WorldWideScience

Sample records for laser deposited hydroxyapatite

  1. Pulsed laser deposition of hydroxyapatite thin films

    Czech Academy of Sciences Publication Activity Database

    Koch, C.F.; Johnson, S.; Kumar, D.; Jelínek, Miroslav; Chrisey, D.B.; Doraiswamy, A.; Jin, C.; Narayan, R.J.; Mihailescu, I. N.

    2007-01-01

    Roč. 27, - (2007), s. 484-494 ISSN 0928-4931 Institutional research plan: CEZ:AV0Z10100522 Keywords : hydroxyapatite * pulsed laser deposition * bioactive ceramic s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.486, year: 2007

  2. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  3. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Duta, L.; Oktar, F.N.; Stan, G.E.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I.N.

    2013-01-01

    Highlights: ► HA coatings synthesized by pulsed laser deposition. ► Comparative study of commercial vs. animal origin materials. ► HA coatings of animal origin were rougher and more adherent to substrates. ► Animal origin films can be considered as promising candidates for implant coatings. - Abstract: We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of ∼2 μm. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical–chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  4. HYDROXYAPATITE THIN FILMS ON TITANIUM DEPOSITED BY KrF LASER

    OpenAIRE

    QUANHE BAO; CHUANZHONG CHEN; DIANGANG WANG; YAFAN ZHAO; TINGQUAN LEI; JUNMING LIU

    2006-01-01

    Pulsed laser deposition (PLD) is being investigated as an alternative technique to prepare hydroxyapatite coatings. In this research we studied the microstructure and phase composition of the PLD hydroxyapatite films. The surface morphology of the films is composed of droplets for which size ranges from hundreds of nanometers to a few micrometers. The cross-sectional morphology of the films shows that the films adhere to the substrate well and there are no microcracks, pores and other defects...

  5. The influences of target properties and deposition times on pulsed laser deposited hydroxyapatite films

    International Nuclear Information System (INIS)

    Bao Quanhe; Chen Chuanzhong; Wang Diangang; Liu Junming

    2008-01-01

    Hydroxyapatite films were produced by pulsed laser deposition from three kinds of hydroxyapatite targets and with different deposition times. A JXA-8800R electron probe microanalyzer (EPMA) with a Link ISIS300 energy spectrum analyzer was used to give the secondary electron image (SE) and determine the element composition of the films. The phases of thin film were analyzed by a D/max-γc X-ray diffractometer (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the hydroxyl, phosphate and other functional groups. The results show that deposited films were amorphous which mainly composed of droplet-like particles and vibration of PO 4 3- groups. With the target sintering temperature deposition times increasing, the density of droplets is decreased. While with deposition times increasing, the density of droplets is increased. With the target sintering temperature and deposition time increasing, the ratio of Ca/P is increasing and higher than that of theoretical value of HA

  6. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    Science.gov (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  7. Biological and physical properties of pulsed-laser-deposited zirconia/hydroxyapatite on titanium: in vitro study

    Czech Academy of Sciences Publication Activity Database

    Teuberová, Z.; Seydlová, M.; Dostálová, T.; Dvořánková, B.; Smetana, K. Jr.; Jelínek, Miroslav; Mašínová, Petra; Kocourek, Tomáš; Kolářová, K.; Wilson, J.

    2007-01-01

    Roč. 17, č. 1 (2007), s. 45-49 ISSN 1054-660X R&D Projects: GA MZd NR8512 Institutional research plan: CEZ:AV0Z10100522 Keywords : dental implants * hydroxyapatite * titanium * laser deposition * PLD Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.696, year: 2007

  8. Dental implants coated with laser deposited hydroxyapatite films - physical properties and in-vivo study

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Dostálová, T.; Himmlová, L.; Grivas, Ch.; Fotakis, C.

    2002-01-01

    Roč. 374, - (2002), s. 599-604 ISSN 1058-725X Institutional research plan: CEZ:AV0Z1010914 Keywords : laser deposition * thin films * implants * hydroxyapatite * in-vivo tests Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.457, year: 2002

  9. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gyorgy, E. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania) and Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: egyorgy@icmab.es; Grigorescu, S. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Janackovic, D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Dindune, A. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Kanepe, Z. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Palcevskis, E. [Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Zdrentu, E.L. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania); Petrescu, S.M. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania)

    2007-07-31

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO{sub 2} doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF{sup *} ({lambda} = 248 nm, {tau} {>=} 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 deg. C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  10. Relationship between the Ca/P ratio of hydroxyapatite thin films and the spatial energy distribution of the ablation laser in pulsed laser deposition

    NARCIS (Netherlands)

    Nishikawa, H.; Hasegawa, T; Miyake, A.; Tashiro, Y.; Hashimoto, Y.; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2016-01-01

    Variation of the Ca/P ratio in hydroxyapatite (Ca10(PO4)6(OH)2) thin films was studied in relation to the spot size of the ablation laser for two different spatial energy distributions in pulsed laser deposition. One energy distribution is the defocus method with a raw distribution and the other is

  11. Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L.; Mihailescu, N.; Popescu, A.C.; Luculescu, C.R. [National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele (Romania); Çetin, G.; Gunduz, O. [Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul (Turkey); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul (Turkey); Department of Medical Imaging Techniques, Vocational School of Health Services, Marmara University, 34668 Istanbul (Turkey); Nanotechnology and Biomaterials Application & Research Centre, Marmara University, 34722 Istanbul (Turkey); Popa, A.C. [National Institute of Materials Physics, 077125 Magurele (Romania); Army Centre for Medical Research, 010195 Bucharest (Romania); Kuncser, A.; Besleaga, C. [National Institute of Materials Physics, 077125 Magurele (Romania); Stan, G.E., E-mail: george_stan@infim.ro [National Institute of Materials Physics, 077125 Magurele (Romania)

    2017-08-15

    Highlights: • Pulsed laser deposition of Ti doped hydroxyapatite films of biological origin. • Downgrade of films’ crystallinity and increase of roughness induced by Ti doping. • Bonding strength values superior to minimum value imposed by ISO standards. • Excellent biocompatibility in hMSC cultures of Ti doped structures. • Ti doped hydroxyapatite films as feasible materials for implantology applications. - Abstract: We report on the synthesis by Pulsed Laser Deposition of simple and Ti doped hydroxyapatite thin films of biological (ovine dentine) origin. Detailed physical, chemical, mechanical and biological investigations were performed. Morphological examination of films showed a surface composed of spheroidal particulates, of micronic size. Compositional analyses pointed to the presence of typical natural doping elements of bone, along with a slight non-stoichiometry of the deposited films. Structural investigations proved the monophasic hydroxyapatite nature of both simple and Ti doped films. Ti doping of biological hydroxyapatite induced an overall downgrade of the films crystallinity together with an increase of the films roughness. It is to be emphasized that bonding strength values measured at film/Ti substrate interface were superior to the minimum value imposed by International Standards regulating the load-bearing implant coatings. In vitro tests on Ti doped structures, compared to simple ones, revealed excellent biocompatibility in human mesenchymal stem cell cultures, a higher proliferation rate and a good cytocompatibility. The obtained results aim to elucidate the overall positive role of Ti doping on the hydroxyapatite films performance, and demonstrate the possibility to use this novel type of coatings as feasible materials for future implantology applications.

  12. Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Duta, L.; Mihailescu, N.; Popescu, A.C.; Luculescu, C.R.; Mihailescu, I.N.; Çetin, G.; Gunduz, O.; Oktar, F.N.; Popa, A.C.; Kuncser, A.; Besleaga, C.; Stan, G.E.

    2017-01-01

    Highlights: • Pulsed laser deposition of Ti doped hydroxyapatite films of biological origin. • Downgrade of films’ crystallinity and increase of roughness induced by Ti doping. • Bonding strength values superior to minimum value imposed by ISO standards. • Excellent biocompatibility in hMSC cultures of Ti doped structures. • Ti doped hydroxyapatite films as feasible materials for implantology applications. - Abstract: We report on the synthesis by Pulsed Laser Deposition of simple and Ti doped hydroxyapatite thin films of biological (ovine dentine) origin. Detailed physical, chemical, mechanical and biological investigations were performed. Morphological examination of films showed a surface composed of spheroidal particulates, of micronic size. Compositional analyses pointed to the presence of typical natural doping elements of bone, along with a slight non-stoichiometry of the deposited films. Structural investigations proved the monophasic hydroxyapatite nature of both simple and Ti doped films. Ti doping of biological hydroxyapatite induced an overall downgrade of the films crystallinity together with an increase of the films roughness. It is to be emphasized that bonding strength values measured at film/Ti substrate interface were superior to the minimum value imposed by International Standards regulating the load-bearing implant coatings. In vitro tests on Ti doped structures, compared to simple ones, revealed excellent biocompatibility in human mesenchymal stem cell cultures, a higher proliferation rate and a good cytocompatibility. The obtained results aim to elucidate the overall positive role of Ti doping on the hydroxyapatite films performance, and demonstrate the possibility to use this novel type of coatings as feasible materials for future implantology applications.

  13. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  14. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    International Nuclear Information System (INIS)

    Pang Xin; Zhitomirsky, Igor

    2007-01-01

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 μm. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates

  15. Comparative physical, chemical and biological assessment of simple and titanium-doped ovine dentine-derived hydroxyapatite coatings fabricated by pulsed laser deposition

    Science.gov (United States)

    Duta, L.; Mihailescu, N.; Popescu, A. C.; Luculescu, C. R.; Mihailescu, I. N.; Çetin, G.; Gunduz, O.; Oktar, F. N.; Popa, A. C.; Kuncser, A.; Besleaga, C.; Stan, G. E.

    2017-08-01

    We report on the synthesis by Pulsed Laser Deposition of simple and Ti doped hydroxyapatite thin films of biological (ovine dentine) origin. Detailed physical, chemical, mechanical and biological investigations were performed. Morphological examination of films showed a surface composed of spheroidal particulates, of micronic size. Compositional analyses pointed to the presence of typical natural doping elements of bone, along with a slight non-stoichiometry of the deposited films. Structural investigations proved the monophasic hydroxyapatite nature of both simple and Ti doped films. Ti doping of biological hydroxyapatite induced an overall downgrade of the films crystallinity together with an increase of the films roughness. It is to be emphasized that bonding strength values measured at film/Ti substrate interface were superior to the minimum value imposed by International Standards regulating the load-bearing implant coatings. In vitro tests on Ti doped structures, compared to simple ones, revealed excellent biocompatibility in human mesenchymal stem cell cultures, a higher proliferation rate and a good cytocompatibility. The obtained results aim to elucidate the overall positive role of Ti doping on the hydroxyapatite films performance, and demonstrate the possibility to use this novel type of coatings as feasible materials for future implantology applications.

  16. Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Nakashima, Shouta; Kawazoe, Syuichi; Toma, Tetsuya

    2006-01-01

    Hydroxyapatite (HAp) coated on titanium dioxide (TiO 2 ) thin films has been developed to supplement the defects of both TiO 2 and HAp. Thin films have been prepared by pulsed laser deposition (PLD) method using HAp and HAp(10%) + TiO 2 targets. X-ray diffraction (XRD) shows that there are many small peaks of Ca 1 0(PO 4 ) 6 (OH) 2 crystal, and no impurity other than HAp is detected in HAp films prepared using pure HAp target. The composition ratio of the film was analyzed by X-ray photoelectron spectroscopy (XPS). HAp coatings on TiO 2 thin films have been prepared using HAp(10%) + TiO 2 targets. XRD and XPS measurements suggest that crystalline HAp + TiO 2 thin films are obtained by the PLD method using HAp(10%) + TiO 2 target

  17. In situ annealing of hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Johnson, Shevon; Haluska, Michael; Narayan, Roger J.; Snyder, Robert L.

    2006-01-01

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Unfortunately, problems with adhesion, poor mechanical integrity, and incomplete bone ingrowth limit the use of many conventional hydroxyapatite surfaces. In this work, we have developed a novel technique to produce crystalline hydroxyapatite thin films involving pulsed laser deposition and postdeposition annealing. Hydroxyapatite films were deposited on Ti-6Al-4V alloy and Si (100) using pulsed laser deposition, and annealed within a high temperature X-ray diffraction system. The transformation from amorphous to crystalline hydroxyapatite was observed at 340 deg. C. Mechanical and adhesive properties were examined using nanoindentation and scratch adhesion testing, respectively. Nanohardness and Young's modulus values of 3.48 and 91.24 GPa were realized in unannealed hydroxyapatite films. Unannealed and 350 deg. C annealed hydroxyapatite films exhibited excellent adhesion to Ti-6Al-4V alloy substrates. We anticipate that the adhesion and biological properties of crystalline hydroxyapatite thin films may be enhanced by further consideration of deposition and annealing parameters

  18. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  19. In situ deposition of hydroxyapatite on graphene nanosheets

    International Nuclear Information System (INIS)

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2013-01-01

    Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH 4 etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HA was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.

  20. In situ deposition of hydroxyapatite on graphene nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Neelgund, Gururaj M. [Department of Chemistry, Prairie View A and M University, Prairie View, TX 77446 (United States); Oki, Aderemi, E-mail: aroki@pvamu.edu [Department of Chemistry, Prairie View A and M University, Prairie View, TX 77446 (United States); Luo, Zhiping [Microscopy and Imaging Center and Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843 (United States)

    2013-02-15

    Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH{sub 4} etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HA was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.

  1. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I.N.; Petrovic, R.; Janackovic, Dj.

    2007-01-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 , or bioglasses in the system SiO 2 -Na 2 O-K 2 O-CaO-MgO-P 2 O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2 O vapors, while the bioglass layers were deposited in O 2 . Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications

  2. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    Science.gov (United States)

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Laser deposition and analysis of biocompatible ceramic films - experiences andoverview

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Dostálová, T.; Fotakis, C.; Studnička, Václav; Jastrabík, Lubomír; Havránek, V.; Grivas, C.; Pospíchal, M.; Kadlec, J.; Peřina, Vratislav

    1996-01-01

    Roč. 6, č. 1 (1996), s. 144-149 ISSN 1054-660X Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : laser deposition * hydroxyapatite * ceramic films Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications

    International Nuclear Information System (INIS)

    Socol, G.; Macovei, A.M.; Miroiu, F.; Stefan, N.; Duta, L.; Dorcioman, G.; Mihailescu, I.N.; Petrescu, S.M.; Stan, G.E.; Marcov, D.A.; Chiriac, A.; Poeata, I.

    2010-01-01

    Functionalized implants represent an advanced approaching in implantology, aiming to improve the biointegration and the long-term success of surgical procedures. We report on the synthesis of hydroxyapatite (HA) thin films on polymethylmetacrylate (PMMA) substrates - used as cranio-spinal implant-type structures - by two alternative methods: pulsed laser deposition (PLD) and radio-frequency magnetron sputtering (MS). The deposition parameters were optimized in order to avoid the substrate overheating. Stoichiometric HA structures were obtained by PLD with incident laser fluences of 1.4-2.75 J/cm 2 , pressures of 30-46.66 Pa and 10 Hz pulses repetition rate. The MS depositions were performed at constant pressure of 0.3 Pa in inert and reactive atmospheres. SEM-EDS, XRD, FTIR and pull-out measurements were performed assessing the apatitic-type structure of the prepared films along with their satisfactory mechanical adhesion. Cell viability, proliferation and adhesion tests in osteosarcoma SaOs2 cell cultures were performed to validate the bioactive behaviour of the structures and to select the most favourable deposition regimes. For PLD, this requires a low fluence of 1.4 J/cm 2 , reduced pressure of water vapours and a 100 o C/4 h thermal treatment. For MS, the best results were obtained for 80% Ar + 20% O 2 reactive atmosphere at low RF power (∼75 W). Cells grown on these coatings exhibit behaviour similar to those grown on the standard borosilicate glass control: increased viability, good proliferation, and optimal cell adhesion. In vitro tests proved that HA/PMMA neurosurgical structures prepared by PLD and MS are compatible for the interaction with human bone cells.

  5. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    International Nuclear Information System (INIS)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-01-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  6. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  7. Nanoparticle fabrication of hydroxyapatite by laser ablation in water

    International Nuclear Information System (INIS)

    Musaev, O. R.; Wieliczka, D. M.; Wrobel, J. M.; Kruger, M. B.; Dusevich, V.

    2008-01-01

    Synthetic polycrystalline hydroxyapatite was ablated in water with 337 nm radiation from a UV nitrogen pulsed laser. According to transmission electron microscopy micrographs, the ablated particles were approximately spherical and had a size of ∼80 nm. Raman spectroscopic analysis demonstrated that particles had the same structure as the original crystal. X-ray photoelectron spectroscopy showed that the surface chemical composition was close to that of the original material. The characteristics of the ablated particles and estimations of the temperature rise of the hydroxyapatite surface under laser irradiation are consistent with the mechanism of explosive boiling being responsible for ablation. The experimental observations offer the basis for preparation of hydroxyapatite nanoparticles by laser ablation in water

  8. In-situ deposition of hydroxyapatite on graphene nanosheets

    OpenAIRE

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2013-01-01

    Graphene nanosheets were effectively functionalized by in-situ deposition of hydroxyaptite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, trans...

  9. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  10. In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods

    Directory of Open Access Journals (Sweden)

    Radu Alexandru Roşu

    2012-03-01

    Full Text Available Titanium alloys are successfully used in medicine as implants due to their high mechanical properties and good biocompatibility. To improve implant osseointegration of titanium alloys, they are covered with hydroxyapatite because of its bioactive properties. Coating the implants with hydroxyapatite by thermal spraying, due to the temperatures developed during the deposition process, the structure can be degraded, leading to formation of secondary phases, such as TCP, TT CP, CaO. The paper presents the experimental results of hydroxyapatite layers deposition by two thermal spraying methods: Atmospheric Plasma Spraying (APS and High Velocity Oxy-Fuel (HVOF. The microstructure of the deposited layers is characterized by X-ray diffraction analysis and electronic microscopy. The bioactivity of the hydroxyapatite layers was investigated in Simulated Body Fluid (SBF by immersing the covered samples deposited by the two thermal spraying methods. In both cases the coatings did not present defects as cracks or microcracks. X-ray diffraction performed on hydroxyapatite deposited layers shows that the structure was strongly influenced by plasma jet temperature, the structure consisting mainly of TCP (Ca3PO42. The samples deposited by HVO F after immersing in SBF lead to formation of biological hydroxyapatite, certifying the good bioactivity of the coatings.

  11. Influences of ambient gases on the structure and the composition of calcium phosphate films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, Hye-Lee; Kim, Young-Sun; Kim, Dae-Joon; Lee, Won-Jun; Han, Jung-Suk

    2006-01-01

    Calcium phosphate films were prepared by using a pulsed KrF-laser deposition (PLD) method with a hydroxyapatite target in various ambient gases, such as Ar, O 2 and H 2 O. The influence of the ambient gas on the properties of the deposited films was investigated. The chamber pressure and the substrate temperature were fixed at 0.25 Torr and 600 .deg. C, respectively. Calcium-rich amorphous calcium phosphate films were deposited with a low density in Ar due to the preferential resputtering of phosphorus from the growing film. In an O 2 ambient, the density and the Ca/P ratio of the films were similar to those of the target. However, the deposited film was amorphous calcium phosphate and did not contain OH - groups. Polycrystalline hydroxyapatite films can be deposited in a H 2 O ambient because a sufficient supply of OH - groups from the ambient gas is essential for the growth of a hydroxyapatite film.

  12. Influences of ambient gases on the structure and the composition of calcium phosphate films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Lee; Kim, Young-Sun; Kim, Dae-Joon; Lee, Won-Jun [Sejong University, Seoul (Korea, Republic of); Han, Jung-Suk [Seoul National University, Seoul (Korea, Republic of)

    2006-11-15

    Calcium phosphate films were prepared by using a pulsed KrF-laser deposition (PLD) method with a hydroxyapatite target in various ambient gases, such as Ar, O{sub 2} and H{sub 2}O. The influence of the ambient gas on the properties of the deposited films was investigated. The chamber pressure and the substrate temperature were fixed at 0.25 Torr and 600 .deg. C, respectively. Calcium-rich amorphous calcium phosphate films were deposited with a low density in Ar due to the preferential resputtering of phosphorus from the growing film. In an O{sub 2} ambient, the density and the Ca/P ratio of the films were similar to those of the target. However, the deposited film was amorphous calcium phosphate and did not contain OH{sup -} groups. Polycrystalline hydroxyapatite films can be deposited in a H{sub 2}O ambient because a sufficient supply of OH{sup -} groups from the ambient gas is essential for the growth of a hydroxyapatite film.

  13. Synthesis of dense nano cobalt-hydroxyapatite by modified electroless deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Zaheruddin, K., E-mail: zaheruddin@unimap.edu.my; Rahmat, A., E-mail: azmirahmat@unimap.edu.my; Shamsul, J. B., E-mail: sbaharin@unimap.edu.my; Mohd Nazree, B. D., E-mail: nazree@unimap.edu.my; Aimi Noorliyana, H., E-mail: aimiliyana@unimap.edu.my [School of Materials Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi Universiti Malaysia Perlis, Taman Muhibbah, Jejawi 02600 Arau Perlis (Malaysia)

    2016-07-19

    Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3 % wt Co and gradually decreased at higher Co content.

  14. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    International Nuclear Information System (INIS)

    Trujillo, Nathan A.; Oldinski, Rachael A.; Ma, Hongyan; Bryers, James D.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at − 700 eV. For silver-doped films, two concentrations of silver (∼ 0.5 wt.% and ∼ 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with ∼ 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with ∼ 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: ► We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. ► Silver-doped hydroxyapatite thin films on titanium were developed. ► The thin films showed the ability to control the concentration of silver that is doped within the

  15. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Prosthodontics and Restorative Science, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO{sub 3}){sub 2} + 3 mM NH{sub 4}H{sub 2}PO{sub 4}. Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings.

  16. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    International Nuclear Information System (INIS)

    Kim, Hyun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO 3 ) 2 + 3 mM NH 4 H 2 PO 4 . Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings

  17. Silver doped hydroxyapatite coatings by sacrificial anode deposition under magnetic field.

    Science.gov (United States)

    Swain, S; Rautray, T R

    2017-09-13

    Uniform distribution of silver (Ag) in the hydroxyapatite (HA) coated Ti surface has been a concern for which an attempt has been made to dope Ag in HA coating with and without magnetic field. Cathodic deposition technique was employed to coat Ag incorporated hydroxyapatite coating using a sacrificial silver anode method by using NdFeB bar magnets producing 12 Tesla magnetic field. While uniform deposition of Ag was observed in the coatings under magnetic field, dense coating was evident in the coating without magnetic field conditions. Uniformly distributed Ag incorporated HA in the present study has potential to fight microorganism while providing osseoconduction properties of the composite coating.

  18. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals.

    Science.gov (United States)

    Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J

    2014-01-01

    Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.

  19. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  20. Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V

    International Nuclear Information System (INIS)

    He, Daihua; Liu, Ping; Liu, Xinkuan; Ma, Fengcang; Chen, Xiaohong; Li, Wei; Du, Jiandi; Wang, Pu; Zhao, Jun

    2016-01-01

    The hydrothermal electrochemical method was used to deposit hydroxyapatite coating on Ti6Al4V. In order to improve the bonding strength between the coating and substrate, the substrates were modified by 8 M NaOH solution before the deposition. The effects of immersing time on the substrate, on the hydroxyapatite coating, and on the bonding strength were studied. X-Ray Diffraction, Scanning Electron Microscope, Fourier Transform Infrared Spectroscopy and Drop Shape Analysis Method were applied. And the crystallinity of hydroxyapatite coating was calculated. The results show that immersing treatment effects the phase compositions, the microstructure and the wettability of the substrate surface. A porous, three-dimensional network structure is formed on the Ti6Al4V surface through the NaOH immersion. The pore size and depth increase with the increase of immersing time from 12 to 48 h. The surface microstructure of Ti6Al4V with 60 h′ immersion time was different from the others. The modification treatment can improve the bonding strength between hydroxyapatite coating and the substrate obviously. The value of the bonding strength with the substrate immersed for 48 h is larger than those of the others. A bone-like apatite layer forms on the coating after 3 days of soaking in SBF, implying with good bioactivity of the hydroxyapatite coatings deposited by the method. The surface characteristics of the sample immersed with 48 h are more conductive to the deposition of hydroxyapatite and to the improvement of the bonding strength. The formation mechanism of hydroxyapatite coating deposited by hydrothermal electrochemical method was discussed. - Highlights: • Immerse Ti6Al4V alloy with NaOH solution for different immersing time. • We deposit hydroxyapatite coating by hydrothermal electrochemical method. • We examine changes of composition, microstructure, bonding strength and bioactivity of the hydroxyapatite coating. • 48 h is the optimal immersing time. • We

  1. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses

    International Nuclear Information System (INIS)

    Huang Yi; Song Lei; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Chen Jiyong; Wu Fang; Gu Zhongwei

    2010-01-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 μm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  2. Biomedical properties of laser prepared silver-doped hydroxyapatite

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Weiserová, Marie; Kocourek, Tomáš; Zezulová, Markéta; Strnad, D.

    2011-01-01

    Roč. 21, č. 7 (2011), 1265-1269 ISSN 1054-660X R&D Projects: GA ČR GA204/07/0325 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z50200510 Keywords : silver -doped hydroxyapatite * PLD * layers * antibacterial properties Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.605, year: 2011

  3. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    International Nuclear Information System (INIS)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-01-01

    Highlights: • Graphene oxide cross-linked gelatin was firstly employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays. • Gelatin functionalized graphene oxide induced the formation of hydroxyapatite coatings. • The success of gelatin and graphene oxide incorporation was evidenced with FTIR and XPS. • The synthesized composite coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution

  4. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    Science.gov (United States)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  5. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine-Grained Titanium Substrate: Structure Analysis

    Directory of Open Access Journals (Sweden)

    Konstantin A. Prosolov

    2018-02-01

    Full Text Available Nanocrystalline Zn-substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross-section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn-substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8-nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P–O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn-substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  6. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  7. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Javier [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Bolat, Georgiana [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Cimpoesu, Nicanor [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science, 61-63 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Trinca, Lucia Carmen [Science Department, University of Agricultural Sciences and Veterinary Medicine, M. Sadoveanu Alley 3, 700490 Iasi (Romania); Mareci, Daniel, E-mail: danmareci@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Souto, Ricardo Manuel, E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna, Tenerife (Spain)

    2016-11-01

    Highlights: • New quarternary Ti-based alloy for biomaterial application. • Combined hydroxyapatite-zirconia coating produced by pulsed laser deposition. • Porous layer formed on the coated alloy blocks electron transfer reactions. • Electrochemical behaviour consistent with passive film with duplex structure. • HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr exhibits high potential for osseointegration. - Abstract: A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA–ZrO{sub 2}) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer’s solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA–ZrO{sub 2} coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  8. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Hassan, M A; Ghani, S A C; Buyong, Z

    2016-04-01

    New promising techniques for depositing biocompatible hydroxyapatite-based coatings on biocompatible metal substrates for biomedical applications have continuously been exploited for more than two decades. Currently, various experimental deposition processes have been employed. In this review, the two most frequently used deposition processes will be discussed: a sol-gel dip coating and an electrochemical deposition. This study deliberates the surface morphologies and chemical composition, mechanical performance and biological responses of sol-gel dip coating as well as the electrochemical deposition for two different sample conditions, with and without coating. The review shows that sol-gel dip coatings and electrochemical deposition were able to obtain the uniform and homogeneous coating thickness and high adherent biocompatible coatings even in complex shapes. It has been accepted that both coating techniques improve bone strength and initial osseointegration rate. The main advantages and limitations of those techniques of hydroxyapatite-based coatings are presented. Furthermore, the most significant challenges and critical issues are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Julietta V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Fosca, Marco [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Cacciotti, Ilaria [Università di Roma “Tor Vergata”, Dipartimento di Ingegneria Industriale,UR INSTM “Roma Tor Vergata”, Via del Politecnico, 1-00133 Rome (Italy); Laureti, Sara [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via Salaria km 29.300-00016 Monterotondo Scalo (RM) (Italy); Bianco, Alessandra [Università di Roma “Tor Vergata”, Dipartimento di Ingegneria Industriale,UR INSTM “Roma Tor Vergata”, Via del Politecnico, 1-00133 Rome (Italy); Teghil, Roberto [Università della Basilicata, Dipartimento di Scienze, Via dell' Ateneo Lucano 10-85100, Potenza (Italy)

    2013-09-30

    In the present work, the Si-HAp coatings were deposited on titanium substrates by Pulsed Laser Deposition technique. For deposition, the Si-HAp targets (1.4 wt.% of Si), produced starting from wet synthesized powders, were used. The properties of coatings were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and Vickers microhardness. The obtained Si-HAp coatings presented a nanosized structure, proper thickness and hardness for applications in orthopedical and dental surgery, aimed at improving the stability and the osteointegration of bone implants. - Highlights: ► Pulsed Laser Deposition method was applied to coat heated Titanium supports. ► Films were deposited using a target of Silicon-Hydroxyapatite sintered ceramics. ► Nanostructured crystalline hard film was grown replicating target composition. ► Prepared coating could be used for orthopedic and dental implants applications.

  10. Nanostructured Si-substituted hydroxyapatite coatings for biomedical applications

    International Nuclear Information System (INIS)

    Rau, Julietta V.; Fosca, Marco; Cacciotti, Ilaria; Laureti, Sara; Bianco, Alessandra; Teghil, Roberto

    2013-01-01

    In the present work, the Si-HAp coatings were deposited on titanium substrates by Pulsed Laser Deposition technique. For deposition, the Si-HAp targets (1.4 wt.% of Si), produced starting from wet synthesized powders, were used. The properties of coatings were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and Vickers microhardness. The obtained Si-HAp coatings presented a nanosized structure, proper thickness and hardness for applications in orthopedical and dental surgery, aimed at improving the stability and the osteointegration of bone implants. - Highlights: ► Pulsed Laser Deposition method was applied to coat heated Titanium supports. ► Films were deposited using a target of Silicon-Hydroxyapatite sintered ceramics. ► Nanostructured crystalline hard film was grown replicating target composition. ► Prepared coating could be used for orthopedic and dental implants applications

  11. Gas-phase laser synthesis of aggregation-free, size-controlled hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Bapat, Parimal V.; Kraft, Rebecca; Camata, Renato P.

    2012-01-01

    Nanophase hydroxyapatite (HA) is finding applications in many areas of biomedical research, including bone tissue engineering, drug delivery, and intracellular imaging. Details in chemical composition, crystal phase makeup, size, and shape of HA nanoparticles play important roles in achieving the favorable biological responses required in these applications. Most of the nanophase HA synthesis techniques involve solution-based methods that exhibit substantial aggregation of particles upon precipitation. Typically these methods also have limited control over the particle size and crystal phase composition. In this study, we describe the gas-phase synthesis of aggregation-free, size-controlled HA nanoparticles with mean size in the 20–70 nm range using laser ablation followed by aerosol electrical mobility classification. Nanoparticle deposits with adjustable number concentration were obtained on solid substrates. Particles were characterized by transmission electron microscopy, atomic force microscopy, and X-ray diffraction. Samples are well represented by log-normal size distributions with geometric standard deviation σ g ≈ 1.2. The most suitable conditions for HA nanoparticle formation at a laser fluence of 5 J/cm 2 were found to be a temperature of 800 °C and a partial pressure of water of 160 mbar.

  12. Preparation of Porous Hydroxyapatite Tablets and Porous Hydroxyapatite Coatings for Orthopaedic Use

    International Nuclear Information System (INIS)

    Mendez-Gonzalez, M.

    2004-01-01

    Porous hydroxyapatite tablets and coatings on metal substrates were obtained by the addition of polymeric additives and liofilization. Both tablets and coatings were characterized by scanning electron microscopy and x-ray diffraction. Coatings obtained by plasma spraying also exhibited interconnected porous of 100 μm while coatings obtained by laser ablation did not show any porosity. The diffraction patterns of the deposited HA were similar to that of the powder obtained by the precipitation method suggesting that no significant changes occurred during the coating procedure

  13. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  14. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    International Nuclear Information System (INIS)

    Miroiu, F.M.; Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N.; Sima, L.E.; Petrescu, S.M.; Andronie, A.; Stamatin, I.; Moga, S.; Ducu, C.

    2010-01-01

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, λ = 248 nm, τ = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm 2 laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm -1 amide II, 1654 cm -1 amide I, 1243 cm -1 amide III, while the peak from 1027 cm -1 appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  15. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miroiu, F.M., E-mail: marimona.miroiu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Sima, L.E.; Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest (Romania); Andronie, A.; Stamatin, I. [3Nano-SAE Alternative Energy Sources-University of Bucharest, Faculty of Physics, 409 Atomistilor Street, RO-77125, Magurele-Ilfov (Romania); Moga, S.; Ducu, C. [University of Pitesti, Targul din Vale Str, no. 1, 110040 Pitesti (Romania)

    2010-05-25

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, {lambda} = 248 nm, {tau} = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm{sup 2} laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm{sup -1} amide II, 1654 cm{sup -1} amide I, 1243 cm{sup -1} amide III, while the peak from 1027 cm{sup -1} appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  16. Hydroxyapatite crystal deposition disease: imaging aspects and biological behavior

    International Nuclear Information System (INIS)

    D'Aquino, Danilo Olavarria; Pinto, Alexandre de Lavra; Costa, Mauro Jose Brandao da; Fanelli, Vania A.; Abud, Lucas Giansante

    2005-01-01

    Objective: to demonstrate, using imaging methods (x-ray, computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US), the phases of hydroxyapatite crystal deposition disease in joints, particularly in the shoulder, from the silent phase to the intra-osseous migration of calcifications and radiologic follow-up examinations showing complete remission after physical therapy. Material and method: we evaluated 27 joints (25 shoulders, one hip and one elbow) of patients followed-up with radiographs. Patients extremely symptomatic and refractory to treatment were referred to MRI or US. Results: total remission of calcifications was observed in 15 joints after treatment - 14 shoulders and one elbow. In two joint, migration of the calcification to bone was observed: one to the bursa subdeltoidea, one to biceps tendon, one to subcoracoid recess and one to the interior of the infra spinal muscle. In two cases MRI and CT scans showed a high inflammatory process triggered by the disease. Conclusion: hydroxyapatite crystal deposition disease affects multiple joints and can vary from asymptomatic to extremely symptomatic. Imaging methods show all phases of the disease, including the migratory phase. In general, the use of x-ray is enough for the diagnosis and follow-up. MRI and CT provide a more accurate diagnosis in the active phase of the disease. In this paper, remission was seen with physiotherapy (iontophoresis) in 55% of the cases. (author)

  17. Effect of reactive atmosphere on pulsed laser deposition of hydroxyapatite thin films

    Czech Academy of Sciences Publication Activity Database

    Mroz, W.; Jedynski, M.; Hoffman, J.; Jelínek, Miroslav; Major, B.; Prokopiuk, A.; Szymanski, Z.

    2007-01-01

    Roč. 59, - (2007), s. 720-723 ISSN 1742-6588 Grant - others:PBZ-KBN(PL) 100/TO8/2003 and 0028/TOO/2005/29 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * hydroxyapatite * reactive atmosphere * thin layers Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO 2 anatase, TiO 2 rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I corr than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO 2 , HA, and Ca 5 (PO 4 ) 2 SiO 4 . • Polarization resistance of the coating was increased by Si substitution in HA

  19. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Blanda, Giuseppe [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Piazza, Salvatore; Sunseri, Carmelo [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Inguanta, Rosalinda, E-mail: rosalinda.inguanta@unipa.it [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO{sub 4}·H{sub 2}O; HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO{sub 3}){sub 2}·4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  20. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    International Nuclear Information System (INIS)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-01-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO_4·H_2O; HA, Ca_1_0(PO_4)_6(OH)_2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO_3)_2·4H_2O and NH_4H_2PO_4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  1. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    Science.gov (United States)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  2. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model.

    Science.gov (United States)

    Pilgrim, Matthew G; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C; Messinger, Jeffrey D; Read, Russell W; Guidry, Clyde; Curcio, Christine A

    2017-02-01

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.

  3. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS₂ Nanoparticles.

    Science.gov (United States)

    Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev; Tenne, Reshef

    2018-02-26

    Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS₂ (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end.

  4. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  5. Subtractive manufacturing of customized hydroxyapatite scaffolds for bone regeneration

    Czech Academy of Sciences Publication Activity Database

    Trunec, M.; Chlup, Zdeněk

    2017-01-01

    Roč. 43, č. 14 (2017), s. 11265-11273 ISSN 0272-8842 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : tissue engineering applications * in-vivo * porous hydroxyapatite * phosphate bioceramics * suspensions * ceramics * laser * optimization * osteogenesis * deposition * Milling (A) * Porosity (B) * Apatite (D) * Biopmedical properties (E) * Scaffold Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.986, year: 2016

  6. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations.

    Science.gov (United States)

    Franjic, Kresimir; Cowan, Michael L; Kraemer, Darren; Miller, R J Dwayne

    2009-12-07

    Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 microm. The peak intensity at 13 GW/cm(2) was well below the plasma generation threshold and the applied fluence 0.75 J/cm(2) was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.

  7. Laser deposition of HTSC films

    International Nuclear Information System (INIS)

    Sobol', Eh.N.; Bagratashvili, V.N.; Zherikhin, A.N.; Sviridov, A.P.

    1990-01-01

    Studies of the high-temperature superconducting (HTSC) films fabrication by the laser deposition are reviewed. Physical and chemical processes taking place during laser deposition are considered, such as the target evaporation, the material transport from the target to the substrate, the film growth on the substrate, thermochemical reactions and mass transfer within the HTSC films and their stability. The experimental results on the laser deposition of different HTSC ceramics and their properties investigations are given. The major technological issues are discussed including the deposition schemes, the oxygen supply, the target compositions and structure, the substrates and interface layers selection, the deposition regimes and their impact on the HTSC films properties. 169 refs.; 6 figs.; 2 tabs

  8. Structural and mechanical properties of hydroxyapatite coatings formed by ion-beam assisted deposition

    Science.gov (United States)

    Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.; Donkov, N.; Ghaemi, M. H.; Szkodo, M.; Antoszkiewicz, M.; Szyfelbain, M.; Czaban, A.

    2018-03-01

    The ion-beam assisted deposition (IBAD) is an advanced method capable of producing crystalline coatings at low temperatures. We determined the characteristics of hydroxyapatite Ca10(PO4)6(OH)2 target and coatings formed by IBAD using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX). The composition of the coatings’ cross-section and surface was close to those of the target. The XPS spectra showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p3/2), and O 1s levels are related to the hydroxyapatite phase. The coatings demonstrate an optimal H/E ratio, and a good resistance to scratch tests.

  9. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hila Shalom

    2018-02-01

    Full Text Available Films combining hydroxyapatite (HA with minute amounts (ca. 1 weight % of (rhenium doped fullerene-like MoS2 (IF nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD. The films were analyzed by scanning electron microscopy (SEM, X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end.

  10. A study of the effect of low intensity laser therapy on the osseointegration of hydroxyapatite implants

    International Nuclear Information System (INIS)

    Rajab, A.A.

    1999-01-01

    Three significant developments over the last decade in the maxillofacial region have been the predictable use of dental implants, the employment of hydroxyapatite as an implant coating, with a potential for more rapid osseointegration, and the introduction of Low Intensity Laser Therapy (LILT) for the enhancement of healing. Implants, although proving a major advance in prosthetics have the disadvantage that loading has to be delayed for a period, which in the case of the mouth needs to be 3 - 6 months after insertion. Hydroxyapatite offers the possibility of a shortened period of delay. Low Intensity Laser Therapy (LILT) has been shown to accelerate the healing of bony fractures, both experimentally and clinically. This thesis sets out to evaluate whether LILT could enhance the process of osseointegration, particularly when used with ceramic hydroxyapatite implants in an animal model. If so, this could provide a future clinical combination which would allow earlier loading of hydroxyapatite coated dental implants and also their counterparts in femoral head replacement. There has been virtually no research work undertaken on this aspect. An animal research study has been undertaken to investigate the effect of LILT on the osseointegration of endosseous implants. HA ceramic implants were inserted in two different anatomical sites, namely the mandible and femur in 40 rabbits. The animals were divided into three groups, comprising a low energy laser group (25 J/cm 2 per treatment), a high energy group (125 J/cm 2 per treatment ) and a control group. Animals were sacrificed at four and twelve weeks, with equivalent numbers of representatives of the three groups. The evolved method of evaluation involved radiographic methods (plain x-ray, radiovisiography RVG and the innovative technique of x-ray microtomography XMT), mechanical push out testing (Instron machine) and histological examination (qualitative and quantitative histomorphometry). The conclusions of the study

  11. Bioceramic hydroxyapatite coating fabricated on TI-6Al-4V using Nd:YAG Laser

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-11-01

    Full Text Available Driven Innovation, 15th Annual International Conference, Stellenbosch, South Africa, 6-7 November 2014 Bioceramic hydroxyapatite coating fabricated on TI-6Al-4V using Nd:YAG Laser M. Tlotleng1, 4*, E. Akinlabi1, M. Shukla2, 3, S. Pityana4, T...

  12. Hydroxyapatite/zirconia-microfibre composites with controlled microporosity and fracture properties prepared by electrophoretic deposition

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Sláma, M.; Hadraba, Hynek; Cihlář, J.

    2015-01-01

    Roč. 41, č. 9 (2015), s. 11202-11212 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : hydroxyapatite * zirconia * composite * electrophoretic deposition * porosity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015

  13. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  14. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  15. Pulsed laser deposition in Twente: from research tool towards industrial deposition

    NARCIS (Netherlands)

    Blank, David H.A.; Dekkers, Jan M.; Rijnders, Augustinus J.H.M.

    2014-01-01

    After the discovery of the perovskite high Tc superconductors in 1986, a rare and almost unknown deposition technique attracted attention. Pulsed laser deposition (PLD), or laser ablation as it was called in the beginning, became popular because of the possibility to deposit complex materials, like

  16. Laser-induced chemical vapor deposition reactions

    International Nuclear Information System (INIS)

    Teslenko, V.V.

    1990-01-01

    The results of investigation of chemical reactions of deposition of different substances from the gas phase when using the energy of pulse quasicontinuous and continuous radiation of lasers in the wave length interval from 0.193 to 10.6 μm are generalized. Main attetion is paid to deposition of inorganic substances including nonmetals (C, Si, Ge and others), metals (Cu, Au, Zn, Cd, Al, Cr, Mo, W, Ni) and some simple compounds. Experimental data on the effect of laser radiation parameters and reagent nature (hydrides, halogenides, carbonyls, alkyl organometallic compounds and others) on the deposition rate and deposit composition are described in detail. Specific features of laser-chemical reactions of deposition and prospects of their application are considered

  17. Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites

    Science.gov (United States)

    Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, J. A.; Cabanzo, R.; Meléndez, A. M.

    2017-01-01

    Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy.

  18. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres

    International Nuclear Information System (INIS)

    Jiao, Yan; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2013-01-01

    Hydroxyapatite (HA) and HA coated microcarriers for cell culture and delivery have attracted more attention recently, owing to the rapid progress in the field of tissue engineering. In this research, a dense and uniform HA coating with the thickness of about 2 μm was successfully deposited on hollow glass microspheres (HGM) by biomimetic process. The influences of SBF concentration, immersion time, solid/liquid ratio and activation of HGM on the deposition rate and coating characteristics were discussed. X-ray diffraction (XRD) and Fourier transform infrared spectrum (FTIR) analyses revealed that the deposited HA is poorly crystalline. The thickness of HA coating showed almost no increase after immersion in 1.5SBF for more than 15 days with the solid/liquid ratio of 1:150. At the same time, SBF concentration, solid/liquid ratio and activation treatment played vital roles in the formation of HA coating on HGM. This poorly crystallized HA coated HGM could have potential use as microcarrier for cell culture. Highlights: • HA coatings were deposited on hollow glass microspheres by biomimetic process. • The obtained HA coating was poorly crystalline and carbonated. • The influencing factors of deposition rate and coating characteristics were studied. • The thickness of HA coating showed almost no increase after immersion for 15 days

  19. Laser-Induced Breakdown Spectroscopy (LIBS) for Monitoring the Formation of Hydroxyapatite Porous Layers

    OpenAIRE

    Sola, Daniel; Paulés, Daniel; Grima, Lorena; Anzano, Jesús

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy.

  20. Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites

    International Nuclear Information System (INIS)

    Gualdrón-Reyes, A F; Cabanzo, R; Meléndez, A M; Domínguez-Vélez, V; Morales-Morales, J A

    2017-01-01

    Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO 2 /stainless steel and TiO 2 /titanium electrodes. TiO 2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy. (paper)

  1. Laser-Induced Breakdown Spectroscopy (LIBS for Monitoring the Formation of Hydroxyapatite Porous Layers

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2017-12-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO42 biocompatible eutectic glass immersed in simulated body fluid (SBF. Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, and micro-Raman spectroscopy.

  2. Diode λ830nm laser associated with hydroxyapatite and biological membranes: bone repair in rats

    Science.gov (United States)

    Carneiro, Vanda S. M.; Limeira, Francisco d. A.; Gerbi, Marleny E. M.; Menezes, Rebeca F. d.; Santos-Neto, Alexandrino P. d.; Araújo, Natália C.

    2016-02-01

    The aim of the present study was to histologically assess the effect of laser therapy (AsGaAl, 830nm, 40mW, CW, φ ~0,6mm, 16J/cm2 per session, four points of 4J/cm2) on the repair of surgical defects created in the femur of Wistar rats. Background data: Several techniques have been proposed for the correction of bone defects, including the use of grafts and membranes. Despite the increase in the use of laser therapy for the biomodulation of bone repair, very few studies have assessed the associations between laser light and biomaterials. Method: The defects were filled with synthetic micro granular hydroxyapatite (HA) Gen-phos® implants and associated with bovine bone membranes (Gen-derm®). Surgical bone defects were created in 48 rats and divided into four groups: Group IA (control, n=12); Group IB (laser, n=12); Group IIA (HA + membrane, n=12); Group IIB (HA + membrane + laser, n=12). The irradiated groups received the first irradiation immediately after surgery. This radiation was then repeated seven times every 48h. The animals were sacrificed after 15, 21, and 30 days. Results: When comparing the groups irradiated with implants and membranes, it was found that the repair of the defects submitted to laser therapy occurred more quickly, starting 15 and 21 days after surgery. By the 30th day, the level of repair of the defects was similar in the irradiated and the non-irradiated groups. New bone formation was confirmed inside the cavity by the implant's osteoconduction. In the irradiated groups, there was an increment of this new bone formation. Conclusions: In conclusion, the use of laser therapy, particularly when associated with hydroxyapatite and biological membranes, produced a positive biomodulation effect on the healing process of bone defects on the femurs of rats.

  3. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    International Nuclear Information System (INIS)

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  4. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    International Nuclear Information System (INIS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-01-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate

  5. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Science.gov (United States)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  6. Crystallization of modified hydroxyapatite on titanium implants

    International Nuclear Information System (INIS)

    Golovanova, O A; Izmailov, R R; Zaits, A V; Ghyngazov, S A

    2016-01-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface. (paper)

  7. Biocompatibility of Mg Ion Doped Hydroxyapatite Films on Ti-6Al-4V Surface by Electrochemical Deposition.

    Science.gov (United States)

    Lee, Kang; Choe, Han-Cheol

    2016-02-01

    In this study, we prepared magnesium (Mg) doped nano-phase hydroxyapatite (HAp) films on the TiO2 nano-network surface using electrochemical deposition method. Ti-6Al-4V ELI surface was anodized in 5 M NaOH solution at 0.3 A for 10 min. Nano-network TiO2 surface were formed by these anodization steps which acted as templates and anchorage for growth of the Mg doped HAp during subsequent pulsed electrochemical deposition process at 85 degrees C. The phase and morphologies of HAp deposits were influenced by the Mg ion concentration.

  8. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca 2+ , PO 4 3− and SiO 3 2− ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO 4 4− groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO 4 4− groups in the Si-HA coating

  9. Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors

    International Nuclear Information System (INIS)

    Uccello, A.; Maffini, A.; Dellasega, D.; Passoni, M.

    2013-01-01

    Highlights: ► Pulsed laser deposition is exploited to produce Rh films for first mirrors. ► Pulsed laser deposition is exploited to produce tokamak-like C contaminants. ► Rh laser damage threshold has been evaluated for infrared pulses. ► Laser cleaning of C contaminated Rh films gives promising results. -- Abstract: In this paper an experimental investigation on the laser cleaning process of rhodium films, potentially candidates to be used as tokamak first mirrors (FMs), from redeposited carbon contaminants is presented. A relevant issue that lowers mirror's performance during tokamak operations is the redeposition of sputtered material from the first wall on their surface. Among all the possible techniques, laser cleaning, in which a train of laser pulses is launched to the surface that has to be treated, is a method to potentially mitigate this problem. The same laser system (Q-switched Nd:YAG laser with a fundamental wavelength of 1064-nm and 7-ns pulses) has been employed with three aims: (i) production by pulsed laser deposition (PLD) of Rh film mirrors, (ii) production by PLD of C deposits with controlled morphology, and (iii) investigation of the laser cleaning method onto C contaminated Rh samples. The evaluation of Rh films laser damage threshold, as a function of fluence and number of pulses, is discussed. Then, the C/Rh films have been cleaned by the laser beam. The exposed zones have been characterized by visual inspection and scanning electron microscopy (SEM), showing promising results

  10. Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser

    International Nuclear Information System (INIS)

    Cheng, Gary J.; Pirzada, Daniel; Cai, M.; Mohanty, Pravansu; Bandyopadhyay, Amit

    2005-01-01

    The ability to bond to bone tissue is a unique property of bioactive ceramics. Hydroxyapatite (HAp) is one of the potential bioceramics candidates due to its superior bio-compatibility. Significant effort has been devoted to coat HAp ceramics on metallic substrates. Most of these processes, such as ion-beam sputter coating, thermal spraying, and flame spraying, are high temperature line of sight processes, which suffer from undesirable phase formation and weak metal/HAP bonding strength. This paper presents a unique process to coat HAp powders on titanium substrates at low temperature and enhance the coating/substrate interface by laser surface engineering. Nd-YAG laser transmits HAp powders and the laser power is absorbed by titanium substrate to produce a thin layer of molten region. During coating process, HAp powders are kept at low temperature before they are entrapped in metallic layer. Scanning electron microscope (SEM) was used to investigate the microstructure of coating; the chemical composition of the coating is determined by energy dispersive spectrometry (EDS). Mechanical properties of the interface between coating and Ti substrate were investigated by nanoindentation

  11. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  12. Dispersion of carbon nanotubes in hydroxyapatite powder by in situ chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Haipeng; Wang Lihui; Liang, Chunyong; Wang Zhifeng; Zhao Weimin

    2010-01-01

    In the present work, we use chemical vapor deposition of methane to disperse carbon nanotubes (CNTs) within hydroxyapatite (HA) powder. The effect of different catalytic metal particles (Fe, Ni or Co) on the morphological and structural development of the powder and dispersion of CNTs in HA powder was investigated. The results show that the technique is effective in dispersing the nanotubes within HA powder, which simultaneously protects the nanotubes from damage. The results can have important and promising speculations for the processing of CNT-reinforced HA-matrix composites in general.

  13. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...... deposition followed by high temperature annealing. The films were used to understand the double band gap that we and other groups observed in the material. The Cu-content of the CTS films varied depending on the laser fluence (the laser energy per pulse and per area). The material transfer from...

  14. Effect of low-level laser irradiation on osteoblast-like cells cultured on porous hydroxyapatite scaffolds

    Directory of Open Access Journals (Sweden)

    Serena Incerti Parenti

    2013-09-01

    Full Text Available OBJECTIVE: To determine the effect of laser irradiation at a low dose on human osteoblastlike cells. Materials and methods: 32 porous hydroxyapatite scaffolds currently used for bone tissue engineering were seeded with MG63 cells and irradiated or not with a GaAlAs diode laser (wavelength 915 nm, dose 2 J/cm² using different power density and exposure duration. RESULTS: After 72-h incubation, cells showed well spread morphology and good adhesion on both laser-treated and untreated scaffolds. Laser irradiation did not interfere in cell viability and proliferation as compared with the non-irradiated controls. CONCLUSION: This study suggests that there is no effect of 915 nm laser irradiation at a dose of 2 J/cm² on the proliferation rate of MG63 cells. Future investigations are needed to compare different dose and wavelength regimens in order to determine the optimal set of laser parameters for maximum cell yield and safe clinical application.

  15. Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite.

    Science.gov (United States)

    Balla, Vamsi Krishna; Das, Mitun; Bose, Sreyashree; Ram, G D Janaki; Manna, Indranil

    2013-12-01

    Laser-engineered net shaping (LENS™), a commercial additive manufacturing process, was used to modify the surfaces of 316 L stainless steel with bioactive hydroxyapatite (HAP). The modified surfaces were characterized in terms of their microstructure, hardness and apatite forming ability. The results showed that with increase in laser energy input from 32 J/mm(2) to 59 J/mm(2) the thickness of the modified surface increased from 222±12 μm to 355±6 μm, while the average surface hardness decreased marginally from 403±18 HV0.3 to 372±8 HV0.3. Microstructural studies showed that the modified surface consisted of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. Finally, the surface-modified 316 L samples immersed in simulated body fluids showed significantly higher apatite precipitation compared to unmodified 316 L samples. © 2013.

  16. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-01-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO 3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property

  17. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    Science.gov (United States)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  18. On the role of the indifferent electrolyte LiCl in electrophoretic deposition of hydroxyapatite from 2-propanol dispersions

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Sláma, M.; Hadraba, Hynek; Drdlíková, K.; Cihlář, J.

    2016-01-01

    Roč. 42, č. 15 (2016), s. 16529-16534 ISSN 0272-8842 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Electrophoretic deposition * Electrical conductivity * Thick layer * Surface roughness * Hydroxyapatite Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.986, year: 2016

  19. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca{sup 2+}, PO{sub 4}{sup 3−} and SiO{sub 3}{sup 2−} ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO{sub 4}{sup 4−} groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO{sub 4}{sup 4−} groups in the Si-HA coating.

  20. Calcium hydroxyapatite crystal deposition with intraosseous penetration involving the posterior aspect of the cervical spine: a previously unreported cause of neck pain.

    Science.gov (United States)

    Urrutia, Julio; Contreras, Oscar

    2017-05-01

    Calcific tendinitis is a frequent disorder caused by hydroxyapatite crystal deposition; however, bone erosions from calcific tendinitis are unusual. The spinal manifestation of this disease is calcific tendinitis of the longus colli muscle; this disease has never been described in the posterior aspect of the spine. We report a case of calcium hydroxyapatite crystal deposition involving the posterior cervical spine eroding the bone cortex. A 57-year-old woman presented with a 5-month history of left-sided neck pain. Radiographs showed C4-C5 interspinous calcification with lytic compromise of the posterior arch of C4. Magnetic resonance imaging confirmed a lytic lesion of the posterior arch of C4, with a soft tissue mass extending to the C4-C5 interspinous space; calcifications were observed as very low signal intensity areas on T1 and T2 sequences, surrounded by gadolinium-enhanced soft tissues. A computed tomography (CT) scan confirmed the bone erosions and the soft tissue calcifications. A CT-guided needle biopsy was performed; it showed vascularized connective tissue with inflammatory histiocytic infiltration and multinucleated giant cells; Alizarin Red stain confirmed the presence of hydroxyapatite crystals. The patient was treated with anti-inflammatories for 2 weeks. She has been asymptomatic in a 6-month follow-up; a CT scan at the last follow-up revealed reparative remodeling of bone erosions. This is the first report of calcium hydroxyapatite crystal deposition with intraosseous penetration involving the posterior aspect of the cervical spine. Considering that this unusual lesion can be misinterpreted as a tumor or infection, high suspicion is required to avoid unnecessary surgical procedures.

  1. Characterisation of a new alkoxide sol-gel hydroxyapatite

    International Nuclear Information System (INIS)

    Green, D.D.; Kannangara, G.S.K.; Milev, A.; Ben-Nissan, B.

    1999-01-01

    Hydroxyapatite (HAp) coatings have been used to promote bone growth and fixation towards implant surfaces to encourage faster recovery times for the recipient. Current coating processing techniques, capable of producing thin HAp layers are pulsed-laser deposition and sputtering (high-temperature processing). Other technologies are in vitro methods, electrodeposition and sol-gel, due to the fact that these techniques utilise lower processing temperatures they avoid structural instabilities of HAp at elevated temperatures. The term sol-gel encompasses any process of producing ceramic materials (single and mixed oxides, as well as non-oxides e.g. nitrides) from solutions. The sol-gel process was first identified by Ebelman, and has been used to produce ceramic powders, coatings, and bulk materials including glasses. The implementation of a sol-gel methodology enables increased stoichiometry and homogeneity, while having the ability to coat complex shapes. Sol-gel hydroxyapatite reported by Chai et al. employed tri ethyl phosphite [ P(OEt) 3 ] as the staring phosphorus alkoxide precursor, whereby it was established that in order to obtain monophasic hydroxyapatite upon firing there must be a 24 hour ripening period. The ripening period was determined to be an equilibrium step whereby the equilibrium intermediate phase lied in favour of a diethyl phosphite arrangement (species) within the sol. Therefore, the work here under taken was to produce hydroxyapatite using diethyl phosphite [HOP(OEt) 2 ] as a starting alkoxide precursor with a final aim to reduce or eliminate the ageing period as observed by Chai et al in P(OEt) 3 solutions

  2. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  3. Morphological and Structural Analysis of Nano-hydroxyapatite (n-hap) Coatings Electrodeposited on Titanium Substrate : Effect of Deposition Solution Concentration

    International Nuclear Information System (INIS)

    Nik Norziehana Che Isa; Norjanah Yury; Yusairie Mohd

    2011-01-01

    Various concentration of deposition solutions containing CaCl 2 and NH 4 H 2 PO 4 (with Ca/P ratio equal to 1.67) were used to study the effect of deposition solution concentration on the surface morphology and structure of Hydroxyapatite (HAp) coatings. Each HAp coating was deposited onto Ti substrate by applying a constant potential of 1.5 V (vs Ag/ AgCl) at 80 degree Celsius. The formation of HAp coatings was confirmed by FTIR and XRD analyses. Various morphologies consisting of HAp nanoparticles were produced from different deposition solutions as observed by SEM. The concentration of deposition solution has significantly affected the morphology of n-HAp coatings. (author)

  4. Ultrashort pulse laser deposition of thin films

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  5. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    Science.gov (United States)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.

    Science.gov (United States)

    Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai

    2014-03-01

    Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.

  7. Electron microscopy studies of octa-calcium phosphate thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iliescu, Monica; Nelea, V.; Werckmann, J.; Mihailescu, I.N.; Socol, G.; Bigi, Adriana; Bracci, Barbara

    2004-04-01

    Octa-calcium phosphate (OCP), Ca{sub 8}(HPO{sub 4}){sub 2}(PO{sub 4}){sub 4}{center_dot}5H{sub 2}O, is present as transient compound in the precipitation of hydroxyapatite (HA) and biological apatites. Because of these characteristics, OCP plays a crucial role in the in-vivo mineralization of human bones and teeth. The use of OCP in developing new generations of bone prosthesis stands therefore for an innovative challenge. This paper reports studies of OCP structures grown in the form of thin films by pulsed laser deposition (PLD) with emphasis on electron microscopy investigations. OCP films were grown on etched Ti substrates, using an UV KrF* excimer laser source ({lambda}=248 nm, {tau}{>=}20 ns). Films were deposited in low-pressure (50 Pa) water vapors environment on substrates heated at 20-180 deg. C. We performed annealing treatments in water vapors and ambient pressure at substrate temperatures identical to those used during deposition. Comprehensive structural and morphological investigations were carried out with different based-electron microscopy procedures. Grazing incidence X-ray diffraction (GIXRD) and white light confocal microscopy were also applied to characterize the films. Ca/P atomic ratio of films was determined by energy dispersive X-ray spectrometry, electron energy loss spectroscopy and X-ray photoelectron spectroscopy. The obtained films generally exhibit an amorphous structure, as evidenced by GIXRD. Nevertheless, cross-section transmission electron microscopy investigations provide supplementary information about the film characteristics and material crystallization in small domains. OCP nanoparticles coalesce and grow perpendicular to the substrate in a tree-like structure, comparable to a coral reef.

  8. Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite

    Science.gov (United States)

    Zhang, Hangzhou; Shi, Xiaoguo; Tian, Ang; Wang, Li; Liu, Chuangwei

    2018-04-01

    Ag-Ti nanotube array was prepared by simple anodic oxidation method and uniform hydroxyapatite were electrochemically deposited on the nanotubes, and then characterized by SEM, XRD, XPS and EIS. In order to investigate the influence of Ti3+ on the electrochemical deposition of hydroxyapatite on the nanotubes, the Ag-Ti nanotube array self-doped with Ti3+ was prepared by one step reduction method. The experiment results revealed that the Ti3+ can promote the grow rate of hydroxyapatite coatings on nanotube surface. The hydroxyapatite coated Ag-Ti nanotube arrays with Ti3+ exhibit excellent stability and higher corrosion resistance. Moreover, the compact and dense hydroxyapatite coating can also prevent the Ag atom erosion from the Ag-Ti nanotube.

  9. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  10. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    International Nuclear Information System (INIS)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm 2 to 8 J/cm 2 . The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  11. Chromium carbide thin films deposited by ultra-short pulse laser deposition

    International Nuclear Information System (INIS)

    Teghil, R.; Santagata, A.; De Bonis, A.; Galasso, A.; Villani, P.

    2009-01-01

    Pulsed laser deposition performed by a laser with a pulse duration of 250 fs has been used to deposit films from a Cr 3 C 2 target. Due to the different processes involved in the laser ablation when it is performed by an ultra-short pulse source instead of a conventional short pulse one, it has been possible to obtain in vacuum films containing only one type of carbide, Cr 3 C 2 , as shown by X-ray photoelectron spectroscopy. On the other hand, Cr 3 C 2 is not the only component of the films, since a large amount of amorphous carbon is also present. The films, deposited at room temperature, are amorphous and seem to be formed by the coalescence of a large number of particles with nanometric size. The film composition can be explained in terms of thermal evaporation from particles ejected from the target.

  12. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  13. Influence of laser power on microstructure of laser metal deposited 17-4 ph stainless steel

    CSIR Research Space (South Africa)

    Adeyemi, AA

    2017-09-01

    Full Text Available The influence of laser power on the microstructure of 17-4 PH stainless steel produced by laser metal deposition was investigated. Multiple-trackof 17-4 stainless steel powder was deposited on 316 stainless steel substrate using laser metal...

  14. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration

    International Nuclear Information System (INIS)

    Nishimura, Ichiro; Huang Yuhong; Butz, Frank; Ogawa, Takahiro; Lin, Audrey; Wang, Chiachien Jake

    2007-01-01

    We report here a new versatile method to deposit discrete hydroxyapatite (HA) nanoparticles on a titanium (Ti) implant with predisposing substrate microtopography, which exhibited an unexpectedly robust biological effect. Commercially pure Ti substrates were treated with 3-aminopropyltriethoxysilane, on which HA nanoparticles (20 nm) were deposited and chemically bonded to TiO 2 . The HA deposition rate was linearly related to the treatment time and HA nanoparticles were deposited on up to 50% of the substrate surface. As a result, the discrete deposition of HA nanoparticles generated novel 20-40 nm nanotopography on the Ti substrate with microtopography that was smooth (turned) or roughened by double acid etching (DAE). The experimental implants with or without HA nanoparticles were surgically placed in rat femur and an implant push-in test was performed after two weeks of healing. The deposition of HA nanoparticles on the DAE surface increased the mechanical withstanding load by 129% and 782% as compared to the control DAE and turned implants, respectively. Micro-computed tomography-based 3D bone morphometry revealed equivalent bone volumes around the DAE implant with or without HA nanoparticles. These data suggest that the discrete deposition of HA nanoparticles accelerates the early osseointegration process, likely through increased shear bonding strengths

  15. Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Ichiro [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Huang Yuhong [Chemat Technology, Incorporated, Northridge, CA (United States); Butz, Frank [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Ogawa, Takahiro [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Lin, Audrey [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States); Wang, Chiachien Jake [UCLA School of Dentistry, Weintraub Center for Reconstructive Biotechnology and Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, Los Angeles, CA (United States)

    2007-06-20

    We report here a new versatile method to deposit discrete hydroxyapatite (HA) nanoparticles on a titanium (Ti) implant with predisposing substrate microtopography, which exhibited an unexpectedly robust biological effect. Commercially pure Ti substrates were treated with 3-aminopropyltriethoxysilane, on which HA nanoparticles (20 nm) were deposited and chemically bonded to TiO{sub 2}. The HA deposition rate was linearly related to the treatment time and HA nanoparticles were deposited on up to 50% of the substrate surface. As a result, the discrete deposition of HA nanoparticles generated novel 20-40 nm nanotopography on the Ti substrate with microtopography that was smooth (turned) or roughened by double acid etching (DAE). The experimental implants with or without HA nanoparticles were surgically placed in rat femur and an implant push-in test was performed after two weeks of healing. The deposition of HA nanoparticles on the DAE surface increased the mechanical withstanding load by 129% and 782% as compared to the control DAE and turned implants, respectively. Micro-computed tomography-based 3D bone morphometry revealed equivalent bone volumes around the DAE implant with or without HA nanoparticles. These data suggest that the discrete deposition of HA nanoparticles accelerates the early osseointegration process, likely through increased shear bonding strengths.

  16. Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement.

    Science.gov (United States)

    Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas

    2017-07-01

    The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p improved the bond strength quality and values.

  17. Additive manufactured Ti6Al4V scaffolds with the RF- magnetron sputter deposited hydroxyapatite coating

    International Nuclear Information System (INIS)

    Chudinova, E; Surmeneva, M; Surmenev, R; Koptioug, A; Scoglund, P

    2016-01-01

    Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds. (paper)

  18. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  19. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  20. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  1. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  2. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  3. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    International Nuclear Information System (INIS)

    Lei Caixia; Liao Yingmin; Feng Zude

    2009-01-01

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm -2 to 10 mA cm -2 ) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  4. Pulsed Laser Deposition of Tungsten Thin Films on Graphite

    International Nuclear Information System (INIS)

    Kassem, W.; Tabbal, M.; Roumie, M.

    2011-01-01

    Thin coatings of Tungsten were deposited on substrates fabricated by pre-depositing graphite thin layers on Si(100) wafers. We ablate pure W target using a 20 ns KrF excimer laser (248 nm) in an Ar ambient. The effect of background gas pressure, substrate temperature, and laser fluence, on the properties of the deposited W layers is studied using several techniques including X-Ray Diffraction, Atomic Force Microscopy, surface profilometry, and Rutherford Back-Scattering spectrometry. Our results indicate that the deposited layers consist of the well-crystallized body-centered-cubic α-W phase with bulk-like properties, particularly for films deposited at a substrate temperature of 450 0 C, laser fluence greater than 400mJ, and pressure of about 10mTorr. (author)

  5. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  6. Detection of hydroxyapatite in calcified cardiovascular tissues.

    Science.gov (United States)

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  8. The fabrication of well-interconnected polycaprolactone/hydroxyapatite composite scaffolds, enhancing the exposure of hydroxyapatite using the wire-network molding technique.

    Science.gov (United States)

    Cho, Yong Sang; Hong, Myoung Wha; Jeong, Hoon-Jin; Lee, Seung-Jae; Kim, Young Yul; Cho, Young-Sam

    2017-11-01

    In this study, the fabrication method was proposed for the well-interconnected polycaprolactone/hydroxyapatite composite scaffold with exposed hydroxyapatite using modified WNM technique. To characterize well-interconnected scaffolds in terms of hydroxyapatite exposure, several assessments were performed as follows: morphology, mechanical property, wettability, calcium ion release, and cell response assessments. The results of these assessments were compared with those of control scaffolds which were fabricated by precision extruding deposition (PED) apparatus. The control PED scaffolds have interconnected pores with nonexposed hydroxyapatite. Consequently, cell attachment of proposed WNM scaffold was improved by increased hydrophilicity and surface roughness of scaffold surface resulting from the exposure of hydroxyapatite particles and fabrication process using powders. Moreover, cell proliferation and differentiation of WNM scaffold were increased, because the exposure of hydroxyapatite particles may enhance cell adhesion and calcium ion release. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2315-2325, 2017. © 2016 Wiley Periodicals, Inc.

  9. Pulsed laser deposition of Tl-Ca-Ba-Cu-O films

    International Nuclear Information System (INIS)

    Ianno, N.J.; Liou, S.H.; Woollam, J.A.; Thompson, D.; Johs, B.

    1990-01-01

    Pulsed laser deposition is a technique commonly used to deposit high quality thin films of high temperature superconductors. This paper discusses the results obtained when this technique is applied to the deposition of Tl-Ca-Ba-Cu-O thin films using a frequency doubled Nd:YAG laser operating at 532 nm and an excimer laser operating at 248 nm. Films with onset temperatures of 125 K and zero resistance temperatures of 110 K deposited on (100) oriented MgO from a composite Tl2Ca2Ba2Cu3Ox target were obtained at both wavelengths upon appropriate post deposition annealing. Films deposited at 532 nm exhibit a rough surface, while those deposited at 248 nm are smooth and homogeneous. Upon annealing, films deposited at both wavelengths are single phase Tl2Ca2Ba2Cu3Ox. 12 refs

  10. Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium

    Science.gov (United States)

    Mhin, Sung Wook; Ryu, Jeong Ho; Kim, Kang Min; Park, Gyeong Seon; Ryu, Han Wool; Shim, Kwang Bo; Sasaki, Takeshi; Koshizaki, Naoto

    2009-08-01

    Pulsed laser ablation (PLA) in liquid medium was successfully employed to synthesize hydroxyapatite (HAp) colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the HAp nanoparticles were investigated in detail. The obtained HAp nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were studied in terms of the explosive ejection mechanism by investigating the change of the surface morphology on target. The stoichiometry and bonding properties were studied by using XPS, FT-IR and Raman spectroscopy. A molar ratio of Ca/P of the prepared HAp nanoparticles was more stoichiometric than the value reported in the case of ablation in vacuum.

  11. Deposition of Crystalline Hydroxyapatite Nanoparticles on Y-TZP Ceramic: A Potential Solution to Enhance Bonding Characteristics of Y-TZP Ceramics

    Directory of Open Access Journals (Sweden)

    Abbas Azari

    2017-08-01

    Full Text Available Objectives: Many advantages have been attributed to dental zirconia ceramics in terms of mechanical and physical properties; however, the bonding ability of this material to dental structure and/or veneering ceramics has always been a matter of concern. On the other hand, hydroxyapatite (HA shows excellent biocompatibility and good bonding ability to tooth structure, with mechanically unstable and brittle characteristics, that make it clinically unacceptable for use in high stress bearing areas. The main purpose of this study was to introduce two simple yet practical methods to deposit the crystalline HA nanoparticles on zirconia ceramics. Materials and Methods: zirconia blocks were treated with HA via two different deposition methods namely thermal coating and air abrasion. Specimens were analyzed by scanning electron microscopy, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD.Results: In both groups, the deposition techniques used were successfully accomplished, while the substrate showed no structural change. However, thermal coating group showed a uniform deposition of crystalline HA but in air abrasion method, there were dispersed thin islands of HA.Conclusions: Thermal coating method has the potential to significantly alter the surface characteristics of zirconia. The simple yet practical nature of the proposed method may be able to shift the bonding paradigm of dental zirconia ceramics. This latter subject needs to be addressed in future investigations.Keywords: Zirconium Oxide; Hydroxyapatites; Dental Bonding; Microscopy, Electron, Scanning; X-Ray Diffraction; Spectrometry, X-Ray Emission

  12. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    Science.gov (United States)

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Laser chemical vapor deposition of millimeter scale three-dimensional shapes

    Science.gov (United States)

    Shaarawi, Mohammed Saad

    2001-07-01

    Laser chemical vapor deposition (LCVD) has been successfully developed as a technique to synthesize millimeter-scale components directly from the gas phase. Material deposition occurs when heat generated by the interaction of a laser beam with a substrate thermally decomposes the gas precursor. Selective illumination or scanning the laser beam over portions of a substrate forms the single thin layer of material that is the building block of this process. Sequential scanning of the laser in a pre-defined pattern on the substrate and subsequent deposit causes the layers to accumulate forming the three-dimensional shape. The primary challenge encountered in LCVD shape forming is the synthesis of uniform layers. Three deposition techniques are studied to address this problem. The most successful technique, Active Surface Deposition, is based on the premise that the most uniform deposits are created by measuring the deposition surface topology and actively varying the deposition rate in response to features at the deposition surface. Defects observed in the other techniques were significantly reduced or completely eliminated using Active Surface Deposition. The second technique, Constant Temperature Deposition, maintains deposit uniformity through the use of closed-loop modulation of the laser power to sustain a constant surface temperature during deposition. The technique was successful in depositing high quality graphite tubes >2 mm tall from an acetylene precursor and partially successful in depositing SiC + C composite tubes from tetramethylsilane (TMS). The final technique, Constant Power Deposition, is based on the premise that maintaining a uniform power output throughout deposition would result in the formation of uniform layers. Constant Power Deposition failed to form coherent shapes. Additionally, LCVD is studied using a combination of analytic and numerical models to gain insight into the deposition process. Thermodynamic modeling is used to predict the

  14. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    Science.gov (United States)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  15. Pulsed laser ablation and deposition of niobium carbide

    International Nuclear Information System (INIS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J.V.; Galasso, A.; Teghil, R.

    2016-01-01

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  16. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei Caixia; Liao Yingmin; Feng Zude, E-mail: zdfeng@xmu.edu.c [College of Materials, Xiamen University, Xiamen 361005 (China)

    2009-06-15

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm{sup -2} to 10 mA cm{sup -2}) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  17. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Gabriela, E-mail: gciobanu03@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Prof. dr. docent Dimitrie Mangeron Rd., no. 63, zip: 700050, Iasi (Romania); Ciobanu, Octavian [“Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Universitatii Str., no. 16, zip: 700115, Iasi (Romania)

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D{sub 3}, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm.

  18. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-01-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D 3 , and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm

  19. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  20. Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite.

    Science.gov (United States)

    Vladescu, A; Padmanabhan, S C; Ak Azem, F; Braic, M; Titorencu, I; Birlik, I; Morris, M A; Braic, V

    2016-10-01

    The hydroxyapatite enriched with Ti were prepared as possible candidates for biomedical applications especially for implantable devices that are in direct contact to the bone. The hydroxyapatites with different Ti content were prepared by RF magnetron sputtering on Ti-6Al-4V alloy using pure hydroxyapatite and TiO2 targets. The content of Ti was modified by changing the RF power fed on TiO2 target. The XPS and FTIR analyses revealed the presence of hydroxyapatite structure. The hardness and elastic modulus of the hydroxyapatite were increased by Ti addition. After 5 days of culture, the cell viability of the Ti-6Al-4V was enhanced by depositing with undoped or doped hydroxyapatite. The Ti additions led to an increase in cell viability of hydroxyapatite, after 5 days of culture. The electron microscopy showed the presence of more cells on the surface of Ti-enriched hydroxyapatite than those observed on the surface of the uncoated alloys or undoped hydroxyapatite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Wafer-scale laser lithography. I. Pyrolytic deposition of metal microstructures

    International Nuclear Information System (INIS)

    Herman, I.P.; Hyde, R.A.; McWilliams, B.M.; Weisberg, A.H.; Wood, L.L.

    1982-01-01

    Mechanisms for laser-driven pyrolytic deposition of micron-scale metal structures on crystalline silicon have been studied. Models have been developed to predict temporal and spatial propeties of laser-induced pyrolytic deposition processes. An argon ion laser-based apparatus has been used to deposit metal by pyrolytic decomposition of metal alkyl and carbonyl compounds, in order to evaluate the models. These results of these studies are discussed, along with their implications for the high-speed creation of micron-scale metal structures in ultra-large scale integrated circuit systems. 4 figures

  2. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    Energy Technology Data Exchange (ETDEWEB)

    Akkan, C.K.; May, A. [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany); Hammadeh, M. [Department for Obstetrics, Gynecology and Reproductive Medicine, IVF Laboratory, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Abdul-Khaliq, H. [Clinic for Pediatric Cardiology, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Aktas, O.C., E-mail: cenk.aktas@inm-gmbh.de [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany)

    2014-05-01

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  3. Properties of pulsed laser deposited NiO/MWCNT thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-05-01

    Full Text Available Pulsed laser deposition (PLD) is a thin-film deposition technique, which uses short and intensive laser pulses to evaporate target material. The technique has been used in this work to produce selective solar absorber (SSA) thin film composites...

  4. Electronic properties of p-GaAs deposited on n-Si with pulsed-laser deposition

    International Nuclear Information System (INIS)

    Ullrich, B; Erlacher, A; Smith, H E; Mitchel, W C; Brown, G J

    2008-01-01

    By means of nanosecond laser pulses at 355, 532, and 1064 nm, p(Zn)-type GaAs was ablated and deposited on n-type Si. The samples showed rectification and Hall measurements established that the deposited material was p-type, but the active-doping concentration was six orders of magnitude below the target value. Because secondary-ion mass spectroscopy results indicated stoichiometric material transfer, we concluded that most of the Zn atoms do not act as acceptors because of the amorphous film texture. The work further showed indications that pulsed-laser deposition at 355 nm causes enhanced Si diffusion into the deposited film, compared to the ablations done at 532 and 1064 nm

  5. Particulate generation during pulsed laser deposition of superconductor thin films

    International Nuclear Information System (INIS)

    Singh, R.K.

    1993-01-01

    The nature of evaporation/ablation characteristics during pulsed laser deposition strongly controls the quality of laser-deposited films. To understand the origin of particulates in laser deposited films, the authors have simulated the thermal history of YBa 2 Cu 3 O 7 targets under intense nanosecond laser irradiation by numerically solving the heat flow equation with appropriate boundary conditions. During planar surface evaporation of the target material, the sub-surface temperatures were calculated to be higher than the surface temperatures. While the evaporating surface of the target is constantly being cooled due to the latent heat of vaporization, subsurface superheating occurs due to the finite absorption depth of the laser beam. Sub-surface superheating was found to increase with decreasing absorption coefficient and thermal conductivity of the target, and with increasing energy density. The superheating may lead to sub-surface nucleation and growth of the gaseous phase which can expand rapidly leading to microexplosions and ''volume expulsion'' of material from the target. Experiments conducted by the authors and other research groups suggest a strong relation between degree of sub-surface superheating and particle density in laser-deposited films

  6. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  7. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Bramowicz, Miroslaw; Braic, Laurentiu; Azem, Funda Ak; Kulesza, Slawomir; Birlik, Isil; Vladescu, Alina

    2016-01-01

    Highlights: • Hydroxyapatite were prepared at temperatures in the range from 400 to 800 °C. • The coatings prepared at 800 °C is closer to the stoichiometric hydroxyapatite. • Hardness and elastic modulus decreased with increasing deposition temperature. • The surface morphology strongly depends on the deposition temperature. • Mesokurtic height distribution pulled towards larger heights were formed at high temperature. - Abstract: This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600–800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm"−"1, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the

  8. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bramowicz, Miroslaw [University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Oczapowskiego 11, 10-719 Olsztyn (Poland); Braic, Laurentiu [National Institute for Optoelectronics, 409 Atomistilor, 077125, Magurele (Romania); Azem, Funda Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, 35397, Izmir (Turkey); Kulesza, Slawomir [University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Computer Science, Sloneczna 54, 10-710 Olsztyn (Poland); Birlik, Isil [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, 35397, Izmir (Turkey); Vladescu, Alina, E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor, 077125, Magurele (Romania)

    2016-08-30

    Highlights: • Hydroxyapatite were prepared at temperatures in the range from 400 to 800 °C. • The coatings prepared at 800 °C is closer to the stoichiometric hydroxyapatite. • Hardness and elastic modulus decreased with increasing deposition temperature. • The surface morphology strongly depends on the deposition temperature. • Mesokurtic height distribution pulled towards larger heights were formed at high temperature. - Abstract: This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600–800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm{sup −1}, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the

  9. Tritium recovery from co-deposited layers using 193-nm laser

    Science.gov (United States)

    Shu, W. M.; Kawakubo, Y.; Nishi, M. F.

    Recovery of tritium from co-deposited layers formed in deuterium-tritium plasma operations of the TFTR (Tokamak Fusion Test Reactor) was investigated by the use of an ArF excimer laser operating at the wavelength of 193 nm. At the laser energy density of 0.1 J/cm2, a transient spike of the tritium-release rate was observed at initial irradiation. Hydrogen isotopes were released in the form of hydrogen-isotope molecules during the laser irradiation in vacuum, suggesting that tritium can be recovered readily from the released gases. In a second experiment, hydrogen (tritium) recovery from the co-deposited layers on JT-60 tiles that had experienced hydrogen-plasma operations was investigated by laser ablation with a focused beam of the excimer laser. The removal rate of the co-deposited layers was quite low when the laser energy density was smaller than the ablation threshold (1.0 J/cm2), but reached 1.1 μm/pulse at the laser energy density of 7.6 J/cm2. The effective absorption coefficient in the co-deposited layers at the laser wavelength was determined to be 1.9 μm-1. The temperature of the surface during the irradiation at the laser energy density of 0.5 J/cm2 was measured on the basis of Planck's law of radiation, and the maximum temperature during the irradiation decreased from 3570 K at the initial irradiation to 2550 K at the 1000th pulse of the irradiation.

  10. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  11. UV laser deposition of metal films by photogenerated free radicals

    Science.gov (United States)

    Montgomery, R. K.; Mantei, T. D.

    1986-01-01

    A novel photochemical method for liquid-phase deposition of metal films is described. In the liquid phase deposition scheme, a metal containing compound and a metal-metal bonded carbonyl complex are dissolved together in a polar solvent and the mixture is irradiated using a UV laser. The optical arrangement consists of a HeCd laser which provides 7 mW of power at a wavelength of 325 nm in the TEM(OO) mode. The beam is attenuated and may be expanded to a diameter of 5-20 mm. Experiments with photochemical deposition of silver films onto glass and quartz substrates are described in detail. Mass spectrometric analysis of deposited silver films indicated a deposition rate of about 1 A/s at incident power levels of 0.01 W/sq cm. UV laser-induced copper and palladium films have also been obtained. A black and white photograph showing the silver Van Der Pauw pattern of a solution-deposited film is provided.

  12. Suspension thermal spraying of hydroxyapatite: Microstructure and in vitro behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Bolelli, Giovanni, E-mail: giovanni.bolelli@unimore.it [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer [Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universität Stuttgart, Allmandring 7b, 70569 Stuttgart (Germany); Altomare, Lina; De Nardo, Luigi [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano (Italy)

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27–37 μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%–70% were obtained, depending on the deposition parameters and the use of a TiO{sub 2} bond coat. The average hardness of layers with low (< 24%) and high (70%) crystallinity was ≈ 3.5 GPa and ≈ 4.5 GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5–7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈ 3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14 days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. - Highlights: • Thin, dense HA layers were originated by HVSFS deposition of molten agglomerates of ≈ 1 μm. • Tensile adhesion strength of HVSFS HA onto Ti well above the threshold of ISO 13779-2 • Crystallinity (10–70%) is determined by system temperature during deposition. • Crystallinity controls the reactivity during immersion in simulated body fluid. • SAOS-2 osteoblast-like cells adhered well and

  13. Characterization of laser metal deposited 316L stainless steel

    CSIR Research Space (South Africa)

    Bayode, A

    2016-06-01

    Full Text Available investigates the effects of laser power on the structural integrity, microstructure and microhardness of laser deposited 316L stainless steel. The result showed that the laser power has much influence on the evolving microstructure and microhardness...

  14. Effect of laser beam parameters on magnetic properties of Nd-Fe-B thick-film magnets fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Fukunaga, H.; Nakano, M.; Yanai, T.; Kamikawatoko, T.; Yamashita, F.

    2011-01-01

    The effects of varying the laser power and the spot diameter of a laser beam on the magnetic properties, morphology, and deposition rate of Nd-Fe-B thick-film magnets fabricated by pulsed laser deposition (PLD) were investigated. Reducing the laser fluence on the target reduces the remanence and increases the Nd content and consequently the coercivity of the prepared films. The spot size of the laser beam was found to affect the film surface morphology, the deposition rate, and the reproducibility of the magnetic properties of the prepared films. Reducing the spot size reduces the number of droplets and the reproducibility of the magnetic properties and increases the droplet size. Controlling the spot size of the laser beam enabled us to maximize the deposition rate. Consequently, a coercivity of 1210 kA/m and a remanence of 0.51 T were obtained at a deposition rate of 11.8 μm/(h·W). This deposition rate is 30% greater than the highest previously reported deposition rate by PLD.

  15. Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings

    Science.gov (United States)

    Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine

    2010-03-01

    Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.

  16. Deposition of tantalum carbide coatings on graphite by laser interactions

    Science.gov (United States)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  17. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces.

    Science.gov (United States)

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  19. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  20. ITO thin films deposited by advanced pulsed laser deposition

    International Nuclear Information System (INIS)

    Viespe, Cristian; Nicolae, Ionut; Sima, Cornelia; Grigoriu, Constantin; Medianu, Rares

    2007-01-01

    Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 deg. C), pressure (1-6 x 10 -2 Torr), laser fluence (1-4 J/cm 2 ) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 deg. C on a large area (5 x 5 cm 2 ). The films have electrical resistivity of 8 x 10 -4 Ω cm at RT, 5 x 10 -4 Ω cm at 180 deg. C and an optical transmission in the visible range, around 89%

  1. Laser detritiation and co-deposited layer characterisation for future ITER Installation

    International Nuclear Information System (INIS)

    Semerok, Alexandre; Brygo, Francois; Fomichev, Sergey V.; Champonnois, Francois; Weulersse, Jean-Marc; Thro, Pierre-Yves; Fichet, Pascal; Grisolia, Christian

    2006-01-01

    The experimental equipment in combination with pulsed Nd-YAG lasers was developed and applied to investigate co-deposited layer characterisation and ablation. Heating and ablation regimes were distinguished by ablation threshold fluence that was determined experimentally for graphite samples from TexTor (Germany) and TORE SUPRA (France) tokamaks. With 100 ns pulses, the ablation threshold for graphite substrate (2.5±0.5 J/cm 2 ) was much higher than the one for co-deposited layer (0.4±0.1 J cm -2 ). These threshold features are very promising to ensure self-controlled laser cleaning without substrate surface damage. The obtained optimal conditions (laser fluence F=1-2 J/cm 2 , 10-20 kHz repetition rate) were applied for co-deposited layer cleaning. The TexTor 50 μm thickness layer was almost completely removed after a single scanning without any damage of the graphite substrate. Cleaning rate of 0.2 m 2 /hour was demonstrated experimentally for 20 W mean laser power. A theoretical model of a complex surface heating (graphite or metal with a co-deposited layer) was developed to explain the experimental results and to obtain laser cleaning optimisation. A good agreement of the theoretical data with the experimental results was obtained. The studies on LIBS method for co-deposited layer characterisation have determined the analytical spectral lines for hydrogen, carbon, and other impurities (B, Fe, Si, and Cu) in TexTor graphite tile. The obtained results should be regarded optimistic for co-deposited layers characterisation by LIBS method. The development of certain laser methods and their application for in-situ detritiation and co-deposited layer characterisation are presented and discussed. (authors)

  2. 25 years of pulsed laser deposition

    Science.gov (United States)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  3. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

    International Nuclear Information System (INIS)

    Tavakol, S.; Nikpour, M. R.; Amani, A.; Soltani, M.; Rabiee, S. M.; Rezayat, S. M.; Chen, P.; Jahanshahi, M.

    2013-01-01

    Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.

  4. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering

    Science.gov (United States)

    Akazawa, Housei; Ueno, Yuko

    2014-01-01

    Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.

  5. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    International Nuclear Information System (INIS)

    Toftmann, B.; Papantonakis, M.R.; Auyeung, R.C.Y.; Kim, W.; O'Malley, S.M.; Bubb, D.M.; Horwitz, J.S.; Schou, J.; Johansen, P.M.; Haglund, R.F.

    2004-01-01

    A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR-PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence

  6. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Papantonalis, M.R.; Auyeung, R.C.Y.

    2004-01-01

    -PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates......A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR...... were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence. (C) 2003...

  7. Magnetic hydroxyapatite coatings as a new tool in medicine: A scanning probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Gambardella, A., E-mail: a.gambardella@biomec.ior.it [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Bianchi, M. [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Kaciulis, S.; Mezzi, A.; Brucale, M. [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, P.O. Box 10, 00015 Monterotondo Staz, Roma (Italy); Cavallini, M. [Magnetic Nanostructures for Spintronics and Nanomedicine, CNR-ISMN, Via Gobetti 101, 40129 Bologna (Italy); Herrmannsdoerfer, T.; Chanda, G.; Uhlarz, M. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Cellini, A.; Pedna, M.F. [Unità Operativa Microbiologia Laboratorio Unico del Centro Servizi AUSL della Romagna, Pievesestina, Cesena (Italy); Sambri, V. [Unità Operativa Microbiologia Laboratorio Unico del Centro Servizi AUSL della Romagna, Pievesestina, Cesena (Italy); Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università degli Studi di Bologna, Via Zamboni 33, 40126 Bologna (Italy); Marcacci, M.; Russo, A. [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Laboratorio di Biomeccanica ed Innovazione Tecnologica, Istituto Ortopedico Rizzoli, Via di Barbiano1/10, I-40136 Bologna (Italy)

    2016-05-01

    Hydroxyapatite films enriched with magnetite have been fabricated via a Pulsed Plasma Deposition (PPD) system with the final aim of representing a new platform able to disincentivate bacterial adhesion and biofilm formation. The chemical composition and magnetic properties of films were respectively examined by X-ray photoelectron spectroscopy (XPS) and Superconducting Quantum Interference Device (SQUID) measurements. The morphology and conductive properties of the magnetic films were investigated via a combination of scanning probe technologies including atomic force microscopy (AFM), electrostatic force microscopy (EFM), and scanning tunneling microscopy (STM). Interestingly, the range of adopted techniques allowed determining the preservation of the chemical composition and magnetic properties of the deposition target material while STM analysis provided new insights on the presence of surface inhomogeneities, revealing the presence of magnetite-rich islands over length scales compatible with the applications. Finally, preliminary results of bacterial adhesion tests, indicated a higher ability of magnetic hydroxyapatite films to reduce Escherichia coli adhesion at 4 h from seeding compared to control hydroxyapatite films. - Highlights: • Pulsed Plasma Deposition technique is used to deposit magnetite-rich films of hydroxyapatite for antibacterial purposes. • The preservation of the chemical composition and magnetic properties of the deposition target material is demonstrated. • Scanning tunnelling microscopy is employed for the first time to reveal the presence of magnetite-rich states at the surface. • Preliminary tests suggest that Mag HA films hamper the adhesion of Escherichia coli compared to not magnetic films.

  8. A process for the development of strontium hydroxyapatite

    International Nuclear Information System (INIS)

    Zahra, N; Fayyaz, M; Iqbal, W; Irfan, M; Alam, S

    2014-01-01

    A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr 2 + into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results

  9. A process for the development of strontium hydroxyapatite

    Science.gov (United States)

    Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.

    2014-06-01

    A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results.

  10. A process for the development of strontium hydroxyapatite

    International Nuclear Information System (INIS)

    Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.

    2013-01-01

    A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15 percentage Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results. (author)

  11. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N.; Martinez-Landeros, V.; Mejia, I.; Aguirre-Tostado, F.S.; Nascimento, C.D.; Azevedo, G. de M; Krug, C.; Quevedo-Lopez, M.A.

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10 −1 to 10 4 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10 19 to 10 13 cm −3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm 2 /V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10 19 to 10 13 cm −3 . • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied

  12. Novel selenium-doped hydroxyapatite coatings for biomedical applications.

    Science.gov (United States)

    Rodríguez-Valencia, C; López-Álvarez, M; Cochón-Cores, B; Pereiro, I; Serra, J; González, P

    2013-03-01

    Nowadays there is a short-term need of investigating in orthopedic implants with a greater functionality, including an improved osseointegration and also antibacterial properties. The coating of metallic implants with hydroxyapatite (HA) remains to be the main proposal, but superior quality HA coatings with compositions closer to natural bone apatites, including carbonates, trace elements are required. Selenium is an essential nutrient in biological tissues and, at the same time, it also presents antibacterial properties. A pioneering study on the fabrication of selenium-doped carbonated hydroxyapatite (iHA:Se) coatings by Pulsed Laser Deposition (PLD) is presented. Different proportions of selenium were incorporated to obtain the iHA:Se coatings. Their physicochemical characterization, performed by SEM/EDS, FTIR, FT-Raman, Interferometric Profilometry and XPS, revealed typical columnar growth of HA in globular aggregates and the efficient incorporation of selenium into the HA coatings by the, most probably, substitution of SeO(3)(2-) groups in the CO(3)(2-) sites. Biological evaluation illustrated the absence of cytotoxicity when an amount of 0.6 at.% of Se was added to the iHA:Se coatings and excellent proliferation of the MC3T3-E1 preosteoblasts. Antibacterial properties were also proved with the inhibition of P. aeruginosa and S. aureus from establishing bacterial biofilms. Copyright © 2012 Wiley Periodicals, Inc.

  13. Laser-assisted deposition of thin C60 films

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Fæster, Søren

    Metal and metal oxide films with controlled thickness from a fraction of a monolayer up more than 1000 nm and known stoichiometry can be produced by pulsed laser deposition (PLD) relatively easily, and (PLD) is now a standard technique in all major research laboratories within materials science...... of the matrix material, anisole, with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. High-resolution SEM images of MAPLE deposited films reveal large circular features on the surface...

  14. Diamond coating deposition by synergy of thermal and laser methods-A problem revisited

    International Nuclear Information System (INIS)

    Ristic, Gordana S.; Trtica, Milan S.; Bogdanov, Zarko D.; Romcevic, Nebojsa Z.; Miljanic, Scepan S.

    2007-01-01

    Diamond coatings were deposited by synergy of the hot filament CVD method and the pulse TEA CO 2 laser, in spectroactive and spectroinactive diamond precursor atmospheres. Resulting diamond coatings are interpreted relying on evidence of scanning electron microscopy as well as microRaman spectroscopy. Thermal synergy component (hot filament) possesses an activating agent for diamond deposition, and contributes significantly to quality and extent of diamond deposition. Laser synergy component comprises a solid surface modification as well as the spectroactive gaseous atmosphere modification. Surface modification consists in changes of the diamond coating being deposited and, at the same time, in changes of the substrate surface structure. Laser modification of the spectroactive diamond precursor atmosphere means specific consumption of the precursor, which enables to skip the deposition on a defined substrate location. The resulting process of diamond coating elimination from certain, desired locations using the CO 2 laser might contribute to tailoring diamond coatings for particular applications. Additionally, the substrate laser modification could be optimized by choice of a proper spectroactive precursor concentration, or by a laser radiation multiple pass through an absorbing medium

  15. Laser-deposited thin films for butane detection

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Flory, F.; Escoubas, L.; Mazingue, T.; Myslík, V.; Vrňata, M.; Fryček, R.; Vysloužil, F.

    2006-01-01

    Roč. 16, č. 2 (2006), s. 217-222 ISSN 1054-660X R&D Projects: GA AV ČR(CZ) IAA1010110; GA ČR(CZ) GA104/03/0406 Grant - others:NANOPHOS(XE) IST-2001-39112 Institutional research plan: CEZ:AV0Z10100522 Keywords : laser deposition * gas sensor * mode spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.516, year: 2006

  16. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  17. Biogenic Hydroxyapatite: A New Material for the Preservation and Restoration of the Built Environment.

    Science.gov (United States)

    Turner, Ronald J; Renshaw, Joanna C; Hamilton, Andrea

    2017-09-20

    Ordinary Portland cement (OPC) is by weight the world's most produced man-made material and is used in a variety of applications in environments ranging from buildings, to nuclear wasteforms, and within the human body. In this paper, we present for the first time the direct deposition of biogenic hydroxyapatite onto the surface of OPC in a synergistic process which uses the composition of the cement substrate. This hydroxyapatite is very similar to that found in nature, having a similar crystallite size, iron and carbonate substitution, and a semi-crystalline structure. Hydroxyapatites with such a structure are known to be mechanically stronger and more biocompatible than synthetic or biomimetic hydroxyapatites. The formation of this biogenic hydroxyapatite coating therefore has significance in a range of contexts. In medicine, hydroxyapatite coatings are linked to improved biocompatibility of ceramic implant materials. In the built environment, hydroxyapatite coatings have been proposed for the consolidation and protection of sculptural materials such as marble and limestone, with biogenic hydroxyapatites having reduced solubility compared to synthetic apatites. Hydroxyapatites have also been established as effective for the adsorption and remediation of environmental contaminants such as radionuclides and heavy metals. We identify that in addition to providing a biofilm scaffold for nucleation, the metabolic activity of Pseudomonas fluorescens increases the pH of the growth medium to a suitable level for hydroxyapatite formation. The generated ammonia reacts with phosphate in the growth medium, producing ammonium phosphates which are a precursor to the formation of hydroxyapatite under conditions of ambient temperature and pressure. Subsequently, this biogenic deposition process takes place in a simple reaction system under mild chemical conditions and is cheap and easy to apply to fragile biological or architectural surfaces.

  18. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD

    International Nuclear Information System (INIS)

    Duraia, El-Shazly M.; Hannora, A.; Mansurov, Z.; Beall, Gary W.

    2012-01-01

    Graphical abstract: Carbon nanotubes have been grown directly on hydroxyapatite by using microwave plasma-enhanced chemical vapor deposition (MPECVD). Highlights: ► CNTs have been successfully grown directly on hydroxyapatite using MPECVD. ► Diameter distribution of the CNTs lies in the range from 30 to 70 nm. ► The HA surface is partially transformed to β-TCP during the deposition. ► Grown CNTs have good quality and I G /I D ratio lies between 1.243 and 1.774. - Abstract: For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30–70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 °C. Raman spectroscopy indicates that the CNTs are of high quality and the I G /I D ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the β-tricalcium phosphate via dehydroxylation.

  19. Influence of Zirconia on Hydroxyapatite Coating on Ti-Alloy by Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    杜海燕; 霍伟荣; 高海; 王丽娟; 邱世鹏; 刘家臣

    2003-01-01

    Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca3(PO4)2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.

  20. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  1. Spectroscopic monitoring of metallic bonding in laser metal deposition

    NARCIS (Netherlands)

    Ya, Wei; Konuk, A.R.; Aarts, Ronald G.K.M.; Pathiraj, B.; Huis in 't Veld, Bert

    2015-01-01

    A new approach is presented in this paper to link optical emission spectrum analysis to the quality of clad layers produced with laser metal deposition (LMD). A Nd:YAG laser (λ = 1.064 μm) was used to produce clad tracks with Metco 42C powder on AISI 4140 steel substrate. The laser power was ramped

  2. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 127...

  3. Hydroxyapatite crystal deposition disease: imaging aspects and biological behavior; Doenca de deposito de hidroxiapatita: aspectos por imagem e comportamento biologico

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, Danilo Olavarria; Pinto, Alexandre de Lavra; Costa, Mauro Jose Brandao da; Fanelli, Vania A. [Hospital Sao Francisco, Ribeirao Preto, SP (Brazil)]. E-mail: documenta@netside.com.br; Abud, Lucas Giansante [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Medicina

    2005-04-15

    Objective: to demonstrate, using imaging methods (x-ray, computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US), the phases of hydroxyapatite crystal deposition disease in joints, particularly in the shoulder, from the silent phase to the intra-osseous migration of calcifications and radiologic follow-up examinations showing complete remission after physical therapy. Material and method: we evaluated 27 joints (25 shoulders, one hip and one elbow) of patients followed-up with radiographs. Patients extremely symptomatic and refractory to treatment were referred to MRI or US. Results: total remission of calcifications was observed in 15 joints after treatment - 14 shoulders and one elbow. In two joint, migration of the calcification to bone was observed: one to the bursa subdeltoidea, one to biceps tendon, one to subcoracoid recess and one to the interior of the infra spinal muscle. In two cases MRI and CT scans showed a high inflammatory process triggered by the disease. Conclusion: hydroxyapatite crystal deposition disease affects multiple joints and can vary from asymptomatic to extremely symptomatic. Imaging methods show all phases of the disease, including the migratory phase. In general, the use of x-ray is enough for the diagnosis and follow-up. MRI and CT provide a more accurate diagnosis in the active phase of the disease. In this paper, remission was seen with physiotherapy (iontophoresis) in 55% of the cases. (author)

  4. Fabrication, characterization, and in vitro study of zinc substituted hydroxyapatite/silk fibroin composite coatings on titanium for biomedical applications.

    Science.gov (United States)

    Zhong, Zhenyu; Ma, Jun

    2017-09-01

    Zinc substituted hydroxyapatite/silk fibroin composite coatings were deposited on titanium substrates at room temperature by electrophoretic deposition. Microscopic characterization of the synthesized composite nanoparticles revealed that the particle size ranged 50-200 nm, which increased a little after zinc substitution. The obtained coatings maintained the phase of hydroxyapatite and they could induce fast apatite formation in simulated body fluid, indicating high bone activity. The cell culturing results showed that the biomimetic hydroxyapatite coatings could regulate adhesion, spreading, and proliferation of osteoblastic cells. Furthermore, the biological behavior of the zinc substituted hydroxyapatite coatings was found to be better than the bare titanium without coatings and hydroxyapatite coatings without zinc, increasing MC3T1-E1 cell differentiation in alkaline phosphatase expression.

  5. Laser ablation deposition measurements from silver and nickel

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Ellegaard, Ole; Schou, Jørgen

    1996-01-01

    The deposition rate for laser ablated metals has been studied in a standard geometry for fluences up to 20 J/cm(2). The rate for silver and nickel is a few percent of a monolayer per pulse at the laser wavelengths 532 nm and 355 nm. The rate for nickel is significantly higher than that for silver...... at 532 nm, whereas the rate for the two metals is similar at 355 nm. This behaviour disagrees with calculations based on the thermal properties at low intensities as well as predictions based on formation of an absorbing plasma at high intensities. The deposition rate falls strongly with increasing...

  6. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  7. Ga–Ge–Te amorphous thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Němec, P.; Nazabal, V.; Dussauze, M.; Ma, H.-L.; Bouyrie, Y.; Zhang, X.-H.

    2013-01-01

    UV pulsed laser deposition was employed for the fabrication of amorphous Ga–Ge–Te thin films. The local structure of the bulk glasses as well as corresponding thin films was studied using Raman scattering spectroscopy; the main structural motifs were found to be [GeTe 4 ], eventually [GaTe 4 ] corner-sharing tetrahedra and disordered Te chains. Optical functions of the films (refractive index, extinction coefficient) were characterized by variable angle spectroscopic ellipsometry. Photostability experiments showed all Ga–Ge–Te laser deposited films to be stable against 1550 nm laser irradiation in an as-deposited state. In an annealed state, the most photostable composition seems to be Ga 10 Ge 15 Te 75 . This particular composition was further studied from the point of view of thermal stability and stability against ageing in as-deposited state. - Highlights: ► Pulsed laser deposition was used for fabrication of amorphous Ga–Ge–Te thin films. ► GeTe 4 , eventually GaTe 4 tetrahedra and disordered Te chains form the film structure. ► Optical functions of Ge–Ga–Te films were characterized by spectroscopic ellipsometry. ► All as-deposited Ga–Ge–Te thin films are stable against 1550 nm irradiation. ► In annealed state, the most photostable composition seems to be Ga 10 Ge 15 Te 75

  8. Synthesis and characterization of a nanostructured matrix hydroxyapatite ceramic bone reconstruction

    International Nuclear Information System (INIS)

    Correa, P.; Camargo, N.H.A.; Silva, D.F.

    2012-01-01

    The nanostructured ceramics have been shown promise as biomaterials for bone reconstruction. Among calcium phosphates, hydroxyapatite Ca/P ratio = 1.67 mol stands out because of its crystallographic similarity with the mineral bone phase and biocompatibility. This work was based on synthesis and characterization of a nanostructured hydroxyapatite for use in reconstituting bone tissue. The synthesis method for obtaining the bioceramic powder occurred at process of dissolution/precipitation, involving CaO solid/liquid and phosphoric acid required for forming the composition of Ca/P = 1.67 mole. The material recovered from the synthesis was calcined at 900 ° C/2h, providing the hydroxyapatite powder nanometer. This was subjected to mechanical fragmentation process in mill attritor, providing a hydroxyapatite with modified surface morphology. The results presented relate to morphological characterization studies (SEM), mineralogical (XRD), chemical (FTIR) and particle size distribution, using the laser particle size analysis method. Such results showed the formation of hydroxyapatite phase and morphology satisfactory for use in reconstituting bone tissue

  9. Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

    NARCIS (Netherlands)

    Doeswijk, L.M.; de Moor, Hugo H.C.; Rogalla, Horst; Blank, David H.A.

    2002-01-01

    Since most commercially available solar cells are still made from silicon, we are exploring the introduction of passivating qualities in oxides, with the potential to serve as an antireflection coating. Pulsed laser deposition (PLD) was used to deposit TiO2 and SrTiO3 coatings on silicon substrates.

  10. Multi-material poly(lactic acid) scaffold fabricated via fused deposition modeling and direct hydroxyapatite injection as spacers in laminoplasty

    Science.gov (United States)

    Syuhada, Ghifari; Ramahdita, Ghiska; Rahyussalim, A. J.; Whulanza, Yudan

    2018-02-01

    Nowadays, additive manufacturing method has been used extensively to realize any product with specific attributes rather than the conventional subtractive manufacturing method. For instance, the additive manufacturing has enable us to construct a product layer-by-layer by successively depositing several materials in one session and one platform. This paper studied the properties of a 3D printed scaffold fabricated through Poly(Lactic-acid) (PLA) deposition modelling in combination with injectable hydroxyapatite (HA)/alginate as cell carrier. The scaffold was designed to serve as a spacer in cervical laminoplasty. Therefore, a series of test were conducted to elaborate the mechanical property, porosity and in-vitro toxicity testing. The results showed that the method is reliable to fabricate the scaffold as desired although the toxicity test needs more confirmation.

  11. BN-based nano-composites obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Major, B.; Kosydar, R.; Major, L; Mroz, W.; Burdynska, S.; Jelinek, M.; Kot, M.; Kustosz, R.

    2006-01-01

    Boron nitride thin layers were produced by means of the pulsed laser deposition technique from hexagonal boron nitride target. Two types of laser i.e. Nd: YAG with Q-switch as well as KrF coupled with RF generator were used. Influence of deposition parameters on surface morphology, phase composition as well as mechanical properties is discussed. Results obtained using Fourier Transformed Infrared Spectroscopy, Transmission and Scanning Electron Microscopy, Atomic Force Microscopy are presented. Micromechanical properties measured during micro indentation, scratch and wear tests are also shown. (authors)

  12. Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Yasuro; Hisanabe, Hideyuki; Kuroiwa, Keita; Kimizuka, Nobuo; Yamada, Sunao

    2006-01-01

    Using pulsed laser irradiation (532 nm), dodecanethiol-capped gold nanoparticles (DT-Au) were deposited on the laser-irradiated region of a hydrophobic glass substrate modified with dimethyloctadecylchlorosilane (DMOS). After removal of deposited DT-Au, the laser-deposited region on the substrate was hydrophilic, as verified by static water contact angles. X-ray photoelectron spectroscopy suggested that the naked glass surface was not exposed at the hydrophilic region. Immersion of the substrate into gold nanorod (NR) solution selectively immobilized NRs on the hydrophilic surface via electrostatic interactions, indicating that the hydrophilic region was an anionic surface. From these results, it is expected that some immobilized DMOS groups on the laser-irradiated region of the substrate were oxidized during DT-Au deposition and fragmentation of the deposited DT-Au

  13. Residual stresses in laser direct metal deposited Waspaloy

    Energy Technology Data Exchange (ETDEWEB)

    Moat, R.J., E-mail: richard.moat@manchester.ac.uk [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Pinkerton, A.J.; Li, L. [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, M60 1QD (United Kingdom); Withers, P.J.; Preuss, M. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2011-03-15

    Research highlights: {yields} Neutron diffraction and the contour method show good agreement. {yields} Tensile stresses found parallel to the surfaces. {yields} Compressive stresses within the bulk of the structures. {yields} Residual stress weakly dependent on the laser pulse parameters. {yields} Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  14. Residual stresses in laser direct metal deposited Waspaloy

    International Nuclear Information System (INIS)

    Moat, R.J.; Pinkerton, A.J.; Li, L.; Withers, P.J.; Preuss, M.

    2011-01-01

    Research highlights: → Neutron diffraction and the contour method show good agreement. → Tensile stresses found parallel to the surfaces. → Compressive stresses within the bulk of the structures. → Residual stress weakly dependent on the laser pulse parameters. → Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  15. Synthesis of calcium-deficient by hydroxyapatite-collage composite by the electrolytic deposition method; Denkai sekishutsu ho ni yoru karushiumu kesson hidorokishiapataito-coragen fukugotai no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, H. [Niigata University, Niigata (Japan). Graduate School Of Science and Technology; Yasuda, M.; Oota, M. [Niigata University, Niigata (Japan)

    1997-07-05

    Hydroxyapatite is known as that it has a good joining property with teeth and bone, and a study on the application to the living body was conducted by using this property. Its application examples were given as the cement used in dentistry, the artificial tooth root, the artificial bone, the bone cement and the artificial joint. However, they were a sinter heated at more than 1000degC, and were put into use by means of reinforcement using a titanium alloy since their mechanical strength was low. In this study, synthesis of calcium-deficient hydroxyapatite (DAp) and collagen composite by the electrolytic deposition method was attempted in order to develop bionic materials, and the correlation of various physical properties of the obtained composite and the electrolytic deposition conditions were investigated. When the electrolytic voltage is more than 22.0V, a single phase of DAp could be obtained. It was clarified that a DAp and collagen composite was synthesized from results of IR and ESR. 16 refs., 5 figs.

  16. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Rajib, E-mail: rajibju4@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Sengupta, Srijan [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Das, Karabi; Das, Siddhartha [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-12-01

    The orthopaedic implants for human body are generally made of different biomaterials like stainless steels or Ti based alloys. However, it has been found that from surface properties point of view, none of these materials is attractive for fast tissue or cell growth on the surface of implant. This is one of the most important criteria to assure quick bonding between implant and body tissues vis-à-vis minimum recovery time for the patient. Keeping in view of the above facts, this work involves the pulsed electro-deposition coating of biocompatible hydroxyapatite and its group compounds from a diluted bath of calcium and phosphate salt at various current densities over the biomaterial sheet of SS316. SEM study confirms different morphologies of the coatings at different current densities. Characterization techniques like X-ray diffraction, SEM with EDX and FTIR have been used to confirm the phase and percentage quantity of hydroxyapatite compound in the depositions. This coating can serve as a medium for faster tissue growth over the metallic implants. - Highlights: • Composite coatings of CaHPO{sub 4} and hydroxyapatite for biomedical application through pulsed electro-deposition. • Achieved optimum phase composition in view of crystallinity of both the phases. • Overall coating crystallinity of around 70% in view better bio compatibility. • In cyclic voltammetry it is observed that the deposition reaction is completely irreversible. • The deposited coating consists of nano-crystalline hydroxyapatite similar to human bone; which exhibits better bio-compatibility.

  17. Deposition and characterization of ITO films produced by laser ablation at 355 nm

    DEFF Research Database (Denmark)

    Holmelund, E.; Thestrup Nielsen, Birgitte; Schou, Jørgen

    2002-01-01

    Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluence...

  18. Microstructural and mechanical characterization of laser deposited advanced materials

    Science.gov (United States)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  19. Thermokinetic Modeling of Phase Transformation in the Laser Powder Deposition Process

    Science.gov (United States)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2009-08-01

    A finite element model coupled with a thermokinetic model is developed to predict the phase transformation of the laser deposition of AISI 4140 on a substrate with the same material. Four different deposition patterns, long-bead, short-bead, spiral-in, and spiral-out, are used to cover a similar area. Using a finite element model, the temperature history of the laser powder deposition (LPD) process is determined. The martensite transformation as well as martensite tempering is considered to calculate the final fraction of martensite, ferrite, cementite, ɛ-carbide, and retained austenite. Comparing the surface hardness topography of different patterns reveals that path planning is a critical parameter in laser surface modification. The predicted results are in a close agreement with the experimental results.

  20. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farbi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, Almaty (Kazakhstan); Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States); Hannora, A. [Suez Canal University, Faculty of Petroleum and Mining Engineering (Egypt); Mansurov, Z. [Al-Farbi Kazakh National University, Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2012-01-16

    Graphical abstract: Carbon nanotubes have been grown directly on hydroxyapatite by using microwave plasma-enhanced chemical vapor deposition (MPECVD). Highlights: Black-Right-Pointing-Pointer CNTs have been successfully grown directly on hydroxyapatite using MPECVD. Black-Right-Pointing-Pointer Diameter distribution of the CNTs lies in the range from 30 to 70 nm. Black-Right-Pointing-Pointer The HA surface is partially transformed to {beta}-TCP during the deposition. Black-Right-Pointing-Pointer Grown CNTs have good quality and I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. - Abstract: For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30-70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 Degree-Sign C. Raman spectroscopy indicates that the CNTs are of high quality and the I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the {beta}-tricalcium phosphate via dehydroxylation.

  1. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  2. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.

    Science.gov (United States)

    Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. © 2013.

  3. Microstructures, hardness and bioactivity of hydroxyapatite coatings

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-10-01

    Full Text Available Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal...

  4. Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis

    Science.gov (United States)

    Sanz, M.; López-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M.

    2011-12-01

    Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25-50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.

  5. Microporous Ti implant compact coated with hydroxyapatite produced by electro-discharge-sintering and electrostatic-spray-deposition.

    Science.gov (United States)

    Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H

    2014-11-01

    A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques.

  6. Characterization of superconducting thin films deposited by laser ablation. Caracterisation de films minces supraconducteurs deposes par ablation laser

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, M; Delaporte, P [I.M.F.M., 13 - Marseille (FR); Gerri, M; Marine, W [Aix-Marseille-2 Univ., 13-Marseille (FR). Centre Universitaire de Luminy

    1991-05-01

    Thin films of YBa{sub 2}Cu{sub 3}O{sub 7} are deposited by laser ablation on MgO and YSZ substrates. Deposits by infrared (I.R.) Nd: YAG are non stoechiometric. The films having the best superconductor qualities are deposited by ablation with an excimer U.V. laser ({lambda} = 308 nm). These films are epitaxiated with the c axis perpendicular to the substrate. The film quality depends on the substrate temperature, oxygen pressure and cooling speed.

  7. Morphology and structural studies of WO_3 films deposited on SrTiO_3 by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-01-01

    Highlights: • Highly oriented WO_3 stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO_3 films at 700 °C from monoclinic to tetragonal. - Abstract: WO_3 films have been grown by pulsed laser deposition on SrTiO_3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  8. Peculiarities of hydroxyapatite/nanodiamond composites as novel implants

    International Nuclear Information System (INIS)

    Pramatarova, L; Dimitrova, R; Pecheva, E; Spassov, T; Dimitrova, M

    2007-01-01

    Hydroxyapatite/detonation nanodiamond composites are created on silica glass and cover glass by simple soaking process in an open deposition type set-up. The supersaturated solution (simulated body fluid, SBF) is prepared in a way to resemble the composition of human blood plasma. The composite growth is carried out through the addition of detonation nanodiamond particles to the SBF. Scanning electron microscopy, X-ray diffraction and FTIR spectroscopy are used to determine the surface morphology and the structure of the hydroxyapatite /detonation nanodiamond composite layers. The applied methods provide evidence that the nanodiamond surface functional groups interact strongly with the biological solution. The detonation nanodiamond surface is chemically multifunctional (surface OH, C-O-H, C = C, C-O-C and C = O groups exist), so that the hydroxyapatite is grown both by physical adsorption and chemical interaction. The OH - groups are regarded to play an important role in the hydroxyapatite growth on a diamond's surface from SBF, as they charge it negatively and attract Ca 2+ ions, which in turn attract PO 4 3- ions, thus forming apatite nuclei

  9. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  10. Design and spectroscopic reflectometry characterization of pulsed laser deposition combinatorial libraries

    International Nuclear Information System (INIS)

    Schenck, Peter K.; Bassim, Nabil D.; Otani, Makoto; Oguchi, Hiroyuki; Green, Martin L.

    2007-01-01

    The goal of the design of pulsed laser deposition (PLD) combinatorial library films is to optimize the compositional coverage of the films while maintaining a uniform thickness. The deposition pattern of excimer laser PLD films can be modeled with a bimodal cos n distribution. Deposited films were characterized using a spectroscopic reflectometer (250-1000 nm) to map the thickness of both single composition calibration films and combinatorial library films. These distribution functions were used to simulate the composition and thickness of multiple target combinatorial library films. The simulations were correlated with electron-probe microanalysis wavelength-dispersive spectroscopy (EPMA-WDS) composition maps. The composition and thickness of the library films can be fine-tuned by adjusting the laser spot size, fluence, background gas pressure, target geometry and other processing parameters which affect the deposition pattern. Results from compositionally graded combinatorial library films of the ternary system Al 2 O 3 -HfO 2 -Y 2 O 3 are discussed

  11. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  12. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  13. Nanosecond laser ablation and deposition of silver, copper, zinc and tin

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt; Canulescu, Stela

    2014-01-01

    Nanosecond pulsed laser deposition of different metals (Ag, Cu, Sn, Zn) has been studied in high vacuum at a laser wavelength of 355 nm and pulse length of 6 ns. The deposition rate is roughly similar for Sn, Cu and Ag, which have comparable cohesive energies, and much higher for the deposition...... of Zn which has a low cohesive energy. The deposition rate for all metals is strongly correlated with the total ablation yield, i.e., the total mass ablated per pulse, reported in the literature except for Sn, for which the deposition rate is low, but the total ablation yield is high. This may...... be explained by the continuous erosion by nanoparticles during deposition of the Sn films which appear to have a much rougher surface than those of the other metals studied in the present work....

  14. XRD and SEM analysis of hydroxyapatite during immersion in stimulated physiological solutions

    International Nuclear Information System (INIS)

    Yusof Abdullah; Idris Besar; Rosmamuhamadani Ramli; Abd Razak Daud

    2000-01-01

    XRD and SEM techniques were used to analyse the apatite layer developed on the synthetic hydroxyapatite surface following immersion in the simulated body fluid (SBF) that mimics the conditions of material experiences after implantation in the human body. Initially, the new layers formed after 7 day's incubation and increased with immersion time as crystallization of apatite phase. The XRD confirmed that the deposited layer was hydroxyapatite and crystallographically. With time, the crystal growth become more random and the intensity of the peaks decreased. During immersion, hydroxyapatite was precipitated from the SBF and coherently scattered with very small crystal. The SEM observation shows that the new precipitates were increased as well as incubation period increased. Therefore, hydroxyapatite ceramics are suggested to have very good biocompatibility. (Author)

  15. Facile fabrication of bioactive ultra-small protein–hydroxyapatite nanoconjugates via liquid-phase laser ablation and their enhanced osteogenic differentiation activity

    KAUST Repository

    Rodio, Marina; Coluccino, Luca; Romeo, Elisa; Genovese, Alessandro; Diaspro, Alberto; Garau, Gianpiero; Intartaglia, Romuald

    2016-01-01

    Hydroxyapatite bioactive complexes are being increasingly recognized as effective available means in regenerative medicine. Conventional technologies for their synthesis have drawbacks from a synthetic standpoint, mainly requiring high temperatures and multi-step processes. Here, we show that ultra-small hydroxyapatite conjugated-nanoparticles (Ha-CNPs) can be obtained at room temperature by Pulsed Laser Ablation (PLA) directly in protein solution using picosecond pulses at near infrared wavelengths. The results showed that the nanoparticle size was driven by the concentration of the protein. Using this approach, we obtained aqueous soluble and ultra-small crystalline nanoparticles of ≈3 nm diameter coated with protein molecules (surface coverage ≈ 5.5 pmol cm; zeta potential ≈-33.5 mV). These nanoparticles showed low cytotoxicity in vitro compared to chemically synthesized nanoparticles, and revealed proliferative and osteoinductive effects on human bone marrow mesenchymal stem cells (hMSCs). The resulting enhanced cell osteogenic differentiation suggested that our PLA-based synthetic approach might be exploited in novel applications of regenerative medicine.

  16. Facile fabrication of bioactive ultra-small protein–hydroxyapatite nanoconjugates via liquid-phase laser ablation and their enhanced osteogenic differentiation activity

    KAUST Repository

    Rodio, Marina

    2016-11-24

    Hydroxyapatite bioactive complexes are being increasingly recognized as effective available means in regenerative medicine. Conventional technologies for their synthesis have drawbacks from a synthetic standpoint, mainly requiring high temperatures and multi-step processes. Here, we show that ultra-small hydroxyapatite conjugated-nanoparticles (Ha-CNPs) can be obtained at room temperature by Pulsed Laser Ablation (PLA) directly in protein solution using picosecond pulses at near infrared wavelengths. The results showed that the nanoparticle size was driven by the concentration of the protein. Using this approach, we obtained aqueous soluble and ultra-small crystalline nanoparticles of ≈3 nm diameter coated with protein molecules (surface coverage ≈ 5.5 pmol cm; zeta potential ≈-33.5 mV). These nanoparticles showed low cytotoxicity in vitro compared to chemically synthesized nanoparticles, and revealed proliferative and osteoinductive effects on human bone marrow mesenchymal stem cells (hMSCs). The resulting enhanced cell osteogenic differentiation suggested that our PLA-based synthetic approach might be exploited in novel applications of regenerative medicine.

  17. Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Lee, H.G.; Li, Y.; Xiong, X.; Qiao, Y.; Reeves, J.; Xie, Y.; Knoll, A.; Lenseth, K

    2003-10-15

    SuperPower has been scaling up YBa{sub 2}Cu{sub 3}O{sub x}-based second-generation superconducting tapes by techniques such as pulsed laser deposition (PLD) using industrial laser and metal organic chemical vapor deposition (MOCVD). Both techniques offer advantage of high deposition rates, which is important for high throughput. Using highly-polished substrates produced in a reel-to-reel polishing facility and buffer layers deposited in a pilot ion beam assisted deposition facility, meter-long second-generation high temperature superconductor tapes have been produced. 100 A class, meter-long coated conductor tapes have been reproducibly demonstrated in this work by both MOCVD and PLD. The best results to date are 148 A over 1.06 m by MOCVD and 135 A over 1.1 m by PLD using industrial laser.

  18. LASER-INDUCED BIOACTIVITY IN DENTAL PORCELAIN MODIFIED BY BIOACTIVE GLASS

    Directory of Open Access Journals (Sweden)

    ANASTASIA BEKETOVA

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of laser-liquid-solid interaction method in the bioactivity of dental porcelain modified by bioactive glass. Forty sol-gel derived specimens were immersed in Dulbecco's Modified Eagle's Medium, 31 and 9 specimens of which were treated with Er:YAG and Nd:YAG laser respectively. Untreated specimens served as controls. Incubation of specimens followed. Bioactivity was evaluated, using Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM/Energy Dispersive Spectroscopy (EDS and Transmission Electron Microscopy (TEM. FTIR detected peaks associated with hydroxyapatite on 1 Nd:YAG- and 4 Er:YAG-treated specimens. SEM analysis revealed that Er:YAG-treated specimens were covered by granular hydroxyapatite layer, while Nd:YAG treated specimen presented growth of flake-like hydroxyapatite. TEM confirmed the results. The untreated controls presented delayed bioactivity. In conclusion, Nd:YAG and Er:YAG laser treatment of the material, under certain fluencies, accelerates hydroxyapatite formation. Nd:YAG laser treatment of specific parameters causes the precipitation of flake-like hydroxyapatite in nano-scale.

  19. Tritium decontamination from co-deposited layer on tungsten substrate by ultra violet lamp and laser

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Tadokoro, Takahiro; Shu, Wataru; Hayashi, Takumi; O'hira, Shigeru; Nishi, Masataka

    2001-01-01

    Tritium decontamination using ultra violet (UV) lamp and laser was performed. Simulated co-deposited layer on tungsten substrate was deposited by C 2 H 2 or C 2 D 2 glow discharge. The co-deposited layer was irradiated to UV lights from a xenon excimer lamp (172 nm) or ArF excimer laser (193 nm) and the in-situ decontamination behavior was evaluated by a mass spectrometer. After the UV irradiation, the hydrogen concentration in the co-deposited layer was evaluated by elastic recoil detection analysis (ERDA) and the depth profile was analyzed by secondary ion mass spectrometry (SIMS). For the co-deposited layer formed by C 2 D 2 glow discharge, it was found that M/e 3 (HD) gas was released mainly during the UV lamp irradiation while both M/e 3 (HD) and M/e 4 (D 2 ) gases were detected during the UV laser irradiation. Though the co-deposited layer was not removed by UV lamp irradiation, almost all the co-deposited layer was removed by UV laser irradiation within 1 min. The ratio of hydrogen against carbon in the co-deposited layer was estimated to be 0.53 by ERDA and the number of photon needed for removing 1 μm thick co-deposited layer was calculated to be 3.7x10 18 cm -2 for the UV laser by SIMS measurement. It is concluded that C-H (C-D) bond on the co-deposited layer were dissociated by irradiation of UV lamp while the co-deposited layer itself was removed by the UV laser irradiation. (author)

  20. Deposition and modification of tantalum carbide coatings on graphite by laser interactions

    International Nuclear Information System (INIS)

    Veligdan, J.; Branch, D.; Vanier, P.E.; Barletta, R.E.

    1992-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 degrees C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing, involved the use of a CO 2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl 5 gas near the substrate. Results of preliminary experiments using these techniques are described

  1. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  2. Porous nanostructured ZnO films deposited by picosecond laser ablation

    International Nuclear Information System (INIS)

    Sima, Cornelia; Grigoriu, Constantin; Besleaga, Cristina; Mitran, Tudor; Ion, Lucian; Antohe, Stefan

    2012-01-01

    Highlights: ► We deposite porous nanostructured ZnO films by picoseconds laser ablation (PLA). ► We examine changes of the films structure on the experimental parameter deposition. ► We demonstrate PLA capability to produce ZnO nanostructured films free of particulates. - Abstract: Porous nanostructured polycrystalline ZnO films, free of large particulates, were deposited by picosecond laser ablation. Using a Zn target, zinc oxide films were deposited on indium tin oxide (ITO) substrates using a picosecond Nd:YVO 4 laser (8 ps, 50 kHz, 532 nm, 0.17 J/cm 2 ) in an oxygen atmosphere at room temperature (RT). The morpho-structural characteristics of ZnO films deposited at different oxygen pressures (150–900 mTorr) and gas flow rates (0.25 and 10 sccm) were studied. The post-deposition influence of annealing (250–550 °C) in oxygen on the film characteristics was also investigated. At RT, a mixture of Zn and ZnO formed. At substrate temperatures above 350 °C, the films were completely oxidized, containing a ZnO wurtzite phase with crystallite sizes of 12.2–40.1 nm. At pressures of up to 450 mTorr, the porous films consisted of well-distinguished primary nanoparticles with average sizes of 45–58 nm, while at higher pressures, larger clusters (3.1–14.7 μm) were dominant, leading to thicker films; higher flow rates favored clustering.

  3. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition

    Directory of Open Access Journals (Sweden)

    Fang Luo

    2015-03-01

    Full Text Available Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.

  4. Application of laser assisted cold spraying process for metal deposition

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-02-01

    Full Text Available Laser assisted cold spraying (LACS) process is a hybrid technique that uses laser and cold spray to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic which are achieved by entraining...

  5. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus

    2016-04-09

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  6. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus; Mejia, Israel; Alshareef, Husam N.; Guo, Zaibing; Young, Chadwin; Quevedo-Lopez, Manuel

    2016-01-01

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  7. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A.; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Shaji, S.

    2015-01-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  8. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  9. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  10. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  11. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leilei, E-mail: zhangleilei1121@aliyun.com; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-12-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  12. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    International Nuclear Information System (INIS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-01-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  13. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    Science.gov (United States)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  14. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Shaji, S.; Garcia, L.V.; Loredo, S.L.; Krishnan, B.

    2017-01-01

    Highlights: • Antimony sulfide thin films were prepared by normal CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • These films were photoconductive. - Abstract: Antimony sulfide (Sb_2S_3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb_2S_3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb_2S_3 thin films for optoelectronic applications.

  15. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Garcia, L.V. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); Loredo, S.L. [Centro de Investigación en Materiales Avanzados (CIMAV), Unidad Monterrey, PIIT, Apodaca, Nuevo León (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); and others

    2017-01-30

    Highlights: • Antimony sulfide thin films were prepared by normal CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • These films were photoconductive. - Abstract: Antimony sulfide (Sb{sub 2}S{sub 3}) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb{sub 2}S{sub 3} thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb{sub 2}S{sub 3} thin films for optoelectronic applications.

  16. Microdroplet deposition through a film-free laser forward printing technique

    International Nuclear Information System (INIS)

    Patrascioiu, A.; Fernández-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2012-01-01

    Highlights: ► Circular droplets are obtained for a wide range of focusing depths at fixed energy. ► Focusing depth variation study reveals two abrupt transitions in droplet diameter. ► Liquid ejection mechanism is mediated by two types of jets of different origin. ► Evolution of jets depends on the focusing depth accounting for the seen transitions. - Abstract: A recently developed film-free laser forward microprinting technique allows printing transparent and weakly absorbing liquids with high resolution and reproducibility. Its operating principle consists in the tight focusing of ultrashort laser pulses inside the liquid, and near its free surface, such that all the laser energy is absorbed in a small region around the beam waist. A cavitation bubble is then created inside the liquid, whose subsequent expansion results into the ejection of liquid. The collection of the ejected liquid on a substrate leads to the deposition of micron-sized droplets. In this work, we investigate a relevant process parameter of the technique, namely the laser focusing depth, and its influence on the morphology of the deposited droplets. The study reveals that for a fixed laser pulse energy there exists a relatively wide range of focusing depths at which circular and uniform droplets can be printed. The process of liquid ejection is also investigated. Time-resolved images reveal that liquid ejection proceeds through the formation of two kinds of jets which display clearly differentiated dynamics, and which could provide an interpretation for the dependence observed between the morphology of the deposited droplets and the laser focusing depth.

  17. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-03-01

    Full Text Available Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  18. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  19. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  20. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    Science.gov (United States)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  1. Powder Flux Regulation in the Laser Material Deposition Process

    Science.gov (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  2. Laser-induced ion emission during polymer deposition from a flash-frozen water ice matrix

    DEFF Research Database (Denmark)

    Rodrigo, K.; Toftmann, Bo; Schou, Jørgen

    2004-01-01

    Flash-frozen water solutions of 1% weight PEG (polyethylene glycol) at -50 degreesC were used as targets at a laser wavelength of 355 nm for polymer deposition with Matrix-Assisted Pulsed Laser Evaporation (MAPLE). For medium laser fluences the transfer of PEG material to the substrate was accomp......Flash-frozen water solutions of 1% weight PEG (polyethylene glycol) at -50 degreesC were used as targets at a laser wavelength of 355 nm for polymer deposition with Matrix-Assisted Pulsed Laser Evaporation (MAPLE). For medium laser fluences the transfer of PEG material to the substrate...

  3. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  4. Applications of interface controlled pulsed-laser deposited polymer films in field-effect transistors

    Science.gov (United States)

    Adil, Danish; Ukah, Ndubuisi; Guha, Suchi; Gupta, Ram; Ghosh, Kartik

    2010-03-01

    Matrix assisted pulsed laser evaporation, a derivative of pulsed laser deposition (PLD), is an alternative method of depositing polymer and biomaterial films that allows homogeneous film coverage of high molecular weight organic materials for layer-by-layer growth without any laser induced damage. Polyfluorene (PF)-based conjugated polymers have attracted considerable attention in organic field-effect transistors (FETs). A co-polymer of PF (PFB) was deposited as a thin film using matrix assisted PLD employing a KrF excimer laser. Electrical characteristics of FETs fabricated using these PLD grown films were compared to those of FETs using spin-coated films. We show that threshold voltages, on/off ratios, and charge carrier motilities are significantly improved in PLD grown films. This is attributed to an improved dielectric-polymer interface.

  5. Peculiarities of hydroxyapatite/nanodiamond composites as novel implants

    Energy Technology Data Exchange (ETDEWEB)

    Pramatarova, L [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences (Bulgaria); Dimitrova, R [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (Bulgaria); Pecheva, E [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences (Bulgaria); Spassov, T [Sofia University, Faculty of Chemistry (Bulgaria); Dimitrova, M [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences (Bulgaria)

    2007-12-15

    Hydroxyapatite/detonation nanodiamond composites are created on silica glass and cover glass by simple soaking process in an open deposition type set-up. The supersaturated solution (simulated body fluid, SBF) is prepared in a way to resemble the composition of human blood plasma. The composite growth is carried out through the addition of detonation nanodiamond particles to the SBF. Scanning electron microscopy, X-ray diffraction and FTIR spectroscopy are used to determine the surface morphology and the structure of the hydroxyapatite /detonation nanodiamond composite layers. The applied methods provide evidence that the nanodiamond surface functional groups interact strongly with the biological solution. The detonation nanodiamond surface is chemically multifunctional (surface OH, C-O-H, C = C, C-O-C and C = O groups exist), so that the hydroxyapatite is grown both by physical adsorption and chemical interaction. The OH{sup -} groups are regarded to play an important role in the hydroxyapatite growth on a diamond's surface from SBF, as they charge it negatively and attract Ca{sup 2+} ions, which in turn attract PO{sub 4}{sup 3-} ions, thus forming apatite nuclei.

  6. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  7. The Influence of Electrolytic Concentration on the Electrochemical Deposition of Calcium Phosphate Coating on a Direct Laser Metal Forming Surface

    Directory of Open Access Journals (Sweden)

    Qianyue Sun

    2017-01-01

    Full Text Available A calcium phosphate (CaP coating on titanium surface enhances its biocompatibility, thus facilitating osteoconduction and osteoinduction with the inorganic phase of the human bone. Electrochemical deposition has been suggested as an effective means of fabricating CaP coatings on porous surface. The purpose of this study was to develop CaP coatings on a direct laser metal forming implant using electrochemical deposition and to investigate the effect of electrolytic concentration on the coating’s morphology and structure by X-ray diffraction, scanning electron microscopy, water contact angle analysis, and Fourier transform infrared spectroscopy. In group 10−2, coatings were rich in dicalcium phosphate, characterized to be thick, layered, and disordered plates. In contrast, in groups 10−3 and 10−4, the relatively thin and well-ordered coatings predominantly consisted of granular hydroxyapatite. Further, the hydrophilicity and cell affinity were improved as electrolytic concentration increased. In particular, the cells cultured in group 10−3 appeared to have spindle morphology with thick pseudopodia on CaP coatings; these spindles and pseudopodia strongly adhered to the rough and porous surface. By analyzing and evaluating the surface properties, we provided further knowledge on the electrolytic concentration effect, which will be critical for improving CaP coated Ti implants in the future.

  8. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    Science.gov (United States)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  9. Pulsed laser deposition and characterization of cellulase thin films

    Science.gov (United States)

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  10. New results in pulsed laser deposition of poly-methyl-methacrylate thin films

    International Nuclear Information System (INIS)

    Cristescu, R.; Socol, G.; Mihailescu, I.N.; Popescu, M.; Sava, F.; Ion, E.; Morosanu, C.O.; Stamatin, I.

    2003-01-01

    Thin organic films based on poly-methyl-methacrylate (PMMA) polymer have been obtained by pulsed laser deposition (PLD) on silicon substrates. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy (RS). We observed that the film composition and structure depend on the laser fluence and on the temperature of the substrate during deposition

  11. Pulsed laser deposition to synthesize the bridge structure of artificial nacre: Comparison of nano- and femtosecond lasers

    Science.gov (United States)

    Melaibari, Ammar A.; Molian, Pal

    2012-11-01

    Nature offers inspiration to new adaptive technologies that allow us to build amazing shapes and structures such as nacre using synthetic materials. Consequently, we have designed a pulsed laser ablation manufacturing process involving thin film deposition and micro-machining to create hard/soft layered "brick-bridge-mortar" nacre of AlMgB14 (hard phase) with Ti (soft phase). In this paper, we report pulsed laser deposition (PLD) to mimic brick and bridge structures of natural nacre in AlMgB14. Particulate formation inherent in PLD is exploited to develop the bridge structure. Mechanical behavior analysis of the AlMgB14/Ti system revealed that the brick is to be 250 nm thick, 9 μm lateral dimensions while the bridge (particle) is to have a diameter of 500 nm for a performance equivalent to natural nacre. Both nanosecond (ns) and femtosecond (fs) pulsed lasers were employed for PLD in an iterative approach that involves varying pulse energy, pulse repetition rate, and target-to-substrate distance to achieve the desired brick and bridge characteristics. Scanning electron microscopy, x-ray photoelectron spectroscopy, and optical profilometer were used to evaluate the film thickness, particle size and density, stoichiometry, and surface roughness of thin films. Results indicated that both ns-pulsed and fs-pulsed lasers produce the desired nacre features. However, each laser may be chosen for different reasons: fs-pulsed laser is preferred for much shorter deposition time, better stoichiometry, uniform-sized particles, and uniform film thickness, while ns-pulsed laser is favored for industrial acceptance, reliability, ease of handling, and low cost.

  12. History and current status of commercial pulsed laser deposition equipment

    International Nuclear Information System (INIS)

    Greer, James A

    2014-01-01

    This paper will review the history of the scale-up of the pulsed laser deposition (PLD) process from small areas ∼1 cm 2 up to 10 m 2 starting in about 1987. It also documents the history of commercialization of PLD as various companies become involved in selling fully integrated laser deposition tools starting in 1989. The paper will highlight the current state of the art of commercial PLD equipment for R and D that is available on the market today from mainstream vendors as well as production-oriented applications directed at piezo-electric materials for microelectromechanical systems and high-temperature superconductors for coated-conductor applications. The paper clearly demonstrates that considerable improvements have been made to scaling this unique physical vapour deposition process to useful substrate sizes, and that commercial deposition equipment is readily available from a variety of vendors to address a wide variety of technologically important thin-film applications. (paper)

  13. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  14. Laser wavelength dependent properties of YBa2Cu3O7-δ thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Baseman, R.J.; Lutwyche, M.I.; Laibowitz, R.B.

    1989-01-01

    YBa 2 Cu 3 O 7-δ thin films were deposited onto (100) SrTiO 3 substrates using 1064, 532, 355, 248, and 193 nm laser ablation. Transport measurements show lower normal-state resistivities and higher critical currents in films deposited by the shorter wavelength lasers. The surface morphology of the films was rough with large particulates when the 1064 nm laser was used whereas much smoother surfaces with fewer and smaller particulates were obtained with the UV lasers. It is suggested that the better film quality obtained when the UV lasers are used is due to a small absorption depth of the UV photons in the ceramic target and to higher absorption by the ablated fragments. This leads to smaller ablated species and further fragmentation in the hotter plume and, therefore, to smoother and denser films

  15. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF_2 or MgO for implants functionalization

    International Nuclear Information System (INIS)

    Mihailescu, Natalia; Stan, G.E.; Duta, L.; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Sopronyi, M.; Luculescu, C.; Oktar, F.N.; Mihailescu, I.N.

    2016-01-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF_2 (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ_F_W_H_M ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF_2 and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  16. Growth modes of pentacene films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, G.; Kuzma, M.; Virt, I.; Sagan, P.; Rudyj, I.

    2011-01-01

    Thin pentacene films were deposited on KCl and ITO/glass substrates by the pulsed laser deposition method (PLD) using a YAG:Nd 3+ laser with a second harmonic (λ = 532 nm). We compared the structure of the layer on differently oriented substrates with respect to the pentacene plasma plume - vertical and parallel orientation. The structure of the layers formed was examined using SEM, RHEED and THEED methods. The lattice parameters of the layer deposited on KCl were determined from THEED pattern (a = 5.928 A, b 7.874 A, c = 14,98 A, α = 76.54 o , β 75.17 o , γ = 89.20 o ). The preferred direction [11-bar 0] of the layer growth on KCl substrate was addressed. The effect of the substrate orientation results in a different growth mode of the layers.

  17. Microdroplet deposition through a film-free laser forward printing technique

    Energy Technology Data Exchange (ETDEWEB)

    Patrascioiu, A.; Fernandez-Pradas, J.M.; Morenza, J.L. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Serra, P., E-mail: pserra@ub.edu [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Circular droplets are obtained for a wide range of focusing depths at fixed energy. Black-Right-Pointing-Pointer Focusing depth variation study reveals two abrupt transitions in droplet diameter. Black-Right-Pointing-Pointer Liquid ejection mechanism is mediated by two types of jets of different origin. Black-Right-Pointing-Pointer Evolution of jets depends on the focusing depth accounting for the seen transitions. - Abstract: A recently developed film-free laser forward microprinting technique allows printing transparent and weakly absorbing liquids with high resolution and reproducibility. Its operating principle consists in the tight focusing of ultrashort laser pulses inside the liquid, and near its free surface, such that all the laser energy is absorbed in a small region around the beam waist. A cavitation bubble is then created inside the liquid, whose subsequent expansion results into the ejection of liquid. The collection of the ejected liquid on a substrate leads to the deposition of micron-sized droplets. In this work, we investigate a relevant process parameter of the technique, namely the laser focusing depth, and its influence on the morphology of the deposited droplets. The study reveals that for a fixed laser pulse energy there exists a relatively wide range of focusing depths at which circular and uniform droplets can be printed. The process of liquid ejection is also investigated. Time-resolved images reveal that liquid ejection proceeds through the formation of two kinds of jets which display clearly differentiated dynamics, and which could provide an interpretation for the dependence observed between the morphology of the deposited droplets and the laser focusing depth.

  18. Pulsed laser deposition of AlMgB14 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Britson, Jason Curtis [Iowa State Univ., Ames, IA (United States)

    2008-11-18

    Hard, wear-resistant coatings of thin film borides based on AlMgB14 have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB14 used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB14 has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB14 films. Processing methods to eliminate large particles on the surface of the AlMgB14 films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel

  19. Pulsed laser deposition of lysozyme: the dependence on shot numbers and the angular distribution

    DEFF Research Database (Denmark)

    Constantinescu, C.; Matei, A.; Schou, Jørgen

    2013-01-01

    The ejection of molecules from a pressed solid target of lysozyme induced by laser ablation in the UV-regime at a wavelength of 355 nm was investigated. The ablation studies were carried out in vacuum at a laser fluence of 2 J/cm2 for which a significant fraction of proteins remains intact....... This was verified by matrix-assisted laser desorption ionization (MALDI) spectrometry of thin films deposited on silicon substrates. The deposition rate of lysozyme was found to decrease with the number of shots and was correlated with increasing thermal damage of the lysozyme. This was monitored by measurements...... of the optical reflectivity of dry lysozyme. The angular distribution of the mass deposition can be fitted well by Anisimov’s hydrodynamic model. The total deposited yield over the entire hemisphere from direct laser ablation of lysozyme was estimated from this model and found to be three orders of magnitude...

  20. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    Science.gov (United States)

    Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias

    2014-10-01

    A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  1. Chromium-doped diamond-like carbon films deposited by dual-pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Písařík, Petr; Jelínek, Miroslav; Kocourek, Tomáš; Zezulová, M.; Remsa, Jan; Jurek, Karel

    2014-01-01

    Roč. 117, č. 1 (2014), s. 83-88 ISSN 0947-8396 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : diamond like carbon * chromium * contact angle * surface free energy * dual laser deposition * zeta potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  2. Morphology and structural studies of WO{sub 3} films deposited on SrTiO{sub 3} by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalhori, Hossein, E-mail: h.kalhori@ph.iut.ac.ir [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of); Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Ranjbar, Mehdi; Salamati, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • Highly oriented WO{sub 3} stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO{sub 3} films at 700 °C from monoclinic to tetragonal. - Abstract: WO{sub 3} films have been grown by pulsed laser deposition on SrTiO{sub 3} (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  3. Hydroxyapatite coating by biomimetic method on titanium alloy ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 6. Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. S Bharati M K Sinha ... Optical microscopic and SEM observations revealed the deposition of Ca–P layer on the titanium alloy by both the methods. Thickness of coating ...

  4. Plume-induced stress in pulsed-laser deposited CeO2 films

    International Nuclear Information System (INIS)

    Norton, D.P.; Park, C.; Budai, J.D.; Pennycook, S.J.; Prouteau, C.

    1999-01-01

    Residual compressive stress due to plume-induced energetic particle bombardment in CeO 2 films deposited by pulsed-laser deposition is reported. For laser ablation film growth in low pressures, stresses as high as 2 GPa were observed as determined by substrate curvature and four-circle x-ray diffraction. The amount of stress in the films could be manipulated by controlling the kinetic energies of the ablated species in the plume through gas-phase collisions with an inert background gas. The film stress decreased to near zero for argon background pressures greater than 50 mTorr. At these higher background pressures, the formation of nanoparticles in the deposited film was observed. copyright 1999 American Institute of Physics

  5. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yansheng [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tu, Rong, E-mail: turong@whut.edu.cn [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Goto, Takashi [Institute for Materials Research, Tohoku University, Aoba-ku, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  6. Nanometer sized structures grown by pulsed laser deposition

    KAUST Repository

    ElZein, Basma

    2015-10-01

    Nanometer sized materials can be produced by exposing a target to a laser source to remove material from the target and deposit the removed material onto a surface of a substrate to grow a thin film in a vacuum chamber

  7. Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au; Varalmov, S.; Huang, J.; Green, M. A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Suntech R and D Australia, Botany, New South Wales 2019 (Australia)

    2014-06-16

    The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-μm thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550 °C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450 °C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550 °C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450 °C, which limits the solar cell performance by n = 2 recombination, and a performance degradation is expected due to severe shunting.

  8. Pulsed 1064 nm Nd-YAG Laser Deposition of Titanium on Silicon in a Nitrogen Environment

    Directory of Open Access Journals (Sweden)

    Wilson Garcia

    1999-12-01

    Full Text Available Pulsed laser deposition (PLD technique was demonstrated for the deposition of titanium nitride (TiN thin films on Si (100 substrates. A 1064 nm pulsed Nd-YAG laser is focused on a titanium (99.5% target in a nitrogen environment to generate the atomic flux needed for the film deposition. Spectroscopic analysis of the plasma emission indicates the presence of atomic titanium and nitrogen, which are the precursors of TiN. Images of the films grown at different laser pulse energies show an increase in the number and size of deposited droplets and clusters with increasing laser pulse energy. A decrease in cluster and droplet size is also observed, with an increase in substrate temperature. EDS data show an increase in the titanium peak relative to the silicon as the ambient nitrogen pressure is decreased. An increase in deposition time was found to result in large clusters and irregularly shaped structures on the substrate. Post-deposition annealing of the samples enhanced the crystallinity of the film.

  9. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF{sub 2} or MgO for implants functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, Natalia [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Stan, G.E. [National Institute of Materials Physics, Magurele RO-077125 (Romania); Duta, L. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Chifiriuc, Mariana Carmen [Department of Microbiology, Faculty of Biology, Bucharest RO-060101 (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, 85 Mihai Bravu Avenue, Bucharest RO-030304 (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Advance Nanomaterials Research Laboratory, Marmara University, Goztepe, Istanbul TR-34722 (Turkey); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-077125 (Romania)

    2016-02-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF{sub 2} (2 wt.%) or MgO (5 wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ = 248 nm, τ{sub FWHM} ≤ 25 ns) excimer laser source was used. The deposited structures were characterized from a physical–chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72 h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72 h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. - Highlights: • Novel biological derived HA coatings fabricated by pulsed laser deposition. • Renewable resources • Reinforcement with MgF{sub 2} and MgO improves the HA coatings' bonding strength. • Significant anti-biofilm effect obtained for MgO reinforced HA films. • Alternative low cost solutions for a new generation of dental implants.

  10. Laser metal deposition of Ti6Al4V: A study on the effect of laser power on microstructure and microhardness

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-03-01

    Full Text Available The effect of laser power on the resulting microstructure and microhardness of laser metal deposited Ti6Al4V powder on Ti6Al4V substrate has been investigated. The tracks were deposited using 99.6 % pure Ti6Al4V powder of particle size ranging...

  11. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro

    International Nuclear Information System (INIS)

    Huang, S B; Gao, S S; Yu, H Y

    2009-01-01

    The purpose of the research was to determine the effect of nano-hydroxyapatite concentrations on initial enamel lesions under dynamic pH-cycling conditions. Initial enamel lesions were prepared in bovine enamel with an acidic buffer. NaF (positive control), deionized water (negative control) and four different concentrations of nano-hydroxyapatite (1%, 5%, 10% and 15% wt%) were selected as the treatment agents. Surface microhardness (SMH) measurements were performed before/after demineralization and after 3, 6, 9 and 12 days of application, and the percentage surface microhardness recovery (%SMHR) was calculated. The specimens were then examined by a scanning electron microscope. The %SMHR in nano-hydroxyapatite groups was significantly greater than that of negative control. When the concentration of nano-HA was under 10%, SMH and %SMHR increased with increasing nano-hydroxyapatite concentrations. There were no significant differences between the 10% and 15% groups at different time periods in the pH-cycling. The SEM analysis showed that nano-hydroxyapatite particles were regularly deposited on the cellular structure of the demineralized enamel surface, which appeared to form new surface layers. It was concluded that nano-hydroxyapatite had the potential to remineralize initial enamel lesions. A concentration of 10% nano-hydroxyapatite may be optimal for remineralization of early enamel caries.

  12. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S B; Gao, S S; Yu, H Y, E-mail: yhyang6812@scu.edu.c [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2009-06-15

    The purpose of the research was to determine the effect of nano-hydroxyapatite concentrations on initial enamel lesions under dynamic pH-cycling conditions. Initial enamel lesions were prepared in bovine enamel with an acidic buffer. NaF (positive control), deionized water (negative control) and four different concentrations of nano-hydroxyapatite (1%, 5%, 10% and 15% wt%) were selected as the treatment agents. Surface microhardness (SMH) measurements were performed before/after demineralization and after 3, 6, 9 and 12 days of application, and the percentage surface microhardness recovery (%SMHR) was calculated. The specimens were then examined by a scanning electron microscope. The %SMHR in nano-hydroxyapatite groups was significantly greater than that of negative control. When the concentration of nano-HA was under 10%, SMH and %SMHR increased with increasing nano-hydroxyapatite concentrations. There were no significant differences between the 10% and 15% groups at different time periods in the pH-cycling. The SEM analysis showed that nano-hydroxyapatite particles were regularly deposited on the cellular structure of the demineralized enamel surface, which appeared to form new surface layers. It was concluded that nano-hydroxyapatite had the potential to remineralize initial enamel lesions. A concentration of 10% nano-hydroxyapatite may be optimal for remineralization of early enamel caries.

  13. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  14. An analytical–numerical model of laser direct metal deposition track and microstructure formation

    International Nuclear Information System (INIS)

    Ahsan, M Naveed; Pinkerton, Andrew J

    2011-01-01

    Multiple analytical and numerical models of the laser metal deposition process have been presented, but most rely on sequential solution of the energy and mass balance equations or discretization of the problem domain. Laser direct metal deposition is a complex process involving multiple interdependent processes which can be best simulated using a fully coupled mass-energy balance solution. In this work a coupled analytical–numerical solution is presented. Sub-models of the powder stream, quasi-stationary conduction in the substrate and powder assimilation into the area of the substrate above the liquidus temperature are combined. An iterative feedback loop is used to ensure mass and energy balances are maintained at the melt pool. The model is verified using Ti–6Al–4V single track deposition, produced with a coaxial nozzle and a diode laser. The model predictions of local temperature history, the track profile and microstructure scale show good agreement with the experimental results. The model is a useful industrial aid and alternative to finite element methods for selecting the parameters to use for laser direct metal deposition when separate geometric and microstructural outcomes are required

  15. Osseointegration of KrF laser hydroxylapatite films on Ti6A14V alloy by mini-pigs: loaded osseointegration of dental implants

    Science.gov (United States)

    Dostalova, Tatjana; Jelinek, Miroslav; Himmlova, Lucia; Grivas, Christos

    1999-05-01

    Aim of study was to evaluate osseointegration of the KrF laser hydroxyapatite coated titanium alloy Ti6Al4V dental implants. For deposition KrF excimer laser in stainless- steel deposition chamber was used. Thickness of HA films were round 1 μm . Mini-pigs were used in this investigation. Implants were placed vertically into the lower jaw. After 14 weeks unloaded osseointegration the metal ceramic crowns were inserted. the experimental animals were sacrificed (1 year post insertion). The vertical position of implants was controlled with a radiograph. Microscopical sections were cut and ground. Sections were viewed using microscope with CCD camera. 1 year osseointegration in lower jaw confirmed by all implants presence of newly formed bone around the all implants. Laser-deposited coating the layer of fibrous connective tissue was seen only seldom. In the control group (titamium implant without cover) the fibrous connective tissue was seen between implant and newly formed bone.

  16. The role of transverse speed on deposition height and material efficiency in laser deposited titanium alloy

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-03-01

    Full Text Available The most commonly used aerospace titanium alloy, Ti6Al4V, was deposited on Ti6Al4V plate of dimension 72 x 72 x5mm. The laser power of 3 kW, powder flow rate of 1.44 g/min and gas flow rate of 4 l/min were used throughout the deposition process...

  17. Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles.

    Science.gov (United States)

    Campi, G; Cristofaro, F; Pani, G; Fratini, M; Pascucci, B; Corsetto, P A; Weinhausen, B; Cedola, A; Rizzo, A M; Visai, L; Rea, G

    2017-11-16

    The mineralization process is crucial to the load-bearing characteristics of the bone extracellular matrix. In this work, we have studied the spatiotemporal dynamics of mineral deposition by human bone marrow mesenchymal stem cells differentiating toward osteoblasts promoted by the presence of exogenous hydroxyapatite nanoparticles. At the molecular level, the added nanoparticles positively modulated the expression of bone-specific markers and enhanced calcified matrix deposition during osteogenic differentiation. The nucleation, growth and spatial arrangement of newly deposited hydroxyapatite nanocrystals have been evaluated using scanning micro X-ray diffraction and scanning micro X-ray fluorescence. As leading results, we have found the emergence of a complex scenario where the spatial organization and temporal evolution of the process exhibit heterogeneous and self-organizing dynamics. At the same time the possibility of controlling the differentiation kinetics, through the addition of synthetic nanoparticles, paves the way to empower the generation of more structured bone scaffolds in tissue engineering and to design new drugs in regenerative medicine.

  18. Sub-monolayer Deposited InGaAs/GaAs Quantum Dot Heterostructures and Lasers

    DEFF Research Database (Denmark)

    Xu, Zhangcheng

    2004-01-01

    deposition, the deposition of a short-period InAs/GaAs superlattice on GaAs (100) surface with an InAs effective thickness of less than 1 monolayer (ML), results in the formatioin of nanometer scale (In,Ga)As QDs of a non-SK class.In this thesis, the SML InGaAs/GaAs QDs are formed by 10 cycles of alternate......The fabrication, characterization and exploitation of self-assembled quantum dot (QD) heterostructures have attracted much attention not only in basic research, but also by the promising device applications such as QD lasers. The Stranski-Krastanow (SK) growth and the submonolayer (SML) deposition...... deposition of 0.5 ML InAs and 2.5 MLGaAs. The growth, structure, and optical properties of SML InGaAs/GaAs QD heterostructures are investigated in detail. SML InGaAs/GaAs QD lasers lasing even at room temperature have been successfully realized. The gain properties of SML InGaAs QD lasers are studied...

  19. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

    International Nuclear Information System (INIS)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-01-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca 10−x Mg x (PO 4 ) 6 (OH) 2 ) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti 1−x ,Mg x )N (x = 0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. - Highlights: • Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase • Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation • (Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF

  20. Pulsed-laser deposited ZnO for device applications

    NARCIS (Netherlands)

    King, S.L.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    The study investigates the growth by pulsed-laser deposition (PLD) of ZnO thin films for the eventual incorporation into piezo-electric actuators and other sensors being developed at the University of Twente. All films are purely c-axis oriented, and results are presented which suggest the

  1. Bone Repair on Fractures Treated with Osteosynthesis, ir Laser, Bone Graft and Guided Bone Regeneration: Histomorfometric Study

    Science.gov (United States)

    dos Santos Aciole, Jouber Mateus; dos Santos Aciole, Gilberth Tadeu; Soares, Luiz Guilherme Pinheiro; Barbosa, Artur Felipe Santos; Santos, Jean Nunes; Pinheiro, Antonio Luiz Barbosa

    2011-08-01

    The aim of this study was to evaluate, through the analysis of histomorfometric, the repair of complete tibial fracture in rabbits fixed with osteosynthesis, treated or not with infrared laser light (λ780 nm, 50 mW, CW) associated or not to the use of hydroxyapatite and guided bone regeneration (GBR). Surgical fractures were created, under general anesthesia (Ketamina 0,4 ml/Kg IP and Xilazina 0,2 ml/Kg IP), on the dorsum of 15 Oryctolagus rabbits that were divided into 5 groups and maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet and had water ad libidum. On groups II, III, IV and V the fracture was fixed with wire osteosynthesis. Animals of groups III and V were grafted with hydroxyapatite and GBR technique used. Animals of groups IV and V were irradiated at every other day during two weeks (16 J/cm2, 4×4 J/cm2). Observation time was that of 30 days. After animal death (overdose of general anesthetics) the specimes were routinely processed to wax and underwent histological analysis by light microscopy. The histomorfometric analysis showed an increased bone neoformation, increased collagen deposition, less reabsorption and inflammation when laser was associated to the HATCP. It is concluded that IR laser light was able to accelerate fracture healing and the association with HATCP and GBR resulted on increased deposition of CHA.

  2. Microstructural control during direct laser deposition of a β-titanium alloy

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Ravi, G.A.; Attallah, Moataz M.

    2015-01-01

    Graphical abstract: Microstructural development of Ti5553 during Direct Laser Deposition (DLD). - Highlights: • Good structural and geometrical integrity could be achieved by process design. • Build height increases with decreased scanning speed and increased powder flow rate. • Keeping Z increment close to actual layer thickness is crucial for consistent building. • The laser deposited Ti5553 are dominated by mixed columnar and equiaxed grains. • In situ dwelling and annealing promote α precipitation which improves microhardness. - Abstract: A concern associated with Direct Laser Deposition (DLD) is the difficulty in controlling microstructure due to rapid cooling rates after deposition, particularly in beta-Ti alloys. In these alloys, the beta-phase is likely to exist following DLD, instead of the desirable duplex alpha + beta microstructure that gives a good balance of properties. Thus, in this work, a parametric study was performed to assess the role of DLD parameters on porosity, build geometry, and microstructure in a beta-Ti alloy, Ti–5Al–5Mo–5V–3Cr (Ti5553). The builds were examined using optical microscopy, scanning electron microscopy, and X-ray diffraction. Microhardness measurements were performed to assess the degree of re-precipitation of alpha-phase following an in situ dwelling and laser annealing procedure. The study identified several processing conditions that enable deposition of samples with the desired geometry and low porosity level. The microstructure was dominated by beta-phase, except for the region near the substrate where a limited amount of alpha-precipitates was present due to reheating effect. Although the microstructure was a mixture of equiaxed and columnar beta-grains alongside infrequent fine alpha-precipitates, the builds showed fairly uniform microhardness in different regions. In situ dwelling and annealing did not cause an obvious change in porosity, but did promote the formation of alpha-precipitates

  3. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting.

    Science.gov (United States)

    Shuai, Cijun; Zhou, Yuanzhuo; Yang, Youwen; Feng, Pei; Liu, Long; He, Chongxian; Zhao, Mingchun; Yang, Sheng; Gao, Chengde; Wu, Ping

    2017-03-17

    Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA) was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  4. The hardness of the hydroxyapatite-titania bilayer coatings by microindentation and nanoindentation testing

    Science.gov (United States)

    SIDANE, Djahida; KHIREDDINE, Hafit; YALA, Sabeha

    2017-12-01

    The aim of this paper is to investigate the effect of the addition of titania (TiO2) inner-layer on the morphological and mechanical properties of hydroxyapatite (HAP) bioceramic coatings deposited on 316L stainless steel (316L SS) by sol-gel method in order to improve the properties of hydroxyapatite and expand its clinical application. The addition of TiO2 as sublayer of a hydroxyapatite coating results in changes in surface morphology as well as an increase of the microhardness. The deposition of the inner-layer provides the formation of new types of hydroxyapatite coatings at the same condition of annealing. This represents an advantage for the various applications of the hydroxyapatite bioceramic in the medical field. Classical hardness measurements conducted on the coated systems under the same indentation load (10g) indicated that the microhardness of the HAP coating is improved by the addition of TiO2 inner-layer on the 316L stainless steel substrate. The hardness values obtained from both classical tests in microindentation and the continuous stiffness measurement mode in nanoindentation are slightly different. This is because nanoindentation is more sensitive to the surface roughness and the influence of defects that could be present into the material. Moreover, nanoindentation is the most useful method to separate the contribution of each layer in the bilayer coatings. In this study, the hardness is comparable with those reported previously for pure HAP ceramics (1.0-5.5 GPa) which are close to the properties of natural teeth.

  5. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    International Nuclear Information System (INIS)

    Krumov, E.; Starbov, N.; Starbova, K.; Perea, A.; Solis, J.

    2009-01-01

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO 2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO 2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO 2 based thin film catalysts is discussed.

  6. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  7. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  8. Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite

    DEFF Research Database (Denmark)

    Bang, L T; Long, B D; Othman, R

    2014-01-01

    The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier......(3-)) site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap...

  9. Pulsed laser deposition of high Tc superconducting thin films

    International Nuclear Information System (INIS)

    Singh, R.K.; Narayan, J.

    1990-01-01

    This paper reports on the pulsed laser evaporation (PLE) technique for deposition of thin films characterized by a number of unique properties. Based on the experimental characteristics, a theoretical model is developed which considers the formation and anisotropic three dimensional expansion of the laser generated plasma. This model explains most of the experimental features observed in PLE. We have also employed the PLE technique for in-situ fabrication of YBa 2 Cu 3 O 7 superconducting thin films on different substrates in the temperature range of 500--650 degrees C. At temperatures below 600 degrees C, a biased interposing ring between the substrate and the target was found to significantly improve the superconducting properties. The minimum ion channeling yields were between 3--3.5% for films deposited on (100) SrTiO 3 and (100) LaAlO 3 substrates

  10. Femtosecond laser ablation of enamel

    Science.gov (United States)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  11. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    Energy Technology Data Exchange (ETDEWEB)

    Strąkowska, Paulina [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Beutner, René [Max Bergmann Center, Technische Universität Dresden (Germany); Gnyba, Marcin [Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Zielinski, Andrzej [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Scharnweber, Dieter, E-mail: Dieter.Scharnweber@tu-dresden.de [Max Bergmann Center, Technische Universität Dresden (Germany)

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  12. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    International Nuclear Information System (INIS)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-01-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  13. Parameters nanodimensional zinc films deposited by the laser method in vacuum

    International Nuclear Information System (INIS)

    Goncharov, V.K.; Gusakov, G.A.; Puzyrev, M.V.

    2013-01-01

    The investigation of the thickness and structure of a zinc films surface produced by the laser-plasma deposition has been carried out. The dependence of a film thickness and surface structure from laser radiation intensity has been determined. Threshold intensity has been determined when an evaporation of a target material begins. (authors)

  14. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Palla-Papavlu, A., E-mail: apalla@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania); Rusen, L.; Dinca, V.; Filipescu, M. [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania); Lippert, T. [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen PSI (Switzerland); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, Magurele, RO-077125 Bucharest (Romania)

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm{sup 2} the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  15. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    Science.gov (United States)

    Palla-Papavlu, A.; Rusen, L.; Dinca, V.; Filipescu, M.; Lippert, T.; Dinescu, M.

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm2 the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  16. Growth of superconducting MgB2 films by pulsed-laser deposition using a Nd-YAG laser

    International Nuclear Information System (INIS)

    Badica, P; Togano, K; Awaji, S; Watanabe, K

    2006-01-01

    Thin films of MgB 2 on r-cut Al 2 O 3 substrates have been grown by pulsed-laser deposition (PLD) using a Nd-YAG laser (fourth harmonic-266 nm) instead of the popular KrF excimer laser. The growth window to obtain superconducting films is laser energy 350-450 mJ and vacuum pressure with Ar-buffer gas of 1-8/10 Pa (initial background vacuum 0.5-1 x 10 -3 Pa). Films were deposited at room temperature and post-annealed in situ and ex situ at temperatures of 500-780 0 C and up to 1 h. Films are randomly oriented with maximum critical temperature (offset of resistive transition) of 27 K. SEM/TEM/EDS investigations show that they are mainly composed of small sphere-like particles (≤20 nm), and contain oxygen and some carbon, uniformly distributed in the flat matrix, but the amount of Mg and/or oxygen is higher in the aggregates-droplets (100-1000 nm) observed on the surface of the film's matrix. Some aspects of the processing control and dependences on film characteristics are discussed. The technique is promising for future development of coated conductors

  17. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Teghil, R; De Bonis, A; Galasso, A; Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P

    2008-01-01

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  18. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability

    International Nuclear Information System (INIS)

    Dinda, G.P.; Dasgupta, A.K.; Mazumder, J.

    2009-01-01

    Direct metal deposition technology is an emerging laser aided manufacturing technology based on a new additive manufacturing principle, which combines laser cladding with rapid prototyping into a solid freeform fabrication process that can be used to manufacture near net shape components from their CAD files. In the present study, direct metal deposition technology was successfully used to fabricate a series of samples of the Ni-based superalloy Inconel 625. A high power CO 2 laser was used to create a molten pool on the Inconel 625 substrate into which an Inconel 625 powder stream was delivered to create a 3D object. The structure and properties of the deposits were investigated using optical and scanning electron microscopy, X-ray diffraction and microhardness test. The microstructure has been found to be columnar dendritic in nature, which grew epitaxially from the substrate. The thermal stability of the dendritic morphology was investigated in the temperature range 800-1200 deg. C. These studies demonstrate that Inconel 625 is an attractive material for laser deposition as all samples produced in this study are free from relevant defects such as cracks, bonding error and porosity.

  19. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, G.P., E-mail: dindag@focushope.edu [Center for Advanced Technologies, Focus: HOPE, Detroit, MI 48238 (United States); Center for Laser Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI 48109 (United States); Dasgupta, A.K. [Center for Advanced Technologies, Focus: HOPE, Detroit, MI 48238 (United States); Mazumder, J. [Center for Laser Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI 48109 (United States)

    2009-05-25

    Direct metal deposition technology is an emerging laser aided manufacturing technology based on a new additive manufacturing principle, which combines laser cladding with rapid prototyping into a solid freeform fabrication process that can be used to manufacture near net shape components from their CAD files. In the present study, direct metal deposition technology was successfully used to fabricate a series of samples of the Ni-based superalloy Inconel 625. A high power CO{sub 2} laser was used to create a molten pool on the Inconel 625 substrate into which an Inconel 625 powder stream was delivered to create a 3D object. The structure and properties of the deposits were investigated using optical and scanning electron microscopy, X-ray diffraction and microhardness test. The microstructure has been found to be columnar dendritic in nature, which grew epitaxially from the substrate. The thermal stability of the dendritic morphology was investigated in the temperature range 800-1200 deg. C. These studies demonstrate that Inconel 625 is an attractive material for laser deposition as all samples produced in this study are free from relevant defects such as cracks, bonding error and porosity.

  20. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique.

    Science.gov (United States)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-10-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca10-xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1-x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. © 2013.

  1. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    International Nuclear Information System (INIS)

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-01-01

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells

  2. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    International Nuclear Information System (INIS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-01-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants

  3. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  4. Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages.

    Science.gov (United States)

    Nadra, Imad; Boccaccini, Aldo R; Philippidis, Pandelis; Whelan, Linda C; McCarthy, Geraldine M; Haskard, Dorian O; Landis, R Clive

    2008-01-01

    Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.

  5. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    International Nuclear Information System (INIS)

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-01-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy

  6. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Siraj, K., E-mail: khurram.uet@gmail.com [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z. [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Naseem, S.; Riaz, S. [Center for Solid State Physics, University of Punjab, Lahore (Pakistan)

    2011-05-15

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  7. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    International Nuclear Information System (INIS)

    Siraj, K.; Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z.; Naseem, S.; Riaz, S.

    2011-01-01

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  8. Effect of Laser Power and Gas Flow Rate on Properties of Directed Energy Deposition of Titanium Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.

    2018-03-01

    Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.

  9. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    Science.gov (United States)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  10. Laser deposition of coatings for aeronautical and industrials turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Teleginski, V. [Instituto Federal de Sao Paulo (IFSP), SP (Brazil); Silva, S.A.; Riva, R.; Vasconcelos, G. [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil); Silva Pita, G.R. [Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Yamin, L.S. [Escola Tecnica Everardo Passos (ETEP), Sao Jose dos Campos, DP (Brazil)

    2016-07-01

    Full text: Zirconium-based ceramic materials are widely employed as Thermal Barrier Coatings (TBC), due to its excellent wear and corrosion resistance at high temperatures. The application of TBC includes aeronautical and industrials turbine blades. The working conditions include oxidizing environments and temperatures above 1000°C. The zirconium-based ceramics are developed in such a way that the microstructural control is possible through the control of chemical composition, fabrication route and, thermal treatment. The present paper proposes a laser route to deposit the TBC coating, where the microstructural control is a function of power density and interaction time between the laser beam and the material. The main objective of this work is to study the influence of the CO2 laser beam (Synrad Evolution 125) parameters: power density and interaction time, on the deposition process of yttria-stabilized zirconia (YSZ) powders on NiCrAlY/AISI 316L substrates. The resulting coating surface and interface were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results indicate that is possible to match laser parameters of scanning speed and intensity to produce homogenous coatings. The X-Ray analyses show that the obtained ceramic coating has reduced number of phases, with prevalence of tetragonal phase.(author)

  11. Distinct crystallinity and orientations of hydroxyapatite thin films deposited on C- and A-plane sapphire substrates

    Science.gov (United States)

    Akazawa, Housei; Ueno, Yuko

    2014-10-01

    We report how the crystallinity and orientation of hydroxyapatite (HAp) films deposited on sapphire substrates depend on the crystallographic planes. Both solid-phase crystallization of amorphous HAp films and crystallization during sputter deposition at elevated temperatures were examined. The low-temperature epitaxial phase on C-plane sapphire substrates has c-axis orientated HAp crystals regardless of the crystallization route, whereas the preferred orientation switches to the (310) direction at higher temperatures. Only the symmetric stretching mode (ν1) of PO43- units appears in the Raman scattering spectra, confirming well-ordered crystalline domains. In contrast, HAp crystals grown on A-plane sapphire substrates are always oriented toward random orientations. Exhibiting all vibrational modes (ν1, ν3, and ν4) of PO43- units in the Raman scattering spectra reflects random orientation, violating the Raman selection rule. If we assume that Raman intensities of PO43- units represent the crystallinity of HAp films, crystallization terminating the surface with the C-plane is hindered by the presence of excess H2O and OH species in the film, whereas crystallization at random orientations on the A-plane sapphire is rather promoted by these species. Such contrasting behaviors between C-plane and A-plane substrates will reflect surface-plane dependent creation of crystalline seeds and eventually determine the orientation of resulting HAp films.

  12. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  13. Influence of laser pulse frequency on the microstructure of aluminum nitride thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, K., E-mail: krasa@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Anastasescu, M.; Stroescu, H.; Gartner, M. [Institute of Physical Chemistry, “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2017-02-01

    Highlights: • Study of pulsed laser deposited AlN films at different laser pulse frequencies. • Higher laser pulse frequency promotes nanocrystallites formation at temperature 450 °C. • AFM and GIXRD detect randomly oriented wurtzite AlN structures. • Characterization of the nanocrystallites’ orientation by FTIR reflectance spectra. • Berreman effect is registered in p-polarised radiation at large incidence angles. - Abstract: Aluminum Nitride (AlN) thin films were synthesized on Si (100) wafers at 450 °C by pulsed laser deposition. A polycrystalline AlN target was multipulsed irradiated in a nitrogen ambient, at different laser pulse repetition rate. Grazing Incidence X-Ray Diffraction and Atomic Force Microscopy analyses evidenced nanocrystallites with a hexagonal lattice in the amorphous AlN matrix. The thickness and optical constants of the layers were determined by infrared spectroscopic ellipsometry. The optical properties were studied by Fourier Transform Infrared reflectance spectroscopy in polarised oblique incidence radiation. Berreman effect was observed around the longitudinal phonon modes of the crystalline AlN component. Angular dependence of the A{sub 1}LO mode frequency was analysed and connected to the orientation of the particles’ optical axis to the substrate surface normal. The role of the laser pulse frequency on the layers’ properties is discussed on this basis.

  14. In vitro deposition of hydroxyapatite on cortical bone collagen stimulated by deformation-induced piezoelectricity.

    Science.gov (United States)

    Noris-Suárez, Karem; Lira-Olivares, Joaquin; Ferreira, Ana Marina; Feijoo, José Luis; Suárez, Nery; Hernández, Maria C; Barrios, Esteban

    2007-03-01

    In the present work, we have studied the effect of the piezoelectricity of elastically deformed cortical bone collagen on surface using a biomimetic approach. The mineralization process induced as a consequence of the piezoelectricity effect was evaluated using scanning electron microscopy (SEM), thermally stimulated depolarization current (TSDC), and differential scanning calorimetry (DSC). SEM micrographs showed that mineralization occurred predominantly over the compressed side of bone collagen, due to the effect of piezoelectricity, when the sample was immersed in the simulated body fluid (SBF) in a cell-free system. The TSDC method was used to examine the complex collagen dielectric response. The dielectric spectra of deformed and undeformed collagen samples with different hydration levels were compared and correlated with the mineralization process followed by SEM. The dielectric measurements showed that the mineralization induced significant changes in the dielectric spectra of the deformed sample. DSC and TSDC results demonstrated a reduction of the collagen glass transition as the mineralization process advanced. The combined use of SEM, TSDC, and DSC showed that, even without osteoblasts present, the piezoelectric dipoles produced by deformed collagen can produce the precipitation of hydroxyapatite by electrochemical means, without a catalytic converter as occurs in classical biomimetic deposition.

  15. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  16. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Science.gov (United States)

    Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.

    2015-11-01

    Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  17. Coating of Bio-mimetic Minerals-Substituted Hydroxyapatite on Surgical Grade Stainless Steel 316L by Electrophoretic Deposition for Hard tissue Applications

    Science.gov (United States)

    Govindaraj, Dharman; Rajan, Mariappan

    2018-02-01

    Third-era bio-implant materials intend to empower particular live cell reactions at the atomic level, these materials represented with a resorbable and biocompatibility that bodies recuperate once they have been embedded. Necessitate to decrease expenses in public health services has required the utilization of surgical grade stainless steel (SS 316L) as the most inexpensive choice for orthodontic and orthopaedic implants. 316L SS is one of the broadly used implant biomaterials in orthodontic and orthopaedic surgeries. Yet, frequently those discharge for toxic metal ions is confirm from the implants and hence a second surgery is required will remove those implant material. One approach to managing the discharge of toxic metal ions is to coat the implant substance with bio-mimetic minerals in hydroxyapatite (HA). Bio-mimetic minerals such as magnesium (Mg), strontium (Sr), also zinc (Zn) were revealed with animate bone growth furthermore restrain bone resorption both in vitro and in vivo. The present work deals with the electrophoretic deposition (EPD) for multi minerals substituted hydroxyapatite (M-HA) on the surface treated 316L SS under distinctive temperatures (27°C, (room temperature), 60 and 80°C). The resultant coatings were characterized by FT-IR, XRD, SEM-EDX, adhesion strength and leach out analysis.

  18. Ablation in teeth with the free-electron laser around the absorption peak of hydroxyapatite (9.5 μm) and between 6.0 and 7.5 μm

    Science.gov (United States)

    Ostertag, Manfred; Walker, Rudolf; Weber, Heiner; van der Meer, Lex; McKinley, Jim T.; Tolk, Norman H.; Jean, Benedikt J.

    1996-04-01

    Pulsed IR laser ablation on dental hard substances was studied in the wavelength range between 9.5 and 11.5 micrometers with the Free-Electron Laser (FEL) in Nieuwegein/NL and between 6.0 and 7.5 micrometers with the FEL at Vanderbilt University in Nashville/TN. Depth, diameter and volume of the ablation crater were determined with a special silicon replica method and subsequent confocal laser topometry. The irradiated surfaces and the ejected debris were examined with an SEM 9.5 - 11.5 micrometers : depth, diameter and volume of the ablation crater are greater and the ablation threshold is lower for ablation with a wavelength corresponding to the absorption max. of hydroxyapatite (9.5 micrometers ), compared to ablation at wavelengths with lower absorption (10.5 - 11.5 micrometers ). For all wavelengths, no thermal cracking can be observed after ablation in dentine, however a small amount of thermal cracking can be observed after ablation in enamel. After ablation at 9.5 micrometers , a few droplets of solidified melt were seen on the irradiated areas, whereas the debris consisted only of solidified melt. In contrast, the surface and the debris obtained from ablation using the other wavelengths showed the natural structure of dentine 6.0 - 7.5 micrometers : the depth of the ablation crater increases and the ablation threshold decreases for an increasing absorption coefficient of the target material. Different tissue components absorbed the laser radiation of different wavelengths (around 6.0 micrometers water and collagen, 6.5 micrometers collagen and water, 7.0 micrometers carbonated hydroxyapatite). Nevertheless the results have shown no major influence on the primary tissue absorber.

  19. Microstructure of pulsed-laser deposited PZT on polished and annealed MGO substrates

    NARCIS (Netherlands)

    King, S.L.; Coccia, L.G.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    Thin films of Lead-Zirconate-Titanate (PZT) have been grown by pulsed-laser-deposition (PLD) onto polished MgO substrates both with and without pre-annealing. The surface morphology of polished MgO substrates, which are widely used for deposition, is examined by AFM. Commercially available,

  20. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    International Nuclear Information System (INIS)

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  1. Parameters of nanodimensional aluminium films deposited by the laser method in vacuum

    International Nuclear Information System (INIS)

    Gusakov, G.A.; Ismailov, D.R.; Puzyrev, M.V.

    2011-01-01

    The investigation of the thickness and structure of a aluminium films surface produced by the laser-plasma deposition has been carried out. The dependence of a film thickness from laser radiation intensity has been determined. Threshold intensity has been determined when an evaporation of a target material begins. (authors)

  2. Kinetics of hydroxyapatite deposition on solid substrates modified by sequential implantation of Ca and P ions - Part I. FTIR and Raman spectroscopy study

    Science.gov (United States)

    Pecheva, Emilia V.; Pramatarova, Liliana D.; Maitz, Manfred F.; Pham, Mihn T.; Kondyuirin, Alexey V.

    2004-07-01

    In this work, the kinetics of hydroxyapatite (HA) deposition on solid substrates from liquid precursor (simulated body fluid, SBF) is investigated. The surfaces of stainless steel, silicon and silica glass substrates are modified by sequential implantation of Ca and P ions. Three groups of samples of each material: (i) ion-implanted; (ii) ion-implanted and thermally treated at 873 K in air for 60 min; and (iii) untreated are prepared. To investigate the kinetics of the HA deposition, all three groups of samples are introduced at equal conditions into SBF whose supersaturation is maintained during the whole 6-day period of immersion. The layers are analyzed by FTIR and Raman spectroscopy. Both techniques complement each other and show the formation of HA with incorporated CO 32- and HPO 42- groups. Following the kinetics of the deposition process, it is concluded that the speed of deposition is different on the three materials modified by Ca and P implantation and by oxidation, compared to untreated samples but in order to distinguish clearly the effect of the ion implantation and oxidation the very initial moment of nucleation and layer growth should be more carefully investigated.

  3. Obtaining hydroxyapatite coatings on titanium by the biomimetic method

    International Nuclear Information System (INIS)

    Paz, A.; Martin, Y.; Pazos, L. M.; Parodi, M. B.; Ybarra, G. O.; Gonzalez, J. E.

    2011-01-01

    In this work, a study about the deposition of hydroxyapatite on a titanium substrate employing the biomimetic method is presented. A solution with high content of calcium and phosphorus (SCS) was used. In addition, activation of titanium with hydrogen peroxide and hydrochloric acid and a subsequent heat treatment was performed. The characterization of materials used and the coating obtained was carried out by Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). As a result of the activation processes a hydrated titanium oxide was formed. On the active surface, a coating of hydroxyapatite was obtained after a period of 24 h, which has a thickness of about 2-4 μm. (Author) 21 refs.

  4. CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results.

    Science.gov (United States)

    Ciocca, Leonardo; Donati, Davide; Fantini, Massimiliano; Landi, Elena; Piattelli, Adriano; Iezzi, Giovanna; Tampieri, Anna; Spadari, Alessandro; Romagnoli, Noemi; Scotti, Roberto

    2013-08-01

    In this study, rapid CAD-CAM prototyping of pure hydroxyapatite to replace temporomandibular joint condyles was tested in sheep. Three adult animals were implanted with CAD-CAM-designed porous hydroxyapatite scaffolds as condyle substitutes. The desired scaffold shape was achieved by subtractive automated milling machining (block reduction). Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Using the same technique, fixation plates were created and applied to the scaffold pre-operatively to firmly secure the condyles to the bone and to assure primary stability of the hydroxyapatite scaffolds during masticatory function. Four months post-surgery, the sheep were sacrificed. The hydroxyapatite scaffolds were explanted, and histological specimens were prepared. Different histological tissues penetrating the scaffold macropores, the sequence of bone remodeling, new apposition of bone and/or cartilage as a consequence of the different functional anatomic role, and osseointegration at the interface between the scaffold and bone were documented. This animal model was found to be appropriate for testing CAD-CAM customization and the biomechanical properties of porous, pure hydroxyapatite scaffolds used as joint prostheses.

  5. Local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator for three-dimensional microfabrication

    Science.gov (United States)

    Matsuura, Toshiki; Takai, Takanari; Iwata, Futoshi

    2017-10-01

    We describe a novel three-dimensional fabrication technique using local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator (SLM). In a solution containing nanometer-scale colloidal Au particles, multiple laser spots formed on a conductive substrate by the SLM gathered the nanoparticles together, and then the nanoparticles were electrophoretically deposited onto the substrate by an applied electrical field. However, undesirable sub-spots often appeared due to optical interference from the multiple laser spots, which deteriorated the accuracy of the deposition. To avoid the appearance of undesirable sub-spots, we proposed a method using quasi-multiple spots, which we realized by switching the position of a single spot briefly using the SLM. The method allowed us to deposit multiple dots on the substrate without undesirable sub-dot deposition. By moving the substrate downward during deposition, multiple micro-pillar structures could be fabricated. As a fabrication property, the dependence of the pillar diameter on laser intensity was investigated by changing the number of laser spots. The smallest diameter of the four pillars fabricated in this study was 920 nm at the laser intensity of 2.5 mW. To demonstrate the effectiveness of the method, multiple spiral structures were fabricated. Quadruple spirals of 46 µm in height were successfully fabricated with a growth rate of 0.21 µm/s using 2200 frames of the CGH patterns displayed in the SLM at a frame rate of 10 fps.

  6. Direct Patterning of Oxides by Pulsed Laser Stencil Deposition

    NARCIS (Netherlands)

    te Riele, P.M.

    2008-01-01

    This thesis describes a detailed study of the application of stencil technology in the patterning of epitaxial oxide thin films by pulsed laser deposition (PLD). Stencil patterning has been applied in thin film sub-micron patterning of metals successfully for decades since it has several advantages

  7. Production of calcium phosphate coating by laser ablation for biomedical applications

    International Nuclear Information System (INIS)

    Mayor, M.B.; Arias, J.L.; Garcia-Sanz, F.J.; Pou, J.; Leon, B.; Perez-Amor, M.

    1998-01-01

    Apatitic calcium phosphates are used as coating to improve the fixation of orthopaedic and dental implants. The commercial technique to produce these coatings (plasma-spray) shows some problems of adherence and control of their physicochemical properties. In this communication laser ablation is presented as a solution to overcome these problems. The ablation system consists in a vacuum chamber filled with water vapour up to the desired pressure. The laser beam of an ArF excimer laser is focused on a hydroxyapatite target, and the coating is deposited on a substrate parallel to the target maintained at certain temperature. The physicochemical properties of the material were analysed by Fourier transformed infrared spectroscopy (FT-IR) X ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X ray spectroscopy (EDX). Taking into account these results, two types of coatings were choose to asses their bio compatibility in vitro. (Author) 15 refs

  8. Low-temperature processed ZnO and CdS photodetectors deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Moreno, S; Mejia, I; Quevedo-Lopez, M A

    2014-01-01

    UV-VIS photodetectors using an interdigital configuration, with zinc oxide (ZnO) and cadmium sulfide (CdS) semiconductors deposited by pulsed laser deposition, were fabricated with a maximum processing temperature of 100 °C. Without any further post-growth annealing, the photodetectors are compatible with flexible and transparent substrates. Aluminum (Al) and indium tin oxide (ITO) were investigated as contacts. Focusing on underwater communications, the impact of metal contact (ITO versus Al) was investigated to determine the maximum responsivity using a laser with a 405 nm wavelength. As expected, the responsivity increases for reduced metal finger separation. This is a consequence of reduced carrier transit time for shorter finger separation. For ITO, the highest responsivities for both films (ZnO and CdS) were ∼3 A W −1 at 5 V. On the other hand, for Al contacts, the maximum responsivities at 5 V were ∼0.1 A W −1 and 0.7 A W −1 for CdS and ZnO, respectively. (paper)

  9. Material efficiency of laser metal deposited Ti6Al4V: Effect of laser power

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-02-01

    Full Text Available The economy of using Laser Metal Deposition (LMD) process in the manufacturing of aerospace parts depends on the right processing parameters. LMD is an additive manufacturing technology capable of producing complex parts directly from the CAD model...

  10. Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Cijun Shuai

    2017-03-01

    Full Text Available Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials.

  11. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Tougaard, S.

    2002-01-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced...

  12. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite

    International Nuclear Information System (INIS)

    Catros, Sylvain; Fricain, Jean-Christophe; Guillotin, Bertrand; Pippenger, Benjamin; Bareille, Reine; Remy, Murielle; Amedee, Joelle; Guillemot, Fabien; Lebraud, Eric; Desbat, Bernard

    2011-01-01

    Developing tools to reproduce and manipulate the cell micro-environment, including the location and shape of cell patterns, is essential for tissue engineering. Parallel to inkjet printing and pressure-operated mechanical extruders, laser-assisted bioprinting (LAB) has emerged as an alternative technology to fabricate two- and three-dimensional tissue engineering products. The objective of this work was to determine laser printing parameters for patterning and assembling nano-hydroxyapatite (nHA) and human osteoprogenitors (HOPs) in two and three dimensions with LAB. The LAB workstation used in this study comprised an infrared laser focused on a quartz ribbon that was coated with a thin absorbing layer of titanium and a layer of bioink. The scanning system, quartz ribbon and substrate were piloted by dedicated software, allowing the sequential printing of different biological materials into two and/or three dimensions. nHA printing material (bioink) was synthesized by chemical precipitation and was characterized prior and following printing using transmission electron microscopy, Fourier transformed infrared spectroscopy and x-ray diffraction. HOP bioink was prepared using a 30 million cells ml -1 suspension in culture medium and cells were characterized after printing using a Live/Dead assay and osteoblastic phenotype markers (alcaline phosphatase and osteocalcin). The results revealed that LAB allows printing and organizing nHA and HOPs in two and three dimensions. LAB did not alter the physico-chemical properties of nHA, nor the viability, proliferation and phenotype of HOPs over time (up to 15 days). This study has demonstrated that LAB is a relevant method for patterning nHA and osteoblastic cells in 2D, and is also adapted to the bio-fabrication of 3D composite materials.

  13. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Catros, Sylvain; Fricain, Jean-Christophe; Guillotin, Bertrand; Pippenger, Benjamin; Bareille, Reine; Remy, Murielle; Amedee, Joelle; Guillemot, Fabien [INSERM, U577, University Victor Segalen Bordeaux 2, Bordeaux F-33076 (France); Lebraud, Eric [CNRS, Universite de Bordeaux, I.C.M.C.B., 87 Avenue du Dr A. Schweitzer, 33608 Pessac Cedex (France); Desbat, Bernard, E-mail: sylvaincatros@hotmail.com [CBMN UMR-CNRS 5248, 2 rue Robert Escarpit, 33607 Pessac (France)

    2011-06-15

    Developing tools to reproduce and manipulate the cell micro-environment, including the location and shape of cell patterns, is essential for tissue engineering. Parallel to inkjet printing and pressure-operated mechanical extruders, laser-assisted bioprinting (LAB) has emerged as an alternative technology to fabricate two- and three-dimensional tissue engineering products. The objective of this work was to determine laser printing parameters for patterning and assembling nano-hydroxyapatite (nHA) and human osteoprogenitors (HOPs) in two and three dimensions with LAB. The LAB workstation used in this study comprised an infrared laser focused on a quartz ribbon that was coated with a thin absorbing layer of titanium and a layer of bioink. The scanning system, quartz ribbon and substrate were piloted by dedicated software, allowing the sequential printing of different biological materials into two and/or three dimensions. nHA printing material (bioink) was synthesized by chemical precipitation and was characterized prior and following printing using transmission electron microscopy, Fourier transformed infrared spectroscopy and x-ray diffraction. HOP bioink was prepared using a 30 million cells ml{sup -1} suspension in culture medium and cells were characterized after printing using a Live/Dead assay and osteoblastic phenotype markers (alcaline phosphatase and osteocalcin). The results revealed that LAB allows printing and organizing nHA and HOPs in two and three dimensions. LAB did not alter the physico-chemical properties of nHA, nor the viability, proliferation and phenotype of HOPs over time (up to 15 days). This study has demonstrated that LAB is a relevant method for patterning nHA and osteoblastic cells in 2D, and is also adapted to the bio-fabrication of 3D composite materials.

  14. Laser ablation studies of Deposited Silver Colloids Active in SERS

    International Nuclear Information System (INIS)

    La Porte, R.T.; Moreno, D.S.; Striano, M.C.; Munnoz, M.M.; Garcia-Ramos, J.V.; Cortes, S.S.; Koudoumas, E.

    2002-01-01

    Laser ablation of deposited silver colloids, active in SERS, is carried out at three different laser wavelengths (KrF, XeCl and Nd:YAG at λ = 248, 308 and 532 nm respectively). Emission form excited neutral Ag and Na atoms, present in the ablation plume, is detected with spectral and temporal resolution. The expansion velocity of Ag in the plume is estimated in ∼1x104m s-1, Low-fluence laser ablation of the colloids yields ionized species that are analyzed by time-of-flight mass spectroscopy. Na+ and Agn+(n≤3) are observed. Composition of the mass spectra and widths of the mass peaks are found to be dependent on laser wavelength, suggesting that the dominant ablation mechanisms are different at the different wavelenghts.

  15. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  16. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D., E-mail: doina.craciun@inflpr.ro [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Socol, G. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Lambers, E. [Major Analytical Instrumentation Center, College of Engineering, University of Florida, Gainesville, FL 32611 (United States); McCumiskey, E.J.; Taylor, C.R. [Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Martin, C. [Ramapo College of New Jersey (United States); Argibay, N. [Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, NM 87123 (United States); Tanner, D.B. [Physics Department, University of Florida, Gainesville, FL 32611 (United States); Craciun, V. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania)

    2015-10-15

    Highlights: • Nanocrystalline ZrC thin film were grown on Si by pulsed laser deposition technique. • Structural properties weakly depend on the CH{sub 4} pressure used during deposition. • The optimum deposition pressure for low resistivity is around 2 × 10{sup −5} mbar CH{sub 4}. • ZrC films exhibited friction coefficients around 0.4 and low wear rates. - Abstract: Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH{sub 4} pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH{sub 4} pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. Tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  17. Comparing nanostructured hydroxyapatite coating on AZ91 alloy samples via sol-gel and electrophoretic deposition for biomedical applications.

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2014-12-01

    Magnesium is one of the most critical elements in hard tissues regeneration and therefore causes speeding up the restoration of harmed bones, while high deterioration rate of magnesium in body fluid restricts it to be used as biodegradable implants. Alloying magnesium with some relatively nobler metals such as aluminium, zinc, rare earth elements, magnesium-bioceramics composites, and surface modification techniques are some of the routes to control magnesium corrosion rate. In this study AZ91 magnesium alloy had been coated by nanostructured hydroxyapatite via sol-gel dip coating and electrophoretical methods to survey the final barricade properties of the obtained coatings. In order to perform electrophoretic coating, powders were prepared by sol-gel method, and then the powders deposited on substrates utilizing direct current electricity. Zeta potentials of the electrophoresis suspensions were measured to determine a best mode for good quality coatings. Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) were used to confirm nanoscale dimension, and the uniformity of the nanostructured hydroxyapatite coating, respectively. Fourier Transform-Infrared and X-ray diffraction analysis were utilized for functional group and phase structure evaluation of the prepared coatings, correspondingly. Electrochemical corrosion tests were performed in SBF at 37±1 (°)C which revealed considerable increase in corrosion protection resistivity and corrosion current density for electrophoretic coated specimens versus sol-gel coated specimens. Results showed that both sol-gel and electrophoretical techniques seem to be suitable to coat magnesium alloys for biomedical applications but electrophoretic coating technique is a better choice due to the more homogeneity and more crystalline structure of the coating.

  18. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    Science.gov (United States)

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  19. Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films

    International Nuclear Information System (INIS)

    Lux, Robert; Heinrich, Andreas; Leitenmeier, Stephan; Koerner, Timo; Herbort, Michael; Stritzker, Bernd

    2006-01-01

    Magneto-optical garnets are attractive because of their high Faraday rotation and low optical loss in the near infrared. Therefore their use is generally in nonreciprocal devices, i.e., as optical isolators in optical communication. In this paper we present data concerning the deposition of Bi 3 Fe 5 O 12 (BIG) thin films on (100) and (111) Gd 3 Ga 5 O 12 substrates using pulsed-laser deposition. Laser-induced processes on the surface of the oxide target used for ablation were analyzed and numerous films were deposited. We found the BIG film quality to be strongly affected by oxygen pressure, laser energy density, and the Bi/Fe film ratio, whereas temperature had a minor influence. We also investigated the BIG-film deposition using a target pressed from metallic Bi and Fe powders and found information on the growth behavior of BIG. We report on details of the film deposition and film properties determined by environmental scanning electron microscopy, energy dispersive x-ray analysis, Rutherford backscattering spectroscopy, and x-ray diffraction. In addition, we determined the Faraday rotation of the films

  20. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application

    International Nuclear Information System (INIS)

    Lorusso, A.; Anni, M.; Caricato, A.P.; Gontad, F.; Perulli, A.; Taurino, A.; Perrone, A.; Chiadroni, E.

    2016-01-01

    In this work, yttrium (Y) thin films have been deposited on Si (100) substrates by the pulsed laser deposition technique. Ex-situ morphological, structural and optical characterisations of such films have been performed by scanning electron microscopy, X-ray diffractometry, atomic force microscopy and ellipsometry. Polycrystalline films with a thickness of 1.2 μm, homogenous with a root mean square roughness of about 2 nm, were obtained by optimised laser irradiation conditions. Despite the relatively high thickness, the films resulted very adherent to the substrates. The high quality of such thin films is important to the synthesis of metallic photocathodes based on Y thin film, which could be used as electron sources of high photoemission performance in radio-frequency guns. - Highlights: • Pulsed laser deposition of Yttrium thin films is investigated. • 1.2 μm thick films were deposited with very low RMS roughness. • The Y thin films were very adherent to the Si substrate • Optical characterisation showed a very high absorption coefficient for the films.

  1. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Anni, M. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Caricato, A.P. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Perulli, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Taurino, A. [National Research Council, Institute for Microelectronics & Microsystems, 73100 Lecce (Italy); Perrone, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy)

    2016-03-31

    In this work, yttrium (Y) thin films have been deposited on Si (100) substrates by the pulsed laser deposition technique. Ex-situ morphological, structural and optical characterisations of such films have been performed by scanning electron microscopy, X-ray diffractometry, atomic force microscopy and ellipsometry. Polycrystalline films with a thickness of 1.2 μm, homogenous with a root mean square roughness of about 2 nm, were obtained by optimised laser irradiation conditions. Despite the relatively high thickness, the films resulted very adherent to the substrates. The high quality of such thin films is important to the synthesis of metallic photocathodes based on Y thin film, which could be used as electron sources of high photoemission performance in radio-frequency guns. - Highlights: • Pulsed laser deposition of Yttrium thin films is investigated. • 1.2 μm thick films were deposited with very low RMS roughness. • The Y thin films were very adherent to the Si substrate • Optical characterisation showed a very high absorption coefficient for the films.

  2. Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings

    Science.gov (United States)

    Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.

    2010-01-01

    The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.

  3. Characterization of diamond thin films deposited by a CO{sub 2} laser-assisted combustion-flame method

    Energy Technology Data Exchange (ETDEWEB)

    McKindra, Travis, E-mail: mckindra@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Xie Zhiqiang; Lu Yongfeng [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2010-06-15

    Diamond thin films were deposited by a CO{sub 2} laser-assisted O{sub 2}/C{sub 2}H{sub 2}/C{sub 2}H{sub 4} combustion-flame process. The effect of the deposition parameters, in particular the laser wavelength and power, on the film surface morphology, microstructure and phases present was the primary focus of the work. The laser power was set at 100, 400 and 800 W while the wavelength was varied and set at 10.591 {mu}m in the untuned condition and set at 10.532 {mu}m to resonantly match the CH{sub 2}-wagging vibrational mode of the C{sub 2}H{sub 4} molecule when in the tuned condition. When the laser was coupled to the combustion flame during deposition the diamond film growth was enhanced as the lateral grain size increased from 1 {mu}m to greater than 5 {mu}m. The greatest increase in grain size occurred when the wavelength was in the tuned condition. Scanning transmission electron microscopy images from focused-ion beam cross-sectioned samples revealed a sub-layer of smaller grains less than 1 {mu}m in size near the substrate surface at the lower laser powers and untuned wavelength. X-ray diffraction results showed a more intense Diamond (111) peak as the laser power increased from 100 to 800 W for the films deposited with the tuned laser wavelength. Micro-Raman spectra showed a diamond peak nearly twice as intense from the films with the tuned laser wavelength.

  4. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    Science.gov (United States)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  5. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Surmeneva, Maria A. [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Surmenev, Roman A., E-mail: rsurmenev@gmail.com [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Nikonova, Yulia A.; Selezneva, Irina I. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142292 (Russian Federation); Ivanova, Anna A. [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Putlyaev, Valery I. [Department of Chemistry, Moscow State University, Vorobievi Gory, 1, Moscow 119991 (Russian Federation); Prymak, Oleg; Epple, Matthias [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany)

    2014-10-30

    Highlights: • Growth of a columnar grain structure perpendicular to the substrate surface was observed. • Interplanar spacing distances measured using HRTEM were 0.82 and 0.28 nm, corresponding to the (0 0 1) and (2 1 1) lattice planes of hexagonal HA. • Grain size and crystallinity increased when increasing the deposition time. • Nanometer-thick low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules. - Abstract: A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  6. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    Energy Technology Data Exchange (ETDEWEB)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A [Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ovsianikov, A; Chichkov, B N [Laser Zentrum Hannover, Hollerithallee 8, 30419 Hannover (Germany); Stafslien, S; Chisholm, B, E-mail: roger_narayan@msn.co [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States)

    2009-12-15

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  7. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    International Nuclear Information System (INIS)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A; Ovsianikov, A; Chichkov, B N; Stafslien, S; Chisholm, B

    2009-01-01

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  8. SiC.sub.x./sub. layers prepared by hybrid laser deposition and PLD

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Zemek, Josef; Kadlec, J.

    2009-01-01

    Roč. 6, S1 (2009), s. 5366-5369 ISSN 1612-8850 Institutional research plan: CEZ:AV0Z10100521 Keywords : SiC * composites * hybrid deposition * puls laser deposition * magnetron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.037, year: 2009

  9. Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO{sub 2} nanotube for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Li, Caixia [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-03-30

    Highlights: • Chitosan/silver-doped hydroxyapatite biocomposite coating was successfully deposited on anodized Ti by electrochemical deposition. • The chemical state of silver in the synthesized coatings was studied by XPS peak deconvolution. • The synthesized coatings have excellent antibacterial activity because of synergistic effect of the Ag and CS. • The CSAgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: A biocomposite coating containing chitosan, silver, and hydroxyapatite was developed on anodized titanium substrate by electrochemical deposition. Coatings were characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and polarisation studies. Results showed that the prepared coatings had compact and dense morphology with a thickness of 6.2 ± 0.7 μm and that silver was evenly distributed. Testing the prepared coatings with Gram-positive and Gram-negative bacterial strains exhibited antibacterial activity because of the synergistic effect of silver and chitosan. The prepared coatings were also found to be nontoxic to MC3T3-E1 cells. These results suggested that chitosan/silver-hydroxyapatite biocomposite coatings can prevent the bacterial infection of implants.

  10. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    Science.gov (United States)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2015-07-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.

  11. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W; Decker, Ulrich; Rauschenbach, Bernd

    2015-01-01

    Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ∼21% and 3–4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications. (paper)

  12. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  13. Roughness evolution in Ga doped ZnO films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liu Yunyan; Cheng Chuanfu; Yang Shanying; Song Hongsheng; Wei Gongxiang; Xue Chengshan; Wang Yongzai

    2011-01-01

    We analyze the morphology evolution of the Ga doped ZnO(GZO) films deposited on quartz substrates by a laser deposition system. The surface morphologies of the film samples grown with different times are measured by the atomic force microscope, and they are analyzed quantitatively by using the image data. In the initial stage of the growth time shorter than 8 min, our analysis shows that the GZO surface morphologies are influenced by such factors as the random fluctuations, the smoothening effects in the deposition, the lateral strain and the substrate. The interface width uw(t) and the lateral correlation length ξ(t) at first decrease with deposition time t. For the growth time larger than 8 min, w(t) and ξ(t) increase with time and it indicates the roughening of the surface and the surface morphology exhibits the fractal characteristics. By fitting data of the roughness w(t) versus deposition time t larger than 4 min to the power-law function, we obtain the growth exponent β is 0.3; and by the height-height correlation functions of the samples to that of the self-affine fractal model, we obtain the value of roughness exponent α about 0.84 for all samples with different growth time t.

  14. Structure and Morphology Effects on the Optical Properties of Bimetallic Nanoparticle Films Laser Deposited on a Glass Substrate

    Directory of Open Access Journals (Sweden)

    A. O. Kucherik

    2017-01-01

    Full Text Available Moving nanosecond laser system is used for laser-assisted thermodiffusion deposition of metallic nanoparticles from water-based colloidal solutions. The results obtained for both gold and silver nanoparticles show that film morphology strongly depends on laser scanning speed and the number of passages. We show, furthermore, the possibility of producing bimetallic Au:Ag thin films by laser irradiation of the mixed solutions. As a result of several laser scans, granular nanometric films are found to grow with a well-controlled composition, thickness, and morphology. By changing laser scanning parameters, film morphology can be varied from island structures to quasi-periodic arrays. The optical properties of the deposited structures are found to depend on the film composition, thickness, and mean separation between the particles. The transparency spectra of the deposited films are shown to be defined by their morphology.

  15. Enhancement of coercivity with reduced grain size in CoCrPt film grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liang, Q.; Hu, X.F.; Li, H.Q.; He, X.X.; Wang, Xiaoru; Zhang, W.

    2006-01-01

    We report a pulsed laser deposition (PLD) growth of VMn/CoCrPt bilayer with a magnetic coercivity (H c ) of 2.2 kOe and a grain size of 12 nm. The effects of VMn underlayer on magnetic properties of CoCrPt layer were studied. The coercivity, H c , and squareness, S, of VMn/CoCrPt bilayer, is dependent on the thickness of VMn. The grain size of the CoCrPt film can also be modified by laser parameters. High laser fluence used for CoCrPt deposition produces a smaller grain size. Enhanced H c and reduced grain size in VMn/CoCrPt is explained by more pronounced surface phase segregation during deposition at high laser fluence

  16. Electroplasma coatings based on silicon-containing hydroxyapatite: Technology and properties

    Science.gov (United States)

    Lyasnikova, A. V.; Markelova, O. A.

    2016-09-01

    IR analysis and the plasma deposition of silicon-containing hydroxyapatite powder have been carried out. It has been shown that the coating exhibits developed morphology and consists of molten powder (including nanosize) particles uniformly distributed over the entire surface. The adhesion characteristics have been calculated and scanning electron microscope images of the resultant coating have been analyzed.

  17. Deposition of high Tc superconductor thin films by pulsed excimer laser ablation and their post-synthesis processing

    International Nuclear Information System (INIS)

    Ogale, S.B.

    1992-01-01

    This paper describes the use of pulsed excimer laser ablation technique for deposition of high quality superconductor thin films on different substrate materials such as Y stabilized ZrO 2 , SrTiO 3 , LiNbO 3 , Silicon and Stainless Steels, and dopant incorporation during the film depositions. Processing of deposited films using ion and laser beams for realisation of device features are presented. 28 refs., 16 figs

  18. Observation of self-assembled periodic nano-structures induced by femtosecond laser in both ablation and deposition regimes

    Science.gov (United States)

    Tang, Mingzhen; Zhang, Haitao; Her, Tsing-Hua

    2008-02-01

    We observed the spontaneous formation of periodic nano-structures in both femtosecond laser ablation and deposition. The former involved 400-nm femtosecond pulses from a 250-KHz regenerated amplified mode-locked Ti:sapphire laser and periodic nanocracks and the nano-structure are in the form of periodic nanocracks in the substrate, the latter applied an 80-MHz mode-locked Ti:sapphire oscillator with pulse energy less than half nanojoule in a laser-induced chemical vapor deposition configuration and tungsten nanogratings grow heterogeneously on top of the substrates. These two observed periodic nanostructures have opposite orientations respecting to laser polarization: the periodic nanocracks are perpendicular to, whereas the deposited tungsten nanogratings are parallel to laser polarization direction. By translating the substrate respecting to the laser focus, both the periodic nanocrack and tungsten nanograting extend to the whole scanning range. The deposited tungsten nanogratings possess excellent uniformity on both the grating period and tooth length. Both the attributes can be tuned precisely by controlling the laser power and scanning speed. Furthermore, we discovered that the teeth of transverse tungsten nanogratings are self aligned along their axial direction during multiple scanning with appropriate offset between scans. We demonstrate the feasibility of fabricating large-area one-dimensional grating by exploiting such unique property. These distinct phenomena of nanocracks and tungsten nanogratings indicate different responsible mechanisms.

  19. High laser-fluence deposition of organic materials in water ice matrices by ''MAPLE''

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Rodrigo, K.; Schou, Jørgen

    2005-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) is a deposition technique for organic material. Water ice was used as a matrix for the biotechnologically important guest material, polyethylene glycol (PEG), for concentrations from 0.5 to 4 wt.%. The target was irradiated with 6 ns laser pulses...

  20. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during

  1. In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying.

    Science.gov (United States)

    Gokcekaya, Ozkan; Webster, Thomas J; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2017-08-01

    Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying. The porous coating layers obtained with various deposition times and heat treatment conditions were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Scratch tests were conducted to assess the adhesion strength of the coating. Antibacterial activity of Ag-incorporated HA was tested towards Escherichia coli (E. coli) at various incubation times. Osteoblast adhesion on Ag-incorporated HA was evaluated to assess biocompatibility. Improvement in adhesion strength of the coating layer was observed after the heat treatment process due to mutual ionic diffusion at the interface. The Ag-incorporated HA killed all viable E. coli after 24h of incubation, whereas no antibacterial activity was detected with pure HA. In addition, in vitro cell culture tests demonstrated osteoblast adhesion similar to pure HA, which indicated good cytocompatibility. In summary, results of this study provided significant promise for the future study of Ag-incorporated HA for numerous medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High fluence deposition of polyethylene glycol films at 1064 nm by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal 2...... microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm(2) and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI......-TOF-MS) analysis demonstrate that the chemistry, molecular weight and polydispersity of the PEG films were identical to the starting material. Studies of the film surface with scanning electron microscopy (SEM) indicate that the Si-substrate is covered by a relatively homogenous PEG film with few bare spots. (c...

  3. Polyacrylamide–hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    International Nuclear Information System (INIS)

    Baybaş, Demet; Ulusoy, Ulvi

    2012-01-01

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm–HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm–HAP were compared for UO 2 2+ and Th 4+ . The entrapment of HAP into PAAm–HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm–HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th 4+ adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm–HAP for this ion. In consequence, PAAm–HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide–hydroxyapatite (PAAm–HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: ► Composite of PAAm–HAP was synthesized from hydroxyapatite and polyacrylamide. ► The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. ► HAP and PAAm–HAP had high sorption capacity and very rapid uptake for UO 2 2+ and Th 4+ . ► Super porous PAAm was obtained from PAAm–HAP after its removal of HAP content. ► The composite is potential for deposition of U, Th and its associate radionuclides.

  4. Modification of Hydroxyapatite Crystal Using IR Laser

    CERN Document Server

    Satoh, Saburoh; Goto, M; Guan, W; Hayashi, N; Ihara, S; Yamabe, C; Yamaguchi, Y

    2004-01-01

    The first application of laser technology to dentistry was for the removal of caries. However, reports of laser application on improvement of dental surface were emerged, much attention has been focused on the laser’s potential to enhance enamel’s hardness and resistance to acid. Most of the previous reports concentrated on the photo issue interaction. Few research has pursued the photochemical phenomenon occurred during laser irradiation on biological tissues. In order to find a creative method to remineralize the dissociating enamel and exposed coronal of dentine, the authors developed a novel procedure during laser irradiation. Slice of sound molar and artificial HAp pellet were irradiated separately, with CO2 laser under different laser parameters. Tow series of samples covered with saturation calcium ion solution were irradiated separately. To investigate the crystal morphology, XRD pattern were surveyed. The comparison of each cases show that the chemical coating affected the ablation process evidentl...

  5. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  6. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    International Nuclear Information System (INIS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-01-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF 2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  7. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  8. In vitro study of hydroxy apatite and enamel powder fused in human enamel by Nd:YAG laser; Estudo in vitro da fusao de hidroxiapatita e esmalte em superficies de esmalte humano pelo laser de Nd:YAg

    Energy Technology Data Exchange (ETDEWEB)

    Ferrreira, Marcus Vinicius Lucas

    2000-07-01

    The aim of this study was to evaluate the effects of pulsed Nd:YAG (1064 nm) laser irradiation on hydroxyapatite and enamel powder fusion. This laser beam is not well absorbed by this two compounds for this reason they were mixed with vegetal coal to increase the absorption of the laser beam. Fifteen enamel flat surfaces and six occlusal enamel surfaces were prepared with three different substances: hydroxyapatite mixed with vegetal coal (3:1 in weigh); enamel powder mixed with vegetal coal (3:1 in weigh); vegetal coal. The occlusal surfaces were utilized to determine if the compounds could seal pits and fissures. Flat surfaces were utilized to determine fusion of hydroxyapatite and enamel powder. All samples were irradiated with Nd:YAG laser with the parameters: 80 mJ, 15 Hz, 1,2 W, 100 {mu}s pulse-width, 131,1 J/cm{sup 2}. Laser beam was delivered to the samples with a 300 {mu}m diameter fiber optic. Morphology of the irradiated surfaces were examined by scanning electron microscopy (SEM). The compounds with hydroxyapatite and enamel powder were fused to enamel surfaces. Only partial pits and fissures sealing could be observed. (author)

  9. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    Science.gov (United States)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  10. Hydrothermal fabrication of hydroxyapatite on the PEG-grafted surface of wood from Chinese Glossy Privet

    Science.gov (United States)

    Wang, Ning; Cai, Chuanjie; Cai, Dongqing; Cheng, Junjie; Li, Shengli; Wu, Zhengyan

    2012-10-01

    Wood-hydroxyapatite composite material was developed by depositing hydrated calcium hydrogen phosphate (HCHP) on the surface of wood from Chinese Glossy Privet (CGP) with polyethylene glycol (PEG, HO(CH2CH2O)nH) as the grafting agent and subsequent hydrothermal vapor treatment. The results illustrated that HCHP could adhere quickly and strongly on the PEG-grafted wood surface. Moreover, this HCHP could be efficiently transformed to hydroxyapatite (HA, Ca10(PO4)6(OH)2) by hydrothermal vapor treatment. IR, XRD analysis and SEM observation indicated that the fabricated hydroxyapatite was pure and its morphology was uniform and microporous. This work provides a new fabricating approach of biocompatible material which may have some potential applications as bone-repairing material.

  11. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions

    International Nuclear Information System (INIS)

    Fang, J; Hong, Y J; Li, Q; Huang, H

    2011-01-01

    It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.

  12. Structural and optical properties of pulse laser deposited Ag2O thin films

    Science.gov (United States)

    Agasti, Souvik; Dewasi, Avijit; Mitra, Anirban

    2018-05-01

    We deposited Ag2O films in PLD system on glass substrate for a fixed partial oxygen gas pressure (70 mili Torr) and, with a variation of laser energy from 75 to 215 mJ/Pulse. The XRD patterns confirm that the films have well crystallinity and deposited as hexagonal lattice. The FESEM images show that the particle size of the films increased from 34.84 nm to 65.83 nm. The composition of the films is analyzed from EDX spectra which show that the percentage of oxygen increased by the increment of laser energy. From the optical characterization, it is observed that the optical band gap appears in the visible optical range in an increasing order from 0.87 to 0.98 eV with the increment of laser energy.

  13. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    Science.gov (United States)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  14. Laser fabrication of Ag-HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangmei; Man, H.C., E-mail: mfhcman@polyu.edu.hk

    2017-01-01

    For titanium alloy implants, both surface bioactivity and antibacterial infection are the two critical factors in determining the success of clinical implantation of these metallic implants. In the present work, a novel nanocomposite layer of nano-silver-containing hydroxyapatite (Ag-HA) was prepared on the surface of biomedical Ti6Al4V by laser processing. Analysis using SEM, EDS and XRD shows the formation of an Ag-HA layer of about 200 μm fusion bonded to the substrate. Mineralization tests in simulated body fluid (SBF) showed that laser fabricated Ag-HA nanocomposite layer favors the deposition of apatite on the surface of the implants. Antibacterial tests confirmed that all Ag-HA nanocomposite layers can kill bacteria while a higher Ag content would lower the cytocompatibility of these coatings. Cell viability decreases when the Ag content reaches 5% in these coatings, due to the larger amount of Ag leached out, as confirmed by ion release evaluation. Our results reveal that laser fabricated Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability. - Highlights: • Silver-containing hydroxyapatite (Ag-HA) nanocomposite layer was fabricated on Ti6Al4V by laser technique. • Both bioactivity and antibacterial capability were significantly enhanced compared with bare Ti6Al4V. • Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability.

  15. TiCN thin films grown by reactive crossed beam pulsed laser deposition

    Science.gov (United States)

    Escobar-Alarcón, L.; Camps, E.; Romero, S.; Muhl, S.; Camps, I.; Haro-Poniatowski, E.

    2010-12-01

    In this work, we used a crossed plasma configuration where the ablation of two different targets in a reactive atmosphere was performed to prepare nanocrystalline thin films of ternary compounds. In order to assess this alternative deposition configuration, titanium carbonitride (TiCN) thin films were deposited. Two crossed plasmas were produced by simultaneously ablating titanium and graphite targets in an Ar/N2 atmosphere. Films were deposited at room temperature onto Si (100) and AISI 4140 steel substrates whilst keeping the ablation conditions of the Ti target constant. By varying the laser fluence on the carbon target it was possible to study the effect of the carbon plasma on the characteristics of the deposited TiCN films. The structure and composition of the films were analyzed by X-ray Diffraction, Raman Spectroscopy and non-Rutherford Backscattering Spectroscopy. The hardness and elastic modulus of the films was also measured by nanoindentation. In general, the experimental results showed that the TiCN thin films were highly oriented in the (111) crystallographic direction with crystallite sizes as small as 6.0 nm. It was found that the hardness increased as the laser fluence was increased, reaching a maximum value of about 33 GPa and an elastic modulus of 244 GPa. With the proposed configuration, the carbon content could be easily varied from 42 to 5 at.% by changing the laser fluence on the carbon target.

  16. Review of progress in pulsed laser deposition and using Nd:YAG laser in processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Chen, C.W.; Mukherjee, K.

    1993-01-01

    The current progress in pulsed laser ablation of high-temperature superconductors is reviewed with emphasis on the effect of pulse-width and wavelength, nature of the plasma plume, post-annealing and methods to improve quality of films grown at low temperature. An ion beam assisted millisecond pulsed laser vapor deposition process has been developed to fabricate YBa 2 Cu 3 O x high T. superconductor thin films. Solution to target overheating problem, effects of oxygen ion beam, properties of deposited films, and effect of silver buffer layer on YSZ substrate are presented. A new laser calcining process has been used to produce near single phase high T c superconductors of Bi-Pb-Sr-Ca-Cu-0 system. The total processing time was reduced to about 100 hours which is about half of that for conventional sintering. For this compound both resistance and magnetic susceptibility data showed an onset of superconducting transition at about 110K. A sharp susceptibility drop was observed above 106K. The zero resistance temperature was about 98K. High T c phase was formed via a different kinetic path in laser calcined sample compare with the conventionally processed sample

  17. Hydroxyapatite-diamondlike carbon nanocomposite films

    International Nuclear Information System (INIS)

    Narayan, Roger J.

    2005-01-01

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants

  18. Hydroxyapatite-diamondlike carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Roger J. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)]. E-mail: roger.narayan@mse.gatech.edu

    2005-05-15

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants.

  19. Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355 nm

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Canulescu, Stela

    2016-01-01

    The influence of the laser wavelength on the deposition of copper tin sulfide (CTS) and SnS-rich CTS with a 248-nm KrF excimer laser (pulse length τ = 20 ns) and a 355-nm frequency-tripled Nd:YAG laser (τ = 6 ns) was investigated. A comparative study of the two UV wavelengths shows that the CTS...... film growth rate per pulse was three to four times lower with the 248-nm laser than the 355-nm laser. SnS-rich CTS is more efficiently ablated than pure CTS. Films deposited at high fluence have submicron and micrometer size droplets, and the size and area density of the droplets do not vary significantly...

  20. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  1. Pulsed laser deposition of the lysozyme protein: an unexpected “Inverse MAPLE” process

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    2012-01-01

    Films of organic materials are commonly deposited by laser assisted methods, such as MAPLE (matrix-assisted pulsed laser evaporation), where a few percent of the film material in the target is protected by a light-absorbing volatile matrix. Another possibility is to irradiate the dry organic...... the ejection and deposition of lysozyme. This can be called an “inverse MAPLE” process, since the ratio of “matrix” to film material in the target is 10:90, which is inverse of the typical MAPLE process where the film material is dissolved in the matrix down to several wt.%. Lysozyme is a well-known protein...

  2. Resonant infrared pulsed laser deposition of a polyimide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, N L; Schriver, K E; Jr, R F Haglund [Department of Physics and Astronomy and W M Keck Foundation Free-Electron Laser Centre, Vanderbilt University, Nashville TN 37235 (United States)

    2007-04-15

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent Nmethyl pyrrolidinone (NMP). The PAA was deposited in droplet-like morphologies when ablation occurred in air, and in string-like moieties in the case of ablation in vacuum. In the as-deposited condition, the PAA was easily removed by washing with NMP; however, once cured thermally for thirty minutes, the PAA hardened, indicating the expected thermosetting property. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, even at low concentrations. A Wavelength dependence in plume velocity was also observed.

  3. Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology

    International Nuclear Information System (INIS)

    Khalili, Vida; Khalil-Allafi, Jafar; Xia, Wei; Parsa, Alireza B.; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2016-01-01

    Graphical abstract: - Highlights: • The stable composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes was prepared using functionalization of and multi-walled carbon nano-tubes in HNO_3 vapor and triethanolamine as dispersing agent. • The zeta potential of composite suspensions is less than that of hydroxyapatite suspension. • The silicon particles presence in suspension causes to decrease the charge carrier in suspension and current density during electrophoretic deposition. • The orientation of multi-walled carbon nano-tubes to parallel direction of the applied electric field during electrophoretic deposition can facilitate their moving towards the cathode and increase current density. • The more zeta potential of suspension, the lower roughness of coatings during electrophoretic deposition. - Abstract: Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the

  4. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  5. UV pulsed laser deposition of magnetite thin films

    International Nuclear Information System (INIS)

    Parames, M.L.; Mariano, J.; Rogalski, M.S.; Popovici, N.; Conde, O.

    2005-01-01

    Magnetite thin films were grown by pulsed laser deposition in O 2 reactive atmosphere from Fe 3 O 4 targets. The ablated material was deposited onto Si(1 0 0) substrates at various temperatures up to 623 K. The temperature dependence of structure and stoichiometry was investigated by X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). The XRD results show that films grown between 483 and 623 K are obtained as pure phase magnetite with an estimated average crystallite size increasing from 14 to 35 nm, respectively. This is in agreement with the CEMS spectra analysis, indicating isomer shift and internal field values for both the T d and O h sites close to those reported for the bulk material and a random orientation of the magnetic moments. The influence of the deposition temperature on the estimated Fe (9-x)/3 O 4 stoichiometry is related to an increase in the vacancy concentration from 483 to 623 K

  6. Inhibition of hydroxyapatite growth by casein, a potential salivary phosphoprotein homologue.

    Science.gov (United States)

    Romero, Maria J R H; Nakashima, Syozi; Nikaido, Toru; Ichinose, Shizuko; Sadr, Alireza; Tagami, Junji

    2015-08-01

    Salivary phosphoproteins are essential in tooth mineral regulation but are often overlooked in vitro. This study aimed to evaluate the effect of casein, as a salivary phosphoprotein homologue, on the deposition and growth of hydroxyapatite (HA) on tooth surfaces. Hydroxyapatite growth was quantified using seeded crystal systems. Artificial saliva (AS) containing HA powder and 0, 10, 20, 50, or 100 μg ml(-1) of casein, or 100 μg ml(-1) of dephosphorylated casein (Dcasein), was incubated for 0-8 h at 37°C, pH 7.2. Calcium concentrations were measured using atomic absorption spectroscopy (AAS). Surface precipitation of HA on bovine enamel and dentine blocks, incubated in similar conditions for 7 d, was examined using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) with selected area electron diffraction (SAED). Casein adsorption was assessed using modified Lowry assays and zeta-potential measurements. The AAS results revealed a concentration-dependent inhibition of calcium consumption. Hydroxyapatite precipitation occurred when no casein was present, whereas precipitation of HA was apparently completely inhibited in casein-containing groups. Adsorption data demonstrated increasingly negative zeta-potential with increased casein concentration and an affinity constant similar to proline-rich proteins with Langmuir modelling. Casein inhibited the deposition and growth of HA primarily through the binding of esterized phosphate to HA active sites, indicating its potential as a mineral-regulating salivary phosphoprotein homologue in vitro. © 2015 Eur J Oral Sci.

  7. Optoelectronic Characterization of Ta-Doped ZnO Thin Films by Pulsed Laser Deposition.

    Science.gov (United States)

    Koo, Horng-Show; Peng, Jo-Chi; Chen, Mi; Chin, Hung-I; Chen, Jaw-Yeh; Wu, Maw-Kuen

    2015-11-01

    Transparent conductive oxide of Ta-doped ZnO (TZO) film with doping amount of 3.0 wt% have been deposited on glass substrates (Corning Eagle XG) at substrate temperatures of 100 to 500 degrees C by the pulsed laser deposition (PLD) technique. The effect of substrate temperature on the structural, optical and electronic characteristics of Ta-doped ZnO (TZO) films with 3.0 wt% dopant of tantalum oxide (Ta2O5) was measured and demonstrated in terms of X-ray diffraction (XRD), ultraviolet-visible spectrometer (UV-Vis), four-probe and Hall-effect measurements. X-ray diffraction pattern shows that TZO films grow in hexagonal crystal structure of wurtzite phase with a preferred orientation of the crystallites along (002) direction and exhibits better physical characteristics of optical transmittance, electrical conductivity, carrier concentration and mobility for the application of window layer in the optoelectronic devices of solar cells, OLEDs and LEDs. The lowest electrical resistivity (ρ) and the highest carrier concentration of the as-deposited film deposited at 300 degrees C are measured as 2.6 x 10(-3) Ω-cm and 3.87 x 10(-20) cm(-3), respectively. The highest optical transmittance of the as-deposited film deposited at 500 degrees C is shown to be 93%, compared with another films deposited below 300 degrees C. It is found that electrical and optical properties of the as-deposited TZO film are greatly dependent on substrate temperature during laser ablation deposition.

  8. Effect of laser power and scanning speed on laser deposited Ti6Al4V/TiB2 matrix composites

    CSIR Research Space (South Africa)

    Mokgalaka, MN

    2012-10-01

    Full Text Available Additive Manufacturing in Industry Conference, Kwa Maritane, Pilanesberg National Park, 31 October-2 November 2012 EFFECT OF LASER POWER AND SCANNING SPEED ON LASER DEPOSITED Ti6Al4V/TiB2 MATRIX COMPOSITES M.N. Mokgalaka2,1, S.L. Pityana1,2, A.P.I...

  9. Deposition of Au/TiO2 film by pulsed laser

    International Nuclear Information System (INIS)

    Zhao Chongjun; Zhao Quanzhong; Zhao Qitao; Qiu Jianrong; Zhu Congshan

    2006-01-01

    Au nanoparticles, which were photoreduced by a Nd:YAG laser in HAuCl 4 solution containing TiO 2 colloid and accompanied by the TiO 2 particles, were deposited on the substrate surface. The film consisting of Au/TiO 2 particles was characterized by the absorption spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The adhesion between the film and substrate was evaluated by using adhesive tape test. It was found that the presence of TiO 2 dramatically enhanced the adhesion strength between the film and the substrate, as well as the deposition rate of film. The mechanism for the deposition of Au/TiO 2 film was also discussed

  10. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering

    International Nuclear Information System (INIS)

    Feng, Pei; Wei, Pingpin; Li, Pengjian; Gao, Chengde; Shuai, Cijun; Peng, Shuping

    2014-01-01

    Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m 1/2 ) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability

  11. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Pei [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China, (China); Wei, Pingpin [Cancer Research Institute, Central South University, Changsha 410078 (China); Li, Pengjian; Gao, Chengde [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China, (China); Shuai, Cijun, E-mail: shuai@csu.edu.cn [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China, (China); Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425 (United States); Peng, Shuping, E-mail: shuping@csu.edu.cn [Cancer Research Institute, Central South University, Changsha 410078 (China)

    2014-11-15

    Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m{sup 1/2}) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability.

  12. Effect of process parameters on formability of laser melting deposited 12CrNi2 alloy steel

    Science.gov (United States)

    Peng, Qian; Dong, Shiyun; Kang, Xueliang; Yan, Shixing; Men, Ping

    2018-03-01

    As a new rapid prototyping technology, the laser melting deposition technology not only has the advantages of fast forming, high efficiency, but also free control in the design and production chain. Therefore, it has drawn extensive attention from community.With the continuous improvement of steel performance requirements, high performance low-carbon alloy steel is gradually integrated into high-tech fields such as aerospace, high-speed train and armored equipment.However, it is necessary to further explore and optimize the difficult process of laser melting deposited alloy steel parts to achieve the performance and shape control.This article took the orthogonal experiment on alloy steel powder by laser melting deposition ,and revealed the influence rule of the laser power, scanning speed, powder gas flow on the quality of the sample than the dilution rate, surface morphology and microstructure analysis were carried out.Finally, under the optimum technological parameters, the Excellent surface quality of the alloy steel forming part with high density, no pore and cracks was obtained.

  13. Structural characterization of thin films of titanium nitride deposited by laser ablation

    International Nuclear Information System (INIS)

    Castro C, M.A.; Escobar A, L.; Camps C, E.; Mejia H, J.A.

    2004-01-01

    Thin films of titanium nitride were deposited using the technique of laser ablation. It was studied the effect of the density of laser energy used for ablation the target as well as of the pressure of the work gas about the structure and the hardness of the deposited thin films. Depending on the pressure of the work gas films was obtained with preferential orientation in the directions (200) and (111). At a pressure of 1 x 10 -2 Torr only the direction (200) was observed. On the other hand to the pressure of 5 x 10 -3 Torr the deposited material this formed by a mixture of the orientation (200) and (111), being the direction (111) the predominant one. Thin films of Ti N were obtained with hardness of up to 24.0 GPa that makes to these attractive materials for mechanical applications. The hardness showed an approximately linear dependence with the energy density. (Author)

  14. Effect of the laser and light-emitting diode (LED) phototherapy on midpalatal suture bone formation after rapid maxilla expansion: a Raman spectroscopy analysis.

    Science.gov (United States)

    Rosa, Cristiane Becher; Habib, Fernando Antonio Lima; de Araújo, Telma Martins; Aragão, Juliana Silveira; Gomes, Rafael Soares; Barbosa, Artur Felipe Santos; Silveira, Landulfo; Pinheiro, Antonio L B

    2014-05-01

    The aim of this study was to analyze the effect of laser or light-emitting diode (LED) phototherapy on the bone formation at the midpalatal suture after rapid maxilla expansion. Twenty young adult male rats were divided into four groups with 8 days of experimental time: group 1, no treatment; group 2, expansion; group 3, expansion and laser irradiation; and group 4, expansion and LED irradiation. In groups 3 and 4, light irradiation was in the first, third, and fifth experimental days. In all groups, the expansion was accomplished with a helicoid 0.020" stainless steel orthodontic spring. A diode laser (λ780 nm, 70 mW, spot of 0.04 cm(2), t = 257 s, spatial average energy fluence (SAEF) of 18 J/cm(2)) or a LED (λ850 nm, 150 mW ± 10 mW, spot of 0.5 cm(2), t = 120 s, SAEF of 18 J/cm(2)) were used. The samples were analyzed by Raman spectroscopy carried out at midpalatal suture and at the cortical area close to the suture. Two Raman shifts were analyzed: ∼ 960 (phosphate hydroxyapatite) and ∼ 1,450 cm(-1) (lipids and protein). Data was submitted to statistical analysis. Significant statistical difference (p ≤ 0.05) was found in the hydroxyapatite (CHA) peaks among the expansion group and the expansion and laser or LED groups. The LED group presented higher mean peak values of CHA. No statistical differences were found between the treated groups as for collagen deposition, although LED also presented higher mean peak values. The results of this study using Raman spectral analysis indicate that laser and LED light irradiation improves deposition of CHA in the midpalatal suture after orthopedic expansion.

  15. Determination of the Young's modulus of pulsed laser deposited epitaxial PZT thin films

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Woldering, L.A.; Abelmann, Leon; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    2011-01-01

    We determined the Young’s modulus of pulsed laser deposited epitaxially grown PbZr0.52Ti0.48O3 (PZT) thin films on microcantilevers by measuring the difference in cantilever resonance frequency before and after deposition. By carefully optimizing the accuracy of this technique, we were able to show

  16. In vitro study of hydroxy apatite and enamel powder fused in human enamel by Nd:YAG laser

    International Nuclear Information System (INIS)

    Ferrreira, Marcus Vinicius Lucas

    2000-01-01

    The aim of this study was to evaluate the effects of pulsed Nd:YAG (1064 nm) laser irradiation on hydroxyapatite and enamel powder fusion. This laser beam is not well absorbed by this two compounds for this reason they were mixed with vegetal coal to increase the absorption of the laser beam. Fifteen enamel flat surfaces and six occlusal enamel surfaces were prepared with three different substances: hydroxyapatite mixed with vegetal coal (3:1 in weigh); enamel powder mixed with vegetal coal (3:1 in weigh); vegetal coal. The occlusal surfaces were utilized to determine if the compounds could seal pits and fissures. Flat surfaces were utilized to determine fusion of hydroxyapatite and enamel powder. All samples were irradiated with Nd:YAG laser with the parameters: 80 mJ, 15 Hz, 1,2 W, 100 μs pulse-width, 131,1 J/cm 2 . Laser beam was delivered to the samples with a 300 μm diameter fiber optic. Morphology of the irradiated surfaces were examined by scanning electron microscopy (SEM). The compounds with hydroxyapatite and enamel powder were fused to enamel surfaces. Only partial pits and fissures sealing could be observed. (author)

  17. Amorphous Terfenol-D films using nanosecond pulsed laser deposition

    International Nuclear Information System (INIS)

    Ma, James; O'Brien, Daniel T.; Kovar, Desiderio

    2009-01-01

    Thin films of Terfenol-D were produced by nanosecond pulsed laser deposition (PLD) at two fluences. Electron dispersive spectroscopy conducted using scanning electron and transmission electron microscopes showed that the film compositions were similar to that of the PLD target. Contrary to previous assertions that suggested that nanosecond PLD results in crystalline films, X-ray diffraction and transmission electron microscopy analysis showed that the films produced at both fluences were amorphous. Splatters present on the film had similar compositions to the overall film and were also amorphous. Magnetic measurements showed that the films had high saturation magnetization and magnetostriction, similar to high quality films produced using other physical vapor deposition methods.

  18. Antibacterial, cytotoxicity and physical properties of laser - silver doped hydroxyapatite layers

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Remsa, Jan; Weiserová, Marie; Jurek, Karel; Mikšovský, Jan; Strnad, J.; Galandáková, A.; Ulrichová, J.

    2013-01-01

    Roč. 33, č. 3 (2013), s. 1242-1246 ISSN 0928-4931 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 ; RVO:61388971 Keywords : hydroxyapatite * silver * thin films * PLD * antibacterial * cytotoxicity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.736, year: 2013 http://dx.doi.org/10.1016/j.msec.2012.12.018

  19. Pulsed laser deposition of nanostructured Co-B-O thin films as efficient catalyst for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, H., E-mail: jadhav.hs2013@gmail.com [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Singh, A.K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patel, N.; Fernandes, R.; Gupta, S.; Kothari, D.C. [Department of Physics and National Centre for Nanosciences & Nanotechnology, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098 (India); Miotello, A. [Dipartimento di Fisica, Università degli Studi di Trento, I-38123 Povo, Trento (Italy); Sinha, S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-11-30

    Highlights: • Pulsed laser deposition was used to deposit Co-B-O film nanocatalyst. • Co-B-O NPs are well separated, stable and immobilized on film surface. • Catalytic H{sub 2} production was studied by hydrolysis of Sodium Borohydride. • Four times higher H{sub 2} production rate was recorded for Co-B-O film than Co-B-O powder. • High particle density, polycrystalline nature and good stability against agglomeration of Co NPs. - Abstract: Nanoparticles assembled Co-B-O thin film catalysts were synthesized by pulsed laser deposition (PLD) technique for hydrolysis of Sodium Borohydride (SBH). Surface morphology of the deposited films was investigated using SEM and TEM, while compositional analysis was studied using XPS. Structural properties of Co-B-O films were examined using XRD and HRTEM. Laser process is able to produce well separated and immobilized Co-B-O NPs on the film surface which act as active centers leading to superior catalytic activity producing hydrogen at a significantly higher rate as compared to bulk powder. Co-B-O thin film catalyst produces hydrogen at a maximum rate of ∼4400 ml min{sup −1} g{sup −1} of catalyst, which is four times higher than powder catalyst. PLD parameters such as laser fluence and substrate-target distance were varied during deposition in order to understand the role of size and density of the immobilized Co-B-O NPs in the catalytic process. Films deposited at 3–5 cm substrate-target distance showed better performance than that deposited at 6 cm, mainly on account of the higher density of active Co-B-O NPs on the films surface. Features such as high particle density, polycrystalline nature of Co NPs and good stability against agglomeration mainly contribute towards the superior catalytic activity of Co-B-O films deposited by PLD.

  20. Polyacrylamide-hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Baybas, Demet, E-mail: dbaybas@cumhuriyet.edu.tr [Cumhuriyet University, Faculty of Science, Department of Chemistry, Kayseri, Sivas 58140 (Turkey); Ulusoy, Ulvi, E-mail: ulusoy@cumhuriyet.edu.tr [Cumhuriyet University, Faculty of Science, Department of Chemistry, Kayseri, Sivas 58140 (Turkey)

    2012-10-15

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO{sub 2}{sup 2+} and Th{sup 4+}. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th{sup 4+} adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide-hydroxyapatite (PAAm-HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: Black-Right-Pointing-Pointer Composite of PAAm-HAP was synthesized from hydroxyapatite and polyacrylamide. Black-Right-Pointing-Pointer The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. Black-Right-Pointing-Pointer HAP and PAAm-HAP had high sorption capacity and very rapid uptake for UO{sub 2}{sup 2+} and Th{sup 4+}. Black-Right-Pointing-Pointer Super porous PAAm was obtained from PAAm-HAP after its removal of HAP content. Black-Right-Pointing-Pointer The composite is potential for deposition of U, Th and its associate radionuclides.

  1. Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition

    International Nuclear Information System (INIS)

    Shah, Kamran; Haq, Izhar ul; Khan, Ashfaq; Shah, Shaukat Ali; Khan, Mushtaq; Pinkerton, Andrew J

    2014-01-01

    Highlights: • Functionally graded steel and nickel super-alloy structures have been developed. • Mechanical properties of FGMs can be controlled by process input parameters. • SDAS is strongly dependent on the laser power and powder mass flow rate. • Carbides provide a mechanism to control the hardness and wear resistance of FGM. • Tensile strength of FGM is dependent on the laser power and powder mass flow rate. - Abstract: Laser direct metal deposition (LDMD) has developed from a prototyping to a single and multiple metals manufacturing technique. It offers an opportunity to produce graded components, with differing elemental composition, phase and microstructure at different locations. In this work, continuously graded Stainless Steel 316L and Inconel 718 thin wall structures made by direct laser metal deposition process have been explored. The paper considers the effects of process parameters including laser power levels and powder mass flow rates of SS316L and Inconel 718 during the deposition of the Steel–Ni graded structures. Microstructure characterisation and phase identification are performed by optical microscopy and X-ray diffraction techniques. Mechanical testing, using methods such as hardness, wear resistance and tensile testing have been carried out on the structures. XRD results show the presence of the NbC and Fe 2 Nb phases formed during the deposition. The effect of experimental parameters on the microstructure and physical properties are determined and discussed. Work shows that mechanical properties can be controlled by input parameters and generation of carbides provides an opportunity to selectively control the hardness and wear resistance of the functionally graded material

  2. Pulsed Laser deposition of Al2O3 thin film on silicon

    International Nuclear Information System (INIS)

    Lamagna, A.; Duhalde, S.; Correra, L.; Nicoletti, S.

    1998-01-01

    Al 2 O 3 thin films were fabricated by pulsed laser deposition (PLD) on Si 3 N 4 /Si, to improve the thermal and electrical isolation of gas sensing devices. The microstructure of the films is analysed as a function of the deposition conditions (laser fluence, oxygen pressure, target-substrate distance and substrate temperature). X-ray analysis shows that only a sharp peak that coincides with the corundum (116) reflection can be observed in all the films. But, when they are annealed at temperatures above 1,200 degree centigrade, a change in the crystalline structure of some films occurs. The stoichiometry and morphology of the films with and without thermal treatment are compared using environmental scanning electron microscopy (SEM) and EDAX analysis. (Author) 14 refs

  3. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  4. Biofabrication and in vitro study of hydroxyapatite/mPEG–PCL–mPEG scaffolds for bone tissue engineering using air pressure-aided deposition technology

    International Nuclear Information System (INIS)

    Jiang, Cho-Pei; Chen, Yo-Yu; Hsieh, Min-Fa

    2013-01-01

    The aims of this study were to fabricate biopolymer and biocomposite scaffolds for bone tissue engineering by an air pressure-aided deposition system and to carry out osteoblast cell culture tests to validate the biocompatibility of fabricated scaffolds. A mPEG–PCL–mPEG triblock copolymer was synthesized as a biopolymer material. Biocomposite material was composed of synthesized biopolymer and hydroxyapatite (HA) with a mean diameter of 100 μm. The weight ratio of HA added to the synthesized biopolymer was 0.1, 0.25, 0.5 and 1. The experimental results show that the maximum average compressive strength of biocomposite scaffolds, made of weight ratio 0.5, with mean pore size of 410 μm (porosity 81%) is 18.38 MPa which is two times stronger than that of biopolymer scaffolds. Osteoblast cells, MC3T3-E1, were seeded on both types of fabricated scaffolds to validate the biocompatibility using methylthianzol tetrazolium (MTT) assay and cell morphology observation. After 28 days of in vitro culturing, the seeded osteoblasts were well distributed in the interior of both types of scaffolds. Furthermore, MTT experimental results show that the cell viability of the biocomposite scaffold is higher than that of the biopolymer scaffold. This indicates that adding HA into synthesized biopolymer can enhance compressive strength and the proliferation of the osteoblast cell. Highlights: ► A mPEG-PCL-mPEG copolymer was synthesized as a biopolymer. ► Biocomposite was made of adding hydroxyapatite (HA) in biopolymer. ► Biopolyer and biocomposite scaffolds were made by an air pressure-aided deposition system. ► Average compressive strength of biocomposite scaffold is 18.38 MPa. ► After 28 days in vitro cell culturing, adding HA into biopolymer can enhance the proliferation.

  5. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    International Nuclear Information System (INIS)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-01-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La 0.4 Ca 0.6 MnO 3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10 −1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  6. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  7. SiC interlayer by laser-cladding on WC-Co substrates for CVD diamond deposition

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Andre; Fraga, Mariana Amorim; Vieira, Jose; Trava-Airoldi, Vladimir Jesus; Corat, Evaldo Jose, E-mail: andrecontin@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Campos, Raonei Alves [Universidade Federal do Sul e Sudeste do Para (UNIFESSPA), Belem, PA (Brazil); Vasconcelos, Getulio [Instituto de Estudos Avancados (IEA), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Despite their huge industrial potential and commercial interest, the direct diamond coating on cemented carbide (WC-Co) is limited, mainly because of the catalytic effect of Cobalt (Co) and the high difference in thermal expansion coefficient [1]. This results in poor adherence between diamond and WC-Co. In addition, the low diamond film adhesion to the cemented carbide useless for machining applications. Removal of Co binder from the substrate surface by superficial etching is one of the techniques used to improve the adhesion between diamond and WC-Co. For the present study, diamond films were deposited on WC-Co substrates with an intermediate barrier to block the Co diffusion to the surface substrate. The laser cladding process produced the SiC barrier, in which a powder layer is melted by a laser irradiation to create the coating on the substrate. The use of laser cladding is the novel method for an intermediate barrier for cemented carbides. The advantages of laser cladding include a faster processing speed, precision, versatility. We reported the application of pretreatment method called ESND (Electrostatic self-assembly seeding of nanocrystalline diamond). The nucleation density was around 10{sup 11}part/cm{sup 2}. Diamond films were grown by Hot Filament Chemical Vapor Deposition. Characterization of samples included Field Emission Gun-Scanning Electron Microscopy (FEG-SEM), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD) and Raman Scattering Spectroscopy. Results showed that laser irradiation formed stable Co compounds in the interfacial barrier. It is because nucleation and good quality of diamond film since the cobalt are no longer free to migrate to the surface during the CVD diamond deposition. Reference: [1] Y. X. Cui, B. Shen, F. H. Sun. Diamond deposition on WC–Co substrate with amorphous SiC interlayer, Surface Engineering, 30, (2014) 237-243. (author)

  8. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  9. Pulsed Laser Deposition of Polymers Doped with Fluorescent Probes. Application to Environmental Sensors

    International Nuclear Information System (INIS)

    Rebollar, E; Villavieja, Mm; Gaspard, S; Oujja, M; Corrales, T; Georgiou, S; Domingo, C; Bosch, P; Castillejo, M

    2007-01-01

    Pulsed laser deposition (PLD) has been used to obtain thin films of poly(methyl methacrylate) and polystyrene doped with fluorescent probes, amino aromatic compounds S5 and S6, that could be used to sense the presence of contaminating environmental agents. These dopants both in solution and inserted in polymeric films are sensitive to changes in pH, viscosity and polarity, increasing their fluorescence emission and/or modifying the position of their emission band. Films deposits on quartz substrates, obtained by irradiating targets with a Ti:Sapphire laser (800 nm, 120 fs pulse) were analyzed by optical and Environmental Scanning Electron Microscopy, Fluorescence Microscopy, Laser-Induced Fluorescence, Micro Raman Spectroscopy and Flow Injection Analysis-Mass Spectrometry. The transfer of the polymer and the probe to the substrate is observed to be strongly dependent on the optical absorption coefficient of the polymeric component of the target at the irradiation wavelength

  10. Dimensional and material characteristics of direct deposited tool steel by CO II laser

    Science.gov (United States)

    Choi, J.

    2006-01-01

    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  11. Heating effect of substrate of pulsed laser ablation deposition technique towards the orientation of carbon microstructure

    International Nuclear Information System (INIS)

    Choy, L.S.; Irmawati Ramli; Noorhana Yahya; Abdul Halim Shaari

    2009-01-01

    Full text: Carbon thin film has been successfully deposited by second harmonic Nd:YAG pulsed laser ablation deposition, PLAD. The topology and morphology of the deposited layers was studied by scanning electron microscopy (SEM) whereas emission dispersion X-ray (EDX) was used to determine the existence of elements that constitutes the microstructure. Substrate heated at 500 degree Celsius during the laser ablation showed the most homogenous lollipop microstructure as compared to mainly pillars of microstructure ablated at lower substrate temperature. It is found that this also avoid further diffusion of carbon into catalyst in forming iron carbide. (author)

  12. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Leilei, Zhang; Hejun, Li; Kezhi, Li; Shouyang, Zhang; Qiangang, Fu; Yulei, Zhang; Jinhua, Lu; Wei, Li

    2014-01-01

    Highlights: • CSH coatings were prepared by combination of magnetron sputter ion plating, CVD and UECD. • Na + and CO 3 2− were developed to co-substitute hydroxyapatite. • SiC nanowires were introduced into Na-doped carbonated hydroxyapatite. • CSH coatings showed excellent cell activity and cell proliferation behavior. - Abstract: A carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating (CSH coating) was prepared on carbon/carbon composites using a combination method of magnetron sputter ion plating, chemical vapor deposition and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that the CSH coating was consisted of three components: carbon layer, SiC nanowires and Na-doped carbonated hydroxyapatite. The carbon layer provided a dense and uniform surface structure for the growth of SiC nanowires. The SiC nanowires exhibited a porous structure, favoring the infiltration of Na-doped carbonated hydroxyapatite crystals. The Na-doped carbonated hydroxyapatite could infiltrate into the pores of SiC nanowires and finally cover the SiC nanowires entirely with a needle shape. The osteoblast-like MG63 cells were employed to assess the in vitro biocompatibility of the CSH coating. The MG63 cells favorably spread and grew well across the CSH coating surface with plenty of filopods and microvilli, exhibiting excellent cell activity. Moreover, the CSH coating elicited higher cell proliferation as compared to bare carbon/carbon composites. In conclusion, the CSH offers great potential as a coating material for future medical application in hard tissue replacement

  13. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Leilei, Zhang, E-mail: zhangleilei1121@aliyun.com; Hejun, Li; Kezhi, Li; Shouyang, Zhang; Qiangang, Fu; Yulei, Zhang; Jinhua, Lu; Wei, Li

    2014-09-15

    Highlights: • CSH coatings were prepared by combination of magnetron sputter ion plating, CVD and UECD. • Na{sup +} and CO{sub 3}{sup 2−} were developed to co-substitute hydroxyapatite. • SiC nanowires were introduced into Na-doped carbonated hydroxyapatite. • CSH coatings showed excellent cell activity and cell proliferation behavior. - Abstract: A carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating (CSH coating) was prepared on carbon/carbon composites using a combination method of magnetron sputter ion plating, chemical vapor deposition and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that the CSH coating was consisted of three components: carbon layer, SiC nanowires and Na-doped carbonated hydroxyapatite. The carbon layer provided a dense and uniform surface structure for the growth of SiC nanowires. The SiC nanowires exhibited a porous structure, favoring the infiltration of Na-doped carbonated hydroxyapatite crystals. The Na-doped carbonated hydroxyapatite could infiltrate into the pores of SiC nanowires and finally cover the SiC nanowires entirely with a needle shape. The osteoblast-like MG63 cells were employed to assess the in vitro biocompatibility of the CSH coating. The MG63 cells favorably spread and grew well across the CSH coating surface with plenty of filopods and microvilli, exhibiting excellent cell activity. Moreover, the CSH coating elicited higher cell proliferation as compared to bare carbon/carbon composites. In conclusion, the CSH offers great potential as a coating material for future medical application in hard tissue replacement.

  14. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Improvement in the electronic quality of pulsed laser deposited CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films via post-deposition elemental sulfur annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Beres, M., E-mail: matthewcberes@gmail.com [University of California, Department of Mechanical Engineering, 6141 Etcheverry Hall, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Yu, K.M., E-mail: kinmanyu@cityu.edu.hk [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Syzdek, J., E-mail: jego.mejl@gmail.com [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Bio-Logic USA, 9050 Executive Park Dr NW, Knoxville, TN 37923 (United States); Mao, S.S., E-mail: ssmao@me.berkeley.edu [University of California, Department of Mechanical Engineering, 6141 Etcheverry Hall, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States)

    2016-06-01

    We synthesized CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} thin films on soda lime glass substrates using pulsed laser deposition and post-annealing under different conditions. Increasing substrate temperature during deposition and vacuum annealing after deposition both increased grain size but had negligible effect on the electronic properties of the films. As-deposited films demonstrated P-type conductivities with high carrier concentrations and low Hall mobilities, but annealing in elemental sulfur environment significantly improved the electronic properties of the films. We found that the incorporation of even small quantities of sulfur into the films reduced carrier concentrations by over three orders of magnitude and increased Hall mobilities by an order of magnitude. This resulted in films with resistivity ~ 5 Ω·cm suitable for photovoltaic applications. - Highlights: • CIGSe thin films were deposited by pulsed laser deposition. • Laser deposition parameters and annealing parameters were investigated. • As-deposited films demonstrated high hole concentrations and low Hall mobilities. • Elemental sulfur annealing significantly enhanced the electronic quality of films.

  16. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  17. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Science.gov (United States)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-12-01

    In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La0.4Ca0.6MnO3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10-1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  18. Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences

    International Nuclear Information System (INIS)

    Wang, C.B.; Xiao, J.L.; Shen, Q.; Zhang, L.M.

    2016-01-01

    Boron carbon nitride (B-C-N) thin films have been grown by pulsed laser deposition under different laser fluences changing from 1.0 to 3.0 J/cm"2. The influence of laser fluence on microstructure, bonding structure, and mechanical properties of the films was studied, so as to explore the possibility of improving their mechanical properties by controlling bonding structure. The bonding structure identified by FT-IR and XPS indicated the coexistence of B-N, B-C, N-C and N=C bonds in the films, suggesting the formation of a ternary B-C-N hybridization. There is a clear evolution of bonding structure in the B-C-N films with the increasing of laser fluence. The variation of the mechanical properties as a function of laser fluence was also in accordance with the evolution of B-C and sp"3 N-C bonds whereas contrary to that of sp"2 B-N and N=C bonds. The hardness and modulus reached the maximum value of 33.7 GPa and 256 GPa, respectively, at a laser fluence of 3.0 J/cm"2, where the B-C-N thin films synthesized by pulsed laser deposition possessed the highest intensity of B-C and N-C bonds and the lowest fraction of B-N and N=C bonds. - Highlights: • Improvement of mechanical property by controlling bonding structure is explored. • A clear evolution of bonding structure with the increasing of laser fluence • Variation of property is in accordance with the evolution of B−C and N−C bonds.

  19. Optical Emission Spectroscopy of Plasma in Hybrid Pulsed Laser Deposition System

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Jelínek, Miroslav; Bulíř, Jiří; Lančok, Ján; Jastrabík, Lubomír; Zelinger, Zdeněk

    2002-01-01

    Roč. 52, Suppl. D (2002), s. 292-298 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1010110 Keywords : optical emission spectroscopy * pulsed laser deposition * RF discharge Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.311, year: 2002

  20. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...

  1. Pulsed laser deposition of Cu-Sn-S for thin film solar cells

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Bosco, Edoardo

    Thin films of copper tin sulfide were deposited from a target of the stoichiometry Cu:Sn:S ~1:2:3 using pulsed laser deposition (PLD). Annealing with S powder resulted in films close to the desired Cu2SnS3 stoichiometry although the films remained Sn rich. Xray diffraction showed that the final...... films contained both cubic-phase Cu2SnS3 and orthorhombic-phase SnS...

  2. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Durham, John W. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja [Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 (United States); Allen, Matthew J. [Department of Veterinary Medicine, University of Cambridge, Cambridge (United Kingdom); Rabiei, Afsaneh, E-mail: arabiei@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-11-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18 weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. - Highlights: • Method for improving osseointegration of PEEK implants is analyzed in vivo. • Uniform multilayer coatings were deposited on cylindrical PEEK implants. • Microwave and hydrothermal heat treatments crystallized the hydroxyapatite coating. • Healing response shows coated implants increase bone growth and implant fixation.

  3. Hydroxyapatite coating on PEEK implants: Biomechanical and histological study in a rabbit model

    International Nuclear Information System (INIS)

    Durham, John W.; Montelongo, Sergio A.; Ong, Joo L.; Guda, Teja; Allen, Matthew J.; Rabiei, Afsaneh

    2016-01-01

    A bioactive two-layer coating consisting of hydroxyapatite (HA) and yttria-stabilized zirconia (YSZ) was investigated on cylindrical polyetheretherketone (PEEK) implants using ion beam assisted deposition (IBAD). Post-deposition heat treatments via variable frequency microwave annealing with and without subsequent autoclaving were used to crystallize the as-deposited amorphous HA layer. Microstructural analysis, performed by TEM and EDS, showed that these methods were capable of crystallizing HA coating on PEEK. The in vivo response to cylindrical PEEK samples with and without coating was studied by implanting uncoated PEEK and coated PEEK implants in the lateral femoral condyle of 18 rabbits. Animals were studied in two groups of 9 for observation at 6 or 18 weeks post surgery. Micro-CT analysis, histology, and mechanical pull-out tests were performed to determine the effect of the coating on osseointegration. The heat-treated HA/YSZ coatings showed improved implant fixation as well as higher bone regeneration and bone-implant contact area compared to uncoated PEEK. The study offers a novel method to coat PEEK implants with improved osseointegration. - Highlights: • Method for improving osseointegration of PEEK implants is analyzed in vivo. • Uniform multilayer coatings were deposited on cylindrical PEEK implants. • Microwave and hydrothermal heat treatments crystallized the hydroxyapatite coating. • Healing response shows coated implants increase bone growth and implant fixation.

  4. Sorbitol as an efficient reducing agent for laser-induced copper deposition

    Science.gov (United States)

    Kochemirovsky, V. A.; Logunov, L. S.; Safonov, S. V.; Tumkin, I. I.; Tver'yanovich, Yu. S.; Menchikov, L. G.

    2012-10-01

    We have pioneered in revealing the fact that sorbitol may be used as an efficient reducing agent in the process of laser-induced copper deposition from solutions; in this case, it is possible to obtain copper lines much higher quality than by using conventional formalin.

  5. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    International Nuclear Information System (INIS)

    Sakawa, Youichi; Watanabe, Daisuke; Shibahara, Takahiro; Sugiyama, Kazuyoshi; Tanabe, Tetsuo

    2007-01-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H 2 and C 2 H 2 , with minor contribution of other hydrocarbons, while production of H 2 O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons

  6. Pulsed-laser ablation of co-deposits on JT-60 graphite tile

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, Youichi [Institute of Laser Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan)]. E-mail: sakawa-y@ile.osaka-u.ac.jp; Watanabe, Daisuke [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Shibahara, Takahiro [Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Sugiyama, Kazuyoshi [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan); Tanabe, Tetsuo [Interdisciplinary School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581 (Japan)

    2007-08-01

    Pulsed laser ablation of the co-deposits on a JT-60 open-divertor tile using the fourth harmonic of a 20 ps-Nd: YAG laser has been investigated. With increasing the laser intensity, three regions, non-ablation region (NAR), weak-ablation region (WAR), and strong-ablation region (SAR) were distinguished. Transition from NAR to WAR and WAR to SAR occurred at the threshold laser intensity for laser ablation and that for strong ionization of carbon atoms, respectively. The ablation accompanied desorption of H{sub 2} and C{sub 2}H{sub 2}, with minor contribution of other hydrocarbons, while production of H{sub 2}O was small. In NAR and WAR the number of the hydrogen desorbed by the laser irradiation was less than that of hydrogen retained in the ablated volume, while in SAR it was much larger, owing to thermal desorption of hydrogen gas from the region surrounding the ablated volume. For the ablative removal of hydrogen isotopes, SAR is more desirable because of higher removal efficiency and less production of hydrocarbons.

  7. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-G-P, Alejandro [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Schneider, Christof W., E-mail: christof.schneider@psi.ch [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Lippert, Thomas; Wokaun, Alexander [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2015-12-01

    Highlights: • The flip-over effect in PLD is observed up to high deposition pressures. • Consistent congruent transfer of the target composition is generally not correct. • The choice of deposition pressure can change the film composition strongly. • Large compositional changes appear at high off-axis angles and large spot sizes. - Abstract: In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La{sub 0.4}Ca{sub 0.6}MnO{sub 3} target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10{sup −1} mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  8. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

    Science.gov (United States)

    Barraza, E. Tomas; Dunlap-Shohl, Wiley A.; Mitzi, David B.; Stiff-Roberts, Adrienne D.

    2018-02-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic-inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

  9. Production of porous PTFE-Ag composite thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kecskeméti, Gabriella; Hopp, Béla; Smausz, Tomi; Tóth, Zsolt; Szabó, Gábor

    2012-01-01

    The suitability of pulsed laser deposition technique for preparation of polytetrafluoroethylene (PTFE) and silver (Ag) composite thin films was demonstrated. Disk-shaped targets combined from silver and Teflon with various percentages were ablated with pulses of an ArF excimer laser. The chemical composition of the deposited layers was estimated based on deposition rates determined for the pure PTFE and Ag films. EDX and SEM analyses using secondary electron and backscattered electron images proved that the morphology of the layers is determined by the PTFE which is the main constituent and it is transferred mostly in form of grains and clusters forming a sponge-like structure with high specific surface. The Ag content is distributed over the surface of the PTFE structure. Contact angle measurements showed that with increasing the amount of Ag in the deposited layers the surface significantly enhanced the wetting properties. Conductivity experiments demonstrated that when the average silver content of the layers was increased from 0.16 to 3.28 wt% the resistance of our PTFE-Ag composite films decreased with about three orders of magnitudes (from ∼10 MΩ to ∼10 kΩ). The properties of these films suggest as being a good candidate for future electrochemical sensor applications.

  10. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    Science.gov (United States)

    2013-12-05

    visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL

  11. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc

    International Nuclear Information System (INIS)

    Ferreira, J.R.M.; Louro, L.H.L.; Costa, A.M.; Silva, M.H. Prado da; Campos, J.B. de

    2016-01-01

    In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD) to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite. (author)

  12. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, J.R.M.; Louro, L.H.L.; Costa, A.M.; Silva, M.H. Prado da [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Campos, J.B. de, E-mail: josericardo@r-crio.com, E-mail: louro@ime.eb.br, E-mail: andrea@r-crio.com, E-mail: brantjose@gmail.com, E-mail: marceloprado@ime.eb.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2016-10-15

    In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD) to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite. (author)

  13. Synthesis and characterization of titanium dioxide thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Escobar A, L.; Camps C, E.; Falcon B, T.; Carapia M, L.; Haro P, E.; Camacho L, M.A.

    2000-01-01

    In this work are presented the results obtained when TiO 2 thin films were deposited using the laser ablation technique. Thin films were deposited at different substrate temperatures, and different oxygen pressures, with the purpose of studying the influence of this deposit parameters in the structural characteristics of the films obtained. The structural characterization was realized through Raman Spectroscopy and X-ray Diffraction (XRD), the surface morphology of the layers deposited was verified by Scanning Electron Microscopy (Sem). The results show that the films obtained are of TiO 2 in rutile phase, getting this at low substrate temperatures, its morphology shows a soft surface with some spattered particles and good adherence. (Author)

  14. Critical ageing and chemistry of nanocrystalline hydroxyapatite sol-gel solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chai, C.S.; Gross, K.A.; Kannangara, K.; Ben-Nissan, B. [University of Technology, Sydney, NSW (Australia). Department of Chemistry, Materials and Forensic Sciences; Hanley, L. [University of Illinois at Chicago, (United States). Department of Chemistry

    1998-12-31

    In previous work we have demonstrated that using alkoxide precursors, it is possible to produce crystalline hydroxyapatite coatings with potential uses in orthopaedic and dental applications. However, to produce monophasic hydroxyapatite coatings, sols must be aged for a minimum of 24 hours prior to deposition. {sup 31}P NMR has been used to analyse chemical changes occurring in the sol during the ageing process and have revealed that P-O-C bonds present in the precursor material are gradually replaced by P-O-Ca bonds with an accompanying change in oxidation state from P(III) to P(V). Thermal analysis was used to examine hydrolysed gels and showed that sols aged less than 24 hours contain unreacted calcium diethoxide which produces CaO upon heating. These findings have been confirmed by x-ray diffraction. Copyright (1998) Australasian Ceramic Society 16 refs., 4 figs.

  15. Critical ageing and chemistry of nanocrystalline hydroxyapatite sol-gel solutions

    International Nuclear Information System (INIS)

    Chai, C.S.; Gross, K.A.; Kannangara, K.; Ben-Nissan, B.; Hanley, L.

    1998-01-01

    In previous work we have demonstrated that using alkoxide precursors, it is possible to produce crystalline hydroxyapatite coatings with potential uses in orthopaedic and dental applications. However, to produce monophasic hydroxyapatite coatings, sols must be aged for a minimum of 24 hours prior to deposition. 31 P NMR has been used to analyse chemical changes occurring in the sol during the ageing process and have revealed that P-O-C bonds present in the precursor material are gradually replaced by P-O-Ca bonds with an accompanying change in oxidation state from P(III) to P(V). Thermal analysis was used to examine hydrolysed gels and showed that sols aged less than 24 hours contain unreacted calcium diethoxide which produces CaO upon heating. These findings have been confirmed by x-ray diffraction. Copyright (1998) Australasian Ceramic Society

  16. Pulsed-laser deposition of smooth thin films of Er, Pr and Nd doped glasses

    Energy Technology Data Exchange (ETDEWEB)

    Epurescu, G. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania)], E-mail: george@nipne.ro; Vlad, A. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania); Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Bodea, M.A. [Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Vasiliu, C. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Dumitrescu, O. [University Politehnica of Bucharest, Faculty of Industrial Chemistry, Science and Engineering of Oxide Materials Department, Polizu Str. 1, sect. 1, Bucharest (Romania); Niciu, H. [National Institute of Glass, Department for Laser Glass Technology, 47 Th. Pallady Str., Sect.3, Bucharest (Romania); Elisa, M. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Siraj, K.; Pedarnig, J.D.; Baeuerle, D. [Institut fuer Angewandte Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz (Austria); Filipescu, M.; Nedelcea, A. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania); Galca, A.C. [National Institute of Materials Physics, Atomistilor 105bis, P.O. Box MG 07, RO- 77125, Magurele (Romania); Grigorescu, C.E.A. [National Institute for Optoelectronics INOE 2000, Atomistilor 1, P.O. Box MG 05, 077125 Bucharest-Magurele (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, P.O. Box MG 16, RO- 77125, Bucharest-Magurele (Romania)

    2009-03-01

    Thin films of complex oxides have been obtained by pulsed-laser deposition (PLD) from glass targets belonging to the system Li{sub 2}O-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-(RE){sub 2}O{sub 3}, with RE = Nd, Pr, Er. The films were deposited on quartz, silicon and ITO/glass substrates using a F{sub 2} laser ({lambda} = 157 nm, {iota} {approx} 20 ns) for ablation in vacuum. The structural, morphological and optical properties of the oxide films were investigated through IR and UV-VIS spectroscopy, Atomic Force Microscopy (AFM), Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy (SEM-EDX) and Spectroscopic Ellipsometry. The laser wavelength was found to be the key parameter to obtain thin films with very smooth surface. In this way new possibilities are opened to grow multilayer structures for photonic applications.

  17. Synthesis of hydroxyapatite in the presence of biologically significant molecules

    International Nuclear Information System (INIS)

    Alvarez, R.; Evans, L.A.

    2000-01-01

    In bone mineralization non-collagenous phosphoproteins containing polycarboxylate sequences are thought to control crystal nucleation and to subsequently modify crystal growth. Invertebrate calcified tissues may also contain significant amounts of phosphoserine and/or acidic amino acid residues together with chitin (a polysaccharide). The present study investigated the effect of synthetic phosphorylated compounds as well as monomeric/polymeric carboxylic acid compounds on the formation of hydroxyapatite (HAp) under conditions of physiological pH, temperature and ionic strength. Poly-L-sodium aspartate was found to have the greatest inhibitory effect; only octacalcium phosphate (a known precursor of hydroxyapatite) could be detected in the presence of this polymer. Resultant minerals showed a variety of aggregation states. The biomimetically formed calcium phosphate minerals were identified and characterised by a variety of analytical thechniques, including laser Raman, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy and x-ray diffraction analysis. In addition, a series of experiments were performed to induce the formation of HAp on biogenic substrates, such as chitin and its derivatives, chitosan, reconstituted chitin and phosphorylated chitin. Granular aggregates of hydroxyapatite could be induced to form directly on phosphorylated chitin surfaces, but not on other biogenically-derived substrates. Copyright (2000) The Australian Ceramic Society

  18. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  19. Morphological and crystalline characterization of pulsed laser deposited pentacene thin films for organic transistor applications

    Science.gov (United States)

    Pereira, Antonio; Bonhommeau, Sébastien; Sirotkin, Sergey; Desplanche, Sarah; Kaba, Mamadouba; Constantinescu, Catalin; Diallo, Abdou Karim; Talaga, David; Penuelas, Jose; Videlot-Ackermann, Christine; Alloncle, Anne-Patricia; Delaporte, Philippe; Rodriguez, Vincent

    2017-10-01

    We show that high-quality pentacene (P5) thin films of high crystallinity and low surface roughness can be produced by pulsed laser deposition (PLD) without inducing chemical degradation of the molecules. By using Raman spectroscopy and X-ray diffraction measurements, we also demonstrate that the deposition of P5 on Au layers result in highly disordered P5 thin films. While the P5 molecules arrange within the well-documented 1.54-nm thin-film phase on high-purity fused silica substrates, this ordering is indeed destroyed upon introducing an Au interlayer. This observation may be one explanation for the low electrical performances measured in P5-based organic thin film transistors (OTFTs) deposited by laser-induced forward transfer (LIFT).

  20. Photoluminescence of Eu-doped LiYF4 thin films grown by pulsed laser deposition and matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    Stokker-Cheregi, F; Matei, A; Dinescu, M; Secu, C E; Secu, M

    2014-01-01

    Matrix-assisted pulsed laser evaporation (MAPLE) has been investigated as an alternative to the pulsed laser deposition (PLD) technique for Eu 3+ -doped crystalline LiYF 4 thin-films deposition. MAPLE assumes laser ablation of a frozen target made of the material of interest diluted in a solvent, rather than that of a bulk target, of either pressed powder or single crystal, used in the case of PLD. Our approach stems from the assumption that laser ablation of a frozen dilute target would result in thin films with improved morphology, as compared to PLD. Indeed, we find that roughness values of samples obtained by the MAPLE technique are four times lower than in the case of PLD. A lower transmittance was noticed for PLD obtained layers with respect to those grown by MAPLE due to strong scattering of light by the morphological defects. Photoluminescence spectra are showing characteristic Eu 3+ -ion luminescence bands at 578, 591, 612, 650 and 698 nm ( 5 D 0  →  7 F J ); crystal field splitting of the bands indicates dopant ions incorporation in the host material during transfer by either PLD or MAPLE. (paper)

  1. The properties of Ge quantum rings deposited by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2010-07-01

    SiGe ring-shape nanostructures have attracted much research interest because of the interesting morphology, mechanical, and electromagnetic properties. In this paper, we present the planar Ge nanorings with well-defined sharp edges self-assembled on Si (100) matrix prepared with pulsed laser deposition (PLD) in the present of Ar gas. The transforming mechanism of the droplets is discussed, which a dynamic deformation model has been developed to simulate the self-transforming process of the droplets. The rings were found to be formed in two steps: from droplets to cones and from cones to rings via an elastic self-deforming process, which were likely to be driven by the lateral strain of Ge/Si layers and the surface tension.

  2. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    Science.gov (United States)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  3. Resonant infrared laser deposition of polymer-nanocomposite materials for optoelectronic applications

    Science.gov (United States)

    Park, Hee K.; Schriver, Kenneth E.; Haglund, Richard F.

    2011-11-01

    Polymers find a number of potentially useful applications in optoelectronic devices. These include both active layers, such as light-emitting polymers and hole-transport layers, and passive layers, such as polymer barrier coatings and light-management films. This paper reports the experimental results for polymer films deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) and resonant infrared pulsed laser deposition (RIR-PLD) for commercial optoelectronic device applications. In particular, light-management films, such as anti-reflection coatings, require refractive-index engineering of a material. However, refractive indices of polymers fall within a relatively narrow range, leading to major efforts to develop both low- and high-refractive-index polymers. Polymer nanocomposites can expand the range of refractive indices by incorporating low- or high-refractive-index nanoscale materials. RIR-MAPLE is an excellent technique for depositing polymer-nanocomposite films in multilayer structures, which are essential to light-management coatings. In this paper, we report our efforts to engineer the refractive index of a barrier polymer by combining RIR-MAPLE of nanomaterials (for example, high refractive-index TiO2 nanoparticles) and RIR-PLD of host polymer. In addition, we report on the properties of organic and polymer films deposited by RIR-MAPLE and/or RIR-PLD, such as Alq3 [tris(8-hydroxyquinoline) aluminum] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)]. Finally, the challenges and potential for commercializing RIR-MAPLE/PLD, such as industrial scale-up issues, are discussed.

  4. Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc

    Directory of Open Access Journals (Sweden)

    J. R. M. Ferreira

    Full Text Available Abstract In the present study, hydroxyapatite and Zn-substituted hydroxyapatite powders were synthesized using ostrich eggshell as a calcium source. The samples were analyzed by scanning electron microscopy with field emission gun, and X-ray diffraction (XRD to identify the present phases, and X-ray fluorescence spectroscopy for quantitative chemical analysis of the synthesized and heat treated powders. The Fourier transform infrared spectroscopy technique was used before and after heat treatments at 700, 900 and 1100 °C in order to identify the functional groups present, as an additional technique to the XRD analysis. The results presented in this study represent a promising method for synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc, since the results showed no undesirable phases or impurities in the produced powders. It was observed that Zn-substituted hydroxyapatite showed higher thermal stability, when compared to pure hydroxyapatite.

  5. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    Science.gov (United States)

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  6. Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Crovetto, Andrea; Yan, Chang

    2017-01-01

    We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed. At the ......We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed...

  7. Excimer laser processing of inkjet-printed and sputter-deposited transparent conducting SnO2:Sb for flexible electronics

    International Nuclear Information System (INIS)

    Cranton, Wayne M.; Wilson, Sharron L.; Ranson, Robert; Koutsogeorgis, Demosthenes C.; Chi Kuangnan; Hedgley, Richard; Scott, John; Lipiec, Stephen; Spiller, Andrew; Speakman, Stuart

    2007-01-01

    The feasibility of low-temperature fabrication of transparent electrode elements from thin films of antimony-doped tin oxide (SnO 2 :Sb, ATO) has been investigated via inkjet printing, rf magnetron sputtering and post-deposition excimer laser processing. Laser processing of thin films on both glass and plastic substrates was performed using a Lambda Physik 305i excimer laser, with fluences in the range 20-100 mJ cm -2 reducing sheet resistance from as-deposited values by up to 3 orders of magnitude. This is consistent with TEM analysis of the films that shows a densification of the upper 200 nm of laser-processed regions

  8. CO 2 lasers to destroy defiance of nanobacteria

    Directory of Open Access Journals (Sweden)

    Jafar Kolahi

    2015-01-01

    Full Text Available Introduction: Nanobacteria are mysterious particles that have spurred one of the biggest controversies in modern microbiology. The apatite mineral around the nanobacteria serves as a primary defense shield against various chemicals and extremely harsh condition. It is combined with a very slow metabolism of nanobacteria. These two items would be the likely explanation for the sever resistance of nanobacteria. The Hypothesis: The CO 2 laser is a continuous wave gas laser and emits infrared light at 9,600-10,600 nm in an easily manipulated focused beam that is well absorbed by water and hydroxyapatite. Hence, it seems logical to postulate that CO 2 laser can be used successfully to destroy defensive external hydroxyapatite layer of nanobacteria. Evaluation of the Hypothesis: Main criticism with this hypothesis is differential radiation of nanobacteria. It is well known that CO 2 laser has high water absorption and consequently can cause unwanted damage to human host tissues.

  9. Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma.

    Science.gov (United States)

    Yanhua, Wang; Hao, Hang; Li, Yan; Zhang, Shengmin

    2016-04-01

    Absence of curative treatment creates urgent need for new strategies for unresectable hepatoma. Novel selenium-substituted hydroxyapatite nanoparticles (SeHAN) were designed to serve as anticancer agent. The authors examined the nanoparticles by physicochemical techniques. The in vivo efficacy and toxicity of these nanoparticles were also investigated on a nude mice model of human hepatocellular carcinoma. The results showed that the selenite ions can be incorporated into the hydroxyapatite lattice facilely. They exhibited bundles of needles shape with a size of 160-200 nm. In the in vivo study, they showed better survival advantage. The overall survival rate of nude mice in the control, pure hydroxyapatite and SeHAN group were 50.00%, 76.92%, and 100.00% respectively. Blood biochemical studies showed that SeHAN group had significantly lower toxicities on the liver and kidney functions. Histopathological studies confirmed that massive tumor necrosis and calcium deposition were evident after SeHAN treatment. Moreover, immunohistochemistry and Western blot assay showed significantly reduced expression of the Ki-67, VEGF and MMP-9 protein in the SeHAN group. Taken together, these results suggest that the selenium-substituted hydroxyapatite nanoparticles could be a new type of promising anticancer agent to provide both survival advantage and lower toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synergistic effect of fluoride and laser irradiation for the inhibition of the demineralization of dental enamel

    Science.gov (United States)

    Lee, Raymond; Chan, Kenneth H.; Jew, Jamison; Simon, Jacob C.; Fried, Daniel

    2017-02-01

    Both laser irradiation and fluoride treatment alone are known to provide increased resistance to acid dissolution. CO2 lasers tuned to a wavelength of 9.3 μm can be used to efficiently convert the carbonated hydroxyapatite of enamel to a much more acid resistant purer phase hydroxyapatite (HAP). Further studies have shown that fluoride application to HAP yields fluoroapatite (FAP) which is even more resistant against acid dissolution. Previous studies show that CO2 lasers and fluoride treatments interact synergistically to provide significantly higher protection than either method alone, but the mechanism of interaction has not been elucidated. We recently observed the formation of microcracks or a "crazed" zone in the irradiated region that is resistant to demineralization using high-resolution microscopy. The microcracks are formed due to the slight contraction of enamel due to transformation of carbonated hydroxyapatite to the more acid resistant pure phase hydroxyapatite (HAP) that has a smaller lattice. In this study, we test the hypothesis that these small cracks will provide greater adhesion for topical fluoride for greater protection against acid demineralization.

  11. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.

    Science.gov (United States)

    Shanmugavel, Suganya; Reddy, Venugopal Jayarama; Ramakrishna, Seeram; Lakshmi, B S; Dev, Vr Giri

    2014-07-01

    Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Highly Sensitive TGA Diagnosis of Thermal Behaviour of Laser-Deposited Materials

    Czech Academy of Sciences Publication Activity Database

    Galíková, Anna; Pola, Josef

    2008-01-01

    Roč. 473, 1-2 (2008), s. 54-60 ISSN 0040-6031 R&D Projects: GA AV ČR IAA400720619 Institutional research plan: CEZ:AV0Z40720504 Keywords : thermogravimetry * laser-deposited materials * mass spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.659, year: 2008

  13. Laser deposition and direct-writing of thermoelectric misfit cobaltite thin films

    Science.gov (United States)

    Chen, Jikun; Palla-Papavlu, Alexandra; Li, Yulong; Chen, Lidong; Shi, Xun; Döbeli, Max; Stender, Dieter; Populoh, Sascha; Xie, Wenjie; Weidenkaff, Anke; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2014-06-01

    A two-step process combining pulsed laser deposition of calcium cobaltite thin films and a subsequent laser induced forward transfer as micro-pixel is demonstrated as a direct writing approach of micro-scale thin film structures for potential applications in thermoelectric micro-devices. To achieve the desired thermo-electric properties of the cobaltite thin film, the laser induced plasma properties have been characterized utilizing plasma mass spectrometry establishing a direct correlation to the corresponding film composition and structure. The introduction of a platinum sacrificial layer when growing the oxide thin film enables a damage-free laser transfer of calcium cobaltite thereby preserving the film composition and crystallinity as well as the shape integrity of the as-transferred pixels. The demonstrated direct writing approach simplifies the fabrication of micro-devices and provides a large degree of flexibility in designing and fabricating fully functional thermoelectric micro-devices.

  14. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    Science.gov (United States)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  15. Nano-particle doped hydroxyapatite material evaluation using spectroscopic polarization sensitive optical coherence tomography

    Science.gov (United States)

    Strąkowska, Paulina; Trojanowski, Michał; Gardas, Mateusz; Głowacki, Maciej J.; Kraszewski, Maciej; Strąkowski, Marcin R.

    2015-03-01

    Bio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp. In order to achieve this, we propose to use Optical Coherence Tomography (OCT) for non-destructive and non-invasive evaluation. Our system works in the IR spectrum range, which is helpful due to the wide range of nanocomposites being opaque in the VIS range. In order to use our method we need to measure two samples, one which is a reference HAp solution and second: a similar HAp solution with nanoparticles introduced inside. We use silver nanoparticles below 300 nm. The aim of this research is to analyze the concentration and dispersion of nanodopants in the bio-ceramic matrix. Furthermore, the quality of the HAp coating and deposition process repetition have been monitored. For this purpose the polarization sensitive OCT with additional spectroscopic analysis is being investigated. Despite the other methods, which are suitable for nanocomposite materials evaluation, the OCT with additional features seems to be one of the few which belong to the NDE/NDT group. Here we are presenting the OCT system for evaluation of the HAp with nano-particles, as well as HAp manufacturing process. A brief discussion on the usefulness of OCT for bio-ceramics materials examination is also being presented.

  16. The Influence of the Powder Stream on High-Deposition-Rate Laser Metal Deposition with Inconel 718

    Directory of Open Access Journals (Sweden)

    Chongliang Zhong

    2017-10-01

    Full Text Available For the purpose of improving the productivity of laser metal deposition (LMD, the focus of current research is set on increasing the deposition rate, in order to develop high-deposition-rate LMD (HDR-LMD. The presented work studies the effects of the powder stream on HDR-LMD with Inconel 718. Experiments have been designed and conducted by using different powder feeding nozzles—a three-jet and a coaxial powder feeding nozzle—since the powder stream is mainly determined by the geometry of the powder feeding nozzle. After the deposition trials, metallographic analysis of the samples has been performed. The laser intensity distribution (LID and the powder stream intensity distribution (PID have been characterized, based on which the processes have been simulated. Finally, for verifying and correcting the used models for the simulation, the simulated results have been compared with the experimental results. Through the conducted work, suitable boundary conditions for simulating the process with different powder streams has been determined, and the effects of the powder stream on the process have also been determined. For a LMD process with a three-jet nozzle a substantial part of the powder particles that hit the melt pool surface are rebounded; for a LMD process with a coaxial nozzle almost all the particles are caught in the melt pool. This is due to the different particle velocities achieved with the two different nozzles. Moreover, the powder stream affects the heat exchange between the heated particles and the melt pool: a surface boundary condition applies for a powder stream with lower particle velocities, in the experiment provided by a three-jet nozzle, and a volumetric boundary condition applies for a powder stream with higher particle velocities, provided by a coaxial nozzle.

  17. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Wee-Ong; Lee, Wai-Keat; Wong, Hin-Yong; Tou, Teck-Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-12-15

    In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets. (orig.)

  18. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

    International Nuclear Information System (INIS)

    Siew, Wee-Ong; Lee, Wai-Keat; Wong, Hin-Yong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets. (orig.)

  19. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    International Nuclear Information System (INIS)

    Perez, J A; Riascos, H; Caicedo, J C; Cabrera, G; Yate, L

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser (λ = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  20. Optical Properties Dependence with Gas Pressure in AlN Films Deposited by Pulsed Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J A; Riascos, H [Departamento de Fisica, Universidad Tecnologica de Pereira, Grupo plasma Laser y Aplicaciones A.A 097 (Colombia); Caicedo, J C [Grupo pelIculas delgadas, Universidad del Valle, Cali (Colombia); Cabrera, G; Yate, L, E-mail: jcaicedoangulo@gmail.com [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain)

    2011-01-01

    AlN films were deposited by pulsed laser deposition technique (PLD) using an Nd: YAG laser ({lambda} = 1064 nm). The films were deposited in a nitrogen atmosphere as working gas; the target was an aluminum high purity (99.99%). The films were deposited with a laser fluence of 7 J/cm2 for 10 minutes on silicon (100) substrates. The substrate temperature was 300 deg. C and the working pressure was varied from 3 mtorr to 11 mtorr. The thickness measured by profilometer was 150 nm for all films. The crystallinity was observed via XRD pattern, the morphology and composition of the films were studied using scanning electron microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), respectively. The optical reflectance spectra and color coordinates of the films were obtained by optical spectral reflectometry technique in the range of 400 cm-1- 900 cm-1 by an Ocean Optics 2000 spectrophotometer. In this work, a clear dependence of the reflectance, dominant wavelength and color purity was found in terms of the applied pressure to the AlN films. A reduction in reflectance of about 55% when the pressure was increased from 3 mtorr to 11 mtorr was observed. This paper deals with the formation of AlN thin films as promising materials for the integration of SAW devices on Si substrates due to their good piezoelectric properties and the possibility of deposition at low temperature compatible with the manufacturing of Si integrated circuits.

  1. Effect of scanning speed on laser deposited 17-4PH stainless steel

    CSIR Research Space (South Africa)

    Bayode, A

    2017-02-01

    Full Text Available Laser metal deposition (LMD) is one of the additive manufacturing technologies that is used in the production of fully dense parts layer by layer. This innovative manufacturing process has the potential to reduce the weight, time and cost...

  2. Silver-doped layers of implants prepared by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Kocourek, Tomáš; Jelínek, Miroslav; Mikšovský, Jan; Jurek, Karel; Čejka, Z.; Kopeček, Jaromír

    2013-01-01

    Roč. 1, č. 7 (2013), s. 59-61 ISSN 2327-5219 R&D Projects: GA AV ČR KAN300100801 Institutional support: RVO:68378271 Keywords : thin layer * silver * titanium alloy * steel * pulsed laser deposition * adhesion * implant Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scirp.org/journal/PaperInformation.aspx?paperID=40308#.UvECAfu5dHA

  3. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao; Shen Ji

    2011-01-01

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  4. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China); Shen Ji, E-mail: shenji@ustc.edu.c [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2011-02-15

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  5. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati

    2017-09-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  6. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati; Jiang, Qiu; Kurra, Narendra; Buttner, Ulrich; Wang, Xianbin; Alshareef, Husam N.

    2017-01-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  7. Deposition of zinc oxide thin films by reactive pulsed laser ablation

    Czech Academy of Sciences Publication Activity Database

    Bílková, Petra; Zemek, Josef; Mitu, B.; Marotta, V.; Orlando, S.

    2006-01-01

    Roč. 252, - (2006), s. 4604-4609 ISSN 0169-4332 Grant - others:NATO-CNR Outreach Fellowships Programm 2001(XE) 219.34 Institutional research plan: CEZ:AV0Z10100521 Keywords : reactive pulsed laser deposition * zinc oxide * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.436, year: 2006

  8. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  9. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.

    Science.gov (United States)

    Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2014-07-01

    The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.

  10. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    Science.gov (United States)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  11. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.

    Science.gov (United States)

    Samuel, Sonia; Nag, Soumya; Nasrazadani, Seifollah; Ukirde, Vaishali; El Bouanani, Mohamed; Mohandas, Arunesh; Nguyen, Kytai; Banerjee, Rajarshi

    2010-09-15

    While direct metal deposition of metallic powders, via laser deposition, to form near-net shape orthopedic implants is an upcoming and highly promising technology, the corrosion resistance and biocompatibility of such novel metallic biomaterials is relatively unknown and warrants careful investigation. This article presents the results of some initial studies on the corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys. These new generation beta titanium alloys are promising due to their low elastic modulus as well as due the fact that they comprise of completely biocompatible alloying elements. The results indicate that the corrosion resistance of these laser-deposited alloys is comparable and in some cases even better than the currently used commercially-pure (CP) titanium (Grade 2) and Ti-6Al-4V ELI alloys. The in vitro studies indicate that the Ti-Nb-Zr-Ta alloys exhibit comparable cell proliferation but enhanced cell differentiation properties as compared with Ti-6Al-4V ELI. (c) 2010 Wiley Periodicals, Inc.

  12. Functionally Graded Materials by Laser Metal Deposition (PREPRINT)

    Science.gov (United States)

    2010-03-01

    composition of Fe-82 wt% V (powder-1) and Inconel - 625 (powder-2) powders are listed in Table 1. The substrate materials used for the experiment were cold...like laser power, travel speed and powder feed rate is yet to be determined to obtain a successful FGM. Inconel - 625 deposits showed macro-cracks...Composition (wt%) Powder-1: Fe-82 wt% V V (82), Al (0.68), Si (0.9), C (0.07), S (0.01), P (0.02), Fe (18) Powder-2: Inconel - 625 Ni (58), Cr (20-23

  13. Characterization of ultra-fast deposited polycrystalline graphite by a CO{sub 2} laser-assisted combustion-flame method

    Energy Technology Data Exchange (ETDEWEB)

    McKindra, Travis, E-mail: mckindra@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Patil, Sandeep; O' Keefe, Matthew J. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Han Yaoxuan; Ling Hao; Lu Yongfeng [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2009-02-15

    High deposition rate, 750 {mu}m/min, crystalline graphite was deposited on WC substrates by a CO{sub 2} laser-assisted combustion-flame method at laser powers between 300 and 800 W. The structures, which were identified as pillars, were characterized by various methods. The pillars were cylindrical in shape and grew to a size of approximately 3 mm in length and in a few minutes. The laser power did not affect the overall length of the pillar, but caused changes in the physical shape. X-ray and electron diffraction results revealed the pillars to be crystalline graphite regardless of the laser power. Investigation of the pillars by scanning electron microscopy showed two distinct microstructural areas: an inner core of dense material surrounded by an outer shell of lamellar-like material. The core/shell microstructure was unaffected by the level of CO{sub 2} laser power.

  14. The possibilities of atmospheric plasma-spraying application to obtain hydroxyapatite coatings on the stainless steel samples

    Directory of Open Access Journals (Sweden)

    Mihailović Marija D.

    2013-01-01

    Full Text Available For decades, the standard metallic materials for hip implants, besides the 316LVM stainless steel, were titanium- and cobalt/chromium-based alloys. Although bioinert, due to their corrosion resistance, they are not biocompatible. Contemporary surgical implants are not made just of bioinert metal anymore, but with deposited bioactive hydroxyapatite (HAp coating. Hydroxyapatite is chemically identical with the mineral constituent of bones and teeth, what besides its biocompatibility provides bioactivity as well. The HAp limitations are, however, weak tensile strength and low fatigue resistance for long term loadings, if used alone. This is the reason for HAp to be deposited onto the surgical implant, and to enable its bioactivity, what means intergrowth with bones, and therefore the long-lasting and mechanical stable non-cemented prosthesis. This is important predominantly because the need for such prostheses for younger population, and a better life quality. There are several contemporary techniques that have been used for deposition of these coatings onto the metal implant. The possibilities of atmospheric plasma-spraying for obtaining the stable HAp coatings on the 316LVM stainless steel, ordinary used as a standard material for hip implants production are presented in this paper. The coatings of a commercially available hydroxyapatite powder were plasma-sprayed onto the specimens of medical grade 316LVM stainless steel under various operating conditions. The optical microscopy was used for microstructure and porosity characterization, while coating morphology and Ca/P ratio were analyzed using SEM equipped with EDX. Coating microstructure varied from a porous to a glassy structure, depending on operating conditions applied and coating thickness. Coating porosity was determined to be at the lower required limit requested for the bone-coating intergrowth possibility, but nevertheless adhesion measurements showed good results. The Ca/P ratio was

  15. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    Science.gov (United States)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  16. Effects of laser energy fluence on the onset and growth of the Rayleigh–Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility

    International Nuclear Information System (INIS)

    Mahmood, S.; Rawat, R. S.; Wang, Y.; Lee, S.; Tan, T. L.; Springham, S. V.; Lee, P.; Zakaullah, M.

    2012-01-01

    The effect of laser energy fluence on the onset and growth of Rayleigh–Taylor (RT) instabilities in laser induced Fe plasma is investigated using time-resolved fast gated imaging. The snow plow and shock wave models are fitted to the experimental results and used to estimate the ablation parameters and the density of gas atoms that interact with the ablated species. It is observed that RT instability develops during the interface deceleration stage and grows for a considerable time for higher laser energy fluence. The effects of RT instabilities formation on the surface topography of the Fe thin films grown in pulsed laser deposition system are investigated (i) using different laser energy fluences for the same wavelength of laser radiation and (ii) using different laser wavelengths keeping the energy fluence fixed. It is concluded that the deposition achieved under turbulent condition leads to less smooth deposition surfaces with bigger sized particle agglomerates or network.

  17. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    Science.gov (United States)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  18. Ultrashort Pulsed Laser Ablation of Magnesium Diboride: Plasma Characterization and Thin Films Deposition

    Directory of Open Access Journals (Sweden)

    Angela De Bonis

    2015-01-01

    Full Text Available A MgB2 target has been ablated by Nd:glass laser with a pulse duration of 250 fs. The plasma produced by the laser-target interaction, showing two temporal separated emissions, has been characterized by time and space resolved optical emission spectroscopy and ICCD fast imaging. The films, deposited on silicon substrates and formed by the coalescence of particles with nanometric size, have been analyzed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The first steps of the films growth have been studied by Transmission Electron Microscopy. The films deposition has been studied by varying the substrate temperature from 25 to 500°C and the best results have been obtained at room temperature.

  19. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    International Nuclear Information System (INIS)

    Park, Joong-Hyun; Han, Sang-Myeon; Park, Sang-Geun; Han, Min-Koo; Shin, Moon-Young

    2006-01-01

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiN X ) and silicon dioxide (SiO 2 ), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,λ=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiN X buffer layer is wider than SiO 2 and the maximum grain size slightly increased

  20. Fabrication and Physical Properties of Titanium Nitride/Hydroxyapatite Composites on Polyether Ether Ketone by RF Magnetron Sputtering Technique

    Science.gov (United States)

    Nupangtha, W.; Boonyawan, D.

    2017-09-01

    Titanium nitride (TiN) coatings have been used very successfully in a variety of applications because of their excellent properties, such as the high hardness meaning good wear resistance and also used for covering medical implants. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. This paper aims to explain how to optimize deposition conditions for films synthesis on PEEK by varying sputtering parameters such as nitrogen flow rate and direction, deposition time, d-s (target-to-substrate distance) and 13.56 MHz RF power. The plasma conditions used to deposit films were monitored by the optical emission spectroscopy (OES). Titanium nitride/Hydroxyapatite composite films were performed by gas mixture with nitrogen and argon ratio of 1:3 and target-to-substrate distance at 8 cm. The gold colour, as-deposited film was found on PEEK with high hardness and higher surface energy than uncoated PEEK. X-ray diffraction characterization study was carried to study the crystal structural properties of these composites.

  1. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation

    Science.gov (United States)

    Agarwal, N. R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R. C.; Trusso, S.; Ossi, P. M.

    2014-10-01

    Nanostructured Au and Ag thin films were obtained by nanosecond pulsed laser ablation in presence of a controlled Ar atmosphere. Keeping constant other deposition parameters such as target-to-substrate distance, incidence angle, laser wavelength and laser fluence, the film morphology, revealed by SEM, ranges from isolated NPs to island structures and sensibly depends on gas pressure (10-100 Pa) and on the laser pulse number (500-3 × 10). The control of these two parameters allows tailoring the morphology and correspondingly the optical properties of the films. The position and width of the surface plasmon resonance peak, in fact, can be varied with continuity. The films showed remarkable surface-enhanced Raman activity (SERS) that depends on the adopted deposition conditions. Raman maps were acquired on micrometer-sized areas of both silver and gold substrates selected among those with the strongest SERS activity. Organic dyes of interest in cultural heritage studies (alizarin, purpurin) have been also considered for bench marking the substrates produced in this work. Also the ability to detect the presence of biomolecules was tested using lysozyme in a label free configuration.

  2. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Dhlamini, M.S.; Terblans, J.J.; Ntwaeaborwa, O.M.; Ngaruiya, J.M.; Hillie, K.T.; Botha, J.R.; Swart, H.C.

    2008-01-01

    Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO 2 ) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar + laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 deg. C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures

  3. Elimination of impurity phase formation in FePt magnetic thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Ying; Medwal, Rohit; Sehdev, Neeru; Yadian, Boluo; Tan, T.L.; Lee, P.; Talebitaher, A.; Ilyas, Usman; Ramanujan, R.V.; Huang, Yizhong; Rawat, R.S.

    2014-01-01

    The formation of impurity phases in FePt thin films severely degrades its magnetic properties. The X-ray diffraction patterns of FePt thin films, synthesized using pulsed laser deposition (PLD), showed peaks corresponding to impurity phases, resulting in softer magnetic properties. A systematic investigation was carried to determine the factors that might have led to impurity phase formation. The factors include (i) PLD target composition, (ii) substrate material, (iii) annealing parameters such as temperature, duration and ambience and (iv) PLD deposition parameters such as chamber ambience, laser energy fluence and target–substrate distance. Depositions on the different substrates revealed impurity phase formation only on Si substrates. It was found that the target composition, PLD chamber ambience, and annealing ambience were not the factors that caused the impurity phase formation. The annealing temperature and duration influenced the impurity phases, but are not the cause of their formation. A decrease in the laser energy fluence and increase of the target–substrate distance resulted in elimination of the impurity phases and enhancement in the magnetic and structural properties of FePt thin films. The energy of the ablated plasma species, controlled by the laser energy fluence and the target–substrate distance, is found to be the main factor responsible for the formation of the impurity phases.

  4. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    OpenAIRE

    Meilkhova, O.; Čížek, J.; Lukáč,, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    ZnO films with thickness of ~80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects...

  5. Pulsed Laser Deposition of BaTiO3 Thin Films on Different Substrates

    Directory of Open Access Journals (Sweden)

    Yaodong Yang

    2010-01-01

    Full Text Available We have studied the deposition of BaTiO3 (BTO thin films on various substrates. Three representative substrates were selected from different types of material systems: (i SrTiO3 single crystals as a typical oxide, (ii Si wafers as a semiconductor, and (iii Ni foils as a magnetostrictive metal. We have compared the ferroelectric properties of BTO thin films obtained by pulsed laser deposition on these diverse substrates.

  6. Structure and properties of TiC, VC, and TiC/VC thin films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1996-01-01

    A study has been conducted on the mechanical, tribological and chemical properties of pulsed laser deposited (PLD) TiC, VC and TiC/VC thin films. The TiC films were deposited at 375 C and 5 mTorr Ar, while the TiC/VC films were deposited from a composite target at 475 C at pressures of base vacuum and 50 mTorr Ar. XRD analysis revealed the films had the expected B1 structure, although XPS analysis showed a significant oxygen content. Tribological studies were conducted using a ball-on-disk test, and the wear behavior depended on the surface condition and film composition. One TiC/VC film exhibited little wear but caused significant ball wear, indicating mixed carbide films are promising candidates for wear-resistant coatings

  7. The microstructural and in vitro characteristics of hydroxyapatite coating fabricated using Nd-YAG laser

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2015-03-01

    Full Text Available Hydroxyapatite (HAP) is the most researched calcium phosphate material in the field of biomaterials to be used for bone re-engineering applications; given its attractive properties. Plasma spraying is the best available industrial method that can...

  8. TECHNOLOGICAL ADVANCEMENT OF DEPOSIT WELDING AND GAS LASER CUTTING TO INCREASE THE EFFICIENCY OF THE BIMETALLIC TOOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Burlachenko Oleg Vasil’evich

    2017-08-01

    Full Text Available Deposit welding is the application of a layer of metal on the surface of a product using fusion welding. In this paper, we consider the method of improving the technology of gas laser cutting, which makes it possible to achieve a high productivity of manufacturing a bimetallic tool. The present paper is concerned with the advantages of gas laser cutting which allows to consider this particular process of separating materials as highly-productive, low-waste, and advanced method of removing allowances of weld-deposit high-speed steel on the working surfaces of bimetallic tool. Urgency of the use of deposit welding and gas laser cutting to improve the efficiency of production of bimetallic tool is shown. The comparative analysis of gas-laser cutting and other cutting methods is given according to the geometrical parameters of cutting and surface quality. Analysis of the results of experimental studies has confirmed the high technological attractiveness and economic efficiency of manufacturing composite structures of punches and matrices when applying deposit welding of cutting parts with high-speed steels. The cost of dimensional processing of the welded cutting part is reduced by 4 to 6 times, while the manufacturing time is reduced by 6 to 12 times.

  9. Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns

    Science.gov (United States)

    Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing

    2017-05-01

    An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.

  10. Study of liquid deposition during laser printing of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Duocastella, M.; Patrascioiu, A. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Dinca, V. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); National Institute for Lasers, Plasma and Radiation Physics, Atomistilor No. 409, PO Box MG 16, 077125 Bucharest (Romania); Fernandez-Pradas, J.M.; Morenza, J.L. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Serra, P., E-mail: pserra@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-04-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  11. Study of liquid deposition during laser printing of liquids

    International Nuclear Information System (INIS)

    Duocastella, M.; Patrascioiu, A.; Dinca, V.; Fernandez-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2011-01-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  12. Fabrication of thin film CZTS solar cells with Pulsed Laser Deposition

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo

    behind the Quantum Efficiency (QE) curve. What do I learn by reading this thesis? You will learn how to deposit a thin film CZTS absorber layer with Pulsed Laser Deposition with the desired composition. In addition, you will see how material transfer in PLD, which is generally believed...... to be stoichiometric, can be very much non-stoichiometric. How to do it? I suggest to do PLD on a single sintered target (2CuS:ZnS:SnS) .The films are deposited at room temperature and then annealed in a furnace with some sulfur powder aside. The annealing step is as important as the PLD step to the final device...... the non-equilibrium properties of PLD for the production of CZTS films. This may enable one to deposit crystalline CZTS at lower substrate temperature, with no requirement for an annealing step afterwards. Preliminary results do not seem too encouraging. The main obstacle to this approach may...

  13. Microstructure and Mechanical Properties of Laser Melting Deposited GH4169 Superalloy

    Directory of Open Access Journals (Sweden)

    DU Bo-rui

    2017-01-01

    Full Text Available The block samples of a Ni-based superalloy named GH4169 were prepared by laser melting deposited method using the corresponding GH4169 alloy powders,and then were heat treated with solution treatment followed by double aging.The microstructure and element segregation analysis of both as-deposited and heat treated samples were studied by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS.The microhardness as well as tensile properties at room and elevated temperatures were tested.The results indicate that the microstructure of as-deposited sample mainly consists of columnar dendritic crystals that grow along with different directions.Grains are refined after solution and aging heat treatment,but remain dendritic crystals substructure inside.Compared with the as-deposited sample,the microhardness and tensile strength of the heat treated sample increase substantially,but the plasticity somewhat decreases.Nonetheless the tensile properties are superior to the standard values of forgings.The fracture surface exhibits ductile transcrystalline fracture mode.

  14. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    International Nuclear Information System (INIS)

    Pan Mingli; Kong Xiangdong; Cai Yurong; Yao Juming

    2011-01-01

    Research highlights: → Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. → The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. → Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  15. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Pan Mingli [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kong Xiangdong [College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yao Juming, E-mail: yaoj@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2011-04-15

    Research highlights: {yields} Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. {yields} The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. {yields} Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  16. TC17 titanium alloy laser melting deposition repair process and properties

    Science.gov (United States)

    Liu, Qi; Wang, Yudai; Zheng, Hang; Tang, Kang; Li, Huaixue; Gong, Shuili

    2016-08-01

    Due to the high manufacturing cost of titanium compressor blisks, aero engine repairing process research has important engineering significance and economic value. TC17 titanium alloy is a rich β stable element dual α+β phase alloy whose nominal composition is Ti-5Al-2Sn-2Zr-4Mo-4Cr. It has high mechanical strength, good fracture toughness, high hardenability and a wide forging-temperature range. Through a surface response experiment with different laser powers, scanning speeds and powder feeding speeds, the coaxial powder feeding laser melting deposition repair process is studied for the surface circular groove defects. In this paper, the tensile properties, relative density, microhardness, elemental composition, internal defects and microstructure of the laser-repaired TC17 forging plate are analyzed. The results show that the laser melting deposition process could realize the form restoration of groove defect; tensile strength and elongation could reach 1100 MPa and 10%, which could reach 91-98% that of original TC17 wrought material; with the optimal parameters (1000 W-25 V-8 mm/s), the microhardness of the additive zone, the heat-affected zone and base material is evenly distributed at 370-390 HV500. The element content difference between the additive zone and base material is less than ±0.15%. Due to the existence of the pores 10 μm in diameter, the relative density could reach 99%, which is mainly inversely proportional to the powder feeding speed. The repaired zone is typically columnar and dendrite crystal, and the 0.5-1.5 mm-deep heat-affected zone in the groove interface is coarse equiaxial crystal.

  17. Yttria and ceria doped zirconia thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saporiti, F.; Juarez, R. E., E-mail: cididi@fi.uba.ar [Grupo de Materiales Avanzados, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Audebert, F. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Boudard, M. [Laboratoire des Materiaux et du Genie Physique (CNRS), Grenoble (France)

    2013-11-01

    The Yttria stabilized Zirconia (YSZ) is a standard electrolyte for solid oxide fuel cells (SOFCs), which are potential candidates for next generation portable and mobile power sources. YSZ electrolyte thin films having a cubic single phase allow reducing the SOFC operating temperature without diminishing the electrochemical power density. Films of 8 mol% Yttria stabilized Zirconia (8YSZ) and films with addition of 4 weight% Ceria (8YSZ + 4CeO{sub 2}) were grown by pulsed laser deposition (PLD) technique using 8YSZ and 8YSZ + 4CeO{sub 2} targets and a Nd-YAG laser (355 nm). Films have been deposited on Soda-Calcia-Silica glass and Si(100) substrates at room temperature. The morphology and structural characteristics of the samples have been studied by means of X-ray diffraction and scanning electron microscopy. Films of a cubic-YSZ single phase with thickness in the range of 1-3 Micro-Sign m were grown on different substrates (author)

  18. 3D Laser Imprint Using a Smoother Ray-Traced Power Deposition Method

    Science.gov (United States)

    Schmitt, Andrew J.

    2017-10-01

    Imprinting of laser nonuniformities in directly-driven icf targets is a challenging problem to accurately simulate with large radiation-hydro codes. One of the most challenging aspects is the proper construction of the complex and rapidly changing laser interference structure driving the imprint using the reduced laser propagation models (usually ray-tracing) found in these codes. We have upgraded the modelling capability in our massively-parallel fastrad3d code by adding a more realistic EM-wave interference structure. This interference model adds an axial laser speckle to the previous transverse-only laser structure, and can be impressed on our improved smoothed 3D raytrace package. This latter package, which connects rays to form bundles and performs power deposition calculations on the bundles, is intended to decrease ray-trace noise (which can mask or add to imprint) while using fewer rays. We apply this improved model to 3D simulations of recent imprint experiments performed on the Omega-EP laser and the Nike laser that examined the reduction of imprinting due to very thin high-Z target coatings. We report on the conditions in which this new model makes a significant impact on the development of laser imprint. Supported by US DoE/NNSA.

  19. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  20. Hydroxyapatite synthesis using EDTA

    Science.gov (United States)

    Kang, Nak Heon; Kim, Soon Je; Song, Seung Han; Choi, Sang mun; Choi, Sik Young; Kim, Youn Jung

    2013-01-01

    Bone comprises structure of body and is consisted of inorganic substances. It exists in an organic structure in the body. Even though it is firm and has self healing mechanism, it can be damaged by trauma, cancer, or bone diseases. Allograft can be an alternative solution for autologous bone graft. Hydroxyapatite(Ca10(PO4)6(OH)2), an excellent candidate for allograft, can be applied to bone defect area. There are several methods to produce hydroxyapatite, however economical cost and time consuming make the production difficult. In this study we synthesized the hydroxyapatite with Ethyenediamine tetraacetic acid. Freeze Dried Bone Allograft(Hans Biomed) was used to be a control group. Synthesized hydroxyapatite was a rod shape, white powdery type substance with 2 ~ 5 μm length and 0.5 ~ 1 μm width. X-ray diffraction showed the highest sharp peak at 32° and high peaks at 25.8°, 39.8°, 46.8°, 49.5°, and 64.0° indicating a similar substance to the freeze Dried Bone Allograft. 3 days after the cell growth of synthesized hydroxyapatite showed 1.5 fold more than the Bone Allograft. Cellular and media alkaline phosphate activity increased similar to the bone alloagraft. In this study we came up with a new method to produce the hydroxyapatite. It is a convenient method that can be held in room temperature and low pressure. Also the the product can be manufactured in large quantity. It can be also transformed into scaffold structure which will perform a stronger configuration. The manufacturing method will help the bony defect patients and make future medical products. PMID:23714942