WorldWideScience

Sample records for laser sintered material

  1. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  2. Selective laser sintering of calcium phosphate materials for orthopedic implants

    Science.gov (United States)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  3. Material Evaluation and Process Optimization of CNT-Coated Polymer Powders for Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Shangqin Yuan

    2016-10-01

    Full Text Available Multi-walled carbon nanotubes (CNTs as nano-reinforcements were introduced to facilitate the laser sintering process and enhance the thermal and mechanical properties of polymeric composites. A dual experimental-theoretical method was proposed to evaluate the processability and predict the process parameters of newly developed CNT-coated polyamide 12 (CNTs/PA12 powders. The thermal conductivity, melt viscosity, phase transition and temperature-dependent density and heat capacity of PA12 and CNTs/PA12 powders were characterized for material evaluation. The composite powders exhibited improved heat conduction and heat absorption compared with virgin polymer powders, and the stable sintering range of composite powders was extended and found to be favourable for the sintering process. The microstructures of sintered composites revealed that the CNTs remained at the powder boundaries and formed network architectures, which instantaneously induced the significant enhancements in tensile strength, elongation at break and toughness without sacrificing tensile modulus.

  4. Examination of material manufactured by direct metal laser sintering (DMLS

    Directory of Open Access Journals (Sweden)

    J. Dobránsky

    2015-07-01

    Full Text Available This article is concerned with assessing microstructural properties of metal component manufactured by additive DMLS technology. Two series of samples were assessed. The first one was manufactured without heat treatment. Samples in the second series were treated with heat in order to assess increase in hardness and influence on modification of microstructure. Subsequently, values of hardness were measured by Vickers Hardness Test and modification of microstructure was observed by optical microscope. Evaluations were carried out in three planes in order to assess the differences in layering of material during its processing. Differences in values of hardness and microstructural components were discovered by examination of changes in three planes.

  5. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  6. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  7. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  8. Laser Sintering Technology and Balling Phenomenon.

    Science.gov (United States)

    Oyar, Perihan

    2018-02-01

    The aim of this review was to evaluate the balling phenomenon which occurs typically in Selective Laser Sintering (SLS). The balling phenomenon is a typical SLS defect, and observed in laser sintered powder, significantly reduces the quality of SLS, and hinders the further development of SLS Technology. Electronic database searches were performed using Google Scholar. The keywords "laser sintering, selective laser sintering, direct metal laser melting, and balling phenomenon" were searched in title/abstract of publications, limited to December 31, 2016. The inclusion criteria were SLS, balling phenomenon, some alloys (such as Cr-Co, iron, stainless steel, and Cu-based alloys) mechanical properties, microstructure and bond strength between metal-ceramic crown, laboratory studies, full text, and in English language. A total of 100 articles were found the initial search and yielded a total of 50 studies, 30 of which did not fulfill the inclusion criteria and were therefore excluded. In addition, 20 studies were found by screening the reference list of all included publications. Finally, 40 studies were selected for this review. The method in question is regulated by powder material characteristics and the conditions of laser processing. The procedure of formation, affecting factors, and the mechanism of the balling effect are very complex.

  9. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  10. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  11. Morphological analysis and modelling of sintering and of sintered materials

    International Nuclear Information System (INIS)

    Jernot, Jean-Paul

    1982-01-01

    This research thesis addresses the study of solid phase sintering of metallic powders, and aims at describing as precisely as possible the different involved matter transport mechanisms, first by using a thermodynamic approach to sintering. Sintering diagrams are also used to determine prevailing mechanisms. The microstructure of sintered materials has been studied by using image quantitative analysis, thus by using a morphological approach to sintering. Morphological parameters allow, on the one hand, the evolution of powders during sintering to be followed, and, on the other hand, sintered products to be correctly characterised. Moreover, the author reports the study of the evolution of some physical properties of sintered materials with respect to their microstructure parameters. This leads to the development of a modelling of the behaviour of these materials [fr

  12. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  13. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants.

    Science.gov (United States)

    Traini, T; Mangano, C; Sammons, R L; Mangano, F; Macchi, A; Piattelli, A

    2008-11-01

    This work focuses on a titanium alloy implants incorporating a gradient of porosity, from the inner core to the outer surface, obtained by laser sintering of metal powder. Surface appearance, microstructure, composition, mechanical properties and fractography were evaluated. All the specimens were prepared by a selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 1-10 microm. The morphological and chemical analyses were performed by SEM and energy dispersive X-ray spectroscopy. The flexure strength was determined by a three-point bend test using a universal testing machine. The surface roughness was investigated using a confocal scanning laser microscope. The surface roughness variation was statistically evaluated by use of a Chi square test. A p value of metal core consisted of columnar beta grains with alpha and beta laths within the grains. The alloy was composed of 90.08% Ti, 5.67% Al and 4.25% V. The Young's modulus of the inner core material was 104+/-7.7 GPa; while that of the outer porous material was 77+/-3.5 GPa. The fracture face showed a dimpled appearance typical of ductile fracture. In conclusion, laser metal sintering proved to be an efficient means of construction of dental implants with a functionally graded material which is better adapted to the elastic properties of the bone. Such implants should minimize stress shielding effects and improve long-term performance.

  14. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  15. The Setup Design for Selective Laser Sintering of High-Temperature Polymer Materials with the Alignment Control System of Layer Deposition

    Directory of Open Access Journals (Sweden)

    Alexey Nazarov

    2018-03-01

    Full Text Available This paper presents the design of an additive setup for the selective laser sintering (SLS of high-temperature polymeric materials, which is distinguished by an original control system for aligning the device for depositing layers of polyether ether ketone (PEEK powder. The kinematic and laser-optical schemes are given. The main cooling circuits are described. The proposed technical and design solutions enable conducting the SLS process in different types of high-temperature polymer powders. The principles of the device adjustment for depositing powder layers based on an integral thermal analysis are disclosed. The PEEK sinterability was shown on the designed installation. The physic-mechanical properties of the tested 3D parts were evaluated in comparison with the known data and showed an acceptable quality.

  16. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  17. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  18. Modeling of sintering of functionally gradated materials

    International Nuclear Information System (INIS)

    Gasik, M.; Zhang, B.

    2001-01-01

    The functionally gradated materials (FGMs) are distinguished from isotropic materials by gradients of composition, phase distribution, porosity, and related properties. For FGMs made by powder metallurgy, sintering control is one of the most important factors. In this study sintering process of FGMs is modeled and simulated with a computer. A new modeling approach was used to formulate equation systems and the model for sintering of gradated hard metals, coupled with heat transfer and grain growth. A FEM module was developed to simulate FGM sintering in conventional, microwave and hybrid conditions, to calculate density, stress and temperature distribution. Behavior of gradated WC-Co hardmetal plate and cone specimens was simulated for various conditions, such as mean particle size, green density distribution and cobalt gradation parameter. The results show that the deformation behavior and stress history of graded powder compacts during heating, sintering and cooling could be predicted for optimization of sintering process. (author)

  19. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  20. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  1. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  2. Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting

    NARCIS (Netherlands)

    Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; van Vaerenbergh, J.; Froyen, L.; Rombouts, M.

    2005-01-01

    Purpose – This paper provides an overview of the different binding mechanisms in selective laser sintering (SLS) and selective laser melting (SLM), thus improving the understanding of these processes. Design/methodology/approach – A classification of SLS/SLM processes was developed, based on the

  3. Strain rate dependency of laser sintered polyamide 12

    Directory of Open Access Journals (Sweden)

    Cook J.E.T.

    2015-01-01

    Full Text Available Parts processed by Additive Manufacturing can now be found across a wide range of applications, such as those in the aerospace and automotive industry in which the mechanical response must be optimised. Many of these applications are subjected to high rate or impact loading, yet it is believed that there is no prior research on the strain rate dependence in these materials. This research investigates the effect of strain rate and laser energy density on laser sintered polyamide 12. In the study presented here, parts produced using four different laser sintered energy densities were exposed to uniaxial compression tests at strain rates ranging from 10−3 to 10+3 s−1 at room temperature, and the dependence on these parameters is presented.

  4. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    Directory of Open Access Journals (Sweden)

    Gerda Vaitkūnaitė

    2015-03-01

    Full Text Available The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treated and untreated areas of the material has been made.

  5. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  6. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  7. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  8. Defectoscopy of direct laser sintered metals by low transmission ultrasonic frequencies

    Directory of Open Access Journals (Sweden)

    Ebersold Zoran

    2012-01-01

    Full Text Available This paper focuses on the improvement of ultrasonic defectoscopy used for machine elements produced by direct laser metal sintering. The direct laser metal sintering process introduces the mixed metal powder and performs its subsequent laser consolidation in a single production step. Mechanical elements manufactured by laser sintering often contain many hollow cells due to weight reduction. The popular pulse echo defectoscopy method employing very high frequencies of several GHz is not successful on these samples. The aim of this paper is to present quadraphonic transmission ultrasound defectoscopy which uses low range frequencies of few tens of kHz. Therefore, the advantage of this method is that it enables defectoscopy for honeycombed materials manufactured by direct laser sintering. This paper presents the results of testing performed on AlSi12 sample. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057

  9. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  10. Selective Laser Sintering And Melting Of Pristine Titanium And Titanium Ti6Al4V Alloy Powders And Selection Of Chemical Environment For Etching Of Such Materials

    Directory of Open Access Journals (Sweden)

    Dobrzański L.A.

    2015-09-01

    Full Text Available The aim of the investigations described in this article is to present a selective laser sintering and melting technology to fabricate metallic scaffolds made of pristine titanium and titanium Ti6Al4V alloy powders. Titanium scaffolds with different properties and structure were manufactured with this technique using appropriate conditions, notably laser power and laser beam size. The purpose of such elements is to replace the missing pieces of bones, mainly cranial and facial bones in the implantation treatment process. All the samples for the investigations were designed in CAD/CAM (3D MARCARM ENGINEERING AutoFab (Software for Manufacturing Applications software suitably integrated with an SLS/SLM system. Cube-shaped test samples dimensioned 10×10×10 mm were designed for the investigations using a hexagon-shaped base cell. The so designed 3D models were transferred to the machine software and the actual rapid manufacturing process was commenced. The samples produced according to the laser sintering technology were subjected to chemical processing consisting of etching the scaffolds’ surface in different chemical mediums. Etching was carried out to remove the loosely bound powder from the surface of scaffolds, which might detach from their surface during implantation treatment and travel elsewhere in an organism. The scaffolds created were subjected to micro- and spectroscopic examinations

  11. Removable partial denture alloys processed by laser-sintering technique.

    Science.gov (United States)

    Alageel, Omar; Abdallah, Mohamed-Nur; Alsheghri, Ammar; Song, Jun; Caron, Eric; Tamimi, Faleh

    2018-04-01

    Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018. © 2017 Wiley Periodicals, Inc.

  12. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering.

    Science.gov (United States)

    Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E; Velez, Mariano

    2012-09-01

    The effect of particle size distribution, binder content, processing parameters, and sintering schedule on the microstructure and mechanical properties of porous constructs was investigated. The porous constructs were produced by indirect selective laser sintering (SLS) of 13-93 bioactive glass using stearic acid as a polymeric binder. The binder content and d(50) particle size in the feedstock powders were simultaneously reduced from 22 to 12 wt% and from 20 to 11 μm, respectively, to identify the minimum binder content required for the SLS fabrication. An average particle size of ∼16 μm with a binder content of 15 wt% significantly reduced post-processing time and improved mechanical properties. Increasing the laser power and scan speed at the energy density of 1 cal/cm² maintained the feature sharpness of the parts during the fabrication of green parts and could almost double the mechanical properties of the sintered parts. Changes in the heating rates, ranging from 0.1 to 2 °C/min, during the post-processing of the fabricated "green" scaffolds showed that the heating rate significantly affects the densification and mechanical properties of the sintered scaffolds. The compressive strength of the scaffolds manufactured with the optimized parameters varied from 41 MPa, for a scaffold with a porosity of ∼50%, to 157 MPa, for a dense part. The bioactive scaffolds soaked in simulated body fluids for durations up to 6 weeks were used to evaluate the change in mechanical properties in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features

    International Nuclear Information System (INIS)

    Simchi, A.

    2006-01-01

    In the present work, the densification and microstructural evolution during direct laser sintering of metal powders were studied. Various ferrous powders including Fe, Fe-C, Fe-Cu, Fe-C-Cu-P, 316L stainless steel, and M2 high-speed steel were used. The empirical sintering rate data was related to the energy input of the laser beam according to the first order kinetics equation to establish a simple sintering model. The equation calculates the densification of metal powders during direct laser sintering process as a function of operating parameters including laser power, scan rate, layer thickness and scan line spacing. It was found that when melting/solidification approach is the mechanism of sintering, the densification of metals powders (D) can be expressed as an exponential function of laser specific energy input (ψ) as ln(1 - D) = -Kψ. The coefficient K is designated as 'densification coefficient'; a material dependent parameter that varies with chemical composition, powder particle size, and oxygen content of the powder material. The mechanism of particle bonding and microstructural features of the laser sintered powders are addressed

  14. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  15. Challenges in Laser Sintering of Thermoset Imide Resin

    Science.gov (United States)

    Chuang, Kathy C.; Gornet, Timothy; Koerner, Hilmar

    2016-01-01

    Polymer Laser Sintering (LS) is an additive manufacturing technique that builds 3D models layer by layer using a laser to selectively melt cross sections in powdered polymeric materials, following sequential slices of the CAD model. LS generally uses thermoplastic polymeric powders, such as polyamides (i.e. Nylon), and the resultant 3D objects are often weaker in their strength compared to traditionally processed materials, due to the lack of polymer inter-chain connection in the z-direction. The objective of this project is to investigate the possibility of printing a melt-processable RTM370 imide resin powder terminated with reactive phenylethynyl groups by LS, followed by a postcure in order to promote additional crosslinking to achieve higher temperature (250-300 C) capability. A preliminary study to build tensile specimens by LS and the corresponding DSC and rheology study of RTM370 during LS process is presented.

  16. New materials through a variety of sintering methods

    Science.gov (United States)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  17. Efficient Radiation Shielding Through Direct Metal Laser Sintering

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a method for efficient component-level radiation shielding that can be printed by direct metal laser sintering (DMLS) from files generated by the...

  18. Selective laser sintering: A qualitative and objective approach

    Science.gov (United States)

    Kumar, Sanjay

    2003-10-01

    This article presents an overview of selective laser sintering (SLS) work as reported in various journals and proceedings. Selective laser sintering was first done mainly on polymers and nylon to create prototypes for audio-visual help and fit-to-form tests. Gradually it was expanded to include metals and alloys to manufacture functional prototypes and develop rapid tooling. The growth gained momentum with the entry of commercial entities such as DTM Corporation and EOS GmbH Electro Optical Systems. Computational modeling has been used to understand the SLS process, optimize the process parameters, and enhance the efficiency of the sintering machine.

  19. Specific features of laser selective sintering of loose powder layers of metal-polymer type

    International Nuclear Information System (INIS)

    Tolochko, N.K.; Sobolenko, N.V.; Mozzharov, S.E.; Yadrojtsev, I.A.

    1996-01-01

    Experimental study was carried out into laser sintering of metal and polymer powder mixtures containing 75 vol.% of nickel base alloy (spherical particles 60-70 μm in diameter) and 25 vol.% of PEP-219 polymer (angular isometric particles 50-100 μm in size). The powder mixture was deposited on a stainless steel substrate and heated by continuous laser beam directed normally to powder layer. Geometrical and structural parameters of single and multilayer sintered products are shown to depend on both laser processing conditions and heat transfer. Some recommendations are given aimed at manufacturing articles of required shape, surface properties and material strength. 6 refs.; 4 figs

  20. Direct laser sintered WC-10Co/Cu nanocomposites

    Science.gov (United States)

    Gu, Dongdong; Shen, Yifu

    2008-04-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  1. Direct laser sintered WC-10Co/Cu nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gu Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)], E-mail: dongdonggu@nuaa.edu.cn; Shen Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)

    2008-04-30

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  2. Direct laser sintered WC-10Co/Cu nanocomposites

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu

    2008-01-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa

  3. New developments in laser sintering of diamond cutting disks

    NARCIS (Netherlands)

    Kovalenko, V.; Golovko, L.; Meijer, J.; Anyakin, M.

    2007-01-01

    The analysis of techniques and problems in the fabrication of cutting tools based on super hard composites results in a solution by the application of lasers. The results of systematic study of diamond composites sintering with laser radiation are discussed. A mathematical modeling of the heat

  4. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo; Lee, Daeho; Yeo, Junyeob; Yoo, Jae-Hyuck; Allen, Frances I.; Kim, Eunpa; So, Hongyun; Park, Hee K.; Minor, Andrew M.; Grigoropoulos, Costas P.

    2015-01-01

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  5. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo

    2015-03-19

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  6. Multiphysics modeling of selective laser sintering/melting

    Science.gov (United States)

    Ganeriwala, Rishi Kumar

    A significant percentage of total global employment is due to the manufacturing industry. However, manufacturing also accounts for nearly 20% of total energy usage in the United States according to the EIA. In fact, manufacturing accounted for 90% of industrial energy consumption and 84% of industry carbon dioxide emissions in 2002. Clearly, advances in manufacturing technology and efficiency are necessary to curb emissions and help society as a whole. Additive manufacturing (AM) refers to a relatively recent group of manufacturing technologies whereby one can 3D print parts, which has the potential to significantly reduce waste, reconfigure the supply chain, and generally disrupt the whole manufacturing industry. Selective laser sintering/melting (SLS/SLM) is one type of AM technology with the distinct advantage of being able to 3D print metals and rapidly produce net shape parts with complicated geometries. In SLS/SLM parts are built up layer-by-layer out of powder particles, which are selectively sintered/melted via a laser. However, in order to produce defect-free parts of sufficient strength, the process parameters (laser power, scan speed, layer thickness, powder size, etc.) must be carefully optimized. Obviously, these process parameters will vary depending on material, part geometry, and desired final part characteristics. Running experiments to optimize these parameters is costly, energy intensive, and extremely material specific. Thus a computational model of this process would be highly valuable. In this work a three dimensional, reduced order, coupled discrete element - finite difference model is presented for simulating the deposition and subsequent laser heating of a layer of powder particles sitting on top of a substrate. Validation is provided and parameter studies are conducted showing the ability of this model to help determine appropriate process parameters and an optimal powder size distribution for a given material. Next, thermal stresses upon

  7. High resolution laser micro sintering / melting using q-switched and high brilliant laser radiation

    Science.gov (United States)

    Exner, H.; Streek, A.

    2015-03-01

    Since the discovery of selective laser sintering/melting, numerous modifications have been made to upgrade or customize this technology for industrial purposes. Laser micro sintering (LMS) is one of those modifications: Powders with particles in the range of a few micrometers are used to obtain products with highly resolved structures. Pulses of a q-switched laser had been considered necessary in order to generate sinter layers from the micrometer scaled metal powders. LMS has been applied with powders from metals as well as from ceramic and cermet feedstock's to generate micro parts. Recent technological progress and the application of high brilliant continuous laser radiation have now allowed an efficient laser sintering/melting of micrometer scaled metal powders. Thereby it is remarkable that thin sinter layers are generated using high continuous laser power. The principles of the process, the state of the art in LMS concerning its advantages and limitations and furthermore the latest results of the recent development of this technology will be presented. Laser Micro Sintering / Laser Micro Melting (LMM) offer a vision for a new dimension of additive fabrication of miniature and precise parts also with application potential in all engineering fields.

  8. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    Science.gov (United States)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  9. Laser sintering of ceramics of Y2O3 pure e doped

    International Nuclear Information System (INIS)

    Oliveira, T.C. de; Goncalves, R.S.; Silva, R.S. da

    2012-01-01

    The Yttria (Y 2 O 3 ) is one of the most promising materials for refractory and optical applications due mainly to its high corrosion resistance, wide range of optical transmission and high melting point. However, due to its high melting point, ceramic bodies to obtain high density Y 2 O 3 high temperatures and require special sintering. Recently it has been proposed in the literature a new method of sintering in which a CO 2 laser, in continuous mode, is employed as the primary source of heat during sintering. Irradiation with laser light produces heating surface at elevated temperatures in a time interval of a few seconds, allowing to obtain dense ceramic bodies at elevated temperatures and with different properties from those sintered by conventional methods. In this paper, Y 2 O 3 powders of pure and doped with Mn, Ca and Zn were synthesized by the polymeric precursors and after calcination at 600 ° C/4h showed single phase. For the production and characterization of the samples used techniques DTA / TG, XRD Dilatometry, SEM and Radioluminescence. The sintered ceramics had a high relative density and strong dependence on the dopant used, which accelerate the densification process. Measures Radioluminescence showed characteristic peaks of Y 2 O 3 and dependence on the dopant used. (author)

  10. Selective Laser Sintering of PA2200: Effects of print parameters on density, accuracy, and surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-12

    Additive manufacturing needs a broader selection of materials for part production. In order for the Los Alamos National Laboratory (LANL) to investigate new materials for selective laser sintering (SLS), this paper reviews research on the effect of print parameters on part density, accuracy, and surface roughness of polyamide 12 (PA12, PA2200). The literature review serves to enhance the understanding of how changing the laser powder, scan speed, etc. will affect the mechanical properties of a commercial powder. By doing so, this understanding will help the investigation of new materials for SLS.

  11. Laser material processing

    CERN Document Server

    Steen, William

    2010-01-01

    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  12. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    OpenAIRE

    Gerda Vaitkūnaitė; Vladislav Markovič; Olegas Černašėjus

    2015-01-01

    The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS) method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treat...

  13. Grain-growth law during Stage 1 sintering of materials

    International Nuclear Information System (INIS)

    He Zeming; Ma, J.

    2002-01-01

    This work investigates the grain-growth behaviour of powder compact during Stage 1 sintering (<90{%} theoretical density). It is widely accepted that grain size is an important state variable in the constitutive modelling in material sintering. However, it is noted that all the existing grain-growth laws proposed in the literature do not incorporate the effect of externally applied stress independently. In this work, a grain-growth law with externally applied stress as a variable was proposed. Alumina powders were forge-sintered at different applied stresses to examine the proposed grain-growth relationship. The proposed grain-growth law was then applied to model the grain-growth process on the sinter forging of tool steel. It is shown that the present proposed grain-growth law provides a good description on the experimental results. (author)

  14. Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone.

    Science.gov (United States)

    Kinstlinger, Ian S; Bastian, Andreas; Paulsen, Samantha J; Hwang, Daniel H; Ta, Anderson H; Yalacki, David R; Schmidt, Tim; Miller, Jordan S

    2016-01-01

    Selective Laser Sintering (SLS) is an additive manufacturing process that uses a laser to fuse powdered starting materials into solid 3D structures. Despite the potential for fabrication of complex, high-resolution structures with SLS using diverse starting materials (including biomaterials), prohibitive costs of commercial SLS systems have hindered the wide adoption of this technology in the scientific community. Here, we developed a low-cost, open-source SLS system (OpenSLS) and demonstrated its capacity to fabricate structures in nylon with sub-millimeter features and overhanging regions. Subsequently, we demonstrated fabrication of polycaprolactone (PCL) into macroporous structures such as a diamond lattice. Widespread interest in using PCL for bone tissue engineering suggests that PCL lattices are relevant model scaffold geometries for engineering bone. SLS of materials with large powder grain size (~500 μm) leads to part surfaces with high roughness, so we further introduced a simple vapor-smoothing technique to reduce the surface roughness of sintered PCL structures which further improves their elastic modulus and yield stress. Vapor-smoothed PCL can also be used for sacrificial templating of perfusable fluidic networks within orthogonal materials such as poly(dimethylsiloxane) silicone. Finally, we demonstrated that human mesenchymal stem cells were able to adhere, survive, and differentiate down an osteogenic lineage on sintered and smoothed PCL surfaces, suggesting that OpenSLS has the potential to produce PCL scaffolds useful for cell studies. OpenSLS provides the scientific community with an accessible platform for the study of laser sintering and the fabrication of complex geometries in diverse materials.

  15. Developing Characterization Procedures for Qualifying both Novel Selective Laser Sintering Polymer Powders and Recycled Powders

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-12

    Selective laser sintering (SLS) is an additive technique which is showing great promise over conventional manufacturing techniques. SLS requires certain key material properties for a polymer powder to be successfully processed into an end-use part, and therefore limited selection of materials are available. Furthermore, there has been evidence of a powder’s quality deteriorating following each SLS processing cycle. The current investigation serves to build a path forward in identifying new SLS powder materials by developing characterization procedures for identifying key material properties as well as for detecting changes in a powder’s quality. Thermogravimetric analyses, differential scanning calorimetry, and bulk density measurements were investigated.

  16. Laser sintering of nano 13-93 glass scaffolds: Microstructure, mechanical properties and bioactivity

    Directory of Open Access Journals (Sweden)

    Cao Y.

    2015-01-01

    Full Text Available As the only bioactive material that can bond with both hard tissues and soft tissues, bioactive glass has become much important in the field of tissue engineering. 13-93 bioactive glass scaffolds were fabricated via selective laser sintering (SLS. It was focused on the effects of laser sintering on microstructure and mechanical properties of the scaffolds. The experimental results showed that the sintered layer gradually became dense with the laser power increasing and then some defects occurred, such as macroscopic caves. The optimum compressive strength and fracture toughness were 21.43±0.87 MPa and 1.14±0.09 MPa.m1/2, respectively. In vitro bioactivity showed that there was the bone-like apatite layer on the surface of the scaffolds after soaking in simulated body fluid (SBF, which was further evaluated by Fourier transform infrared spectroscopy (FTIR. Moreover, cell culture study showed MG-63 cells adhered and spread well on the scaffolds, and proliferated with increasing time in cell culture. These indicated excellent bioactivity and biocompatibility of nano 13-93 glass scaffolds.

  17. Production of three-dimensional structures of PHB using selective laser sintering

    International Nuclear Information System (INIS)

    Pereira, Tatiana F.; Costa, Marysilvia F.; Thire, Rossana M.S.M.; Oliveira, Marcelo F.; Maia, Izaque A.; Silva, Jorge V.L.

    2011-01-01

    Selective Laser Sintering (SLS) is a technology of layer-by-layer fabrication of three-dimensional physical models directly from their computational design. The poly(3-hydroxybutyrate) (PHB) is a microbial, biodegradable and semicrystalline polyester. The objective of this work was to produce PHB parts, evaluating the reuse of material in the production of the new parts. Images of SEM of part surface showed the formation of neck that indicates sintering between PHB particles during processing. Analysis of NMR and DSC of the reused polymer showed no changes in the chemical structure and thermal properties of PHB. The parts produced from virgin and reused PHB showed no significant difference in their thermal properties. This could suggest that the reuse of raw material did not influence the process reproducibility. (author)

  18. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, E N; Krotova, L I; Minaev, N V; Minaeva, S A; Mironov, A V; Popov, V K [Institute on Laser and Information Technologies of the Russian Academy of Sciencies, Troitsk, Moscow (Russian Federation); Bagratashvili, V N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 – 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering. (interaction of laser radiation with matter. laser plasma)

  19. Fabrication of Li_2TiO_3 pebbles by a selective laser sintering process

    International Nuclear Information System (INIS)

    Zhou, Qilai; Gao, Yue; Liu, Kai; Xue, Lihong; Yan, Youwei

    2015-01-01

    Highlights: • Selective laser sintering (SLS) is employed to fabricate ceramic pebbles. • Quantities and diameter of the pebbles could be easily controlled by adjusting the model of pebbles. • All the pebbles could be prepared at a time within several minutes. • The Li_2TiO_3 pebbles sintered at 1100 °C show a notable crush load of 43 N. - Abstract: Lithium titanate, Li_2TiO_3, is an important tritium breeding material for deuterium (D)–tritium (T) fusion reactor. In test blanket module (TBM) design of China, Li_2TiO_3 is considered as one candidate material of tritium breeders. In this study, selective laser sintering (SLS) technology was introduced to fabricate Li_2TiO_3 ceramic pebbles. This fabrication process is computer assisted and has a high level of flexibility. Li_2TiO_3 powder with a particle size of 1–3 μm was used as the raw material, whilst epoxy resin E06 was adopted as a binder. Green Li_2TiO_3 pebbles with certain strengths were successfully prepared via SLS. Density of the green pebbles was subsequently increased by cold isostatic pressing (CIP) process. Li_2TiO_3 pebbles with a diameter of about 2 mm were obtained after high temperature sintering. Density of the pebbles reaches 80% of theoretical density (TD) with a comparable crush load of 43 N. This computer assisted approach provides a new efficient route for the production of Li_2TiO_3 ceramic pebbles.

  20. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  1. Study on the Ingredient Proportions and After-Treatment of Laser Sintering Walnut Shell Composites

    Directory of Open Access Journals (Sweden)

    Yueqiang Yu

    2017-12-01

    Full Text Available To alleviate resource shortage, reduce the cost of materials consumption and the pollution of agricultural and forestry waste, walnut shell composites (WSPC consisting of walnut shell as additive and copolyester hot melt adhesive (Co-PES as binder was developed as the feedstock of selective laser sintering (SLS. WSPC parts with different ingredient proportions were fabricated by SLS and processed through after-treatment technology. The density, mechanical properties and surface quality of WSPC parts before and after post processing were analyzed via formula method, mechanical test and scanning electron microscopy (SEM, respectively. Results show that, when the volume fraction of the walnut shell powder in the WSPC reaches the maximum (40%, sintered WSPC parts have the smallest warping deformation and the highest dimension precision, although the surface quality, density, and mechanical properties are low. However, performing permeating resin as the after-treatment technology could considerably increase the tensile, bending and impact strength by 496%, 464%, and 516%, respectively.

  2. Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering

    International Nuclear Information System (INIS)

    Mazzoli, Alida; Moriconi, Giacomo; Pauri, Marco Giuseppe

    2007-01-01

    Solid free-form fabrication (SFF) techniques use layer-based manufacturing to create physical objects directly from computer-generated models. Using an additive approach to manufacture shapes, SFF systems join liquid, powder or sheet materials. Selective laser sintering (SLS) is a SFF technique by which parts are built layer-by-layer offering the key advantage of the direct manufacturing of functional parts. In SLS, a laser beam is traced over the surface of a tightly compacted powder made of thermoplastic material. In this paper is characterized a new aluminum-filled polyamide powder developed for applications in SLS. This material is promising for many applications that require a metallic look of the part, good finishing properties, high stiffness and higher part quality

  3. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  4. Microstructure and mechanical properties of direct metal laser sintered TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten Hermann

    2015-05-01

    Full Text Available Direct metal laser sintering (DMLS is a selective laser melting (SLM manufacturing process that can produce near net shape parts from metallic powders. A range of materials are suitable for SLM; they include various metals such as titanium, steel, aluminium, and cobalt-chrome alloys. This paper forms part of a research drive that aims to evaluate the material performance of the SLM-manufactured metals. It presents DMLS-produced Ti-6Al-4V, a titanium alloy often used in biomedical and aerospace applications. This paper also studies the effect of several heat treatments on the microstructure and mechanical properties of Ti-6Al-4V processed by SLM. It reports the achievable mechanical properties of the alloy, including quasi-static, crack growth behaviour, density and porosity distribution, and post-processing using various heat-treatment conditions.

  5. Challenges in Laser Sintering of Melt-Processable Thermoset Imide Resin

    Science.gov (United States)

    Chuang, Kathy C.; Gornet, Timothy; Koerner, Hilmar

    2016-01-01

    Polymer Laser Sintering (LS) is an additive manufacturing technique that builds 3D models layer by layer using a laser to selectively melt cross sections in powdered polymeric materials, following sequential slices of the CAD model. LS generally uses thermoplastic polymeric powders, such as polyamides (i.e. Nylon), and the resultant 3D objects are often weaker in their strength compared to traditionally processed materials, due to the lack of polymer inter-chain connection in the z-direction. The objective of this project is to investigate the possibility of printing a melt-processable RTM370 imide resin powder terminated with reactive phenylethynyl groups by LS, followed by a postcure in order to promote additional crosslinking to achieve higher temperature (250-300 C) capability. A preliminary study to build tensile specimens by LS and the corresponding DSC and rheology study of RTM370 during LS process is presented.

  6. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings.

    Science.gov (United States)

    Kim, Myung-Joo; Choi, Yun-Jung; Kim, Seong-Kyun; Heo, Seong-Joo; Koak, Jai-Young

    2017-01-23

    Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture) milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from an implant abutment. The marginal and internal fit were evaluated by measuring the weight of the silicone material, the vertical marginal discrepancy using a microscope, and the internal gap in the sectioned specimens. The data were statistically analyzed by One-way ANOVA (analysis of variance), a Scheffe's test, and Pearson's correlation at the significance level of p = 0.05, using statistics software. The silicone weight was significantly low in the casting group. The 3-D laser sintered group showed the highest vertical discrepancy, and marginal-, occlusal-, and average- internal gaps ( p marginal discrepancy and the internal gap variables ( r = 0.654), except for the silicone weight. In this study, the 3-D laser sintered group achieved clinically acceptable marginal accuracy and internal fit.

  7. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings

    Directory of Open Access Journals (Sweden)

    Myung-Joo Kim

    2017-01-01

    Full Text Available Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from an implant abutment. The marginal and internal fit were evaluated by measuring the weight of the silicone material, the vertical marginal discrepancy using a microscope, and the internal gap in the sectioned specimens. The data were statistically analyzed by One-way ANOVA (analysis of variance, a Scheffe’s test, and Pearson’s correlation at the significance level of p = 0.05, using statistics software. The silicone weight was significantly low in the casting group. The 3-D laser sintered group showed the highest vertical discrepancy, and marginal-, occlusal-, and average- internal gaps (p < 0.05. The CAD/CAM milled group revealed a significantly high axial internal gap. There are moderate correlations between the vertical marginal discrepancy and the internal gap variables (r = 0.654, except for the silicone weight. In this study, the 3-D laser sintered group achieved clinically acceptable marginal accuracy and internal fit.

  8. Processing of Syndiotactic Polystyrene to Microspheres for Part Manufacturing through Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-10-01

    Full Text Available Syndiotactic polystyrene pellets were processed into powder form using mechanical (ball milling, rotor milling and physicochemical (spray drying techniques with the intention of using it as feed material for selective laser sintering. New materials are an important component in broadening the application window for selective laser sintering but must meet strict requirements to be used. Particles obtained were characterized in size and shape using SEM imaging, analyzed by software, and compared to the product obtained by conventional ball milling. Rotor milling and spray drying proved capable of making spherical powders, yet only rotor milling achieved particles with a mean diameter within the desired range of 45–97 µm. Subsequently, the obtained powders were examined for the effect each processing technique imparts on the intrinsic properties of the material. Differential scanning calorimetry analysis revealed amorphization for all methods and a reduction in crystallinity after processing, however, the reduction in crystallinity was acceptably low for the spray-dried and rotor-milled powders. Ball milling displayed an exceptional reduction in crystallinity, suggesting severe degradation. As a final test, the rotor-milled powder was subjected to single-layer test and displayed good coalescence and smooth morphology, albeit with a large amount of warpage.

  9. Selective laser sintering (SLS) 3D printing of medicines.

    Science.gov (United States)

    Fina, Fabrizio; Goyanes, Alvaro; Gaisford, Simon; Basit, Abdul W

    2017-08-30

    Selective laser sintering (SLS) 3-dimensional printing is currently used for industrial manufacturing of plastic, metallic and ceramic objects. To date there have been no reports on the use of SLS to fabricate oral drug loaded products; therefore, the aim of this work was to explore the suitability of SLS printing for manufacturing medicines. Two thermoplastic pharmaceutical grade polymers, Kollicoat IR (75% polyvinyl alcohol and 25% polyethylene glycol copolymer) and Eudragit L100-55 (50% methacrylic acid and 50% ethyl acrylate copolymer), with immediate and modified release characteristics respectively, were selected to investigate the versatility of a SLS printer. Each polymer was investigated with three different drug loadings of paracetamol (acetaminophen) (5, 20 and 35%). To aid the sintering process, 3% Candurin ® gold sheen was added to each of the powdered formulations. In total, six solid formulations were successfully printed; the printlets (3D printed tablets) were robust, and no evidence of drug degradation was observed. In biorelevant bicarbonate dissolution media, the Kollicoat formulations showed pH-independent release characteristics, with the release rate dependent on the drug content. In the case of the Eudragit formulations, these showed pH-dependent, modified-release profiles independent of drug loading, with complete release being achieved over 12h. In conclusion, this work has demonstrated that SLS is a versatile and practical 3D printing technology which can be applied to the pharmaceutical field, thus widening the armamentarium of 3D printing technologies available for the manufacture of modern medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of Heat Accumulation on Femtosecond Laser Reductive Sintering of Mixed CuO/NiO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mizue Mizoshiri

    2018-05-01

    Full Text Available Direct laser-writing techniques have attracted attention for their use in two- and three-dimensional printing technologies. In this article, we report on a micropatterning process that uses femtosecond laser reductive sintering of mixed CuO/NiO nanoparticles. The writing speed, laser fluence, and incident total energy were varied to investigate the influence of heat accumulation on the micropatterns formed by these materials. Heat accumulation and the thermal history of the laser irradiation process significantly affected the material composition and the thermoelectric properties of the fabricated micropatterns. Short laser irradiation durations and high laser fluences decrease the amount of metal oxide in the micropatterns. Selective fabrication of p-type and n-type thermoelectric micropatterns was demonstrated to be possible with control of the reduction and reoxidization reactions through the control of writing speed and total irradiation energy.

  11. Adaptive Laser Sintering System for In-space Printed Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to enhance the Optomec Aerosol Jet(R) technology for additive manufacturing by introduction of an Adaptive Laser Sintering System (ALSS)...

  12. Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in Direct Metal Laser Sintering Process

    Science.gov (United States)

    Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev

    2018-03-01

    Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.

  13. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing.

    Science.gov (United States)

    Shirazi, Seyed Farid Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Osman, Noor Azuan Abu

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  14. Lasers in materials processing

    International Nuclear Information System (INIS)

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out

  15. Experiments for practical education in process parameter optimization for selective laser sintering to increase workpiece quality

    Science.gov (United States)

    Reutterer, Bernd; Traxler, Lukas; Bayer, Natascha; Drauschke, Andreas

    2016-04-01

    Selective Laser Sintering (SLS) is considered as one of the most important additive manufacturing processes due to component stability and its broad range of usable materials. However the influence of the different process parameters on mechanical workpiece properties is still poorly studied, leading to the fact that further optimization is necessary to increase workpiece quality. In order to investigate the impact of various process parameters, laboratory experiments are implemented to improve the understanding of the SLS limitations and advantages on an educational level. Experiments are based on two different workstations, used to teach students the fundamentals of SLS. First of all a 50 W CO2 laser workstation is used to investigate the interaction of the laser beam with the used material in accordance with varied process parameters to analyze a single-layered test piece. Second of all the FORMIGA P110 laser sintering system from EOS is used to print different 3D test pieces in dependence on various process parameters. Finally quality attributes are tested including warpage, dimension accuracy or tensile strength. For dimension measurements and evaluation of the surface structure a telecentric lens in combination with a camera is used. A tensile test machine allows testing of the tensile strength and the interpreting of stress-strain curves. The developed laboratory experiments are suitable to teach students the influence of processing parameters. In this context they will be able to optimize the input parameters depending on the component which has to be manufactured and to increase the overall quality of the final workpiece.

  16. Instrumentation for thermal diffusivity determination of sintered materials

    International Nuclear Information System (INIS)

    Turquetti Filho, R.

    1990-01-01

    A new procedure to measure the sinterized materials thermal diffusivity, using the heat pulse method was developed in this work. The experimental data were performed at room temperature with UO sub(2), ThO sub(2), and Al sub(2)O sub(3) samples with 94%, 95%, and 96% of theoretical densities, respectively. Nondimensional root mean square deviation for theoretical function fitting was found to be on the order, of 10 sup(-3). The total error associated with the measurements for thermal diffusivity was ± 5%. (author)

  17. Resistance of direct metal laser sintered Ti6Al4V alloy against growth of fatigue cracks

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Kunz, Ludvík; Bača, A.; Nicoletto, G.

    2017-01-01

    Roč. 185, NOV (2017), s. 82-91 ISSN 0013-7944 Institutional support: RVO:68081723 Keywords : Titanium alloys * Ti6Al4V * Fatigue crack growth * Threshold value of stress intensity factor * Direct metal laser sintering Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.151, year: 2016 http://www.sciencedirect.com/science/article/pii/S0013794417300292

  18. Density determination of sintered ceramic nuclear fuel materials

    International Nuclear Information System (INIS)

    Landspersky, H.; Medek, J.

    1980-01-01

    The feasibility was tested of using solids for pycnometric determination of the density of uranium dioxide-based sintered ceramic fuel materials manufactured by the sol-gel method in the shape of spherical particles of 0.7 to 1.0 mm in size and of particles smaller than 200 μm. For fine particles, this is the only usable method of determining their density which is a very important parameter of the fine fraction when it is employed for the manufacture of fuel elements by vibration compacting. The method consists in compacting a mixture of pycnometric material and dispersed particles of uranium dioxide, determining the size and weight of the compact, and in calculating the density of the material measured from the weight of the oxide sample in the mixture. (author)

  19. Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct

    Science.gov (United States)

    Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.

    2012-01-01

    The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.

  20. Effect of Bed Temperature on the Laser Energy Required to Sinter Copper Nanoparticles

    Science.gov (United States)

    Roy, N. K.; Dibua, O. G.; Cullinan, M. A.

    2018-03-01

    Copper nanoparticles (NPs), due to their high electrical conductivity, low cost, and easy availability, provide an excellent alternative to other metal NPs such as gold, silver, and aluminum in applications ranging from direct printing of conductive patterns on metal and flexible substrates for printed electronics applications to making three-dimensional freeform structures for interconnect fabrication for chip-packaging applications. Lack of research on identification of optimum sintering parameters such as fluence/irradiance requirements for sintering of Cu NPs serves as the primary motivation for this study. This article focuses on the identification of a good sintering irradiance window for Cu NPs on an aluminum substrate using a continuous wave (CW) laser. The study also includes the comparison of CW laser sintering irradiance windows obtained with substrates at different initial temperatures. The irradiance requirements for sintering of Cu NPs with the substrate at 150-200°C were found to be 5-17 times smaller than the irradiance requirements for sintering with the substrate at room temperature. These findings were also compared against the results obtained with a nanosecond (ns) laser and a femtosecond (fs) laser.

  1. One step sintering of homogenized bauxite raw material and kinetic study

    Science.gov (United States)

    Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying

    2016-10-01

    A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.

  2. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    Science.gov (United States)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  3. Corrosion of Ti6Al4V pins produced by direct metal laser sintering

    Science.gov (United States)

    de Damborenea, J. J.; Arenas, M. A.; Larosa, Maria Aparecida; Jardini, André Luiz; de Carvalho Zavaglia, Cecília Amélia; Conde, A.

    2017-01-01

    Direct Metal Laser Sintering (DMLS) technique allows the manufacturing a wide variety of medical devices for any type of prosthetic surgery (HIP, dental, cranial, maxillofacial) as well as for internal fixation devices (K-Wires or Steinmann Pins). There are a large number of research studies on DMLS, including microstructural characterization, mechanical properties and those based on production quality assurance but the influence of porosity in the corrosion behavior of these materials not been sufficiently considered. In the present paper, surgical pins of Ti6Al4V have been produced by DMLS. After testing in a phosphate buffered saline solution, the surface of the titanium alloy appeared locally covered by a voluminous white oxide. This unexpected behavior was presumably due to the existence of internal defects in the pins as result of the manufacturing process. The importance of these defects-that might act as crevice nucleation sites- has been revealed by electrochemical techniques and confirmed by computed tomography.

  4. Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering

    Science.gov (United States)

    Jelis, Elias; Clemente, Matthew; Kerwien, Stacey; Ravindra, Nuggehalli M.; Hespos, Michael R.

    2015-03-01

    Direct metal laser sintering (DMLS) was used to produce high-strength low-alloy 4340 steel specimens. Mechanical and metallurgical analyses were performed on the specimens to determine the samples with the highest strengths and the least porosity. The optimal process parameters were thus defined based on the corresponding experimental conditions. Additionally, the effects of fabricating specimens with both virgin and recycled powders were studied. Scanning electron microscopy and electron-dispersive spectroscopy were performed on both types of powders to determine the starting morphology and composition. The initial tensile results are promising, suggesting that DMLS can produce specimens equal in strength to wrought materials. However, there is evidence of cracking on several of the heat-treated tensile specimens that is unexplained. Several theories point to disturbances in the build chamber environment that went undetected while the specimens were being fabricated.

  5. Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering

    International Nuclear Information System (INIS)

    Chung, Haseung; Das, Suman

    2008-01-01

    Selective laser sintering (SLS), a layered manufacturing-based freeform fabrication approach was explored for constructing three-dimensional structures in functionally graded polymer nanocomposites. Here, we report on the processing and properties of functionally graded polymer nanocomposites of Nylon-11 filled with 0-10% by volume of 15 nm fumed silica nanoparticles. SLS processing parameters for the different compositions were developed by design of experiments (DOE). The densities and micro/nanostructures of the nanocomposites were examined by optical microscopy and transmission electron microscopy (TEM). The tensile and compressive properties for each composition were then tested. These properties exhibit a nonlinear variation as a function of filler volume fraction. Finally, two component designs exhibiting a one-dimensional polymer nanocomposite material gradient were fabricated. The results indicate that particulate-filled functionally graded polymer nanocomposites exhibiting a one-dimensional composition gradient can be successfully processed by SLS to produce three-dimensional components with spatially varying mechanical properties

  6. Sintering of solution-based nano-particles by a UV laser pulse train

    Science.gov (United States)

    Zhang, Jie; Li, Ming; Morimoto, Kiyoshi

    2011-03-01

    Sintering of palladium (Pd) and silicon (Si) nano-particles (NPs) by a 266nm laser pulse train on ink-printed films was investigated. Organic Pd-ink, and organic Si-ink were used as precursors. A high repetition rate DPSS laser (up to 300 kHz, 25ns, 266nm, Coherent AVIA series), which produces a ns pulse train with 3.3 μs -33.3 μs interval of pulse-topulse, was used as the heating source. Highly electrically conductive Pd (Resistivity=~150μΩ.cm) thin film on PET substrate and semi-conductive Si (Resistivity=~23kΩ.cm) thin film on glass substrate were successfully obtained with this laser pulse train sintering process. The sintered films were characterized by AFM, SEM, TEM and Raman spectroscopy, respectively. The pulse train heating process was also numerically simulated.

  7. Early human bone response to laser metal sintering surface topography: a histologic report.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  8. Melt-Pool Temperature and Size Measurement During Direct Laser Sintering

    Energy Technology Data Exchange (ETDEWEB)

    List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dinwiddie, Ralph Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gockel, Joy E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Additive manufacturing has demonstrated the ability to fabricate complex geometries and components not possible with conventional casting and machining. In many cases, industry has demonstrated the ability to fabricate complex geometries with improved efficiency and performance. However, qualification and certification of processes is challenging, leaving companies to focus on certification of material though design allowable based approaches. This significantly reduces the business case for additive manufacturing. Therefore, real time monitoring of the melt pool can be used to detect the development of flaws, such as porosity or un-sintered powder and aid in the certification process. Characteristics of the melt pool in the Direct Laser Sintering (DLS) process is also of great interest to modelers who are developing simulation models needed to improve and perfect the DLS process. Such models could provide a means to rapidly develop the optimum processing parameters for new alloy powders and optimize processing parameters for specific part geometries. Stratonics’ ThermaViz system will be integrated with the Renishaw DLS system in order to demonstrate its ability to measure melt pool size, shape and temperature. These results will be compared with data from an existing IR camera to determine the best approach for the determination of these critical parameters.

  9. On the microstructure analysis of FSW joints of aluminium components made via direct metal laser sintering

    Science.gov (United States)

    Scherillo, Fabio; Astarita, Antonello; di Martino, Daniela; Contaldi, Vincenzo; di Matteo, Luca; di Petta, Paolo; Casarin, Renzo; Squillace, Antonino; Langella, Antonio

    2017-10-01

    Additive Manufacturing (AM), applied to metal industry, is a family of processes that allow complex shape components to be realized from raw materials in the form of powders. The compaction of the powders can be achieved by local melting of the powder bed or by solid state sintering. Direct Metal Laser Sintering (DMLS) is an additive manufacturing process in which a focalized laser beam is the heat source that allows the powders to be compacted. By DMLS it is possible to realize complex shape components. One of the limits of DMLS, as for every additive layer manufacturing techniques, is the unfeasibility to realize large dimension parts. Due to this limit the study of joining process of parts made via ALM is of great interest. One of the most promising options is the Friction Stir Welding (FSW), a solid state welding technique that has been proven to be very effective in the welding of metals difficult to weld, above all aluminium alloys. Since FSW is a solid-state technique, the microstructure of the various zone of the weld bead depends not only by the process itself but also by the parent microstruct ure of the parts to be welded. Furthermore, parts made of aluminium alloy via DMLS have a particular microstructure that is the result of repeated severe thermal cycles. In the present work the authors, starting from the description of the parent microstructure of parts made of AlSi10Mg aluminium alloy, study the microstructure evolution occurred within the joint made by Friction Stir Welding, analysing in details the microstructure of the main well recognized zone of the weld bead. The structure of the parent material is characterized by the presence of melting pools with a very fine microstructure. In the joint the recrystallization, the grain refinement and, above all, the redistribution of intermetallic phases occurs, resulting in an homogenization of the microstructure and in an increase of micro hardness.

  10. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods.

    Science.gov (United States)

    Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin

    2015-11-01

    The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (Pcorrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication

    International Nuclear Information System (INIS)

    Ko, Seung Hwan

    2011-01-01

    A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed

  12. The Effect of Carbon Nanotubes on the Mechanical Properties of Wood Plastic Composites by Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2017-12-01

    Full Text Available Wood-plastic composites (WPCs made by selective laser sintering (SLS approach of 3D printing offer many advantages over single polymer materials, such as low cost, sustainability, and better sintering accuracy. However, WPCs made via SLS are too weak to have widespread applications. In order to increase the mechanical properties of WPCs, a novel type of WPCs containing 0, 0.05, 0.1 and 0.15 wt % carbon nanotubes (CNT, 14 wt % wood fibers, 86 wt % polyether sulfone (PES was manufactured via SLS. The experimental results showed that the addition of small amount of CNTs can significantly increase the mechanical properties of the wood/PES composite material. The tensile strength, bending strength, and elasticity modulus were 76.3%, 227.9%, and 128.7% higher with 0.1 wt % CNTs than those without CNTs. The mechanical properties of specimens first increased and then decreased with the addition of CNTs. The SEM results of the specimens’ fracture morphology indicate that the preferable bonding interfaces between wood flour grains and PES grains were achieved by adding CNTs to the composites. There are two reasons why the composites possessed superior mechanical properties: CNTs facilitate the laser sintering process of WPCs due to their thermal conductivities, and CNTs directly reinforce WPCs.

  13. The physical chemistry and materials science behind sinter-resistant catalysts.

    Science.gov (United States)

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  14. Development of Experimental Setup of Metal Rapid Prototyping Machine using Selective Laser Sintering Technique

    Science.gov (United States)

    Patil, S. N.; Mulay, A. V.; Ahuja, B. B.

    2018-04-01

    Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of

  15. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  16. Residual stress determination of direct metal laser sintered (DMLS) inconel specimens and parts

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maziasz, Philip J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fancher, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peralta, Alonso [Honeywell Aerospace, Phoenix, AZ (United States); Sundarraj, Suresh [Honeywell Aerospace, Phoenix, AZ (United States); Neumann, James [Honeywell Aerospace, Phoenix, AZ (United States)

    2018-01-01

    Residual stress determinations and microstructural studies were performed on a series of Inconel 718Plus prisms built using Direct Metal Laser Sintering (DMLS) at Honeywell Aerospace (hereafter also referred to as Honeywell). The results are being used to validate and improve existing models at Honeywell, and ultimately will expedite the implementation of DMLS throughout various industrial sectors (automotive, biomedical, etc.).

  17. Patient satisfaction with laser-sintered removable partial dentures: A crossover pilot clinical trial.

    Science.gov (United States)

    Almufleh, Balqees; Emami, Elham; Alageel, Omar; de Melo, Fabiana; Seng, Francois; Caron, Eric; Nader, Samer Abi; Al-Hashedi, Ashwaq; Albuquerque, Rubens; Feine, Jocelyne; Tamimi, Faleh

    2018-04-01

    Clinical data regarding newly introduced laser-sintered removable partial dentures (RPDs) are needed before this technique can be recommended. Currently, only a few clinical reports have been published, with no clinical studies. This clinical trial compared short-term satisfaction in patients wearing RPDs fabricated with conventional or computer-aided design and computer-aided manufacturing (CAD-CAM) laser-sintering technology. Twelve participants with partial edentulism were enrolled in this pilot crossover double-blinded clinical trial. Participants were randomly assigned to wear cast or CAD-CAM laser-sintered RPDs for alternate periods of 30 days. The outcome of interest was patient satisfaction as measured using the McGill Denture Satisfaction Instrument. Assessments was conducted at 1, 2, and 4 weeks. The participant's preference in regard to the type of prosthesis was assessed at the final evaluation. The linear mixed effects regression models for repeated measures were used to analyze the data, using the intention-to-treat principle. To assess the robustness of potential, incomplete adherence, sensitivity analyses were conducted. Statistically significant differences were found in patients' satisfaction between the 2 methods of RPD fabrication. Participants were significantly more satisfied with laser-sintered prostheses than cast prostheses in regard to general satisfaction, ability to speak, ability to clean, comfort, ability to masticate, masticatory efficiency, and oral condition (Premovable partial dentures may lead to better outcomes in terms of patient satisfaction in the short term. The conclusion from this pilot study requires confirmation by a larger randomized controlled trial. ClinicalTrials.gov. A study about patient satisfaction with laser-sintered removable partial dentures; NCT02769715. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Effect of temperature on electrical conductance of inkjet-printed silver nanoparticle ink during continuous wave laser sintering

    International Nuclear Information System (INIS)

    Lee, Dae-Geon; Kim, Dong Keun; Moon, Yoon-Jae; Moon, Seung-Jae

    2013-01-01

    To determine the effect of temperature on the specific electrical conductance of inkjet-printed ink during continuous wave laser sintering, the temperature of the sintered ink was estimated. The ink, which contained 34 wt.% silver nanoparticles with an average size of approximately 50 nm, was inkjet-printed onto a liquid crystal display glass substrate. The printed ink was irradiated with a 532 nm continuous wave laser for 60 s with various laser intensities. During laser irradiation, the in-situ electrical conductance of the sintered ink was measured to estimate the transient thermal conductivity of the ink. The electrical conductance and thermal conductivity of the ink was coupled to obtain the transient temperature by applying the Wiedemann–Franz law to a two-dimensional transient heat conduction equation. The electrical conductance of laser-sintered ink was highly dependent on the sintering temperature of the ink. - Highlights: • The in-situ electrical conductance was measured during the laser sintering process. • Wiedemann–Franz law coupled the electrical conductance with transient temperature. • The transient temperature of the laser-sintered Ag nanoparticle ink was estimated

  19. Structure and characteristics of functional powder composite materials obtained by spark plasma sintering

    Science.gov (United States)

    Oglezneva, S. A.; Kachenyuk, M. N.; Kulmeteva, V. B.; Ogleznev, N. B.

    2017-07-01

    The article describes the results of spark plasma sintering of ceramic materials based on titanium carbide, titanium carbosilicide, ceramic composite materials based on zirconium oxide, strengthened by carbon nanostructures and composite materials of electrotechnical purpose based on copper with addition of carbon structures and titanium carbosilicide. The research shows that the spark plasma sintering can achieve relative density of the material up to 98%. The effect of sintering temperature on the phase composition, density and porosity of the final product has been studied. It was found that with addition of carbon nanostructures the relative density and hardness decrease, but the fracture strength of ZrO2 increases up to times 2. The relative erosion resistance of the electrodes made of composite copper-based powder materials, obtained by spark plasma sintering during electroerosion treatment of tool steel exceeds that parameter of pure copper up to times 15.

  20. In situ process monitoring in selective laser sintering using optical coherence tomography

    Science.gov (United States)

    Gardner, Michael R.; Lewis, Adam; Park, Jongwan; McElroy, Austin B.; Estrada, Arnold D.; Fish, Scott; Beaman, Joseph J.; Milner, Thomas E.

    2018-04-01

    Selective laser sintering (SLS) is an efficient process in additive manufacturing that enables rapid part production from computer-based designs. However, SLS is limited by its notable lack of in situ process monitoring when compared with other manufacturing processes. We report the incorporation of optical coherence tomography (OCT) into an SLS system in detail and demonstrate access to surface and subsurface features. Video frame rate cross-sectional imaging reveals areas of sintering uniformity and areas of excessive heat error with high temporal resolution. We propose a set of image processing techniques for SLS process monitoring with OCT and report the limitations and obstacles for further OCT integration with SLS systems.

  1. Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering

    Directory of Open Access Journals (Sweden)

    Songlin Duan

    2015-03-01

    Full Text Available CaO-Al2O3-SiO2 (CAS as a liquid phase was introduced into hydroxyapatite (HAp to prepare bone scaffolds. The effects of the CAS content (1, 2, 3, 4 and 5 wt% on microstructure and mechanical properties of HAp ceramics were investigated. The optimal compression strength, fracture toughness and Vickers hardness reached 22.22 MPa, 1.68 MPa·m1/2 and 4.47 GPa when 3 wt% CAS was added, which were increased by 105%, 63% and 11% compared with those of HAp ceramics without CAS, respectively. The improvement of the mechanical properties was attributed to the improved densification, which was caused by the solid particle to rearrange during liquid phase sintering. Moreover, simulated body fluid (SBF study indicated the HAp ceramics could maintain the mechanical properties and form a bone-like apatite layer when they were immersed in SBF. Cell culture was used to evaluate biocompatibility of the HAp ceramics. The results demonstrated MG-63 cells adhered and spread well.

  2. Sinterability studies on K0.5Na0.5NbO3 using laser as energy source

    International Nuclear Information System (INIS)

    Tian Xiaoyong; Dittmar, Anne; Melcher, Joerg; Heinrich, Juergen G.

    2010-01-01

    The sinterability of K 0.5 Na 0.5 NbO 3 (KNN) ceramics by a laser beam has been investigated in the present research. A 100 W CO 2 laser with a beam diameter of 0.6 mm has been used to sinter the KNN specimens prepared on a uniaxial pressing machine. The relations between laser power and thickness of densified layer, crystallographic structures and phase compositions have been studied. A comparison has been made between laser and furnace sintered KNN samples according to the SEM, XRD and XRF results. The possibility of KNN used for the layer-wise laser direct sintering 3D components has been confirmed in this paper.

  3. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Derek H. [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States); Bicknell, Jonathan; Jorgensen, Luke [Turbocam Energy Solutions, Turbocam International, Dover, NH 03820 (United States); Patterson, Brian M.; Cordes, Nikolaus L. [Materials Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsukrov, Igor [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States); Knezevic, Marko, E-mail: marko.knezevic@unh.edu [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States)

    2016-03-15

    In this paper, we investigate microstructure and quasi-static mechanical behavior of the direct metal laser sintered Inconel 718 superalloy as a function of build direction (BD). The printed material was further processed by annealing and double-aging, hot isostatic pressing (HIP), and machining. We characterize porosity fraction and distribution using micro X-ray computed tomography (μXCT), grain structure and crystallographic texture using electron backscattered diffraction (EBSD), and mechanical response in quasi-static tension and compression using standard mechanical testing at room temperature. Analysis of the μXCT imaging shows that majority of porosity develops in the outer layer of the printed material. However, porosity inside the material is also present. The EBSD measurements reveal formation of columnar grains, which favor < 001 > fiber texture components along the BD. These measurements also show evidence of coarse-grained microstructure present in the samples treated by HIP. Finally, analysis of grain boundaries reveal that HIP results in a large number of annealing twins compared to that in samples that underwent annealing and double-aging. The yield strength varies with the testing direction by approximately 7%, which is governed by a combination of grain morphology and crystallographic texture. In particular, we determine tension–compression asymmetry in the yield stress as well as anisotropy of the material flow during compression. We find that HIP lowers yield stress but improves ductility relative to the annealed and aged material. These results are discussed and critically compared with the data reported for wrought material in the same condition. - Highlights: • Microstructure and mechanical properties of DMLS Inconel 718 are studied in function of build direction. • Inhomogeneity of microstructure in the material in several conditions is quantified by μXCT and EBSD. • Anisotropy and asymmetry in the mechanical response are

  4. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718

    International Nuclear Information System (INIS)

    Smith, Derek H.; Bicknell, Jonathan; Jorgensen, Luke; Patterson, Brian M.; Cordes, Nikolaus L.; Tsukrov, Igor; Knezevic, Marko

    2016-01-01

    In this paper, we investigate microstructure and quasi-static mechanical behavior of the direct metal laser sintered Inconel 718 superalloy as a function of build direction (BD). The printed material was further processed by annealing and double-aging, hot isostatic pressing (HIP), and machining. We characterize porosity fraction and distribution using micro X-ray computed tomography (μXCT), grain structure and crystallographic texture using electron backscattered diffraction (EBSD), and mechanical response in quasi-static tension and compression using standard mechanical testing at room temperature. Analysis of the μXCT imaging shows that majority of porosity develops in the outer layer of the printed material. However, porosity inside the material is also present. The EBSD measurements reveal formation of columnar grains, which favor fiber texture components along the BD. These measurements also show evidence of coarse-grained microstructure present in the samples treated by HIP. Finally, analysis of grain boundaries reveal that HIP results in a large number of annealing twins compared to that in samples that underwent annealing and double-aging. The yield strength varies with the testing direction by approximately 7%, which is governed by a combination of grain morphology and crystallographic texture. In particular, we determine tension–compression asymmetry in the yield stress as well as anisotropy of the material flow during compression. We find that HIP lowers yield stress but improves ductility relative to the annealed and aged material. These results are discussed and critically compared with the data reported for wrought material in the same condition. - Highlights: • Microstructure and mechanical properties of DMLS Inconel 718 are studied in function of build direction. • Inhomogeneity of microstructure in the material in several conditions is quantified by μXCT and EBSD. • Anisotropy and asymmetry in the mechanical response are determined by

  5. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    International Nuclear Information System (INIS)

    Park, Taesoon; Kim, Dongsik

    2015-01-01

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10 −4 Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively

  6. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Taesoon; Kim, Dongsik, E-mail: dskim87@postech.ac.kr

    2015-03-02

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10{sup −4} Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively.

  7. Thermal Influence of CNT on the Polyamide 12 Nanocomposite for Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Jiaming Bai

    2015-10-01

    Full Text Available The thermal influence of carbon nanotubes (CNTs on the PA12 in the laser sintering process was assessed by physical experiments and a three dimensional simulation model. It appears that, by adding the CNTs into the PA12 matrix, the thermal conductivity increased. A double ellipsoidal heat flux model was applied to input a three dimensional, continuous moving, volumetric laser heat source. The predicted three dimensional temperature distributions suggested that the laser heat was conducted wider and deeper in the PA12-CNT sample than PA12. Greater heat conduction can reduce the interspace between two successive layers, and result in the increase of the parts’ density and properties.

  8. Residual stress in TI6AL4V objects produced by direct metal laser sintering

    Directory of Open Access Journals (Sweden)

    Van Zyl, Ian

    2016-12-01

    Full Text Available Direct Metal Laser Sintering produces 3D objects using a layer-by- layer method in which powder is deposited in thin layers. Laser beam scans over the powder fusing powder particles as well as the previous layer. High-concentration of laser energy input leads to high thermal gradients which induce residual stress within the as- built parts. Ti6Al4V (ELI samples have been manufactured by EOSINT M280 system at prescribed by EOS process-parameters. Residual stresses were measured by XRD method. Microstructure, values and directions of principal stresses inTi6Al4V DMLS samples were analysed.

  9. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Science.gov (United States)

    Mangano, F.; Chambrone, L.; van Noort, R.; Miller, C.; Hatton, P.; Mangano, C.

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed. PMID:25525434

  10. Direct metal laser sintering titanium dental implants: a review of the current literature.

    Science.gov (United States)

    Mangano, F; Chambrone, L; van Noort, R; Miller, C; Hatton, P; Mangano, C

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  11. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Directory of Open Access Journals (Sweden)

    F. Mangano

    2014-01-01

    Full Text Available Statement of Problem. Direct metal laser sintering (DMLS is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs; to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  12. Tool design and materials for electro sinter forging (ESF)

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    ) process, the main requirement is the electrical current passing through the electrical conducting powder. To obtain this, a closed-die setup with electrical insulating properties was used. Furthermore, the alignment between the compacting punch and die needed to be ensured by pre-aligning or alternatively...... by using an alignment system. The present work is focused on the designing phase of a tool for the electro sinter forging of a disc, made from titanium powder. By applying a pre-alignment system, the setup resulted suitable for this application. A tool design for sintering rings is also showed....

  13. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  14. Passivity of the bars manufactured using current technologies: laser-sintering, casting, and milling

    Science.gov (United States)

    Popescu, Diana; Popescu, Sabin; Pop, Daniel; Jivanescu, Anca; Todea, Carmen

    2014-01-01

    Implant overdentures are often selected as therapeutic options for the treatment of edentulous mandibles. "Passive-fit" between the mesostructures and the implants plays an important role in the longevity of the implant-prosthetic assembly in the oral cavity. "Mis-fit" can cause mechanical or biological complications. The purpose of this test was to investigate the passive adaptation of the bars manufactured through different technologies, and in this respect two bars (short and long) were fabricated by each process: laser-sintering, milling, casting. The tensions induced by tightening the connection screw between the bars and the underlying implants were recorded using strain gauges and used as measuring and comparing tool in testing the bars' "passivity". The results of the test showed that the milled bars had the best "passive-fit", followed by laser-sintered bars, while cast bars had the lowest adaptation level.

  15. Laser materials processing with diode lasers

    OpenAIRE

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  16. Corrosion of Ti6Al4V pins produced by direct metal laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Damborenea, J.J. de, E-mail: jdambo@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avenida Gregorio del Amo, 8, E-28040 Madrid (Spain); Arenas, M.A. [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avenida Gregorio del Amo, 8, E-28040 Madrid (Spain); Larosa, Maria Aparecida; Jardini, André Luiz [National Institute of Biofabrication (INCT-BIOFABRIS), State of University of Campinas (UNICAMP), Campinas (Brazil); School of Chemical Engineering, State of University of Campinas (UNICAMP), Campinas (Brazil); Carvalho Zavaglia, Cecília Amélia de [National Institute of Biofabrication (INCT-BIOFABRIS), State of University of Campinas (UNICAMP), Campinas (Brazil); Faculty of Mechanical Engineering, State of University of Campinas (UNICAMP), Campinas (Brazil); Conde, A. [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avenida Gregorio del Amo, 8, E-28040 Madrid (Spain)

    2017-01-30

    Highlights: • Pins of Ti6Al4V have been produced by DMLS technique. • Corrosion behavior of pins is similar to Ti6Al4V commercial Kirschner wires. • Formation of voluminous white oxide can appear at potentials higher than 2.4 V. • Defects originated during processing may cause this unusual behavior. - Abstract: Direct Metal Laser Sintering (DMLS) technique allows the manufacturing a wide variety of medical devices for any type of prosthetic surgery (HIP, dental, cranial, maxillofacial) as well as for internal fixation devices (K-Wires or Steinmann Pins). There are a large number of research studies on DMLS, including microstructural characterization, mechanical properties and those based on production quality assurance but the influence of porosity in the corrosion behavior of these materials not been sufficiently considered. In the present paper, surgical pins of Ti6Al4V have been produced by DMLS. After testing in a phosphate buffered saline solution, the surface of the titanium alloy appeared locally covered by a voluminous white oxide. This unexpected behavior was presumably due to the existence of internal defects in the pins as result of the manufacturing process. The importance of these defects—that might act as crevice nucleation sites- has been revealed by electrochemical techniques and confirmed by computed tomography.

  17. Corrosion of Ti6Al4V pins produced by direct metal laser sintering

    International Nuclear Information System (INIS)

    Damborenea, J.J. de; Arenas, M.A.; Larosa, Maria Aparecida; Jardini, André Luiz; Carvalho Zavaglia, Cecília Amélia de; Conde, A.

    2017-01-01

    Highlights: • Pins of Ti6Al4V have been produced by DMLS technique. • Corrosion behavior of pins is similar to Ti6Al4V commercial Kirschner wires. • Formation of voluminous white oxide can appear at potentials higher than 2.4 V. • Defects originated during processing may cause this unusual behavior. - Abstract: Direct Metal Laser Sintering (DMLS) technique allows the manufacturing a wide variety of medical devices for any type of prosthetic surgery (HIP, dental, cranial, maxillofacial) as well as for internal fixation devices (K-Wires or Steinmann Pins). There are a large number of research studies on DMLS, including microstructural characterization, mechanical properties and those based on production quality assurance but the influence of porosity in the corrosion behavior of these materials not been sufficiently considered. In the present paper, surgical pins of Ti6Al4V have been produced by DMLS. After testing in a phosphate buffered saline solution, the surface of the titanium alloy appeared locally covered by a voluminous white oxide. This unexpected behavior was presumably due to the existence of internal defects in the pins as result of the manufacturing process. The importance of these defects—that might act as crevice nucleation sites- has been revealed by electrochemical techniques and confirmed by computed tomography.

  18. Design of microreactor by integration of reverse engineering and direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Bineli, Aulus Roberto Romao; Gimenez Perez, Ana Paula; Bernardes, Luiz Fernando; Munhoz, Andre Luiz Jardini; Maciel Filho, Rubens [Universidade de Campinas (LOPCA/UNICAMP), SP (Brazil). School of Chemical Engineering. Laboratory of Optimization, Design and Advanced Process Control], Email: aulus@feq.unicamp.br

    2010-07-01

    The propose of this work is to present high precision microfabrication facilities using computer aided technologies as Reverse Engineering (RE) and Rapid Manufacturing (RM) to analyze, design and construct micro reactors to produce high content hydrogen gas. Micro reactors are very compact, have a high surface to volume ratio, exhibit enhanced heat and mass transfer rates, denotes extremely low pressure drop and allow improved thermal integration in the processes involved. The main goals of micro reactors are the optimization of conventional chemical plants and low footprint, opening different ways to research new process technologies and synthesis of new products. In this work, a microchannels plate and housing structure of these plates were fabricated using DMLS method (Direct Metal Laser Sintering). The plates were analyzed to verify the minimum thickness wall that machine can produce, and the housing structure were digitalized, using a 3D scanning, to perform a 3D inspection and to verify the deflection of the constructed part in comparison with original CAD design models. It was observed that DMLS systems are able to produce micro reactors and microchannels plates with high precision at different metallic materials. However, it is important to choose appropriate conditions to avoid residual stresses and consequently warping parts. (author)

  19. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    International Nuclear Information System (INIS)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-01-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  20. Technological parameter effect on properties of sintered hard-magnetic type Nd-Fe-B materials

    International Nuclear Information System (INIS)

    Rastegaev, V.S.; Stepanova, G.I.; Gudim, Z.Yu.

    1989-01-01

    The effect of each technological operation on manufacturing hard magnets from Nd-Fe-B alloys on properties of sintered permanent magnets is studied. It is noted that violation of the metting regime can result in burn-up of boron and rare earths, and violation of the grinding mode-formation of nonmagnetic powder fractions, etc. Special attention is paid to material protection against oxidation by introducing passivating additions and creating of particular conditions for alloy sintering and heat treatment

  1. Tensile properties and microstructure of direct metal laser-sintered TI6AL4V (ELI alloy

    Directory of Open Access Journals (Sweden)

    Moletsane, M. G.

    2016-11-01

    Full Text Available Direct metal laser sintering (DMLS is an additive manufacturing technology used to melt metal powder by high laser power to produce customised parts, light-weight structures, or other complex objects. During DMLS, powder is melted and solidified track-by-track and layer-by-layer; thus, building direction can influence the mechanical properties of DMLS parts. The mechanical properties and microstructure of material produced by DMLS can depend on the powder properties, process parameters, scanning strategy, and building geometry. In this study, the microstructure, tensile properties, and porosity of DMLS Ti6Al4V (ELI horizontal samples were analysed. Defect analysis by CT scans in pre-strained samples was used to detect the crack formation mechanism during tensile testing of as-built and heat-treated samples. The mechanical properties of the samples before and after stress relieving are discussed.

  2. Analysis of wear in organic and sintered friction materials used in small wind energy converters

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Lewis Esswein Junior

    2008-09-01

    Full Text Available Wind energy converters of small size used in isolated units to generate electrical energy must present low maintenance cost to such facilities economically viable. The aspect to be analyzed in cost reduction is the brake system, since in isolated systems the use of brake is more frequent reducing the brake pads life time. This study aims at analyzing the wear behavior of some materials used in brake pads. An organic material was analyzed comparing it with a commercial brake pad, and the sintered material was developed and tested. The materials behaviors were evaluated in both wear and friction coefficient. The sintered samples were made by powder metallurgy. The composition was compacted at 550 MPa and sintered in a furnace with controlled atmosphere to avoid oxidation. Despite the different compositions of the two types of materials, they presented a very similar wear; however, the sintered material presented a higher friction coefficient. An adjustment in the braking system of the wind generator might be proposed to use the sintered brake pad, due to its higher friction coefficient. Consequently, the braking action becomes lower, reducing the wear rate of the material.

  3. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    Science.gov (United States)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  4. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    International Nuclear Information System (INIS)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-01-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  5. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Science.gov (United States)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-07-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  6. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    Science.gov (United States)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2017-03-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  7. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan [Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435 (United States)

    2016-07-12

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  8. Review of selective laser melting: Materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798 (Singapore); Chua, C. K., E-mail: mckchua@ntu.edu.sg; Liu, Z. H., E-mail: azhliu@ntu.edu.sg; Zhang, D. Q., E-mail: zhangdq@ntu.edu.sg; Loh, L. E., E-mail: leloh1@e.ntu.edu.sg; Sing, S. L., E-mail: sing0011@e.ntu.edu.sg [Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N3.1 - B2c - 01, Singapore 639798 (Singapore); Dong, Z. L., E-mail: zldong@ntu.edu.sg [School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798 (Singapore)

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  9. Review of selective laser melting: Materials and applications

    Science.gov (United States)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  10. Review of selective laser melting: Materials and applications

    International Nuclear Information System (INIS)

    Yap, C. Y.; Chua, C. K.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.; Dong, Z. L.

    2015-01-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section

  11. Grain growth control and transparency in spark plasma sintered self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2009-01-01

    Doping alumina particles with aluminum alkoxides allows dense spark plasma sintered (SPSed) materials to be obtained that have a refined grain size compared to pure materials, which is critical for their transparency. An optical model considering pore and grain size distributions has been developed to obtain information about porosity in dense materials. This work suggests that the atomic diffusion mechanisms do not depend on the sintering technique. A reduction in the activation energy by a factor of 2 has been found in SPSed materials.

  12. Liquid Phase Sintered Ceramic Bone Scaffolds by Combined Laser and Furnace

    Directory of Open Access Journals (Sweden)

    Pei Feng

    2014-08-01

    Full Text Available Fabrication of mechanically competent bioactive scaffolds is a great challenge in bone tissue engineering. In this paper, β-tricalcium phosphate (β-TCP scaffolds were successfully fabricated by selective laser sintering combined with furnace sintering. Bioglass 45S5 was introduced in the process as liquid phase in order to improve the mechanical and biological properties. The results showed that sintering of β-TCP with the bioglass revealed some features of liquid phase sintering. The optimum amount of 45S5 was 5 wt %. At this point, the scaffolds were densified without defects. The fracture toughness, compressive strength and stiffness were 1.67 MPam1/2, 21.32 MPa and 264.32 MPa, respectively. Bone like apatite layer was formed and the stimulation for apatite formation was increased with increase in 45S5 content after soaking in simulated body fluid, which indicated that 45S5 could improve the bioactivity. Furthermore, MG-63 cells adhered and spread well, and proliferated with increase in the culture time.

  13. Liquid phase sintered ceramic bone scaffolds by combined laser and furnace.

    Science.gov (United States)

    Feng, Pei; Deng, Youwen; Duan, Songlin; Gao, Chengde; Shuai, Cijun; Peng, Shuping

    2014-08-21

    Fabrication of mechanically competent bioactive scaffolds is a great challenge in bone tissue engineering. In this paper, β-tricalcium phosphate (β-TCP) scaffolds were successfully fabricated by selective laser sintering combined with furnace sintering. Bioglass 45S5 was introduced in the process as liquid phase in order to improve the mechanical and biological properties. The results showed that sintering of β-TCP with the bioglass revealed some features of liquid phase sintering. The optimum amount of 45S5 was 5 wt %. At this point, the scaffolds were densified without defects. The fracture toughness, compressive strength and stiffness were 1.67 MPam1/2, 21.32 MPa and 264.32 MPa, respectively. Bone like apatite layer was formed and the stimulation for apatite formation was increased with increase in 45S5 content after soaking in simulated body fluid, which indicated that 45S5 could improve the bioactivity. Furthermore, MG-63 cells adhered and spread well, and proliferated with increase in the culture time.

  14. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    International Nuclear Information System (INIS)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A.; Shaji, S.

    2015-01-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al 2 O 3 and Fe 2 O 3 . • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe 2 O 3 , 20–40 nm) and aluminum oxide (Al 2 O 3 , 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm 2 with a concentration of 5 and 7 wt% of Fe 2 O 3 presented the MgFe 2 O 4 spinel-type phase. With the addition of Al 2 O 3 nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm 2 , there were the formations of MgAl 2 O 4 spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed

  15. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    Science.gov (United States)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  16. Influences of Laser Spot Welding on Magnetic Property of a Sintered NdFeB Magnet

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2016-08-01

    Full Text Available Laser welding has been considered as a promising method to join sintered NdFeB permanent magnets thanks to its high precision and productivity. However, the influences of laser welding on the magnetic property of NdFeB are still not clear. In the present paper, the effects of laser power on the remanence (Br were experimentally investigated in laser spot welding of a NdFeB magnet (N48H. Results show that the Br decreased with the increase of laser power. For the same welding parameters, the Br of magnets, that were magnetized before welding, were much lower than that of magnets that were magnetized after welding. The decrease in Br of magnets after laser welding resulted from the changes in microstructures and, in turn, the deterioration of magnetic properties in the nugget and the heat affected zone (HAZ in a laser weld. It is recommended that the dimensions of nuggets and HAZ in laser welds of a NdFeB permanent magnet should be as small as possible, and the magnets should be welded before being magnetized in order to achieve a better magnetic performance in practical engineering applications.

  17. Sinter aluminium as cladding material for fuel elements

    International Nuclear Information System (INIS)

    Mann, K.E.; Boudouresques, M.B.

    1961-01-01

    1. Survey of the production process of sinter aluminium. 2. Description of the forming processes (extrusion, forging and rolling), whereby the production of tubing for atom piles will be explained in detail. 3. Production of ribbed tubes and tubes with close tolerances of sizes. 4. The different SAP-qualities and their properties under special consideration of the properties at elevated temperatures and the creep properties. 5. Diffusion behaviour of SAP with Be, Mg, Al, U and UO 2 . 6. Corrosion behaviour in CO 2 atmosphere at high temperature and in water. 7. Weldability. 8. Effect of irradiation on the mechanical properties. 9. Superiority of SAP compared with normal wrought alloys of the same composition. (author) [fr

  18. Laser processing of materials

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The initial foundation of laser theory was laid by Einstein [11]. ..... general definition and scope of the processes as understood in conventional practice, but is ..... [54]. Laser welding of Ti-alloys. Welding. 2001 TiNi shape memory alloys. CW–CO2. Study corrosion, mechanical and shape memory properties of weldments.

  19. Studying hardness, workability and minimum bending radius in selectively laser-sintered Ti–6Al–4V alloy samples

    Science.gov (United States)

    Galkina, N. V.; Nosova, Y. A.; Balyakin, A. V.

    2018-03-01

    This research is relevant as it tries to improve the mechanical and service performance of the Ti–6Al–4V titanium alloy obtained by selective laser sintering. For that purpose, sintered samples were annealed at 750 and 850°C for an hour. Sintered and annealed samples were tested for hardness, workability and microstructure. It was found that incomplete annealing of selectively laser-sintered Ti–6Al–4V samples results in an insignificant reduction in hardness and ductility. Sintered and incompletely annealed samples had a hardness of 32..33 HRC, which is lower than the value of annealed parts specified in standards. Complete annealing at temperature 850°C reduces the hardness to 25 HRC and ductility by 15...20%. Incomplete annealing lowers the ductility factor from 0.08 to 0.06. Complete annealing lowers that value to 0.025. Complete annealing probably results in the embrittlement of sintered samples, perhaps due to their oxidation and hydrogenation in the air. Optical metallography showed lateral fractures in both sintered and annealed samples, which might be the reason why they had lower hardness and ductility.

  20. Spark plasma sintering of pure and doped tungsten as plasma facing material

    Science.gov (United States)

    Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.

    2014-04-01

    In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.

  1. Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite

    Science.gov (United States)

    Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava

    2018-06-01

    The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.

  2. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    Science.gov (United States)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  3. Development of high-performance sintered friction material for synchronizer ring; Koseino shoketsu synchronizer ring masatsu zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, K; Fuwa, Y; Okajima, H; Yoshikawa, K [Toyota Motor Corp., Aichi (Japan); Nakamura, M [Japan Powder Metallurgy Co. Ltd., Tokyo (Japan)

    1997-10-01

    Increasing vehicle speed and power, high-performance synchronizer ring of manual transmission is required. We develop double layer sintered synchronizer ring for high performance and cost reduction. The main structure is consisted of ferrous sinter for high strength. In this paper, friction materials of sintered synchronizer ring are studied. We can get the good friction and anti-wear property by means of hard particles (FeTi, ZrO2), solid lubricant (Graphite) and suitable porosity in brass sinter matrix. And we also achieve high joining strength between double layers adding Cu-P material. 6 refs., 13 figs., 2 tabs.

  4. Effect of High Speed Sintering on the Properties of Zirconia Oxide Materials

    Science.gov (United States)

    2018-03-22

    12. REPORT TYPE 22/03/2018 Poster 4. TITLE AND SUBTITLE Effect of High-Speed Sintering on the Properties ofZirconia-Oxide Materials 6. AUTHOR(S...2018-03/24/2018 Sa. CONTRACT NUMBER Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER Sd. PROJECT NUMBER Se. TASK NUMBER Sf. WORK UNIT NUMBER 8

  5. Spark plasma versus conventional sintering in the electrical properties of Nasicon-type materials

    Czech Academy of Sciences Publication Activity Database

    Pérez-Estébanez, Marta; Isasi-Marín, J.; Rivera-Calzada, A.; León, C.; Nygren, M.

    2015-01-01

    Roč. 651, December (2015), s. 636-642 ISSN 0925-8388 R&D Projects: GA MŠk(CZ) LO1219 Keywords : electrode materials * ionic conduction * sintering Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0925838815308227

  6. Understanding the spark plasma sintering from the view of materials joining

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2016-01-01

    Spark plasma sintering (SPS) is an attractive consolidation process. However, the mechanism behind this process is still an open topic for debate. This paper presents the first attempt to understand the SPS mechanism from perspective of materials joining. For this, TiNi_f/Al composites were fabricated by SPS, and the interfacial microstructures were investigated using field emission scanning electron microscopy and transmission electron microscopy. According to the experimental results, several joining processes were reflected well during SPS, involving micro-arc welding, electric resistance welding and diffusion welding. The proposed understanding of SPS will be helpful to the control of sintering quality.

  7. Syntheses and sintering of materials in view of nuclear waste storage

    International Nuclear Information System (INIS)

    Picot, V.; Glorieux, B.; Montel, J.M.; Deschanels, X.; Jorion, F.

    2005-01-01

    In the context of nuclear waste conditioning, the solid solution monazite-brabantite is extensively studied. Previous works have already shown its potential ability to confine minor actinides with excellent performance in term of chemical durability and structural stability. This present work concerns the synthesis and the sintering of such matrices. The challenge is to propose a synthesis and a sintering processes able to ensure the containment of actinides up to 10%wt. (Am, Cm, Np) in dense matrices (about 95% of the theoretical density). Those processes have to be performed on the equipment similar to that used in a facility dedicated to the high-level radioactive materials studies (glove box and hot cell). The optimized protocols, implying mixer-mill, synthesis by solid reaction at high temperature, uniaxial press compaction and sintering, are presented and discussed. (authors)

  8. Direct Metal Laser Sintering of Ti6Al4V for Biomedical Applications: Microstructure, Corrosion Properties, and Mechanical Treatment of Implants

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2016-07-01

    Full Text Available Ti6Al4V samples have been prepared by Direct Metal Laser Sintering (DMLS with varied laser power. Some of the samples were stress-relief annealed. The microstructure of materials was investigated using a light microscopy. Columnar grains of martensite dominate in as-made microstructure. Stress-relief annealing led to the white acicular phase growth in the structure with a fishbone arrangement on the boundary of some original martensitic needles. Mechanical properties of materials were characterized through hardness measurement in two directions relating to the sample building direction. It was found that the hardness of materials increased with a laser power and values varied from 370 to 415 HV 0.3/30. After stress-relief annealing, the structure of materials being homogenized, pattern spacing dissolved and the hardness in both directions became stabilized at values of 350–370 HV 0.3/30. The laser power affects the corrosion rate of the material. The lowest corrosion rate was recorded at the maximum laser power (190 W. Heat treatment does not affect the corrosion rate remarkably, however it leads to stabilization of corrosion potential of materials Ecorr. The surface of the samples was modified by an abrasive blasting using spherical (zirblast and sharp-edged (white corundum blasting abrasives and three levels of air pressure. The abrasive blasting of sintered materials led to a decrease of the surface roughness of materials with air pressure increasing. Blasting with zirblast led to a more significant decrease of roughness parameters compared with surfaces blasted with sharp-edged white aluminum. Different shapes of abrasives caused characteristic surface morphology.

  9. Study on acoustical properties of sintered bronze porous material for transient exhaust noise of pneumatic system

    Science.gov (United States)

    Li, Jingxiang; Zhao, Shengdun; Ishihara, Kunihiko

    2013-05-01

    A novel approach is presented to study the acoustical properties of sintered bronze material, especially used to suppress the transient noise generated by the pneumatic exhaust of pneumatic friction clutch and brake (PFC/B) systems. The transient exhaust noise is impulsive and harmful due to the large sound pressure level (SPL) that has high-frequency. In this paper, the exhaust noise is related to the transient impulsive exhaust, which is described by a one-dimensional aerodynamic model combining with a pressure drop expression of the Ergun equation. A relation of flow parameters and sound source is set up. Additionally, the piston acoustic source approximation of sintered bronze silencer with cylindrical geometry is presented to predict SPL spectrum at a far-field observation point. A semi-phenomenological model is introduced to analyze the sound propagation and reduction in the sintered bronze materials assumed as an equivalent fluid with rigid frame. Experiment results under different initial cylinder pressures are shown to corroborate the validity of the proposed aerodynamic model. In addition, the calculated sound pressures according to the equivalent sound source are compared with the measured noise signals both in time-domain and frequency-domain. Influences of porosity of the sintered bronze material are also discussed.

  10. An investigation of the tribological and nano-scratch behaviors of Fe–Ni–Cr alloy sintered by direct metal laser sintering

    International Nuclear Information System (INIS)

    Amanov, Auezhan; Sasaki, Shinya; Cho, In-Sik; Suzuki, Yusuke; Kim, Hae-Jin; Kim, Dae-Eun

    2013-01-01

    Highlights: ► Fe–Ni–Cr alloy was sintered by direct metal laser sintering. ► HFUP technique was able to produce a hardened surface layer. ► HFUP-treated specimen showed better tribological and scratch properties. - Abstract: In this work, the friction and wear behavior of Fe–Ni–Cr alloy specimens processed by direct metal laser sintering (DMLS) method was investigated by using a ball-on-disk reciprocating tribotester sliding against a hardened steel ball under dry sliding conditions. After DMLS, the specimens were further treated by hot isostatic pressing (HIP) in order to reduce the porosity and to increase the density. Subsequently, one of the specimens was subjected to high-frequency ultrasonic peening (HFUP) with the aim to enhance the tribological properties. The microstructural characterization was conducted using a scanning electron microscope (SEM) and an atomic force microscope (AFM). In addition, nano-scratch tests were carried out on the specimens using a nano-scratch testing (NST) system. The friction and nano-scratch tests results showed that the HFUP-treated specimen led to a reduction in friction coefficient and wear rate, and an increase in resistance to scratch compared to that of the HFUP-free specimen, which may be attributed to the increase in hardness and the formation of corrugated structure

  11. A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering

    Science.gov (United States)

    Chen, Binling; Berretta, Silvia; Evans, Ken; Smith, Kaylie; Ghita, Oana

    2018-01-01

    This paper proposes two methods of preparation of graphene/PEEK powders for Laser Sintering (LS) and investigates their behaviour in relation to their microstructure and their properties. Thin composite films were fabricated in an attempt to replicate the thin layer formation of the powder bed process. Both methods of composite powder preparation (wet and dry) led to enhanced mechanical performance of the composite films at 0.1 and 0.5 wt% graphene nano-platelets (GNP) concentrations. The TEM images show that the GNP act as a nucleation point in crystallisation of PEEK, being at the centre of the spherulites. The hot stage microscopy reveals a 20 s delay in the onset of GNP/PEEK nanocomposite coalescence in comparison with plain PEEK. This is a very important observation for laser sintering, as it will influence the build strategy and specific parameters (e.g. time between layers deposition, multiple exposures). The excellent electrical conductivity properties of graphene were noticeable in the nanocomposite films at concentrations above 1 wt% GNP.

  12. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Lee, Ming-Yih; Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung; Chen, Jyh-Ping

    2014-01-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo

  13. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering

    International Nuclear Information System (INIS)

    Barucca, G.; Santecchia, E.; Majni, G.; Girardin, E.; Bassoli, E.; Denti, L.; Gatto, A.; Iuliano, L.; Moskalewicz, T.; Mengucci, P.

    2015-01-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co–Cr–Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111} γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. - Highlights: • Samples of a Co–Cr–Mo biomedical alloy were produced by direct metal laser sintering. • Hardness values unexpectedly high were attributed to a peculiar microstructure. • Fine lamellae of the ε-phase alternated to the γ-phase were observed for the first time. • A nucleation and growth model for the observed microstructure is proposed

  14. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G., E-mail: g.barucca@univpm.it [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Santecchia, E.; Majni, G. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Girardin, E. [DISCO, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Bassoli, E.; Denti, L.; Gatto, A. [DIMeC, University of Modena and Reggio Emilia, via Vignolese 905/B, Modena 41125 (Italy); Iuliano, L. [DISPEA, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Moskalewicz, T. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Mengucci, P. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy)

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co–Cr–Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}{sub γ} planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. - Highlights: • Samples of a Co–Cr–Mo biomedical alloy were produced by direct metal laser sintering. • Hardness values unexpectedly high were attributed to a peculiar microstructure. • Fine lamellae of the ε-phase alternated to the γ-phase were observed for the first time. • A nucleation and growth model for the observed microstructure is proposed.

  15. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Lee, Ming-Yih [Graduate Institute of Medical Mechatronics, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung [Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan, ROC (China)

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo.

  16. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe{sub 2}O{sub 3}, 20–40 nm) and aluminum oxide (Al{sub 2}O{sub 3}, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2} with a concentration of 5 and 7 wt% of Fe{sub 2}O{sub 3} presented the MgFe{sub 2}O{sub 4} spinel-type phase. With the addition of Al{sub 2}O{sub 3} nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2}, there were the formations of MgAl{sub 2}O{sub 4} spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed.

  17. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    Science.gov (United States)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  18. Strength behaviour of sintered steel from the view of design-relevant material data

    International Nuclear Information System (INIS)

    Sonsino, C.M.; Esper, F.J.; Leuze, G.

    1982-01-01

    A reliable design of sintered components and an aimed material's selection requires the knowledge of designrelevant material data as Cyclic stress-strain-curves, crack propagation and fracture toughness properties as well as statistically evaluated S-N-curves, because conventional material data as tensile strength, monotonic yield strength, elongation, area reduction and impact strength can lead to a false estimation of the material's fatigue behaviour. For this reason the powder metallurgical industry began to determine design-relevant material data on the example of the porous Fe-Cu-C- and Fe-Cu-Ni-alloys. The fatigue tests with notched specimen and different modes of loading show that porous sintered parts having mechanical notches are less sensitive to external notches than wrought steel, because crack-propagation is delayed by pores. The possibility to manufacture cyclic hardening alloys, their relative notch-insensitivity and with wrought steel comparable scatter of fatigue properties show the importance of sintered alloys as alternative materials. (orig.) [de

  19. Shearography in laser material processing

    International Nuclear Information System (INIS)

    Gualini, M.M.S.; Steinbichler, H.

    1999-01-01

    Several optical methods have been presented in recent years to monitor and assist laser material process (welding, cutting, transformation hardening), from laser triangulation and laser 3D scanning to speckle. We propose the alternative use of shearography for surface investigation. Shearography is, basically, the first derivative of the interference intensities of holograms. This enables to perform real time measurements with high accuracy but less constraint to control environmental vibrations. We propose an optical head that may operate as a shearographic system or as a Twymann-Green interferometer, accordingly to certain contour conditions. We discuss some theoretical aspects and possible practical applications of the device along with some preliminary experimental results. (author)

  20. Improving solar radiation absorbance of high refractory sintered ceramics by fs Ti:sapphire laser surface treatment

    International Nuclear Information System (INIS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Bellucci, A.; Lettino, A.; Trucchi, D.M.

    2014-01-01

    Samples of high refractory pressure-less sintered carbide ceramics (HfC based), polished by mechanical grinding to a surface roughness R a ∼ 40 nm, have been surface treated, in vacuum, by fs Ti:sapphire laser, operating at 800 nm wavelength, 1000 Hz repetition rate and 100 fs pulse duration, at fluence varying in the range (∼6–25 J/cm 2 ), to optimize their solar radiation absorbance, in such a way that they could operate as absorber material in an innovative conversion module of solar radiation into electrical energy. To this aim, an area of approximately 9.6 cm 2 was treated by the fs laser beam. The beam strikes perpendicular to the sample, placed on a stage set in motion in the x, y, z-directions, thus generating a scanning pattern of parallel lines. The experimental conditions of laser treatment (energy fluence, speed of transition, overlapping and lateral step distance) were varied in order to optimize the radiation absorption properties of the patterned surface. In laser treated samples the absorption value is increased by about 15%, compared to the original untreated surface, up to a value of final absorbance of about 95%, all over the range of solar radiation spectrum (from UV to IR). The morphological and chemical effects of the treatment have been evaluated by SEM–EDS analysis. At very high fluence, we obtained the characteristic ablation craters and local material decomposition, while at lower fluence (in any case above the threshold) typical periodic nano-structures have been obtained, exploitable for their modified optical properties.

  1. Parameters Influence of CO2 Laser on Cutting Quality of Polymer Materials

    OpenAIRE

    Robert Cep; Sarka Malotova; Marek Pagac; Marek Sadilek; Jiri Lichovnik

    2016-01-01

    The article deals with evaluating of the resulting surface state of the three plastic materials and identification of suitable conditions for laser cutting with CO2 tube. As representative were chosen polypropylene, polymethylmethacrylate and polyamide. When cutting these types of materials it could melt eventually their re-sintering. A suitable combination of parameters is possible to achieve of sufficient quality of the cut. The samples were cut at different feed speed and laser power. Then...

  2. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    International Nuclear Information System (INIS)

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de

  3. ADVANCED CERAMIC MATERIALS FOR DENTAL APPLICATIONS SINTERED BY MICROWAVE HEATING

    OpenAIRE

    Presenda Barrera, Álvaro

    2016-01-01

    [EN] Zirconia has become a widely utilized structural ceramic material with important applications in dentistry due to its superb mechanical properties, biocompatibility, aesthetic characteristics and durability. Zirconia needs to be stabilized in the t-phase to obtain improved mechanical properties such as hardness and fracture toughness. Fully dense yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) materials are normally consolidated through the energy-intensive processing of po...

  4. Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2016-08-01

    Full Text Available As a reaction to the increasing noise pollution, caused by the expansion of airports close to residential areas, porous trailing edges are investigated to reduce the aeroacoustic noise produced by flow around the airframe. Besides mechanical and acoustical investigations of porous materials, the fouling behavior of promising materials is an important aspect to estimate the performance in long-term use. For this study, two sintered fiber felts were selected for a long-term fouling experiment where the development of the flow resistivity and accumulation of dirt was observed. Based on 3D structural characterizations obtained from X-ray tomography of the initial materials, acoustic models (Biot and Johnson–Champoux–Allard in the frame of the transfer matrix method were applied to the sintered fiber felts. Flow resistivity measurements and the measurements of the absorption coefficient in an impedance tube are the basis for a fouling model for sintered fiber felts. The contribution will conclude with recommendations concerning the modeling of pollution processes of porous materials.

  5. Nanoclay/Polymer Composite Powders for Use in Laser Sintering Applications: Effects of Nanoclay Plasma Treatment

    Science.gov (United States)

    Almansoori, Alaa; Majewski, Candice; Rodenburg, Cornelia

    2017-11-01

    Plasma-etched nanoclay-reinforced Polyamide 12 (PA12) powder is prepared with its intended use in selective laser sintering (LS) applications. To replicate the LS process we present a downward heat sintering (DHS) process, carried out in a hot press, to fabricate tensile test specimens from the composite powders. The DHS parameters are optimized through hot stage microscopy, which reveal that the etched clay (EC)-based PA12 (EC/PA12) nanocomposite powder melts at a temperature 2°C higher than that of neat PA12, and 1-3°C lower than that of the nonetched clay-based nanocompsite (NEC/PA12 composite). We show that these temperature differences are critical to successful LS. The distribution of EC and NEC onto PA12 is investigated by scanning electron microscopy (SEM). SEM images show clearly that the plasma treatment prevents the micron-scale aggregation of the nanoclay, resulting in an improved elastic modulus of EC/PA12 when compared with neat PA12 and NEC/PA12. Moreover, the reduction in elongation at break for EC/PA12 is less pronounced than for NEC/PA12.

  6. Superhard MgB sub 2 bulk material prepared by high-pressure sintering

    CERN Document Server

    Ma, H A; Chen, L X; Zhu, P W; Ren, G Z; Guo, W L; Fu, X Q; Zou Guang Tian; Ren, Z A; Che, G C; Zhao, Z X

    2002-01-01

    Superhard MgB sub 2 bulk material with a golden metallic shine was synthesized by high-pressure sintering for 8 h at 5.5 GPa and different temperatures. Appropriate pressure and temperature conditions for synthesizing polycrystalline MgB sub 2 with high hardness were investigated. The samples were characterized by means of atomic force microscopy and x-ray diffraction. The Vickers hardness, bulk density, and electrical resistivity were measured at room temperature.

  7. Femtosecond laser materials processing

    International Nuclear Information System (INIS)

    Stuart, B.C.

    1997-01-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas

  8. Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Rafaela do Vale; Salmoria, Gean Vitor; Moura, Marcela Oliveira Caldeira de; Aragones, Aguedo; Fredel, Marcio Celso, E-mail: rafaelavpereira@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2014-08-15

    Scaffolds of PDLLA were produced to be implemented in maxillofacial surgeries inducing bone repair and regeneration. To prepare these scaffolds, bioglass (BG58S) was synthesized by sol-gel method, in order to be applied as osteoconductive dispersed particles in PDLLA matrix. Once presenting greater facility on parts fabrication, this polymeric matrix enables complex geometries production besides presenting compatible degradation rate for scaffold absorption and bone regeneration. Scaffolds production was performed by selective laser sintering in order to obtain tailored-made parts. FTIR and XRD analyses were carried out to observe the composition and evaluate the presence of crystallized phases in bioglass, obtaining Wollastonite. SEM was used to observe the BG particle distribution in PDLLA matrix and flexural test was performed to evaluate the composite mechanical properties. Results showed that was possible to obtain pieces using SLS method and with addition of 10%wt BG to polymeric matrix, flexural modulus and strength increased regarding to pure polymer. (author)

  9. On Surface Losses in Direct Metal Laser Sintering Printed Millimeter and Submillimeter Waveguides

    Science.gov (United States)

    Holmberg, Max; Dancila, Dragos; Rydberg, Anders; Hjörvarsson, Björgvin; Jansson, Ulf; Marattukalam, Jithin James; Johansson, Niklas; Andersson, Joakim

    2018-06-01

    Different lengths of WR3 (220-330 GHz) and WR10 (75-110 GHz) waveguides are fabricated through direct metal laser sintering (DMLS). The losses in these waveguides are measured and modelled using the Huray surface roughness model. The losses in WR3 are around 0.3 dB/mm and in WR10 0.05 dB/mm. The Huray equation model is accounting relatively good for the attenuation in the WR10 waveguide but deviates more in the WR3 waveguide. The model is compared to finite element simulations of the losses assuming an approximate surface structure similar to the resulting one from the DMLS process.

  10. Augmenting the osseointegration of endoprostheses using laser-sintered porous collars: an in vivo study.

    Science.gov (United States)

    Mumith, A; Coathup, M; Chimutengwende-Gordon, M; Aston, W; Briggs, T; Blunn, G

    2017-02-01

    Massive endoprostheses rely on extra-cortical bone bridging (ECBB) to enhance fixation. The aim of this study was to investigate the role of selective laser sintered (SLS) porous collars in augmenting the osseointegration of these prostheses. The two novel designs of porous SLS collars, one with small pores (Ø700 μm, SP) and one with large pores (Ø1500 μm, LP), were compared in an ovine tibial diaphyseal model. Osseointegration of these collars was compared with that of a clinically used solid, grooved design (G). At six months post-operatively, the ovine tibias were retrieved and underwent radiological and histological analysis. Porous collars provided a significantly greater surface (p direct ingrowth of more bone and are better than current designs which rely on surface ongrowth and ECBB. Cite this article: Bone Joint J 2017;99-B:276-82. ©2017 The British Editorial Society of Bone & Joint Surgery.

  11. The Use of 3D Metal Printing (Direct Metal Laser Sintering) in Removable Prosthodontics.

    Science.gov (United States)

    Laverty, Dominic P; Thomas, Matthew B M; Clark, Paul; Addy, Liam D

    2016-11-01

    The use of 3D printing is expanding and it is envisaged that it will have an increasing presence within dentistry. Having an appreciation and understanding of such technology is therefore paramount. It is currently used to produce a variety of dental objects/prostheses. This paper briefly looks at 3D printing in dentistry and specifically describes the use of the direct metal laser sintering 3D printing technique in the production of cobalt chromium removable prosthesis frameworks. Clinical relevance: Understanding the different technologies that can and are being used within the dental field is important, particularly as it is a rapidly changing field. Having an understanding of such technologies will allow practitioners to utilize such technologies appropriately in the management of their patients.

  12. Properties of millimetre wave sintered and oxygenated YBa2Cu3Ox bulk material

    International Nuclear Information System (INIS)

    Hunyar, C.

    1999-12-01

    High temperature superconductors are ceramic materials whose properties strongly depend on the techniques used for their production. The successful use of microwaves for the sintering of other oxidic ceramics suggests the examination of the advantages and disadvantages of that production technique for superconductors. For this purpose pellets of commercially available YBa 2 Cu 3 O x powder from the Solvay company were pressed and sintered by millimetre wave heating (30 GHz, generated in a gyrotron). In various experiments the sintering temperatures were varied between 920 C and 990 C, and the holding times between 15 min and 240 min. The densities of the pellets were measured by the Archimedes method and the material structure was examined with an optical microscope. A strong densification from 86 to 93% of theoretical density could be observed within 30 min at a holding temperature of 960 C. With sintering temperatures above 960 C no significant increase in density occurred. At 950 C, only minor grain growth could be observed, which increased up to 960 C temperature. At higher temperatures a mixture of small grains and crystallites of about 150 μm size established itself. CuO already present in the original powder started to melt along the grain boundaries where it acts as a limiting factor for grain growth. With millimetre wave sintering the same material densities could be achieved in less than one third of the time needed for conventional sintering processes. In addition the effects of millimetre wave heating on the oxygen diffusion in YBCO were investigated with several pairs of identical samples. The pairs were deoxygenated and subsequently oxygenated in an atmosphere of pure O 2 in a conventional tube furnace and by millimetre wave heating respectively. To compare the oxygen concentration of the samples, their specific surface resistance at room temperature, which correlates with the oxygen content, was measured in a cylindrical copper resonator with

  13. Comparative Analysis of Properties and Microstructure of the Plastically Deformed Alloy Inconel®718, Manufactured by Plastic Working and Direct Metal Laser Sintering

    Directory of Open Access Journals (Sweden)

    Żaba K.

    2016-03-01

    Full Text Available Nickel superalloys as Inconel® are materials widely used in the aerospace industry among others for diffusers, combustion chamber, shells of gas generators and other. In most cases, manufacturing process of those parts are used metal strips, produced by conventional plastic processing techniques, and thus by hot or cold rolling. An alternative technology allowing for manufacturing components for jet engines is the technique of 3D printing (additive manufacturing, and most of all Direct Metal Laser Sintering, which is one of the latest achievement in field of additive technologies.

  14. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    Energy Technology Data Exchange (ETDEWEB)

    Tyrpekl, V., E-mail: vaclav.tyrpekl@ec.europa.eu, E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.; Köpp, F.; Cologna, M.; Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, Praha 1, 115 19 (Czech Republic)

    2015-02-15

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. The facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.

  15. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder

    Science.gov (United States)

    Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge

    2018-01-01

    Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.

  16. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Hola, Marketa; Otruba, Vitezslav; Kanicky, Viktor

    2006-01-01

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm 3 ) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between ± 3% and ± 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed. The

  17. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Otruba, Vitezslav [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Kanicky, Viktor [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic)]. E-mail: viktork@chemi.muni.cz

    2006-05-15

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm{sup 3}) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between {+-} 3% and {+-} 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed

  18. Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique

    Directory of Open Access Journals (Sweden)

    Chmielewski Marcin

    2017-01-01

    Full Text Available The presented paper investigates the relationship between the microstructure and thermal properties of copper-silicon carbide composites obtained through hot pressing (HP and spark plasma sintering (SPS techniques. The microstructural analysis showed a better densification in the case of composites sintered in the SPS process. TEM investigations revealed the presence of silicon in the area of metallic matrix in the region close to metal-ceramic boundary. It is the product of silicon dissolving process in copper occurring at an elevated temperature. The Cu-SiC interface is significantly defected in composites obtained through the hot pressing method, which has a major influence on the thermal conductivity of materials.

  19. Study on the Characteristics of Walnut Shell/Co-PES/Co-PA Powder Produced by Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Yueqiang Yu

    2018-05-01

    Full Text Available Agricultural and forestry wastes are used as materials for selective laser sintering (SLS to alleviate resource shortage, reduce the pollution of the environment, lower the cost of materials, and improve the accuracy of parts produced by SLS. However, the mechanical properties of wood–plastic parts are poor, and thus they cannot be applied widely. In order to improve the mechanical properties of wood–plastic parts, a new type of walnut shell polymer composite (WSPC was prepared by a polymer mixing method and was used to produce parts via SLS. Additionally, the dimensional accuracy, morphologies, density, and mechanical properties of the WSPC parts were studied. The results showed that the addition of a small amount of copolyamide (Co-PA powder could effectively improve the mechanical properties and decrease the density of the WSPC parts. By increasing the amount of Co-PA powder and decreasing that of copolyester (Co-PES powder, the mechanical properties first increased, then decreased, and finally increased again; in addition, the density first decreased then increased. By increasing the preheating temperature, the mechanical properties and density of the WSPC parts were enhanced.

  20. Processing of Polysulfone to Free Flowing Powder by Mechanical Milling and Spray Drying Techniques for Use in Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-04-01

    Full Text Available Polysulfone (PSU has been processed into powder form by ball milling, rotor milling, and spray drying technique in an attempt to produce new materials for Selective Laser Sintering purposes. Both rotor milling and spray drying were adept to make spherical particles that can be used for this aim. Processing PSU pellets by rotor milling in a three-step process resulted in particles of 51.8 μm mean diameter, whereas spray drying could only manage a mean diameter of 26.1 μm. The resulting powders were characterized using Differential Scanning Calorimetry (DSC, Gel Permeation Chromatography (GPC and X-ray Diffraction measurements (XRD. DSC measurements revealed an influence of all processing techniques on the thermal behavior of the material. Glass transitions remained unaffected by spray drying and rotor milling, yet a clear shift was observed for ball milling, along with a large endothermic peak in the high temperature region. This was ascribed to the imparting of an orientation into the polymer chains due to the processing method and was confirmed by XRD measurements. Of all processed powder samples, the ball milled sample was unable to dissolve for GPC measurements, suggesting degradation by chain scission and subsequent crosslinking. Spray drying and rotor milling did not cause significant degradation.

  1. Novel materials for laser refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  2. Morphology, thermoelectric properties and wet-chemical doping of laser-sintered germanium nanoparticles

    International Nuclear Information System (INIS)

    Stoib, Benedikt; Langmann, Tim; Matich, Sonja; Sachsenhauser, Matthias; Stutzmann, Martin; Brandt, Martin S.; Petermann, Nils; Wiggers, Hartmut

    2013-01-01

    Porous, highly doped semiconductors are potential candidates for thermoelectric energy conversion elements. We report on the fabrication of thin films of Ge via short-pulse laser-sintering of Ge nanoparticles (NPs) in vacuum and study the macroporous morphology of the samples by secondary electron microscopy (SEM) imaging. The temperature dependence of the electrical conductivity and the Seebeck coefficient of undoped Ge is discussed in conjunction with the formation of a defect band near the valence band. We further introduce a versatile method of doping the resulting films with a variety of common dopant elements in group-IV semiconductors by using a liquid containing the dopant atoms. This method is fully compatible with laser-direct writing and suited to fabricate small scale thermoelectric generators. The incorporation of the dopants is verified by X-ray photoelectron spectroscopy (XPS) and their electrical activation is studied by conductivity and thermopower measurements. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Material Property Measurement in Hostile Environments using Laser Acoustics

    International Nuclear Information System (INIS)

    Ken L. Telschow

    2004-01-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods-it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100's of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for laser

  4. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com [Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura 799055 (India); Bandyopadhyay, Kaushik; Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.

  5. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Bandyopadhyay, Kaushik; Saha, Partha

    2014-01-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO 2 and B 4 C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al 2 O 3 , TiC, and TiB 2 were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al 2 O 3 , TiC, and TiB 2 were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB 2 and Al 2 O 3 in the composite

  6. Laser applications in materials processing

    International Nuclear Information System (INIS)

    Ready, J.F.

    1980-01-01

    The seminar focused on laser annealing of semiconductors, laser processing of semiconductor devices and formation of coatings and powders, surface modification with lasers, and specialized laser processing methods. Papers were presented on the theoretical analysis of thermal and mass transport during laser annealing, applications of scanning continuous-wave and pulsed lasers in silicon technology, laser techniques in photovoltaic applications, and the synthesis of ceramic powders from laser-heated gas-phase reactants. Other papers included: reflectance changes of metals during laser irradiation, surface-alloying using high-power continuous lasers, laser growth of silicon ribbon, and commercial laser-shock processes

  7. Influence of reinforcement weight fraction on microstructure and properties of submicron WC-Co{sub p}/Cu bulk MMCs prepared by direct laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)]. E-mail: dongdonggu@hotmail.com; Shen, Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016 Nanjing (China)]. E-mail: yifushen@nuaa.edu.cn

    2007-04-04

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, exhibits a great potential for fabricating complex shaped bulk metal matrix composites (MMCs). In the present work, the submicron WC-10% Co particulate reinforced Cu matrix composites were prepared using DMLS. The influence of reinforcement content on the sintered densification and the attendant microstructures, e.g. the dispersion homogeneity of the reinforcing particulates and the interfacial bonding ability, was investigated using scanning electron microscopy (SEM), energy disperse X-ray (EDX) spectroscopy, and atomic force microscope (AFM). It shows that using a low reinforcement content of 20 wt.% results in a poor densification with severe balling phenomena, due to a higher average composite coefficient of thermal expansion (CTE) and a superheating of the melt. A heterogeneous microstructure with a significant particulate aggregation is obtained at a high reinforcement content of 40 wt.%, because of a limited liquid formation and the resultant high liquid viscosity and reduced Marangoni effect. Using an optimal reinforcement content of 30 wt.% leads to a uniform distribution of the reinforcing particulates and a compatible interfacial microstructure, so as to obtain a favorable sintered density of 90.3% theoretical density.

  8. Influence of reinforcement weight fraction on microstructure and properties of submicron WC-Cop/Cu bulk MMCs prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu, Dongdong; Shen, Yifu

    2007-01-01

    Direct metal laser sintering (DMLS), due to its flexibility in materials and shapes, exhibits a great potential for fabricating complex shaped bulk metal matrix composites (MMCs). In the present work, the submicron WC-10% Co particulate reinforced Cu matrix composites were prepared using DMLS. The influence of reinforcement content on the sintered densification and the attendant microstructures, e.g. the dispersion homogeneity of the reinforcing particulates and the interfacial bonding ability, was investigated using scanning electron microscopy (SEM), energy disperse X-ray (EDX) spectroscopy, and atomic force microscope (AFM). It shows that using a low reinforcement content of 20 wt.% results in a poor densification with severe balling phenomena, due to a higher average composite coefficient of thermal expansion (CTE) and a superheating of the melt. A heterogeneous microstructure with a significant particulate aggregation is obtained at a high reinforcement content of 40 wt.%, because of a limited liquid formation and the resultant high liquid viscosity and reduced Marangoni effect. Using an optimal reinforcement content of 30 wt.% leads to a uniform distribution of the reinforcing particulates and a compatible interfacial microstructure, so as to obtain a favorable sintered density of 90.3% theoretical density

  9. Comparative study of cytotoxicity of direct metal laser sintered and cast Co-Cr-Mo dental alloy

    Directory of Open Access Journals (Sweden)

    T. Puskar

    2015-07-01

    Full Text Available The presented work investigated the cytotoxicity of direct metal laser sintered (DMLS and cast Co-Cr-Mo (CCM dental alloy. In vitro tests were done on human fibroblast cell line MRC-5. There was no statistically significant difference in the cytotoxic effects of DMLS and CCM alloy specimens. The results of this investigation show good potential of DMLS Co-Cr-Mo alloy for application in dentistry.

  10. Laser-assisted fabrication of materials

    CERN Document Server

    Manna, Indranil

    2013-01-01

    Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on ´Laser assisted Fabrication’ is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.

  11. Maxillary Overdentures Supported by Four Splinted Direct Metal Laser Sintering Implants: A 3-Year Prospective Clinical Study

    Directory of Open Access Journals (Sweden)

    Francesco Mangano

    2014-01-01

    Full Text Available Purpose. Nowadays, the advancements in direct metal laser sintering (DMLS technology allow the fabrication of titanium dental implants. The aim of this study was to evaluate implant survival, complications, and peri-implant marginal bone loss of DMLS implants used to support bar-retained maxillary overdentures. Materials and Methods. Over a 2-year period, 120 implants were placed in the maxilla of 30 patients (18 males, 12 females to support bar-retained maxillary overdentures (ODs. Each OD was supported by 4 implants splinted by a rigid cobalt-chrome bar. At each annual follow-up session, clinical and radiographic parameters were assessed. The outcome measures were implant failure, biological and prosthetic complications, and peri-implant marginal bone loss (distance between the implant shoulder and the first visible bone-to-implant contact, DIB. Results. The 3-year implant survival rate was 97.4% (implant-based and 92.9% (patient-based. Three implants failed. The incidence of biological complication was 3.5% (implant-based and 7.1% (patient-based. The incidence of prosthetic complication was 17.8% (patient-based. No detrimental effects on marginal bone level were evidenced. Conclusions. The use of 4 DMLS titanium implants to support bar-retained maxillary ODs seems to represent a safe and successful procedure. Long-term clinical studies on a larger sample of patients are needed to confirm these results.

  12. An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system.

    Science.gov (United States)

    Kim, Ki-Baek; Kim, Woong-Chul; Kim, Hae-Young; Kim, Ji-Hwan

    2013-07-01

    This in vitro study aimed to evaluate and compare marginal fit of three-unit fixed dental prostheses (FDPs) fabricated using a newly developed direct metal laser sintering (DMLS) system with that of three-unit FDPs by a conventional lost wax technique (LW) method. Ten cobalt-chromium alloy three-unit FDPs using DMLS system and another ten nickel-chromium alloy FDPs using LW method were fabricated. Marginal fit was examined using a light-body silicone. After setting, the silicon film was cut into four parts and the thickness of silicon layer was measured at 160× magnification using a digital microscope to measure absolute marginal discrepancy (AMD), marginal gap (MG) and internal gap (IG). A repeated measure ANOVA for statistical analysis was performed using the SPSS statistical package version 12.0 (α=0.05). The mean values of AMD, MG, and IG were significantly larger in the DMLS group than in the LW group (p0.05). The marginal fit of the DMLS system appeared significantly inferior compared to that of the conventional LW method and slightly larger than the acceptable range. For clinical application further improvement of DMLS system may be required. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Maxillary overdentures supported by four splinted direct metal laser sintering implants: a 3-year prospective clinical study.

    Science.gov (United States)

    Mangano, Francesco; Luongo, Fabrizia; Shibli, Jamil Awad; Anil, Sukumaran; Mangano, Carlo

    2014-01-01

    Purpose. Nowadays, the advancements in direct metal laser sintering (DMLS) technology allow the fabrication of titanium dental implants. The aim of this study was to evaluate implant survival, complications, and peri-implant marginal bone loss of DMLS implants used to support bar-retained maxillary overdentures. Materials and Methods. Over a 2-year period, 120 implants were placed in the maxilla of 30 patients (18 males, 12 females) to support bar-retained maxillary overdentures (ODs). Each OD was supported by 4 implants splinted by a rigid cobalt-chrome bar. At each annual follow-up session, clinical and radiographic parameters were assessed. The outcome measures were implant failure, biological and prosthetic complications, and peri-implant marginal bone loss (distance between the implant shoulder and the first visible bone-to-implant contact, DIB). Results. The 3-year implant survival rate was 97.4% (implant-based) and 92.9% (patient-based). Three implants failed. The incidence of biological complication was 3.5% (implant-based) and 7.1% (patient-based). The incidence of prosthetic complication was 17.8% (patient-based). No detrimental effects on marginal bone level were evidenced. Conclusions. The use of 4 DMLS titanium implants to support bar-retained maxillary ODs seems to represent a safe and successful procedure. Long-term clinical studies on a larger sample of patients are needed to confirm these results.

  14. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system

    Energy Technology Data Exchange (ETDEWEB)

    Shuai Cijun; Gao Chengde; Nie Yi; Hu Huanlong; Zhou Ying [Key Laboratory of Modern Complex Equipment Design and Extreme Manufacturing, Central South University, Ministry of Education, Changsha, 410083 (China); Peng Shuping, E-mail: shuping@csu.edu.cn [Cancer Research Institute, Central South University, Changsha, 410078 (China)

    2011-07-15

    In this study, nano-hydroxypatite (n-HAP) bone scaffolds are prepared by a homemade selective laser sintering (SLS) system based on rapid prototyping (RP) technology. The SLS system consists of a precise three-axis motion platform and a laser with its optical focusing device. The implementation of arbitrary complex movements based on the non-uniform rational B-Spline (NURBS) theory is realized in this system. The effects of the sintering processing parameters on the microstructure of n-HAP are tested with x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The particles of n-HAP grow gradually and tend to become spherical-like from the initial needle-like shape, but still maintain a nanoscale structure at scanning speeds between 200 and 300 mm min{sup -1} when the laser power is 50 W, the light spot diameter 4 mm, and the layer thickness 0.3 mm. In addition, these changes do not result in decomposition of the n-HAP during the sintering process. The results suggest that the newly developed n-HAP scaffolds have the potential to serve as an excellent substrate in bone tissue engineering.

  15. Quasi-static strength and fractography analysis of two dental implants manufactured by direct metal laser sintering.

    Science.gov (United States)

    Gehrke, Sergio Alexandre; Pérez-Díaz, Leticia; Dedavid, Berenice Anina

    2018-01-30

    New manufacturing methods was developed to improve the tissues integration with the titanium alloy pieces. The present in vitro study was to assess the resistance and fracture mode after applied a quasi-static compressive force on the two dental implants manufactured by direct metal laser sintering. Twenty dental implants manufactured by direct metal laser sintering, using titanium alloy (Ti-6Al-4V) granules in two designs (n = 10 per group): Conventional dental implant (group Imp1) two-piece implant design, where the surgical implant and prosthetic abutment are two separate components and, the one-piece implant (group Imp2), where the surgical implant and prosthetic abutment are one integral piece. All samples were subjected to quasi-static loading at a 30° angle to the implant axis in a universal testing machine. The mean fracture strengths were 1269.2 ± 128.8 N for the group Imp1 and, 1259.5 ± 115.1 N for the group Imp2, without statistical differences (P = .8722). In both groups, the fracture surface does not present crack between the compact core and the superficial (less dense and porous) part of the implants. Based on the measured resistance data for the two implant models manufactured by direct metal laser sintering tested in the present study, we can suggest that they have adequate capacity to withstand the masticatory loads. © 2018 Wiley Periodicals, Inc.

  16. Comparative Evaluation of Effects of Laser Modalities on Shear Bond Strengths of Veneering Porcelains to Laser Sintered Substructures: An In Vitro Study.

    Science.gov (United States)

    Gorler, Oguzhan; Saygin, Aysegul Goze

    2017-06-01

    Laser modalities and direct metal laser sintering (DMLS) have a potential to enhance micromechanical bonding between dental super- and infrastructures. However, the effect of different manufacturing methods on the metal-ceramic bond strength needs further evaluation. We investigated the effect of surface treatment with Er:YAG, Nd:YAG, and Ho:YAG lasers on the shear bond strength (SBS) of high-fusion dental porcelains (Vita and G-Ceram) to infrastructures prepared with DMLS in vitro settings. Study specimens (n = 128) were randomly divided into study subsets (n = 8), considering treatment types applied on the surface of infrastructures, including sandblasting and selected laser modalities; infrastructure types as direct laser sintered (DLS) and Ni-Cr based; and superstructure porcelains as Vita and G-Ceram. The SBS test was performed to assess the effectiveness of surface modifications that were also examined with a stereo microscope. Considering laser procedure types, the highest SBS values were obtained by Er:YAG laser, followed by, with a decreasing efficiency, Ho:YAG laser and sandblasting procedures, and Nd:YAG laser procedure (p laser decreases the bonding of Vita and G-Ceram in all the infrastructures compared with sandblasting. Considering porcelains, the highest SBS values were obtained by Vita (p laser procedures caused surface irregularities as revealed by the stereo microscopic examination. In current experimental settings, Er:YAG laser applied to DLS infrastructure veneered with Vita porcelain increases bonding strength more distinctly, and Nd:YAG laser applied to Ni-Cr-based infrastructure veneered with G-Ceram porcelain alters bonding strength unfavorably.

  17. Laser sintering fabrication of three-dimensional tissue engineering scaffolds with a flow channel network.

    Science.gov (United States)

    Niino, T; Hamajima, D; Montagne, K; Oizumi, S; Naruke, H; Huang, H; Sakai, Y; Kinoshita, H; Fujii, T

    2011-09-01

    The fabrication of tissue engineering scaffolds for the reconstruction of highly oxygen-dependent inner organs is discussed. An additive manufacturing technology known as selective laser sintering was employed to fabricate a highly porous scaffold with an embedded flow channel network. A porogen leaching system was used to obtain high porosity. A prototype was developed using the biodegradable plastic polycaprolactone and sodium chloride as the porogen. A high porosity of 90% was successfully obtained. Micro x-ray CT observation was carried out to confirm that channels with a diameter of approximately 1 mm were generated without clogging. The amount of residual salt was 930 µg while the overall volume of the scaffold was 13 cm(3), and it was confirmed that the toxicity of the salt was negligible. The hydrophilization of the scaffold to improve cell adhesion on the scaffold is also discussed. Oxygen plasma ashing and hydrolysis with sodium hydroxide, typically employed to improve the hydrophilicity of plastic surfaces, were tested. The improvement of hydrophilicity was confirmed by an increase in water retention by the porous scaffold from 180% to 500%.

  18. Combined Treatment with Laser Sintering and Zirconium: A Case Report of Dentinogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Simel Ayyildiz

    2013-01-01

    Full Text Available Osteogenesis imperfecta (OI is a heterogeneous disorder of connective tissue that manifests mainly as skeletal deformity and bone fragility. Dentinogenesis imperfecta (DI is sometimes an accompanying symptom of OI. The treatment protocol of these patients varies according to the clinical appearance. The case report here describes complete mouth rehabilitation of an 18-year-old male patient with OI and DI using direct metal laser sintering (DMLS technique of metal-ceramic restorations and zirconium all-ceramic crowns. DMLS is an additive metal fabrication technology that is simpler, more precise, and healthier than conventional manufacturing and can be remarkably cost effective. Moreover, the technique affords highly accurate production of fixed partial dentures with ideal marginal fit and excellent mechanical properties. The patient was treated using a multidisciplinary strategy that focused on controlling caries, protecting teeth from further wear, obtaining an appropriate vertical dimension, and providing soft tissue support to return the facial profile to a normal appearance using new technology in the field of prosthetics.

  19. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering.

    Science.gov (United States)

    Barucca, G; Santecchia, E; Majni, G; Girardin, E; Bassoli, E; Denti, L; Gatto, A; Iuliano, L; Moskalewicz, T; Mengucci, P

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co-Cr-Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Combined treatment with laser sintering and zirconium: a case report of dentinogenesis imperfecta.

    Science.gov (United States)

    Ayyildiz, Simel; Sahin, Cem; Akgün, Ozlem Marti; Basak, Feridun

    2013-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous disorder of connective tissue that manifests mainly as skeletal deformity and bone fragility. Dentinogenesis imperfecta (DI) is sometimes an accompanying symptom of OI. The treatment protocol of these patients varies according to the clinical appearance. The case report here describes complete mouth rehabilitation of an 18-year-old male patient with OI and DI using direct metal laser sintering (DMLS) technique of metal-ceramic restorations and zirconium all-ceramic crowns. DMLS is an additive metal fabrication technology that is simpler, more precise, and healthier than conventional manufacturing and can be remarkably cost effective. Moreover, the technique affords highly accurate production of fixed partial dentures with ideal marginal fit and excellent mechanical properties. The patient was treated using a multidisciplinary strategy that focused on controlling caries, protecting teeth from further wear, obtaining an appropriate vertical dimension, and providing soft tissue support to return the facial profile to a normal appearance using new technology in the field of prosthetics.

  1. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  2. Tensile Properties Characterization of AlSi10Mg Parts Produced by Direct Metal Laser Sintering via Nested Effects Modeling

    Directory of Open Access Journals (Sweden)

    Biagio Palumbo

    2017-02-01

    Full Text Available A statistical approach for the characterization of Additive Manufacturing (AM processes is presented in this paper. Design of Experiments (DOE and ANalysis of VAriance (ANOVA, both based on Nested Effects Modeling (NEM technique, are adopted to assess the effect of different laser exposure strategies on physical and mechanical properties of AlSi10Mg parts produced by Direct Metal Laser Sintering (DMLS. Due to the wide industrial interest in AM technologies in many different fields, it is extremely important to ensure high parts performances and productivity. For this aim, the present paper focuses on the evaluation of tensile properties of specimens built with different laser exposure strategies. Two optimal laser parameters settings, in terms of both process quality (part performances and productivity (part build rate, are identified.

  3. Tensile Properties Characterization of AlSi10Mg Parts Produced by Direct Metal Laser Sintering via Nested Effects Modeling.

    Science.gov (United States)

    Palumbo, Biagio; Del Re, Francesco; Martorelli, Massimo; Lanzotti, Antonio; Corrado, Pasquale

    2017-02-08

    A statistical approach for the characterization of Additive Manufacturing (AM) processes is presented in this paper. Design of Experiments (DOE) and ANalysis of VAriance (ANOVA), both based on Nested Effects Modeling (NEM) technique, are adopted to assess the effect of different laser exposure strategies on physical and mechanical properties of AlSi10Mg parts produced by Direct Metal Laser Sintering (DMLS). Due to the wide industrial interest in AM technologies in many different fields, it is extremely important to ensure high parts performances and productivity. For this aim, the present paper focuses on the evaluation of tensile properties of specimens built with different laser exposure strategies. Two optimal laser parameters settings, in terms of both process quality (part performances) and productivity (part build rate), are identified.

  4. Materials for spaceborne laser systems

    International Nuclear Information System (INIS)

    Gusarov, A.

    2006-01-01

    Advanced laser systems are attracting a growing interest for space missions, in particular for LIDAR (LIght Detection And Ranging) applications. An important issue for the LIDARs is the very strict requirements on the optical performance and more specifically the need for a high optical output power combined with a nearly perfect output beam quality. These features are traditionally in conflict with each other. Thermally induced phase distortions indeed corrupt the beam quality of high-power solid-state lasers and it becomes increasingly difficult to maintain a good beam quality while increasing the output power. A possible solution of the problem is to use the optical phase conjugation, which provides a method to dynamically correct for those aberrations. A process by which phase-conjugated waves can be generated is the SBS (stimulated Brillouin scattering). SBS mirrors commonly used in terrestrial application are based on liquids or gases, which are not 'space-friendly' and often toxic. The solid-state alternative seems the most appropriate for space. Such PCMs (Phase-Conjugating Mirrors) have been the subject of many research efforts in recent years and a significant progress in improving their characteristics has been achieved. However, the issue of space qualification remains open. To address it, the European Space Agency initiated in 2004 the research project named Solid-State Phase Conjugation, Radiation Testing and Evaluation for Core Laser Technologies with the TRT (Thales Research and Technology), France, as the prime contractor, and the CSL (Centre Spatial de Liege) and SCKCEN as the subcontractors. The project is to be completed in 2006. To qualify a PCM for a spaceborne laser system, one has to address a number of specific issues. Such a component must be mechanically rugged to sustain vibrations during the launch phase, provide a low out-gassing to prevent optical surfaces contamination in vacuum, be highly reliable to operate properly without

  5. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.

    Science.gov (United States)

    Shou, Wan; Mahajan, Bikram K; Ludwig, Brandon; Yu, Xiaowei; Staggs, Joshua; Huang, Xian; Pan, Heng

    2017-07-01

    Currently, bioresorbable electronic devices are predominantly fabricated by complex and expensive vacuum-based integrated circuit (IC) processes. Here, a low-cost manufacturing approach for bioresorbable conductors on bioresorbable polymer substrates by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticle is reported. Laser sintering of Zn nanoparticles has been technically difficult due to the surface oxide on nanoparticles. To circumvent the surface oxide, a novel approach is discovered to print and sinter Zn nanoparticle facilitated by evaporation-condensation in confined domains. The printing process can be performed on low-temperature substrates in ambient environment allowing easy integration on a roll-to-roll platform for economical manufacturing of bioresorbable electronics. The fabricated Zn conductors show excellent electrical conductivity (≈1.124 × 10 6 S m -1 ), mechanical durability, and water dissolvability. Successful demonstration of strain gauges confirms the potential application in various environmentally friendly sensors and circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Some applications on laser material processing

    International Nuclear Information System (INIS)

    Oros, C.

    2005-01-01

    An overview of the state-of-the-art in laser material processing for a large types of lasers from IR (CO 2 laser, NdYAG laser) to UV (excimer laser) and different kinds of materials (metals, dielectrics) is given. Laser radiation has found a wide range of applications as machining tool for various kinds of materials processing. The machining geometry, the work piece geometry, the material properties and economic productivity claim for customized systems with special design for beam guiding, shaping and delivery in order to fully utilize the laser radiation for surface processing with optimum efficiency, maximum processing speed and high processing quality. The laser-material interaction involves complex processes of heating, melting, vaporization, ejection of atoms, ions, and molecules, shock waves, plasma initiation and plasma expansion. The interaction is dependent on the laser beam parameters (pulse duration, energy and wavelength), the solid target properties and the surrounding environments condition. Experimental results for laser surface melting and laser ablation are given. Also, assuming the applicability of a one dimensional model for short pulses used, and restricting condition to single-pulse exposure, the temperature rise on the target was calculated taking account of the finite optical absorption depth and pulse duration of the laser

  7. An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials

    Science.gov (United States)

    Catlin, Glenn C.; Tripathi, Rajesh; Nunes, Geoffrey; Lynch, Philip B.; Jones, Howard D.; Schmitt, Devin C.

    2017-03-01

    This paper presents an additive-based approach to the formulation of thermoelectric materials suitable for screen printing. Such printing processes are a likely route to such thermoelectric applications as micro-generators for wireless sensor networks and medical devices, but require the development of materials that can be sintered at ambient pressure and low temperatures. Using a rapid screening process, we identify the eutectic combination of antimony and tellurium as an additive for bismuth-antimony-telluride that enables good thermoelectric performance without a high pressure step. An optimized composite of 15 weight percent Sb7.5Te92.5 in Bi0.5Sb1.5Te3 is scaled up and formulated into a screen-printable paste. Samples fabricated from this paste achieve a thermoelectric figure of merit (ZT) of 0.74 using a maximum processing temperature of 748 K and a total thermal processing budget of 12 K-hours.

  8. Composites of amorphous and nanocrystalline Zr–Cu–Al–Nb bulk materials synthesized by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, P., E-mail: philipp.drescher@uni-rostock.de [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Witte, K. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Yang, B. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Steuer, R.; Kessler, O. [Chair of Materials Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Burkel, E. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Schick, C. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Seitz, H. [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany)

    2016-05-15

    The fabrication of Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} bulk metallic glass composite samples by spark plasma sintering (SPS) process has been successfully realized. The unique characteristics of bulk metallic glasses could lead to the possibility of future applications as new structural and functional materials. The densification of an amorphous Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} powder was realized in a systematic study changing the sintering temperature in the SPS process leading to stable composites characteristic of amorphous and nanocrystalline structures. X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis, transmission electron microscopy (TEM) as well as hardness tests were applied to determine the structural and mechanical properties of the sintered materials. A stable amorphous bulk metallic glass based on Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} with a low fraction of crystallites could be fabricated applying a nominal sintering temperature of 400 °C. Higher sintering temperatures lead to composites with high fractions of nanocrystalline material with porosities below 0.5%.

  9. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  10. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    Directory of Open Access Journals (Sweden)

    S. Kasrani

    Full Text Available Abstract In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 1013 Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9.

  11. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Kasrani, S.; Harabi, A.; Barama, S.-E.; Foughali, L.; Benhassine, M. T., E-mail: souad478@yahoo.fr, E-mail: harabi52@gmail.com, E-mail: sebarama@usa.com, E-mail: foughali_lazhar@yahoo.fr, E-mail: mtb25dz@gmail.com [Ceramics Lab. Mentouri University of Constantine (Algeria); Aldhayan, D.M., E-mail: aldhayan@ksu.edu.sa [Chemistry Department, Riyadh, King Saud University (Saudi Arabia)

    2016-10-15

    In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 10{sup 13} Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9. (author)

  12. Sintering and dielectric properties of a technical porcelain prepared from economical natural raw materials

    International Nuclear Information System (INIS)

    Kasrani, S.; Harabi, A.; Barama, S.-E.; Foughali, L.; Benhassine, M. T.; Aldhayan, D.M.

    2016-01-01

    In this study, the production of a technical porcelain, for the ceramic dielectric applications by using economical natural raw materials, was investigated. The basic porcelain composition was selected consisting of 30 wt% kaolin, 45 wt% potash-feldspar and 25 wt% quartz. The obtained phases in the sintered samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy analysis, and scanning electron microscopy images. It has been confirmed by these techniques that the main crystalline phases were quartz and mullite. Dielectric measurements of technical porcelains have been carried out at 1 kHz from room temperature to 200 °C. The dielectric constant, loss factor, dielectric loss tangent, and resistivity of the porcelain sample sintered at 1160 °C were 22-25, 0.32-1.80, 0.006-0.07, and 0.2-9 x 10 13 Ω.cm, respectively. The value of dielectric constant was significantly high when compared to that of conventional porcelains which did not exceed generally 9. (author)

  13. Investigations of dielectric enhancement in (Ta2O5)1-x(TiO2)x ceramics prepared by laser-sintering technique

    International Nuclear Information System (INIS)

    Ji, L.F.; Jiang, Y.J.

    2007-01-01

    The maximum dielectric permittivity of Ti-doped Ta 2 O 5 ceramics may reach 450 by a laser-sintering technique. The aim of this study is to investigate the mechanisms of the dielectric enhancement based on the unique structural and morphological properties of the laser-sintered ceramics. The reason for the dielectric enhancement is due to the crystal structure distortion in the high-temperature phase, the oriented grain growth taking place in a direction deviating from [001] in the laser-sintered ceramics. The concurrent nature of quenching effects, a sharp temperature gradient and mass transfer in liquid phase originated from laser high energy irradiation with strict directivity leads to the structural and morphological properties. (orig.)

  14. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Chen, Jyh-Ping; Shyu, Victor Bong-Hang; Lee, Ming-Yih

    2014-01-01

    Selective laser sintering (SLS), an additive manufacturing (AM) technology, can be used to produce tissue engineering scaffolds with pre-designed macro and micro features based on computer-aided design models. An in-house SLS machine was built and 3D poly-ε-caprolactone (PCL) scaffolds were manufactured using a layer-by-layer design of scaffold struts with varying orientations (0°/45°/0°/45°, 0°/90°/0°/90°, 0°/45°/90°/135°), producing scaffolds with pores of different shapes and distribution. To better enhance the scaffold properties, chondrocytes were seeded in collagen gel and loaded in scaffolds for cartilage tissue engineering. Gel uptake and dynamic mechanical analysis demonstrated the better suitability of the 0°/90°/0°/90° scaffolds for reconstructive cartilage tissue engineering purposes. Chondrocytes were then seeded onto the 0°/90°/0°/90° scaffolds in collagen I hydrogel (PCL/COL1) and compared to medium-suspended cells in terms of their cartilage-like tissue engineering parameters. PCL/COL1 allowed better cell proliferation when compared to PCL or two-dimensional tissue culture polystyrene. Scanning electron microscopy and confocal microscopy observations demonstrated a similar trend for extracellular matrix production and cell survival. Glycosaminoglycan and collagen II quantification also demonstrated the superior matrix secretion properties of PCL/COL1 hybrid scaffolds. Collagen-gel-suspended chondrocytes loaded in SLS-manufactured PCL scaffolds may provide a means of producing tissue-engineered cartilage with customized shapes and designs via AM technology. (paper)

  15. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  16. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  17. Novel approaches for the in situ study of the sintering of nuclear oxide fuel materials and their surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, Nicolas; Nkou Bouala, Galy Ingrid; Dacheux, Nicolas; Podor, Renaud [Montpellier Univ., Bagnols sur Ceze (France). ICSM - UMR 5257 CEA/CNRS/ENSCM; Lechelle, Jacques [CEA, DNE, DEC, SESC, LLCC, St-Paul lez Durance (France); Martinez, Julien [CEA, DEN, DTEC, SECA, LFC, Bagnols sur Ceze (France)

    2017-07-01

    Sintering is one of the key-points of the processing of ceramic materials. It is then of primary interest for the nuclear fuel cycle, in which it constitutes an important step in the fabrication of either UO{sub 2} or (U,Pu)O{sub 2} pellets used in current PWR reactors. The sintering of actinides oxides not only drives the final density and microstructure of the fuels, but also several characteristics that can impact significantly their behavior in the reactor. Dedicated tools are then needed to monitor the microstructure of such materials and forecast their evolution. In this frame, this paper presents the new potentialities offered by the use of environmental scanning electron microscope at high temperature (HT-ESEM) for the study of nuclear ceramics sintering. First, the results obtained from bulk pellets are detailed, either regarding original fundamental data at the grain level (such as grain boundaries and pores motion), or design of dedicated microstructures through the assessment of grain growth kinetics. Acquisition of sintering maps thanks to the combination of HT-ESEM observations and classical dilatometric measurements are also addressed. In a second part, observations undertaken at the 2-grain scale to monitor the first stage of sintering, dedicated to neck elaboration, are presented, and compared to the results currently provided by numerical models.

  18. Laser processing and analysis of materials

    CERN Document Server

    Duley, W W

    1983-01-01

    It has often been said that the laser is a solution searching for a problem. The rapid development of laser technology over the past dozen years has led to the availability of reliable, industrially rated laser sources with a wide variety of output characteristics. This, in turn, has resulted in new laser applications as the laser becomes a familiar processing and analytical tool. The field of materials science, in particular, has become a fertile one for new laser applications. Laser annealing, alloying, cladding, and heat treating were all but unknown 10 years ago. Today, each is a separate, dynamic field of research activity with many of the early laboratory experiments resulting in the development of new industrial processing techniques using laser technology. Ten years ago, chemical processing was in its infancy awaiting, primarily, the development of reliable tunable laser sources. Now, with tunability over the entire spectrum from the vacuum ultraviolet to the far infrared, photo­ chemistry is undergo...

  19. Subcritical CO{sub 2} sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhamidipati, Manjari; Sridharan, BanuPriya [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Scurto, Aaron M. [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States); Detamore, Michael S., E-mail: detamore@ku.edu [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States)

    2013-12-01

    The aim of this study was to use CO{sub 2} at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage tissue engineering. Porous scaffolds composed of ∼ 200 μm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO{sub 2} sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for 6 weeks. Under osteogenic conditions, the PLGA constructs produced over an order of magnitude more calcium than the PCL constructs, whereas the PCL constructs had far superior mechanical and structural integrity (125 times stiffer than PLGA constructs) at week 6, along with twice the cell content of the PLGA constructs. Chondrogenic cell performance was limited in PLGA constructs, perhaps as a result of the polymer degradation rate being too high. The current study represents the first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds, and has established important thermodynamic differences in sintering between the selected formulations of PLGA and PCL, with the former requiring adjustment of pressure only, and the latter requiring the adjustment of both pressure and temperature. Based on more straightforward sintering conditions and more favorable cell performance, PLGA may be the material of choice for microspheres in a CO{sub 2} sintering application, although a different PLGA formulation with the encapsulation of growth factors, extracellular matrix-derived nanoparticles, and/or buffers in the microspheres may be advantageous for achieving a more superior cell performance than observed here. - Highlights: • The first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds. • Established important thermodynamic differences between sintering PLGA and PCL. • PCL sintering with CO{sub 2} required manipulation of both

  20. Summary of Liquid Oxygen/Hydrogen, Direct Metal Laser Sintering Injector Testing and Evaluation Effort at Marshall Space Flight Center

    Science.gov (United States)

    Barnett, Gregory; Bullard, David B.

    2015-01-01

    The last several years have witnessed a significant advancement in the area of additive manufacturing technology. One area that has seen substantial expansion in application has been laser sintering (or melting) in a powder bed. This technology is often termed 3D printing or various acronyms that may be industry, process, or company specific. Components manufactured via 3D printing have the potential to significantly reduce development and fabrication time and cost. The usefulness of 3D printed components is influenced by several factors such as material properties and surface roughness. This paper details three injectors that were designed, fabricated, and tested in order to evaluate the utility of 3D printed components for rocket engine applications. The three injectors were tested in a hot-fire environment with chamber pressures of approximately 1400 psia. One injector was a 28 element design printed by Directed Manufacturing. The other two injectors were identical 40 element designs printed by Directed Manufacturing and Solid Concepts. All the injectors were swirl-coaxial designs and were subscale versions of a full-scale injector currently in fabrication. The test and evaluation programs for the 28 element and 40 element injectors provided a substantial amount of data that confirms the feasibility of 3D printed parts for future applications. The operating conditions of previously tested, conventionally manufactured injectors were reproduced in the 28 and 40 element programs in order to contrast the performance of each. Overall, the 3D printed injectors demonstrated comparable performance to the conventionally manufactured units. The design features of the aforementioned injectors can readily be implemented in future applications with a high degree of confidence.

  1. The role of La2O3 in direct laser sintering of submicrometre WC-Cop/Cu MMCs

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu

    2008-01-01

    This paper presents a detailed investigation of the influence of rare earth (RE) oxide (La 2 O 3 ) addition on densification and microstructure of direct laser sintered submicrometre WC-Co p /Cu metal matrix composites (MMCs) possessing 50.0 wt% reinforcement (WC-Co). It was found that with increasing La 2 O 3 addition to a suitable amount (1.0 wt%), the particulate dispersion was homogenized and the particulate/matrix interfacial bonding was improved. However, with an excessive addition of La 2 O 3 (1.5 wt%), a heterogeneous microstructure consisting of highly accumulated particulates was present. The exact metallurgical roles of RE element in direct laser sintering of particulate reinforced MMCs were addressed. It showed that a proper addition of RE element (i) decreased surface tension of the melt and enhanced solid-liquid wettability; (ii) dragged and/or pinned grain/phase boundaries and resisted grain coarsening and particulate aggregating. However, the balling phenomenon occurred and the activity of RE atoms decreased at an even higher La 2 O 3 content, thereby producing detrimental effects on laser forming ability

  2. Laser sintering of doped strontium aluminate via modified sol-gel for use as a ceramic pigment

    International Nuclear Information System (INIS)

    Soares, F.M. dos S.; Valerio, M.E.G.

    2017-01-01

    Powder of Dy"3"+ co-doped SrAl_2O_4 :Eu"3"+ was produced via proteic sol-gel method, a modified sol-gel route which allows the formation of oxides at lower temperatures than other methods. CO_2 laser sintering was used as a method for heat treatment, effective in reducing trivalent europium ions in doped samples. Thermal analysis of the precursors, performed by TG and DTA, revealed that the crystallization of SrAl_2O_4 phase occurred at approximately 1060 °C. X-ray diffraction showed that the samples, before and after sintering, had monoclinic and hexagonal phases formation. DLS technique revealed the presence of nanosized and micrometric particles, and particle agglomerates, confirmed by SEM images. Micrographs of the fracture surface of a sintered pellet revealed a high degree of densification caused by heat treatment. Photoluminescence measurements showed that the samples after synthesis and before heat treatment with laser had reddish emission, composed of characteristic narrow emission lines from Eu"3"+ and more intense emission when the samples were excited at 265 nm. The laser treatment promoted the reduction of Eu"3"+ to Eu"2"+ and this effect was confirmed by the presence of a wide emission band in the green region of the spectrum with a maximum emission obtained after excitation at 350 nm. The luminescent decay time of the thermally treated sample was approximately 100 min. Via XRF measurements of acquired frit and DTA and TG of the frit, pigment and mixtures of both, it was noticed good compatibility in terms of thermal processes, that indicated that the pigment has a potential to be used in ceramic tiles. (author)

  3. Sintering the beaks of the elevator manufactured by direct metal laser sintering (DMLS) process from Co - Cr alloy

    OpenAIRE

    Băilă, D. I.; Doicin, C. V.; Cotruț, C. M.; Ulmeanu, M. E.; Ghionea, I. G.; Tarbă, C. I.

    2016-01-01

    In this paper, two prototypes of dental elevator was made by DMLS process, using a super alloy powder of Co – Cr (ST2724G), with Phenix Systems machine, type PXS & PXM Dental, one with a threaded tail and another with a cylindrical tail. The quality obtained for the elevator is better, thanks to the material used and to the manufacturing process. For the elevator prototypes there were performed some Finite element method (FEM) analysis to identify stress locations and displacements. It was re...

  4. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering

    International Nuclear Information System (INIS)

    Liu, Defu; Zhuang, Jingyu; Shuai, Cijun; Peng, Shuping

    2013-01-01

    To improve the mechanical properties of a scaffold fabricated via selective laser sintering (SLS), a small amount (0.5–3 wt%) of poly-l-lactic acid (PLLA) is added to the β-tricalcium phosphate (β-TCP) powder. The fracture toughness of the scaffold prepared with the mixture powder containing 1 wt% PLLA increases by 18.18% and the compressive strength increases by 4.45% compared to the scaffold prepared from the β-TCP powder. The strengthening and toughening is related to the enhancement of β-TCP sintering characteristics via introducing a transient liquid phase in SLS. Moreover, the microcracks caused by the volume expansion due to the β–α phase transformation of TCP are reduced because of the PLLA inhibition function on the phase transformation. However, PLLA additive above 1 wt% would lead to a PLLA residue which will decrease the mechanical properties. The experimental results show that PLLA is an effective sintering aid to improve the mechanical properties of a TCP scaffold. (paper)

  5. Modelling of Mechanical Behavior at High Strain Rate of Ti-6al-4v Manufactured By Means of Direct Metal Laser Sintering Technique

    Science.gov (United States)

    Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone

    2017-06-01

    In this work, the mechanical behavior of Ti-6Al-4V obtained by additive manufacturing technique was investigated, also considering the build direction. Dog-bone shaped specimens and Taylor cylinders were machined from rods manufactured by means of the EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technique. Tensile tests were performed at strain rate ranging from 5E-4 s-1 to 1000 s-1 using an Instron electromechanical machine for quasistatic tests and a Direct-Tension Split Hopkinson Bar for dynamic tests. The mechanical strength of the material was described by a Johnson-Cook model modified to account for stress saturation occurring at high strain. Taylor cylinder tests and their corresponding numerical simulations were carried out in order to validate the constitutive model under a complex deformation path, high strain rates, and high temperatures.

  6. Sintering the beaks of the elevator manufactured by direct metal laser sintering (DMLS process from Co - Cr alloy

    Directory of Open Access Journals (Sweden)

    D. I. Băilă

    2016-10-01

    Full Text Available In this paper, two prototypes of dental elevator was made by DMLS process, using a super alloy powder of Co – Cr (ST2724G, with Phenix Systems machine, type PXS & PXM Dental, one with a threaded tail and another with a cylindrical tail. The quality obtained for the elevator is better, thanks to the material used and to the manufacturing process. For the elevator prototypes there were performed some Finite element method (FEM analysis to identify stress locations and displacements. It was realized corrosion test in artificial saliva Fusayama Meyer (pH 5,5 at temperature of 37 ± 1 °C for 24 hours and remarks the importance of post treatment after DMLS process to obtain a better corrosion resistance in vitro.

  7. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  8. Development of laser materials processing and laser metrology techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Chung, Chin Man; Kim, Jeong Mook; Kim, Min Suk; Kim, Kwang Suk; Baik, Sung Hoon; Kim, Seong Ouk; Park, Seung Kyu

    1997-09-01

    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designed and fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs

  9. Laser Cutting of Different Materials

    Directory of Open Access Journals (Sweden)

    Kadir ÇAVDAR

    2013-08-01

    Full Text Available In this paper; in general potential developments and trends of a particular machining field by extensively evaluating present studies of laser beam machining have been discussed. As it is indicated below, technical literatures have been subsumed under five major headlines: Experimental studies, reviews, optimization researches of the cutting parameters, theoretical modelling studies of laser beam cutting and academic studies relating to laser cutting

  10. Development of sintering materials by sea sediments and TiO/sub 2/ for the cleaning teaching

    International Nuclear Information System (INIS)

    Rehman, M.A.; Alam, A.M.A.; Kaneco, S.; Katsumata, H.; Suzuki, T.

    2007-01-01

    A solar decontamination process for water was developed using photocatalysts supported on sea bottom sediments with sodium silicate. The supported catalysts were systematically optimized with respect to TiO/sub 2/ dosages, calcinations temperature and binder dosages. The Young's Modulus value (compressed strength) was found 12.5 kN/mm/sub 2/ of optimized supported catalyst which would not mixed with the water of real samples during the photocatalysis. The composition of the optimized catalyst was selected as sediments 82%, TiO /sub 2/ 15% and Na/sub 2/SiO/sub 3/ 3%, where the sintering temperature was 750degreeC. Humic acid as a model compound was used to evaluate the degradation efficiency of the developed sintering material. The complete mineralization of humic acid was achieved by 40 h sunlight irradiation. About 100 ml of (15 mg/L) of humic acid was successfully degraded with 15 g sintering materials under sunlight irradiation. The solar photocatalytical degradation treatment is simple, easy handling and cheap. Therefore, since the artificial lamp devices, for example Hg-Xe lamp, are particularly expensive in the local and nonexclusive areas, the optimized developed sintering material appears to be very suitable treatment method for humic acid in those area

  11. New laser materials: Final report

    International Nuclear Information System (INIS)

    1986-10-01

    In the Interim Report No. 1, it was reported that the fluorescence lifetime (≥ 750μs) in Nd doped Y(PO 3 ) 3 was longer by a factor of three as compared to YAG. This means potentially three times as much energy storage and consequently more efficient for flashlamp pumping. It also makes diode pumping easier. In addition, since the Y site is octahedrally coordinated, there is a possibility of energy transfer using Cr as the sensitizing element. As suggested by W. Krupke, we decided to explore the trivalent cation metaphosphates systematically. The compounds investigated can be represented by the general formula A(PO 3 ) 3 where A = Y, Lu, In, Sc, GA and Al. The object is to study the fluorescence characteristics of Nd and Cr as well as the effectiveness of energy transfer from Cr to Nd. In addition, we also investigated other possible laser host crystals, notably CaMgSi 2 O 6 (diopside), LaBO 3 and La(BO 2 ) 3 . Results on these materials will also be discussed

  12. Microwave Sintering of Ceramic Materials for Industrial Application Final Report CRADA No. TC-1116-95

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tandon, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Callis, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The goal of this project was to develop the commercial capability in the US to sinter alumina oxide ceramic parts for the semiconductor manufacturing equipment industry. We planned to use the millimeter microwave (30 GHz) sintering system first developed by IAP in Russia.

  13. Application of laser in powder metallurgy

    International Nuclear Information System (INIS)

    Tolochko, N.K.

    1995-01-01

    Modern status of works in the field of laser application in powder metallurgy (powders preparation, sintering, coatings formation, powder materials processing) is considered. The attention is paid to the new promising direction in powder products shape-formation technology - laser layer-by-layer selective powders sintering and bulk sintering of packaged layered profiles produced by laser cutting of powder-based sheet blanks. 67 refs

  14. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme

    Science.gov (United States)

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-01

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  15. Establishing Antibacterial Multilayer Films on the Surface of Direct Metal Laser Sintered Titanium Primed with Phase-Transited Lysozyme.

    Science.gov (United States)

    Guan, Binbin; Wang, Haorong; Xu, Ruiqing; Zheng, Guoying; Yang, Jie; Liu, Zihao; Cao, Man; Wu, Mingyao; Song, Jinhua; Li, Neng; Li, Ting; Cai, Qing; Yang, Xiaoping; Li, Yanqiu; Zhang, Xu

    2016-11-08

    Direct metal laser sintering is a technology that allows the fabrication of titanium (Ti) implants with a functional gradation of porosity and surface roughness according to three-dimensional (3D) computer data. The surface roughness of direct metal laser sintered titanium (DMLS-Ti) implants may provide abundant binding sites for bacteria. Bacterial colonization and subsequent biofilm formation can cause unsatisfactory cell adhesion and implant-related infections. To prevent such infections, a novel phase-transited lysozyme (PTL) was utilized as an initial functional layer to simply and effectively prime DMLS-Ti surfaces for subsequent coating with antibacterial multilayers. The purpose of the present study was to establish a surface with dual biological functionality. The minocycline-loaded polyelectrolyte multilayers of hyaluronic acid (HA) and chitosan (CS) formed via a layer-by-layer (LbL) self-assembly technique on PTL-functionalized DMLS-Ti were designed to inhibit pathogenic microbial infections while allowing the DMLS-Ti itself and the modified coatings to retain acceptable biocompatibility. The experimental results indicate that the DMLS-Ti and the hydrogel treated surfaces can inhibit early bacterial adhesion while completely preserving osteoblast functions. This design is expected to gain considerable interest in the medical field and to have good potential for applications in multifunctional DMLS-Ti implants.

  16. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches.

    Science.gov (United States)

    Ciocca, L; Fantini, M; De Crescenzio, F; Corinaldesi, G; Scotti, R

    2011-11-01

    This study describes a protocol for the direct manufacturing of a customized titanium mesh using CAD-CAM procedures and rapid prototyping to augment maxillary bone and minimize surgery when severe atrophy or post-oncological deformities are present. Titanium mesh and particulate autogenous plus bovine demineralised bone were planned for patient rehabilitation. Bone augmentation planning was performed using the pre-op CT data set in relation to the prosthetic demands, minimizing the bone volume to augment at the minimum necessary for implants. The containment mesh design was used to prototype the 0.6 mm thickness customized titanium mesh, by direct metal laser sintering. The levels of regenerated bone were calculated using the post-op CT data set, through comparison with the pre-op CT data set. The mean vertical height difference of the crestal bone was 2.57 mm, while the mean buccal-palatal dimension of thickness difference was 3.41 mm. All planned implants were positioned after an 8 month healing period using two-step implant surgery, and finally restored with a partial fixed prosthesis. We present a viable and reproducible method to determine the correct bone augmentation prior to implant placement and CAD-CAM to produce a customized direct laser-sintered titanium mesh that can be used for bone regeneration.

  17. Non-equilibrium surface conditions and microstructural changes following pulsed laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC

    International Nuclear Information System (INIS)

    More, K.L.; Davis, R.F.

    1986-01-01

    Pulsed laser irradiation and ion beam mixing of thin Ni overlayers on sintered alpha-SiC have been investigated as potential surface modification techniques for the enhancement of the mechanical properties of the SiC. Each of these surface processing methods are nonequilibrium techniques; materials interactions can be induced at the specimen surface which are not possible with conventional thermal techniques. As a result of the surface modification, the physical properties of the ceramic can be altered under the correct processing conditions. Following laser irradiation using a pulsed ruby or krypton fluoride (KrF) excimer laser, the fracture strength of the SiC was increased by approximately 50 percent and 20 percent, respectively. However, ion-beam mixing of Ni on SiC resulted in no change in fracture strength. Cross-sectional transmission electron microscopy, scanning electron microscopy, secondary ion mass spectroscopy, and Rutherford backscattering techniques, have been used to characterize the extent of mixing between the Ni and SiC as a result of the surface modification and to determine the reason(s) for the observed changes in fracture strength. 19 references

  18. Physics of Laser Materials Processing Theory and Experiment

    CERN Document Server

    Gladush, Gennady G

    2011-01-01

    This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.

  19. Femtosecond laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Balling, Peter; Frislev, Martin Thomas

    2012-01-01

    We report an approach to modeling the interaction between ultrashort laser pulses and dielectric materials. The model includes the excitation of carriers by the laser through strongfield excitation, collisional excitation, and absorption in the plasma consisting of conduction-band electrons formed...

  20. Materials testing using laser energy deposition

    International Nuclear Information System (INIS)

    Wilcox, W.W.; Calder, C.A.

    1977-01-01

    A convenient method for determining the elastic constants of materials has been devised using the energy from a Q-switched neodymium-glass laser. Stress waves are induced in materials having circular rod or rectangular bar geometries by the absorption of energy from the laser. The wave transit times through the material are recorded with a piezoelectric transducer. Both dilatation and shear wave velocities are determined in a single test using an ultrasonic technique and these velocities are used to calculate the elastic constants of the material. A comparison of the constants determined for ten common engineering materials using this method is made with constants derived using the conventional ultrasonic pulse technique and agreement is shown to be about one percent in most cases. Effects of material geometry are discussed and surface damage to the material caused by laser energy absorption is shown

  1. Laser Materials Processing for NASA's Aerospace Structural Materials

    Science.gov (United States)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized

  2. THE EFFECT OFCARBON NANOTUBES ON THE SINTERING BEHAVIOR OF ZIRCONIA BASED MATERIALS

    OpenAIRE

    A. M. Zahedi; H. R. Rezaie; J. Javadpour

    2015-01-01

    Different volume fractions (1.3, 2.6, and 7.6 Vol.%) of carbon nanotubes (CNTs) were dispersed within 8Y-TZP nanopowders. Mixed powder specimens were subsequently processed by spark plasma sintering (SPS) and effects of CNTs on the sintering process of 8Y-TZP/CNT composites was studied. Maintenance of CNTs through the SPS process was confirmed using TEM and Raman Spectroscopy. Studies on the sintering profile of zirconia-CNT composites (Z-xC composites) could, to some extent, clarify the effe...

  3. Furnace for the continuous sintering of pellets of ceramic nuclear fuel material

    International Nuclear Information System (INIS)

    Heyraud, J.

    1977-01-01

    The furnace comprises a hearth for the longitudinal displacement of pellet containers, means for injecting gas at both ends of the furnace, for sucking gas between preheating and sintering zones and for condensing the binder, means for displacing the containers from an introduction lock-chamber to an extraction lock-chamber, a conveyor belt which passes through a glove box and provides a leak-tight connection between the lock-chambers. A station for loading containers with pellet sub-containers prior to sintering and a station for unloading the pellet sub-containers after sintering are juxtaposed within the glove box. 3 claims, 1 drawing figure

  4. Laser application in high temperature materials

    International Nuclear Information System (INIS)

    Ohse, R.W.

    1988-01-01

    The scope and priorities of laser application in materials science and technology are attracting widespread interest. After a brief discussion of the unique capabilities of laser application in the various fields of materials science, main emphasis is given on the three areas of materials processing, surface modification and alloying, and property measurements at high temperatures. In materials processing the operational regimes for surface hardening, drilling, welding and laser glazing are discussed. Surface modifications by laser melting, quenching and surface alloying, the formation of solid solutions, metastable phases and amorphous solids on the basis of rapid solidification, ion implantation and ion beam mixing are considered. The influence of solidification rates and interface velocities on the surface properties are given. The extension of property measurements up to and beyond the melting point of refractory materials into their critical region by a transient-type dynamic laser pulse heating technique is given for the three examples of vapour pressure measurement, density and heat capacity determination in the solid and liquid phases. A new approach, the laser autoclave technique, applying laser heating and x-ray shadow technique under autoclave conditions to acoustically levitated spheres will be presented. (author)

  5. [The effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating].

    Science.gov (United States)

    Liu, Qibin; Zhu, Weidong; Zou, Longjiang; Zheng, Min; Dong, Chuang

    2005-12-01

    The gradient bioceramics coating was prepared on the surface of Ti-6Al-4V alloy by using wide-band laser cladding. And the effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating was studied. The experimental results indicated that in the circumstances of size of laser doze D and scanning velocity V being fixed, with the increasement of power P, the density of microstructure in bioceramics coating gradually degraded; with the increasement of power P, the pore rate of bioceramics gradually became high. While P = 2.3 KW, the bioceramics coating with dense structure and lower pore rate (5.11%) was obtained; while P = 2.9 KW, the bioceramics coating with disappointing density was formed and its pore rate was up to 21.32%. The microhardness of bioceramics coating demonstrated that while P = 2.3 KW, the largest value of microhardness of bioceramics coating was 1100 HV. Under the condition of our research work, the optimum technological parameters for preparing gradient bioceramics coating by wide-band laser cladding are: P = 2.3 KW, V = 145 mm/min, D = 16 mm x 2 mm.

  6. Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials

    National Research Council Canada - National Science Library

    Krell, Andreas; Hutzler, Thomas; Klimke, Jens

    2006-01-01

    Sintered sub-micrometer alumina (alpha-Al2O3) is the hardest transparent armor. However, its trigonal structure gives rise to a strong thickness effect that makes thicker components translucent. Cubic ceramics (no birefringence...

  7. Fast plasma sintering delivers functional graded materials components with macroporous structures and osseointegration properties.

    Science.gov (United States)

    Godoy, R F; Coathup, M J; Blunn, G W; Alves, A L; Robotti, P; Goodship, A E

    2016-04-13

    We explored the osseointegration potential of two macroporous titanium surfaces obtained using fast plasma sintering (FPS): Ti macroporous structures with 400-600 µmØ pores (TiMac400) and 850-1000 µmØ pores (TiMac850). They were compared against two surfaces currently in clinical use: Ti-Growth® and air plasma spray (Ti-Y367). Each surface was tested, once placed over a Ti-alloy and once onto a CoCr bulk substrate. Implants were placed in medial femoral condyles in 24 sheep. Samples were explanted at four and eight weeks after surgery. Push-out loads were measured using a material-testing system. Bone contact and ingrowth were assessed by histomorphometry and SEM and EDX analyses. Histology showed early osseointegration for all the surfaces tested. At 8 weeks, TiMac400, TiMac850 and Ti-Growth® showed deep bone ingrowth and extended colonisation with newly formed bone. The mechanical push-out force was equal in all tested surfaces. Plasma spray surfaces showed greater bone-implant contact and higher level of pores colonisation with new bone than FPS produced surfaces. However, the void pore area in FPS specimens was significantly higher, yet the FPS porous surfaces allowed a deeper osseointegration of bone to implant. FPS manufactured specimens showed similar osseointegration potential to the plasma spray surfaces for orthopaedic implants. FPS is a useful technology for manufacturing macroporous titanium surfaces. Furthermore, its capability to combine two implantable materials, using bulk CoCr with macroporous titanium surfaces, could be of interest as it enables designers to conceive and manufacture innovative components. FPS delivers functional graded materials components with macroporous structures optimised for osseointegration.

  8. Sintering of new SiC-Phosphate composite materials for grinding wheels fabrication

    Directory of Open Access Journals (Sweden)

    Silva, R. F.

    2004-04-01

    Full Text Available The effect of several variables such as molar ratio P2O5/B2O3 (X, temperature and heating cycle on the strength of chemically bonded SiC materials for grinding wheels fabrication was studied. It was shown that the highest compressive strength (52.4 MPa could be obtained using an optimal molar ratio X = 4.5 and a multiple step heating cycle up to a sintering temperature of 800oC. DTA, XRD, SEM and dilatometrical analysis were performed to follow the different stages of the structural development.

    Se estudia el efecto de diferentes variables tales como la razón molar P2O5/B2O3(X, temperatura y ciclo de calentamieno sobre la resistencia de materiales de SiC aglomerados quimicamente para la fabricación de muelas arasivas. Se ha comprobado que la más alta resistencia a la compresión (52,4MPa pueda obtenerse usando una razón molar òptima x= 4,5 y un ciclo de calentamiento en múltiples etapas hasta la temperatura de 800º C. Estudios mediante ATD, DRX, MEB y análisis dilatométricos fueron llevados a cabo para seguir las diferentes etapas del desarrollo microestructura.

  9. Analysis of the conductivity of commercial easy sintering grade 3 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} materials

    Energy Technology Data Exchange (ETDEWEB)

    Badwal, Sukhvinder P.S.; Ciacchi, Fabio T.; Giampietro, Kristine M. [CSIRO, Manufacturing and Infrastructure Technology, Private Bag 33, Clayton South 3169, Victoria (Australia)

    2005-01-14

    Fine grain zirconia-yttria materials are required for enhanced performance in solid oxide fuel cells and related devices and in applications requiring good thermo-mechanical properties. Materials with about 3 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} composition are good electrolyte materials for solid oxide fuel cell, ceramic membrane oxygen separation and a number of related devices because of their superior mechanical properties and ease of fabrication into thin self-supporting structures in comparison with a material in the 8-10 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} composition range. In this study, sintering behaviour, impedance studies, four-probe DC conductivity measurements and microstructure analysis has been performed on various easy sintering grade materials from two commercial powder suppliers. These materials achieve near theoretical density at sintering temperatures as low as 1350-1400C. For direct comparison of the conductivity and impedance behaviour in easy sintering grade materials, several other 3 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} powders were also investigated. The total ionic conductivity at 850C in easy sintering grade materials is comparable with normal-grade commercial materials of similar composition despite a slightly higher grain boundary impedance at lower temperatures (below circa 450C). There were no obvious differences in the grain boundary thickness, calculated from the impedance data, of normal and easy sintering grade materials.

  10. Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials.

    Science.gov (United States)

    Dong, Yingchao; Zhou, Jian-Er; Lin, Bin; Wang, Yongqing; Wang, Songlin; Miao, Lifeng; Lang, Ying; Liu, Xingqin; Meng, Guangyao

    2009-12-15

    Bulk porous mullite supports for ceramic membranes were prepared directly using a mixture of industrial waste fly ash and bauxite by dry-pressing, followed by sintering between 1200 and 1550 degrees C. The effects of sintering temperature on the phase composition and shrinkage percent of porous mullite were studied. The XRD results indicate that secondary mullitization reaction took place above 1200 degrees C, and completed at 1450 degrees C. During sintering, the mixture samples first shrunk, then expanded abnormally between 1326 and 1477 degrees C, and finally shrunk again above 1477 degrees C. This unique volume self-expansion is ascribed to the secondary mullitization reaction between bauxite and fly ash. More especially, the micro-structural variations induced by this self-expansion sintering were verified by SEM, porosity, pore size distribution and nitrogen gas permeation flux. During self-expansion sintering, with increasing temperature, an abnormal increase in both open porosity and pore size is observed, which also results in the increase of nitrogen gas flux. The mineral-based mullite supports with increased open porosity were obtained. Furthermore, the sintered porous mullite membrane supports were characterized in terms of thermal expansion co-efficient and mechanical strength.

  11. Effect of Sintering Temperature on the Properties of Aluminium-Aluminium Oxide Composite Materials

    Directory of Open Access Journals (Sweden)

    Dewan Muhammad Nuruzzaman

    2016-12-01

    Full Text Available In this study, aluminium-aluminium oxide (Al-Al2O3 metal matrix composites of different weight percentage reinforcements of aluminium oxide were processed at different sintering temperatures. In order to prepare these composite specimens, conventional powder metallurgy (PM method was used. Three types specimens of different compositions such as 95%Al+5%Al2O3, 90%Al+10%Al2O3 and 85%Al+15%Al2O3 were prepared under 20 Ton compaction load. Then, all the specimens were sintered in a furnace at two different temperatures 550oC and 580oC. In each sintering process, two different heating cycles were used. After the sintering process, it was observed that undistorted flat specimens were successfully prepared for all the compositions. The effects of sintering temperature and weight fraction of aluminium oxide particulates on the density, hardness and microstructure of Al-Al2O3 composites were observed. It was found that density and hardness of the composite specimens were significantly influenced by sintering temperature and percentage aluminium oxide reinforcement. Furthermore, optical microscopy revealed that almost uniform distribution of aluminium oxide reinforcement within the aluminium matrix was achieved.

  12. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets

    International Nuclear Information System (INIS)

    Tolev, J; Mandelis, A

    2010-01-01

    A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (∼5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.

  13. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    Science.gov (United States)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  14. Experimental analysis on semi-finishing machining of Ti6Al4V additively manufactured by direct melting laser sintering

    Science.gov (United States)

    Imbrogno, Stano; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico

    2016-10-01

    The Additive Manufacturing (AM) techniques are particularly appealing especially for titanium aerospace and biomedical components because they permit to achieve a strong reduction of the buy-to-fly ratio. However, finishing machining operations are often necessary to reduce the uneven surface roughness and geometrics because of local missing accuracy. This work shows the influence of the cutting parameters, cutting speed and feed rate, on the cutting forces as well as on the thermal field observed in the cutting zone, during a turning operation carried out on bars made of Ti6Al4V obtained by the AM process called Direct Metal Laser Sintering (DMLS). Moreover, the sub-surface microstructure alterations due to the process are also showed and commented.

  15. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink.

    Science.gov (United States)

    Hong, Sukjoon; Yeo, Junyeob; Kim, Gunho; Kim, Dongkyu; Lee, Habeom; Kwon, Jinhyeong; Lee, Hyungman; Lee, Phillip; Ko, Seung Hwan

    2013-06-25

    We introduce a facile approach to fabricate a metallic grid transparent conductor on a flexible substrate using selective laser sintering of metal nanoparticle ink. The metallic grid transparent conductors with high transmittance (>85%) and low sheet resistance (30 Ω/sq) are readily produced on glass and polymer substrates at large scale without any vacuum or high-temperature environment. Being a maskless direct writing method, the shape and the parameters of the grid can be easily changed by CAD data. The resultant metallic grid also showed a superior stability in terms of adhesion and bending. This transparent conductor is further applied to the touch screen panel, and it is confirmed that the final device operates firmly under continuous mechanical stress.

  16. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs

    Directory of Open Access Journals (Sweden)

    Tan NW

    2017-07-01

    Full Text Available Naiwen Tan,1–3,* Xiangwei Liu,1,2,* Yanhui Cai,4 Sijia Zhang,1,2 Bo Jian,1,2 Yuchao Zhou,1,2 Xiaoru Xu,1,2 Shuai Ren,1,2 Hongbo Wei,1,2 Yingliang Song1,2 1State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Xi’an, Shaanxi, China; 2Department of Implant Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China; 3Department of Stomatology, Hospital 463 of PLA, Xi’an, Shaanxi, China; 4Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China *These authors contributed equally to this work Background: High failure rates of oral implants have been reported in diabetic patients due to the disruption of osseointegration. The aim of this study was to investigate whether direct laser metal sintering (DLMS could improve osseointegration in diabetic animal models. Methods: Surface characterizations were carried out on two types of implants. Cell morphology and the osteogenic-related gene expression of MG63 cells were observed under conditions of DLMS and microarc oxidation (MAO. A diabetes model in mini-pigs was established by intravenous injection of streptozotocin (150 mg/kg, and a total of 36 implants were inserted into the mandibular region. Micro-computed tomography (micro-CT and histologic evaluations were performed 3 and 6 months after implantation. Results: The Ra (the average of the absolute height of all points of MAO surface was 2.3±0.3 µm while the DLMS surface showed the Ra of 27.4±1.1 µm. The cells on DLMS implants spread out more podia than those on MAO implants through cell morphology analysis. Osteogenic-related gene expression was also dramatically increased in the DLMS group. Obvious improvement was observed in the micro-CT and Van Gieson staining analyses of DLMS implants compared with MAO at 3 months

  17. Light-material interactions in laser material processing

    International Nuclear Information System (INIS)

    Chiang, S.; Albright, C.E.

    1989-01-01

    The authors discusses how light interactions with materials in laser material processing operations occur by a variety of mechanisms depending on the material being processed, the wavelength of the laser light, the gaseous environment, and the physical state of the material surface. The high reflectivity of metals limits the fraction of the beam power absorbed by the solid metal surface. For metals in the solid state, reflectivity increases as the wavelength of the laser light and the electrical conductivity of the metal increase. The reflectivity of metals is reduced upon heating to the melting point, and further reduced upon melting. At high power densities the liquid metal surface is heated so quickly that very rapid vaporization occurs. The recoil force produced by the evaporation causes a depression in the liquid/vapor interface. The keyhole resulting from this depression allows for multiple reflections and thus increases beam absorption in the liquid

  18. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process

    Science.gov (United States)

    Mahanthesha, P.; Mohankumar, G. C.

    2018-04-01

    Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.

  19. Laser-beam interactions with materials

    International Nuclear Information System (INIS)

    Allmen, M.V.

    1987-01-01

    Lasers are becoming popular tools and research instruments in materials research, metallurgy, semiconductor technology and engineering. This text treats, from a physicist's point of view, the processes that lasers can induce in materials. A broad view of the field and its perspectives is given: physical topics covered range from optics to shock waves, and applications range from semiconductor annealing to fusion-plasma production. Intuitive analytical models are used whenever possible, in order to foster creative thinking and facilitate access to newcomers and nonspecialists

  20. Laser induced forward transfer of soft materials

    International Nuclear Information System (INIS)

    Palla-Papavlu, A; Dinca, V; Luculescu, C; Dinescu, M; Shaw-Stewart, J; Lippert, T; Nagel, M

    2010-01-01

    A strong research effort is presently aimed at patterning methodologies for obtaining controlled defined micrometric polymeric structures for a wide range of applications, including electronics, optoelectronics, sensors, medicine etc. Lasers have been identified as appropriate tools for processing of different materials, such as ceramics and metals, but also for soft, easily damageable materials (biological compounds and polymers). In this work we study the dynamics of laser induced forward transfer (LIFT) with a gap between the donor and the receiver substrates, which is the basis for possible applications that require multilayer depositions with high spatial resolution

  1. 3D FE simulation of semi-finishing machining of Ti6Al4V additively manufactured by direct metal laser sintering

    Science.gov (United States)

    Imbrogno, Stano; Rinaldi, Sergio; Raso, Antonio; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico

    2018-05-01

    The Additive Manufacturing techniques are gaining more and more interest in various industrial fields due to the possibility of drastically reduce the material waste during the production processes, revolutionizing the standard scheme and strategies of the manufacturing processes. However, the metal parts shape produced, frequently do not satisfy the tolerances as well as the surface quality requirements. During the design phase, the finite element simulation results a fundamental tool to help the engineers in the correct decision of the most suitable process parameters, especially in manufacturing processes, in order to produce products of high quality. The aim of this work is to develop a 3D finite element model of semi-finishing turning operation of Ti6Al4V, produced via Direct Metal Laser Sintering (DMLS). A customized user sub-routine was built-up in order to model the mechanical behavior of the material under machining operations to predict the main fundamental variables as cutting forces and temperature. Moreover, the machining induced alterations are also studied by the finite element model developed.

  2. Histological Evidence of the Osseointegration of Fractured Direct Metal Laser Sintering Implants Retrieved after 5 Years of Function

    Directory of Open Access Journals (Sweden)

    Francesco Mangano

    2017-01-01

    Full Text Available Background. Direct metal laser sintering (DMLS is an additive manufacturing technique that allows the fabrication of dental implants layer by layer through the laser fusion of titanium microparticles. The surface of DMLS implants is characterized by a high open porosity with interconnected pores of different sizes; therefore, it has the potential to enhance and accelerate bone healing. To date, however, there are no histologic/histomorphometric studies in the literature evaluating the interface between bone and DMLS implants in the long-term. Purpose. To evaluate the interface between bone and DMLS implants retrieved after 5 years of functional loading. Methods. Two fractured DMLS implants were retrieved from the human jaws, using a 5 mm trephine bur. Both the implants were clinically stable and functioned regularly before fracture. The specimens were processed for histologic/histomorphometric evaluation; the bone-to-implant contact (BIC% was calculated. Results. Compact, mature lamellar bone was found over most of the DMLS implants in close contact with the implant surface; the histomorphometric evaluation showed a mean BIC% of 66.1% (±4.5%. Conclusions. The present histologic/histomorphometric study showed that DMLS implants were well integrated in bone, after 5 years of loading, with the peri-implant bone undergoing continuous remodeling at the interface.

  3. Histological Evidence of the Osseointegration of Fractured Direct Metal Laser Sintering Implants Retrieved after 5 Years of Function

    Science.gov (United States)

    Piattelli, Adriano

    2017-01-01

    Background Direct metal laser sintering (DMLS) is an additive manufacturing technique that allows the fabrication of dental implants layer by layer through the laser fusion of titanium microparticles. The surface of DMLS implants is characterized by a high open porosity with interconnected pores of different sizes; therefore, it has the potential to enhance and accelerate bone healing. To date, however, there are no histologic/histomorphometric studies in the literature evaluating the interface between bone and DMLS implants in the long-term. Purpose To evaluate the interface between bone and DMLS implants retrieved after 5 years of functional loading. Methods Two fractured DMLS implants were retrieved from the human jaws, using a 5 mm trephine bur. Both the implants were clinically stable and functioned regularly before fracture. The specimens were processed for histologic/histomorphometric evaluation; the bone-to-implant contact (BIC%) was calculated. Results Compact, mature lamellar bone was found over most of the DMLS implants in close contact with the implant surface; the histomorphometric evaluation showed a mean BIC% of 66.1% (±4.5%). Conclusions The present histologic/histomorphometric study showed that DMLS implants were well integrated in bone, after 5 years of loading, with the peri-implant bone undergoing continuous remodeling at the interface. PMID:28929117

  4. Histological Evidence of the Osseointegration of Fractured Direct Metal Laser Sintering Implants Retrieved after 5 Years of Function.

    Science.gov (United States)

    Mangano, Francesco; Mangano, Carlo; Piattelli, Adriano; Iezzi, Giovanna

    2017-01-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique that allows the fabrication of dental implants layer by layer through the laser fusion of titanium microparticles. The surface of DMLS implants is characterized by a high open porosity with interconnected pores of different sizes; therefore, it has the potential to enhance and accelerate bone healing. To date, however, there are no histologic/histomorphometric studies in the literature evaluating the interface between bone and DMLS implants in the long-term. To evaluate the interface between bone and DMLS implants retrieved after 5 years of functional loading. Two fractured DMLS implants were retrieved from the human jaws, using a 5 mm trephine bur. Both the implants were clinically stable and functioned regularly before fracture. The specimens were processed for histologic/histomorphometric evaluation; the bone-to-implant contact (BIC%) was calculated. Compact, mature lamellar bone was found over most of the DMLS implants in close contact with the implant surface; the histomorphometric evaluation showed a mean BIC% of 66.1% (±4.5%). The present histologic/histomorphometric study showed that DMLS implants were well integrated in bone, after 5 years of loading, with the peri-implant bone undergoing continuous remodeling at the interface.

  5. A study of emission property and microstructure of rare earth oxide-molybdenum cermet cathode materials made by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Jinshu; Li Hongyi; Yang Sa; Cui Ying; Zhou Meiling

    2004-01-01

    A fast sintering method, spark plasma sintering (SPS) was used for the synthesis of rare earth oxide-molybdenum cathode material. The secondary emission property, microstructure, and phase constitution of materials have been studied in this paper. The experimental results show that the maximum secondary emission coefficient of this material can be high to 3.84, much higher than that of rare earth oxide-molybdenum cathode made by traditional sintering method. The grain size is less than 1 μm and rare earth distributed evenly in the material. After the material was activated at 1600 deg. C, a 4 μm layer of rare earth oxide which leads to the high secondary emission coefficient of the material, is formed on the surface of the cathode

  6. GPC Light Shaper for energy efficient laser materials processing.

    OpenAIRE

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson; Aabo, Thomas; Glückstad, Jesper

    2014-01-01

    The biggest use of lasers is in materials processing. In manufacturing, lasers are used for cutting, drilling, marking and other machining processes. Similarly, lasers are important in microfabrication processes such as photolithography, direct laser writing, or ablation. Lasers are advantageous because they do not wear out, have no physical contact with the processed material, avoid heating or warping effects, and are generally more precise. Since lasers are easier to adapt to different opti...

  7. Microstructural Analysis of Sintered Gradient Materials Based on Distaloy SE Powder

    Directory of Open Access Journals (Sweden)

    Zarębski K.

    2016-06-01

    Full Text Available The study describes the microstructural analysis of cylindrically-shaped functionally graded products sintered from iron powder with scheduled graded structure on the cross-section running from the core to the surface layer of the sinter. Different types of structure were produced using Distaloy SE powder in two compositions - one without the addition of carbon, and another with 0.6wt% C. Two methods were used to fill the die cavity and shape the products. The first method involving a two-step compaction of individual layers. The second method using an original technique of die filling enabled the formation of transition zone between the outer layer and the core still at the stage of product shaping. As part of microstructural analysis, structural constituents were identified and voids morphology was examined. Studies covered the effect of the type of the applied method on properties of the graded zone obtained in the manufactured products

  8. Inkjet Printing and Ebeam Sintering Approach to Fabrication of GHz Meta material Absorber

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, Y. J.; Lee, Y. P.; Park, I. S.; Kang, J. H.; Lim, Jongwoo; Kim, Jonghee; Kim, Hyotae

    2013-01-01

    Metamaterial absorber structure of GHz range is fabricated by inkjet printing and e-beam sintering. The inkjet printing is of interest, which give the easier and quicker way to fabricate large scale metamaterials than the approaches by the lithographic process, Furthermore it is more suitable to make flexible electronics, which has yet been great technologic trend. Usual post process of inkjet printing is the sintering to ensure solvent-free from the printed pattern and to its better conductivity comparable to the ordinary vacuum deposition process. E-beam irradiation sintering of the pattern is promising because it is inherently local and low temperature process. The main procedure of metamaterials fabrication is printing a resonator structure with lossy metal such as Ag or Au. We designed two types of Ag based multiband absorber which are double and quadruple bands. Those adsorber patterns are printed on polyimide substrate with commercially available Ag ink (DGP 40LT-15C, 25C). The absorbance performance of fabricated metamaterials is characterized by Hewlett-Packard E836B network analyzer in microwave anechoic chamber. The conductivity enhancement after e-beam or other sintering process is checked by measuring sheet resistance. The absorbance of the fabricated metamaterial is measured around 60% for the types designed. The absorbance is not high enough to practical use, which is attributed to low conductivity of the printed pattern. The spectrum shows, however, quite interesting large broadness, which come in the interval between each pack absorbance, witch needs further study. Though the extent of its effectiveness of inkjet printing in metamaterials needs more experimental studies, the demonstrated capability of quick and large area fabrication to flexible substrate is excellent

  9. The wetted solid---A generalization of the Plateau problem and its implications for sintered materials

    International Nuclear Information System (INIS)

    Salamon, P.; Bernholc, J.; Berry, R.S.; Carrera-Patino, M.E.; Andresen, B.

    1990-01-01

    A new generalization of the Plateau problem that includes the constraint of enclosing a given region is introduced. Physically, the problem is important insofar as it bears on sintering processes and the structure of wetted porous media. Some primal and dual characterizations of the solutions are offered and aspects of the problem are illustrated in one and two dimensions in order to clarify the combinatorial elements and demonstrate the importance of numerous local minima

  10. The wetted solid - a generalization of Plateau's problem and its implications for sintered materials

    International Nuclear Information System (INIS)

    Salomon, P.; Berry, R.S.; Carrera-Patino, M.E.; Chicago Univ., IL; Andresen, B.

    1988-01-01

    We introduce a new generalization of the Plateau problem which includes the constraint of enclosing a given region. Physically the problem is important insofar as it bears on sintering processes and on the structure of wetted porous media. Some primal and dual characterizations of the solutions are offered, and aspects of the problem are illustrated in one and two dimensions in order to clarify the combinatorial elements and to demonstrate the importance of numerous local minima. (orig.)

  11. Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques.

    Science.gov (United States)

    Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Montero, Javier; Albaladejo, Alberto; Suárez-García, María Jesús

    2012-07-01

    This study evaluated the vertical discrepancy of implant-fixed 3-unit structures. Frameworks were constructed with laser-sintered Co-Cr, and vacuum-cast Co-Cr, Ni-Cr-Ti, and Pd-Au. Samples of each alloy group were randomly luted in standard fashion using resin-modified glass-ionomer, self-adhesive, and acrylic/urethane-based cements (n = 12 each). Discrepancies were SEM analyzed. Three-way ANOVA and Student-Newman-Keuls tests were run (P Laser-sintered structures achieved the best fit per cement tested. Within each alloy group, resin-modified glass-ionomer and acrylic/urethane-based cements produced comparably lower discrepancies than the self-adhesive agent. The abutment position did not yield significant differences. All misfit values could be considered clinically acceptable.

  12. Femtosecond laser interaction with protection materials

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Krueger, J.; Hertwig, A.; Fiedler, A.; Kautek, W

    2003-03-15

    Textile, aluminium and polyethylene used as components in laser protection curtains were investigated with respect to their ablation behaviour. Employing 33-fs pulses (800 nm wavelength, 1 kHz repetition rate), ex situ geometrical measurements of the ablation cavities and in situ acoustic investigations with a microphone were performed to determine the ablation thresholds in the single- and multi-pulse cases. The acoustical method proved advantageous for complex surface morphologies and/or single laser pulse interactions. Incubation phenomena can be observed for all the materials studied. Technically relevant multi-pulse ablation thresholds are presented and are compared with the single-pulse (1-on-1) irradiation.

  13. Vertical misfit of laser-sintered and vacuum-cast implant-supported crown copings luted with definitive and temporary luting agents.

    Science.gov (United States)

    Castillo-de-Oyagüe, Raquel; Sánchez-Turrión, Andrés; López-Lozano, José-Francisco; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria-Jesús

    2012-07-01

    This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range.

  14. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    Science.gov (United States)

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  15. Low-sintering condenser materials on the basis of barium titanate; Niedrig-sinternde Kondensatorwerkstoffe auf der Basis von Bariumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Naghib zadeh, Hamid

    2010-07-01

    The main objective of this work was the development of new barium titanate capacitor materials, which fully densified at a sintering temperature of 900 C and exhibit a high and almost temperature-independent dielectric constant as well as low dielectric loss. In order to decrease the sintering temperature of barium titanate from ca. 1300 C to 900 C, addition of various types of sintering aids have been tested. Li-containing sintering additives show the best result concerning densification and dielectric properties. By addition of 2 to 3 wt% (SrO-B{sub 2}O{sub 3}-Li{sub 2}O) -, (ZnO-B{sub 2}O{sub 3}-Li{sub 2}O) - or (LiF-SrCO{sub 3})-additive combinations to commercially available barium titanate powder 95 % of the theoretical density was achieved after sintering at 900 C. The sintered capacitor materials with the above mentioned additive combinations possess high dielectric constants from 1800 to 3590. It is well known that for a high temperature stability of dielectric constant the formation of core-shell structure in a fine-grained microstructure is required (average grain size < 1 {mu}m). For BaTiO{sub 3} samples contained 2 wt% LiF-SrCO{sub 3} is temperature coefficient of capacitance (TCC) relatively low. The TCC in temperature range between 0 C and 80 C is less than {+-} 15%. The formation of the core-shell structure in a fine-grained microstructure of this sample, which is required to have low TCC, was detected by TEM / EDX analyses. The significantly higher TCC for the BaTiO{sub 3} samples contained 3 wt% SrO-B{sub 2}O{sub 3}-Li{sub 2}O is due to the strong grain growth during sintering. To reduce the TCC in this sample Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} was added. By addition of 1.5 wt% Nb{sub 2}O{sub 5}-Co{sub 2}O{sub 3} the temperature stability of the dielectric constant could be significantly improved as a result of the grain growth inhibition and the core-shell formation during sintering. For BaTiO{sub 3} samples contained ZnO-B{sub 2}O{sub 3}-Li

  16. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  17. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)

    Science.gov (United States)

    Lorusso, Massimo; Aversa, Alberta; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa Paola; Ugues, Daniele; Pavese, Matteo

    2016-08-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

  18. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  19. Evaluation of Uniformity and Glare Improvement with Low Energy Efficiency Losses in Street Lighting LED Luminaires Using Laser-Sintered Polyamide-Based Diffuse Covers

    Directory of Open Access Journals (Sweden)

    Alfonso Gago-Calderón

    2018-04-01

    Full Text Available Energy saving in street lighting is garnering more interest and has become a priority in municipal management. Therefore, LED luminaires are gradually becoming prevalent in our cities. Beyond their energy/economic saving potential, quality in public lighting installations concerns aspects such as uniformity and glare which must be maintained if not improved in any installation renewal project using this technology. The high light intensity generated in a discrete point in LED packages and its directional nature result in significant deficiencies in these last two parameters. To soften these effects, translucent covers are being used as one of the most common solutions with the drawback of significant light intensity losses. The objective of this paper is to evaluate the behavior of LED luminaire’s polyamide-based optical covers manufactured with a laser-sintered process. These are designed to improve glare and uniformity output, to minimize light output reductions, and to be industrially manufactured with no increment of cost for their lighting equipment compared to conventional transparent polycarbonate solutions. A laboratory and field lighting test study has been applied to different covers with the same LED lamp and luminaire to compare the performance of three different solutions built with different polymeric materials and with different light transmission surface textures. The photometric results have been observed and discussed to demonstrate the ability to significantly improve the lighting performance of LED luminaires—illuminance and uniformity levels and discomfort and disability glare indexes— using an improved optic cover.

  20. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro.

    Science.gov (United States)

    Cheng, Alice; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.

  1. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.

    Science.gov (United States)

    Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean

    2013-01-01

    This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.

  2. Parameters Influence of CO2 Laser on Cutting Quality of Polymer Materials

    Directory of Open Access Journals (Sweden)

    Robert Cep

    2016-09-01

    Full Text Available The article deals with evaluating of the resulting surface state of the three plastic materials and identification of suitable conditions for laser cutting with CO2 tube. As representative were chosen polypropylene, polymethylmethacrylate and polyamide. When cutting these types of materials it could melt eventually their re-sintering. A suitable combination of parameters is possible to achieve of sufficient quality of the cut. The samples were cut at different feed speed and laser power. Then they was compared on the basis of the measured roughness parameters Ra a Rz by using a portable touch roughness Hommel-Etamic W5 and dates was processed according to ČSN EN ISO 4287. Cutting of samples was realized at the Department of Machining, Assembly and Engineering Metrology, VŠB-TUO.

  3. Characterization of SiCf/SiC and CNT/SiC composite materials produced by liquid phase sintering

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Cho, K.S.; Byun, J.H.; Bae, D.S.

    2011-01-01

    This paper dealt with the microstructure and mechanical properties of SiC based composites reinforced with different reinforcing materials. The composites were fabricated using reinforcing materials of carbon nanotubes (CNT) and Tyranno Lox-M SiC chopped fibers. The volume fraction of carbon nanotubes was also varied in this composite system. An Al 2 O 3 -Y 2 O 3 powder mixture was used as a sintering additive in the consolidation of the SiC matrix. The characterization of the composites was investigated by means of SEM and three point bending tests. These composites showed a dense morphology of the matrix region, by the creation of a secondary phase. The composites reinforced with SiC chopped fibers possessed a flexural strength of about 400 MPa at room temperature. The flexural strength of the carbon nanotubes composites had a tendency to decrease with increased volume fraction of the reinforcing material.

  4. Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering

    International Nuclear Information System (INIS)

    Athreya, Siddharth Ram; Kalaitzidou, Kyriaki; Das, Suman

    2010-01-01

    Selective laser sintering (SLS), a layered manufacturing technique was explored to process an electrically conductive polymer nanocomposite made of Nylon-12 reinforced with 4 wt% of carbon black. SLS process parameters were optimized in order to maximize the flexural modulus. The porosity and morphology were studied using optical microscopy and scanning electron microscopy (SEM). The crystalline state was characterized using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The electrical conductivity was determined using the four probe technique. Results indicate that carbon black-filled Nylon-12 nanocomposites can be successfully made by SLS. Maximum flexural modulus values of 1750 MPa and 1450 MPa were achieved for the neat polymer and the nanocomposite, respectively. A reduction in the flexural modulus of the nanocomposite is likely due to the formation of a segregated structure in the nanocomposite and a weak polymer-filler interface. The optimized neat polymer and the nanocomposites had average densities of around 97% and 96% relative to full density, respectively. The electrical conductivity of the nanocomposite was approximately 1 x 10 -4 S/cm, which is five orders of magnitude higher than that of the neat polymer processed by SLS, and indicates that the onset of percolation behavior occurs below the 4 wt% loading of carbon black.

  5. Microstructural and Mechanical Characterization of a Custom-Built Implant Manufactured in Titanium Alloy by Direct Metal Laser Sintering

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Larosa

    2014-08-01

    Full Text Available Custom-built implants manufacture has always presented difficulties which result in high cost and complex fabrication, mainly due to patients’ anatomical differences. The solution has been to produce prostheses with different sizes and use the one that best suits each patient. Additive manufacturing technology, incorporated into the medical field in the late 80's, has made it possible to obtain solid biomodels facilitating surgical procedures and reducing risks. Furthermore, this technology has been used to produce implants especially designed for a particular patient, with sizes, shapes, and mechanical properties optimized, for different areas of medicine such as craniomaxillofacial surgery. In this work, the microstructural and mechanical properties of Ti6Al4V samples produced by direct metal laser sintering (DMLS are studied. The microstructural and mechanical characterizations have been made by optical and scanning electron microscopy, X-ray diffraction, and microhardness and tensile tests. Samples produced by DMLS have a microstructure constituted by hexagonal α′ martensite with acicular morphology. An average microhardness of 370 HV was obtained and the tensile tests showed ultimate strength of 1172 MPa, yield strength of 957 MPa, and elongation at rupture of 11%.

  6. Comparison of fracture resistance between cast, CAD/CAM milling, and direct metal laser sintering metal post systems.

    Science.gov (United States)

    Bilgin, Mehmet Selim; Erdem, Ali; Dilber, Erhan; Ersoy, İbrahim

    2016-01-01

    The purpose of this study was to compare the fracture resistance of Co-Cr post-cores fabricated with 3 different techniques: traditional casting (TC), computer-aided design and manufacturing (CAD/CAM) milling (CCM) and direct metal laser sintering (DMLS). Forty intact human mandibular premolar were endodontically treated. The roots were then randomly divided into four groups according to the post systems: the control group was only filled with gutta percha. Co-Cr metal posts were fabricated with TC, CCM and DMLS in the other three groups. The posts were luted with a resin cement and subjected to compression test at a crosshead speed of 1mm/min. The statistical analysis of the data was performed using one-way analysis of variance (ANOVA) and multiple comparison post hoc Tukey tests (α=.05). The samples were examined under a stereomicroscope with ×20 magnification for the evaluation of the fracture types. The mean fracture loads were 432.69 N for control, 608.89 N for TC, 689.40 N for DMLS and 959.26 N for CCM. One-way ANOVA revealed significant difference between the groups (pmetal posts fabricated by CCM and DMLS could be an alternative to TC processing in daily clinical application. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems.

    Science.gov (United States)

    Park, Jong-Kyoung; Lee, Wan-Sun; Kim, Hae-Young; Kim, Woong-Chul; Kim, Ji-Hwan

    2015-04-01

    To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced.

  8. Comparison of conventional reconstruction plate versus direct metal laser sintering plate: an in vitro mechanical characteristics study.

    Science.gov (United States)

    Xie, Pusheng; Ouyang, Hanbin; Deng, Yuping; Yang, Yang; Xu, Jing; Huang, Wenhua

    2017-09-02

    Additive manufacturing (AM) technology has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. But the application of direct metal laser sintering (DMLS) bone plate is quite limited due to the indeterminate mechanical property. The purposes of this study were to characterize the biomechanical properties of the polished DMLS reconstruction plate and to compare these with the properties of commonly applied implants and to find whether the mechanical performance of DMLS plate meets the requirements for clinical application. In this study, we fabricated two groups of plates by DMLS and computer numerical control (CNC) techniques. After that, we polished all samples and investigated their roughness, components, hardness, static bending, and torsional performance. Moreover, cyclic bending tests and fractographic analysis were conducted. Statistical comparisons of the group by means of monotonic test data were made, and a qualitative comparison was performed to assess failures in fatigue. We found no differences in surface roughness or components after polishing, but the DMLS plate hardness is 7.42% (p direct application of these AM instruments in the operating room requires further validation including animal and clinical experiment.

  9. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  10. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  11. Preparation and characterization of new dental porcelains, using K-feldspar and quartz raw materials. Effect of B2O3 additions on sintering and mechanical properties.

    Science.gov (United States)

    Harabi, Abdelhamid; Guerfa, Fatiha; Harabi, Esma; Benhassine, Mohamed-Tayeb; Foughali, Lazhar; Zaiou, Soumia

    2016-08-01

    The aim of this work was to determine the effect of temperature and boric oxide (B2O3) addition on sintering and mechanical properties of a newly developed dental porcelain (DP) prepared from local Algerian raw materials. Based on a preliminary work, the new selected composition was 75wt.% feldspar, 20wt.% quartz and 5wt.% kaolin. It was prepared by sintering the mixture at different temperatures (1100-1250°C). The optimum sintering conditions gave a relatively higher density (2.47g/cm(3)) and excellent mechanical properties. The three point flexural strength (3PFS) and Martens micro-hardness of dental porcelains were 149MPa and 2600MPa, respectively. This obtained 3PFS value is more than four times greater than that of hydroxyapatite (HA) value (about 37MPa) sintered under the same conditions. However, the sintering temperature was lowered by about 25 and 50°C for 3 and 5wt.% B2O3 additions, respectively. But, it did not improve furthermore the samples density and their mechanical properties. It has also been found that B2O3 additions provoke a glass matrix composition variation which delays the leucite formation during sintering. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Laser Shock Peening on Microwave Sintered Aluminum Alloy Nanocompo-Sites

    Directory of Open Access Journals (Sweden)

    S. Prabhakaran

    2018-04-01

    Full Text Available The current work focusses on low energy laser shock peening (LSP on graphene (0.4 wt % – AA 2900 nano-composite fabricated through powder metallurgy (PM technique. The added graphene serves the pinning effect and blocks the grain growth in the composite. Further, LSP has been carried out on the developed composites. As a consequence, LSP contributed the additional grain refinement effectively to the nanocomposites leading to large texture strengthening. Improvement in the hardness and tensile strength achieved with the addition of graphene and further improvement due to LSP process is achieved for the prepared nanocomposites.

  13. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs.

    Science.gov (United States)

    Tan, Naiwen; Liu, Xiangwei; Cai, Yanhui; Zhang, Sijia; Jian, Bo; Zhou, Yuchao; Xu, Xiaoru; Ren, Shuai; Wei, Hongbo; Song, Yingliang

    2017-01-01

    High failure rates of oral implants have been reported in diabetic patients due to the disruption of osseointegration. The aim of this study was to investigate whether direct laser metal sintering (DLMS) could improve osseointegration in diabetic animal models. Surface characterizations were carried out on two types of implants. Cell morphology and the osteogenic-related gene expression of MG63 cells were observed under conditions of DLMS and microarc oxidation (MAO). A diabetes model in mini-pigs was established by intravenous injection of streptozotocin (150 mg/kg), and a total of 36 implants were inserted into the mandibular region. Micro-computed tomography (micro-CT) and histologic evaluations were performed 3 and 6 months after implantation. The Ra (the average of the absolute height of all points) of MAO surface was 2.3±0.3 µm while the DLMS surface showed the Ra of 27.4±1.1 µm. The cells on DLMS implants spread out more podia than those on MAO implants through cell morphology analysis. Osteogenic-related gene expression was also dramatically increased in the DLMS group. Obvious improvement was observed in the micro-CT and Van Gieson staining analyses of DLMS implants compared with MAO at 3 months, although this difference disappeared by 6 months. DLMS implants showed a higher bone-implant contact percentage (33.2%±11.2%) at 3 months compared with MAO group (18.9%±7.3%) while similar results were showed at 6 months between DLMS group (42.8%±10.1%) and MAO group (38.3%±10.8%). The three-dimensional environment of implant surfaces with highly porous and fully interconnected channel and pore architectures can improve cell spreading and accelerate the progress of osseointegration in diabetic mini-pigs.

  14. Histological and biomechanical analysis of porous additive manufactured implants made by direct metal laser sintering: a pilot study in sheep.

    Science.gov (United States)

    Stübinger, Stefan; Mosch, Isabel; Robotti, Pierfrancesco; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J; von Rechenberg, Brigitte

    2013-10-01

    It was the aim of this study to analyze osseointegrative properties of porous additive manufactured titanium implants made by direct metal laser sintering in a sheep model after an implantation period of 2 and 8 weeks. Three different types of implants were placed in the pelvis of six sheep. In each sheep were placed three standard machined (M), three sandblasted and etched (SE), and three porous additive manufactured (AM) implants. Of these three implants (one per type) were examined histologically and six implants were tested biomechanically. Additionally a semiquantitative histomorphometrical and qualitative fluorescent microscopic analysis were performed. After 2 and 8 weeks bone-to-implant-contact (BIC) values of the AM surface (2w: 20.49% ± 5.18%; 8w: 43.91% ± 9.69%) revealed no statistical significant differences in comparison to the M (2w: 20.33% ± 11.50%; 8w: 25.33% ± 4.61%) and SE (2w: 43.67 ± 12.22%; 8w: 53.33 ± 8.96%) surfaces. AM surface showed the highest increase of the BIC between the two observation time points. Considering the same implantation period histomorphometry and fluorescent labelling disclosed no significant differences in the bone surrounding the three implants groups. In contrast Removal-torque-test showed a significant improve in fixation strength (P ≤ 0.001) for the AM (1891.82 ± 308, 44 Nmm) surface after eight weeks in comparison to the M (198.93±88,04 Nmm) and SE (730.08 ± 151,89 Nmm) surfaces. All three surfaces (M, SE, and AM) showed sound osseointegration. AM implants may offer a possible treatment option in clinics for patients with compromised bone situations. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  15. Homogenization Kinetics of a Nickel-based Superalloy Produced by Powder Bed Fusion Laser Sintering.

    Science.gov (United States)

    Zhang, Fan; Levine, Lyle E; Allen, Andrew J; Campbell, Carelyn E; Lass, Eric A; Cheruvathur, Sudha; Stoudt, Mark R; Williams, Maureen E; Idell, Yaakov

    2017-04-01

    Additively manufactured (AM) metal components often exhibit fine dendritic microstructures and elemental segregation due to the initial rapid solidification and subsequent melting and cooling during the build process, which without homogenization would adversely affect materials performance. In this letter, we report in situ observation of the homogenization kinetics of an AM nickel-based superalloy using synchrotron small angle X-ray scattering. The identified kinetic time scale is in good agreement with thermodynamic diffusion simulation predictions using microstructural dimensions acquired by ex situ scanning electron microscopy. These findings could serve as a recipe for predicting, observing, and validating homogenization treatments in AM materials.

  16. Laser Additive Manufacturing of Magnetic Materials

    Science.gov (United States)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  17. Effects of sintering processes on mechanical properties and microstructure of TiB2–TiC + 8 wt% nano-Ni composite ceramic cutting tool material

    International Nuclear Information System (INIS)

    Zou Bin; Huang Chuanzhen; Song Jinpeng; Liu Ziye; Liu Lin; Zhao Yan

    2012-01-01

    Highlights: ► TiB 2 –TiC + 8 wt% nano-Ni ceramic tool material was sintered by six processes. ► The properties of material depended mainly on the holding stages and duration. ► SP1 process was involved with the multiple holding stages and longer duration. ► SP1 process led to many pores, and coarsening and brittle rupture of grains. ► Tool material sintered by SP6 process exhibited the optimum mechanical properties. - Abstract: TiB 2 –TiC composite powder was prepared by ball-milled with ethanol and vacuum dry, and TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material was sintered using vacuum hot-pressed sintering technique by six processes which included the different holding stages and times. The effects of sintering processes on the mechanical properties and microstructure were investigated. The polished surface and fracture surface of TiB 2 –TiC + 8 wt% nano-Ni ceramics sintered by the different sintering processes were observed by scanning electron microscope (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometry (EDS), and the relationships between mechanical properties and microstructure were discussed. The mechanical properties and microstructure depended mainly on the total holding time and the different holding stages. The longer holding time and multiple holding stages led to coarsening of TiB 2 and TiC grains, formation of pores and the brittle rupture of grains, which deteriorated the mechanical properties of TiB 2 –TiC + 8 wt% nano-Ni ceramic. TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material sintered by SP6 process exhibited the optimum resultant mechanical properties because of its finer microstructure and higher relative density, and its flexural strength, fracture toughness and hardness were 916.8 MPa, 7.80 MPa m 1/2 and 22.54 GPa, respectively.

  18. Innovative technology through selective laser sintering in mechatronics, biomedical engineering and industry

    Directory of Open Access Journals (Sweden)

    Gheorghe Ion GHEORGHE

    2011-03-01

    Full Text Available A new technology, using new materials specially designed for complex geometries,extensively used in research-development and innovation area will be presented in this paper. Evenhighly complex geometries are created directly from 3D CAD data, fully automatically, in just a fewhours and without any tooling. It is a net-shape process, producing parts with high accuracy anddetail resolution, good surface quality and excellent mechanical properties.

  19. Topographical cues of direct metal laser sintering titanium surfaces facilitate osteogenic differentiation of bone marrow mesenchymal stem cells through epigenetic regulation.

    Science.gov (United States)

    Zheng, Guoying; Guan, Binbin; Hu, Penghui; Qi, Xingying; Wang, Pingting; Kong, Yu; Liu, Zihao; Gao, Ping; Li, Rui; Zhang, Xu; Wu, Xudong; Sui, Lei

    2018-04-27

    To investigate the role of hierarchical micro/nanoscale topography of direct metal laser sintering (DMLS) titanium surfaces in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the possible underlying epigenetic mechanism. Three groups of titanium specimens were prepared, including DMLS group, sandblasted, large-grit, acid-etched (SLA) group and smooth titanium (Ti) group. BMSCs were cultured on discs followed by surface characterization. Cell adhesion and proliferation were examined by SEM and CCK-8 assay, while osteogenic-related gene expression was detected by real-time RT-PCR. Immunofluorescence, western blotting and in vivo study were also performed to evaluate the potential for osteogenic induction of materials. In addition, to investigate the underlying epigenetic mechanisms, immunofluorescence and western blotting were performed to evaluate the global level of H3K4me3 during osteogenesis. The H3K4me3 and H3K27me3 levels at the promoter area of the osteogenic gene Runx2 were detected by ChIP assay. The DMLS surface exhibits greater protein adsorption ability and shows better cell adhesion performance than SLA and Ti surfaces. Moreover, both in vitro and in vivo studies demonstrated that the DMLS surface is more favourable for the osteogenic differentiation of BMSCs than SLA and Ti surfaces. Accordingly, osteogenesis-associated gene expression in BMSCs is efficiently induced by a rapid H3K27 demethylation and increase in H3K4me3 levels at gene promoters upon osteogenic differentiation on DMLS titanium surface. Topographical cues of DMLS surfaces have greater potential for the induction of osteogenic differentiation of BMSCs than SLA and Ti surfaces both in vitro and in vivo. A potential epigenetic mechanism is that the appropriate topography allows rapid H3K27 demethylation and an increased H3K4me3 level at the promoter region of osteogenesis-associated genes during the osteogenic differentiation of BMSCs. © 2018 John Wiley

  20. Properties of raw materials and intermediate products in the production of uranium dioxide sintered tablets

    International Nuclear Information System (INIS)

    Landspersky, H.; Vanecek, I.; Podest, M.

    1977-01-01

    The properties are described of ammonium polyuranate and of powder uranium dioxide. Ammonium polyuranate, an intermediate product, is prepared by filtering the precipitate from uranyl nitrate solution precipitation, this either by an ammonia aqueous solution from a uranyl nitrate aqueous solution or by direct U 6+ precipitation from a TBP kerosene solution by aqueous concentrated ammonia. With relation to further processing, the major properties of the intermediate product include grain size, shape and appearance of crystallites, structure and thermal decomposition. These properties affect the properties of UO 2 , the following intermediate product obtained by reduction of ammonium polyuranate. Powder UO 2 is the final intermediate product; high-compacted UO 2 pellets are manufactured from it by compacting and sintering. The final product properties are affected by the following parameters: specific surface, grain size and shape, U/O ratio and compactibility. The effect of and the techniques of determining these parameters are shown. The necessity is emphasised of studying the properties of powder ammonium polyuranate because changes in its production technology affect the properties of further products. (J.P.)

  1. Photoacoustic spectroscopy investigation of sintered zinc-tin-oxide ceramics

    Directory of Open Access Journals (Sweden)

    Ivetić Tamara B.

    2007-01-01

    Full Text Available In this paper the changes that occurred in differently activated ZnO-SnO2 and sintered samples were investigated using photoacoustic spectroscopy. ZnO and SnO2 powders, mixed in the molar ratio 2:1, were mechanically activated in a planetary ball mill for 10-160 min. The mixtures were pres­sed and isothermally sintered at 1300°C for two hours. X-ray diffraction analysis of the obtained sintered samples was performed in order to investigate changes of the phase composition and confirmed only the presence of a pure zinc stannate (Zn2SnO4 phase in all the sintered samples as a result of the solid state reaction and reaction sintering between the starting ZnO and SnO2 powders. The microstructure of the sintered sam­ples was examined by scanning electron microscopy and showed that mechanical activation leads to the formation of a structure with reduced particle size which accelerates spinel formation. Grain growth of the spinel phase slows down the densification process and together with the agglomerates formed during mechanical activation causes the appearance of a porous microstructure. The photoacoustic (PA phase and amplitude spectra of the sintered samples were recorded as a function of the chopped frequency of the laser beam used (red laser with a power of 25 mW, λ=632 nm in a thermal-transmission detection configuration. PA experimental data were analyzed using the Rosenzweig-Gersho thermal-piston model, which enabled determination of the thermal diffusivity, ZT (m2s-1, diffusion coefficient of the minority free carriers D (m2s-1 and the optical absorption coefficient (m-1. The detected differences of the measured thermal-electrical properties of the obtained Zn2SnO4 ceramics indicate changes in the material induced by the different preparation procedure of the starting powders before the sintering process.

  2. The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks.

    Science.gov (United States)

    Castillo-Oyagüe, Raquel; Osorio, Raquel; Osorio, Estrella; Sánchez-Aguilera, Fátima; Toledano, Manuel

    2012-09-01

    This study aimed to evaluate the effect of four chemomechanical surface treatments on the surface average microroughness and profile of laser-sintered and vacuum-cast dental prosthetic structures. Square-shaped blocks (10 mm × 10 mm × 1.5 mm) were prepared as follows: (1) laser-sintered CoCr (L) (ST2724G); (2) cast Co-Cr (C) (Gemium-cn); and (3) cast Ni-Cr-Ti (T) (Tilite). Specimens of each alloy group were randomly divided into five subgroups (n = 10 each), depending on the conditioning method used: (1) no treatment (control); (2) sandblasting (125 μm Al₂O₃-particles); (3) silica coating (50 μm silica-modified Al₂O₃-particles); (4) oxidation; and (5) oxidation plus opacification. Subgroups 2 and 3 represent "inner" pretreatments proposed for ceramometal restorations to improve the metal surface area available for luting cements. Subgroups 4 and 5 are the "outer" pretreatments required for bonding the aesthetic veneering ceramics to the underlying metal frameworks. Average surface roughness (Ra/μm) was determined using a surface profilometer. Data were analyzed by two-way ANOVA and Student-Newman-Keuls tests (α = 0.05). Metal surface topography was SEM-analyzed. Despite the inner pretreatment applied, L samples resulted in the highest microroughness (P < 0.001), whereas sandblasting produced a surface-smoothing effect in cast specimens. After oxidation, a significant increase in surface roughness occurred in all groups compared with controls, L specimens being the roughest (P < 0.001). Opacification caused a flattening effect of all oxidized structures; all opacified groups resulting in similar microroughness. Laser sintering of Co-Cr enhances the roughness of metal structures, which may improve the frameworks' microretention of the cements, and of the opaquer before the copings are veneered with the aesthetic ceramics. Copyright © 2012 Wiley Periodicals, Inc.

  3. Novel hydrophilic nanostructured microtexture on direct metal laser sintered Ti-6Al-4V surfaces enhances osteoblast response in vitro and osseointegration in a rabbit model.

    Science.gov (United States)

    Hyzy, Sharon L; Cheng, Alice; Cohen, David J; Yatzkaier, Gustavo; Whitehead, Alexander J; Clohessy, Ryan M; Gittens, Rolando A; Boyan, Barbara D; Schwartz, Zvi

    2016-08-01

    The purpose of this study was to compare the biological effects in vivo of hierarchical surface roughness on laser sintered titanium-aluminum-vanadium (Ti-6Al-4V) implants to those of conventionally machined implants on osteoblast response in vitro and osseointegration. Laser sintered disks were fabricated to have micro-/nano-roughness and wettability. Control disks were computer numerical control (CNC) milled and then polished to be smooth (CNC-M). Laser sintered disks were polished smooth (LST-M), grit blasted (LST-B), or blasted and acid etched (LST-BE). LST-BE implants or implants manufactured by CNC milling and grit blasted (CNC-B) were implanted in the femurs of male New Zealand white rabbits. Most osteoblast differentiation markers and local factors were enhanced on rough LST-B and LST-BE surfaces in comparison to smooth CNC-M or LST-M surfaces for MG63 and normal human osteoblast cells. To determine if LST-BE implants were osteogenic in vivo, we compared them to implant surfaces used clinically. LST-BE implants had a unique surface with combined micro-/nano-roughness and higher wettability than conventional CNC-B implants. Histomorphometric analysis demonstrated a significant improvement in cortical bone-implant contact of LST-BE implants compared to CNC-B implants after 3 and 6 weeks. However, mechanical testing revealed no differences between implant pullout forces at those time points. LST surfaces enhanced osteoblast differentiation and production of local factors in vitro and improved the osseointegration process in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2086-2098, 2016. © 2016 Wiley Periodicals, Inc.

  4. Production of porous sintered materials using wastes of manufacturing engineering in self-propagating high-temperature synthesis

    Directory of Open Access Journals (Sweden)

    Y. S. Povstyana

    2016-06-01

    Full Text Available The increasing amount of wastes produced by the manufacturing engineering, as well as their physical and mechanical properties and restorability provide a search for sphere of their application. The actual problem of modern science is the utilization of wastes and using them in further production that will minimize their harmful impact on the environment and reduce the cost of expensive raw materials. Wastes are ideally suitable for the manufacture of porous permeable materials (filters. Powder metallurgy allows obtaining products with controlled filtration, physical and mechanical properties. Such materials are good filters for regeneration of technical liquids, oils, cooling fluids, sewage etc. The article analyzes the methods and technologies for the manufacture of porous ceramic materials and a new technology for their manufacture, which is based on use of mill scale and natural mineral – saponite as the main components. Compression technology provides products at low pressures and sintering by passing high-temperature synthesis. The proposed technology is characterized by low cost and good physical and mechanical properties of the product that gives a reason to use them for filtering and regeneration of technical liquids.

  5. Science of sintering

    International Nuclear Information System (INIS)

    Kuczynski, G.

    1977-01-01

    Although the methods of integration of materials by sintering, have been used since the early history of humanity, the actual understanding of the process involved came only in the last three decades. As in the most human endeavors, the art preceded theory. The comprehension of the elementary processes occuring during sintering comes from the studies of model system. Although the elementary processes occuring during sintering are today quite well understood, the problem of shrinkage of a powder compact which was at the origin of Sintering Science is still far from solved. This is due to the complexity of the internal geometry of the compacts. The recent attempts to apply statistics to this problem, seem to offer some promise

  6. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering.

    Science.gov (United States)

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-03-06

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  7. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    Directory of Open Access Journals (Sweden)

    Eleonora Atzeni

    2013-03-01

    Full Text Available In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  8. GPC Light Shaper for energy efficient laser materials processing

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson

    The biggest use of lasers is in materials processing. In manufacturing, lasers are used for cutting, drilling, marking and other machining processes. Similarly, lasers are important in microfabrication processes such as photolithography, direct laser writing, or ablation. Lasers are advantageous...... with steep, well defined edges that would further increase laser cutting precision or allow “single shot” laser engraving of arbitrary 2D profiles, as opposed to point scanning [3,4]. Instead of lossy approaches, GPC beam shaping is achieved with simplified, binary phase-only optics [5] that redistributes...... because they do not wear out, have no physical contact with the processed material, avoid heating or warping effects, and are generally more precise. Since lasers are easier to adapt to different optimized shapes, they can be even more precise and energy efficient for materials processing. The cost...

  9. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting.

    Science.gov (United States)

    Benedetti, M; Torresani, E; Leoni, M; Fontanari, V; Bandini, M; Pederzolli, C; Potrich, C

    2017-07-01

    Fatigue resistance and biocompatibility are key parameters for the successful implantation of hard-tissue prostheses, which nowadays are more and more frequently manufactured by selective laser melting (SLM). For this purpose, the present paper is aimed at investigating the effect of post-sintering treatments on the fatigue behavior and biological properties of Ti samples produced by SLM. After the building process, all samples are heat treated to achieve a complete stress relief. The remaining ones are tribofinished with the aim of reducing the surface roughness of the as-sintered condition. Part of the tribofinished samples are then subjected to one of the following post-sintering treatments: (i) shot peening, (ii) hot isostatic pressing (HIP), and (iii) electropolishing. It is found that shot peening and HIP are the most effective treatments to improve the high and the very-high cycle fatigue resistance, respectively. At the same time, they preserve the good biocompatibility ensured by the biomedical Titanium Grade 23. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of thermal treatments on microstructure and mechanical properties of a Co-Cr-Mo-W biomedical alloy produced by laser sintering.

    Science.gov (United States)

    Mengucci, P; Barucca, G; Gatto, A; Bassoli, E; Denti, L; Fiori, F; Girardin, E; Bastianoni, P; Rutkowski, B; Czyrska-Filemonowicz, A

    2016-07-01

    Direct Metal Laser Sintering (DMLS) technology based on a layer by layer production process was used to produce a Co-Cr-Mo-W alloy specifically developed for biomedical applications. The alloy mechanical response and microstructure were investigated in the as-sintered state and after post-production thermal treatments. Roughness and hardness measurements, and tensile and flexural tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate the microstructure in different conditions. Results showed an intricate network of ε-Co (hcp) lamellae in the γ-Co (fcc) matrix responsible of the high UTS and hardness values in the as-sintered state. Thermal treatments increase volume fraction of the ε-Co (hcp) martensite but slightly modify the average size of the lamellar structure. Nevertheless, thermal treatments are capable of producing a sensible increase in UTS and hardness and a strong reduction in ductility. These latter effects were mainly attributed to the massive precipitation of an hcp Co3(Mo,W)2Si phase and the contemporary formation of Si-rich inclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Titanium carbide-carbon porous nanocomposite materials for radioactive ion beam production: processing, sintering and isotope release properties

    CERN Document Server

    AUTHOR|(CDS)2081922; Stora, Thierry

    2017-01-26

    The Isotope Separator OnLine (ISOL) technique is used at the ISOLDE - Isotope Separator OnLine DEvice facility at CERN, to produce radioactive ion beams for physics research. At CERN protons are accelerated to 1.4 GeV and made to collide with one of two targets located at ISOLDE facility. When the protons collide with the target material, nuclear reactions produce isotopes which are thermalized in the bulk of the target material grains. During irradiation the target is kept at high temperatures (up to 2300 °C) to promote diffusion and effusion of the produced isotopes into an ion source, to produce a radioactive ion beam. Ti-foils targets are currently used at ISOLDE to deliver beams of K, Ca and Sc, however they are operated at temperatures close to their melting point which brings target degradation, through sintering and/or melting which reduces the beam intensities over time. For the past 10 years, nanostructured target materials have been developed and have shown improved release rates of the produced i...

  12. Sintering Theory and Practice

    Science.gov (United States)

    German, Randall M.

    1996-01-01

    Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about--both in theory and in practice What is sintering? We see the end product of this thermal

  13. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J., E-mail: c.ridley@ed.ac.uk [The School of Engineering and the Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Kamenev, Konstantin V. [The School of Engineering and the Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2015-09-15

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm{sup 3}. The signal is typically too weak to introduce any further sample environment in the 30–50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or “printed”) collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques.

  14. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg; Kamenev, Konstantin V.

    2015-01-01

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm 3 . The signal is typically too weak to introduce any further sample environment in the 30–50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or “printed”) collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques

  15. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  16. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    Science.gov (United States)

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  17. Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns.

    Science.gov (United States)

    Tamac, Ece; Toksavul, Suna; Toman, Muhittin

    2014-10-01

    Metal ceramic crowns are widely used in clinical practice, but comparisons of the clinical adaptation of restorations made with different processing techniques are lacking. The purpose of this study was to compare the clinical marginal and internal adaptation of metal ceramic crowns fabricated with 3 different techniques: computer-aided design and computer-aided manufacturing (CAD/CAM) milling (CCM), direct metal laser sintering (DMLS), and traditional casting (TC). Twenty CCM, 20 DMLS, and 20 TC metal ceramic crowns were fabricated for 42 patients. Before luting the crowns, silicone replicas were obtained to measure marginal gap and internal adaptation that was evaluated at 3 regions: axial wall, axio-occlusal angle, and occlusal surface. Measurements were made with a reflected light binocular stereomicroscope at 20× magnification and analyzed with 1-way analysis of variance (ANOVA) and the Bonferroni post hoc test (α=.05). The mean marginal gap values were 86.64 μm for CCM, 96.23 μm for DMLS, and 75.92 μm for TC. The means at the axial wall region were 117.5 μm for the CCM group, 139.02 μm for the DMLS group, and 121.38 μm for the TC group. One-way ANOVA revealed no statistically significant differences among the groups for measurements at the marginal gap (P=.082) and the axial wall region (P=.114). The means at the axio-occlusal region were 142.1 μm for CCM, 188.12 μm for DMLS, and 140.63 μm for TC, and those at the occlusal surface region were 265.73 μm for CCM, 290.39 μm for DMLS, and 201.09 μm for TC. The mean values of group DMLS were significantly higher at the axio-occlusal region and the occlusal surface region than those of other groups (Pmetal ceramic crowns performed similarly in terms of clinical marginal and axial wall adaptation. The cement film thickness at the occlusal region and axio-occlusal region were higher for DMLS crowns. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc

  18. Energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1996-01-01

    A device capable of drastically improving the energy efficiency of present mask based laser materials processing systems is presented. Good accordance between experiments and simulations for a TEA-CO2 laser system designed for laser marking has been demonstrated. The energy efficiency may...... be improved with a factor of 2 - 4 for typical mask transmittances between 10 - 40%....

  19. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  20. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review of the ...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser....

  1. Alternative materials for solid oxide fuel cells: Factors affecting air-sintering of chromite interconnections

    International Nuclear Information System (INIS)

    Chick, L.A.; Bates, J.L.

    1992-01-01

    The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal and electrochemical properties. Another objective is to develop synthesis and fabrication processes for these materials whereby they can be consolidated in air into SOFC's. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFC's, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component compositions and processing on those reactions

  2. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.

    Science.gov (United States)

    Lee, Daeho; Paeng, Dongwoo; Park, Hee K; Grigoropoulos, Costas P

    2014-10-28

    We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼ 40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.

  3. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Pripanapong, Patchara; Kariya, Shota; Luangvaranunt, Tachai; Umeda, Junko; Tsutsumi, Seiichiro; Takahashi, Makoto; Kondoh, Katsuyoshi

    2016-01-01

    Ti and solution treated Mg alloys such as AZ31B (ST), AZ61 (ST), AZ80 (ST) and AZ91 (ST) were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST), in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST) exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST) dissimilar materials is discussed in this work. PMID:28773788

  4. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Patchara Pripanapong

    2016-08-01

    Full Text Available Ti and solution treated Mg alloys such as AZ31B (ST, AZ61 (ST, AZ80 (ST and AZ91 (ST were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST, in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST dissimilar materials is discussed in this work.

  5. Missing facial parts computed by a morphable model and transferred directly to a polyamide laser-sintered prosthesis: an innovation study.

    Science.gov (United States)

    Mueller, A A; Paysan, P; Schumacher, R; Zeilhofer, H-F; Berg-Boerner, B-I; Maurer, J; Vetter, T; Schkommodau, E; Juergens, P; Schwenzer-Zimmerer, K

    2011-12-01

    Mirroring of missing facial parts and rapid prototyping of templates have become widely used in the manufacture of prostheses. However, mirroring is not applicable for central facial defects, and the manufacture of a template still requires labour-intensive transformation into the final facial prosthesis. We have explored innovative techniques to meet these remaining challenges. We used a morphable model of a face for the reconstruction of missing facial parts that did not have mirror images, and skin-coloured polyamide laser sintering for direct manufacture of the prosthesis. From the knowledge gleaned from a data set of 200 coloured, three-dimensional scans, we generated a missing nose that was statistically compatible with the remaining parts of the patient's face. The planned prosthesis was manufactured directly from biocompatible skin-coloured polyamide powder by selective laser sintering, and the prosthesis planning system produced a normal-looking reconstruction. The polyamide will need adjustable colouring, and we must be able to combine it with a self-curing resin to fulfil the requirements of realistic permanent use. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of marginal/internal fit of chrome-cobalt crowns: Direct laser metal sintering versus computer-aided design and computer-aided manufacturing.

    Science.gov (United States)

    Gunsoy, S; Ulusoy, M

    2016-01-01

    The purpose of this study was to evaluate the internal and marginal fit of chrome cobalt (Co-Cr) crowns were fabricated with laser sintering, computer-aided design (CAD) and computer-aided manufacturing, and conventional methods. Polyamide master and working models were designed and fabricated. The models were initially designed with a software application for three-dimensional (3D) CAD (Maya, Autodesk Inc.). All models were fabricated models were produced by a 3D printer (EOSINT P380 SLS, EOS). 128 1-unit Co-Cr fixed dental prostheses were fabricated with four different techniques: Conventional lost wax method, milled wax with lost-wax method (MWLW), direct laser metal sintering (DLMS), and milled Co-Cr (MCo-Cr). The cement film thickness of the marginal and internal gaps was measured by an observer using a stereomicroscope after taking digital photos in ×24. Best fit rates according to mean and standard deviations of all measurements was in DLMS both in premolar (65.84) and molar (58.38) models in μm. A significant difference was found DLMS and the rest of fabrication techniques (P 0.05). DMLS was best fitting fabrication techniques for single crown based on the results.The best fit was found in marginal; the larger gap was found in occlusal.All groups were within the clinically acceptable misfit range.

  7. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles

    International Nuclear Information System (INIS)

    Ko, Seung H; Pan Heng; Grigoropoulos, Costas P; Luscombe, Christine K; Frechet, Jean M J; Poulikakos, Dimos

    2007-01-01

    All-printed electronics is the key technology to ultra-low-cost, large-area electronics. As a critical step in this direction, we demonstrate that laser sintering of inkjet-printed metal nanoparticles enables low-temperature metal deposition as well as high-resolution patterning to overcome the resolution limitation of the current inkjet direct writing processes. To demonstrate this process combined with the implementation of air-stable carboxylate-functionalized polythiophenes, high-resolution organic transistors were fabricated in ambient pressure and room temperature without utilizing any photolithographic steps or requiring a vacuum deposition process. Local thermal control of the laser sintering process could minimize the heat-affected zone and the thermal damage to the substrate and further enhance the resolution of the process. This local nanoparticle deposition and energy coupling enable an environmentally friendly and cost-effective process as well as a low-temperature manufacturing sequence to realize large-area, flexible electronics on polymer substrates

  8. Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone:hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering

    Science.gov (United States)

    Eshraghi, Shaun; Das, Suman

    2012-01-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30% HA by volume. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30 respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 MPa to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical finite element analysis (FEA) model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any loading of HA to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. Results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient and site-specific composite tissue engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129

  9. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.

    Science.gov (United States)

    Eshraghi, Shaun; Das, Suman

    2012-08-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite-element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30 vol.% HA. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30, respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical FEA model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any HA loading to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. The results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient- and site-specific composite tissue-engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All

  10. A finite difference model of the iron ore sinter process

    OpenAIRE

    Muller, J.; de Vries, T.L.; Dippenaar, B.A.; Vreugdenburg, J.C.

    2015-01-01

    Iron ore fines are agglomerated to produce sinter, which is an important feed material for blast furnaces worldwide. A model of the iron ore sintering process has been developed with the objective of being representative of the sinter pot test, the standard laboratory process in which the behaviour of specific sinter feed mixtures is evaluated. The model aims to predict sinter quality, including chemical quality and physical strength, as well as key sinter process performance parameters such ...

  11. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Charit, Indrajit; Butt, Darryl; Frary, Megan; Carroll, Mark

    2012-11-05

    This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

  12. Cutting of nonmetallic materials using Nd:YAG laser beam

    Institute of Scientific and Technical Information of China (English)

    Bashir Ahmed Tahir; Rashid Ahmed; M. G. B. Ashiq; Afaq Ahmed; M. A. Saeed

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials,which is one of the most important and popular industrial applications of laser.The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed.For approximate cutting depth,a theoretical study is conducted in terms of material property and cutting speed.Results show a nonlinear relation between the cutting depth and input energy.There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s.An extra energy is utilized in the deep cutting.It is inferred that as the laser power increases,cutting depth increases.The experimental outcomes are in good agreement with theoretical results.This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting,scribing,trimming,engraving,and marking nonmetallic materials.

  13. Cutting of nonmetallic materials using Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Tahir, Bashir Ahmed; Ashiq, M.G. B.; Saeed, M.A.; Ahmed, Rashid; Ahmed, Afaq

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Preparation of sintered foam materials by alkali-activated coal fly ash.

    Science.gov (United States)

    Zhao, Yelong; Ye, Junwei; Lu, Xiaobin; Liu, Mangang; Lin, Yuan; Gong, Weitao; Ning, Guiling

    2010-02-15

    Coal fly ash from coal fired power stations is a potential raw material for the production of ceramic tiles, bricks and blocks. Previous works have demonstrated that coal fly ash consists mainly of glassy spheres that are relatively resistant to reaction. An objective of this research was to investigate the effect of alkali on the preparation process of the foam material. Moreover, the influence of foam dosage on the water absorption, apparent density and compressive strength was evaluated. The experimental results showed that homogenous microstructures of interconnected pores could be obtained by adding 13 wt.% foaming agent at 1050 degrees C, leading to foams presenting water absorption, apparent density and compressive strength values of about 126.5%, 0.414 g/cm(3), 6.76 MPa, respectively.

  15. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  16. Optical improvement for laser material processing

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, J.; De Keijzer, M.A.; De Kok, C.J.G.M. [ECN Engineering and Services, Petten (Netherlands); Molenaar, R.; Kettelarij, H.

    2010-05-15

    The use of laser technology enables flexibility and new concepts for example solar cell production but also optical moulds. The reason why laser technology is used in these cases is not the laser system itself but the ability to tailor this type of energy to the demands of the production processes. To ensure the full potential of the laser technology it can be improved by adding optical elements like polarizer, cameras, lenses and sensors. Two of these extra optical elements are presented here. First laser pulse energy attenuation. This is used to increase the controllability of laser processes. And second a new camera optic that enables integrated alignment with respect to features on the product. This last option enables marking on existing features and automated compensation of scanner drift. These camera systems can be used for micro welding of polymers and repair of existing markings in moulds.

  17. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  18. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Science.gov (United States)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  19. Automotive perspective on laser material processing

    International Nuclear Information System (INIS)

    Roessler, D.M.

    1989-01-01

    In this paper a broad review is given of the development and use of laser processing in the automotive industry. a brief introduction to the major types of processing lasers and related systems is followed by a summary of the major processing regimes. Examples are given of the automotive industry's use of lasers in a variety of applications, from heat treating and welding, to cutting and marking

  20. Effect of Moisture Content of Paper Material on Laser Cutting

    Science.gov (United States)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  1. Material Processing with High Power CO2-Lasers

    Science.gov (United States)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  2. Synthesis of nano-structured materials by laser-ablation and their application to sensors

    International Nuclear Information System (INIS)

    Okada, T.; Suehiro, J.

    2007-01-01

    We describe the synthesis of nano-structured materials of ZnO and Pd by laser ablation and their applications to sensors. The synthesis of ZnO nano-wires was performed by nano-particle assisted deposition (NPAD) where nano-crystals were grown with nano-particles generated by laser-ablating a ZnO sintered target in an Ar background gas. The synthesized ZnO nano-wires were characterized with a scanning electron microscopy and the photoluminescent characteristics were examined under an excitation with the third harmonics of a Nd:YAG laser. The nano-wires with a diameter in the range from 50 to 150 nm and a length of up to 5 μm were taken out of the substrate by laser blow-off technique and/or sonication. It was confirmed that the nano-wires showed the stimulated emission under optical pumping, indicating a high quality of the crystalinity. Pd nano-particles were generated by laser-ablating a Pd plate in pure water. The transmission electron microscope observation revealed that Pd nano-particles with a diameter in the range from 3 nm to several tens of nanometers were produced. Using these nano-structured materials, we successfully fabricated sensors by the dielectrophoresis techniques. In the case of the ultraviolet photosensor, a detection sensitivity of 10 nW/cm 2 was achieved and in the case of hydrogen sensing, the response time of less than 10 s has been demonstrated with Pd nano-particles

  3. Laser-limiting materials for medical use

    Science.gov (United States)

    Podgaetsky, Vitaly M.; Kopylova, Tat'yana N.; Tereshchenko, Sergey A.; Reznichenko, Alexander V.; Selishchev, Sergey V.

    2004-03-01

    The important problem of modern laser medicine is the decrease of an exposure of biological tissues outside of an operational field and can be solved by optical radiation limiting. Organic dyes with reversibly darkening can be placed onto surfaces of irradiated tissues or can be introduced in solder for laser welding of vessels. The limiting properties of a set of nontoxic organic compounds were investigated. Nonlinear optical properties of dyes having reverse saturable absorption (pyran styryl derivatives, cyanine and porphyrine compounds) were studied under XeCl and YAG:Nd (II harmonics) lasers excitation. The effect of attenuation of a visible laser radiation is obtained for ethanol solutions of cyanines: radiation attenuation coefficient ( AC) = 25-35 at N/S = 100-250 MW/cm2. In water solutions of such compounds in UV spectrum range AC ~ 10. The spectral characteristics of compounds appeared expedient enough to operational use in laser limiters (broad passband in visible range of a spectrum). Under the data of Z-scanning (the scheme F/10) value AC ~ 70 was reached. The limiting of power laser radiation in visible (λ = 532 nm) and UV- (λ = 308 nm) spectral region and nanosecond pulse duration (7 -13 ns) across porphyrine solutions and their complexes with some metals (13 compounds) was investigated too. The comparative study of optical limiting dependence on intensity of laser radiation, solvent type and concentration of solutions was carried out for selecte wavelength. There was shown a possible use of pyran styryl derivatives DCM as limiters of visual laser radiation. To understand a mechanism of laser radiation limitation the light induced processes were experimentally and theoretically studied in organic molecules. The quantum-chemical investigation of one cyanine compound was carried out. There were noted the perspectives of laser radiation limiting by application of inverted schemes of traditional laser shutters. Usage of phenomena of light -induced

  4. Sintering of Synroc D

    International Nuclear Information System (INIS)

    Robinson, G.

    1982-01-01

    Sintering has been investigated as a method for the mineralization and densification of high-level nuclear defense waste powder. Studies have been conducted on Synroc D composite powder LS04. Optimal densification has been found to be highly dependent on the characteristics of the starting material. Powder subjected to milling, which was believed to reduce the level of agglomeration and possibly particle size, was found to densify better than powder not subjected to this milling. Densities of greater than 95% of theoretical could be achieved for samples sintered at 1150 to 1200 0 C. Mineralogy was found to be as expected for Synroc D for samples sintered in a CO 2 /CO atmosphere where the Fe +2 /Fe +3 ratio was maintained at 1.0 to 5.75. In a more oxidizing, pure CO 2 atmosphere a new phase, not previously identified in Synroc D, was found

  5. Laser processing for manufacturing nanocarbon materials

    Science.gov (United States)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to

  6. Laser sintering of doped strontium aluminate via modified sol-gel for use as a ceramic pigment; Sinterizacao a laser do aluminato de estroncio dopado via sol-gel modificado para aplicacao como pigmento ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Soares, F.M. dos S.; Valerio, M.E.G. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil)

    2017-01-15

    Powder of Dy{sup 3+} co-doped SrAl{sub 2}O{sub 4} :Eu{sup 3+} was produced via proteic sol-gel method, a modified sol-gel route which allows the formation of oxides at lower temperatures than other methods. CO{sub 2} laser sintering was used as a method for heat treatment, effective in reducing trivalent europium ions in doped samples. Thermal analysis of the precursors, performed by TG and DTA, revealed that the crystallization of SrAl{sub 2}O{sub 4} phase occurred at approximately 1060 °C. X-ray diffraction showed that the samples, before and after sintering, had monoclinic and hexagonal phases formation. DLS technique revealed the presence of nanosized and micrometric particles, and particle agglomerates, confirmed by SEM images. Micrographs of the fracture surface of a sintered pellet revealed a high degree of densification caused by heat treatment. Photoluminescence measurements showed that the samples after synthesis and before heat treatment with laser had reddish emission, composed of characteristic narrow emission lines from Eu{sup 3+} and more intense emission when the samples were excited at 265 nm. The laser treatment promoted the reduction of Eu{sup 3+} to Eu{sup 2+} and this effect was confirmed by the presence of a wide emission band in the green region of the spectrum with a maximum emission obtained after excitation at 350 nm. The luminescent decay time of the thermally treated sample was approximately 100 min. Via XRF measurements of acquired frit and DTA and TG of the frit, pigment and mixtures of both, it was noticed good compatibility in terms of thermal processes, that indicated that the pigment has a potential to be used in ceramic tiles. (author)

  7. Laser Cutting of Materials of Various Thicknesses

    Directory of Open Access Journals (Sweden)

    Martin Grepl

    2012-01-01

    Full Text Available Thise paper deals with the application of laser technology and optimizing the parameters for cutting nickel alloy. The theoretical part of the paper describes various types of lasers, their principles and usage. The experimental part focuses on optimizing the section parameteres of Haynes 718 alloy using a CO2 gas laser. This alloy is employed in the production of components for the aircraft industry. The experiment was performed on the Wibro Delta laser system designed for sizable parts. The actual section is measured with respect to its quality and any accompanying side effects that occur during the process. In this case, laser output and cutting speed were the parameters with most influence on the final cut. The summary explains the results achieved in a metallographic laboratory.

  8. Glass-ceramic material of the Si-Ca-K system sintered from sugarcane bagasse ash

    International Nuclear Information System (INIS)

    Teixeira, S.R.; Silva, R.A.; Santos, G.C.; Santos, G.T.A.; Romero, M.; Rincon, J.Ma.; Reynoso, V.C.S.

    2009-01-01

    This study analyses the crystallization of glasses obtained from two samples of sugarcane bagasse ash - SCBA (named Cinza 07 and Cinza 08) mixed with carbonates (calcium and potassium). The glasses and their crystallization were examined using differential thermal analysis (DTA), X-ray fluorescence (XRF) and X-ray diffraction (XRD). The characterizations of the ashes show that they consist mainly of crystalline materials, predominantly quartz, with iron, potassium and aluminum oxides as minor elements. For the sample Cinza07 the DTA data presents broad and overlaid crystallization peaks, indicating crystallization of more than two different phases. The DTA results of samples with different grain-size distribution show that the crystallization peak intensities increase as the sample grain-size decreases, suggesting that surface crystallization actively participate on the mechanism of crystallization. For the sample Cinza 08 the DTA data presents two well defined peaks. In this case, the more intense peak was evaluated to obtain kinetic data (Eat= 355 kJ/mol) to the major phase (Wollastonita). (author)

  9. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  10. Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad

    2011-01-01

    Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.

  11. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  12. Fundamentals of ultrafast laser-material interaction

    Czech Academy of Sciences Publication Activity Database

    Shugaev, M.V.; Wu, Ch.; Armbruster, O.; Naghilou, A.; Brouwer, N.; Ivanov, D.S.; Derrien, Thibault; Bulgakova, Nadezhda M.; Kautek, W.; Rethfeld, B.; Zhigilei, L.

    2016-01-01

    Roč. 41, č. 12 (2016), s. 960-968 ISSN 0883-7694 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S EU Projects: European Commission(XE) 657424 - QuantumLaP Institutional support: RVO:68378271 Keywords : femtosecond laser * Coulomb explosion * microscopic mechanisms * electron-diffraction * molecular- dynamics * metal targets * ablation * surface * dielectrics Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 5.199, year: 2016

  13. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC Materials

    Directory of Open Access Journals (Sweden)

    Roberto Orrù

    2013-04-01

    Full Text Available A wider utilization of ultra high temperature ceramics (UHTC materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS, consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step.

  14. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van Bael, Simon, E-mail: simon.vanbael@mech.kuleuven.be [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, bus 2419, 3001 Heverlee (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Desmet, Tim [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Chai, Yoke Chin [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Pyka, Gregory [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, bus 2450, 3001 Leuven (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Kruth, Jean-Pierre [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, Jan [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium)

    2013-08-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O{sub 2} plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O{sub 2} plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization.

  15. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Van Bael, Simon; Desmet, Tim; Chai, Yoke Chin; Pyka, Gregory; Dubruel, Peter; Kruth, Jean-Pierre; Schrooten, Jan

    2013-01-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O 2 plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O 2 plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization

  16. Clinical acceptability of metal-ceramic fixed partial dental prosthesis fabricated with direct metal laser sintering technique-5 year follow-up.

    Science.gov (United States)

    Prabhu, Radhakrishnan; Prabhu, Geetha; Baskaran, Eswaran; Arumugam, Eswaran M

    2016-01-01

    In recent years, direct metal laser sintered (DMLS) metal-ceramic-based fixed partial denture prostheses have been used as an alternative to conventional metal-ceramic fixed partial denture prostheses. However, clinical studies for evaluating their long-term clinical survivability and acceptability are limited. The aim of this study was to assess the efficacy of metal-ceramic fixed dental prosthesis fabricated with DMLS technique, and its clinical acceptance on long-term clinical use. The study group consisted of 45 patients who were restored with posterior three-unit fixed partial denture prosthesis made using direct laser sintered metal-ceramic restorations. Patient recall and clinical examination of the restorations were done after 6months and every 12 months thereafter for the period of 60 months. Clinical examination for evaluation of longevity of restorations was done using modified Ryge criteria which included chipping of the veneered ceramic, connector failure occurring in the fixed partial denture prosthesis, discoloration at the marginal areas of the veneered ceramic, and marginal adaptation of the metal and ceramic of the fixed denture prosthesis. Periapical status was assessed using periodical radiographs during the study period. Survival analysis was made using the Kaplan-Meier method. None of the patients had failure of the connector of the fixed partial denture prostheses during the study period. Two exhibited biological changes which included periapical changes and proximal caries adjacent to the abutments. DMLS metal-ceramic fixed partial denture prosthesis had a survival rate of 95.5% and yielded promising results during the 5-year clinical study.

  17. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, J. T. M.; Ocelik, V.; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  18. Spark-plasma-sintering magnetic field assisted compaction of Co{sub 80}Ni{sub 20} nanowires for anisotropic ferromagnetic bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Ouar, Nassima; Schoenstein, Frédéric; Mercone, Silvana; Farhat, Samir; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, CNRS, LSPM—UPR 3407, Université Paris 13, Sorbonne-Paris-Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse (France); Villeroy, Benjamin [Institut de Chimie et des Matériaux Paris Est, CNRS, ICMPE—UMR 7182, Equipe de Chimie Métallurgique des Terres Rares, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Leridon, Brigitte [Laboratoire de Physique et d’Étude des Matériaux, LPEM, ESPCI-ParisTech, CNRS, UPMC, 10 rue Vauquelin, F-75231 Paris Cedex 5 (France)

    2013-10-28

    We developed a two-step process showing the way for sintering anisotropic nanostructured bulk ferromagnetic materials. A new reactor has been optimized allowing the synthesis of several grams per batch of nanopowders via a polyol soft chemistry route. The feasibility of the scale-up has been successfully demonstrated for Co{sub 80}Ni{sub 20} nanowires and a massic yield of ∼97% was obtained. The thus obtained nanowires show an average diameter of ∼6 nm and a length of ∼270 nm. A new bottom-up strategy allowed us to compact the powder into a bulk nanostructured system. We used a spark-plasma-sintering technique under uniaxial compression and low temperature assisted by a permanent magnetic field of 1 T. A macroscopic pellet of partially aligned nanowire arrays has been easily obtained. This showed optimized coercive properties along the direction of the magnetic field applied during compaction (i.e., the nanowires' direction)

  19. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Nan Cewen; Zhou Min; Liu Weishu; Zhang Boping; Kita, Takuji

    2006-01-01

    Polycrystalline Ag n Pb m SbTe m+2n thermoelectric materials, whose compositions can be described as Ag 0.8 Pb 18+x SbTe 20 were prepared using a combined process of mechanical alloying and spark plasma sintering. Electric properties of the sintered samples with different Pb contents were measured from room temperature to 700 K. The maximum power factor of 1.766 mW/mK 2 was obtained at 673 K for the Ag 0.8 Pb 22 SbTe 20 sample, which corresponds to a high dimensionless figure of merit, ZT=1.37. This best composition is different from that reported before

  20. Microstructural evolution and control in laser material processing

    International Nuclear Information System (INIS)

    Kaul, R.; Nath, A.K.

    2005-01-01

    Laser processing, because of its characteristic features, often gives rise to unique microstructure and properties not obtained with other conventional processes. We present various diverse laser processing case studies involving control of microstructure through judicious selection of processing parameters carried out with indigenously developed high power CO 2 lasers. The first study describes microstructural control during end plug laser welding of PFBR fuel pin, involving crack pone alloy D9 tube and type 316 M stainless steel (SS) plug, through preferential displacement of focused laser beam. Crater and associated cracks were eliminated by suitable laser power ramping. Another case study describes how low heat input characteristics of laser cladding process has been exploited for suppressing dilution in 'Colomony 6' deposits on austenitic SS. The results are in sharp contrast to extensive dilution noticed in Colmony 6 hard faced deposits made by GTAW. A novel laser surface melting (LSM) treatment for type 316 (N) SS weld metal has been developed to generate a sensitization-resistant microstructure which leads to enhanced resistance against intergranular corrosion (IGC). IGC resistance of laser treated surface has been found to be critically dependent on laser processing parameters. Experimental observations have been analyzed with thermal simulation. We have also studied the effect of laser beam spatial intensity profile on the microstructure in LSM. We have developed laser-assisted graded hard facing of austenitic SS substrate with Stellite 6 which, in contrast to direct deposition either by laser or GTAW, produced smooth transition in chemical composition and hardness used to control grain coarsening and martensite formation in type 430 SS weldment. Laser rapid manufacturing (LRM) is emerging as a new rapid and cost effective process for low volume fabrication, esp. of expensive materials. The talk will also present microstructural characteristics of laser

  1. Temperature analysis of laser ignited metalized material using spectroscopic technique

    Science.gov (United States)

    Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet

    2018-05-01

    The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.

  2. Charged particle and laser irradiation of selected materials

    International Nuclear Information System (INIS)

    Svendsen, W.E.

    1996-11-01

    The main topics of the present thesis are the processes governing electronic sputtering of insulators and laser ablation of metals and insulators. The sputtering yield for electron bombardment of solid deuterium was investigated using quartz crystal microbalances as the measuring technique. The sputtering yield was measured with varying electron energy and deuterium film thickness. Laser ablation measurements of silver and nickel were carried out using a Nd:YAG laser. The effect of various experimental parameters such as background gas pressure (Ar, N 2 ), position of quartz crystals with respect to target position and the optimal number of laser shots for carrying out the experiments were investigated. The deposition rate was measured with varying laser wavelength and laser fluence. The angular distribution of the ablated material was measured for silver as well. A theoretical model based on the thermal properties of laser interaction with metals was applied in the initial phase of ablation. For the non-thermal processes governing laser interaction with the ablated plasma plume, a model developed by Phipps and Dreyfus was used to interpret the results. Laser ablation measurements of water-ice were carried using a Nitrogen laser. Attempts were made to measure the deposition rate for various the laser wavelengths and energies. (au) 8 tabs., 49 ills., 77 refs

  3. Charged particle and laser irradiation of selected materials

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, W E

    1996-11-01

    The main topics of the present thesis are the processes governing electronic sputtering of insulators and laser ablation of metals and insulators. The sputtering yield for electron bombardment of solid deuterium was investigated using quartz crystal microbalances as the measuring technique. The sputtering yield was measured with varying electron energy and deuterium film thickness. Laser ablation measurements of silver and nickel were carried out using a Nd:YAG laser. The effect of various experimental parameters such as background gas pressure (Ar, N{sub 2}), position of quartz crystals with respect to target position and the optimal number of laser shots for carrying out the experiments were investigated. The deposition rate was measured with varying laser wavelength and laser fluence. The angular distribution of the ablated material was measured for silver as well. A theoretical model based on the thermal properties of laser interaction with metals was applied in the initial phase of ablation. For the non-thermal processes governing laser interaction with the ablated plasma plume, a model developed by Phipps and Dreyfus was used to interpret the results. Laser ablation measurements of water-ice were carried using a Nitrogen laser. Attempts were made to measure the deposition rate for various the laser wavelengths and energies. (au) 8 tabs., 49 ills., 77 refs.

  4. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  5. Laser irradiation of carbon–tungsten materials

    International Nuclear Information System (INIS)

    Marcu, A; Lungu, C P; Ursescu, D; Porosnicu, C; Grigoriu, C; Avotina, L; Kizane, G; Marin, A; Osiceanu, P; Grigorescu, C E A; Demitri, N

    2014-01-01

    Carbon–tungsten layers deposited on graphite by thermionic vacuum arc (TVA) were directly irradiated with a femtosecond terawatt laser. The morphological and structural changes produced in the irradiated area by different numbers of pulses were systematically explored, both along the spots and in their depths. Although micro-Raman and Synchrotron-x-ray diffraction investigations have shown no carbide formation, they have shown the unexpected presence of embedded nano-diamonds in the areas irradiated with high fluencies. Scanning electron microscopy images show a cumulative effect of the laser pulses on the morphology through the ablation process. The micro-Raman spatial mapping signalled an increased percentage of sp 3 carbon bonding in the areas irradiated with laser fluencies around the ablation threshold. In-depth x-ray photoelectron spectroscopy investigations suggested a weak cumulative effect on the percentage increase of the sp 2 -sp 3 transitions with the number of laser pulses just for nanometric layer thicknesses. (paper)

  6. Laser materials processing applications at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Hargrove, R.S.; Dragon, E.P.; Hackel, R.P.; Kautz, D.D.; Warner, B.E.

    1993-01-01

    High power and high radiance laser technologies developed at Lawrence Livermore National Laboratory (LLNL) such as copper-vapor lasers, solid-state slab lasers, dye lasers, harmonic wavelength conversion of these lasers, and fiber optic delivery systems show great promise for material processing tasks. Evaluation of models suggests significant potential for tenfold increases in welding, cutting, and drilling performance, as well as capability for applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper and dye laser systems are currently being developed at LLNL for uranium enrichment production facilities. The goals of this program are to develop low-cost, reliable and maintainable industrial laser systems. Chains of copper lasers currently operate at more than 1.5 kW output and achieve mean time between failures of more than 1,000 hours. The beam quality of copper vapor lasers is approximately three times the diffraction limit. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Diode laser pumped, Nd:YAG slab lasers are also being developed at LLNL. Current designs achieve powers of greater than 1.0 kW and projected beam quality is in the two to five times diffraction limited range. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratio holes in drilling tests (> 60: 1) and features with micron scale (5-50 μm) sizes. Other, traditionally more difficult, materials such as copper, aluminum and ceramics will soon be studied in detail

  7. Femtosecond laser induced phenomena in transparent solid materials

    DEFF Research Database (Denmark)

    Tan, D.Z.; Sharafudeen, K.N.; Yue, Yuanzheng

    2016-01-01

    solved, especially concerning the interaction of strong, ultra-short electromagnetic pulses with matter, and also because potential advanced technologies will emerge due to the impressive capability of the intense femtosecond laser to create new material structures and hence functionalities. When......The interaction of intense femtosecond laser pulses with transparent materials is a topic that has caused great interest of scientists over the past two decades. It will continue to be a fascinating field in the coming years. This is because many challenging fundamental problems have not been......–matter interaction, and fabricate various integrated micro-devices. In recent years we have witnessed exciting development in understanding and applying femtosecond laser induced phenomena in transparent materials. The interaction of femtosecond laser pulses with transparent materials relies on non...

  8. Short-pulse laser interactions with disordered materials and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L. [Univ. of California, Berkeley, CA (United States)

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  9. Study of underwater laser propulsion using different target materials.

    Science.gov (United States)

    Qiang, Hao; Chen, Jun; Han, Bing; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2014-07-14

    In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets.

  10. Laser cutting of laminated sheet material: a modeling exercise

    NARCIS (Netherlands)

    de Graaf, R.F.; Meijer, J.

    1997-01-01

    Laser cutting has been investigated for a number of aluminum-synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at rates comparable to those of

  11. Laser assisted embedding of nanoparticles into metallic materials

    International Nuclear Information System (INIS)

    Lin Dong; Suslov, Sergey; Ye Chang; Liao Yiliang; Liu, C. Richard; Cheng, Gary J.

    2012-01-01

    This paper reports a methodology of half-embedding nanoparticles into metallic materials. Transparent and opaque nanoparticles are chosen to demonstrate the process of laser assisted nanoparticle embedding. Dip coating method is used to coat transparent or opaque nanoparticle on the surface of metallic material. Nanoparticles are embedded into substrate by laser irradiation. In this study, the mechanism and process of nanoparticle embedding are investigated. It is found both transparent and opaque nanoparticles embedding are with high densities and good uniformities.

  12. Laser spectroscopy of gas confined in nanoporous materials

    OpenAIRE

    Svensson, Tomas; Shen, Zhijian

    2010-01-01

    We show that high-resolution laser spectroscopy can probe surface interactions of gas confined in nanocavities of porous materials. We report on strong line broadening and unfamiliar line shapes due to tight confinement, as well as signal enhancement due to multiple photon scattering. This new domain of laser spectroscopy constitute a challenge for the theory of collisions and spectroscopic line shapes, and open for new ways of analyzing porous materials and processes taking place therein.

  13. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-04-01

    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  14. Solid material evaporation into an ECR source by laser ablation

    International Nuclear Information System (INIS)

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-01-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10 7 W/cm 2 has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source

  15. Generation of ultrasound in materials using continuous-wave lasers.

    Science.gov (United States)

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  16. Technology Assessment of Laser-Assisted Materials Processing in Space

    Science.gov (United States)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  17. Sintering and Electrical Characterization of La and Nb Co‐doped SrTiO3 Electrode Materials for Solid Oxide Cell Applications

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Agersted, Karsten

    2014-01-01

    Single‐phase lanthanum and niobium co‐doped strontium titanate (Sr1–3x/2LaxTi0.9Nb0.1O3; x = 0–0.02) ceramics were prepared. Dilatometry in reducing atmosphere showed an increase in the sintering rate and sintered density with an increase in La amount. Microscopy of fractured surfaces of sintered...... samples showed that the average grain size increased drastically in reducing conditions with increasing La content (and associated A‐site vacancies). By incorporating 2 mol.% La, the electronic conductivity significantly improved from 80 to 135 S cm−1 at 1,000 °C, and even larger improvements were...... observed at lower temperatures. These observations demonstrate the flexibility in tailoring the microstructure and electronic transport properties by doping small amounts of La into the Nb‐doped SrTiO3 and show that Sr1–3x/2LaxTi0.9Nb0.1O3 is a potential electrode material for solid oxide cells....

  18. Laser-accelerated particle beams for stress testing of materials.

    Science.gov (United States)

    Barberio, M; Scisciò, M; Vallières, S; Cardelli, F; Chen, S N; Famulari, G; Gangolf, T; Revet, G; Schiavi, A; Senzacqua, M; Antici, P

    2018-01-25

    Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 10 18  W/cm 2 ) short-pulse (duration testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material. We confirm this by analyzing changes in the mechanical, optical, electrical, and morphological properties of five materials of interest to be used in harsh conditions.

  19. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  20. Consolidation & Factors Influencing Sintering Process in Polymer Powder Based Additive Manufacturing

    Science.gov (United States)

    Sagar, M. B.; Elangovan, K.

    2017-08-01

    Additive Manufacturing (AM) is two decade old technology; where parts are build layer manufacturing method directly from a CAD template. Over the years, AM techniques changes the future way of part fabrication with enhanced intricacy and custom-made features are aimed. Commercially polymers, metals, ceramic and metal-polymer composites are in practice where polymers enhanced the expectations in AM and are considered as a kind of next industrial revolution. Growing trend in polymer application motivated to study their feasibility and properties. Laser sintering, Heat sintering and Inhibition sintering are the most successful AM techniques for polymers but having least application. The presentation gives up selective sintering of powder polymers and listed commercially available polymer materials. Important significant factors for effective processing and analytical approaches to access them are discussed.

  1. Shear Bond Strength of Composite and Ceromer Superstructures to Direct Laser Sintered and Ni-Cr-Based Infrastructures Treated with KTP, Nd:YAG, and Er:YAG Lasers: An Experimental Study.

    Science.gov (United States)

    Gorler, Oguzhan; Hubbezoglu, Ihsan; Ulgey, Melih; Zan, Recai; Guner, Kubra

    2018-04-01

    The aim of this study was to examine the shear bond strength (SBS) of ceromer and nanohybrid composite to direct laser sintered (DLS) Cr-Co and Ni-Cr-based metal infrastructures treated with erbium-doped yttrium aluminum garnet (Er:YAG), neodymium-doped yttrium aluminum garnet (Nd:YAG), and potassium titanyl phosphate (KTP) laser modalities in in vitro settings. Experimental specimens had four sets (n = 32) including two DLS infrastructures with ceromer and nanohybrid composite superstructures and two Ni-Cr-based infrastructures with ceromer and nanohybrid composite superstructures. Of each infrastructure set, the specimens randomized into four treatment modalities (n = 8): no treatment (controls) and Er:YAG, Nd:YAG, and KTP lasers. The infrastructures were prepared in the final dimensions of 7 × 3 mm. Ceromer and nanohybrid composite was applied to the infrastructures after their surface treatments according to randomization. The SBS of specimens was measured to test the efficacy of surface treatments. Representative scanning electron microscopy (SEM) images after laser treatments were obtained. Overall, in current experimental settings, Nd:YAG, KTP, and Er:YAG lasers, in order of efficacy, are effective to improve the bonding of ceromer and nanohybrid composite to the DLS and Ni-Cr-based infrastructures (p laser is more effective in the DLS/ceromer infrastructures (p laser, as second more effective preparation, is more effective in the DLS/ceromer infrastructures (p laser modalities, in order of success, Nd:YAG, KTP, and Er:YAG, are effective to increase bonding of these structures.

  2. Production of sintered alumina from powder; optimization of the sinterized parameters for the maximum mechanical resistence

    International Nuclear Information System (INIS)

    Rocha, J.C. da.

    1981-02-01

    Pure, sinterized alumina and the optimization of the parameters of sinterization in order to obtain the highest mechanical resistence are discussed. Test materials are sinterized from a fine powder of pure alumina (Al 2 O 3 ), α phase, at different temperatures and times, in air. The microstructures are analysed concerning porosity and grain size. Depending on the temperature or the time of sinterization, there is a maximum for the mechanical resistence. (A.R.H.) [pt

  3. Vacuum-Free, Maskless Patterning of Ni Electrodes by Laser Reductive Sintering of NiO Nanoparticle Ink and Its Application to Transparent Conductors

    KAUST Repository

    Lee, Daeho

    2014-10-28

    © 2014 American Chemical Society. We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.

  4. Development of high-power CO2 lasers and laser material processing

    Science.gov (United States)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  5. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  6. Microscopic appearance analysis of raw material used for the production of sintered UO2 by scanning electron microscope

    International Nuclear Information System (INIS)

    Liu feiming

    1992-01-01

    The paper describes the microscopic appearance of UO 2 , U 3 O 8 , ADU and AUC powders used for the production of sintered UO 2 slug of nuclear fuel component of PWR. The characteristic analysis of the microscopic appearance observed by scanning electron microscope shows that the quality and finished product rate of sintered UO 2 depend on the appearance characteristic of the active Uo 2 powder, such as grade size and its distribution, spherulitized extent, surface condition and heap model etc.. The addition of U 3 O 8 to the UO 2 powder improves significantly the quality and the finished product rate. The mechanism of this effect is discussed on the basis of the microscopic appearance characteristic for two kinds of powder

  7. UV laser micromachining of ceramic materials: formation of columnar topographies

    International Nuclear Information System (INIS)

    Oliveira, V.; Vilar, R.; Conde, O.

    2001-01-01

    Laser machining is increasingly appearing as an alternative for micromachining of ceramics. Using ceramic materials using excimer lasers can result in smooth surfaces or in the formation of cone-like or columnar topography. Potential applications of cone-shaped or columnar surface topography include, for example, light trapping in anti-reflection coatings and improvement of adhesion bonding between ceramic materials. In this communication results of a comparative study of surface topography change during micromachining of several ceramic materials with different ablation behaviors are reported. (orig.)

  8. Modeling of high energy laser ignition of energetic materials

    International Nuclear Information System (INIS)

    Lee, Kyung-cheol; Kim, Ki-hong; Yoh, Jack J.

    2008-01-01

    We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers the effect of irradiating a steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultrashort (femto- and picosecond) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine, triaminotrinitrobenzene, and octahydrotetranitrotetrazine are compared to experimental results. The experimental and numerical results are in good agreement

  9. Laser Induced Damage in Optical Materials: 1980.

    Science.gov (United States)

    1981-10-01

    conference organization. As many of you have experienced, the printed proceedings of these Laser Damage Symposia in our personal libraries are...responsible person or agency. I look forward to our continued relationship. Finally, let me thank the organizers of this Symposium. They have done a...the professional operation of the Symposium and Ms. Susie Rivera and Ms. Sheila Aaker for their part in the preparation and publication of the

  10. Laser diagnostics of materials and chemistry

    International Nuclear Information System (INIS)

    Hartford, A. Jr.

    1984-01-01

    Several examples are given of the ability of laser-based diagnostic techniques to make noninvasive measurements in hostile environments. Using coherent anti-Stokes Raman scattering both majority and minority species concentrations, as well as temperature, have been measured in the hot, high-pressure, particle-laden stream of a coal gasifier. In addition, numerous toxic and corrosive elements in the gasifier stream have been identified, but not yet quantified. In addition to providing the capability for making analytical determinations, laser techniques have been extensively employed to measure the rates of elementary chemical reactions. Recently, the temperature regime over which such meaurements are possible has been expanded. Although much of the laser diagnostic activity to date has involved investigations of the gas phase, significant information concerning heterogeneous phenomena can still be inferred. For instance, gas-solid reactions can manifest themselves as changes in vapor phase composition. Furthermore, in the future we expect expanded studies involving reactions of refractory metals (both atoms and clusters) and additional investigations of processes occurring at interfaces and on surfaces

  11. Requirements and new materials for fusion laser systems

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n 2 ) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978

  12. Requirements and new materials for fusion laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Stokowski, S.E.; Weber, M.J.; Saroyan, R.A.; Hagen, W.F.

    1977-10-01

    Higher focusable power in neodymium glass fusion lasers can be obtained through the use of new materials with lower nonlinear index (n/sub 2/) and better energy storage capabilities than the presently employed silicate glass. Silicate, phosphate, fluorophosphate, and beryllium fluoride glasses are discussed in terms of fusion laser requirements, particularly those for the proposed Nova laser. Examples of the variation in spectroscopic and optical properties obtainable with compositional changes are given. Results of a system evaluation of potential laser materials show that fluorophosphate glasses have many of the desired properties for use in Nova. These glasses are now being cast in large sizes (30-cm diameter) and will be tested in prototype amplifiers in 1978.

  13. Immediate, non-submerged, root-analogue direct laser metal sintering (DLMS) implants: a 1-year prospective study on 15 patients.

    Science.gov (United States)

    Mangano, Francesco Guido; De Franco, Michele; Caprioglio, Alberto; Macchi, Aldo; Piattelli, Adriano; Mangano, Carlo

    2014-07-01

    This study evaluated the 1-year survival and success rate of root-analogue direct laser metal sintering (DLMS) implants, placed into the extraction sockets of 15 patients. DLMS is a technology which allows solids with complex geometry to be fabricated by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model; the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer-by-layer, the desired object. Cone-beam computed tomography (CBCT) acquisition and 3D image conversion, combined with the DLMS process, allow the fabrication of custom-made, root-analogue implants (RAIs). CBCT images of 15 non-restorable premolars (eight maxilla; seven mandible) were acquired and transformed into 3D models: from these, custom-made, root-analogue DLMS implants with integral abutment were fabricated. Immediately after tooth extraction, the RAIs were placed in the sockets and restored with a single crown. One year after implant placement, clinical and radiographic parameters were assessed: success criteria included absence of pain, suppuration, and exudation; absence of implant mobility and absence of continuous peri-implant radiolucency; distance between the implant shoulder and the first visible bone-to-implant contact <1.5 mm from initial surgery; and absence of prosthetic complications. At the 1-year follow-up, no implants were lost, for a survival rate of 100 %. All implants were stable, with no signs of infection. The good conditions of the peri-implant tissues were confirmed by the radiographic examination, with a mean DIB of 0.7 mm (±0.2). The possibility of fabricating custom-made, RAI DLMS implants opens new interesting horizons for immediate placement of dental implants.

  14. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, J. Thomas [Washington State Univ., Pullman, WA (United States)

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  15. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  16. Laser Beam Melting of Multi-Material Components

    Science.gov (United States)

    Laumer, Tobias; Karg, Michael; Schmidt, Michael

    First results regarding the realisation of multi-material components manufactured by Laser Beam Melting of polymers and metals are published. For realising composite structures from polymer powders by additive manufacturing, at first relevant material properties regarding compatibility have to be analysed. The paper shows the main requirements for compatibility between different materials and offers first results in form of a compatibility matrix of possible combinations for composite structures. For achieving gradient properties of additively manufactured metal parts by using composite materials the composition of alloying components in the powder and adapted process strategies are varied. As an alternative to atomizing pre-alloyed materials, mixtures of different powders are investigated.

  17. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  18. Acoustic damage detection in laser-cut CFRP composite materials

    Science.gov (United States)

    Nishino, Michiteru; Harada, Yoshihisa; Suzuki, Takayuki; Niino, Hiroyuki

    2012-03-01

    Carbon fiber reinforced plastics (CFRP) composite material, which is expected to reduce the weight of automotive, airplane and etc., was cut by laser irradiation with a pulsed-CO2 laser (TRUMPF TFL5000; P=800W, 20kHz, τ=8μs, λ=10.6μm, V=1m/min) and single-mode fiber lasers (IPG YLR-300-SM; P=300W, λ=1.07μm, V=1m/min)(IPG YLR- 2000-SM; P=2kW, λ=1.07μm, V=7m/min). To detect thermal damage at the laser cutting of CFRP materials consisting of thermoset resin matrix and PAN or PITCH-based carbon fiber, the cut quality was observed by X-ray CT. The effect of laser cutting process on the mechanical strength for CFRP tested at the tensile test. Acoustic emission (AE) monitoring, high-speed camera and scanning electron microscopy were used for the failure process analysis. AE signals and fractographic features characteristic of each laser-cut CFRP were identified.

  19. Present and future trends of laser materials processing in Japan

    Science.gov (United States)

    Matsunawa, Akira

    1991-10-01

    Lasers quickly penetrated into Japanese industries in the mid-80s. The paper reviews the present situation of industrial lasers and their applications in Japanese industries for materials removal, joining, and some surface modification technologies as well as their economical evaluation compared with competitive technologies. Laser cutting of metallic and nonmetallic thin sheets is widely prevalent even in small scale industries as a flexible manufacturing tool. As for the laser welding is concerned, industrial applications are rather limited in mass production lines. This mainly comes from the fact that the present laser technologies have not employed the adaptive control because of the lack of sensors, monitoring, and control systems which can tolerate the high-precision and high-speed processing. In spite of this situation, laser welding is rapidly increasing in recent years in industries such as automotive, machinery, electric/electronic, steel, heavy industries, etc. Laser surface modification technologies have attracted significant interest from industrial people, but actual application is very limited today. However, the number of R&D papers is increasing year by year. The paper also reviews these new technology trends in Japan.

  20. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  1. Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering.

    Science.gov (United States)

    Mengucci, P; Gatto, A; Bassoli, E; Denti, L; Fiori, F; Girardin, E; Bastianoni, P; Rutkowski, B; Czyrska-Filemonowicz, A; Barucca, G

    2017-07-01

    Direct Metal Laser Sintering (DMLS) technology was used to produce tensile and flexural samples based on the Ti-6Al-4V biomedical composition. Tensile samples were produced in three different orientations in order to investigate the effect of building direction on the mechanical behavior. On the other hand, flexural samples were submitted to thermal treatments to simulate the firing cycle commonly used to veneer metallic devices with ceramics in dental applications. Roughness and hardness measurements as well as tensile and flexural mechanical tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate sample microstructure. Results evidenced a difference in the mechanical response of tensile samples built in orthogonal directions. In terms of microstructure, samples not submitted to the firing cycle show a single phase acicular α' (hcp) structure typical of metal parts subject to high cooling rates. After the firing cycle, samples show a reduction of hardness and strength due to the formation of laths of the β (bcc) phase at the boundaries of the primary formed α' plates as well as to lattice parameters variation of the hcp phase. Element partitioning during the firing cycle gives rise to high concentration of V atoms (up to 20wt%) at the plate boundaries where the β phase preferentially forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparative evaluation of marginal fit and axial wall adaptability of copings fabricated by metal laser sintering and lost-wax technique: An in vitro study.

    Science.gov (United States)

    Gaikwad, Bhushan Satish; Nazirkar, Girish; Dable, Rajani; Singh, Shailendra

    2018-01-01

    The present study aims to compare and evaluate the marginal fit and axial wall adaptability of Co-Cr copings fabricated by metal laser sintering (MLS) and lost-wax (LW) techniques using a stereomicroscope. A stainless steel master die assembly was fabricated simulating a prepared crown; 40 replicas of master die were fabricated in gypsum type IV and randomly divided in two equal groups. Group A coping was fabrication by LW technique and the Group B coping fabrication by MLS technique. The copings were seated on their respective gypsum dies and marginal fit was measured using stereomicroscope and image analysis software. For evaluation of axial wall adaptability, the coping and die assembly were embedded in autopolymerizing acrylic resin and sectioned vertically. The discrepancies between the dies and copings were measured along the axial wall on each halves. The data were subjected to statistical analysis using unpaired t -test. The mean values of marginal fit for copings in Group B (MLS) were lower (24.6 μm) than the copings in Group A (LW) (39.53 μm), and the difference was statistically significant ( P adaptability in comparison with copings fabricated by the LW technique. However, the values of marginal fit of copings fabricated that the two techniques were within the clinically acceptable limit (<50 μm).

  3. Femtosecond laser processing of photovoltaic and transparent materials

    Science.gov (United States)

    Ahn, Sanghoon

    The photovoltaic semiconducting and transparent dielectric materials are of high interest in current industry. Femtosecond laser processing can be an effective technique to fabricate such materials since non-linear photochemical mechanisms predominantly occur. In this series of studies, femtosecond (fs) laser processing techniques that include laser drilling on Si wafer, laser scribing on CIGS thin film, laser ablation on Lithium Niobate (LN) crystal, and fabrication of 3D structures in fused silica were studied. The fs laser drilling on Si wafer was performed to fabricate via holes for wrap-through PV devices. For reduction of the number of shots in fs laser drilling process, self-action of laser light in the air was initiated. To understand physical phenomena during laser drilling, scanning electron microscopy (SEM), emission, and shadowgraph images were studied. The result indicated the presence of two mechanisms that include fabrication by self-guided beam and wall-guided beam. Based on our study, we could fabricate ~16 micrometer circular-shaped via holes with ~200 laser pulses on 160-170 micrometer thick c- and mc-Si wafer. For the fs laser scribing on ink jet printed CIGS thin film solar cell, the effect of various parameters that include pulse accumulation, wavelength, pulse energy, and overlapping were elucidated. In our processing regime, the effect of wavelength could be diminished due to compensation between beam size, pulse accumulation, energy fluence, and the absorption coefficient. On the other hand, for high PRF fs laser processing, pulse accumulation effect cannot be ignored, while it can be negligible in low PRF fs laser processing. The result indicated the presence of a critical energy fluence for initiating delamination of CIGS layer. To avoid delamination and fabricate fine isolation lines, the overlapping method can be applied. With this method, ~1 micrometer width isolation lines were fabricated. The fs laser ablation on LN wafer was studied

  4. Laser-material interactions: A study of laser energy coupling with solids

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Mark Alan [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  5. Laser-material interactions: A study of laser energy coupling with solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; California Univ., Berkeley, CA

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding

  6. Laser formation of Bragg gratings in polymer nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, M M; Khaydukov, K V; Sokolov, V I; Khaydukov, E V [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2016-01-31

    The method investigated in this work is based on the laser-induced, spatially inhomogeneous polymerisation of nanocomposite materials and allows control over the motion and structuring of nanoparticles. The mechanisms of nanoparticle concentration redistribution in the process of radical photopolymerisation are studied. It is shown that under the condition of spatially inhomogeneous illumination of a nanocomposite material, nanoparticles are diffused from the illuminated areas into the dark fields. Diffraction gratings with a thickness of 8 μm and a refractive index modulation of 1 × 10{sup -2} are written in an OCM-2 monomer impregnated by silicon nanoparticles. The gratings may be used in the development of narrowband filters, in holographic information recording and as dispersion elements in integrated optical devices. (interaction of laser radiation with matter. laser plasma)

  7. Optical characteristics of novel bulk and nanoengineered laser host materials

    Science.gov (United States)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  8. Sintering and densification; new techniques: sinter forging

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.

    1998-01-01

    In this chapter pressure assisted sintering methods will be described. Attention will mainly be paid to sinter forging as a die-wall free uniaxial pressure sintering technique, where large creep strains are possible. Sinter forging is an effective tool to reduce sintering temperature and time and to obtain a nearly theoretically dense ceramic. In this way grain size in tetragonal zirconia ceramics can be reduced down to 100 nm. Another important phenomenon is the reduction of the number density and size of cracks and flaws resulting in higher strength and improved reliability, which is of utmost importance for engineering ceramics. The creep deformation during sinter forging causes a rearrangement of the grains resulting in a reduction of interatomic spaces between grains, while grain boundary (glassy) phases can be removed. The toughness and in some cases the wear resistance is enhanced after sinter forging as a result of the grain-boundary-morphology improvement. (orig.)

  9. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.

    2003-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  10. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M

    2002-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM

  11. Laser-matter structuration of optical and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Mezel, C., E-mail: candice.mezel@cea.fr [CELIA, Universite Bordeaux 1 (France); CEA Le Ripault, 37260 Monts (France); Guillemot, F., E-mail: fabien.guillemot@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Chimier, B., E-mail: chimier@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Bourgeade, A., E-mail: antoine.bourgeade@cea.fr [CEA-CESTA, Le Barp (France); Regan, C., E-mail: regan@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Duchateau, G., E-mail: duchateau@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Souquet, A., E-mail: agnes.souquet@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Hebert, D., E-mail: david.hebert@cea.fr [CEA-CESTA, Le Barp (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer In this study we model nanomaterial structuring. Black-Right-Pointing-Pointer The laser energy deposition is discussed first. Black-Right-Pointing-Pointer Full and approximate models are discussed. Black-Right-Pointing-Pointer Dynamic material response is addressed via hydrodynamics. Black-Right-Pointing-Pointer Sild effects are accounted for - Abstract: Interaction of ultrafast laser, i.e. from the femtosecond (fs) to the nanosecond (ns) regime, with initially transparent matter may produce very high energy density hot spots in the bulk as well as at the material surface, depending on focusing conditions. In the fs regime, absorption is due to ionisation of the dielectric, which enables absorption process to begin, and then hydrodynamic to take place. In the ns regime both absorption and hydrodynamic are coupled to each other, which complexifies considerably the comprehension but matter structuration looks similar. A numerical tool including solution of 3D Maxwell equations and a rate equation for free electrons is first compared to some available simple models of laser energy absorption. Then, subsequent material deformation, i.e. structuration, is determined by solving hydrodynamic equations, including or not solid behaviour. We show that nature of the final structures strongly depends on the amount of deposited energy and on the shape of the absorption zone. Then we address some problems related to laser-matter structuration of optical and biological materials in the fs, ps and ns regimes.

  12. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  13. AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS

    Science.gov (United States)

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...

  14. Ultrashort-pulse laser excitation and damage of dielectric materials

    DEFF Research Database (Denmark)

    Haahr-Lillevang, Lasse; Balling, Peter

    2015-01-01

    Ultrashort-pulse laser excitation of dielectrics is an intricate problem due to the strong coupling between the rapidly changing material properties and the light. In the present paper, details of a model based on a multiple-rate-equation description of the conduction band are provided. The model...

  15. Modeling short-pulse laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Sandkamm, Ditte Både; Haahr-Lillevang, Lasse

    2014-01-01

    A theoretical description of ultrashort-pulse laser excitation of dielectric materials based on strong-field excitation in the Keldysh picture combined with a multiple-rateequation model for the electronic excitation including collisional processes is presented. The model includes light attenuation...

  16. Effect of surface roughness on the fatigue life of laser additive manufactured Ti6Al4V alloy

    Czech Academy of Sciences Publication Activity Database

    Bača, A.; Konečná, R.; Nicoletto, G.; Kunz, Ludvík

    2015-01-01

    Roč. 15, č. 4 (2015), s. 498-502 ISSN 1213-2489 Institutional support: RVO:68081723 Keywords : Additive manufacturing * direct metal laser sintering * Fatigue life Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Effect of the insulation materials filling on the thermal performance of sintered hollow bricks under the air-conditioning intermittent operation

    Directory of Open Access Journals (Sweden)

    Chaoping Hou

    2018-06-01

    Full Text Available Wall insulation performance is an important factor affecting building energy consumption and indoor comfortable level. This study proposes that the insulation materials are filled into the cavities of the sintered hollow brick to replace the single insulation layer. The physical models of typical walls were built by the hollow bricks filled with expanding polystyrene board (EPS in cavities and wall thermal performance is numerically analyzed by the Finite Volume Method under air-conditioning intermittent operation, which conforms to the actual operation rules of air-conditioning. Results show that filling EPS in cavities is beneficial to improve the thermal performance of the bricks, and the larger the EPS filling ratio, the higher the thermal performance improvement. The EPS filling ratio increase has the higher sensitivity on inner surface heat flow under the low EPS filling ratio, and filling EPS in the external cavities is optimum with the decrement rate 5.92% higher than filling EPS in internal cavities for the EPS filling ratio of 20%, while filling EPS in internal and external cavities simultaneously is optimum with decrement rate 2.45%–6.87% higher than that with filling EPS in the internal cavities for the EPS filling ratio of 40%–80%. Keywords: Insulation filling ratio, Insulation filling location, Thermal performance, Sintered hollow bricks

  18. Analysis and fabrication of tungsten CERMET materials for ultra-high temperature reactor applications via pulsed electric current sintering

    Science.gov (United States)

    Webb, Jonathan A.

    The optimized development path for the fabrication of ultra-high temperature W-UO2 CERMET fuel elements were explored within this dissertation. A robust literature search was conducted, which concluded that a W-UO 2 fuel element must contain a fine tungsten microstructure and spherical UO2 kernels throughout the entire consolidation process. Combined Monte Carlo and Computational Fluid Dynamics (CFD) analysis were used to determine the effects of rhenium and gadolinia additions on the performance of W-UO 2 fuel elements at refractory temperatures and in dry and water submerged environments. The computational analysis also led to the design of quasi-optimized fuel elements that can meet thermal-hydraulic and neutronic requirements A rigorous set of experiments were conducted to determine if Pulsed Electric Current Sintering (PECS) can fabricate tungsten and W-Ce02 specimens to the required geometries, densities and microstructures required for high temperature fuel elements as well as determine the mechanisms involved within the PECS consolidation process. The CeO2 acts as a surrogate for UO 2 fuel kernels in these experiments. The experiments seemed to confirm that PECS consolidation takes place via diffusional mass transfer methods; however, the densification process is rapidly accelerated due to the effects of current densities within the consolidating specimen. Fortunately the grain growth proceeds at a traditional rate and the PECS process can yield near fully dense W and W-Ce02 specimens with a finer microstructure than other sintering techniques. PECS consolidation techniques were also shown to be capable of producing W-UO2 segments at near-prototypic geometries; however, great care must be taken to coat the fuel particles with tungsten prior to sintering. Also, great care must be taken to ensure that the particles remain spherical in geometry under the influence of a uniaxial stress as applied during PECS, which involves mixing different fuel kernel sizes in

  19. High precision laser processing of sensitive materials by Microjet

    Science.gov (United States)

    Sibailly, Ochelio D.; Wagner, Frank R.; Mayor, Laetitia; Richerzhagen, Bernold

    2003-11-01

    Material laser cutting is well known and widely used in industrial processes, including micro fabrication. An increasing number of applications require nevertheless a superior machining quality than can be achieved using this method. A possibility to increase the cut quality is to opt for the water-jet guided laser technology. In this technique the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. The water jet guided laser technique was developed originally in order to reduce the heat damaged zone near the cut, but in fact many other advantages were observed due to the usage of a water-jet instead of an assist gas stream applied in conventional laser cutting. In brief, the advantages are three-fold: the absence of divergence due to light guiding, the efficient melt expulsion, and optimum work piece cooling. In this presentation we will give an overview on several industrial applications of the water-jet guided laser technique. These applications range from the cutting of CBN or ferrite cores to the dicing of thin wafers and the manufacturing of stencils, each illustrates the important impact of the water-jet usage.

  20. Study of the impact of treatment modes on hardness, deformability and microstructure of VT6 (Ti-6Al-4V and VV751P (Ni-15Co-10Cr alloy samples after selective laser sintering

    Directory of Open Access Journals (Sweden)

    Galkina Natalia V.

    2017-01-01

    Full Text Available Selective laser sintering is an advanced method for obtaining sophisticated products and assembly permanent joints. This is particularly relevant for heat resistant alloys employed in aviation equipment. Heat treatment modes traditionally applied to the products are chosen in accordance with conditions of further product operation. In this paper there are given the results of experimental study of hardness, deformability and microstructure of samples after selective laser sintering of Ni-15Co-10Cr and Ti–6Al–4V alloy powders. It has been determined that Ni-15Co-10Cr alloy ageing increases the hardness and deformability of samples; these characteristics decrease if the ageing lasts for 9-19 hours. Annealing of Ti–6Al–4V alloy samples results in preserving original hardness. After complete annealing, the hardness of samples decreases from 32 … 33HRC to 24 … 26HRC. Microstructural studies showed that there are cracks between layers in the surface of Ti–6Al–4V alloy samples after sintering and not complete annealing. After full annealing, cracks' width and length decreased. Cracks in Ni-15Co-10Cr alloy samples' microstructure were not detected.

  1. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    International Nuclear Information System (INIS)

    Witte, K.; Bodnar, W.; Schell, N.; Lang, H.; Burkel, E.

    2014-01-01

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength

  2. Powder Flux Regulation in the Laser Material Deposition Process

    Science.gov (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  3. Microstructural and mechanical characterization of laser deposited advanced materials

    Science.gov (United States)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  4. Master sintering curve: A practical approach to its construction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2010-01-01

    Full Text Available The concept of a Master Sintering Curve (MSC is a strong tool for optimizing the sintering process. However, constructing the MSC from sintering data involves complicated and time-consuming calculations. A practical method for the construction of a MSC is presented in the paper. With the help of a few dilatometric sintering experiments the newly developed software calculates the MSC and finds the optimal activation energy of a given material. The software, which also enables sintering prediction, was verified by sintering tetragonal and cubic zirconia, and alumina of two different particle sizes.

  5. Effect of current on the microstructure and performance of (Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric material via field activated and pressure assisted sintering

    International Nuclear Information System (INIS)

    Chen Ruixue; Meng Qingsen; Fan Wenhao; Wang Zhong

    2011-01-01

    (Bi 2 Te 3 ) 0.2 (Sb 2 Te 3 ) 0.8 thermoelectric material was sintered via a field activated and pressure assisted sintering (FAPAS) process. By applying different current intensity (0, 60, 320 A/cm 2 ) in the sintering process, the effects of electric current on the microstructure and thermoelectric performance were investigated. This demonstrated that the application of electric current in the sintering process could significantly improve the uniformity and density of (Bi 2 Te 3 ) 0.2 (Sb 2 Te 3 ) 0.8 samples. When the current intensity was raised to 320 A/cm 2 , the preferred orientation of grains was observed. Moreover, positive effects on the thermoelectric performance of applying electric current in the sintering process were also confirmed. An increase of 0.02 and 0.11 in the maximum figure of merit ZT value could be acquired by applying current of 60 and 320 A/cm 2 , respectively. (semiconductor materials)

  6. Mathematical modelling of the laser processing of compose materials

    International Nuclear Information System (INIS)

    Gromyko, G.F.; Matsuka, N.P.

    2009-01-01

    Expansion of the protective coating scope led to the necessity to work out lower priced methods of treatment of machine elements. Making of an adequate, agreed with process features, mathematical model and development of effective methods of its solving are promising directions in this fields. In this paper the mathematical model of high-temperature laser treatment via moving source of pre-sprayed with composite powder padding is developed. Presented model describes accurately enough the heat processes taking place by laser processing of machine elements. Varying input parameters of model (laser power, temperature and composition of environment, characteristics and quantitative composition of using materials, etc.) one can get a cheap tool of preliminary estimates for wide range of similar problems. Difference method, based on process physical features and taking into account main process-dependent parameters had been developed for solving of the built system of nonlinear equations. (authors)

  7. Thermoelectric and mechanical properties of spark plasma sintered Cu3SbSe3 and Cu3SbSe4: Promising thermoelectric materials

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Toutam, Vijaykumar; Sharma, Sakshi; Singh, Niraj Kumar; Dhar, Ajay

    2014-12-01

    We report the synthesis of thermoelectric compounds, Cu3SbSe3 and Cu3SbSe4, employing the conventional fusion method followed by spark plasma sintering. Their thermoelectric properties indicated that despite its higher thermal conductivity, Cu3SbSe4 exhibited a much larger value of thermoelectric figure-of-merit as compared to Cu3SbSe3, which is primarily due to its higher electrical conductivity. The thermoelectric compatibility factor of Cu3SbSe4 was found to be ˜1.2 as compared to 0.2 V-1 for Cu3SbSe3 at 550 K. The results of the mechanical properties of these two compounds indicated that their microhardness and fracture toughness values were far superior to the other competing state-of-the-art thermoelectric materials.

  8. Material model validation for laser shock peening process simulation

    International Nuclear Information System (INIS)

    Amarchinta, H K; Grandhi, R V; Langer, K; Stargel, D S

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 10 6  s −1 , which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic–plastic behavior of materials. Elastic perfectly plastic, Johnson–Cook and Zerilli–Armstrong models are used, and the performance of each model is compared with available experimental results

  9. Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique.

    Science.gov (United States)

    Dimitriadis, Konstantinos; Spyropoulos, Konstantinos; Papadopoulos, Triantafillos

    2018-02-01

    The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity ( E ) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was 222 ± 5.13 GPa and 227 ± 3 GPa, respectively. The bond strength was 51.87 ± 7.50 MPa for test group and 54.60 ± 6.20 MPa for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use.

  10. Marginal and internal fit of cobalt-chromium copings fabricated using the conventional and the direct metal laser sintering techniques: A comparative in vitro study.

    Science.gov (United States)

    Ullattuthodi, Sujana; Cherian, Kandathil Phillip; Anandkumar, R; Nambiar, M Sreedevi

    2017-01-01

    This in vitro study seeks to evaluate and compare the marginal and internal fit of cobalt-chromium copings fabricated using the conventional and direct metal laser sintering (DMLS) techniques. A master model of a prepared molar tooth was made using cobalt-chromium alloy. Silicone impression of the master model was made and thirty standardized working models were then produced; twenty working models for conventional lost-wax technique and ten working models for DMLS technique. A total of twenty metal copings were fabricated using two different production techniques: conventional lost-wax method and DMLS; ten samples in each group. The conventional and DMLS copings were cemented to the working models using glass ionomer cement. Marginal gap of the copings were measured at predetermined four points. The die with the cemented copings are standardized-sectioned with a heavy duty lathe. Then, each sectioned samples were analyzed for the internal gap between the die and the metal coping using a metallurgical microscope. Digital photographs were taken at ×50 magnification and analyzed using measurement software. Statistical analysis was done by unpaired t -test and analysis of variance (ANOVA). The results of this study reveal that no significant difference was present in the marginal gap of conventional and DMLS copings ( P > 0.05) by means of ANOVA. The mean values of internal gap of DMLS copings were significantly greater than that of conventional copings ( P < 0.05). Within the limitations of this in vitro study, it was concluded that the internal fit of conventional copings was superior to that of the DMLS copings. Marginal fit of the copings fabricated by two different techniques had no significant difference.

  11. Immediate loading of mandibular overdentures supported by one-piece, direct metal laser sintering mini-implants: a short-term prospective clinical study.

    Science.gov (United States)

    Mangano, Francesco G; Caprioglio, Alberto; Levrini, Luca; Farronato, Davide; Zecca, Piero A; Mangano, Carlo

    2015-02-01

    Only a few studies have dealt with immediately loaded, unsplinted mini-implants supporting ball attachment-retained mandibular overdentures (ODs). The aim of this study is to evaluate treatment outcomes of ball attachment-retained mandibular ODs supported by one-piece, unsplinted, immediately loaded, direct metal laser sintering (DMLS) mini-implants. Over a 4-year period (2009 to 2012), all patients referred to the Dental Clinic, University of Varese, and to a private practice for treatment with mandibular ODs were considered for inclusion in this study. Each patient received three or four DMLS mini-implants. Immediately after implant placement, a mandibular OD was connected to the implants. At each annual follow-up session, clinical and radiographic parameters were assessed, including the following outcome measures: 1) implant failures; 2) peri-implant marginal bone loss; and 3) complications. Statistical analysis was conducted using a life-table analysis. A total of 231 one-piece DMLS mini-implants were inserted in 62 patients. After 4 years of loading, six implants failed, giving an overall cumulative survival rate of 96.9%. The mean distance between the implant shoulder and the first visible bone-to-implant contact was 0.38 ± 0.25 and 0.62 ± 0.20 mm at the 1- and 4-year follow-up examinations, respectively. An incidence of 6.0% of biologic complications was reported; prosthetic complications were more frequent (12.9%). Within the limits of this study, it can be concluded that the immediate loading of one-piece, unsplinted, DMLS titanium mini-implants by means of ball attachment-supported mandibular ODs is a successful treatment procedure. Long-term follow-up studies are needed to confirm these results.

  12. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    Science.gov (United States)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4

  13. Sintering effect on material properties of electrochemical reactors used for removal of nitrogen oxides and soot particles emitted from diesel engines

    DEFF Research Database (Denmark)

    He, Zeming; Andersen, Kjeld Bøhm; Keel, Li

    2010-01-01

    In the present work, 12-layered electrochemical reactors (comprising five cells) with a novel configuration including supporting layer lanthanum strontium manganate (LSM)-yttria stabilised zirconia (YSZ), electrode layer LSM-gadolinia-doped cerium oxide (CGO) and electrolyte layer CGO were...... fabricated via the processes of slurry preparation, tape casting and lamination and sintering. The parameters of porosity, pore size, pore size distribution, shrinkage, flow rate of the sintered reactors and the electrical conductivities of the supporting layer and the electrode in the sintered reactors were...... characterised. The effect of sintering temperature on microstructures and properties of the sintered samples was discussed, and 1,250 °C was determined as the appropriate sintering temperature for reactor production based on the performance requirements for applications. Using the present ceramic processing...

  14. UV laser engraving of high temperature polymeric materials

    International Nuclear Information System (INIS)

    Martinez, D.; Laude, L.D.; Kolev, K.; Hanus, F.

    1999-01-01

    Among emerging technologies, those associated with laser sources as surface processing tools are quite promising. In the present work, a UV pulsed (excimer) laser source is experimented for engraving (or ablating) polymeric materials based on three high temperature polymers: polyethylene terephtalate (PET), polyethersulfone (PES) and polyphenylene sulfide (PPS). The ablation phenomenon is demonstrated on all these polymers and evaluated by stylus profilometry upon varying the laser fluence at impact. For each polymer, results give evidence for three characteristic quantities: an ablation threshold E sub 0, a maximum ablation depth per pulse z sub 0 and an initial rate of ablation α, just above threshold. A simple ablation model is presented which describes correctly the observed behaviours and associates closely the above quantities to the polymer formulation, thus providing for the first time a rational basis to polymer ablation. The model may be extended to parent plastic materials whenever containing the same polymers. It may also be used to predict the behaviours of other polymers when subjected to excimer laser irradiation

  15. [INVITED] Computational intelligence for smart laser materials processing

    Science.gov (United States)

    Casalino, Giuseppe

    2018-03-01

    Computational intelligence (CI) involves using a computer algorithm to capture hidden knowledge from data and to use them for training ;intelligent machine; to make complex decisions without human intervention. As simulation is becoming more prevalent from design and planning to manufacturing and operations, laser material processing can also benefit from computer generating knowledge through soft computing. This work is a review of the state-of-the-art on the methodology and applications of CI in laser materials processing (LMP), which is nowadays receiving increasing interest from world class manufacturers and 4.0 industry. The focus is on the methods that have been proven effective and robust in solving several problems in welding, cutting, drilling, surface treating and additive manufacturing using the laser beam. After a basic description of the most common computational intelligences employed in manufacturing, four sections, namely, laser joining, machining, surface, and additive covered the most recent applications in the already extensive literature regarding the CI in LMP. Eventually, emerging trends and future challenges were identified and discussed.

  16. Mechanisms of sintering

    International Nuclear Information System (INIS)

    Mohan, Ashok; Soni, N.C.; Moorthy, V.K.

    1980-01-01

    The basic mechanisms by which the material moves during sintering have not only held a strange fascination but are also very important in determining the properties of the end product. Kuczynski's exponent method has been subsequently refined by several schools to make it increasingly reliable. There is now a fairly good understanding of mechanisms in some of the materials. However in others the issue is complicated by their basic nature. The problems of ambiguity in criterion and that of more than one mechanism being simultaneously operative have been tackled with dexterity by Ashby for drawing sintering mechanism diagrams. The method has been modified to give Relative Contribution Diagrams (RCD). These yield additional information and have been used for analysis. The main criticism against this is that it uses a very large number of rate equations and material properties, which can communicate their inaccuracies to the diagram. A case study of UO 2 was undertaken and it has been shown quantitatively that inaccuracies in a smaller number of properties only affect the diagrams to any significant extent. (auth.)

  17. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  18. Sinterização de filmes espessos de Ba(Ti0,85Zr0,15O3 por varredura laser Laser scanning sintering of Ba(Ti0.85Zr0.15O3 thick films

    Directory of Open Access Journals (Sweden)

    E. Antonelli

    2009-03-01

    Full Text Available São apresentados os resultados de sinterização de filmes espessos de BaTi0,85Zr0,15O3 (BTZ15, depositados pela técnica de eletroforese, utilizando como fonte de calor um laser de CO2. A montagem experimental foi otimizada de modo a permitir a sinterização de filmes com dimensões de até 70 mm de comprimento por 10mm de largura e espessuras variáveis. Os processos térmicos envolvidos durante a varredura contínua a laser atuaram de modo similar à sinterização em duas etapas. Os tempos de patamares em cada etapa foram dependentes da velocidade e do número de varreduras. A temperatura máxima que se pode atingir no filme espesso, durante cada varredura e para uma potência nominal do laser fixa, foi correlacionada com a densidade relativa. Após sinterizados, os filmes apresentaram homogeneidade microestrutural e uma porosidade aparente de ~7%.The results for sintering of BaTi0.85Zr0.15O3 (BTZ15 thick films, deposited by electrophoresis, using as heat source a CO2 laser are presented. The characteristics of the experimental apparatus were optimized in such a way as to allow the sintering of thick films whose dimensions were up to 70 mm in length, 10 mm in width and variable thicknesses. The related thermal process during the continuous laser scanning acted in a similar way as a two-step sintering. The step times in each stage were dependent on the speed and scan number. The maximum temperature that can be achieved in the thick film, during each scanning, and for a fixed rated laser power, was correlated with the relative density. After sintering the films presented a microstructural homogeneity and an apparent porosity of ~7%.

  19. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    Science.gov (United States)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  20. The spatial distribution of temperature and oxygen deficiency in spark-plasma sintered superconducting Bi-based materials

    International Nuclear Information System (INIS)

    Govea-Alcaide, E.; Pérez-Fernández, J.E.; Machado, I.F.; Jardim, R.F.

    2014-01-01

    Pre-reacted powders of (Bi–Pb) 2 Sr 2 Ca 2 Cu 3 O 10+δ (Bi-2223) were consolidated by using the spark plasma sintering (SPS) technique under vacuum and at different consolidate temperatures T D . X-ray diffraction patterns revealed that the dominant phase in all SPS samples is the Bi-2223 phase, but traces of the Bi 2 Sr 2 CaCu 2 O 10+x (Bi-2212) phase were identified. We have found that the transport properties of SPS samples depend on their oxygen content because the SPS process is performed under vacuum. Simulations by using the finite element method (FEM) were performed for determining the actual temperature in which powders are consolidated. From these results we have inferred that SPS samples are oxygen deficient and such a deficiency is more marked near the grain boundaries, suggesting the occurrence of grains with core–shell morphology. We also argued that the width of the shell depends on the consolidation temperature, a feature corroborated by the FEM simulations

  1. Sinter aluminium as cladding material for fuel elements; Aluminium fritte comme materiau de gainage pour les elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Mann, K E; Boudouresques, M B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Otto Fuchs, Meinerzhagen, Westfalen (Germany)

    1961-07-01

    1. Survey of the production process of sinter aluminium. 2. Description of the forming processes (extrusion, forging and rolling), whereby the production of tubing for atom piles will be explained in detail. 3. Production of ribbed tubes and tubes with close tolerances of sizes. 4. The different SAP-qualities and their properties under special consideration of the properties at elevated temperatures and the creep properties. 5. Diffusion behaviour of SAP with Be, Mg, Al, U and UO{sub 2}. 6. Corrosion behaviour in CO{sub 2} atmosphere at high temperature and in water. 7. Weldability. 8. Effect of irradiation on the mechanical properties. 9. Superiority of SAP compared with normal wrought alloys of the same composition. (author) [French] 1. Apercu des processus de production de l'aluminium fritte. 2. Expose des operations de transformation (filageries, forgeage et laminage), avec explication detaillee de la fabrication de gaine pour reacteurs. 3. Fabrication de tubes canneles et de tubes avec de faibles tolerances. 4. Diverses proprietes de l'aluminium fritte SAP, notamment proprietes aux temperatures elevees et proprietes de fluage. 5. Diffusion de l'aluminium fritte SAP en presence de Be, Mg, Al, U et UO{sub 2}. 6. Resistance a la corrosion dans une atmosphere de CO{sub 2} a temperature elevee et dans l'eau. 7. Possibilites de soudage. 8. Effet de l'irradiation sur les proprietes mecaniques. 9. Superiorite de l'aluminium fritte SAP sur les alliages forges normaux de meme composition. (auteur)

  2. Laser materials processing as manufacturing technology; Seisan gijutsu to shite no laser kako

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, I. [Osaka University, Osaka (Japan)

    1998-11-01

    This paper describes the laser material processing. Laser is artificial light that uses the amplification based on the induced emission of light. It is very excellent in directivity and monochromaticity. The high power density and concentration characteristics of laser enable a variety of high-performance processing such as junction, removal, reforming, and addition. Excellent controllability (that facilitates the automated processing), transmission performance (the processing by energy transmission in long range space is most suitable for laser), and non-contact processing (that contains no wearing, noise, and contamination) are great advantages that the existing processing method does not have. In the wide wavelength area between ultraviolet and infrared areas, the laser that can be used for material processing is very wide over the range of the continuous oscillation to the ultra short pulse of a nanosecond order. The thermal processing accompanied by melting and evaporation as well as the non-thermal processing (quantum processing) by a photochemical reaction is also available as the type of processing. The processing used for manufacturing technology is almost thermal processing including removal, junction, reforming, and addition. The thermal processing covers the range of electronics to heavy industry. 29 refs., 12 figs., 2 tabs.

  3. Immobilazation of aerobic microorganisms on glassy sintered material, illustrated by the example of the production of L leucine using Corynebacterium glutamicum. Immobilisierung von aeroben Mikroorganismen an Glassintermaterial am Beispiel der L-Leucin-Produktion mit Corynebacterium glutamicum

    Energy Technology Data Exchange (ETDEWEB)

    Buechs, J.

    1988-12-01

    The aim of this study was to develop the carrier fixation of aerobic microorganisms on open-pore sintered glass material. The fermentative production of L-leucine from {alpha} cetonic isocaproic acid with Corynebacterium glutamicum was chosen as an example of a microbial process with a high demand of oxygen. (orig.).

  4. Surface Thermometry of Energetic Materials by Laser-Induced Fluorescence

    Science.gov (United States)

    1989-09-01

    at 34 yttrium- aluminum -garnet (Dy:YAG). The simplified energy diagram of Dy:YAG is shown in Fig. 1. Absorbed laser light (at 355 nrm) can 5 excite the...the thermometric technique on a surface similar to that of an energetic material, a thermal-setting plastic supplied by Buehler, Ltd., was employed...temperature over the temperature range of interest. The rare-earth ion dysprosium (Dy) doped into a yttrium- aluminum -garnet (YAG) crystal was I determined

  5. Two steps sintering alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  6. Ultrafast Bessel beams: advanced tools for laser materials processing

    Science.gov (United States)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  7. Investigation of residual stress in laser welding dissimilar materials

    International Nuclear Information System (INIS)

    Mirim, Denilson de Camargo; Oliveira, Rene Ramos de; Berretta, Jose Roberto; Rossi, Wagner de; Lima, Nelson Batista de; Delijaicov, Sergio; Gomes, Diego Oliva

    2010-01-01

    One of the most critical problems found in the different materials welding is the residual stress formation, that happens mainly for the fact of those materials they possess coefficients of thermal expansion and different thermal conductivities. Like this in this work the residual tension was evaluated in the technique of welding laser among the steel low carbon, AISI 1010 and AISI 304. The materials were united for it welds autogenous of top with a laser of continuous Nd:YAG in that they were varied the potency, speed and the focus of the laser stayed constant in relation to surface of the sample. The main objective of the study went identification and to analysis of the residual stress in HAZ on both sides of seem. Um planning factorial of two factors at two levels each it was executed for optimization the combination of the factors potency and speed. The obtained answers were the residual stress in different depths in HAZ. In the surface of the sample measures of residual stress were accomplished by the technique of X-ray diffraction. The hole drilling strain gage method it was applied to measure the residual stress on both sides of the union. The results were analyzed using the variance analysis and the statistical regression based on the different influences of the entrance and combination of the factors in the residual stress generated in that union. The results indicate that the development of models can foresee the answers satisfactorily. (author)

  8. Computational simulation of heat transfer in laser melted material flow

    International Nuclear Information System (INIS)

    Shankar, V.; Gnanamuthu, D.

    1986-01-01

    A computational procedure has been developed to study the heat transfer process in laser-melted material flow associated with surface heat treatment of metallic alloys to improve wear-and-tear and corrosion resistance. The time-dependent incompressible Navier-Stokes equations are solved, accounting for both convective and conductive heat transfer processes. The convection, induced by surface tension and high surface temperature gradients, sets up a counterrotating vortex flow within the molten pool. This recirculating material flow is responsible for determining the molten pool shape and the associated cooling rates which affect the solidifying material composition. The numerical method involves an implicit triple-approximate factorization scheme for the energy equation, and an explicit treatment for the momentum and the continuity equations. An experimental setup, using a continuous wave CO 2 laser beam as a heat source, has been carried out to generate data for validation of the computational model. Results in terms of the depth, width, and shape of the molten pool and the heat-affected zone for various power settings and shapes of the laser, and for various travel speeds of the workpiece, compare very well with experimental data. The presence of the surface tension-induced vortex flow is demonstrated

  9. SINTERING OF NASCENT CALCIUM OXIDE

    Science.gov (United States)

    The paper discusses the measurement of the sintering rate of CaO in a nitrogen atmosphere at temperatures of 700-1100 C. CaO prepared from ultrapure CaCO3 was compared with an impure CaO derived from limestone. Both materials yielded an initial surface area of 104 sq m/g. The rat...

  10. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  11. Laser cutting of laminated sheet material: a modeling exercise

    Science.gov (United States)

    de Graaf, Roelof F.; Meijer, Johan

    1997-08-01

    Laser cutting has been investigated for a number of aluminum-synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at rates comparable to those of homogeneous aluminum alloys. The cuts show little dross attachment. Also some damage on the synthetic layers has to be accepted. These results initiated a modeling exercise, which resulted in a numerical simulation code. The applied cutting model is based on describing the material in several horizontal layers, each with its own specific thermophysical and optical properties. The separate layers are coupled by known mass, energy and force balanced equations.

  12. Effect of ion-irradiation on the microstructure and microhardness of the W-2Y2O3 composite materials fabricated by sintering and hot forging

    International Nuclear Information System (INIS)

    Battabyal, M.; Spätig, P.; Baluc, N.

    2013-01-01

    Highlights: • W-2Y 2 O 3 material is fabricated using sintering and hot forging method with 99.3 vol.% density. • Microstructure and microhardness of the material after heavy ion irradiation are almost similar irrespective of the sample holder heating temperatures. • Dislocation loops are found on the W grains of irradiated sample where as radiation induced fine voids are observed on yttria particles. • We also observe few radiation loops on yttria particles. • No surface crack at the grain boundary is observed and significant difference in radiation hardening is confirmed. -- Abstract: A W-2Y 2 O 3 material was developed in collaboration with the Plansee Company (Austria). An ingot of the material having approximate dimension of 95 mm × 20 mm was fabricated by mixing the elemental powders followed by pressing, sintering and hot forging. The microstructure of the W-2Y 2 O 3 composite was investigated using transmission electron microscopy (TEM). The microhardness was studied using nano-indentation technique. We observed that the W-grains having a mean size of about 1 μm already formed and these grains contain very low density of dislocations. The size of the yttria particles was between 300 nm and 1 μm and the Berkovich hardness was about 4.8 GPa. The specimens were irradiated/implanted with Fe and He ions at JANNuS facility located at Orsay/Saclay, France. The TEM disks kept were irradiated/implanted at 300 and 700 °C using Fe and He ions with an energy of 24 and 2 MeV, respectively. The calculated radiation dose was about 5 dpa produced by Fe ions and total He content is 75 appm at both 300 and 700 °C. From the TEM investigation of irradiated samples, few radiation loops are present on the W grains, whereas on yttria particles, the radiation induced damages appear as voids. Berkovich hardness of the irradiated sample is higher than that of the non-irradiated sample. Results on the microstructure and microhardness of the ion-irradiated W-2Y 2 O 3

  13. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  14. Perovskite Materials for Light-Emitting Diodes and Lasers.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  16. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bolme, Cindy B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, David S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  17. Secondary emissions during fiber laser cutting of nuclear material

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A., E-mail: beatriz.mendes.lopez@gmail.com [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Assunção, E. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); European Federation for Welding, Joining and Cutting, Porto Salvo 2740-120 (Portugal); Pires, I. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Quintino, L. [IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); European Federation for Welding, Joining and Cutting, Porto Salvo 2740-120 (Portugal)

    2017-04-15

    The laser process has been studied for dismantling work for more than 10 years, however there is almost no data available concerning secondary emissions generated during the process. These emissions are inevitable during the laser cutting process and can have detrimental effects in human health and in the equipment. In terms of safety, for nuclear decommissioning, is crucial to point out ways of controlling the emissions of the process. This paper gives indications about the parameters to be used in order to reduce these secondary emissions and about the influence of these parameters on the particles size distribution. In general, for producing minimal dross and fume emissions the beam focus should be placed on the surface of the material. The higher percentage of secondary emissions which present higher diameter, increases approximately linearly with the stand-off distance and with the use of low air pressure.

  18. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems

    Science.gov (United States)

    1991-03-15

    Received 30 November 1987; revised manuscript received 29 January 1988) Single crystals of lanthanum lutetium gallium garnet (LaLuGaG) were grown by...group may be realized it gar- dleternte itf other materials can be found with spectral nets formed with lanthanum occupying tile dodecaliedrial ,1nl...array-pumped Nd: YAG and Nd: Lu: YAG lasers," Opt. inates and gallates with the malilite structure," in Tunable Lett. 14, 116-118 (1989). Solid State

  19. Development of high-average-power-laser medium based on silica glass

    International Nuclear Information System (INIS)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    We have developed a high-average-power laser material based on silica glass. A new method using Zeolite X is effective for homogeneously dispersing rare earth ions in silica glass to get a high quantum yield. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action, and therefore, we have carefully to treat the gelation and sintering processes, such as, selection of colloidal silica, pH value of for hydrolysis of tetraethylorthosilicate, and sintering history. The quality of the sintered sample and the applications are discussed. (author)

  20. Sintering and microstructure of ice: a review

    International Nuclear Information System (INIS)

    Blackford, Jane R

    2007-01-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms-from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches. (topical review)

  1. Functionally Graded Materials by Laser Metal Deposition (PREPRINT)

    Science.gov (United States)

    2010-03-01

    composition of Fe-82 wt% V (powder-1) and Inconel - 625 (powder-2) powders are listed in Table 1. The substrate materials used for the experiment were cold...like laser power, travel speed and powder feed rate is yet to be determined to obtain a successful FGM. Inconel - 625 deposits showed macro-cracks...Composition (wt%) Powder-1: Fe-82 wt% V V (82), Al (0.68), Si (0.9), C (0.07), S (0.01), P (0.02), Fe (18) Powder-2: Inconel - 625 Ni (58), Cr (20-23

  2. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Long, E-mail: zhaolong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Hou, Hong, E-mail: houhong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Zhu, Tengfei; Li, Fasheng [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Terada, Akihiko; Hosomi, Masaaki [Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2015-12-15

    Highlights: • A SSPSP using carbonaceous materials for removing dioxin pollutants was developed. • Removal and degradation efficiencies of DL-PCBs were higher than those of PCDD/Fs. • Compositions of PCDD/Fs were dependent on the available precursors in raw materials. • Dechlorination of O{sub 8}CDD and formation pathways of PCDFs were deduced. • Dioxin levels in the effluent gas complied with the International emission limit. - Abstract: The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs (“dioxin-like” polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.

  3. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids

    International Nuclear Information System (INIS)

    Zhao, Long; Hou, Hong; Zhu, Tengfei; Li, Fasheng; Terada, Akihiko; Hosomi, Masaaki

    2015-01-01

    Highlights: • A SSPSP using carbonaceous materials for removing dioxin pollutants was developed. • Removal and degradation efficiencies of DL-PCBs were higher than those of PCDD/Fs. • Compositions of PCDD/Fs were dependent on the available precursors in raw materials. • Dechlorination of O_8CDD and formation pathways of PCDFs were deduced. • Dioxin levels in the effluent gas complied with the International emission limit. - Abstract: The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs (“dioxin-like” polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.

  4. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Saha, Partha, E-mail: psaha@mech.iitkgp.ernet.in [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Kishore, Shyam [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India)

    2010-07-15

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  5. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha; Kishore, Shyam

    2010-01-01

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  6. Comparison of Dental Prostheses Cast and Sintered by SLM from Co-Cr-Mo-W Alloy

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2016-12-01

    Full Text Available The article presents the results of a comparative analysis of the metal substructure for dental prosthesis made from a Co-Cr-Mo-W alloy by two techniques, i.e. precision investment casting and selective laser melting (SLM. It was found that the roughness of the raw surface of the SLM sinter is higher than the roughness of the cast surface, which is compensated by the process of blast cleaning during metal preparation for the application of a layer of porcelain. Castings have a dendritic structure, while SLM sinters are characterized by a compact, fine-grain microstructure of the hardness higher by about 100 HV units. High performance and high costs of implementation the SLM technology are the cause to use it for the purpose of many dental manufacturers under outsourcing rules. The result is a reduction in manufacturing costs of the product associated with dental work time necessary to scan, designing and treatment of sinter compared with the time needed to develop a substructure in wax, absorption in the refractory mass, casting, sand blasting and finishing. As a result of market competition and low cost of materials, sinter costs decrease which brings the total costs related to the construction unit making using the traditional method of casting, at far less commitment of time and greater predictability and consistent sinter quality.

  7. Fiber Laser Welding Properties of Copper Materials for Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Young-Tae YOU

    2017-11-01

    Full Text Available Secondary battery is composed of four main elements: cathodes, anodes, membranes and electrolyte. The cathodes and the anodes are connected to the poles that allow input and output of the current generated while the battery is being charged or discharged. In this study laser welding is conducted for 40 sheets of pure copper material with thickness of 38μm, which are used in currently manufactured lithium-ion batteries, using pulse-wave fiber laser to compare welded joint to standard bolt joint and to determine optimum process parameters. The parameters, which has significant impact on penetration of the pulse waveform laser to the overlapped thin sheets, is the peak power while the size of the weld zone is mainly affected by the pulse irradiation time and the focal position. It is confirmed that overlapping rate is affected by the pulse repetition rate rather than by the pulse irradiation time. At the cross-section of the weld zone, even with the increased peak power, the width of the front bead weld size does not change significantly, but the cross-sectional area becomes larger. This is because the energy density per pulse increases as the peak power increases.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.16316

  8. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  9. Ceramic Sintering

    Science.gov (United States)

    1974-10-01

    8217.ypes cf * Surface area analyzer, Quantachreme Corporation, 337 Glen Cove Road, Grcenvale, N.Y. 27 1 1 ^M—^—— 1 1 *m ■ o a* en 00...courtesy of Dr. Joseph Gebhardt. 2. Powder supplied through the courtesy of Mr. William Flock. 3. A. F. McLean, E. A. Fisher and R. J. Bratton, " Brittle ...Materials Design, High Temperature Turbine." AMMRC CTR74-26, Interim Report, April, 1974. 4. A. F. McLean, E. A. Fisher and R. J. Bratton," Brittle

  10. An international interdisciplinary graduate school in laser and material science

    Science.gov (United States)

    Fargin, Evelyne; Sarger, Laurent; Kaluza, Malte; Nolte, Stefan; Richardson, Martin; Richardson, Kathleen

    2009-06-01

    The main objective is to establish the first transatlantic Graduate School, proposing a truly international education, training and research platform in the field of Photonics and Material sciences. The wide scope of Photonics encompasses many application fields that will be mostly covered by various curricula involving Laser Optics and Material Sciences and Interactions. This cooperation will build a very efficient scientific international community able to address the 21 century challenges in Photonics and applications. Indeed, the highest level of education, namely Master and PhD , will address the so called "Skill shortage" that impact on our economy. The truly interdisciplinary theme of this graduate school is also a guarantee for the insertion of the graduate into the workforce.

  11. Pulsed laser photoacoustic spectrometer for study of solid materials

    International Nuclear Information System (INIS)

    Patel, N.D.; Kartha, V.B.

    1991-01-01

    The technique of photoacoustic spectroscopy has wide applications bacause it is extremely sensitive, and can be used to obtain spectra in wide spectral range for solids, liquids, gases, solutions, crystals etc. which may be usually difficult by conventional methods. For studying a variety of materials, a pulsed laser photoacoustic spectrometer has been set up in the laboratory. The report discusses the design and performance of the instrument. Some of the spectra of materials like Nd 2 O 9 powder, Nd-YAG crystal, CoCl 2 6H 2 O etc. are shown. A detailed discussion on assignment of the spectra of Nd-YAG is also presented. (author). 4 refs., 5 figs., 1 tab

  12. New infrared solid state laser materials for CALIOPE

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1994-01-01

    Tunable infrared laser light may serve as a useful means by which to detect the presence of the targeted effluents. Since optical parametric oscillators (OPOs) have proven to be a versatile method of generating coherent light from the ultraviolet to the mid-infrared, this technology is a promising choice by which to service the CALIOPE applications. In addition, since some uncertainty remains regarding the precise wavelengths and molecules that will be targeted, the deployment of OPOs retains the greatest amount of wavelength flexibility. Another approach that the authors are considering is that of generating tunable infrared radiation directly with a diode-pumped solid state laser (DPSSL). One important advantage of a DPSSL is that it offers flexible pulse format modes that can be tailored to meet the needs of a particular application and target molecule. On the other hand, direct generation by a tunable DPSSL will generally be able to cover a more limited wavelength range than is possible with OPO technology. In support of the CALIOPE objectives the authors are exploring the potential for laser action among a class of materials comprised of transition metal-doped zinc chalcogenide crystals (i.e., ZnS, ZnSe and ZnTe). The Cr 2+ , Co 2+ and Ni 2+ dopants were selected as the most favorable candidates, on the basis of their documented spectral properties in the scientific literature. Thus far, the authors have characterized the absorption and emission properties of these ions in the ZnS and ZnSe crystals. The absorption spectra are used to determine the preferred wavelength at which the crystal should be pumped, while the emission spectra reveal the extent of the tuning range potentially offered by the material. In addition, measurements of the emission lifetime as a function of temperature turn out to be quite useful, since this data is suggestive of the room temperature emission yield

  13. Equation of state study of Laser Megajoule capsules ablator materials

    International Nuclear Information System (INIS)

    Colin-Lalu, Pierre

    2016-01-01

    This PhD thesis enters the field of inertial confinement fusion studies. In particular, it focuses on the equation of state tables of ablator materials synthesized on LMJ capsules. This work is indeed aims at improving the theoretical models introduced into the equation of state tables. We focused in the Mbar-eV pressure-temperature range because it can be access on kJ-scale laser facilities.In order to achieve this, we used the QEOS model, which is simple to use, configurable, and easily modifiable.First, quantum molecular dynamics (QMD) simulations were performed to generate cold compression curve as well as shock compression curves along the principal Hugoniot. Simulations were compared to QEOS model and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are then used to parametrize the Grueneisen parameter in order to generate a tabulated equation of state that includes dissociation. It allowed us to show its influence on shock timing in a hydrodynamic simulation.Second, thermodynamic states along the Hugoniot were measured during three experimental campaigns upon the LULI2000 and GEKKO XII laser facilities. Experimental data confirm QMD simulations.This study was performed on two ablator materials which are an undoped polymer CHO, and a silicon-doped polymer CHOSi. Results showed universal shock compression properties. (author) [fr

  14. On the sintering kinetics in UO2

    International Nuclear Information System (INIS)

    Marajofsky, A.

    1998-01-01

    The fabrication process of UO 2 pellets from powders involve pressing and a sintering anneal at high temperature (1650 deg. C to 1750 deg. C) during two or more hours in a hydrogen atmosphere. An alternative method is the oxidative sintering, made at lower temperature (1000 deg. C to 1300 deg. C) in a CO 2 or CO/CO 2 atmosphere. The sintering phenomena consist in the densification of the material by a thermal treatment below the fusion point. For a compact made by pressing a powder, sintering is the process of annulation of the porosity present in the compact or pellet. Several theories describe the sintering phenomena dividing it in three stages, initial, intermediate and final: in all of them the densification is a continuous growing function of time. Nevertheless it has been experimentally reported that a reduction of the density occurs in the third step of the sintering. The phenomena has been called solarization. Solarization has been attributed to the effect of the evolved gases from additives or to the CO 2 atmosphere in oxidative sintering. Thus, it is convenient to distinguish between solarization in oxidative or reducing conditions. Reducing solarization is a consequence of the tendency towards equilibrium of intergranular pores. In oxidative sintering it occurs in the reducing anneal after the sintering and is due to the change in the lattice parameter. This work shows examples of both types of solarization and qualitative interpretation of this phenomena. Both situations show the need of strict control of the sintering and powder production conditions. (author)

  15. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    International Nuclear Information System (INIS)

    Fotakis, C; Zorba, V; Stratakis, E; Athanassiou, A; Tzanetakis, P; Zergioti, I; Papagoglou, D G; Sambani, K; Filippidis, G; Farsari, M; Pouli, V; Bounos, G; Georgiou, S

    2007-01-01

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  16. Material Processing Opportunites Utilizing a Free Electron Laser

    Science.gov (United States)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  17. Development of functional materials by using ultrafast laser pulses

    Science.gov (United States)

    Shimotsuma, Y.; Sakakura, M.; Miura, K.

    2018-01-01

    The polarization-dependent periodic nanostructures inside various materials are successfully induced by ultrafast laser pulses. The periodic nanostructures in various materials can be empirically classified into the following three types: (1) structural deficiency, (2) expanded structure, (3) partial phase separation. Such periodic nanostructures exhibited not only optical anisotropy but also intriguing electric, thermal, and magnetic properties. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures in semiconductors could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. More recently we have also confirmed that the periodic nanostructures in glass are related to whether a large amount of non-bridged oxygen is present. In the presentation, we demonstrate new possibilities for functionalization of common materials ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion, based on the indicated phenomena.

  18. Laser-excited photoluminescence of three-layer GaAs double-heterostructure laser material

    International Nuclear Information System (INIS)

    Nash, F.R.; Dixon, R.W.; Barnes, P.A.; Schumaker, N.E.

    1975-01-01

    The successful fabrication of high-quality DH GaAs lasers from a simplified three-layer structure is reported. A major asset of this structure is the transparency of its final layer to recombination radiation occurring in the active layer, thus permitting the use of nondestructive photoluminescent techniques for material evaluation prior to device fabrication. In the course of photoluminescence investigations on this material the additional important observation has been made that indirect excitation (in which photocarriers are generated in the top ternary layer) has significant advantages over direct excitation (in which photocarriers are generated directly in the active layer). These include (i) the direct measurement of Al concentrations in both upper layers, (ii) the measurements of the minority-carrier diffusion length in the upper layer, (iii) an easily obtained indication of taper in the thickness of the upper layer, and (iv) surprisingly effective excitation of the active layer. By combining direct and indirect excitation it is shown that a clearer understanding of the location and detrimental influences of defects in the GaAs laser structure may be obtained. For example, the width of the region of reduced luminescence associated with many defects is found to be very excitation dependent and is confirmed to arise fr []m reduced active region luminescence. The photoluminescent excitation techniques described should be useful in the study of other heterostructure devices and material systems

  19. Techniques for ceramic sintering using microwave energy

    International Nuclear Information System (INIS)

    Kimrey, H.D.; Janney, M.A.; Becher, P.F.

    1987-01-01

    The use of microwave energy for ceramic sintering offers exciting new possibilities for materials processing. Based on experience gathered in microwave processing associated with the heating of fusion plasmas, we have developed hardware and methods for uniformly heating ceramic parts of large volume and irregular shape to temperatures in excess of 1600 0 C, in vacuum or pressurized atmosphere. Microwave processing at 28 GHz yields enhanced densification rates with a corresponding reduction in sintering temperatures. 6 refs

  20. Science of sintering and its future

    International Nuclear Information System (INIS)

    Ristic, M.M.

    1975-01-01

    Some new books published by M.Yu. Baljshin, V.A. Ivensen, V.V. Skorohod and others are characterized by the wish to give a complete approach to the problems of sintering theory. Bearing just this in mind while writing the book ''An Essay on the Generalization of Sintering Theory'' (G.V.Samsonov, M.M. Ristic with the collaborators) an idea was born: to ask the most eminent scientists in this field to present their own opinions on the theme ''The Science of Sintering and Modern Views on its Future''. There were formed 18 questions, given in the appendix to be answered. The received answers were presented in 10 chapters of this book. The fourth part of the book consists of papers of eminent scientists engaged in the field of sintering science (some of which were published here for the first time). This material is published in the book with the consent of the authors and these original contributions provide a more profound knowledge of sintering. The initial idea, that the book should have a monograph character and in which the answers would serve as some data on the latest notions of the science of sintering, was somewhat changed since the original opinions of individual scientists are given in the book and these, are sometimes very contradictory. This, in fact, gives the book a special charm because the unsolved problems in the science of sintering are most evidently stressed in this way

  1. High-Tc thin films prepared by laser ablation: material distribution and droplet problem

    NARCIS (Netherlands)

    Blank, David H.A.; IJsselsteijn, R.P.J.; IJsselsteijn, R.P.J.; Out, P.G.; Kuiper, H.J.H.; Flokstra, Jakob; Rogalla, Horst

    1992-01-01

    The lateral material distribution of laser-deposited YBa2Cu3O7¿¿ films and the density of droplets coming from the target were studied by varying the laser pulse energy, the laser spot size and the target-to-substrate distance. Silicon wafers at ambient temperature were used as substrates to

  2. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity

    Science.gov (United States)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1997-12-01

    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  3. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    International Nuclear Information System (INIS)

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-01-01

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation under ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.

  4. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073, Novosibirsk (Russian Federation); Sonina, Svetlana V. [Novosibirsk State University, 1 Koptuga Ave., 630090 Novosibirsk (Russian Federation); Meshcheryakov, Yuri P. [Design and Technology Branch of Lavrentyev Institute of Hydrodynamics SB RAS, Tereshkovoi street 29, 630090 Novosibirsk (Russian Federation)

    2015-12-21

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  5. Two-stage sintering of Al2O3 with polysiloxane

    International Nuclear Information System (INIS)

    Godoy, A.L.E.; Bressiani, A.H.A.

    2014-01-01

    The final stage of sintering involves grain growth which often is not desirable in the microstructure of structural ceramics and cutting tools. The ceramics derived from inorganic polymers allow the production of thermo mechanical materials due to their hardness and especially their excellent structural stability under aggressive environment. The aim of this study is to investigate the effect of two steps sintering process on density, microstructure and hardness of ceramics derived from the mixture alumina-polysiloxane (PMS). Alumina was ball-milled for 12, 24 and 48 hours. The alumina powder mean particle size was characterized by laser diffraction. It was added 10% wt of PMS. Pellets were prepared by die pressing and sintering at 1650°C/10min and 1550°C/1h. The sintered materials were characterized by evaluation of apparent density by helium picnometry, X-ray diffraction, scanning electron microscopy and Vickers indentation analysis for hardness determination. The specimens are composed by mullite and the best results were obtained with the addition of alumina milled for 48 hours. (author)

  6. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  7. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    International Nuclear Information System (INIS)

    Safdar, Shakeel; Li, Lin; Sheikh, M A

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data

  8. Effects of sintering atmosphere and initial particle size on sintering of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2014-01-01

    The effects of the sintering atmosphere and initial particle size on the sintering of ceria containing 10 mol% gadolinia (GdO 1.5 ) were systematically investigated. The main physical parameter was the specific surface area of the initial powders. Nanometric powders with three different specific surface areas were utilized, 210 m 2 /g, 36,2 m 2 /g e 7,4 m 2 /g. The influence on the densification, and micro structural evolution were evaluated. The starting sintering temperature was verified to decrease with increasing on the specific surface area of raw powders. The densification was accelerated for the materials with smaller particle size. Sintering paths for crystallite growth were obtained. Master sintering curves for gadolinium-doped ceria were constructed for all initial powders. A computational program was developed for this purpose. The results for apparent activation energy showed noticeable dependence with specific surface area. In this work, the apparent activation energy for densification increased with the initial particle size of powders. The evolution of the particle size distributions on non isothermal sintering was investigated by WPPM method. It was verified that the grain growth controlling mechanism on gadolinia doped ceria is the pore drag for initial stage and beginning of intermediate stage. The effects of the sintering atmosphere on the stoichiometry deviation of ceria, densification, microstructure evolution, and electrical conductivity were analyzed. Inert, oxidizing, and reducing atmospheres were utilized on this work. Deviations on ceria stoichiometry were verified on the bulk materials. The deviation verified was dependent of the specific surface area and sintering atmosphere. Higher reduction potential atmospheres increase Ce 3+ bulk concentration after sintering. Accelerated grain growth and lower electrical conductivities were verified when reduction reactions are significantly present on sintering. (author)

  9. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    International Nuclear Information System (INIS)

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-01

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  10. Laser damage study of material of the first wall of target chamber of the future laser Megajoule

    International Nuclear Information System (INIS)

    Dubern, Christelle

    1999-01-01

    Study on damage of carbon-like, boron carbide, and stainless steel materials by ultraviolet laser light, has been carried out at CEA/CESTA in France. This work was performed to help designing and dimensioning the target chamber of the future Laser MegaJoule (LMJ) facility to be used for Inertial Confinement Fusion research. The study revealed that depending the laser fluence, the considered materials were ablated in different manners. lt was demonstrated that at low fluence, damage of carbon-like and boron carbide occurs through a thermal-mechanical mechanism resulting in sputtering of material. At higher fluence, damage was driven by a thermal mechanism, dissipating heat inside material until phase change developed. For stainless steel material, failures were the result of heat absorption associated to physical changes only. To explain and validate the proposed mechanisms, theoretical and experimental works were performed and satisfactory results came out. (author) [fr

  11. Computational modelling of Er(3+): Garnet laser materials

    Science.gov (United States)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  12. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    International Nuclear Information System (INIS)

    Najam-ul-Haq, M.; Rainer, M.; Schwarzenauer, T.; Huck, C.W.; Bonn, G.K.

    2006-01-01

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  13. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    NARCIS (Netherlands)

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  14. High laser-fluence deposition of organic materials in water ice matrices by ''MAPLE''

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Rodrigo, K.; Schou, Jørgen

    2005-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) is a deposition technique for organic material. Water ice was used as a matrix for the biotechnologically important guest material, polyethylene glycol (PEG), for concentrations from 0.5 to 4 wt.%. The target was irradiated with 6 ns laser pulses...

  15. Determination of platinum, palladium, iridium and gold on selected geological reference materials by radiochemical neutron activation analysis: comparison of procedures based on aqua regia leaching and sodium peroxide sintering

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, C.A.; Figueiredo, A.M.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-05-01

    A rapid and sensitive neutron activation method for the determination of platinum, palladium, iridium and gold in rocks is described. The procedure consists of thermal neutron irradiation of about 250 mg of sample, followed by chemical treatment of the rock, precipitation of gold and the platinum group elements with tellurium and high-resolution gamma-ray spectrometry with a hyper-pure Ge detector. Two different methods were used for the chemical treatment of the rock: aqua regia leaching and sintering with sodium peroxide. The procedures were evaluated by analysis of the certified reference material SARM-7 and the reference material CHR-Pt+. (author).

  16. Determination of platinum, palladium, iridium and gold on selected geological reference materials by radiochemical neutron activation analysis: comparison of procedures based on aqua regia leaching and sodium peroxide sintering

    International Nuclear Information System (INIS)

    Nogueira, C.A.; Figueiredo, A.M.G.

    1995-01-01

    A rapid and sensitive neutron activation method for the determination of platinum, palladium, iridium and gold in rocks is described. The procedure consists of thermal neutron irradiation of about 250 mg of sample, followed by chemical treatment of the rock, precipitation of gold and the platinum group elements with tellurium and high-resolution gamma-ray spectrometry with a hyper-pure Ge detector. Two different methods were used for the chemical treatment of the rock: aqua regia leaching and sintering with sodium peroxide. The procedures were evaluated by analysis of the certified reference material SARM-7 and the reference material CHR-Pt+. (author)

  17. Improve the material absorption of light and enhance the laser tube bending process utilizing laser softening heat treatment

    Science.gov (United States)

    Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Naseer Mahdi Hadi; Ahmad, Ahmad Kamal

    2018-02-01

    Laser forming is a flexible control process that has a wide spectrum of applications; particularly, laser tube bending. It offers the perfect solution for many industrial fields, such as aerospace, engines, heat exchangers, and air conditioners. A high power pulsed Nd-YAG laser with a maximum average power of 300 W emitting at 1064 nm and fiber-coupled is used to irradiate stainless steel 304 (SS304) tubes of 12.7 mm diameter, 0.6 mm thickness and 70 mm length. Moreover, a motorized rotation stage with a computer controller is employed to hold and rotate the tube. In this paper, an experimental investigation is carried out to improve the laser tube bending process by enhancing the absorption coefficient of the material and the mechanical formability using laser softening heat treatment. The material surface is coated with an oxidization layer; hence, the material absorption of laser light is increased and the temperature rapidly rises. The processing speed is enhanced and the output bending angle is increased to 1.9° with an increment of 70% after the laser softening heat treatment.

  18. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India

    Science.gov (United States)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.

    2006-01-01

    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  19. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    Science.gov (United States)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  20. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials