial use of the developed laser welding technology.

  9. The laser welding of iridium-platinum tips to spark plug electrodes

    Science.gov (United States)

    Antoszewski, Bogdan; Tofil, Szymon

    2016-12-01

    The paper presents selected results of model and technological experiments of welding iridium-platinum tips to spark plug electrodes. Variants of welding technology included different ways of preparing materials and the use of different Nd: YAG lasers (Rofin BLS 720 and Rofin Integral). The results of technological tests were verified by the metallographic evaluation of joints. Performance tests when powered by biogas were conducted for selected variants of welding.

  10. Study on heat efficiency of laser-TIG double-side welding

    Institute of Scientific and Technical Information of China (English)

    Miao Yugang; Li Liqun; Chen Yanbin; Wu Lin

    2008-01-01

    A series of laser-TIG double-side welding experiments for aluminum alloys were carried out to investigate the heat efficiency of the process. The melting efficiency was introduced to evaluate quantitatively the degree of the mutual effect of the laser and the arc. The results showed that the melting efficiency of laser-TIG double-side welding exceeded the sum of the laser and the arc taken separately. With the increase of heat input, the weld depth and melting efficiency of the laser and the arc were increased significantly. This, in fact, implies the strong mutual effect of the laser and the arc as heat sources joined simultaneously in the process. Comparatively, the higher efficiency of the laser constituent of heat sources plays the main role in the increase of the process efficiency. The phenomena of arc column convergence, increased laser absorptivity and the formation of heat accumulation region are the causes of the improvement of heat efficiency.

  11. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints

    Science.gov (United States)

    Yuhua, Chen; Yuqing, Mao; Weiwei, Lu; Peng, He

    2017-06-01

    Dissimilar metals of NiTiNb shape memory alloy and Ti6Al4V alloy with a same thickness of 0.2 mm were joined by micro laser welding. The effect of laser power on crack sensitivity of the weld was investigated. The results show that full penetrated welds are obtained when the laser power of 7.2 W is used, many cracks are observed in the weld. With increasing the laser power to 12 W, the number of all cracks and cracking width first increase and then decrease. By XRD analysis, three different kinds of Ti2Ni, NbNi3 and AlNbTi2 intermetallic compounds are found in the weld. According to the formation enthalpy and binary phase diagram, brittle Ti2Ni phase with more contents is existed in the weld due to final solidification, and which is the main reason of crack formation along with large stress concentration. Moreover, the welding cracks like the weld center longitudinal solidification cracks, weld metal toe transversal liquid cracks, heat-affected-zone hot cracks and crater cracks are classified in the laser welded joints. A brittle cleavage fracture with cleavage planes and river patterns in the joints is presented from the fracture surface.

  12. GMA-laser Hybrid Welding of High-strength Fine-grain Structural Steel with an Inductive Preheating

    Science.gov (United States)

    Lahdo, Rabi; Seffer, Oliver; Springer, André; Kaierle, Stefan; Overmeyer, Ludger

    The industrial useof GMA-laser hybrid welding has increased in the last 10 years, due to the brilliant quality of the laser beam radiation, and higher laser output powers. GMA-laser hybrid welding processes operate in a common molten pool. The combination of the laser beam and the arc results in improved welding speed, penetration depth, heat affected zone and gap bridgeability. Single-layer, GMA-laser hybrid welding processes have been developed for high-strength fine-grain structural steels with a grade of S690QL and a thickness of 15 mm and 20 mm. In addition, the welding process is assisted by an integrated, inductive preheating process to improve the mechanical properties of the welding seam. By using the determined parameters regarding the energy per unit length, and the preheating temperature, welding seams with high quality can be achieved.

  13. Feedback Control of Laser Welding Based on Frequency Analysis of Light Emissions and Adaptive Beam Shaping

    Science.gov (United States)

    Mrňa, L.; Šarbort, M.; Řeřucha, Š.; Jedlička, P.

    This paper presents a novel method for optimization and feedback control of laser welding process. It is based on frequency analysis of the light emitted during the process and adaptive shaping of the laser beam achieved by an active optical element. Experimentally observed correlations between the focal properties of the laser beam, the weld depth and the frequency characteristics of the light emissions, which form the basis of the method, are discussed in detail. The functionality and the high efficiency of the method are demonstrated for a variety of welding parameters settings usually used in industrial practice.

  14. Finding Optimum Focal Point Position with Neural Networks in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1997-01-01

    CO2 lasers are increasingly being utilized for quality welding in production. Considering the high equipment cost, the start-up time and set-up time should be minimized. Ideally the parameters should be set up and optimized more or less automatically. In this article neural networks are designed...... to optimize the focal point position, one of the most critical parameters in laser welding. The feasibility to automatically optimize the focal point position is analyzed. Preliminary tests demonstrate that neural networks can be used to optimize the focal point position with good accuracy in CW CO2 laser...... welding....

  15. Laser-welded Dissimilar Steel-aluminum Seams for Automotive Lightweight Construction

    Science.gov (United States)

    Schimek, M.; Springer, A.; Kaierle, S.; Kracht, D.; Wesling, V.

    By reducing vehicle weight, a significant increase in fuel efficiency and consequently a reduction in CO 2 emissions can be achieved. Currently a high interest in the production of hybrid weld seams between steel and aluminum exists. Previous methods as laser brazing are possible only by using fluxes and additional materials. Laser welding can be used to join steel and aluminum without the use of additives. With a low penetration depth increases in tensile strength can be achieved. Recent results from laser welded overlap seams show that there is no compromise in strength by decreasing penetration depth in the aluminum.

  16. Laser welding method for removal of instruments debris from root canals.

    Science.gov (United States)

    Hagiwara, Ryoichi; Suehara, Masataka; Fujii, Rie; Kato, Hiroshi; Nakagawa, Kan-ichi; Oda, Yutaka

    2013-01-01

    The purpose of this study was to clarify the viability of a novel method for removing debris from broken instruments from root canals using a laser apparatus. Laser welding was performed on stainless steel or nickel titanium files using an Nd:YAG laser. Retention force between the files and extractors was measured. Increase in temperature on the root surface during laser irradiation was recorded and the irradiated areas evaluated with a scanning electron microscope. Retention force on stainless steel was significantly greater than that on nickel titanium. The maximum temperature increase was 4.1°C. The temperature increase on the root surface was greater in the vicinity of the welded area than that at the apical area. Scanning electron microscopy revealed that the files and extractors were welded together. These results indicate that the laser welding method is effective in removing debris from broken instruments from root canals.

  17. Online characterization of laser beam welds by NIR-camera observation

    Science.gov (United States)

    Dorsch, Friedhelm; Braun, Holger; Keßler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2013-02-01

    We have investigated process monitoring of laser beam welding with a TruDisk disk laser to detect process faults. Additionally to monitoring laser beam welding processes by a conventional VIS camera an NIR (near-infrared) camera reveals new information. Our sensor detects thermal radiation between 1100 and 1700 nm from the weld zone, which represents surface temperatures above 1000 K. Using the thermal radiation from the process we can observe all major weld defects without auxiliary illumination. The camera is integrated in a standard TRUMPF welding optics for on-axis observation. A real-time image processing system analyzes the camera images regarding welding irregularities and delivers information to characterize the weld process and its result. Actually, we perform an online passive heat-flow thermography that uses the process itself as the heat source and that probes the thermal attributes of the seam. By this means we can detect regions of bad fusion ("false friends") virtually during the welding process. In addition to conventional thermography we have investigated the use of ratio pyrometry by using to NIR-cameras that observe the process in two different spectral bands. By considering the pixel-per-pixel ratio the influence of surface effects it greatly reduces and we obtain images of the weld zone with an absolute temperature scale. We have compared ratio pyrometry measurements with conventional thermography.

  18. Analysis of correlations of multiple-performance characteristics for optimization of CO2 laser nitrogen cutting of AISI 304 stainless steel

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2014-07-01

    Full Text Available The identification of laser cutting conditions for satisfying different requirements such as improving cut quality characteristics and material removal rate is of great importance. In this paper, an attempt has been made to develop mathematical models in order to relate laser cutting parameters such as the laser power, cutting speed, assist gas pressure and focus position, and cut quality characteristics such as the surface roughness, kerf width and width of heat affected zone (HAZ. A laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of laser cutting parameters considered. 3 mm thick AISI 304 stainless steel was used as workpiece material. Mathematical models were developed using a single hidden layer artificial neural network (ANN trained with the Levenberg– Marquardt algorithm. On the basis of the developed ANN models the effects of the laser cutting parameters on the cut quality characteristics were presented. It was observed that laser cutting parameters variously affect cut quality characteristics. Also, for the range of operating conditions considered in the experiment, laser cut quality operating diagrams were shown. From these operating diagrams one can see the values of cut quality characteristics that can be achieved and subsequently select laser cutting parameter values. Furthermore, the analysis includes correlations between cut quality characteristics and material removal rate. To this aim, six trade-off operating diagrams for improving multiple responses at the same time were given.

  19. Closed loop control of laser welding using an optical spectroscopic sensor for Nd:YAG and CO2 lasers

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.; Sibillano, T.; Rizzi, D.; Ancona, A.

    2011-01-01

    Recent developments in laser joining show the applicability of spectral analysis of the plasma plume emission to monitor and control the quality of weld. The analysis of the complete spectra makes it possible to measure specific emission lines which reveal information about the welding process. The

  20. Closed loop control of laser welding using an optical spectroscopic sensor for Nd:YAG and CO2 lasers

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.; Sibillano, T.; Rizzi, D.; Ancona, A.

    2011-01-01

    Recent developments in laser joining show the applicability of spectral analysis of the plasma plume emission to monitor and control the quality of weld. The analysis of the complete spectra makes it possible to measure specific emission lines which reveal information about the welding process. The

  1. Mechanical properties and microstructure of F-82H welded joints using CO{sub 2} laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Yamanouchi, N.; Shiba, K.

    1996-10-01

    The laser welding of F-82H was successfully conducted. The heat affected zone of the welding, was about 21 mm width. It was quite adequate to make small specimens, such as SS-3 type sheet tensile specimen.

  2. [INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects

    Science.gov (United States)

    Richter, Sören; Zimmermann, Felix; Tünnermann, Andreas; Nolte, Stefan

    2016-09-01

    We report on the welding of various glasses with ultrashort laser pulses. Femtosecond laser pulses at repetition rates in the MHz range are focused at the interface between two substrates, resulting in multiphoton absorption and heat accumulation from successive pulses. This leads to local melting and subsequent resolidification which can be used to weld the glasses. The fundamental interaction process was studied using an in-situ micro Raman setup to measure the laser induced temperature distribution and its temporal decay. The induced network changes were analyzed by Raman spectrocopy identifying an increase of three and four membered silicon rings within the laser irradiated area. In order to determine the stability of the laser welded samples a three point bending test was used. Thereby, we identified that the maximal achievable breaking strength is limited by laser induced stress surrounding the modified material. To minimize the amount of stress bursts of laser pulses or an post processing annealing step can be applied. Besides fused silica, we welded borosilicate glasses and glasses with a low thermal expansion coefficient. Even the welding of different glass combinations is possible demonstrating the versatility of ultrashort pulse induced laser welding.

  3. Influence of irradiation conditions on the deformation of pure titanium frames in laser welding.

    Science.gov (United States)

    Shimakura, Michio; Yamada, Satoshi; Takeuchi, Misao; Miura, Koki; Ikeyama, Joji

    2009-03-01

    Due to its ease of use in connecting metal frames, laser welding is now applied in dentistry. However, to achieve precise laser welding, several problems remain to be resolved. One such problem is the influence of irradiation conditions on the deformation of titanium frameworks during laser welding, which this study sought to investigate. Board-shaped pure titanium specimens were prepared with two different joint types. Two specimens were abutted against each other to form a welding block with gypsum. For welding, three different laser waveforms were used. Deformation of the specimen caused by laser welding was measured as a rise from the gypsum surface at the opposite, free end of the specimen. It was observed that specimens with a beveled edge registered a smaller deformation than specimens with a square edge. In addition, a double laser pulse waveform--whereby a supplementary laser pulse was delivered immediately after the main pulse--resulted in a smaller deformation than with a single laser pulse waveform.

  4. Laser welding study for further development in essential power plant part repairs

    Directory of Open Access Journals (Sweden)

    Isarawit Chaopanich

    2015-06-01

    Full Text Available The objective of this research work was to study the effects of laser welding when compared with shield metal arc welding (SMAW process on the heat input, welded deposit rate, residual stress, distortion, microstructure and micro hardness. The martensitic stainless steel grade 431 specimens were overlay welded with the stainless steel filler metals. From the results, the heat input of 0.26 kJ/mm in laser welding calculated was significantly lower than that of 1.66 kJ/mm in SMAW, and contributed to low level residual stress, minimal distortion, very small penetration depth and heat affected zone (HAZ of less than 100 µm. The micro hardness results indicated that the maximum value from laser welding in the HAZ was 370.2 HV lower than the value from SMAW of 525.5 HV. The welded deposit rate for laser welding was with 26.5 mm3 /min remarkably lower than the rate for SMAW of 1,800 mm3 /min.

  5. Experimental and numerical investigation of laser shock synchronous welding and forming of Copper/Aluminum

    Science.gov (United States)

    Wang, Xiao; Zhang, Hongfeng; Shen, Zongbao; Li, Jianwen; Qian, Qing; Liu, Huixia

    2016-11-01

    A novel laser shock synchronous welding and forming method is introduced, which utilizes laser-induced shock waves to accelerate the flyer plate towards the base plate to achieve the joining of dissimilar metals and forming in a specific shape of mold. The samples were obtained with different laser energies and standoff distances. The surface morphology and roughness of the samples were greatly affected by the laser energy and standoff distances. Fittability was investigated to examine the forming accuracy. The results showed that the samples replicate the mold features well. Straight and wavy interfaces with un-bonded regions in the center were observed through metallographic analysis. Moreover, Energy Disperse Spectroscopy analysis was conducted on the welding interface, and the results indicated that a short-distance elemental diffusion emerged in the welding interface. The nanoindentation hardness of the welding regions was measured to evaluate the welding interface. In addition, the Smoothed Particle Hydrodynamics method was employed to simulate the welding and forming process. It was shown that different standoff distances significantly affected the size of the welding regions and interface waveform characteristics. The numerical analysis results indicated that the opposite shear stress direction and effective plastic strain above a certain threshold are essential to successfully obtain welding and forming workpiece.

  6. Spectroscopic closed loop control of penetration depth in laser beam welding process

    NARCIS (Netherlands)

    Sibillano, T.; Ancona, A.; Rizzi, D.; Mezzapesa, F.; Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.; Lugara, P.M.

    2012-01-01

    In-process monitoring and feedback control are fundamental actions for stable and good quality laser welding process. In particular, penetration depth is one of the most critical features to be monitored. In this research, overlap welding of stainless steel is investigated to stably reproduce a fixe

  7. Numerical Analysis of Energy Effect in Laser-TIG Hybrid Welding

    Institute of Scientific and Technical Information of China (English)

    Yanbin CHEN; Liqun LI; Junfei FANG; Xiaosong FENG

    2003-01-01

    The hybrid source that combined CO2 laser with TIG arc to proceed welding was analyzed. Based on an energymodel, the temperature field and weld shape were calculated numerically. The heat transfer characteristic of thehybrid heat source to workpiece and i

  8. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    CSIR Research Space (South Africa)

    Akhter, R

    2006-01-01

    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  9. Laser welding of glasses using a nanosecond pulsed Nd:YAG laser

    Science.gov (United States)

    de Pablos-Martín, A.; Höche, Th.

    2017-03-01

    This work reports on laser welding of two 1 mm thickness borosilicate glasses through the irradiation with a nanosecond pulsed laser, as a novel alternative to the use of ultrashort pulsed lasers for welding of transparent materials. Two different methodologies were investigated and compared in terms of interface quality. In a first approach, the glasses were joined without any absorbing intermediate layer. However, the bond interface possesses defects. To improve the resulting bond interface, the use of a titanium ultrathin intermediate layer was proposed to weld the glasses substrates, acting as a sealant between them. The laser parameters were optimized to achieve the best joining conditions of the Ti film. The use of the Ti layer gives rise to a bond interface more homogeneous and free of damages. As a further step, thin glasses of 86 μm thickness, of great technological value, were joined through the Ti film as well. The joined interfaces were inspected through optical microscopy and scanning electron microscopy (SEM) while the bond quality was evaluated by Scanning Acoustic Microscopy (SAM).

  10. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

  11. Effect of welding parameters of the Nd:YAG laser on the penetration depth of cobalt chromium alloys.

    Science.gov (United States)

    Vlachogianni, V; Clark, R K F; Juszczyk, A S; Radford, D R

    2012-03-01

    The aim of the investigation was to study the effect of the laser welding parameters of energy and spot diameter on the penetration depth of the weld of cast Co-Cr alloy when a single weld was performed. Within the limitations of the study as voltage increased and the spot diameter decreased, penetration depth increased. However, SEM investigation showed more defects in the welded area under these circumstances. The clinical significance is that during selection of the welding parameters the thickness of the components to be welded should be considered to achieve an extended welded area without the induction of micro-structural defects.

  12. Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis

    Directory of Open Access Journals (Sweden)

    Shanmugarajan B.

    2016-08-01

    Full Text Available Creep strength enhanced ferritic (CSEF steels are used in advanced power plant systems for high temperature applications. P92 (Cr–W–Mo–V steel, classified under CSEF steels, is a candidate material for piping, tubing, etc., in ultra-super critical and advanced ultra-super critical boiler applications. In the present work, laser welding process has been optimised for P92 material by using Taguchi based grey relational analysis (GRA. Bead on plate (BOP trials were carried out using a 3.5 kW diffusion cooled slab CO2 laser by varying laser power, welding speed and focal position. The optimum parameters have been derived by considering the responses such as depth of penetration, weld width and heat affected zone (HAZ width. Analysis of variance (ANOVA has been used to analyse the effect of different parameters on the responses. Based on ANOVA, laser power of 3 kW, welding speed of 1 m/min and focal plane at −4 mm have evolved as optimised set of parameters. The responses of the optimised parameters obtained using the GRA have been verified experimentally and found to closely correlate with the predicted value.

  13. Welding Stainless Steels and Refractory Metals Using Diode-Pumped Continuous Wave Nd:YAG Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T A; Elmer, J W; Pong, R; Gauthier, M D

    2004-09-27

    This report provides an overview of a series of developmental welding studies performed on a 2.2 kW Rofin Sinar DY-022 Diode Pumped Continuous Wave (CW) Nd:YAG welder at Lawrence Livermore National Laboratory (LLNL). Several materials systems, ranging from refractory metals, such as commercially pure tantalum and vanadium, to austenitic stainless steels, including both 304L and 21-6-9 grades, are examined. Power input and travel speed are systematically varied during the welding of each materials system, and the width, depth, and cross sectional area of the resulting weld fusion zones are measured. These individual studies are undertaken in order to characterize the response of the welder to changes in these welding parameters for a range of materials and to determine the maximum depth of penetration of which this welder is capable in each materials system. The maximum weld depths, which are on the order of 5.4 mm, are observed in the 21-6-9 austenitic stainless steel at the maximum laser power setting (2200 W) and a slow travel speed (6.4 mm/sec). The next highest weld depth is observed in the 304L stainless steel, followed by that observed in the vanadium and, finally, in the tantalum. Porosity, which is attributed to the collapse of the keyhole during welding, is also observed in the welds produced in tantalum, vanadium, and 304L stainless steel. Only the 21-6-9 austenitic stainless steel welds displayed little or no porosity over the range of welding parameters. Comparisons with similar laser welding systems are also made for several of these same materials systems. When compared with the welds produced by these other systems, the LLNL system typically produces welds of an equivalent or slightly higher depth.

  14. Defocusing Techniques for Multi-pass Laser Welding of Austenitic Stainless Steel

    Science.gov (United States)

    Karhu, Miikka; Kujanpää, Veli

    This study introduces an experimental work carried out in multi-pass laser welding with cold filler wire and laser-arc hybrid welding of thick section austenitic stainless steel. As it has been demonstrated earlier, hybrid and cold wire welding with a keyhole-mode can offer very efficient way to produce multi-pass welds in narrow gap thick section joints. However, when multi-pass welding is applied to one pass per layer method without e.g. scanning or defocusing, the used groove width needs to be very narrow in order to ensure the proper melting of groove side walls and thus to avoid lack of fusion/cold-run defects. As a consequence of the narrow groove, particularly in thick section joints, the accessibility of an arc torch or a wire nozzle into the very bottom of a groove in root pass welding can be considerably restricted. In an alternative approach described in this paper, a power density of a laser beam spot was purposely dispersed by using a defocusing technique. In groove filling experiments, a power density of defocused laser beam was kept in the range, which led the welding process towards to conduction limited regime and thus enabled to achieve broader weld cross-sections. The object was to study the feasibility of defocusing as a way to fill and bridge wider groove geometries than what can be welded with focused keyhole-mode welding with filler addition. The paper covers the results of multi-pass welding of up to 60 mm thick joints with single side preparations.

  15. Effect of Post Weld Heat Treatment on Mechanical and Corrosion Behaviors of NiTi and Stainless Steel Laser-Welded Wires

    Science.gov (United States)

    Mirshekari, G. R.; Saatchi, A.; Kermanpur, A.; Sadrnezhaad, S. K.

    2016-06-01

    Effects of post weld heat treatment (PWHT) on mechanical properties and corrosion behavior of NiTi shape memory wire, laser welded to the 304 stainless steel wire were investigated. The results showed that PWHT at 200 °C increased corrosion resistance and tensile strength of the joint up to ~1.8 times that of the as-weld joint, with no heat treatment. On the contrary, precipitation of neoteric intermetallic compounds like Fe2Ti, Cr2Ti, FeNi, Ni3Ti, and Ti2Ni in the welded region deteriorated these properties, when PWHT was conducted at 400 °C. Due to the vital effects of the PWHT performed after the laser welding, careful control of the PWHT temperature was found to be a prerequisite for achievement of desirable properties in the dissimilar NiTi-304 stainless steel laser-welded wires.

  16. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Shamini Janasekaran

    2016-06-01

    Full Text Available Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW, low-power Ytterbium (Yb-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on weld morphology and properties was investigated using scanning electron microscopy (SEM and X-ray diffraction (XRD, respectively. XRD analysis revealed the presence of intermetallic layers containing NiTi and NiTi2 at the skin-stringer joint. The strength of the joints was evaluated using pull testing, while the hardness of the joints was analyzed using Vickers hardness measurement at the base metal (BM, fusion zone (FZ and heat-affected zone (HAZ. The results showed that the highest force needed to break the samples apart was approximately 150 N at a laser welding power of 250 W, welding speed of 40 mm/s and overlapping factor of 50%. During low-power single-sided laser welding, the properties of the T-joints were affected by the overlapping factor and laser welding speed.

  17. Development of laser welded appendages to Zircaloy-4 fuel tubing (sheath/cladding)

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, S., E-mail: steve.livingstone@cnl.ca [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Xiao, L. [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Corcoran, E.C.; Ferrier, G.A.; Potter, K.N. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4 (Canada)

    2015-04-01

    Highlights: • Examines feasibility of laser welding appendages to Zr-4 tubing. • Laser welding minimizes the HAZ and removes toxic Be. • Mechanical properties of laser welds appear competitive with induction brazed joints. • Work appears promising and lays the foundation for further investigations. - Abstract: Laser welding is a potential alternative to the induction brazing process commonly used for appendage attachment in CANDU{sup ®} fuel fabrication that uses toxic Be as a filler metal, and creates multiple large heat affected zones in the sheath. For this work, several appendages were laser welded to tubing using different laser heat input settings and then examined with a variety of techniques: visual examination, metallography, shear strength testing, impact testing, and fracture surface analysis. Where possible, the examination results are contrasted against production induction brazed joints. The work to date looks promising for laser welded appendages. Further work on joint optimization, corrosion testing, irradiation testing, and post-irradiation examination will be performed in the future.

  18. Twin-spot laser welding of advanced high-strength multiphase microstructure steel

    Science.gov (United States)

    Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian

    2017-07-01

    The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.

  19. X-ray online detection for laser welding T-joint of Al-Li alloy

    Science.gov (United States)

    Zhan, Xiaohong; Bu, Xing; Qin, Tao; Yu, Haisong; Chen, Jie; Wei, Yanhong

    2017-05-01

    In order to detect weld defects in laser welding T-joint of Al-Li alloy, a real-time X-ray image system is set up for quality inspection. Experiments on real-time radiography procedure of the weldment are conducted by using this system. Twin fillet welding seam radiographic arrangement is designed according to the structural characteristics of the weldment. The critical parameters including magnification times, focal length, tube current and tube voltage are studied to acquire high quality weld images. Through the theoretical and data analysis, optimum parameters are settled and expected digital images are captured, which is conductive to automatic defect detection.

  20. Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy

    Directory of Open Access Journals (Sweden)

    J. Wang

    2015-10-01

    Full Text Available When joining the aluminum alloys, one of the biggest challenges is the formation of porosity, which deteriorates mechanical properties of welds. In this study, the lap welding was conducted on an aluminum alloy 5754 metal sheets with a thickness of 2 mm. The effects of various laser welding parameters on the weld quality were investigated. The porosity content was measured by X-ray inspections. The key is to control the solidification duration of molten pool. When the solidification duration of molten pool is large enough, more bubbles can escape from the molten pool and less remain as porosity.

  1. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    Science.gov (United States)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  2. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  3. Experimental design method to the weld bead geometry optimization for hybrid laser-MAG welding in a narrow chamfer configuration

    Science.gov (United States)

    Bidi, Lyes; Le Masson, Philippe; Cicala, Eugen; Primault, Christophe

    2017-03-01

    The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2 mm deposited metal and must provide sufficient lateral penetration of about 0.2 mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4 mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan.

  4. Microstructure and Mechanical Properties of Laser Beam Welds of 15CDV6 Steel

    Directory of Open Access Journals (Sweden)

    M.V.L Ramesh

    2015-07-01

    Full Text Available The present study is concerned with laser beam welding of 15CDV6 steel, that is in the hardened (quenched and tempered condition before welding. Autogenously butt-welded joints are made using carbon dioxide laser with a maximum output of 3.5 kw in the continuous wave mode. Weld microstructure, microhardness measurement across the weldment, transverse tensile properties, and room temperature impact properties of the weldment have been evaluated. The fusion zone exhibits a epitaxial grain growth. The microstrutural features of heat-affected zone and fusion zone vary, due to different thermal cycles for which these were subjected during welding. The average weld metal hardness was 480 Hv. The observed hardness distribution across the welds were correlated with the microstructures. The welds exhibited lower toughness of 50 joules as compared to parent metal of 55 joules and the tensile strength values of the welded specimens are close to that obtained for sheet specimens.Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 339-342, DOI: http://dx.doi.org/10.14429/dsj.65.8749

  5. Phenomena Elucidation of High Brightness Fiber Laser Welding of Stainless Steel

    Science.gov (United States)

    Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji

    A high-brigthness fiber laser can produce an ultra-high peak power density of MW/mm2 level corresponding to a focused electron beam, and is promising as one of the desirable heat sources for deep-penetration welding. The objectives of this research are to elucidate the factors affecting weld penetration and defects formation mechanisms, to obtain a fundamental knowledge of interaction between a fiber laser beam and the laser-induced plume, and to assess laser absorption with water-calorimetric method in bead-on-plate welding of Type 304 austenitic stainless steel plates with a 10 kW fiber laser beam. Concerning the weldablity and defects, the penetration depth reached 18 mm at the maximum. At 50 mm/s or lower welding speeds, porosity was generated under the conventionally-focused and tightly-focused conditions. X-ray transmission in-site observation images demonstrated that pores were formed not only at the tip of the keyhole but also near the upper part. The keyhole behavior was stabilized by using nitrogen shielding gas, which led to the porosity prevention. As for the interaction under the normal Ar shielding gas conditions, the temperature and ionization degree of the laser-induced plumes were calculated to be 6,000 K and 0.02, respectively, by the Bolzman plots and Saha's equation. It was also found that the attenuation and the refraction between the 10-kW fiber laser beam and the short weakly-ionized plume were too small to exert the reduction in weld penetration. The laser absorption of the stainless steel plate was approximately 85 % high at 10 kW laser power and 50 mm/s welding speed. Compared X-ray transmission observation images of the keyhole with the focusing feature of the fiber laser beam, most of the incident laser passed through the keyhole inlet, and the center part of the beam was delivered directly to the tip of the deep keyhole. Consequently, as far as the adquate welding procedures were utilized on the basis of eclucidation of the welding

  6. An efficient algorithm for integrated task sequencing and path planning for robotic remote laser welding

    Science.gov (United States)

    Gorbenko, Anna; Popov, Vladimir

    2017-07-01

    Different planning problems for robotic remote laser welding are of considerable interest. In this paper, we consider the problem of integrated task sequencing and path planning for robotic remote laser welding. We propose an efficient approach to solve the problem. In particular, we consider an explicit reduction from the decision version of the problem to the satisfiability problem. We present the results of computational experiments for different satisfiability algorithms.

  7. Heat transfer and fluid flow during laser spot welding of 304 stainless steel

    CERN Document Server

    He, X; Debroy, T

    2003-01-01

    The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...

  8. Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Gabrielli Piveta

    2012-12-01

    Full Text Available This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG welds in cylindrical rods of commercially pure titanium (cp Ti with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.

  9. Welding of Thermomechanically Rolled Steel by Yb:YAG Disk Laser / Spawanie Stali Walcowanej Termomechanicznie Laserem Dyskowym Yb:YAG

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 5.0 mm thick butt joints of thermomechanically rolled steel S700MC was investigated. The Yb:YAG disk laser TruDisk 3302 emitted at 1.03 μm was used for the trials of autogenous welding. The effect of laser welding parameters and thus thermal conditions of welding on weld shape, microstructure of weld metal and heat affected zone (HAZ, tensile strength, bending angle, impact toughness and microhardness profile was determined. Studies have shown that it is advantageous to provide a high welding speed and low heat input. High cooling rate of weld metal and HAZ leads to the formation of a favorable structure characterized by a large proportion of fine-grained acicular ferrite and provides high mechanical properties of butt joints.

  10. Inverse Thermal Analysis of Alloy 690 Laser and Hybrid Laser-GMA Welds Using Solidification-Boundary Constraints

    Science.gov (United States)

    Lambrakos, S. G.

    2017-08-01

    An inverse thermal analysis of Alloy 690 laser and hybrid laser-GMA welds is presented that uses numerical-analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.

  11. Quality Monitoring for Laser Welding Based on High-Speed Photography and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Teng Wang

    2017-03-01

    Full Text Available In order to improve the prediction ability of welding quality during high-power disk laser welding, a new approach was proposed and applied in the classification of the dynamic features of metal vapor plume. Six features were extracted through the color image processing method. Three features, including the area of plume, number of spatters, and horizontal coordinate of plume centroid, were selected based on the classification accuracy rates and Pearson product-moment correlation coefficients. A support vector machine model was adopted to classify the welding quality status into two categories, good or poor. The results demonstrated that the support vector machine model established according to the selected features had satisfactory prediction and generalization ability. The classification accuracy rate was higher than 90%, and the model could be applied in the prediction of welding quality during high-power disk laser welding.

  12. Evaluation of Laser Braze-welded Dissimilar Al-Cu Joints

    Science.gov (United States)

    Schmalen, Pascal; Plapper, Peter

    The thermal joining of Aluminum and Copper is a promising technology towards automotive battery manufacturing. The dissimilar metals Al-Cu are difficult to weld due to their different physicochemical characteristics and the formation of intermetallic compounds (IMC), which have reduced mechanical and electric properties. There is a critical thickness of the IMCs where the favored mechanical properties of the base material can be preserved. The laser braze welding principle uses a position and power oscillated laser-beam to reduce the energy input and the intermixture of both materials and therefore achieves minimized IMCs thickness. The evaluation of the weld seam is important to improve the joint performance and enhance the welding process. This paper is focused on the characterization and quantification of the IMCs. Mechanical, electrical and metallurgical methods are presented and performed on Al1050 and SF-Cu joints and precise weld criteria are developed.

  13. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  14. Laser Deep Penetration Welding of an Aluminum Alloy with Simultaneously Applied Vibrations

    Science.gov (United States)

    Woizeschke, Peer; Radel, Tim; Nicolay, Paul; Vollertsen, Frank

    2016-12-01

    In aluminum welding, the grain structure of produced seams is an essential factor with respect to the seam properties. In the casting technology the effect of mechanical vibrations on the grain growth during the solidification of liquid metals is known as a refinement method. In this paper, the transferability of this approach from comparatively long-time processes in the field of casting to the short-time process of laser deep penetration welding is investigated. Therefore, specimens were sinusoidal vibrated with frequencies up to 4 kHz during bead-on-plate full-penetration welding experiments. The resulting grain size was determined by applying the circular intercept procedure on the center of a cross-section micrograph of each weld. The results show that grain refinement is in general achievable by mechanical vibrations in the audible frequency range during laser full penetration keyhole welding of the aluminum alloy EN AW-5083.

  15. A novel absorptive thin film for laser welding in optoelectronic device capsulation

    Institute of Scientific and Technical Information of China (English)

    JIANG Shao-ji; JIN Tao; LI Wei-duo; WANG He-zhou

    2005-01-01

    A kind of absorptive thin film was designed and used in laser welding of SiO2, Si and LiNbO3. This absorptive thin film of three-layer metal-dielectric-metal structure is designed for further reducing the high reflectance of the Nd:YAG laser beam on the surface of the tin layer that is utilized as solder between the transparent parent materials. The actual absorption of laser energy in experiment exceeds 99%. This combination of absorber and solder transformed the laser energy into heat efficiently and decreased the minimum necessary incident laser power transmitting through the transparent parent materials. As a result, the damage of the parent materials, which is suffered from laser transmission, was avoided; On the other hand, mechanical stability of the welded materials had been improved. Experiment had been made to show the difference between welding with and without the absorptive thin film.

  16. The effect of welding fixtures on welding distortions

    OpenAIRE

    2007-01-01

    Purpose: of this paper is to examine the effect of welding fixture used to prevent the distortions duringcooling process utilizing a robot controlled gas metal arc welding method on cooling rate and distortions ofwelded structures.Design/methodology/approach: Using a specially designed welding fixture for a welded steel structure, sixdifferent types of AISI 1020 steel specimens are tested in three different welding speeds and two differentcooling conditions either at fixture or without using ...

  17. Multiphysical Modeling of Transport Phenomena During Laser Welding of Dissimilar Steels

    Science.gov (United States)

    Métais, A.; Matteï, S.; Tomashchuk, I.; Gaied, S.

    The success of new high-strength steels allows attaining equivalent performances with lower thicknesses and significant weight reduction. The welding of new couples of steel grades requires development and control of joining processes. Thanks to high precision and good flexibility, laser welding became one of the most used processes for joining of dissimilar welded blanks. The prediction of the local chemical composition in the weld formed between dissimilar steels in function of the welding parameters is essential because the dilution rate and the distribution of alloying elements in the melted zone determines the final tensile strength of the weld. The goal of the present study is to create and to validate a multiphysical numerical model studying the mixing of dissimilar steels in laser weld pool. A 3D modelling of heat transfer, turbulent flow and transport of species provides a better understanding of diffusion and convective mixing in laser weld pool. The present model allows predicting the weld geometry and element distribution. The model has been developed based on steady keyhole approximation and solved in quasi-stationary form in order to reduce the computation time. Turbulent flow formulation was applied to calculate velocity field. Fick law for diluted species was used to simulate the transport of alloying elements in the weld pool. To validate the model, a number of experiments have been performed: tests using pure 100 μm thick Ni foils like tracer and weld between a rich and poor manganese steels. SEM-EDX analysis of chemical composition has been carried out to obtain quantitative mapping of Ni and Mn distributions in the melted zone. The results of simulations have been found in good agreement with experimental data.

  18. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints.

    Science.gov (United States)

    Zupancic, Rok; Legat, Andraz; Funduk, Nenad

    2006-10-01

    The longevity of prosthodontic restorations is often limited due to the mechanical or corrosive failure occurring at the sites where segments of a metal framework are joined together. The purpose of this study was to determine which joining method offers the best properties to cobalt-chromium alloy frameworks. Brazed and 2 types of laser-welded joints were compared for their mechanical and corrosion characteristics. Sixty-eight cylindrical cobalt-chromium dental alloy specimens, 35 mm long and 2 mm in diameter, were cast. Sixteen specimens were selected for electrochemical measurements in an artificial saliva solution and divided into 4 groups (n=4). In the intact group, the specimens were left as cast. The specimens of the remaining 3 groups were sectioned at the center, perpendicular to the long-axis, and were subsequently rejoined by brazing (brazing group) or laser welding using an X- or I-shaped joint design (X laser and I laser groups, respectively). Another 16 specimens were selected for electrochemical measurements in a more acidic artificial saliva solution. These specimens were also divided into 4 groups (n=4) as described above. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess corrosion potentials, breakdown potentials, corrosion current densities, total impedances at lowest frequency, and polarization charge-transfer resistances. The remaining 36 specimens were used for tensile testing. They were divided into 3 groups in which specimen pairs (n=6) were joined by brazing or laser welding to form 70-mm-long cylindrical rods. The tensile strength (MPa) was measured using a universal testing machine. Differences between groups were analyzed using 1-way analysis of variance (alpha=.05). The fracture surfaces and corrosion defects were examined with a scanning electron microscope. The average tensile strength of brazed joints was 792 MPa and was significantly greater (P<.05) than the tensile strength of both types of

  19. The effects of laser welding on heterogeneous immunoassay performance in a microfluidic cartridge

    Science.gov (United States)

    Mäntymaa, Anne; Halme, Jussi; Välimaa, Lasse; Kallio, Pasi

    2011-01-01

    Sealing of a microfluidic cartridge is a challenge, because the cartridge commonly contains heat-sensitive biomolecules that must also be protected from contamination. In addition, the objective is usually to obtain a sealing method suitable for mass production. Laser welding is a rapid technique that can be accomplished with low unit costs. Even though the technique has been widely adopted in industry, the literature on its use in microfluidic applications is not large. This paper is the first to report the effects of laser welding on the performance of the heterogeneous immunoassay in a polystyrene microfluidic cartridge in which biomolecules are immobilized into the reaction surface of the cartridge before sealing. The paper compares the immunoassay performance of microfluidic cartridges that are sealed either with an adhesive tape or by use of laser transmission welding. The model analyte used is thyroid stimulating hormone (TSH). The results show that the concentration curves in the laser-welded cartridges are very close to the curves in the taped cartridges. This indicates, first, that laser welding does not cause any significant reduction in immunoassay performance, and second, that the polystyrene cover does not have significant effect on the signal levels. Interestingly, the coefficients of variance between parallel samples were lower in the laser-welded cartridges than in the taped cartridges. PMID:22685505

  20. Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

    Science.gov (United States)

    Liu, Wei; Ma, Junjie; Atabaki, Mehdi Mazar; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Sreshta, Harold; Kovacevic, Radovan

    2015-06-01

    17-4 PH stainless steel has wide applications in severe working conditions due to its combination of good corrosion resistance and high strength. The weldability of 17-4 PH stainless steel is challenging. In this work, hybrid laser-arc welding was developed to weld 17-4 PH stainless steel. This method was chosen based on its advantages, such as deep weld penetration, less filler materials, and high welding speed. The 17-4 PH stainless steel plates with a thickness of 19 mm were successfully welded in a single pass. During the hybrid welding, the 17-4 PH stainless steel was immensely susceptible to porosity and solidification cracking. The porosity was avoided by using nitrogen as the shielding gas. The nitrogen stabilized the keyhole and inhibited the formation of bubbles during welding. Solidification cracking easily occurred along the weld centerline at the root of the hybrid laser-arc welds. The microstructural evolution and the cracking susceptibility of 17-4 PH stainless steel were investigated to remove these centerline cracks. The results showed that the solidification mode of the material changed due to high cooling rate at the root of the weld. The rapid cooling rate caused the transformation from ferrite to austenite during the solidification stage. The solidification cracking was likely formed as a result of this cracking-susceptible microstructure and a high depth/width ratio that led to a high tensile stress concentration. Furthermore, the solidification cracking was prevented by preheating the base metal. It was found that the preheating slowed the cooling rate at the root of the weld, and the ferrite-to-austenite transformation during the solidification stage was suppressed. Delta ferrite formation was observed in the weld bead as well no solidification cracking occurred by optimizing the preheating temperature.

  1. MODELING OF THE THERMAL BEHAVIOR OF METALS DURING WELDING LASER USING BEAM

    Directory of Open Access Journals (Sweden)

    S. Lemkeddem

    2015-07-01

    Full Text Available The laser welding provides a very high energy density, this allows the use of welds narrow, deep and at high speeds. Because of its advantages over other joining processes, laser welding is a process of manufacturing the most important. In order to model the thermal behavior, we must study the different phenomena that may be involved in the operation. The temperature distribution in the workpiece can be determined from the heat equation which expresses the energy balance. This is a parabolic differential equation and for resolution we applied the finite difference method using the implicit scheme.

  2. Fine-tuned Remote Laser Welding of Aluminum to Copper with Local Beam Oscillation

    Science.gov (United States)

    Fetzer, Florian; Jarwitz, Michael; Stritt, Peter; Weber, Rudolf; Graf, Thomas

    Local beam oscillation in remote laser welding of aluminum to copper was investigated. Sheets of 1 mm thickness were welded in overlap configuration with aluminum as top material. The laser beam was scanned in a sinusoidal mode perpendicular to the direction of feed and the influence of the oscillation parameters frequency and amplitude on the weld geometry was investigated. Scanning frequencies up to 1 kHz and oscillation amplitudes in the range from 0.25 mm to 1 mm were examined. Throughout the experiments the laser power and the feed rate were kept constant. A decrease of welding depth with amplitude and frequency is found. The scanning amplitude had a strong influence and allowed coarse setting of the welding depth into the lower material, while the frequency allowed fine tuning in the order of 10% of the obtained depth. The oscillation parameters were found to act differently on the aluminum sheet compared to copper sheet regarding the amount of fused material. It is possible to influence the geometry of the fused zones separately for both sheets. Therefore the average composition in the weld can be set with high precision via the oscillation parameters. A setting of the generated intermetallics in the weld zone is possible without adjustment of laser power and feed rate.

  3. Real-time monitoring of the laser hot-wire welding process

    Science.gov (United States)

    Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan

    2014-04-01

    The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.

  4. Metal ion release from silver soldering and laser welding caused by different types of mouthwash.

    Science.gov (United States)

    Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin

    2015-07-01

    To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.

  5. Corneal tissue welding with infrared laser irradiation after clear corneal incision.

    Science.gov (United States)

    Rasier, Rfat; Ozeren, Mediha; Artunay, Ozgür; Bahçecioğlu, Halil; Seçkin, Ismail; Kalaycoğlu, Hamit; Kurt, Adnan; Sennaroğlu, Alphan; Gülsoy, Murat

    2010-09-01

    The aim of this study was to investigate the potential of infrared lasers for corneal welding to seal corneal cuts done in an experimental animal model. Full-thickness corneal cuts on freshly enucleated bovine eyes were irradiated with infrared (809-nm diode, 980-nm diode, 1070-nm YLF, and 1980-nm Tm:YAP) lasers to get immediate laser welding. An 809-nm laser was used with the topical application of indocyanine green to enhance the photothermal interaction at the weld site. In total, 60 bovine eyes were used in this study; 40 eyes were used in the first part of the study for the determination of optimal welding parameters (15 eyes were excluded because of macroscopic carbonization, opacification, or corneal shrinkage; 2 eyes were used for control), and 20 eyes were used for further investigation of more promising lasers (YLF and Tm:YAP). Laser wavelength, irradiating power, exposure time, and spot size were the dose parameters, and optimal dose for immediate closure with minimal thermal damage was estimated through histological examination of welded samples. In the first part of the study, results showed that none of the applications was satisfactory. Full-thickness success rates were 28% (2 of 7) for 809-nm and for 980-nm diode lasers and 67% (2 of 3) for 1070-nm YLF and (4 of 6) for 1980-nm Tm:YAP lasers. In the second part of the study, YLF and Tm:YAP lasers were investigated with bigger sample size. Results were not conclusive but promising again. Five corneal incisions were full-thickness welded out of 10 corneas with 1070-nm laser, and 4 corneal incisions were partially welded out of 10 corneas with 1980-nm laser in the second part of the study. Results showed that noteworthy corneal welding could be obtained with 1070-nm YLF laser and 1980-nm Tm:YAP laser wavelengths. Furthermore, in vitro and in vivo studies will shed light on the potential usage of corneal laser welding technique.

  6. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method

    Science.gov (United States)

    Li, Ruoyang; Wang, Tianjiao; Wang, Chunming; Yan, Fei; Shao, Xinyu; Hu, Xiyuan; Li, Jianmin

    2014-12-01

    This paper details a new method that combines laser autogenous welding, laser wire filling welding and hybrid laser-GMAW welding to weld 30 mm thick plate using a multi-layer, multi-pass process. A “Y” shaped groove was used to create the joint. Research was also performed to optimize the groove size and the processing parameters. Laser autogenous welding is first used to create the backing weld. The lower, narrowest part of the groove is then welded using laser wire filling welding. Finally, the upper part of the groove is welded using laser-GMAW hybrid welding. Additionally, the wire feeding and droplet transfer behaviors are observed by high speed photography. The two main conclusions from this work are: the wire is often biased towards the side walls, resulting in a lack of fusion at the joint and the creation of other defects for larger groove sizes. Additionally, this results in the droplet transfer behavior becoming unstable, leading to a poor weld appearance for smaller groove sizes.

  7. Numerical Analysis of Welding Residual Stress and Distortion in Laser+GMAW Hybrid Welding of Aluminum Alloy T-Joint

    Institute of Scientific and Technical Information of China (English)

    Guoxiang XU; Chuansong WU; Xuezhou MA; Xuyou WANG

    2013-01-01

    A 3-D finite element model is developed to predict the temperature field and thermally induced residual stress and distortion in laser+GMAW hybrid welding of 6061-T6 aluminum alloy T-joint.And the characteristics of residual stress distribution and deformation are numerically investigated.In the simulation,the heat source model takes into account the effect of joint geometric shape and welding torch slant on the heat flux distribution and a sequentially coupled thermo-mechanical method is used.The calculated results show that higher residual stress is distributed in and surround the weld zone.Its peak value is very close to the yield strength of base metal.Besides,a large deformation appears in the middle and rear part of the weldment.

  8. Residual Stress and Fatigue Strength of Hybrid Laser-MIG-Welded A7N01P-T4

    Science.gov (United States)

    Wang, Qiuying; Chen, Hui; Qiu, Peixian; Zhu, Zongtao

    2017-02-01

    A7N01P-T4 aluminum alloy is widely used in some important welded components of high-speed trains. The hybrid laser-metal inert gas (MIG) welding process was studied to solve problems associated with the MIG welding process, such as low welding efficiency, high residual stress and deformation, and serious loss of strength. A high-speed camera, a voltage and current collection system, and NI DAQ were used to acquire arc profiles, welding voltage, and welding current simultaneously. Thermal cycle tests were carried out. Residual stresses induced by the welding process and fatigue strength of the joint were investigated. Large-size fatigue specimens were used in fatigue tests. The results show that the energy of the hybrid welding process is focused, and the power density of hybrid welding process is intense. The heat input per unit of the hybrid welding process is only half of that of the MIG welding process. Compared with the MIG welded joint, the overall residual stress level of the hybrid-welded joint is lower. The peak longitudinal stress of the hybrid-welded joint is reduced by 20 pct. The fatigue strength of hybrid joints is 14 pct higher than that of MIG-welded joints. Narrow weld and HAZ, weak softening behavior, and low residual stress level are the causes of the improvement of fatigue strength.

  9. Residual Stress and Fatigue Strength of Hybrid Laser-MIG-Welded A7N01P-T4

    Science.gov (United States)

    Wang, Qiuying; Chen, Hui; Qiu, Peixian; Zhu, Zongtao

    2016-09-01

    A7N01P-T4 aluminum alloy is widely used in some important welded components of high-speed trains. The hybrid laser-metal inert gas (MIG) welding process was studied to solve problems associated with the MIG welding process, such as low welding efficiency, high residual stress and deformation, and serious loss of strength. A high-speed camera, a voltage and current collection system, and NI DAQ were used to acquire arc profiles, welding voltage, and welding current simultaneously. Thermal cycle tests were carried out. Residual stresses induced by the welding process and fatigue strength of the joint were investigated. Large-size fatigue specimens were used in fatigue tests. The results show that the energy of the hybrid welding process is focused, and the power density of hybrid welding process is intense. The heat input per unit of the hybrid welding process is only half of that of the MIG welding process. Compared with the MIG welded joint, the overall residual stress level of the hybrid-welded joint is lower. The peak longitudinal stress of the hybrid-welded joint is reduced by 20 pct. The fatigue strength of hybrid joints is 14 pct higher than that of MIG-welded joints. Narrow weld and HAZ, weak softening behavior, and low residual stress level are the causes of the improvement of fatigue strength.

  10. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    Science.gov (United States)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  11. Finite element analysis of spot laser of steel welding temperature history

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2009-01-01

    Full Text Available Laser welding process reduces the heat input to the work-piece which is the main goal in aerospace and electronics industries. A finite element model for axi-symmetric transient heat conduction has been used to predict temperature distribution through a steel cylinder subjected to CW laser beam of rectangular beam profile. Many numerical improvements had been used to reduce time of calculation and size of the program so as to achieve the task with minimum time required. An experimental determined absorptivity has been used to determine heat induced when laser interact with material. The heat affected zone and welding zone have been estimated to determine the effect of welding on material. The ratio of depth to width of the welding zone can be changed by proper selection of beam power to meet the specific production requirement. The temperature history obtained numerically has been compared with experimental data indicating good agreement.

  12. Application of Factorial Design for Gas Parameter Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Dragsted, Birgitte; Olsen, Flemming Ove

    1997-01-01

    The effect of different gas process parameters involved in CO2 laser welding has been studied by applying two-set of three-level complete factorial designs. In this work 5 gas parameters, gas type, gas flow rate, gas blowing angle, gas nozzle diameter, gas blowing point-offset, are optimized...... to be a very useful tool for parameter optimi-zation in laser welding process. Keywords: CO2 laser welding, gas parameters, factorial design, Analysis of Variance........ The bead-on-plate welding specimens are evaluated by a number of quality char-acteristics, such as the penetration depth and the seam width. The significance of the gas pa-rameters and their interactions are based on the data found by the Analysis of Variance-ANOVA. This statistic methodology is proven...

  13. Influence of heat input on HAZ liquation cracking in laser welded GH909 alloy

    Science.gov (United States)

    Yan, Fei; Hu, Chongjing; Zhang, Xiong; Cai, Yuanzheng; Wang, Chunming; Wang, Jun; Hu, Xiyuan

    2017-07-01

    In this paper, we describe influence of heat input on HAZ liquation cracking in laser welded GH909 alloy. The results demonstrated that more cracks were produced using high laser power and welding speed. The presence of cracks greatly weakened the hot ductility of this material and the binding force between the adjacent grains, resulting in reducing the tensile strength of welded joints. The occurrence of HAZ cracking was mainly attributable to the coarseness of microstructures and large tensile stresses. A new method was proposed to prevent HAZ liquation cracking using low laser power and welding speed at a constant heat input. The simulated results were consistent with the experimental results, verifying the correctness and feasibility of the method.

  14. Simulation of Light Propagation within Glass Fiber Filled Thermoplastics for Laser Transmission Welding

    Science.gov (United States)

    Hohmann, Martin; Devrient, Martin; Klämpfl, Florian; Roth, Stephan; Schmidt, Michael

    Laser transmission welding is a well-known joining technology for thermoplastics. Because of the needs of lightweight, cost effective and green production nowadays injection molded parts usually have to be welded. These parts are made out of semi-crystalline thermoplastics which are filled to a high amount with glass fibers. This leads to higher absorption and more scattering within the upper joining partner and hasa negative influence onto the welding process. Here a ray tracing model capable of considering every single glass fiber is introduced. Hence spatially not equally distributed glass fibers can be taken into account. Therefore the model is able to calculate in detail the welding laser intensity distribution after transmission through the upper joining partner. Data gained by numerical simulation is compared to data obtained by laser radiation scattering experiments. Thus observed deviation is quantified and discussed.

  15. Numerical simulation of temperature field in deep penetration laser welding of 5A06 aluminum cylinder

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Deep penetration laser welding temperature field of 5A06 aluminum alloy canister structure was simulated using the surface-body combination heat source model by ANSYS, which was made up of Gauss surface heat source model and Gauss revolved body heat source model. Convection, radiation and conduction were all considered during the simulation process. The thermal cycle curves of the points both on the shell outer surface and in the seam thickness direction were calculated. Simulated results agreed well with the experiment results. It concluded that the surface-body combination heat source model was fit for the temperature field simulation of deep penetration laser welding of the aluminum alloy canister structure. This method was proved to be an efficient way to predict the shape and dimension of welded joint for deep penetration laser welding of the aluminum alloy canister structure.

  16. Study on weld bead surface profile and angular distortion in 6 mm thick butt weld joints of SS304 using fiber laser

    Science.gov (United States)

    Bhargava, P.; Paul, C. P.; Mundra, G.; Premsingh, C. H.; Mishra, S. K.; Nagpure, D.; Kumar, Atul; Kukreja, L. M.

    2014-02-01

    We deployed a 2 kW continuous wave fiber laser integrated with the 5-axis workstation to understand the effect of various processing parameters (laser power, welding speed, beam spot size and chamfer at welded edges) on depth of penetration, angular distortion and welded bead surface profile during autogenous laser welding of 6 mm thick austenitic stainless steel type 304 plates. Full penetration with reduced weld bead surface undulation (fusion zone with a few porosities at isolated locations. The microstructure at the fusion zone was largely austenitic with few ferrites and the direction of growth was epitaxial towards the fusion line. The measured values of microhardness at base material and fusion zone were 208±4 HV0.1 and 235±10 HV0.1 respectively. The tensile testing of laser welded samples indicated the ultimate strength >605 MPa and these samples could be bent for an angle >170° without noticeable crack during bend test. The study opened the avenues for the deployment of fiber laser welding technology for applications demanding critical values of surface weld bead profile and distortion.

  17. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    Science.gov (United States)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  18. Effect of laser welding on the titanium ceramic tensile bond strength.

    Science.gov (United States)

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Pagnano, Valéria de Oliveira; Mattos, Maria da Glória Chiarello de

    2011-08-01

    Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi) substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3) conditions was also studied. Forty CpTi cylindrical rods (3 mm x 60 mm) were cast and divided into 2 groups: with laser welding (L) and without laser welding (WL). Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm); B - Al2O3 (180 µm); C - Al2O3 (110 µm); D - Al2O3 (50 µm). Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (plaser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower.

  19. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    Science.gov (United States)

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  20. Laser welding in penetrating keratoplasty and cataract surgery of pediatric patients: early results

    Science.gov (United States)

    Rossi, Francesca; Pini, Roberto; Menabuoni, Luca; Malandrini, Alex; Canovetti, Annalisa; Lenzetti, Ivo; Capozzi, Paolo; Valente, Paola; Buzzonetti, Luca

    2013-03-01

    Diode laser welding of ocular tissues is a procedure that enables minimally invasive closure of a corneal wound. This procedure is based on a photothermal effect: a water solution of Indocyanine Green (ICG) is inserted in the surgical wound, in order to stain the corneal tissue walls. The stained tissue is then irradiated with a low power infrared diode laser, delivering laser light through a 300-μm core diameter optical fiber. This procedure enables an immediate closure of the wounds: it is thus possible to reduce or to substitute the use of surgical threads. This is of particular interest in children, because the immediate closure improves refractive outcome and anti-amblyopic effect; moreover this procedure avoids several general anaesthesia for suture management. In this work, we present the first use of diode laser welding procedure in paediatric patients. 5 selected patients underwent cataract surgery (Group 1), while 4 underwent fs-laserassisted penetrating keratoplasty (Group 2). In Group 1 the conventional surgery procedure was performed, while no stitches were used for the closure of the surgical wounds: these were laser welded and immediately closed. In Group 2 the donor button was sutured upon the recipient by 8 single stitches, instead of 16 single stitches or a running suture. The laser welding procedure was performed in order to join the donor tissue to the recipient bed. Objective observations in the follow up study evidenced a perfect adhesion of the laser welded tissues, no collateral effects and an optimal restoration of the treated tissues.