WorldWideScience

Sample records for laser cooled atomic

  1. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  2. Laser cooling of atoms and ions

    International Nuclear Information System (INIS)

    Morigi, G.

    1999-02-01

    This thesis covers my work in the field of theoretical quantum optics, focusing on laser cooling of trapped atoms and ions. Laser cooling has been extensively investigated in the last twenty years, opening the possibility in experiments to move well into the quantum regime, where quantum statistical or quantum motional effects become pronounced. The successful preparation of cold atoms by means of laser cooling has recently raised the interest in the preparation of several or even many particles in a pure quantum state of the whole system. This goal imposes certain experimental circumstances, in particular the interaction between the atoms may play a significant role and affect the conditions for laser cooling considerably. Hence, there is great interest in developing cooling schemes which are compatible with such experimental conditions and in studying theoretically laser cooling of interacting particles. The work contained in this thesis contributes to this rapidly developing field, and it can be divided in two parts. In the first part, it presents an investigation of new schemes of laser cooling of single atoms or ions in traps where the amplitude of the particle's motion is comparable with the laser wavelength. This regime is typical of experiments with ultracold, weakly interacting atomic gases, and equally relevant to quantum information processing with trapped ions. In the second part, laser cooling of strongly interacting ions in a trap is investigated, with particular attention to the effect of the Coulomb interaction on the cooling process. This system is a paradigm for the experimental implementation of a quantum computer and is currently intensively studied. The thesis is divided into five chapters, of which the first one constitutes an introduction to laser cooling and to a series of concepts which are recurrent throughout this work. The other four chapters present my personal contributions to the field. Each of them contains first a general

  3. Experiments with a laser cooled cloud of atoms

    International Nuclear Information System (INIS)

    Natarajan, Vasant; Banerjee, Ayan; Rapol, Umakant

    1999-01-01

    We discuss two experiments that can be performed using a cloud of laser-cooled and trapped atoms, namely Bose-Einstein condensation (BEC) and search for a permanent Electric Dipole Moment (EDM). BEC can be observed in Rb atoms in a magnetic trap by using forced evaporative cooling to continuously lower the temperature below the condensation limit. The cloud is cooled by preferentially ejecting the hottest atoms from a magnetic trap. The magnetic trap is loaded with laser-cooled atoms from a magneto-optic trap. The EDM experiment can be performed with a laser-cooled cloud of Yb atoms. The atoms are spin polarized and the precession of the spin is measured in the presence of a strong electric field applied perpendicular to the spin direction. The use of laser-cooled atoms should greatly enhance the sensitivity of the experiment. (author)

  4. Laser-Cooled Ions and Atoms in a Storage Ring

    International Nuclear Information System (INIS)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M.

    2003-01-01

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting 9 Be + beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of 12 C 6+ ions.

  5. Laser-Cooled Ions and Atoms in a Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M., E-mail: m.weidemueller@mpi-hd.mpg.de [Max-Planck-Insitut fuer Kernphysik (Germany)

    2003-03-15

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting {sup 9}Be{sup +} beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of {sup 12}C{sup 6+} ions.

  6. Laser cooling and trapping of atoms

    International Nuclear Information System (INIS)

    Chu, S.

    1995-01-01

    The basic ideas of laser cooling and atom trapping will be discussed. These techniques have applications in spectroscopy, metrology, nuclear physics, biophysics, geophysics, and polymer science. (author)

  7. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    International Nuclear Information System (INIS)

    Kim, Jae-Ihn

    2009-01-01

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λ ω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment

  8. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  9. The beginnings of our research on the laser cooling of atomic gases

    International Nuclear Information System (INIS)

    Wang Yuzhu

    2011-01-01

    Reminiscences of the beginning of our research on the laser cooling of atomic gases are recounted, describing what motivated us to progress from atomic clocks to laser cooling. At the beginning, we pondered upon the mechanism of laser cooling, such as the cooling of atoms in red shifted diffuse light in an integrating sphere and using light frequency shifting (the A.C. Stark effect). A description of the atomic beam experimental equipment in our lab, which was used in laser cooling, is given, and some experimental results that we obtained are displayed. Finally, we summarize our experiences and lessons learnt. In looking back on our arduous beginnings, we cherish the present, and look forward to a bright future. (authors)

  10. Sub-Doppler laser cooling of potassium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Landini, M. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Dipartimento di fisica, Universita di Trento, I-38123 Povo (Trento) (Italy); Roy, S.; Carcagni, L.; Trypogeorgos, D. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); Fattori, M.; Inguscio, M.; Modugno, G. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy)

    2011-10-15

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25{+-}3 {mu}K and 47{+-}5 {mu}K in high-density samples of the two isotopes {sup 39}K and {sup 41}K, respectively. Our findings should find application to other atomic systems.

  11. Sub-Doppler laser cooling of potassium atoms

    International Nuclear Information System (INIS)

    Landini, M.; Roy, S.; Carcagni, L.; Trypogeorgos, D.; Fattori, M.; Inguscio, M.; Modugno, G.

    2011-01-01

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25±3 μK and 47±5 μK in high-density samples of the two isotopes 39 K and 41 K, respectively. Our findings should find application to other atomic systems.

  12. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  13. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  14. Laser-cooling and electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.; Migdall, A.L.; Metcalf, H.J.

    1986-01-01

    Until recently it has been impossible to confine and trap neutral atoms using electromagnetic fields. While many proposals for such traps exist, the small potential energy depth of the traps and the high kinetic energy of available atoms prevented trapping. We review various schemes for atom trapping, the advances in laser cooling of atomic beams which have now made trapping possible, and the successful magnetic trapping of cold sodium atoms

  15. Optimization of transfer of laser-cooled atom cloud to a quadrupole ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology,. Indore 452 013 ... Laser cooling; optical molasses; double-MOT; magnetic trapping; phase-space density. PACS Nos 52.55. ... this method, the transfer of laser-cooled atom cloud to magnetic trap is an important step,.

  16. Ultimate temperature for laser cooling of two-level neutral atoms

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Zilio, S.C.

    1989-01-01

    We present a simple pedagogical method to evaluate the minimum attainable temperature for laser cooling of two-level neutral atoms. Results are given as a function of the laser detuning and intensity. We also discuss the use of this approach to predict the minimum temperature of neutral atoms confined in magnetic traps. (author) [pt

  17. Secondary laser cooling of strontium-88 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Strelkin, S. A.; Khabarova, K. Yu., E-mail: kseniakhabarova@gmail.com; Galyshev, A. A.; Berdasov, O. I.; Gribov, A. Yu.; Kolachevsky, N. N.; Slyusarev, S. N. [Federal State Unitary Enterprise “All-Russia Research Institute for Physicotechnical and Radio Engineering Measurements” (VNIIFTRI) (Russian Federation)

    2015-07-15

    The secondary laser cooling of a cloud of strontium-88 atoms on the {sup 1}S{sub 0}–{sup 3}P{sub 1} (689 nm) intercombination transition captured into a magneto-optical trap has been demonstrated. We describe in detail the recapture of atoms from the primary trap operating on the strong {sup 1}S{sub 0}–{sup 1}P{sub 1} (461 nm) transition and determine the recapture coefficient κ, the number of atoms, and their temperature in the secondary trap as a function of experimental parameters. A temperature of 2 µK has been reached in the secondary trap at the recapture coefficient κ = 6%, which confirms the secondary cooling efficiency and is sufficient to perform metrological measurements of the {sup 1}S{sub 0}–{sup 3}P{sub 1} (698 nm) clock transition in an optical lattice.

  18. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  19. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  20. Laser cooling of 85Rb atoms to the recoil-temperature limit

    Science.gov (United States)

    Huang, Chang; Kuan, Pei-Chen; Lan, Shau-Yu

    2018-02-01

    We demonstrate the laser cooling of 85Rb atoms in a two-dimensional optical lattice. We follow the two-step degenerate Raman sideband cooling scheme [Kerman et al., Phys. Rev. Lett. 84, 439 (2000), 10.1103/PhysRevLett.84.439], where a fast cooling of atoms to an auxiliary state is followed by a slow cooling to a dark state. This method has the advantage of independent control of the heating rate and cooling rate from the optical pumping beam. We operate the lattice at a Lamb-Dicke parameter η =0.45 and show the cooling of spin-polarized 85Rb atoms to the recoil temperature in both dimensions within 2.4 ms with the aid of adiabatic cooling.

  1. Laser cooling and trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.

    1998-01-01

    The article is a translation of the lecture given on the occasion of the 1997 Nobel Prize awarding ceremony. The history of the discovery of laser cooling and trapping of neutral atoms is described. An explanation of this phenomenon is presented and the author's personal contribution to the discovery is highlighted. The article is completed by Dr. Phillips' autobiography. (Z.J.)

  2. Laser cooling of quasi-free atoms in a nondissipative optical lattice

    International Nuclear Information System (INIS)

    Matveeva, N. A.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2007-01-01

    A quasi-classical theory of laser cooling is applied to the analysis of cooling of unbound atoms with the angular momenta 1/2 in the ground and excited states in a one-dimensional nondissipative optical lattice. In the low-saturation limit with respect to the pumping field, the mechanisms of cooling can be interpreted within the framework of an effective two-level system of ground-state sublevels. In the limit of weak Raman transitions, the mechanism of cooling of unbound atoms is similar to the Doppler mechanism known in the theory of a two-level atom; in the limit of strong transitions, the mechanism of cooling is analogous to the well-known Sisyphys mechanism. In the slow-atom approximation, analytical expressions are obtained for the friction (drag) coefficient and the induced and spontaneous diffusion, and the kinetic temperature is estimated

  3. Polarization-gradient laser cooling as a way to create strongly localized structures for atom lithography

    International Nuclear Information System (INIS)

    Prudnikov, O. N.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2007-01-01

    Generally, conditions for deep sub-Doppler laser cooling do not match conditions for strong atomic localization, that takes place in a deeper optical potential and leads to higher temperature. Moreover, for a given detuning in a deep optical potential the secular approximation, which is frequently used for a quantum description of laser cooling, fails. Here we investigate the atomic localization in optical potential, using a full quantum approach for atomic density matrix beyond the secular approximation. It is shown that laser cooling in a deep optical potential, created by a light field with polarization gradients, can be used as an alternative method for the formation of high contrast spatially localized structures of atoms for the purposes of atom lithography and atomic nanofabrication. Finally, we analyze possible limits for the width and contrast of localized atomic structures that can be reached in this type of light mask

  4. Continuous magnetic trapping of laser cooled atoms

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Lafyatis, G.; Martin, A.G.; Raab, E.L.; Landry, J.; Ahmad-Bitar, R.N.; Pritchard, D.E.

    1987-01-01

    The authors present here initial results of the deceleration of a thermal atomic beam from -- 1000 to -- 100 m/s. The experiment was conducted in the 1.4-m long vertical superconducting solenoid which produced the slowing field. The fluorescence of the slowed atomic beam has been studied as a function of laser frequency. Figure 2 is a 12-GHz scan showing the fluorescence at a position 150 cm from the beginning of the solenoid. The wide peak corresponds to unslowed atoms with generally the initial velocity distribution. The second, narrower, peak corresponds to slowed atoms with a velocity of -- 150 m/s. Similar spectra have been obtained for various positions along the magnetic slower and trap. These data should allow better understanding of the cooling process and will be compared to computer models

  5. Laser cooling of a magnetically guided ultra cold atom beam

    Energy Technology Data Exchange (ETDEWEB)

    Aghajani-Talesh, Anoush

    2014-07-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  6. Laser cooling of a magnetically guided ultra cold atom beam

    International Nuclear Information System (INIS)

    Aghajani-Talesh, Anoush

    2014-01-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  7. Laser-cooled atomic ions as probes of molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D. [Schools of Chemistry and Biochemistry, Computational Science and Engineering and Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  8. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others

    2015-04-15

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  9. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  10. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  11. Search for a permanent EDM using laser cooled radioactive atom

    International Nuclear Information System (INIS)

    Sakemi, Y; Harada, K; Hayamizu, T; Itoh, M; Kawamura, H; Liu, S; Nataraj, H S; Oikawa, A; Saito, M; Sato, T; Yoshida, H P; Aoki, T; Hatakeyama, A; Murakami, T; Imai, K; Hatanaka, K; Wakasa, T; Shimizu, Y; Uchida, M

    2011-01-01

    An Electric Dipole Moment (EDM) of the elementary particle is a good prove to observe the phenomena beyond the Standard Model. A non-zero EDM shows the violation of the time reversal symmetry, and under the CPT invariance it means the CP violation. In paramagnetic atoms, an electron EDM results in an atomic EDM enhanced by the factor of the 3rd power of the charge of the nucleus due the relativistic effects. A heaviest alkali element francium (Fr), which is the radioactive atom, has the largest enhancement factor K ∼ 895. Then, we are developing a high intensity laser cooled Fr factory at Cyclotron and Radioisotope Center (CYRIC), Tohoku University to perform the search for the EDM of Fr with the accuracy of 10 -29 e · cm. The important points to overcome the current accuracy limit of the EDM are to realize the high intensity Fr source and to reduce the systematic error due to the motional magnetic field and inhomogeneous applied field. To reduce the dominant component of the systematic errors mentioned above, we will confine the Fr atoms in the small region with the Magneto-Optical Trap and optical lattice using the laser cooling and trapping techniques. The construction of the experimental apparatus is making progress, and the new thermal ionizer already produces the Fr of ∼10 6 ions/s with the primary beam intensity 200 nA. The developments of the laser system and optical equipments are in progress, and the present status and future plan of the experimental project is reported.

  12. Final Report: Cooling Molecules with Laser Light

    International Nuclear Information System (INIS)

    Di Rosa, Michael D.

    2012-01-01

    Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

  13. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  14. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  15. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Castro, J.C.; Li, M.S.; Zilio, S.C.

    1988-01-01

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.) [pt

  16. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting the nonli......The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting...... the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out...

  17. Key technologies and applications of laser cooling and trapping "8"7Rb atomic system

    International Nuclear Information System (INIS)

    Ru, Ning; Zhang, Li; Wang, Yu; Fan, Shangchun

    2016-01-01

    Atom Interferometry is proved to be a potential method for measuring the acceleration of atoms due to Gravity, we are now building a feasible system of cold atom gravimeter. In this paper development and the important applications of laser cooling and trapping atoms are introduced, some key techniques which are used to obtain "8"7Rb cold atoms in our experiments are also discussed.

  18. Laser cooling of neutral atoms by red-shifted diffuse light in an optical integral sphere cavity

    International Nuclear Information System (INIS)

    Wang Yuzhu; Chen Hongxin; Cai Weiquan; Liu Liang; Zhou Shanyu; Shu Wei; Li Fosheng

    1994-01-01

    In this paper, we report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity. With this red-shifted diffuse light, a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 20m/s. The mechanism of this kind of laser cooling and the experimental results are discussed. (author). 12 refs, 5 figs

  19. Optimization of transfer of laser-cooled atom cloud to a quadrupole ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... We present here our experimental results on transfer of laser-cooled atom cloud to a quadrupole magnetic trap. We show that by choosing appropriately the ratio of potential energy in magnetic trap to kinetic energy of cloud in molasses, we can obtain the maximum phase-space density in the magnetic trap.

  20. How to cool down cold atoms using laser light? Principles and techniques

    International Nuclear Information System (INIS)

    Guellati-Khelifa, Saida; Clade, Pierre

    2012-01-01

    This article is devoted to the description of various mechanisms of the laser cooling of neutral atoms. These mechanisms are all based on the interaction between a photon, an entity of light, and an atom, an entity of matter. One of the macroscopic manifestations of this interaction is the pressure of radiation force. The effect of this force is strongly amplified when the source of photon is a laser. We will describe how it is possible to use this force with the Doppler effect in order to slow an atomic beam and also to reduce considerably the thermal agitation of atoms. We will explain how by shaping the light potentials and magnetic fields it is possible to reach extremely low temperatures of some nano-kelvin. At these temperatures, very near to the absolute zero, it is possible for certain kind of atoms, called bosons, to achieve a new state of matter, where quantum behaviour of atoms became apparent on a macroscopic scale. (authors)

  1. Developing Density of Laser-Cooled Neutral Atoms and Molecules in a Linear Magnetic Trap

    Science.gov (United States)

    Velasquez, Joe, III; Walstrom, Peter; di Rosa, Michael

    2013-05-01

    In this poster we show that neutral particle injection and accumulation using laser-induced spin flips may be used to form dense ensembles of ultracold magnetic particles, i.e., laser-cooled paramagnetic atoms and molecules. Particles are injected in a field-seeking state, are switched by optical pumping to a field-repelled state, and are stored in the minimum-B trap. The analogous process in high-energy charged-particle accumulator rings is charge-exchange injection using stripper foils. The trap is a linear array of sextupoles capped by solenoids. Particle-tracking calculations and design of our linear accumulator along with related experiments involving 7Li will be presented. We test these concepts first with atoms in preparation for later work with selected molecules. Finally, we present our preliminary results with CaH, our candidate molecule for laser cooling. This project is funded by the LDRD program of Los Alamos National Laboratory.

  2. Search for permanent EDM using laser cooled Fr atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirokazu, E-mail: kawamura@cyric.tohoku.ac.jp [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Arikawa, H.; Ezure, S. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Harada, K. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Hayamizu, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Imai, K. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S.; Sato, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Shimizu, Y. [Tohoku University, Department of Physics (Japan); Wakasa, T. [Kyushu University, Department of Physics (Japan); Yoshida, H. P. [Osaka University, Research Center for Nuclear Physics (Japan); and others

    2013-03-15

    The existence of a non-zero electric dipole moment (EDM) implies the violation of time reversal symmetry. As the time-reversal symmetry violation predicted by the Standard Model (SM) for the electron EDM is too small to be observed with current experimental techniques and any a non-zero EDM would indicate new physics beyond the SM. The tiny signal from the electron EDM is enhanced in the heavy atoms such as francium (Fr). We are constructing the laser-cooled Fr factory to search for the electron EDM.

  3. Laser Cooling without Repumping: A Magneto-Optical Trap for Erbium Atoms

    International Nuclear Information System (INIS)

    McClelland, J.J.; Hanssen, J.L.

    2006-01-01

    We report on a novel mechanism that allows for strong laser cooling of atoms that do not have a closed cycling transition. This mechanism is observed in a magneto-optical trap (MOT) for erbium, an atom with a very complex energy level structure with multiple pathways for optical-pumping losses. We observe surprisingly high trap populations of over 10 6 atoms and densities of over 10 11 atoms cm -3 , despite the many potential loss channels. A model based on recycling of metastable and ground state atoms held in the quadrupole magnetic field of the trap explains the high trap population, and agrees well with time-dependent measurements of MOT fluorescence. The demonstration of trapping of a rare-earth atom such as erbium opens a wide range of new possibilities for practical applications and fundamental studies with cold atoms

  4. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  5. Transverse confinement in stochastic cooling of trapped atoms

    International Nuclear Information System (INIS)

    Ivanov, D; Wallentowitz, S

    2004-01-01

    Stochastic cooling of trapped atoms is considered for a laser-beam configuration with beam waists equal to or smaller than the extent of the atomic cloud. It is shown that various effects appear due to this transverse confinement, among them heating of transverse kinetic energy. Analytical results of the cooling in dependence on size and location of the laser beam are presented for the case of a non-degenerate vapour

  6. Preparation of a monoenergetic sodium beam by laser cooling and deflection

    International Nuclear Information System (INIS)

    Nellessen, J.; Sengstock, K.; Muller, J.H.; Ertmer, W.; Wallis, H.

    1989-01-01

    This paper reports on a sodium atomic beam with a density of approx. 10 5 at cm 3 within a velocity interval of less than 3 m/s with a mean velocity of typically 50-160 m/s which has been produced by laser deflection of a laser cooled atomic beam. Laser cooling with the frequency chirp method decelerates and cools a considerable part of an atomic beam into a narrow velocity group with a temperature of approx 30 mK as a part of the resulting atomic beam. This velocity group has been selectively deflected up to 30 degrees - 40 degrees using a light field with k vectors always perpendicular to the atomic trajectory. If the light field is prepared by use of a cylindrical lens, the angle of deflection is nearly independent from the actual orbit radius. For a laser frequency detuning of about one natural linewidth to the red, the strong frequency dependence of the light pressure force leads to a beam collimation via detuning-locking of the atomic trajectory. To avoid optical pumping we used a frequency modulated laser beam with a sideband spacing matched to the hyperfine splitting of the ground state. As the cooling was performed by the frequency chirp method, one can use a part of the cooling laser beam as deflecting laser beam. Typical velocity distributions in the deflected and undeflected atomic beam, measured 22 cm downstream the deflection zone. It shows the perfect transfer of the cooled velocity group from the laser cooled beam into the deflected beam; curve c) shows as comparison the result for the deflection of the initial thermal atomic beam

  7. Laser Control of Atoms and Molecules

    CERN Document Server

    Letkhov, V S

    2007-01-01

    This text treats laser light as a universal tool to control matter at the atomic and molecular level, one of the most exciting applications of lasers. Lasers can heat matter, cool atoms to ultra-low temperatures where they show quantum collective behaviour, and can act selectively on specific atoms and molecules for their detection and separation.

  8. Pharao: study of an atomic clock using laser-cooled atoms and realization of a prototype

    International Nuclear Information System (INIS)

    Lemonde, P.

    1997-01-01

    Thermal jets and atomic fountains are two different principles on which atomic clocks are based. In atomic fountains the velocity of atoms can be reduced to a few cm/s so the classical limitations of thermal jets such as phase shift between two Ramsey impulses, second order Doppler effect become negligible. The new limitations set by atomic fountain clocks are now collisions between cold atoms and the radiation emitted by the black body. Weightlessness leads to a different running of the atomic clock and can imply an enhancement of its performances. In micro-gravity an interatomic interaction time of several seconds can be reached. The application of such atomic clocks can go beyond time or frequency metrology. This work is dedicated to the development of a spatial atomic clock to fully use the extremely low velocity of laser-cooled atoms and to quantify what can be expected of weightlessness. This study has involved the realization of a prototype and its testing in a zero-g plane. The experimental results are presented and it is highlighted that an accuracy and a one-day stability of 10 -16 are within reach with an optimized version of this atomic clock. (A.C.)

  9. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  10. Bright focused ion beam sources based on laser-cooled atoms

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J. J.; Wilson, T. M. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Steele, A. V.; Knuffman, B.; Schwarzkopf, A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); zeroK NanoTech, Gaithersburg, Maryland 20878 (United States); Twedt, K. A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  11. A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection

    International Nuclear Information System (INIS)

    Oates, C.W.; Bondu, F.; Fox, R.W.; Hollberg, L.

    1999-01-01

    We report an optical frequency standard at 657 nm based on laser-cooled/trapped Ca atoms. The system consists of a novel, compact magneto-optic trap which uses 50 mW of frequency-doubled diode laser light at 423 nm and can trap >10 7 Ca atoms in 20 ms. High resolution spectroscopy on this atomic sample using the narrow 657 nm intercombination line resolves linewidths (FWHM) as narrow as 400 Hz, the natural linewidth of the transition. The spectroscopic signal-to-noise ratio is enhanced by an order of magnitude with the implementation of a ''shelving'' detection scheme on the 423 nm transition. Our present apparatus achieves a fractional frequency instability of 5 x 10 -14 in 1 s with a potential atom shot-noise-limited performance of 10 -16 τ -1/2 and excellent prospects for high accuracy. (orig.)

  12. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system

    Science.gov (United States)

    Jöckel, Andreas; Faber, Aline; Kampschulte, Tobias; Korppi, Maria; Rakher, Matthew T.; Treutlein, Philipp

    2015-01-01

    Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 90 times larger than that of the coolant atom. Here, we use ultracold atoms to sympathetically cool the vibrations of a Si3N4 nanomembrane, the mass of which exceeds that of the atomic ensemble by a factor of 1010. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and is enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to 650 ± 230 mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. With technical improvements, our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.

  13. Detailed numerical simulations of laser cooling processes

    Science.gov (United States)

    Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.

    2001-01-01

    We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.

  14. Multimode quantum model of a cw atom laser

    International Nuclear Information System (INIS)

    Hope, J.J.; Haine, S.A.; Savage, C.M.

    2002-01-01

    Full text: Laser cooling allows dilute atomic gases to be cooled to within K of absolute zero. Ultracold gases were first achieved twenty years ago and have since found applications in areas such as spectroscopy, time standards, frequency standards, quantum information processing and atom optics. The atomic analogue of the lasing mode in optical lasers is Bose-Einstein Condensation (BEC), in which a cooled sample of atoms condense into the lowest energy quantum state. This new state of matter was recently achieved in dilute Bose gases in 1995. Atoms coupled out of a BEC exhibit long-range spatial coherence, and provide the coldest atomic source currently available. These atomic sources are called 'atom lasers' because the BEC is analogous to the lasing mode of an optical laser. The high spectral flux from optical lasers is caused by a process called gain-narrowing, which requires continuous wave (cw) operation. Coupling a BEC quickly into an untrapped state forms a coherent atomic beam but it has a spread in momentum as large as the trapped BEC. Coupling the atoms out more slowly reduces the output linewidth at the expense of reducing the overall flux. These atom lasers are equivalent to Q-switched optical lasers. A cw atom laser with gain-narrowing would produce an increasingly monoenergetic output as the flux increased, dramatically improving the spectral flux. A cw atom laser is therefore a major goal of the atom optics community, but there are several theoretical and practical obstacles to understanding the complexities of such a system. The main obstacle to the production of a cw atom laser is the technical difficulties involved in continuously pumping the lasing mode. No complete theory exists which describes a cw atom laser. Complete cw atom laser models require a quantum field description due to their non-Markovian dynamics, significant spatial effects and the dependence of the output on the quantum statistics of the lasing mode. The extreme dimensionality

  15. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    Science.gov (United States)

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  16. Nuclear γ-ray spectroscopy of cool free atoms

    International Nuclear Information System (INIS)

    Rivlin, Lev A

    1999-01-01

    Consideration is given to the capabilities of gamma-ray spectroscopy of the nuclei of free neutral atoms cooled employing modern laser light-pressure techniques. This spectroscopy is comparable with the Mossbauer spectroscopy in respect of the expected resolving power. (laser applications and other topics in quantum electronics)

  17. Sympathetic cooling of ions in a hybrid atom ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoeltkemeier, Bastian

    2016-10-27

    In this thesis the dynamics of a trapped ion immersed in a spatially localized buffer gas is investigated. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination and/or a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. One of these is a novel regime at large atom-to-ion mass ratios where the final ion temperature can tuned by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling). The second part of the thesis presents a hybrid atom ion trap designed for sympathetic cooling of hydroxide anions. In this hybrid trap the anions are immersed in a cloud of laser cooled rubidium atoms. The translational and rovibrational temperatures of the anions is probed by photodetachment tomography and spectroscopy which shows the first ever indication of sympathetic cooling of anions by laser cooled atoms.

  18. Efficient two-dimensional subrecoil Raman cooling of atoms in a tripod configuration

    International Nuclear Information System (INIS)

    Ivanov, Vladimir S.; Rozhdestvensky, Yuri V.; Suominen, Kalle-Antti

    2011-01-01

    We present an efficient method for subrecoil cooling of neutral atoms by applying Raman cooling in two dimensions to a four-level tripod system. The atoms can be cooled simultaneously in two directions using only three laser beams. We describe the cooling process with a simple model showing that the momentum distribution can be rapidly narrowed to velocity spread down to 0.1v rec , corresponding to effective temperature equal to 0.01T rec . This method opens new possibilities for cooling of neutral atoms.

  19. Laser cooling in a feedback-controlled optical shaker

    International Nuclear Information System (INIS)

    Vilensky, Mark Y.; Averbukh, Ilya Sh.; Prior, Yehiam

    2006-01-01

    We explore the prospects of optical shaking, a recently suggested generic approach to laser cooling of neutral atoms and molecules. Optical shaking combines elements of Sisyphus cooling and of stochastic cooling techniques and is based on feedback-controlled interaction of particles with strong nonresonant laser fields. The feedback loop guarantees a monotonous energy decrease without a loss of particles. We discuss two types of feedback algorithms and provide an analytical estimation of their cooling rate. We study the robustness of optical shaking against noise and establish minimal stability requirements for the lasers. The analytical predictions are in a good agreement with the results of detailed numerical simulations

  20. Spot size predictions of a focused ion beam based on laser cooling

    NARCIS (Netherlands)

    Haaf, ten G.; Wouters, S.H.W.; Geer, van der S.B.; Mutsaers, P.H.A.; Luiten, O.J.; Vredenbregt, E.J.D.

    2014-01-01

    The Atomic Beam Laser Cooled Ion Source (ABLIS) is a new source for focused ion beam instruments, which are used in the semiconductor industry, to image and modify structures on the nanometer length scale. The ABLIS employs laser cooling and compression of an atomic beam of rubidium to increase its

  1. Intensity-gradient induced Sisyphus cooling of a single atom in a localized hollow-beam trap

    International Nuclear Information System (INIS)

    Yin, Yaling; Xia, Yong; Ren, Ruimin; Du, Xiangli; Yin, Jianping

    2015-01-01

    In order to realize a convenient and efficient laser cooling of a single atom, we propose a simple and promising scheme to cool a single neutral atom in a blue-detuned localized hollow-beam trap by intensity-gradient induced Sisyphus cooling, and study the dynamic process of the intensity-gradient cooling of a single 87 Rb atom in the localized hollow-beam trap by using Monte-Carlo simulations. Our study shows that a single 87 Rb atom with a temperature of 120 μK from a magneto-optical trap (MOT) can be directly cooled to a final temperature of 4.64 μK in our proposed scheme. We also investigate the dependences of the cooling results on the laser detuning δ of the localized hollow-beam, the power RP 0 of the re-pumping laser beam, the sizes of both the localized hollow-beam and the re-pumping beam, and find that there is a pair of optimal cooling parameters (δ and RP 0 ) for an expected lowest temperature, and the cooling results strongly depend on the size of the re-pumping beam, but weakly depend on the size of the localized hollow-beam. Finally, we further study the cooling potential of our localized hollow-beam trap for the initial temperature of a single atom, and find that a single 87 Rb atom with an initial temperature of higher than 1 mK can also be cooled directly to about 6.6 μK. (paper)

  2. Cooling atoms with extraresonant stimulated emission below the Doppler limit

    International Nuclear Information System (INIS)

    Shevy, Y.

    1989-01-01

    The process of cooling atoms with radiation pressure is well understood in terms of absorption and spontaneous emission of fluorescence photons. This process imposes a lower limit on the minimum equilibrium temperature of laser cooled two level atoms of K b T = ℎΓ 21 /2 (the Doppler limit), where Γ 21 is the excited state decay rate to the ground state. At high laser intensity, it has been demonstrated that the stimulated emission process changes the sign of the force to a heating force at the red side of the atomic resonance and to a cooling force at blue detunings. Although this stimulated force is more efficient than the radiation pressure force, it has been generally accepted that this force cannot lead to lower equilibrium temperatures due to the large heating caused by diffusion of momentum at high intensity. These conclusions are valid only when the sole damping mechanism is the excited state decay to the ground state by spontaneous emission. However, when the atomic system is opened, i.e., is allowed to decay to other levels, or the dipole decay rate is altered by dephasing events, the stimulated force is dramatically modified. Under this conditions the stimulated force can occur at lower laser intensity and can even reverse sign to provide damping at the red side of resonance. These phenomena originate from extraresonances in the stimulated emission process between the two counterpropagating waves. These resonances appear as a dispersive feature in pump probe spectra (Two Wave Mixing) and are closely related to the extraresonances in four wave mixing studied originally by Bloembergen and co-workers. This paper establishes this connection and the potential of these phenomena for laser cooling. The implications of these results to the recently observed ultra-cold Na and Cs atoms are also discussed

  3. Trapping cold ground state argon atoms for sympathetic cooling of molecules

    OpenAIRE

    Edmunds, P. D.; Barker, P. F.

    2014-01-01

    We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...

  4. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  5. Two-photon Doppler cooling of alkaline-earth-metal and ytterbium atoms

    International Nuclear Information System (INIS)

    Magno, Wictor C.; Cavasso Filho, Reinaldo L.; Cruz, Flavio C.

    2003-01-01

    The possibility of laser cooling of alkaline-earth-metal atoms and ytterbium atoms using a two-photon transition is analyzed. We consider a 1 S 0 - 1 S 0 transition with excitation in near resonance with the 1 P 1 level. This greatly increases the two-photon transition rate, allowing an effective transfer of momentum. The experimental implementation of this technique is discussed and we show that for calcium, for example, two-photon cooling can be used to achieve a Doppler limit of 123 μK. The efficiency of this cooling scheme and the main loss mechanisms are analyzed

  6. PHARAO space atomic clock: new developments on the laser source

    Science.gov (United States)

    Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.

    2017-11-01

    The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.

  7. High-power frequency-stabilized laser for laser cooling of metastable helium at 389 nm

    NARCIS (Netherlands)

    Koelemeij, J.C.J.; Hogervorst, W.; Vassen, W.

    2005-01-01

    A high-power, frequency-stabilized laser for cooling of metastable helium atoms using the 2 S13 →3 P23 transition at 389 nm has been developed. The 389 nm light is generated by frequency doubling of a titanium:sapphire laser in an external enhancement cavity containing a lithium-triborate nonlinear

  8. Technology development for laser-cooled clocks on the International Space Station

    Science.gov (United States)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  9. Pulsed atomic soliton laser

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments

  10. Optically pumped semiconductor lasers for atomic and molecular physics

    Science.gov (United States)

    Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.

    2015-03-01

    Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics.

  11. The coherence and spectra of a Bose condensate generated by an atomic laser

    International Nuclear Information System (INIS)

    Kozlovskii, A.V.

    2003-01-01

    The first-order coherence dynamics of a Bose condensate generated by a cw atomic laser with evaporative cooling is analyzed. For the atomic-laser multimode model, the coherence functions and atomic field spectra are calculated by the master equation technique. Elastic collisions in the trapped atomic gas lead to significant broadening of the atomic laser line, a shift of its center, and a multi peak structure of the spectra. The oscillatory time dynamics of the atomic-field coherence function is studied. For the atomic laser, the free phase diffusion of the field typical of optical lasers, and characterized by monotonically decreasing mean field with a constant mean phase, is absent due to elastic collisions

  12. Laser trapping of radioactive francium atoms

    International Nuclear Information System (INIS)

    Sprouse, G.D.; Orozco, L.A.; Simsarian, J.E.; Shi, W.; Zhao, W.Z.

    1997-01-01

    The difficult problem of quickly slowing and cooling nuclear reaction products so that they can be injected into a laser trap has been solved by several groups and there are now strong efforts to work with the trapped atoms. The atoms are confined in the trap to a small spatial volume of the order of 1 mm 3 , but more importantly, they are also confined in velocity, which makes them an ideal sample for spectroscopic measurements with other lasers. We have recently trapped radioactive francium and have embarked on a program to further study the francium atom as a prelude to a test of the Standard Model analogous to previous work with Cs. Our sample of 3 min 210 Fr now contains over 20 000 atoms, and is readily visible with an ordinary TV camera. We work on-line with the accelerator, and continuously load the trap to replace losses due to decay and collisions with background gas. We have maintained a sample of Fr atoms in the trap for over 10 hours, with occasional adjustment of the trapping laser frequency to account for drifts. The proposed test of the Standard Model will require accurate calculation of its atomic properties. We are currently testing these calculations by measuring other predicted quantities. (orig.)

  13. Narrow Line Cooling of 88Sr Atoms in the Magneto-optical Trap for Precision Frequency Standard

    Science.gov (United States)

    Strelkin, S. A.; Galyshev, A. A.; Berdasov, O. I.; Gribov, A. Yu.; Sutyrin, D. V.; Khabarova, K. Yu.; Kolachevsky, N. N.; Slyusarev, S. N.

    We report on our progress toward the realization of a Strontium optical lattice clock, which is under development at VNIIFTRI as a part of GLONASS program. We've prepared the narrow line width laser system for secondary cooling of 88Sr atoms which allows us to reach atom cloud temperature below 3 μK after second cooling stage.

  14. Supersonic pulsed free-jet of atoms and molecules of refractory metals: laser induced fluorescence spectroscopic studies on zirconium atoms and zirconium oxide molecules

    International Nuclear Information System (INIS)

    Nakhale, S.G.

    2004-11-01

    The experimental setup for generating supersonic pulsed free-jet containing atoms and molecules of refractory nature has been built. The technique of laser vaporization in conjunction with supersonic cooling is used to generate these species. The cooled atoms and molecules in supersonic free-jet are probed by laser induced fluorescence spectroscopy. In particular, the technique has been used to perform low-resolution laser induced fluorescence spectroscopy, limited by laser linewidth, on cold Zr atoms and ZrO molecules. The translational temperatures of ∼ 26.5 K and the rotational temperatures of ∼ 81 K have been achieved. It is possible to achieve the Doppler width of few tens of MHz allowing it to perform high-resolution spectroscopy on these atomic and molecular species. Also because of low rotational temperature of molecules the spectral congestion is greatly reduced. In general, this technique can be applied to perform spectroscopy on atoms and molecules of refractory nature. (author)

  15. Three-dimensional laser cooling at the Doppler limit

    Science.gov (United States)

    Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.

    2014-12-01

    Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.

  16. Evaporative cooling of cold atoms in a surface trap

    International Nuclear Information System (INIS)

    Hammes, M.; Rychtarik, D.; Grimm, R.

    2001-01-01

    Full text: Trapping cold atom close to a surface is a promising route for attaining a two-dimensional quantum gas. We present our gravito-optical surface trap (LOST), which consists of a horizontal evanescent-wave atom mirror in combination with a blue-detuned hollow beam for transverse confinement. Optical pre-cooling based on inelastic reflections from the evanescent wave provides good starting conditions for subsequent evaporative cooling, which can be realized by ramping down the optical potentials of the trap. Already our preliminary experiments (performed at the MPI fuer Kernphysik in Heidelberg) show a 100-fold increase in phase-space density and temperature reduction to 300 nK. Substantial further improvements can be expected in our greatly improved set-up after the recent transfer of the experiment to Innsbruck. By eliminating heating processes, optimizing the evaporation ramp, polarizing the atoms and by using an additional far red-detuned laser beam we expect to soon reach the conditions of quantum degeneracy and/or two-dimensionality. (author)

  17. Study of Atomic Quasi-Stable States, Decoherence And Cooling of Mesoscale Particles

    Science.gov (United States)

    Zhong, Changchun

    Quantum mechanics, since its very beginning, has totally changed the way we understand nature. The past hundred years have seen great successes in the application of quantum physics, including atomic spectra, laser technology, condensed matter physics and the remarkable possibility for quantum computing, etc. This thesis is dedicated to a small regime of quantum physics. In the first part of the thesis, I present the studies of atomic quasi-stable states, which refer to those Rydberg states of an atom that are relatively stable in the presence of strong fields. Through spectrally probing the quasi-stable states, series of survival peaks are found. If the quasi-stable electrons were created by ultraviolet (UV) lasers with two different frequencies, the survival peaks could be modulated by continuously changing the phase difference between the UV and the IR laser. The quantum simulation, through directly solving the Schrodinger equation, matches the experimental results performed with microwave fields, and our studies should provide a guidance for future experiments. Despite the huge achievements in the application of quantum theory, there are still some fundamental problems that remain unresolved. One of them is the so-called quantum-to-classical transition, which refers to the expectation that the system behaves in a more classical manner when the system size increases. This basic question was not well answered until decoherence theory was proposed, which states that the coherence of a quantum system tends to be destroyed by environmental interruptions. Thus, if a system is well isolated from its environment, it is in principle possible to observe macroscopic quantum coherence. Quite recently, testing quantum principles in the macroscale has become a hot topic due to rapic technological developments. A very promising platform for testing macroscale quantum physics is a laser levitated nanoparticle, and cooling its mechanical motion to the ground state is the first

  18. Cooling and trapping of neutral mercury atoms; Kuehlen und Fangen von neutralen Hg-Atomen

    Energy Technology Data Exchange (ETDEWEB)

    Villwock, Patrick

    2010-01-15

    Mercury offers numerous opportunities for experiments in cold atomic and molecular physics. Due to the particular energy level structure of the Hg-dimer it should be possible to efficiently populate the rovibrational ground state by employing a particular absorption-emission scheme after the dimers have been formed via photo association. Cold {sup 199}Hg-atoms in the ground state are very well suited for testing the Bell equations with atoms, because they are ideal spin-1/2-particles. Hg-dimers would be optimal for the search of a permanent electrical dipole moment, due to their mass. An optical lattice clock based on neutral mercury atoms using the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition at 265.6 nm with a natural linewidth of about 100 mHz is predicted to reach an accuracy better than 10{sup -18}. The frequency ratio of two optical clocks exhibits the opportunity to test the temporal variation of the fine-structure constant. Laser-cooled neutral Hg-atoms in a magneto-optical trap (MOT) represent a high quality source for a focused ion beam. The isotope selectivity of a MOT offers the potential of producing pure Hg-Isotopes. Mercury has two stable fermionic and five stable bosonic isotopes. The {sup 1}S{sub 0}-{sup 3}P{sub 1} intercombination line at 253.7 nm has a saturation intensity of 10.2 {sup mW}/{sub cm{sup 2}}, with a natural linewidth of 1.27 MHz. This cooling transition is closed since the ground state is free of fine- and hyperfine structure. Consequently no additional repumping is required. Due to the relatively long lifetime of this trapping transition the Doppler limited temperature is 30 μK. This thesis presents the development and experimental setup of a magneto-optical trap for neutral mercury atoms. This undertaking required the development of a commercially unavailable laser source in order to cool and trap Hg-atoms. The cooling transition sets high demands on such a cutting-edge laser, due to its relatively high saturation intensity

  19. Laser trapping of 21Na atoms

    International Nuclear Information System (INIS)

    Lu, Zheng-Tian.

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive 21 Na (t l/2 = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped 21 Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of 21 Na → 21 Ne + Β + + v e , which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, 21 Na atoms were produced by bombarding 24 Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The 21 Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined

  20. Narrow-line laser cooling by adiabatic transfer

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.

    2018-02-01

    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.

  1. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  2. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Schroeder, S.

    1990-08-01

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de

  3. Rotational Laser Cooling of Vibrationally and Translationally Cold Molecular Ions

    DEFF Research Database (Denmark)

    Drewsen, Michael

    2011-01-01

    an excellent alternative to atomic qubits in the realization of a practical ion trap based quantum computer due to favourable internal state decoherence rates. In chemistry, state prepared molecular targets are an ideal starting point for uni-molecular reactions, including coherent control...... of photofragmentation through the application of various laser sources [5,6]. In cold bi-molecular reactions, where the effect of even tiny potential barriers becomes significant, experiments with state prepared molecules can yield important information on the details of the potential curves of the molecular complexes...... by sympathetic cooling with Doppler laser cooled Mg+ ions. Giving the time for the molecules to equilibrate internally to the room temperature blackbody radiation, the vibrational degree of freedom will freeze out, leaving only the rotational degree of freedom to be cooled. We report here on the implementation...

  4. Subrecoil laser cooling dynamics: a fractional derivative approach

    International Nuclear Information System (INIS)

    Uchaikin, Vladimir V; Sibatov, Renat T

    2009-01-01

    The subrecoil laser cooling process is considered in the framework of a model with two states (trapping and recycling), with instantaneous transitions between them. The key point of the work is the use of a fractional exponential function for waiting time distributions. This allows us to derive a general master equation covering both important cases: those with exponential and power type tails. Their solutions are expressed through fractionally stable distributions. The pdfs of the total trapping time of an atom and the proportion of trapped atoms are found. Analytical relationships show a good agreement with numerical results from Monte Carlo simulation

  5. Construction and characterization of external cavity diode lasers for atomic physics.

    Science.gov (United States)

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-04-24

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included.

  6. New sources of cold atoms for atomic clocks

    International Nuclear Information System (INIS)

    Aucouturier, E.

    1997-01-01

    The purpose of this doctoral work is the realisation of new sources of cold cesium atoms that could be useful for the conception of a compact and high-performance atomic clock. It is based on experiences of atomic physics using light induced atomic manipulation. We present here the experiences of radiative cooling of atoms that have been realised at the Laboratoire de l'Horloge Atomique from 1993 to 1996. Firstly, we applied the techniques of radiative cooling and trapping of atoms in order to create a three-dimensional magneto-optical trap. For this first experience, we developed high quality laser sources, that were used for other experiments. We imagined a new configuration of trapping (two-dimensional magneto-optical trap) that was the basis for a cold atom source. This design gives the atoms a possibility to escape towards one particular direction. Then, we have extracted the atoms from this anisotropic trap in order to create a continuous beam of cold atoms. We have applied three methods of extraction. Firstly, the launching of atoms was performed by reducing the intensity of one of the cooling laser beams in the desired launching direction. Secondly, a frequency detuning between the two laser laser beams produced the launching of atoms by a so-called 'moving molasses'. The third method consisted in applying a static magnetic field that induced the launching of atoms in the direction of this magnetic field. At the same time, another research on cold atoms was initiated at the I.H.A. It consisted in cooling a large volume of atoms from a cell, using an isotropic light. This offers an interesting alternative to the traditional optical molasses. (author)

  7. Construction and Characterization of External Cavity Diode Lasers for Atomic Physics

    Science.gov (United States)

    Hardman, Kyle S.; Bennetts, Shayne; Debs, John E.; Kuhn, Carlos C. N.; McDonald, Gordon D.; Robins, Nick

    2014-01-01

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs1,2. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling1,2 makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman3, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included. PMID:24796259

  8. Cold atomic beams of high brightness

    International Nuclear Information System (INIS)

    Rozhdestvensky, Yu V

    2004-01-01

    The possibility is studied for obtaining intense cold atomic beams by using the Renyi entropy to optimise the laser cooling process. It is shown in the case of a Gaussian velocity distribution of atoms, the Renyi entropy coincides with the density of particles in the phase space. The optimisation procedure for cooling atoms by resonance optical radiation is described, which is based on the thermodynamic law of increasing the Renyi entropy in time. Our method is compared with the known methods for increasing the laser cooling efficiency such as the tuning of a laser frequency in time and a change of the atomic transition frequency in an inhomogeneous transverse field of a magnetic solenoid. (laser cooling)

  9. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  10. Theory of tapered laser cooling

    International Nuclear Information System (INIS)

    Okamoto, Hiromi; Wei, J.

    1998-01-01

    A theory of tapered laser cooling for fast circulating ion beams in a storage ring is constructed. The authors describe the fundamentals of this new cooling scheme, emphasizing that it might be the most promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating condition. They discuss the physical implication of the tapering factor of cooling laser, and show how to determine its optimum value. Molecular dynamics method is employed to demonstrate the validity of the present theory

  11. Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.

    Science.gov (United States)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S A

    2017-03-17

    We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.

  12. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  13. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  14. Laser Cooling of 2-6 Semiconductors

    Science.gov (United States)

    2016-08-12

    AFRL-AFOSR-JP-TR-2016-0067 Laser Cooling of II-VI Semiconductors Qihua Xiong NANYANG TECHNOLOGICAL UNIVERSITY Final Report 08/12/2016 DISTRIBUTION A...From - To) 15 May 2013 to 14 May 2016 4. TITLE AND SUBTITLE Laser Cooling of II-VI Semiconductors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1...13. SUPPLEMENTARY NOTES 14. ABSTRACT The breakthrough of laser cooling in semiconductor has stimulated strong interest in further scaling up towards

  15. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  16. Collision assisted Zeeman cooling with multiple types of atoms

    Science.gov (United States)

    Hamilton, Mathew S.; Wilson, Rebekah F.; Roberts, Jacob L.

    2014-01-01

    Through a combination of spin-exchange collisions in a magnetic field and optical pumping, it is possible to cool a gas of atoms without requiring the loss of atoms from the gas. This technique, collision assisted Zeeman cooling (CAZ), was developed theoretically assuming a single atomic species [G. Ferrari, Eur. Phys. J. D 13, 67 (2001)]. We have extended this cooling technique to a system of two atomic species rather than just one and have developed a simple analytic model describing the cooling rate. We find that the two-isotope CAZ cooling scheme has a clear theoretical advantage in systems that are reabsorption limited.

  17. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.

    2001-01-01

    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to

  18. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers

  19. Three-dimensional cavity cooling and trapping in an optical lattice

    International Nuclear Information System (INIS)

    Murr, K.; Nussmann, S.; Puppe, T.; Hijlkema, M.; Weber, B.; Webster, S. C.; Kuhn, A.; Rempe, G.

    2006-01-01

    A robust scheme for trapping and cooling atoms is described. It combines a deep dipole-trap which localizes the atom in the center of a cavity with a laser directly exciting the atom. In that way one obtains three-dimensional cooling while the atom is dipole-trapped. In particular, we identify a cooling force along the large spatial modulations of the trap. A feature of this setup, with respect to a dipole trap alone, is that all cooling forces keep a constant amplitude if the trap depth is increased simultaneously with the intensity of the probe laser. No strong coupling is required, which makes such a technique experimentally attractive. Several analytical expressions for the cooling forces and heating rates are derived and interpreted by analogy to ordinary laser cooling

  20. Cooling atomic ions with visible and infra-red light

    Science.gov (United States)

    Lindenfelser, F.; Marinelli, M.; Negnevitsky, V.; Ragg, S.; Home, J. P.

    2017-06-01

    We demonstrate the ability to load, cool and detect singly charged calcium ions in a surface electrode trap using only visible and infrared lasers for the trapped-ion control. As opposed to the standard methods of cooling using dipole-allowed transitions, we combine power broadening of a quadrupole transition at 729 nm with quenching of the upper level using a dipole allowed transition at 854 nm. By observing the resulting 393 nm fluorescence we are able to perform background-free detection of the ion. We show that this system can be used to smoothly transition between the Doppler cooling and sideband cooling regimes, and verify theoretical predictions throughout this range. We achieve scattering rates which reliably allow recooling after collision events and allow ions to be loaded from a thermal atomic beam. This work is compatible with recent advances in optical waveguides, and thus opens a path in current technologies for large-scale quantum information processing. In situations where dielectric materials are placed close to trapped ions, it carries the additional advantage of using wavelengths which do not lead to significant charging, which should facilitate high rate optical interfaces between remotely held ions.

  1. Cyclotron resonance cooling by strong laser field

    International Nuclear Information System (INIS)

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-01-01

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers

  2. A circularly polarized optical dipole trap and other developments in laser trapping of atoms

    Science.gov (United States)

    Corwin, Kristan Lee

    Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.

  3. Experimental and Theoretical Studies of Laser Cooling and Emittance Control of Neutral Beams.

    Science.gov (United States)

    1987-01-31

    the collective atomic recoil serves to op reduce the momentum spread of an atomic sample (laser cooling) or to produce a diffraction pattern from a...mtasured 1.5 m downstream from the OKDE interaction region, permits a measure of the ODKE momentum spread. We will discuss each of the various...spectrometer provides a real-time measure of the hydrogen flux, which can be monitored continuously during data collection . We were able to generate

  4. Potentialities of a new sigma(+)-sigma(-)laser configuration for radiative cooling and trapping

    Energy Technology Data Exchange (ETDEWEB)

    Dalibard, J; Reynaud, S; Cohen-Tannoudji, C

    1984-11-28

    In the process of cooling and trapping neutral atoms, a new laser configuration is investigated which consists of two counterpropagating laser beams with orthogonal sigma(+) and sigma(-)polarizations. It is shown that such a configuration looks more promising than an ordinary standing wave (where the two counterpropagating waves have the same polarization), and this result is explained as being due to angular momentum conservation which prevents any coherent redistribution of photons between the two waves. The present conclusions are based on a quantitative calculation of the various parameters (potential depth, friction coefficient, diffusion coefficient) describing the mean value and the fluctuations of the radiative forces experienced, in such a laser configuration, by an atom with a J 0 ground state and a J 1 excited state. 30 references.

  5. Intense source of cold cesium atoms based on a two-dimensional magneto–optical trap with independent axial cooling and pushing

    International Nuclear Information System (INIS)

    Huang Jia-Qiang; Wu Chen-Fei; Wang Li-Jun; Yan Xue-Shu; Zhang Jian-Wei

    2016-01-01

    We report our studies on an intense source of cold cesium atoms based on a two-dimensional (2D) magneto–optical trap (MOT) with independent axial cooling and pushing. The new-designed source, proposed as 2D-HP MOT, uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam. With the independent pushing beam, the atomic flux can be substantially optimized. The total atomic flux maximum obtained in the 2D-HP MOT is 4.02 × 10 10 atoms/s, increased by 60 percent compared to the traditional 2D + MOT in our experiment. Moreover, with the pushing power 10 μW and detuning 0 Γ , the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20. The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s. The dependences of the atomic flux on the pushing power and detuning are studied in detail. The experimental results are in good agreement with the theoretical model. (paper)

  6. Thermoelectric transport and Peltier cooling of cold atomic gases

    Science.gov (United States)

    Grenier, Charles; Kollath, Corinna; Georges, Antoine

    2016-12-01

    This brief review presents the emerging field of mesoscopic physics with cold atoms, with an emphasis on thermal and 'thermoelectric' transport, i.e. coupled transport of particles and entropy. We review in particular the comparison between theoretically predicted and experimentally observed thermoelectric effects in such systems. We also show how combining well-designed transport properties and evaporative cooling leads to an equivalent of the Peltier effect with cold atoms, which can be used as a new cooling procedure with improved cooling power and efficiency compared to the evaporative cooling currently used in atomic gases. This could lead to a new generation of experiments probing strong correlation effects of ultracold fermionic atoms at low temperatures.

  7. Laser-excited atomic-fluorescence spectrometry with electrothermal tube atomization.

    Science.gov (United States)

    Vera, J A; Leong, M B; Stevenson, C L; Petrucci, G; Winefordner, J D

    1989-12-01

    The performance of graphite-tube electrothermal atomizers is evaluated for laser-excited atomic-fluorescence spectrometry for several elements. Three pulsed laser systems are used to pump tunable dye lasers which subsequently are used to excite Pb, Ga, In, Fe, Ir, and Tl atoms in the hot graphite tube. The dye laser systems used are pumped by nitrogen, copper vapour and Nd:YAG lasers. Detection limits in the femtogram and subfemtogram range are typically obtained for all elements. A commercial graphite-tube furnace is important for the successful utilization of the laser-based method when the determination of trace elements is intended, especially when complicated matrices may be present.

  8. Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.

    Science.gov (United States)

    Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong

    2018-02-28

    The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.

  9. The atomic coilgun and single-photon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Libson, Adam, E-mail: alibson@physics.utexas.edu; Bannerman, Stephen Travis; Clark, Robert J.; Mazur, Thomas R.; Raizen, Mark G. [University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics (United States)

    2012-12-15

    As the simplest atom, hydrogen has a unique role as a testing ground of fundamental physics. Precision measurements of the hydrogen atomic structure provide stringent tests of current theory, while tritium is an excellent candidate for studies of {beta}-decay and possible measurement of the neutrino rest mass. Furthermore, precision measurement of antihydrogen would allow for tests of fundamental symmetries. Methods demonstrated in our lab provide an avenue by which hydrogen isotopes can be trapped and cooled to near the recoil limit. The atomic coilgun, which we have demonstrated with metastable neon and molecular oxygen, provides a general method of stopping a supersonic beam of any paramagnetic species. This tool provides a method by which hydrogen and its isotopes can be magnetically trapped at around 100 mK using a room temperature apparatus. Another tool developed in our laboratory, single-photon cooling, allows further cooling of a trapped sample to near the recoil limit. This cooling method has already been demonstrated on a trapped sample of rubidium. We report on the progress of implementing these methods to trap and cool hydrogen isotopes, and on the prospects for using cold trapped hydrogen for precision measurements.

  10. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  11. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  12. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal-transverse co......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  13. Optics with an Atom Laser Beam

    International Nuclear Information System (INIS)

    Bloch, Immanuel; Koehl, Michael; Greiner, Markus; Haensch, Theodor W.; Esslinger, Tilman

    2001-01-01

    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing, and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin flip in the inhomogeneous magnetic field. More than 98% of the incident atom laser beam is reflected specularly

  14. Atomic fountain and applications

    International Nuclear Information System (INIS)

    Rawat, H.S.

    2000-01-01

    An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed

  15. Push-Pull Laser-Atomic Oscillator

    International Nuclear Information System (INIS)

    Jau, Y.-Y.; Happer, W.

    2007-01-01

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the 'field-independent 0-0 frequency' of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs

  16. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  17. Lasers in atomic, molecular and nuclear physics

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1986-01-01

    This book presents papers on laser applications in atomic, molecular and nuclear physics. Specifically discussed are: laser isotope separation; laser spectroscopy of chlorophyll; laser spectroscopy of molecules and cell membranes; laser detection of atom-molecule collisions and lasers in astrophysics

  18. Laser cooling of a harmonic oscillator's bath with optomechanics

    Science.gov (United States)

    Xu, Xunnong; Taylor, Jacob

    Thermal noise reduction in mechanical systems is a topic both of fundamental interest for studying quantum physics at the macroscopic level and for application of interest, such as building high sensitivity mechanics based sensors. Similar to laser cooling of neutral atoms and trapped ions, the cooling of mechanical motion by radiation pressure can take single mechanical modes to their ground state. Conventional optomechanical cooling is able to introduce additional damping channel to mechanical motion, while keeping its thermal noise at the same level, and as a consequence, the effective temperature of the mechanical mode is lowered. However, the ratio of temperature to quality factor remains roughly constant, preventing dramatic advances in quantum sensing using this approach. Here we propose an efficient scheme for reducing the thermal load on a mechanical resonator while improving its quality factor. The mechanical mode of interest is assumed to be weakly coupled to its heat bath but strongly coupled to a second mechanical mode, which is cooled by radiation pressure coupling to a red detuned cavity field. We also identify a realistic optomechanical design that has the potential to realize this novel cooling scheme. Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA.

  19. Sympathetic cooling of nanospheres with cold atoms

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  20. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  1. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  2. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    Science.gov (United States)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  3. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  4. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  5. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    International Nuclear Information System (INIS)

    Bussmann, Michael

    2008-01-01

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C 3+ ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged 24 Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  6. Feedback Cooling of a Single Neutral Atom

    NARCIS (Netherlands)

    Koch, Markus; Sames, Christian; Kubanek, Alexander; Apel, Matthias; Balbach, Maximilian; Ourjoumtsev, Alexei; Pinkse, Pepijn Willemszoon Harry; Rempe, Gerhard

    2010-01-01

    We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160  μK. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the

  7. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael

    2008-03-17

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  8. Evaluation of thermal cooling mechanisms for laser application to teeth.

    Science.gov (United States)

    Miserendino, L J; Abt, E; Wigdor, H; Miserendino, C A

    1993-01-01

    Experimental cooling methods for the prevention of thermal damage to dental pulp during laser application to teeth were compared to conventional treatment in vitro. Pulp temperature measurements were made via electrical thermistors implanted within the pulp chambers of extracted human third molar teeth. Experimental treatments consisted of lasing without cooling, lasing with cooling, laser pulsing, and high-speed dental rotary drilling. Comparisons of pulp temperature elevation measurements for each group demonstrated that cooling by an air and water spray during lasing significantly reduced heat transfer to dental pulp. Laser exposures followed by an air and water spray resulted in pulp temperature changes comparable to conventional treatment by drilling. Cooling by an air water spray with evacuation appears to be an effective method for the prevention of thermal damage to vital teeth following laser exposure.

  9. Laser control of atomic beam motion and applications

    International Nuclear Information System (INIS)

    Balykin, V.I.; Letokhov, V.S.

    1987-01-01

    The authors present the results of an experimental investigation of the control of atomic beam motion by the light pressure of laser radiation. Collimation, focusing and reflection of the atomic beam are considered. Collimation of the atomic beam is achieved by the interaction of laser radiation with atoms, when the light pressure force depends only on the atom's velocity. A similar regime of atomic beam interaction with radiation was performed with transversal irradiation of a beam by the axis-symmetrical field. The axis-symmetrical field was formed by laser radiation reflected from the conical mirror surface of a reflecting axicon. The axis of the atomic beam coincided with that of the axicon. The collimation regime was reached under negative detuning of the laser radiation frequency from the atomic transition frequency by a value equal to several homogeneous widths. With positive detuning by the same value the regime of beam decollimation was observed. The density of atoms on the beam axis was changed by 10 3 times, when the collimation regime was replaced by that of decollimation. Focusing of the atomic beam was achieved by light pressure dependent on the atomic coordinate. Focusing was performed within the field configuration formed by divergent laser Gaussian beams propagating in the direction +- X, +- Y of a Cartesian coordinate system. Waists of the laser beams were an equal distance from the atomic beam axis. With an atomic beam propagating along the z axis, expressions for local distance and a formula for the laser lens were obtained. Focusing of the atomic beam was experimentally accomplished, and the image of the atomic beam was received. In this work they also investigated reflection of the atomic beam by laser radiation. The possibility of creating the optics of a neutral atomic beam is shown

  10. Parametric feedback cooling of a single atom inside on optical cavity

    International Nuclear Information System (INIS)

    Tatjana Wilk

    2014-01-01

    An optical cavity can be used as a kind of intensifier to study radiation features of an atom, which are hard to detect in free space, like squeezing. Such experiments make use of strong coupling between atom and cavity mode, which experimentally requires the atom to be well localized in the cavity mode. This can be achieved using feedback on the atomic motion: from intensity variations of a probe beam transmitted through the cavity information about the atomic motion is gained, which is used to synchronously modulate the trapping potential holding the atom, leading to cooling and better localization. Here, we report on efficient parametric feedback cooling of a single atom held in an intra-cavity standing wave dipole trap. In contrast to previous feedback strategies, this scheme cools the fast axial oscillation of the atom as well as the slower radial motion. (author)

  11. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  12. White-light laser cooling of ions in a storage ring

    International Nuclear Information System (INIS)

    Calabrese, R.; Guidi, V.; Lenisa, P.; Grimm, R.; Miesner, H.J.; Mariotti, E.; Siena Univ.; Moi, L.; Siena Univ.

    1996-01-01

    We propose the use of a white laser for laser cooling of ions in a storage ring. The use of a broad-band laser provides a radiation pressure force with wide velocity capture range and high magnitude, which is promising to improve the performance of both longitudinal and indirect transverse cooling. This wide-range force could also be suitable for direct transverse cooling of low-density beams. (orig.)

  13. Study on the fine control of atoms by coherent interaction

    International Nuclear Information System (INIS)

    Han, Jae Min; Rho, S. P.; Park, H. M.; Lee, K. S.; Rhee, Y. J.; Yi, J. H.; Jeong, D. Y.; Ko, K. H.; Lee, J. M.; Kim, M.K.

    2000-01-01

    Study on one dimensional atom cooling and trapping process which is basic to the development of atom manipulation technology has been performed. A Zeeman slower has been designed and manufactured for efficient cooling of atoms. The speed of atoms finally achieved is as slow as 15 m/s with proper cooling conditions. By six circularly-polarized laser beams and quadrupole magnetic field, the atoms which have been slowed down by zeeman slower have been trapped in a small spatial region inside MOT. The higher the intensity of the slowing laser is the more is the number of atoms slowed and the maximum number of atoms trapped has been 10 8 . The atoms of several tens of μK degree have been trapped by controlling the intensity of trapping laser and intensity gradient of magnetic field. EIT phenomena caused by atomic coherent interaction has been studied for the development of atom optical elements. For the investigation of the focusing phenomena induced by the coherent interaction, experimental measurements and theoretical analysis have been performed. Spatial dependency of spectrum and double distribution signal of coupling laser have been obtained. The deflection of laser beams utilizing the EIT effects has also been considered. (author)

  14. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-11-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  15. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-01-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  16. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    Science.gov (United States)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  17. Development of the Measurement System for the Search of an Electric Dipole Moment of the Electron with Laser-Cooled Francium Atoms

    Directory of Open Access Journals (Sweden)

    Inoue T.

    2014-03-01

    Full Text Available We plan to measure the permanent electric dipole moment (EDM of the electron, which has the sensitivity to the CP violation in theories beyond the standard model by using the laser-cooled francium (Fr atom. This paper reports the present status of the EDM measurement system. A high voltage application system was constructed in order to produce the strong electric field (100 kV/cm needed for the experiment. After conditioning, the leakage current was 10 pA when a high voltage of 43 kV was applied. Also, a drift of an environmental field was measured at the planned location of the Fr-EDM experiment. The drift is suppressed at present down to the level of 10 pT by installing a 4-layermagnetic shield. Improvements are still needed to reach the required field stability of 1 fT.

  18. Continuous parametric feedback cooling of a single atom in an optical cavity

    Science.gov (United States)

    Sames, C.; Hamsen, C.; Chibani, H.; Altin, P. A.; Wilk, T.; Rempe, G.

    2018-05-01

    We demonstrate a feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement backaction which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to an ˜5 -kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 s. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ˜500 -kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.

  19. Is laser cooling for heavy-ion fusion feasible?

    International Nuclear Information System (INIS)

    Ho, D.D.-M.; Brandon, S.T.

    2010-01-01

    Heavy-ion beams, each with current in the kiloampere range and particle energy in the giga-electronvolt range, must be focused onto a millimetre-size spot to provide the power required for ignition of high-gain targets for inertial confinement fusion. However, the focal spot size is always enlarged by chromatic aberration generated by the thermal spread of the beam ions in the direction of beam propagation. Enlarged focal spot degrades the target performance. For high-current beams, the conventional remedy for chromatic aberration using sextupole magnets has been shown to be ineffective. If novel correction schemes can be found, then the spot size can be reduced to below that previously believed possible. Smaller spots can mean lower energy targets so that the heavy-ion fusion (HIF) scenario can look more attractive. Success in laser cooling of ion beams in storage rings has inspired us to explore the feasibility of applying laser cooling for HIF, and the recirculator configuration proposed for HIF appears to be well suited for this purpose. However, using particle-in-cell simulations and theoretical arguments, we demonstrate in this paper that although laser cooling of heavy-ion beams is feasible in principle, the rapid velocity-space diffusion of ions in the bump-in-tail distribution, set up by the cooling lasers, limits the velocity-space compressibility of the thermal spread along the beam. Consequently, laser cooling is impractical for high-current, heavy-ion beams for the proposed recirculator configuration. Nevertheless, if the recirculator architecture or the target requirement can reduce the beam current, then the cooling scheme described here would be useful. This scheme may also be applicable to the RF linac and storage ring approach to HIF.

  20. The influence of various cooling rates during laser alloying on nodular iron surface layer

    Science.gov (United States)

    Paczkowska, Marta; Makuch, Natalia; Kulka, Michał

    2018-06-01

    The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in

  1. Generalized laser filamentation instability coupled to cooling instability

    International Nuclear Information System (INIS)

    Liang, E.P.; Wong, J.; Garrison, J.

    1984-01-01

    We consider the propagation of laser light in an initially slightly nonuniform plasma. The classical dispersion relation for the laser filamentation growth rate (see e.g., B. Langdon, in the 1980 Lawrence Livermore National Laboratory Laser Program Annual Report, pp. 3-56, UCRL-50021-80, 1981) can be generalized to include other acoustical effects. For example, we find that the inclusion of potential imbalances in the heating and cooling rates of the ambient medium due to density and temperature perturbations can cause the laser filamentation mode to bifurcate into a cooling instability mode at long acoustic wavelengths. We also attempt to study semi-analytically the nonlinear evolution of this and related instabilities. These results have wide applications to a variety of chemical gas lasers and phenomena related to laser-target interactions (e.g., jet-like behavior)

  2. A slow gravity compensated atom laser

    DEFF Research Database (Denmark)

    Kleine Büning, G.; Will, J.; Ertmer, W.

    2010-01-01

    the potential of the long interrogation times available with this atom laser beam by measuring the trap frequency in a single measurement. The small beam width together with the long evolution and interrogation time makes this atom laser beam a promising tool for continuous interferometric measurements....

  3. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement

    Science.gov (United States)

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  4. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  5. Conduction cooled compact laser for chemcam instrument

    Science.gov (United States)

    Faure, B.; Saccoccio, M.; Maurice, S.; Durand, E.; Derycke, C.

    2017-11-01

    A new conduction cooled compact laser for Laser Induced Breakdown Spectroscopy (LIBS) on Mars is presented. The laser provides pulses with energy higher than 30mJ at 1μm of wavelength with a good spatial quality. Three development prototypes of this laser have been built and functional and environmental tests have been done. Then, the Qualification and Flight models have been developed and delivered. A spare model is now developed. This laser will be mounted on the ChemCam Instrument of the NASA mission MSL 2009. ChemCam Instrument is developed in collaboration between France (CESR and CNES) and USA (LANL). The goal of this Instrument is to study the chemical composition of Martian rocks. A laser source (subject of this presentation) emits a pulse which is focused by a telescope. It creates a luminous plasma on the rock; the light of this plasma is then analysed by three spectrometers to obtain information on the composition of the rock. The laser source is developed by the French company Thales Laser, with a technical support from CNES and CESR. This development is funded by CNES. The laser is compact, designed to work in burst mode. It doesn't require any active cooling.

  6. High data-rate atom interferometers through high recapture efficiency

    Science.gov (United States)

    Biedermann, Grant; Rakholia, Akash Vrijal; McGuinness, Hayden

    2015-01-27

    An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.

  7. From laser cooling of non-relativistic to relativistic ion beams

    International Nuclear Information System (INIS)

    Schramm, U.; Bussmann, M.; Habs, D.

    2004-01-01

    Laser cooling of stored 24 Mg + ion beams recently led to the long anticipated experimental realization of Coulomb-ordered 'crystalline' ion beams in the low-energy RF-quadrupole storage ring PAul Laser CooLing Acceleration System (Munich). Moreover, systematic studies revealed severe constraints on the cooling scheme and the storage ring lattice for the attainment and maintenance of the crystalline state of the beam, which will be summarized. With the envisaged advent of high-energy heavy ion storage rings like SIS 300 at GSI (Darmstadt), which offer favourable lattice conditions for space-charge-dominated beams, we here discuss the general scaling of laser cooling of highly relativistic beams of highly charged ions and present a novel idea for direct three-dimensional beam cooling by forcing the ions onto a helical path

  8. Atomic size effect on critical cooling rate and glass formation

    International Nuclear Information System (INIS)

    Jalali, Payman; Li Mo

    2005-01-01

    Atomic size effect on critical cooling rate and glass formability in a model binary system is investigated using molecular dynamics simulation. To isolate atomic size effect from the rest of the factors that critically influence the glass formation, a hard sphere model is employed in conjunction with a newly developed densification method. The glass formability is defined as a set of optimal conditions that result in the slowest cooling rate of the glass-forming liquid. Critical cooling rates are identified from extensive molecular dynamics simulations. A kinetic glass-forming diagram is mapped out that marks the boundary between the glass-forming regions and competing crystalline phases in terms of the parameters of the atomic size ratio and alloy concentration. It is found that the potency of the atomic size difference on glass formation is influenced greatly by the competing metastable and equilibrium crystalline phases in the system, and the kinetic processes leading to the formation of these phases. The mechanisms of the atomic size effect on topological instability of crystal packing and glass formation are discussed

  9. Narrowband solid state vuv coherent source for laser cooling of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Michan, J. Mario [TRIUMF (Canada); Polovy, Gene; Madison, Kirk W. [The University of British Columbia, Department of Physics and Astronomy (Canada); Fujiwara, Makoto C. [TRIUMF (Canada); Momose, Takamasa, E-mail: momose@chem.ubc.ca [The University of British Columbia, Department of Chemistry, Department of Physics and Astronomy (Canada)

    2015-11-15

    We describe the design and performance of a solid-state pulsed source of narrowband (< 100 MHz) Lyman-α radiation designed for the purpose of laser cooling magnetically trapped antihydrogen. Our source utilizes an injection seeded Ti:Sapphire amplifier cavity to generate intense radiation at 729.4 nm, which is then sent through a frequency doubling stage and a frequency tripling stage to generate 121.56 nm light. Although the pulse energy at 121.56 nm is currently limited to 12 nJ with a repetition rate of 10 Hz, we expect to obtain greater than 0.1 μJ per pulse at 10 Hz by further optimizing the alignment of the pulse amplifier and the efficiency of the frequency tripling stage. Such a power will be sufficient for cooling a trapped antihydrogen atom from 500 mK to 20mK.

  10. Optoacoustic laser monitoring of cooling and freezing of tissues

    International Nuclear Information System (INIS)

    Larin, Kirill V; Larina, I V; Motamedi, M; Esenaliev, R O

    2002-01-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast. (laser biology and medicine)

  11. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  12. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Science.gov (United States)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  13. Laser diode package with enhanced cooling

    Science.gov (United States)

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  14. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  15. Laser stabilisation for velocity-selective atomic absorption

    NARCIS (Netherlands)

    Meijer, H.A.J.; Meulen, H.P. van der; Ditewig, F.; Wisman, C.J.; Morgenstern, R.

    1987-01-01

    A relatively simple method is described for stabilising a dye laser at a frequency ν = ν0 + νc in the vicinity of an atomic resonance frequency ν0. The Doppler effect is exploited by looking for atomic fluorescence when a laser beam is crossed with an atomic beam at certain angles αi. Absolute

  16. COD correction for laser cooling at S-LSR

    International Nuclear Information System (INIS)

    Souda, Hikaru; Fujimoto, Shinji; Tongu, Hiromu; Shirai, Toshiyuki; Tanabe, Mikio; Ishikawa, Takehiro; Nakao, Masao; Ikegami, Masahiro; Wakita, Akihisa; Iwata, Soma; Fujimoto, Tetsuya; Takeuchi, Takeshi; Noda, Koji; Noda, Akira

    2008-01-01

    A closed orbit is corrected for single-turn injection to perform laser cooling experiments of 40 keV 24 Mg + beam at the small laser-equipped storage ring (S-LSR). Closed orbit distortion (COD) corrections have been carried out using a downhill simplex method, and CODs of less than ±0.5mm have been achieved throughout the whole circumference. The injection orbit and the CODs are optimized to pass through the two aperture holes in the alignment targets located in the laser cooling section with an algorithm to maximize beam lifetime. The CODs at the aperture holes are reduced to be less than ±0.2mm, assuring an overlap between the laser and the 24 Mg + ion beam.

  17. Investigation of dye laser excitation of atomic systems

    International Nuclear Information System (INIS)

    Abate, J.A.

    1977-01-01

    A stabilized cw dye laser system and an optical pumping scheme for a sodium atomic beam were developed, and the improvements over previously existing systems are discussed. A method to stabilize both the output intensity and the frequency of the cw dye laser for periods of several hours is described. The fluctuation properties of this laser are investigated by photon counting and two-time correlation measurements. The results show significant departures from the usual single-mode laser theory in the region of threshold and below. The implications of the deviation from accepted theory are discussed. The atomic beam system that was constructed and tested is described. A method of preparing atomic sodium so that it behaves as a simple two-level atom is outlined, and the results of some experiments to study the resonant interaction between the atoms and the dye laser beam are presented

  18. Two-photon cooling of magnesium atoms

    DEFF Research Database (Denmark)

    Malossi, N.; Damkjær, S.; Hansen, P. L.

    2005-01-01

    A two-photon mechanism for cooling atoms below the Doppler temperature is analyzed. We consider the magnesium ladder system (3s2)S01¿(3s3p)P11 at 285.2nm followed by the (3s3p)P11¿(3s3d)D21 transition at 880.7nm . For the ladder system quantum coherence effects may become important. Combined with...... and experiment is excellent. In addition, by properly choosing the Rabi frequencies of the two optical transitions a velocity independent atomic dark state is observed....

  19. Sandia high-power atomic iodine photodissociation laser

    International Nuclear Information System (INIS)

    Palmer, R.E.; Padrick, T.D.

    1975-01-01

    One of the more promising candidates for a laser to demonstrate the feasibility of laser fusion is the 1.315 μ atomic iodine laser. In a relatively short time it has been developed into a viable subnanosecond, high energy laser. Although at present the iodine laser cannot equal the output capabilities of a large Nd:glass laser system, there are no foreseeable obstacles in the construction of a 100 psec, 10 KJ or greater atomic iodine laser system. A 100 joule system being constructed at Sandia to investigate many of the scaling parameters essential to the design of a 10 KJ or greater system is described. (U.S.)

  20. Lasers, light-atom interaction

    International Nuclear Information System (INIS)

    Cagnac, B.; Faroux, J.P.

    2002-01-01

    This book has a double purpose: first to explain in a way as simple as possible the interaction processes occurring between atoms and light waves, and secondly to help any scientist that needs further information to improve his knowledge of lasers. The content of this book has been parted into 3 more or less independent sections: 1) effect of an electromagnetic field on a 2-quantum state system, 2) operating mode of lasers in the framework of transition probabilities, and 3) calculation of the emitted wave. Einstein's phenomenological hypothesis has led to probability equations called rate equations, these equations do not give a true representation of the interaction process at the scale of the atom but this representation appears to be true on an average over a large population of atoms. Only quantum mechanics can describe accurately the light-atom interaction but at the cost of a far higher complexity. In the first part of the book quantum mechanics is introduced and applied under 2 simplifying hypothesis: -) the atom system has only 2 non-degenerate states and -) the intensity of the light wave is high enough to involve a large population of photons. Under these hypothesis, Rabi oscillations, Ramsey pattern and the splitting of Autler-Townes levels are explained. The second part is dedicated to the phenomenological model of Einstein that gives good results collectively. In the third part of the book, Maxwell equations are used to compute field spatial distribution that are currently found in experiments involving lasers. (A.C.)

  1. Atomic optics. The optics of the year 2000?

    International Nuclear Information System (INIS)

    Guzman, Angela M.

    1998-01-01

    In atom optics the roles of light and matter are exchanged with respect to those of conventional optics. Atom optics makes possible the manipulation of atoms with lasers. This review deals with foundations and recent developments on atom optics: laser cooling and trapping, optical lattices, Bose-Einstein Condensation (BEC), and the atom laser. Main features of BEC and theoretical models for generation of a coherent atomic beam are described, indicating the technological challenges involved in their implementation. Special attention is devoted to the model of Guzman et al. perspectives and possible applications are mentioned

  2. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  3. Atomic iodine laser

    International Nuclear Information System (INIS)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program

  4. Laser resonant ionization spectroscopy and laser-induced resonant fluorescence spectra of samarium atom

    International Nuclear Information System (INIS)

    Jin, Changtai

    1995-01-01

    We have measured new high-lying levels of Sm atom by two-colour resonant photoionisation spectroscopy; we have observed the isotope shifts of Sm atom by laser-induced resonant fluorescence spectroscopy; the lifetime of eight low-lying levels of Sm atom were measured by using pulsed laser-Boxcar technique in atomic beam.

  5. [Research on the laser atomization treatment machine].

    Science.gov (United States)

    Jiang, Bei-sheng; Tian, Rong-zhe; Zhang, Liang

    2005-07-01

    This text has introduces a new-type laser treatment device. It utilizes the ultrasound atomized gas passage as its optics and makes the laser beams together with the atomized medicine to be transmitted to the patient's respiratory track and lungs for treatment.

  6. Chemical oxygen-iodine laser with atomic iodine generated via fluorine atoms

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila; Picková, Irena; Jakubec, Ivo

    2008-01-01

    Roč. 345, č. 1 (2008), 14-22 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen–iodine laser * COIL Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.961, year: 2008

  7. TRACE ANALYSIS BY LASER-EXCITED ATOMIC FLUORESCENCE WITH ATOMIZATION IN A PULSED PLASMA

    OpenAIRE

    Lunyov , O.; Oshemkov , S.; Petrov , A.

    1991-01-01

    The possibilities of plasma atomization for laser fluorescence trace analysis are discussed. Pulsed hot hollow cathode discharge was used for analysis of solutions and powdered samples. The high voltage spark and laser-induced breakdown (laser spark) were used as atomizers of metal-containing atmospheric aerosols. Detection limits were improved by means of temporal background selection.

  8. Laser Cooling and Trapping of Atoms and Particles

    Science.gov (United States)

    1992-01-16

    magnitude. The creation of an atom trampoline , where cold atoms were dropped onto a evanescent wave of light extending out of a totally internally reflected...Staff, Electromagnetic Phenomena Research Bell Laboratories, Murray Hill, 1978-1983 Head , Quantum Electronics Research Department AT&T Bell

  9. Atomic collisions related to atomic laser isotope separation

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    1995-01-01

    Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)

  10. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms

    International Nuclear Information System (INIS)

    Haas, M.

    2007-01-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m f =2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m f =1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m f =4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The last chapter

  11. Fragmentation inside atomic cooling haloes exposed to Lyman-Werner radiation

    Science.gov (United States)

    Regan, John A.; Downes, Turlough P.

    2018-04-01

    Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman-Werner flux. The background Lyman-Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2. We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case, we find that this occurs above a critical Lyman-Werner background of J ˜ 10 J21. The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T ≳ 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed.

  12. Laser frequency stabilization using a commercial wavelength meter

    Science.gov (United States)

    Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias

    2018-04-01

    We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.

  13. Conduction cooled compact laser for the chemcam instrument

    Science.gov (United States)

    Durand, E.; Derycke, C.; Simon-Boisson, C.; Muller, S.; Faure, B.; Saccoccio, M.; Maurice, M.

    2017-11-01

    A new conduction cooled compact laser for laser induced spectroscopy on the Mars Science Laboratory (MSL) to be launched in 2009 is presented. An oscillator combined to amplifiers generates 30mJ at 1μm with a good spatial quality. Development prototype of this laser has been built and characterized. Environmental testing of this prototype is also reported.

  14. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    Science.gov (United States)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  15. Laser Spectroscopy : XII International Conference

    CERN Document Server

    Allegrini, Maria; Sasso, Antonio

    1996-01-01

    This text includes all the recent advances in the field of laser spectroscopy. Major results span from the control of matter by electromagnetic fields (trapping and coding) to high precision measurements on simple atomic systems and to quantum optics with single atoms. It includes a report of the Bose-Einstein condensation achieved by laser-cooling of rubidium atoms. Achievements in the technology of tunable sources, in particular of miniaturized solid state devices, are also reported. Most recent advances in molecular spectroscopy are illustrated with emphasis on "cooled" spectra, clusters and high accuracy frequency references. Topics such as atomic interferometry and microcavity quantum optics are also covered.

  16. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  17. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  18. A Transportable Gravity Gradiometer Based on Atom Interferometry

    Science.gov (United States)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving

  19. Gravitational Wave Detection with Single-Laser Atom Interferometers

    Science.gov (United States)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  20. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  1. Laser optical pumping of sodium and lithium atom beams

    International Nuclear Information System (INIS)

    Cusma, J.T.

    1983-01-01

    The method of optical pumping with a continuous wave dye laser has been used to produce beams of polarized 23 Na atoms and polarized 6 Li atoms. Optical pumping of a 23 Na atom beam using either a multimode dye laser or a single frequency dye laser with a double passed acousto-optic modulator results in electron spin polarizations of 0.70-0.90 and nuclear spin polarizations of 0.75-0.90. Optical pumping of a 6 Li atom beam using a single frequency dye laser either with an acousto-optic modulator or with Doppler shift pumping results in electron spin polarizations of 0.77-0.95 and nuclear spin polarizations greater than 0.90. The polarization of the atom beam is measured using either the laser induced fluorescence in an intermediate magnetic field or a 6-pole magnet to determine the occupation probabilities of the ground hyperfine sublevels following optical pumping. The results of the laser optical pumping experiments agree with the results of a rate equation analysis of the optical pumping process which predicts that nearly all atoms are transferred into a single sublevel for our values of laser intensity and interaction time. The use of laser optical pumping in a polarized ion source for nuclear scattering experiments is discussed. The laser optical pumping method provides a means of constructing an intense source of polarized Li and Na ions

  2. Steering neutral atoms in strong laser fields

    International Nuclear Information System (INIS)

    Eilzer, S; Eichmann, U

    2014-01-01

    The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data. (paper)

  3. High-contrast sub-Doppler absorption spikes in a hot atomic vapor cell exposed to a dual-frequency laser field

    International Nuclear Information System (INIS)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Boudot, Rodolphe; Brazhnikov, Denis; Taichenachev, Alexei; Yudin, Valeriy; De Clercq, Emeric

    2017-01-01

    The saturated absorption technique is an elegant method widely used in atomic and molecular physics for high-resolution spectroscopy, laser frequency standards and metrology purposes. We have recently discovered that a saturated absorption scheme with a dual-frequency laser can lead to a significant sign reversal of the usual Doppler-free dip, yielding a deep enhanced-absorption spike. In this paper, we report detailed experimental investigations of this phenomenon, together with a full in-depth theoretical description. It is shown that several physical effects can support or oppose the formation of the high-contrast central spike in the absorption profile. The physical conditions for which all these effects act constructively and result in very bright Doppler-free resonances are revealed. Apart from their theoretical interest, results obtained in this manuscript are of great interest for laser spectroscopy and laser frequency stabilization purposes, with applications in laser cooling, matter-wave sensors, atomic clocks or quantum optics. (paper)

  4. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  5. Laser ionization installation for measurement of atomic beam parameters

    CERN Document Server

    Tukhlibaev, O; Khalilov, E E; Alimov, U Z

    2002-01-01

    The design of the laser ionization installation for determination of the atomic beam intensity, density and spatial structure is described. The method of the atoms laser resonance staged photoionization is applied in the installation. The above installation consists of two lasers on the dyestuffs, the atomizer, the ionization system and the ion signals registration system. The results of studies on the spatial structure of the In atoms beam are presented. The proposed method provides for the spatial resolution at the level of 10-100 mu m

  6. Time-resolved and doppler-reduced laser spectroscopy on atoms

    International Nuclear Information System (INIS)

    Bergstroem, H.

    1991-10-01

    Radiative lifetimes have been studied in neutral boron, carbon, silicon and strontium, in singly ionized gadolinium and tantalum and in molecular carbon monoxide and C 2 . The time-resolved techniques were based either on pulsed lasers or pulse-modulated CW lasers. Several techniques have been utilized for the production of free atoms and ions such as evaporation into an atomic beam, sputtering in hollow cathodes and laser-produced plasmas. Hyperfine interactions in boron, copper and strontium have been examined using quantum beat spectroscopy, saturation spectroscopy and collimated atomic beam spectroscopy. Measurement techniques based on effusive hollow cathodes as well as laser produced plasmas in atomic physics have been developed. Investigations on laser produced plasmas using two colour beam deflection tomography for determination of electron densities have been performed. Finally, new possibilities for view-time-expansion in light-in-flight holography using mode-locked CW lasers have been demonstrated. (au)

  7. Ionization of a multilevel atom by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Andreev, A. V.; Stremoukhov, S. Yu.; Shutova, O. A.

    2010-01-01

    Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths λ = 800 nm (Ti:Sapphire) and λ = 1.064 μm (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.

  8. Two-dimensional atom localization via probe absorption in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization

  9. Semiclassical treatment of laser excitation of the hydrogen atom

    DEFF Research Database (Denmark)

    Billing, Gert D.; Henriksen, Niels Engholm; Leforestier, C.

    1992-01-01

    We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms.......We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms....

  10. Laser-assisted electron-atom collisions

    International Nuclear Information System (INIS)

    Mason, N.J.

    1989-01-01

    New developments in our understanding of the electron-atom collision process have been made possible by combining the use of highly monochromatic electron beams and intense CO 2 lasers. This paper reviews such experiments and discusses possible future progress in what is a new field in atomic collision physics. (author)

  11. Solar-simulator-pumped atomic iodine laser kinetics

    Science.gov (United States)

    Wilson, H. W.; Raju, S.; Shiu, Y. J.

    1983-01-01

    The literature contains broad ranges of disagreement in kinetic data for the atomic iodine laser. A kinetic model of a solar-simulator-pumped iodine laser is used to select those kinetic data consistent with recent laser experiments at the Langley Research Center. Analysis of the solar-simulator-pumped laser experiments resulted in the following estimates of rate coefficients: for alkyl radical (n-C3F7) and atomic iodine (I) recombination, 4.3 x 10 to the 11th power (1.9) + or - cu cm/s; for n-C3F7I stabilized atomic iodine recombination (I + I) 3.7 x 10 to the -32nd power (2.3) + or -1 cm to the 6th power/s; and for molecular iodine (I2) quenching, 3.1 x 10 to the -11th power (1.6) + or - 1 cu cm/s. These rates are consistent with the recent measurements.

  12. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  13. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  14. Electrothermal atomization laser-excited atomic fluorescence spectroscopy for the determination of indium

    International Nuclear Information System (INIS)

    Aucelio, R.Q.; Smith, B.W.; Winefordner, J.D.

    1998-01-01

    A dye laser pumped by a high-repetition-rate copper vapor laser was used as the excitation source to determine indium at parts-per-trillion level by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS). A comparison was made between wall atomization, in pyrolytic and nonpyrolytic graphite tubes, and platform atomization. The influence of several chemical modifiers either in solution or precoated in the graphite tube was evaluated. The influence of several acids and NaOH in the analyte solution was also studied. Optimization of the analytical conditions was carried out to achieve the best signal-to-background ratio and consequently an absolute limit of detection of 1 fg. Some possible interferents of the method were evaluated. The method was evaluated by determining indium in blood, urine, soil, and urban dust samples. Recoveries between 99.17 and 109.17% are reported. A precision of 4.1% at the 10 ng g -1 level in water standards was achieved. copyright 1998 Society for Applied Spectroscopy

  15. Two-pulse atomic coherent control spectroscopy of Eley-Rideal reactions: An application of an atom laser

    International Nuclear Information System (INIS)

    Joergensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC (two-pulse atomic coherent control) employs the coherent properties of matter waves from a two-pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas-phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schroedinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters

  16. Squeezing effects of an atom laser: Beyond the linear model

    International Nuclear Information System (INIS)

    Jing Hui; Ge Molin; Chen Jingling

    2002-01-01

    We investigate the quantum dynamics and statistics of an atom laser by taking into account binary atom-atom collisions. The rotating wave approximation Hamiltonian of the system is solved analytically . We show that the nonlinear atom-atom interactions could yield periodic quadrature squeezing effects in the atom laser output beam, although the input radio frequency field is in a Glauber coherent state

  17. Atomic-vapor-laser isotope separation

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures

  18. Fast switching of alkali atom dispensers using laser-induced heating

    International Nuclear Information System (INIS)

    Griffin, P.F.; Weatherill, K.J.; Adams, C.S.

    2005-01-01

    We show that by using an intense laser source to locally heat an alkali atom dispenser, one can generate a high flux of atoms followed by fast recovery (<100 ms) of the background pressure when the laser is extinguished. For repeated heating pulses a switch-on time for the atomic flux of 200 ms is readily attainable. This technique is suited to ultracold atom experiments using simple ultrahigh vacuum (UHV) chambers. Laser-induced heating provides a fast repetition of the experimental cycle, which, combined with low atom loss due to background gas collisions, is particularly useful for experiments involving far-off resonance optical traps, where sufficient laser power (0.5-4 W) is readily available

  19. Cold beam of isotopically pure Yb atoms by deflection using 1D ...

    Indian Academy of Sciences (India)

    Cold atoms [1], with their long measurement times, promise to revolutionize the field of precision measurements. In this respect, laser-cooled Yb constitutes a useful species because its spin-zero ground state obviates the need for a second re-pumping laser, as is required for laser cooling of the more common spin-half ...

  20. Structure formation in atom lithography using geometric collimation

    NARCIS (Netherlands)

    Meijer, T.; Beardmore, J.P.; Fabrie, C.G.C.H.M.; van Lieshout, J.P.; Notermans, R.P.M.J.W.; Sang, R.T.; Vredenbregt, E.J.D.; Leeuwen, van K.A.H.

    2011-01-01

    Atom lithography uses standing wave light fields as arrays of lenses to focus neutral atom beams into line patterns on a substrate. Laser cooled atom beams are commonly used, but an atom beam source with a small opening placed at a large distance from a substrate creates atom beams which are locally

  1. Ultratrace determination of lead in whole blood using electrothermal atomization laser-excited atomic fluorescence spectrometry.

    Science.gov (United States)

    Wagner, E P; Smith, B W; Winefordner, J D

    1996-09-15

    Laser-excited atomic fluorescence has been used to detect lead that was electrothermally atomized from whole blood in a graphite furnace. A 9 kHz repetition rate copper vapor laser pumped dye laser was used to excite the lead at 283.3 nm, and the resulting atomic fluorescence was detected at 405.8 nm. No matrix modification was used other than a 1:21 dilution of the whole blood with high-purity water. Using the atomic fluorescence peak area as the analytical measure and a background correction technique based upon a simultaneous measurement of the transmitted laser intensity, excellent agreement for NIST and CDC certified whole blood reference samples was obtained with aqueous standards. A limit of detection in blood of 10 fg/mL (100 ag absolute) was achieved.

  2. Electron scattering from atoms in the presence of a laser field. III

    International Nuclear Information System (INIS)

    Mittleman, M.H.

    1977-01-01

    The development of the theory of the effect of a laser on electron-atom scattering is continued by the derivation of explicit relations between the observed electron-atom scattering cross sections in the presence of a laser and exact electron-atom scattering cross sections with no laser present. No approximation concerning the scattering interaction is made. The only approximations concerning the laser are that (1) the laser-atom interaction energy is small compared to atomic energies, (2) the Rabi frequency times the collision time is small, and (3) the laser intensity in appropriate units is small

  3. ANTICOOL: Simulating positron cooling and annihilation in atomic gases

    Science.gov (United States)

    Green, D. G.

    2018-03-01

    The Fortran program ANTICOOL, developed to simulate positron cooling and annihilation in atomic gases for positron energies below the positronium-formation threshold, is presented. Given positron-atom elastic scattering phase shifts, normalised annihilation rates Zeff, and γ spectra as a function of momentum k, ANTICOOL enables the calculation of the positron momentum distribution f(k , t) as a function of time t, the time-varying normalised annihilation rate Z¯eff(t) , the lifetime spectrum and time-varying annihilation γ spectra. The capability and functionality of the program is demonstrated via a tutorial-style example for positron cooling and annihilation in room temperature helium gas, using accurate scattering and annihilation cross sections and γ spectra calculated using many-body theory as input.

  4. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    Science.gov (United States)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  5. High power atomic iodine photodissociation lasers

    International Nuclear Information System (INIS)

    Palmer, R.E.; Padrick, T.D.; Jones, E.D.

    1976-01-01

    The atomic iodine photodissociation laser has developed into a system capable of producing nanosecond or shorter pulses of near infrared radiation with energies well in excess of a hundred J. Discussed are the operating characteristics, advantages, and potential problem areas associated with this laser

  6. Laser-driven source of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.

    1995-01-01

    A laser-driven source of spin-polarized hydrogen (H) and deuterium (D) that relies on the technique of optical pumping spin exchange has been constructed. In this source, H or D atoms and potassium atoms flow continuously through a drifilm-coated spin-exchange cell where potassium atoms are optically pumped with circularly-polarized laser light in a high magnetic field. The H or D atoms become polarized through spin-exchange collisions with polarized potassium atoms. High electron polarization (∼80%) has been measured for H and D atoms at flow rates ∼2x10 17 atoms/s. Lower polarization values are measured for flow rates exceeding 1x10 18 atoms/s. In this paper, we describe the performance of the laser-driven source as a function of H and D atomic flow rate, magnetic field strength, alkali density and pump-laser power. Polarization measurements as a function of flow rate and magnetic field suggest that, despite a high magnetic field, atoms within the optical-pumping spin-exchange apparatus evolve to spin-temperature equilibrium which results in direct polarization of the H and D nuclei. (orig.)

  7. Thermal-fluid assessment of multijet atomization for spray cooling applications

    International Nuclear Information System (INIS)

    Panao, Miguel R.O.; Moreira, Antonio L.N.; Durao, Diamantino F.G.

    2011-01-01

    Thermal management is a particularly difficult challenge to the miniaturization of electronic components because it requires high performance cooling systems capable of removing large heat loads at fast rates in order to keep the operating temperature low and controlled. To meet this challenge, the Intermittent Spray Cooling (ISC) concept has been suggested as a promising technology which uses a proper match between the frequency and duration of consecutive injection cycles to control heat transfer. This concept also depends on: the atomization strategy; a homogeneous dispersion of droplets impinging on the hot surface; and the quantitative control of the liquid deposited, avoiding excessive secondary atomization or pre-impingement-evaporation. In this work, the use of liquid atomization by multiple jets impact, also referred as multijet atomization, is the subject of a thermal-fluid assessment using heat transfer correlations previously derived for intermittent sprays. Simultaneous measurements of droplet size and velocity are provided as input for the correlations and the analysis explores the influence of the number of impinging jets on the heat removal pattern and magnitude. Emphasis is put on the promising applicability of multijet atomization for promoting an intelligent use of energy in the thermal management of electronic devices.

  8. Absorption of femtosecond laser pulses by atomic clusters

    International Nuclear Information System (INIS)

    Lin Jingquan; Zhang Jie; Li Yingjun; Chen Liming; Lu Tiezheng; Teng Hao

    2001-01-01

    Energy absorption by Xe, Ar, He atomic clusters are investigated using laser pulses with 5 mJ energy in 150 fs duration. Experimental results show that the size of cluster and laser absorption efficiency are strongly dependent on several factors, such as the working pressure of pulse valve, atomic number Z of the gas. Absorption fraction of Xe clusters is as high as 45% at a laser intensity of 1 x 10 15 W/cm 2 with 20 x 10 5 Pa gas jet backing pressure. Absorption of the atomic clusters is greatly reduced by introducing pre-pulses. Ion energy measurements confirm that the efficient energy deposition results in a plasma with very high ion temperature

  9. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    International Nuclear Information System (INIS)

    1983-09-01

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy

  10. Compact diffraction grating laser wavemeter for cold atom experiments

    Science.gov (United States)

    Wei, Chun-hua; Yan, Shu-hua; Zhang, Tian

    2017-09-01

    We present an innovative and practical scheme of building a miniaturized wavemeter, with the advantages of low cost, high reliability and simple structure. Through a calibration test by a 780 nm external cavity diode laser (ECDL), the results show that our system gets a wavelength resolution of better than 1 pm, measurement accuracy of better than 2 pm (corresponding to a frequency of 1 GHz), and a measurement range of 8.5 nm. Finally, the multi-mode comparison test between our system and a commercial spectrum analyzer further indicates the high-precision, miniaturization and low cost of the proposed system, which shows that it is particularly suitable for ECDL and atom cooling and trapping experiments. The system design, experimental results and conclusions are of definite significance as a fine reference for other ranges of wavelength.

  11. X-ray refractive index of laser-dressed atoms

    OpenAIRE

    Buth, Christian; Santra, Robin

    2008-01-01

    We investigated the complex index of refraction in the x-ray regime of atoms in laser light. The laser (intensity up to 10^13 W/cm^2, wavelength 800nm) modifies the atomic states but, by assumption, does not excite or ionize the atoms in their electronic ground state. Using quantum electrodynamics, we devise an ab initio theory to calculate the dynamic dipole polarizability and the photoabsorption cross section, which are subsequently used to determine the real and imaginary part, respectivel...

  12. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.

    Science.gov (United States)

    Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan

    2015-05-04

    Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.

  13. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  14. Laser-evaporated pulsed atomic beam and its application

    International Nuclear Information System (INIS)

    Zhang Yanping; Hu Qiquan; Su Haizheng; Lin Fucheng

    1986-01-01

    For the purpose of obtaining an atomic beam, laser-evaporated atomic vapor was studied experimentally. The signals of multiphoton ionization of refractory metal atoms obtained with the pulsed atomic beam were observed, and the problem associated with the detection of these signals was discussed

  15. A study of the cool gas in the Large Magellanic Cloud. I. Properties of the cool atomic phase - a third H i absorption survey

    Science.gov (United States)

    Marx-Zimmer, M.; Herbstmeier, U.; Dickey, J. M.; Zimmer, F.; Staveley-Smith, L.; Mebold, U.

    2000-02-01

    The cool atomic interstellar medium of the Large Magellanic Cloud (LMC) seems to be quite different from that in the Milky Way. In a series of three papers we study the properties of the cool atomic hydrogen in the LMC (Paper I), its relation to molecular clouds using SEST-CO-observations (Paper II) and the cooling mechanism of the atomic gas based on ISO-[\\CII]-investigations (Paper III). In this paper we present the results of a third 21 cm absorption line survey toward the LMC carried out with the Australia Telescope Compact Array (ATCA). 20 compact continuum sources, which are mainly in the direction of the supergiant shell LMC 4, toward the surroundings of 30 Doradus and toward the eastern steep \\HI\\ boundary, have been chosen from the 1.4 GHz snapshot continuum survey of Marx et al. We have identified 20 absorption features toward nine of the 20 sources. The properties of the cool \\HI\\ clouds are investigated and are compared for the different regions of the LMC taking the results of Dickey et al. (survey 2) into account. We find that the cool \\HI\\ gas in the LMC is either unusually abundant compared to the cool atomic phase of the Milky Way or the gas is clearly colder (\\Tc\\ ~ 30 K) than that in our Galaxy (\\Tc\\ ~ 60 K). The properties of atomic clouds toward 30 Doradus and LMC 4 suggest a higher cooling rate in these regions compared to other parts of the LMC, probably due to an enhanced pressure near the shock fronts of LMC 4 and 30 Doradus. The detected cool atomic gas toward the eastern steep \\HI\\ boundary might be the result of a high compression of gas at the leading edge. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  16. Parametric resonance and cooling on an atom chip

    International Nuclear Information System (INIS)

    Yan Bo; Li Xiaolin; Ke Min; Wang Yuzhu

    2008-01-01

    This paper observes the parametric excitation on atom chip by measuring the trap loss when applying a parametric modulation. By modulating the current in chip wires, it modulates not only the trap frequency but also the trap position. It shows that the strongest resonance occurs when the modulation frequency equals to the trap frequency. The resonance amplitude increases exponentially with modulation depth. Because the Z-trap is an anharmonic trap, there exists energy selective excitation which would cause parametric cooling. We confirm this effect by observing the temperature of atom cloud dropping

  17. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  18. Broadening the applications of the atom probe technique by ultraviolet femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Chen, Y.M.; Kodzuka, M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Oh-ishi, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Li, F. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Kinno, T. [Corporate R and D Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582 (Japan); CREST, Japan Science and Technology Agency (Japan); Tomiya, S.; Kanitani, Y. [Advanced Materials Laboratory, Sony Corporation, Atsugi, Kanagawa 243-0021 (Japan)

    2011-05-15

    Laser assisted field evaporation using ultraviolet (UV) wavelength gives rise to better mass resolution and signal-to-noise ratio in atom probe mass spectra of metals, semiconductors and insulators compared to infrared and green lasers. Combined with the site specific specimen preparation techniques using the lift-out and annular Ga ion milling in a focused ion beam machine, a wide variety of materials including insulating oxides can be quantitatively analyzed by the three-dimensional atom probe using UV laser assisted field evaporation. After discussing laser irradiation conditions for optimized atom probe analyses, recent atom probe tomography results on oxides, semiconductor devices and grain boundaries of sintered magnets are presented. -- Research highlights: {yields} Application of ultraviolet (UV) femtosecond pulsed laser in a three dimensional atom probe (3DAP). {yields} Improved mass resolution and signal-to-noise ratio in atom probe mass spectra using UV laser. {yields} UV laser facilitates 3DAP analysis of insulating oxides. {yields} Quantitative analysis of wide variety of materials including insulating oxides using UV femotosecond laser.

  19. Laser guiding of cold atoms in photonic crystals

    International Nuclear Information System (INIS)

    Tarasishin, A V; Magnitskiy, Sergey A; Shuvaev, V A; Zheltikov, Aleksei M

    2000-01-01

    The possibility of using photonic crystals with a lattice defect for the laser guiding of cold atoms is analysed. We have found a configuration of a photonic-crystal lattice and a defect ensuring the distribution of a potential in the defect mode of the photonic crystal allowing the guiding of cold atoms along the defect due to the dipole force acting on atoms. Based on quantitative estimates, we have demonstrated that photonic crystals with a lattice defect permit the guiding of atoms with much higher transverse temperatures and a much higher transverse localisation degree than in the case of hollow-core fibres. (laser applications and other topics in quantum electronics)

  20. Development of laser excited atomic fluorescence and ionization methods

    International Nuclear Information System (INIS)

    Winefordner, J.D.

    1991-01-01

    Progress report: May 1, 1988 to December 31, 1991. The research supported by DE-FG05-88ER13881 during the past (nearly) 3 years can be divided into the following four categories: (1) theoretical considerations of the ultimate detection powers of laser fluorescence and laser ionization methods; (2) experimental evaluation of laser excited atomic fluorescence; (3) fundamental studies of atomic and molecular parameters in flames and plasmas; (4) other studies

  1. Manipulating beams of ultra-cold atoms with a static magnetic field

    International Nuclear Information System (INIS)

    Rowlands, W.J.; Lau, D.C.; Opat, G.I.; Sidorov, A.I.; McLean, R.J.; Hannaford, P.

    1996-01-01

    The preliminary results on the deflection of a beam of ultra-cold atoms by a static magnetic field are presented. Caesium atoms trapped in a magneto-optical trap (MOT) are cooled using optical molasses, and then fall freely under gravity to form a beam of ultra-cold atoms. The atoms pass through a static inhomogeneous magnetic field produced by a single current-carrying wire, and are deflected by a force dependent on the magnetic substate of the atom. A schematical diagram of the experimental layout for laser trapping and cooling of cesium atom is given. The population of atoms in various magnetic substates can be altered by using resonant laser radiation to optically pump the atoms. The single-wire deflection experiment described can be considered as atomic reflexion from a cylindrical magnetic mirror; the underlying principles and techniques being relevant to the production of atomic mirrors and diffraction gratings. 16 refs., 10 figs

  2. Effect of laser power and specimen temperature on atom probe analyses of magnesium alloys

    International Nuclear Information System (INIS)

    Oh-ishi, K.; Mendis, C.L.; Ohkubo, T.; Hono, K.

    2011-01-01

    The influence of laser power, wave length, and specimen temperature on laser assisted atom probe analyses for Mg alloys was investigated. Higher laser power and lower specimen temperature led to improved mass and spatial resolutions. Background noise and mass resolutions were degraded with lower laser power and higher specimen temperature. By adjusting the conditions for laser assisted atom probe analyses, atom probe results with atomic layer resolutions were obtained from all the Mg alloys so far investigated. Laser assisted atom probe investigations revealed detailed chemical information on Guinier-Preston zones in Mg alloys. -- Research highlights: → We study performance of UV laser assisted atom probe analysis for Mg alloys. → There is an optimized range of laser power and specimen temperature. → Optimized UV laser enables atom probe data of Mg alloys with high special resolution.

  3. Atomic lithium vapor laser isotope separation

    International Nuclear Information System (INIS)

    Olivares, I.E.; Rojas, C.

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the 6 LiD 2 and the 7 LiD 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  4. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2018-01-01

    This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possi...

  5. Tightly confined atoms in optical dipole traps

    International Nuclear Information System (INIS)

    Schulz, M.

    2002-12-01

    This thesis reports on the design and setup of a new atom trap apparatus, which is developed to confine few rubidium atoms in ultrahigh vacuum and make them available for controlled manipulations. To maintain low background pressure, atoms of a vapour cell are transferred into a cold atomic beam by laser cooling techniques, and accumulated by a magneto-optic trap (MOT) in a separate part of the vacuum system. The laser cooled atoms are then transferred into dipole traps made of focused far-off-resonant laser fields in single- or crossed-beam geometry, which are superimposed with the center of the MOT. Gaussian as well as hollow Laguerre-Gaussian (LG$ ( 01)$) beam profiles are used with red-detuned or blue-detuned light, respectively. Microfabricated dielectric phase objects allow efficient and robust mode conversion of Gaussian into Laguerre-Gaussian laser beams. Trap geometries can easily be changed due to the highly flexible experimental setup. The dipole trap laser beams are focused to below 10 microns at a power of several hundred milliwatts. Typical trap parameters, at a detuning of several ten nanometers from the atomic resonance, are trag depths of few millikelvin, trap frequencies near 30-kHz, trap light scattering rates of few hundred photons per atom and second, and lifetimes of several seconds. The number of dipole-trapped atoms ranges from more than ten thousand to below ten. The dipole-trapped atoms are detected either by a photon counting system with very efficient straylight discrimination, or by recapture into the MOT, which is imaged onto a sensitive photodiode and a CCD-camera. Due to the strong AC-Stark shift imposed by the high intensity trapping light, energy-selective resonant excitation and detection of the atoms is possible. The measured energy distribution is consistent with a harmonic potential shape and allows the determination of temperatures and heating rates. In first measurements, the thermal energy is found to be about 10 % of the

  6. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, Paul; Wihbey, Joseph [Physics Department, The College of the Holy Cross, Worcester, Massachusetts 01610 (United States)

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  7. Precision atomic beam density characterization by diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Oxley, Paul; Wihbey, Joseph

    2016-01-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 −5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm −3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  8. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  9. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  10. Light forces on an indium atomic beam

    International Nuclear Information System (INIS)

    Kloeter, B.

    2007-01-01

    In this thesis it was studied, whether indium is a possible candidate for the nanostructuration respectively atomic lithography. For this known method for the generation and stabilization of the light necessary for the laser cooling had to be fitted to the special properties of indium. The spectroscopy of indium with the 451 nm and the 410 nm light yielded first hints that the formulae for the atom-light interaction for a two-level atom cannot be directly transferred to the indium atom. By means of the obtained parameters of the present experiment predictions for a possible Doppler cooling of the indium atomic beam were calculated. Furthermore the possibility for the direct deposition of indium on a substrate was studied

  11. Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process

    Science.gov (United States)

    Freitas, Nahuel; Paz, Juan Pablo

    2018-03-01

    We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017), 10.1103/PhysRevE.95.012146]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs.

  12. Efficiencies of laser dyes for atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Oki, Yuji; Uchiumi, Michihiro; Takao, Takayuki; Igarashi, Kaoru; Shimamoto, Kojiro.

    1995-01-01

    Efficiencies of 30 laser dyes for the atomic vapor laser isotope separation (AVLIS) are experimentally evaluated with a dye laser pumped by a frequency-doubled Nd:YAG laser. On the other hand, a simulation code is developed to describe the laser action of Rhodamine 6G, and the dependence of the laser efficiency on the pump wavelength is calculated. Following conclusions are obtained by these considerations:space: 1) Pyrromethene 567 showed 16% higher laser efficiency than Rhodamine 6G by 532 nm pumping, and Pyrromethene 556 has an ability to provide better efficiency by green light pumping with a Cu vapor laser; 2) Kiton red 620 and Rhodamine 640, whose efficiencies were almost the same as Rhodamine 6G by 532 nm pumping, will show better efficiencies by two-wavelength pumping with a Cu vapor laser. (author)

  13. Electron beam cooling by laser

    CERN Document Server

    Urakawa, J; Terunuma, N; Taniguchi, T; Yamazaki, Y; Hirano, K; Nomura, M; Sakai, I; Takano, M; Sasao, N; Honda, Y; Noda, A; Bulyak, E; Gladkikh, P; Mystykov, A; Zelinsky, A; Zimmermann, Frank

    2004-01-01

    In 1997, Z.Huang and R.Ruth proposed a compact laser-electron storage ring (LESR) for electron beam cooling or x-ray generation. Because the laser-wire monitor in the ATF storage ring has worked well and demonstrated the achievement of the world's smallest transverse emittance for a circulating electron beam, we have started the design of a small storage ring with about 10 m circumference and the development of basic technologies for the LESR. In this paper, we describe the design and experimental results of pulse stacking in a 42-cm long optical cavity. Since our primary purpose is demonstrating the proof-of-principle of the LESR, we will then discuss the future experimental plan at the KEK-ATF for the generation of high average-brilliance gamma-rays.

  14. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T

    2009-01-01

    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we obta...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz.......We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...

  15. Lasing by driven atoms-cavity system in collective strong coupling regime.

    Science.gov (United States)

    Sawant, Rahul; Rangwala, S A

    2017-09-12

    The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.

  16. Sympathetic cooling and crystallization of ions in a linear Paul trap

    International Nuclear Information System (INIS)

    Drewsen, M.; Bowe, P.; Hornekaer, L.; Brodersen, C.; Schiffer, J.P.; Hangst, J.S.; Schiffer, J.P.

    1999-01-01

    Coulomb crystals, containing up to a few hundred ions of which more than 50% were cooled sympathetically by the Coulomb interaction with laser cooled Mg + ions, have been produced in a linear Paul trap. By controlling the balance of the radiation pressure from the two cooling lasers, the Coulomb crystals could be segregated according to ion species. Previous studies of ion crystals and molecular dynamics simulations suggest that the temperature may be around 10 mK or lower. The obtained results indicate that a wide range of atomic and molecular ions, which due to their internal structures are not amenable to direct laser cooling, can be effectively cooled and localized (crystallized) in linear Paul traps. For high resolution spectroscopy of such ions this may turn out to be very useful. copyright 1999 American Institute of Physics

  17. Laser manipulation of atomic and molecular flows

    Science.gov (United States)

    Lilly, Taylor C.

    The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques. The characteristics of these laser-based flow manipulations suggest that they may augment, or be superior to, such traditional electro-mechanical methods as ionic flow control, shock tubes, and small scale wind tunnels. In this study, methodology was developed for investigating laser flow manipulation techniques, and testing their feasibility for a number of aerospace, basic physics, and micro technology applications. Theories for laser-atom and laser-molecule interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation, of laser-based neutral atomic and molecular flow manipulations, was conducted using near-resonant and non-resonant laser fields. To simulate the laser interactions over a range of laser and flow conditions, the following tools were employed: a custom collisionless gas particle trajectory code and a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. In addition to the numerical investigations, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. Several areas of interest were addressed: laser induced neutral flow steering, collimation, direct flow acceleration, and neutral gas heating. Near-resonant continuous wave laser, and non-resonant pulsed laser, interactions with cesium and nitrogen were simulated. These simulations showed trends and some limitations associated with these interactions, used for flow

  18. Laser-induced fluorescence with an OPO system. Part II: direct determination of lead content in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF).

    Science.gov (United States)

    Le Bihan, A; Lijour, Y; Giamarchi, P; Burel-Deschamps, L; Stephan, L

    2003-03-01

    Fluorescence was induced by coupling a laser with an optical parametric oscillator (OPO) to develop an analytical method for the direct determination of lead content, at ultra-trace level, in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF). The optimization of atomization conditions, laser pulse energy, and mainly temporal parameters allowed us to reach a 3 fg detection limit (0.3 ng L(-1)) despite the low repetition rate of the device. The expected error on predicted concentrations of lead, at trace levels, in seawater was below 15%.

  19. Electron-atom collisions in a laser field

    International Nuclear Information System (INIS)

    Ehlotzky, F.

    1998-01-01

    The present work is a report on recent progress made in our understanding of electron-atom collisions in a laser field. To some extent it is a continuation of a previous review covering a somewhat larger subject (Can. J. Phys. 63 (1985)). We shall discuss the present status of investigations in this field from the theoretical as well as experimental point of view but most of the report will be devoted to an analysis of the various approximation schemes used at present in this field to describe the different aspects of laser-assisted electron-atom interactions. As the table of contents shows, most of the work done so far is treating the atom as a spectator, described by a potential and only very little has been achieved over the years to include the atomic structure into consideration since the inclusion of these structure effects poses considerable computational problems. Since, for example, multiphoton ionization and its inverse process laser-assisted recombination may be considered as one half of a scattering process, it is quite natural that some of the theoretical techniques described here are also of interest for the treatment of other multiphoton processes not considered here since there are several other recent reviews available on these topics. (orig.)

  20. Power Play, Laser Style

    Science.gov (United States)

    1998-01-01

    Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.

  1. Laser-cooling effects in few-ion clouds of Yb+

    International Nuclear Information System (INIS)

    Edwards, C.S.; Gill, P.; Klein, H.A.; Levick, A.P.; Rowley, W.R.C.

    1994-01-01

    We report some laser-cooling effects in a few 172 Yb + ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb + fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb + clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb + cloud was also observed. (orig.)

  2. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    Science.gov (United States)

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  3. Influence of the virtual photon field on the squeezing properties of an atom laser

    International Nuclear Information System (INIS)

    Jian-Gang, Zhao; Chang-Yong, Sun; Ling-Hua, Wen; Bao-Long, Liang

    2009-01-01

    This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose–Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms, parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser

  4. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    Science.gov (United States)

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  5. Chaotic scattering from hydrogen atoms in a circularly polarized laser field

    International Nuclear Information System (INIS)

    Okon, Elias; Parker, William; Chism, Will; Reichl, Linda E.

    2002-01-01

    We investigate the classical dynamics of a hydrogen atom in a circularly polarized laser beam with finite radius. The spatial cutoff for the laser field allows us to use scattering processes to examine the laser-atom dynamics. We find that for certain field parameters, the delay times, the angular momentum, and the distance of closest approach of the scattered electron exhibit fractal behavior. This fractal behavior is a signature of chaos in the dynamics of the atom-field system

  6. Diode laser probe of CO2 vibrational excitation produced by collisions with hot deuterium atoms from the 193 nm excimer laser photolysis D2S

    International Nuclear Information System (INIS)

    O'Neill, J.A.; Cai, J.Y.; Flynn, G.W.; Weston, R.E. Jr.

    1986-01-01

    The 193 nm excimer laser photolysis of D 2 S in D 2 S/CO 2 mixtures produces fast deuterium atoms (E/sub TR/approx.2.2 eV) which vibrationally excite CO 2 molecules via inelastic translation--vibration/rotation (T--V/R) energy exchange processes. A high resolution (10 -3 cm -1 ) cw diode laser probe was used to monitor the excitation of ν 3 (antisymmetric stretch) and ν 2 (bend) vibrations in CO 2 . The present results are compared with previous experiments involving hot hydrogen atom excitation of CO 2 in H 2 S/CO 2 mixtures as well as with theoretical calculations of the excitation probability. The probability for excitation of a ν 3 quantum in CO 2 is about 1%--2% per gas kinetic D/CO 2 collision. Bending (ν 2 ) quanta are produced about eight times more efficiently than antisymmetric stretching (ν 3 ) quanta. The thermalization rate for cooling hot D atoms below the threshold for production of a ν 3 vibrational quantum corresponds to less than 2 D*/D 2 S collisions or 15 D*/CO 2 collisions

  7. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1983-01-01

    The role of lasers in nuclear physics research is discussed including nuclear structure experiments involving the measurement of isotope shifts and hyperfine splitting in atomic energy levels in unstable nuclei by resonance fluorescence spectroscopy and the ultra sensitive detection of isotopic element abundances. (U.K.)

  8. High sensitivity detection of selenium by laser excited atomic fluorescence spectrometry using electrothermal atomization

    International Nuclear Information System (INIS)

    Heitmann, U.; Hese, A.; Schoknecht, G.; Gries, W.

    1995-01-01

    The high sensitivity detection of the trace element selenium is reported. The analytical method applied is Laser Excited Atomic Fluorescence Spectrometry using Electrothermal Atomization within a graphite furnace atomizer. For the production of tunable laser radiation in the VUV spectral region a laser system was developed which consists of two dye lasers pumped by a Nd:YAG laser. The laser radiations are subsequently frequency doubled and sum frequency mixed by nonlinear optical KDP or BBO crystals, respectively. The system works with a repetition rate of 20 Hz and provides output energies of up to 100 μJ in the VUV at a pulse duration of 5 ns. The analytical investigations were focused on the detection of selenium in aqueous solutions and samples of human whole blood. From measurements on aqueous standards detection limits of 1.5 ng/l for selenium were obtained, with corresponding absolute detected masses of only 15 fg. The linear dynamic range spanned six orders of magnitude and good precision was achieved. In case of human whole blood samples the recovery was found to be within the range of 96% to 104%. The determination of the selenium content yielded medians of [119.5 ± 17.3] μg/l for 200 frozen blood samples taken in 1988 and [109.1 ± 15.6] μg/l for 103 fresh blood samples. (author)

  9. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  10. Laser method of free atom nuclei orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1987-01-01

    Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained

  11. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: takahashi.3ct.jun@jp.nssmc.com [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Kawakami, K. [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Raabe, D. [Max-Planck Institut für Eisenforschung GmbH, Department for Microstructure Physics and Alloy Design, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2017-04-15

    Highlights: • Quantitative analysis in Fe-Cu alloy was investigated in voltage and laser atom probe. • In voltage-mode, apparent Cu concentration exceeded actual concentration at 20–40 K. • In laser-mode, the concentration never exceeded the actual concentration even at 20 K. • Detection loss was prevented due to the rise in tip surface temperature in laser-mode. • Preferential evaporation of solute Cu was reduced in laser-mode. - Abstract: The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40 K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20 K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  12. Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)

  13. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  14. Selective photoionization of isotopic atoms with pulsed lasers

    International Nuclear Information System (INIS)

    Dai Changjian

    1994-01-01

    The dynamics of isotopically selective interactions between the radiation of three pulsed lasers and atoms with a four-levels scheme has been studied. Starting from the time-dependent Schroedinger equation with the rotating-wave approximation, authors applied Sylvester theorem to the dynamic equations associated with near-and off-resonant excitations, respectively. Authors obtained the explicit expressions for the four-levels occupation probabilities. The analytic treatment explored the properties of coherent oscillations occurred in the atomic excitation processes with intense monochromatic lasers. The conditions under which the population inversion takes place are derived from near-resonant excitations. The criteria to select the basic parameters of pulsed lasers involved in the process are also provided

  15. Atomic excitation and acceleration in strong laser fields

    International Nuclear Information System (INIS)

    Zimmermann, H; Eichmann, U

    2016-01-01

    Atomic excitation in the tunneling regime of a strong-field laser–matter interaction has been recently observed. It is conveniently explained by the concept of frustrated tunneling ionization (FTI), which naturally evolves from the well-established tunneling picture followed by classical dynamics of the electron in the combined laser field and Coulomb field of the ionic core. Important predictions of the FTI model such as the n distribution of Rydberg states after strong-field excitation and the dependence on the laser polarization have been confirmed in experiments. The model also establishes a sound basis to understand strong-field acceleration of neutral atoms in strong laser fields. The experimental observation has become possible recently and initiated a variety of experiments such as atomic acceleration in an intense standing wave and the survival of Rydberg states in strong laser fields. Furthermore, the experimental investigations on strong-field dissociation of molecules, where neutral excited fragments after the Coulomb explosion of simple molecules have been observed, can be explained. In this review, we introduce the subject and give an overview over relevant experiments supplemented by new results. (paper)

  16. First demonstration of 'white-light' laser cooling of a stored ion beam

    International Nuclear Information System (INIS)

    Atutov, S.N.; Biancalana, V.; Calabrese, R.; Clauser, T.; Grimm, R.; Guidi, V.; Lamanna, G.; Lauer, I.; Lenisa, P.; Luger, V.; Mariotti, E.; Moi, L.; Schramm, U.; Stagno, V.; Stoessel, M.; Tecchio, L.; Variale, V.

    1998-01-01

    'White-light' cooling of an ion beam confined in a storage ring has been demonstrated at Test Storage Ring in Heidelberg. Measurements aimed at comparing 'white-light' with single-mode laser cooling show that 'white-light' cooling gives lower temperatures at higher ion densities both in a coasting and in a bunched beam

  17. Precise calibration of few-cycle laser pulses with atomic hydrogen

    Science.gov (United States)

    Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.

    2017-12-01

    Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.

  18. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Blecker, Carlo R.; Hermann, Gerd M.

    2009-01-01

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  19. Associative ionization of two laser excited Na atoms

    International Nuclear Information System (INIS)

    Meijer, H.A.J.

    1988-01-01

    An investigation into the associative ionization of two sodium atoms excited by polarized laser beams is described. It was possible to excite the Na atoms in a velocity-selective way by exploiting the Doppler effect. The excitation of Na to the 3 2 P 3/2 , F=3 level is discussed on the basis of so-called saturation curves. Experiments with seven different combinations of polarization of the two exciting laser beams are described and the results discussed. 86 refs.; 53 figs.; 6 tabs

  20. Sub-Doppler temperature measurements of laser-cooled atoms using optical nanofibres

    International Nuclear Information System (INIS)

    Russell, Laura; Daly, Mark J; Chormaic, Síle Nic; Deasy, Kieran; Morrissey, Michael J

    2012-01-01

    We present a method for measuring the average temperature of a cloud of cold 85 Rb atoms in a magneto-optical trap using an optical nanofibre. A periodic spatial variation is applied to the magnetic fields generated by the trapping coils and this causes the trap centre to oscillate, which, in turn, causes the cloud of cold atoms to oscillate. The optical nanofibre is used to collect the fluorescence emitted by the cold atoms, and the frequency response between the motion of the centre of the oscillating trap and the cloud of atoms is determined. This allows us to make measurements of cloud temperature both above and below the Doppler limit, thereby paving the way for nanofibres to be integrated with ultracold atoms for hybrid quantum devices

  1. Resonant excitation of uranium atoms by an argon ion laser

    Energy Technology Data Exchange (ETDEWEB)

    Maeyama, H; Morikawa, M; Aihara, Y; Mochizuki, T; Yamanaka, C [Osaka Univ. (Japan)

    1979-03-01

    Photoionization of uranium atoms by UV lines, 3511 A and 3345 A, of an argon ion laser was observed and attributed due to resonant two-photon ionization. The dependence of the photoion currents on laser power was measured in focusing and non-focusing modes of laser beam, which has enabled us to obtain an absorption cross section and an ionization cross section independently. The orders of magnitude of these cross sections averaged over the fine structure were determined to be 10/sup -14/ cm/sup 2/ and 10/sup -17/ cm/sup 2/ respectively from a rate equation model. Resonance between 3511-A laser line and the absorption line of uranium isotopes was also confirmed by the ionization spectra obtained by near-single-frequency operation of the ion laser, which allowed the isotopic selective excitation of the uranium atoms. The maximum value of the enrichment of /sup 235/U was about 14%. The isotope separation of uranium atoms by this resonant excitation has been discussed.

  2. Towards passive and active laser stabilization using cavity-enhanced atomic interaction

    DEFF Research Database (Denmark)

    Schäffer, Stefan Alaric; Christensen, Bjarke Takashi Røjle; Rathmann, Stefan Mossor

    2017-01-01

    Ultra stable frequency references such as the ones used in optical atomic clocks and for quantum metrology may be obtained by stabilizing a laser to an optical cavity that is stable over time. State-of-the-art frequency references are constructed in this way, but their stabilities are currently...... experimental efforts derived from these proposals, to use cavity-enhanced interaction with atomic 88Sr samples as a frequency reference for laser stabilization. Such systems can be realized using both passive and active approaches where either the atomic phase response is used as an error signal, or the narrow...... atomic transition itself is used as a source for a spectrally pure laser. Both approaches shows the promise of being able to compete with the current state of the art in stable lasers and have similar limitations on their ultimately achievable linewidths [1, 2]....

  3. Optical lattice on an atom chip

    DEFF Research Database (Denmark)

    Gallego, D.; Hofferberth, S.; Schumm, Thorsten

    2009-01-01

    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....

  4. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  5. Understanding Molecular-Ion Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    Science.gov (United States)

    2014-02-03

    SECURITY CLASSIFICATION OF: This project was superseded and replaced by another ARO-funded project of the same name, which is still continuing. The goal...cooled atoms," IOTA -COST Workshop on molecular ions, Arosa, Switzerland. 5. E.R. Hudson, "Sympathetic cooling of molecules with laser cooled

  6. Subthermal linewidths in photoassociation spectra of cold alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Machholm, Mette; Julienne, Paul S.; Suominen, Kalle-Antti

    2002-01-01

    Narrow s-wave features with subthermal widths are predicted for the 1 Π g photoassociation spectra of cold alkaline-earth-metal atoms. The phenomenon is explained by numerical and analytical calculations. These show that only a small subthermal range of collision energies near threshold contributes to the s-wave features that are excited when the atoms are very far apart. The resonances survive thermal averaging, and may be detectable for Ca cooled near the Doppler cooling temperature of the 4 1 P 1 S laser-cooling transition

  7. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  8. Diffusively cooled thin-sheath high-repetition-rate TEA and TEMA lasers

    Science.gov (United States)

    Yatsiv, Shaul; Gabay, Amnon; Sintov, Yoav

    1993-05-01

    Transverse electric atmospheric (TEA), or multi atmospheric (TEMA) lasers deliver intense short laser pulses of considerable energies. Recurrent high repetition rate pulse trains afford substantial average power levels. In a high rep-rate operation the gas flows across the cavity and is externally cooled to maintain a reasonably low temperature. The gas flow gear and heat exchanger are bulky and costly. In this work we present a repetitively pulsed TEA or TEMA laser that combines energy and peak power features in an individual pulse with the substantial average power levels of a pulse train in a thin layer of gas. Excess heat is disposed of, by conduction through the gas, to cooled enclosing walls. The gas does not flow. The method applies to vibrational transition molecular lasers in the infrared, where elevated temperatures are deleterious to the laser operation. The gist of the method draws on the law that heat conductivity in gases does not depend on their pressure. The fact lends unique operational flexibility and compactness, desirable for industrial and research purposes.

  9. Mixtures of ultracold atoms and the quest for ultracold molecules

    International Nuclear Information System (INIS)

    Weidemueller, M.

    2000-08-01

    A cold atomic gas formed by two different species represents an intriguing system for a deeper understanding of atom-atom interactions at ultralow temperatures. We present experiments on a mixture of atomic lithium and cesium which are of particular interest regarding the formation of heteronuclear molecules on the one hand, and the prospects for sympathetic cooling of atomic gases through mutual thermalization on the other hand. A first series of experiments on interaction in presence of a near-resonant light field is performed in a two-species magneto-optical trap. The collisional properties of the lithium-cesium mixture are investigated through detailed analysis of trap-loss processes induced by the trap light. Photoassociation in an additional near-resonant laser field yields high-resolution spectra of the excited Cs 2 dimers, but shows no unambiguous indication of LiCs molecule formation. A second series of experiments on pure ground-state collisional properties utilizes an optical dipole trap formed by light that is detuned extremely far below atomic resonance (quasi-electrostatic trap). Storage times of many minutes are achieved in a particularly simple and versatile setup for both atomic species. Cooling of cesium through evaporation and thermalization by elastic collisions is observed. The evolution of temperature and particle number is compared with model simulations of evaporative cooling. Direct laser cooling of trapped cesium in the absolute energetic ground state is demonstrated. Homonuclear spin-changing collisions of ground-state cesium and lithium atoms are analyzed, and first evidence for pure ground-state collisions between atoms of different species is found. Based on the current achievements, prospects for future experiments are discussed. (orig.)

  10. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  11. Design of a femtosecond laser assisted tomographic atom probe

    International Nuclear Information System (INIS)

    Gault, B.; Vurpillot, F.; Vella, A.; Gilbert, M.; Menand, A.; Blavette, D.; Deconihout, B.

    2006-01-01

    A tomographic atom probe (TAP) in which the atoms are field evaporated by means of femtosecond laser pulses has been designed. It is shown that the field evaporation is assisted by the laser field enhanced by the subwavelength dimensions of the specimen without any significant heating of the specimen. In addition, as compared with the conventional TAP, due to the very short duration of laser pulses, no spread in the energy of emitted ions is observed, leading to a very high mass resolution in a straight TAP in a wide angle configuration. At last, laser pulses can be used to bring the intense electric field required for the field evaporation on poor conductive materials such as intrinsic Si at low temperature. In this article, the performance of the laser TAP is described and illustrated through the investigation of metals, oxides, and silicon materials

  12. Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue

    International Nuclear Information System (INIS)

    Singh, Rupesh; Das, Koushik; Okajima, Junnosuke; Maruyama, Shigenao; Mishra, Subhash C.

    2015-01-01

    This article deals with the spatial and the temporal evolution of tissue temperature during skin surface cooled laser induced hyperthermia. Three different skin surface cooling methodologies viz., optical window contact cooling, cryogenic spray cooling and cryogen cooled optical window contact cooling are considered. Sapphire, yttrium aluminum garnet, lithium tantalate, and magnesium oxide doped lithium niobate are the considered optical windows. The cryogens considered are liquid CO_2 and R1234yf. Heat transfer in the multilayer skin tissue embedded with thermally significant blood vessels pairs is modeled using the Pennes and Weinbaum–Jiji bioheat equations. Weinbaum–Jiji bioheat equation is used for the vascularized tissue. Laser transport in the tissue is modeled using the radiative transfer equation. Axial and radial (skin surface) temperature distributions for different combinations of optical windows and cryogens are analyzed. Liquid CO_2 cooled yttrium aluminum garnet is found to be the best surface cooling mechanism. - Highlights: • Skin surface cooled laser induced hyperthermia is studied. • A multi-layer 2-D cylindrical tissue geometry is considered. • Both Pennes and Weinbaum–Jiji bioheat models are considered. • Laser transport in the tissue is modeled using discrete ordinate method. • Results for 4 optical windows and 2 cryogens for skin cooling are presented.

  13. Coherent manipulation of atoms using laser light

    International Nuclear Information System (INIS)

    Shore, B.W.

    2008-01-01

    The internal structure of a particle an atom or other quantum system in which the excitation energies are discrete undergoes change when exposed to pulses of near-resonant laser light. This tutorial review presents basic concepts of quantum states, of laser radiation and of the Hilbert-space state vector that provides the theoretical portrait of probability amplitudes the tools for quantifying quantum properties not only of individual atoms and molecules but also of artificial atoms and other quantum systems. It discusses the equations of motion that describe the laser-induced changes (coherent excitation), and gives examples of laser=pulse effects, with particular emphasis on two-state and three-state adiabatic time evolution within the rotating-wave approximation. It provides pictorial descriptions of excitation based on the Bloch equations that allow visualization of two-state excitation as motion of a three-dimensional vector (the Bloch vector). Other visualization techniques allow portrayal of more elaborate systems, particularly the Hilbert-space motion of adiabatic states subject to various pulse sequences. Various more general multilevel systems receive treatment that includes degeneracies, chains and loop linkages. The concluding sections discuss techniques for creating arbitrary pre-assigned quantum states, for manipulating them into alternative coherent superpositions and for analyzing an unknown superposition. Appendices review some basic mathematical concepts and provide further details of the theoretical formalism, including photons, pulse propagation, statistical averages, analytic solutions to the equations of motion, exact solutions of periodic Hamiltonians, and population-trapping 'dark' states. (author)

  14. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  15. A solar simulator-pumped atomic iodine laser

    Science.gov (United States)

    Lee, J. H.; Weaver, W. R.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar-pumped gas laser, was excited with a 4-kW beam from a xenon arc solar simulator. Continuous lasing at 1.315 micron for over 10 ms was obtained for static filling of n-C3F7I vapor. By momentarily flowing the lasant, a 30-Hz pulsed output was obtained for about 200 ms. The peak laser power observed was 4 W for which the system efficiency reached 0.1%. These results indicate that direct solar pumping of a gas laser for power conversion in space is indeed feasible.

  16. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  17. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  18. Laser-induced fluorescence line narrowing in atomic vapors

    International Nuclear Information System (INIS)

    Meier, T.; Schuessler, H.A.

    1983-01-01

    The use of highly monochromatic light allows the selective excitation of atoms in vapors if excitation and detection of the fluorescence is carried out collinearly. The atoms capable of absorbing light then form an atomic beam of well defined velocity along the direction of the laser beam, but no velocity selection occurs perpendicular to it. The potential of the technique for Doppler-free atomic spectroscopy and for the study of excited atom collisions is demonstrated using the Na D 1 line as an example

  19. Survey of atomic and molecular data needs for fusion

    International Nuclear Information System (INIS)

    Lorenz, A.; Phillips, J.; Schmidt, J.J.; Lemley, J.R.

    1976-01-01

    Atomic and molecular data needs in five areas of plasma research and fusion technology are considered: Injection Systems (plasma heating by neutral particle beam injection and particle cluster beam injection); Plasma-Surface Interaction (sputtering, absorption, adsorption, reflection, evaporation, surface electron emission, interactions of atomic hydrogen isotopes, synchrotron radiation); Plasma Impurities and Cooling (electron impact ionization and excitation, recombination processes, charge exchange, reflection of H from wall surfaces); Plasma Diagnostics (atomic structure and transition probabilities, X-ray wave-length shift for highly ionized metals, electron capture collisions with H + and D + , heavy-ion collision ionization probe, photon scattering, emission spectroscopy); Laser-fusion Compression (microexplosion physics, diagnostics, microtarget design, laser systems requirements, laser development, reactor design needs)

  20. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  1. Frequency lock of a dye laser emission on iron atomic line top

    International Nuclear Information System (INIS)

    Durand, P.

    1995-03-01

    The aim of this thesis is to realize a frequency lock of a dye laser emission on iron atomic line top. To reach that goal, the author first presents the calculation of atomic vapour density by means of laser absorption ratio measure and studies the dye laser working. It is then necessary to find a device giving the required precision on the frequency of the absorption line choosen. It is obtained thanks to the atomic line reconstitution by optogalvanic effect which gives the reference. Besides, the author presents the necessity of a laser emission power regulation which is obtained thanks to a device including an acoustic and optic modulator. A reliable and accurate captor is choosen and adjusted testing various hollow cathode lamps. The method to obtain the frequency lock of laser emission on iron atomic line top is described. (TEC). 18 refs., 64 figs

  2. Production and sympathetic cooling of complex molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobo

    2008-06-24

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO{sub 2}, Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the {sup 138}Ba{sup +} ions in the ({sup 2}P{sub 1/2}) excited state with gases such as O{sub 2}, CO{sub 2}, or N{sub 2}O, could be observed. If the initial {sup 138}Ba{sup +} ion ensemble is cold, the produced {sup 138}BaO{sup +} ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of {sup 138}BaO{sup +} ions with neutral CO to {sup 138}Ba{sup +} is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the

  3. Production and sympathetic cooling of complex molecular ions

    International Nuclear Information System (INIS)

    Zhang, Chaobo

    2008-01-01

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO 2 , Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the 138 Ba + ions in the ( 2 P 1/2 ) excited state with gases such as O 2 , CO 2 , or N 2 O, could be observed. If the initial 138 Ba + ion ensemble is cold, the produced 138 BaO + ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of 138 BaO + ions with neutral CO to 138 Ba + is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the feasibility of nondestructive spectroscopy via an optical dipole excitation

  4. Atomic scattering in the presence of a low-frequency laser

    International Nuclear Information System (INIS)

    Banerji, J.

    1982-01-01

    In the first four chapters of this thesis previous work on non-resonant potential scattering, resonant potential scattering and non-resonant electron-atom scattering in the presence of a low-frequency laser has been discussed and extended. Chapter 6 deals with the experimental aspects of laser-modified atomic scattering. In chapter 7, the problem of electron-atom ionizing collisions (both resonant and non-resonant) in the presence of a low-frequency laser is discussed. In the next chapter the cut-off Coulomb potential scattering in the presence of a low-frequency laser has been considered. Because of the long range of the Coulomb potential, the result deviates sharply from that obtained for short range potentials unless, of course, the collision energy is very high. Moreover, it has been suggested that the experiments are not reproducible unless the details of the cut-off Coulomb potential are spelled out

  5. Isotope separation by laser deflection of an atomic beam

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1975-02-01

    Separation of isotopes of barium was accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s 2 1 S 0 --6s6p 1 P 1 5536A resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. To improve the efficiency of separation, a second dye laser was employed to excite atoms which had decayed to the 6s5d metastable state into the 6p5d 1 P 1 state from which they could decay to the ground state and continue to be deflected on the 5535A transition. With the addition of the second laser, separation efficiency of greater than 83 percent was achieved, limited by metastable state accumulation in the 5d 2 1 D 2 state which is accessible from the 6p5d 1 P 1 level. It was found that the decay rate from the 6p5d state into the 5d 2 metastable state was fully 2/3 the decay rate to the ground state, corresponding to an oscillator strength of 0.58. (U.S.)

  6. Molecules cooled below the Doppler limit

    Science.gov (United States)

    Truppe, S.; Williams, H. J.; Hambach, M.; Caldwell, L.; Fitch, N. J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.

    2017-12-01

    Magneto-optical trapping and sub-Doppler cooling have been essential to most experiments with quantum degenerate gases, optical lattices, atomic fountains and many other applications. A broad set of new applications await ultracold molecules, and the extension of laser cooling to molecules has begun. A magneto-optical trap (MOT) has been demonstrated for a single molecular species, SrF, but the sub-Doppler temperatures required for many applications have not yet been reached. Here we demonstrate a MOT of a second species, CaF, and we show how to cool these molecules to 50 μK, well below the Doppler limit, using a three-dimensional optical molasses. These ultracold molecules could be loaded into optical tweezers to trap arbitrary arrays for quantum simulation, launched into a molecular fountain for testing fundamental physics, and used to study collisions and chemistry between atoms and molecules at ultracold temperatures.

  7. Laser Assisted Free-Free Transition in Electron - Atom Collision

    Science.gov (United States)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  8. NATO Advanced Study Institute on Laser Interactions with Atoms, Solids,and Plasmas

    CERN Document Server

    1994-01-01

    The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include ...

  9. Building one molecule from a reservoir of two atoms.

    Science.gov (United States)

    Liu, L R; Hood, J D; Yu, Y; Zhang, J T; Hutzler, N R; Rosenband, T; Ni, K-K

    2018-05-25

    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Techniques of laser spectroscopy in investigations of lanthanides' free atoms and ions

    International Nuclear Information System (INIS)

    Furmann, B.; Szawiola, G.; Jarosz, A.; Krzykowski, A.; Stefanska, D.; Dembczynski, J.

    2010-01-01

    Various experimental methods, used in Chair of Quantum Engineering and Metrology for determination of the hyperfine structure of electronic levels in lanthanides atoms and ions, are presented. In turn the spectroscopic methods on an atomic beam (laser induced fluorescence and laser-rf double resonance ABMR-LIRF), laser-rf double resonance in a Paul trap and spectroscopic methods in a hollow cathode discharge (optogalvanic detection and laser induced fluorescence) are presented. Each method has been characterized with its potential accuracy and domain of application. The results achieved for the atoms and the ions of lanthanum, praseodymium, neodymium and europium have been published in numerous articles (compiled in the reference list).

  11. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Directory of Open Access Journals (Sweden)

    Zeng Wei

    2018-03-01

    Full Text Available For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  12. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Science.gov (United States)

    Zeng, Wei; Deng, Li; Chen, Aixi

    2018-03-01

    For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D) atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  13. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  14. Charge exchange effect on laser isotope separation of atomic uranium

    International Nuclear Information System (INIS)

    Niki, Hideaki; Izawa, Yasukazu; Otani, Hiroyasu; Yamanaka, Chiyoe

    1982-01-01

    Uranium isotope separating experiment was performed using the two-step photoionization technique with dye laser and nitrogen laser by heating uranium metal with electron beam and producing atomic beam using generated vapour. The experimental results are described after explaining the two-step photoionization by laser, experimental apparatus, the selection of exciting wavelength and others. Enrichment factor depends largely on the spectrum purity of dye laser which is the exciting source. A large enrichment factor of 48.3 times was obtained for spectrum width 0.03A. To put the uranium isotope separation with laser into practice, the increase of uranium atomic density is considered to be necessary for improving the yield. Experimental investigation was first carried out on the charge exchange effect that seems most likely to affect the decrease of enrichment factor, and the charge exchange cross-section was determined. The charge exchange cross-section depends on the relative kinetic energy between ions and atoms. The experimental result showed that the cross-section was about 5 x 10 -13 cm 2 at 1 eV and 10 -13 cm 2 at 90 eV. These values are roughly ten times as great as those calculated in Lawrence Livermore Laboratory, and it is expected that they become the greatest factor for giving the upper limit of uranium atomic density in a process of practical application. (Wakatsuki, Y.)

  15. Long-time dynamics of laser-cooled ions in the TSR storage ring

    International Nuclear Information System (INIS)

    Mudrich, M.

    2000-01-01

    This diploma thesis studies experimentally the long-time dynamics of laser-cooled 9 Be + -beams at the TSR under different cooling conditions. The goal is to enlarge the understanding of ultra-cold, non-neutral plasma at high center-of-mass energies. By means of improved measurement capabilities one can now for the first time monitor the entire phase-space over a long time. This makes it possible to quantitatively analyse the possibilities and limitations of laser cooling at a storage ring. Under optimum cooling conditions a regime of high phase-space density is reached, close to the region where influences of Coulomb coupling are expected. Furthermore, a Monte-Carlo model is worked out that qualitatively describes the beam dynamics. The model includes the influence of transverse-longitudinal coupling due to intra beam scattering on the longitudinal phase-space distribution. At high phase-space density a sudden disappearance of intra beam collisions is observed experimentally and possible interpretations are given. (orig.)

  16. Laser-cooling effects in few-ion clouds of Yb[sup +

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.S. (National Physical Lab., Teddington (United Kingdom)); Gill, P. (National Physical Lab., Teddington (United Kingdom)); Klein, H.A. (National Physical Lab., Teddington (United Kingdom)); Levick, A.P. (National Physical Lab., Teddington (United Kingdom)); Rowley, W.R.C. (National Physical Lab., Teddington (United Kingdom))

    1994-08-01

    We report some laser-cooling effects in a few [sup 172]Yb[sup +] ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb[sup +] fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb[sup +] clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb[sup +] cloud was also observed. (orig.)

  17. Laser driven source of spin polarized atomic deuterium and hydrogen

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.

    1993-01-01

    Optical pumping of potassium atoms in the presence of a high magnetic field followed by spin exchange collisions with deuterium (hydrogen) is shown to yield a high flux of spin polarized atomic deuterium (hydrogen). The performance of the laser driven source has been characterized as a function of deuterium (hydrogen) flow rate, potassium density, pump laser power, and magnetic field. Under appropriate conditions, the authors have observed deuterium atomic polarization as high as 75% at a flow rate 4.2x10 17 atoms/second. Preliminary results suggest that high nuclear polarizations are obtained in the absence of weak field rf transitions as a result of a spin temperature distribution that evolves through frequent H-H (D-D) collisions

  18. Influence of laser power on atom probe tomographic analysis of boron distribution in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Y., E-mail: ytu@imr.tohoku.ac.jp [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takamizawa, H.; Han, B.; Shimizu, Y.; Inoue, K.; Toyama, T. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yano, F. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Tokyo City University, Setagaya, Tokyo 158-8557 (Japan); Nishida, A. [Renesas Electronics Corporation, Hitachinaka, Ibaraki 312-8504 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2017-02-15

    The relationship between the laser power and the three-dimensional distribution of boron (B) in silicon (Si) measured by laser-assisted atom probe tomography (APT) is investigated. The ultraviolet laser employed in this study has a fixed wavelength of 355 nm. The measured distributions are almost uniform and homogeneous when using low laser power, while clear B accumulation at the low-index pole of single-crystalline Si and segregation along the grain boundaries in polycrystalline Si are observed when using high laser power (100 pJ). These effects are thought to be caused by the surface migration of atoms, which is promoted by high laser power. Therefore, for ensuring a high-fidelity APT measurement of the B distribution in Si, high laser power is not recommended. - Highlights: • Influence of laser power on atom probe tomographic analysis of B distribution in Si is investigated. • When using high laser power, inhomogeneous distributions of B in single-crystalline and polycrystalline Si are observed. • Laser promoted migration of B atoms over the specimen is proposed to explain these effects.

  19. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    Science.gov (United States)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  20. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  1. Electron structure of atoms in laser plasma: The Debye shielding model

    International Nuclear Information System (INIS)

    Sako, Tokuei; Okutsu, Hiroshi; Yamanouchi, Kaoru

    2005-01-01

    The electronic structure and the energy spectra of multielectron atoms in laser plasmas are examined by the Debye shielding model. The effect of the plasma environment on the electrons bound in an atom is taken into account by introducing the screened Coulomb-type potentials into the electronic Hamiltonian of an atom in place of the standard nuclear attraction and electron repulsion potentials. The capabilities of this new Hamiltonian are demonstrated for He and Li in laser plasmas. (author)

  2. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  3. Separating uranium by laser: the atomic process

    Energy Technology Data Exchange (ETDEWEB)

    Destro, Marcelo G.; Damiao, Alvaro J.; Neri, Jose W.; Schwab, Carlos; Rodrigues, Nicolau A.S.; Riva, Rudimar [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados

    1996-07-01

    Among the countries around the world that utilizes nuclear energy, several ones are investing significantly in the development of laser techniques applied to isotope separation. In Brazil these studies are concentrated in one research institute, the IEAv (Institute for Advanced Studies), and aim at demonstrating the viability of this process using, as much as possible, resources available in the country. In this paper we briefly describe the laser methods for isotope separation, giving an overview of the present research and development status in this area. We also show some results obtained our laboratories. We focused this report on the atomic route for laser isotope separation, mainly in the areas of laser development and spectroscopy. (author)

  4. Separating uranium by laser: the atomic process

    International Nuclear Information System (INIS)

    Destro, Marcelo G.; Damiao, Alvaro J.; Neri, Jose W.; Schwab, Carlos; Rodrigues, Nicolau A.S.; Riva, Rudimar

    1996-01-01

    Among the countries around the world that utilizes nuclear energy, several ones are investing significantly in the development of laser techniques applied to isotope separation. In Brazil these studies are concentrated in one research institute, the IEAv (Institute for Advanced Studies), and aim at demonstrating the viability of this process using, as much as possible, resources available in the country. In this paper we briefly describe the laser methods for isotope separation, giving an overview of the present research and development status in this area. We also show some results obtained our laboratories. We focused this report on the atomic route for laser isotope separation, mainly in the areas of laser development and spectroscopy. (author)

  5. Helium clusters as cold, liquid matrix for the laser spectroscopy of silver atoms, silver clusters and C60 fullerenes

    International Nuclear Information System (INIS)

    Hoffmann, K.

    1999-01-01

    One of the main obstacles in the study of gas phase metal clusters is their high temperature. Even cooling in a seeded beam is only of limited used, since the condensation continuously releases energy into the system. As a consequence, spectroscopic studies of free metal clusters typically yield broad structures, which are interpreted as plasma resonances of a free electron gas. An experiment on ionic sodium clusters has shown that low temperatures lead to a narrowing of the absorption bands and the appearance of additional structure, that can not be explained within the free electron model. Thus the need for cold clusters is evident. In principle the deposition of metal clusters into inert matrices eliminates the temperature problem but it can also inflict strong changes on the electronic spectra. Droplets of liquid helium serve as a much more gentle matrix that avoids many of the above problems. In this thesis the new technique of helium droplet spectroscopy is presented as a tool for the study of extremely cold metal clusters. Clusters of silver up to a mass greater than 7000 amu have been produced by pickup of single atoms by a beam of helium droplets. The droplets are formed in a supersonic expansion. The cluster's binding energy is removed by evaporative cooling and the system remains at 0.4 K. The doped droplets are probed by laser spectroscopy with a depletion technique or resonant two photon ionization. We were able to measure the first UV absorption spectrum of metal atoms (silver) inside helium droplets. Another experiment shows that a small fraction of the captured silver atoms resides on the surface of the droplet like alkali atoms. In a two photon process previously unobserved s- and d-Rydberg states of the free silver atom (20 left angle n left angle 80) were excited. The silver atoms, initially embedded in the helium droplets, are found to move to the surface and desorb when excited to the broadened 5p level. This is the first result showing laser

  6. Effects of spin-orbit coupling on laser cooling of BeI and MgI

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Mingjie, E-mail: wanmingjie1983@sina.com; Huang, Duohui; Shao, Juxiang; Li, Yuanyuan [Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644007 (China); Yu, You [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225 (China); Li, Song [College of Physical Science and Technology, Yangtze University, Jingzhou 434023 (China)

    2015-10-28

    We present the ab initio study of spin-orbit coupling effects on laser cooling of BeI and MgI molecules. Potential energy curves for the X{sup 2}Σ{sup +}{sub 1/2}, A{sup 2}Π{sub 1/2,3/2}, and 2{sup 2}Π{sub 3/2,1/2} states are calculated using multi-reference configuration interaction method plus Davidson corrections. Spectroscopic parameters of BeI and MgI are in excellent agreement with available experimental and theoretical values. The A{sup 2}Π{sub 3/2} state of MgI is a repulsive state. It is an unsuitable scheme for the A{sup 2}Π{sub 3/2}(υ′)← X{sup 2}Σ{sup +}{sub 1/2} (υ″) transition for laser cooling of MgI. Highly diagonally distributed Franck-Condon factors f{sub 00} for the A{sup 2}Π{sub 1/2,3/2} (υ′ = 0) ← X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) transitions and suitable radiative lifetimes τ for the A{sup 2}Π{sub 1/2,3/2} (υ′ = 0) of BeI and MgI are obtained. Three laser wavelength drives are required for the A{sup 2}Π{sub 1/2,3/2}(υ′)←X{sup 2}Σ{sup +}{sub 1/2} (υ″) transitions of BeI and MgI. The proposed cooling wavelengths of BeI and MgI are both in the violet region. The results imply the feasibility of laser cooling of BeI and MgI, and that laser cooling of BeI is more possible.

  7. Development of laser atomic spectroscopic technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Ohr, Young Gie; Cha, Hyung Ki

    1990-06-01

    Some preliminary results on the resonant ionization spectroscopy for Na and Pb atoms are presents both in theory and in experiment. A single color multiphoton ionization process is theoretically analysed in detail, for the resonant and non-resonant cases, and several parameters determining the overall ionization rate are summarized. In particular, the AC stark shift, the line width and the non-linear coefficient of ionization rate are recalculated using the perturbation theory in resolvent approach. On the other hand, the fundamental equipments for spectroscopic experiments have been designed and manufactured, which include a Nd:YAG laser, a GIM-type dye laser, a vacuum system ionization cells, a heat pipe oven, and an ion current measuring system. The characteristics of the above equipments have also been examined. Using the spectroscopic data available, several ionization schemes are considered and the relative merits for ionization have been discussed. Moreover, the effects due to the buffer gas pressure, laser intensity, vapor density and electrode voltage have been investigated in detail. The experiments will be extended to multi-color processes with several resonances, and the ultimate goal is to develop a ultrasensitive analytical method for pollutive heavy metal atoms using the resonant ionization spectroscopy. (author)

  8. A review on laser diagnostics on atomization and evaporation of liquid fuel

    Science.gov (United States)

    Zhang, Yuyin; Li, Shiyan; Lin, Baiyang; Liu, Yang; Wu, Jian; Xu, Bin

    2014-08-01

    To evaluate the atomization and evaporation processes of liquid fuel, there are several laser diagnostics available in present. In this paper, the recent progress in laser diagnostics for atomization and evaporation will be introduced, as two categories: atomization and evaporation. The diagnostics for the former includes the primary breakup from liquid jet to ligaments or droplets and the secondary atomization from a bigger droplet to a smaller one, and the latter includes the droplet evaporation and the vapor distributions in a spray.

  9. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  10. A homogeneous cooling scheme investigation for high power slab laser

    Science.gov (United States)

    He, Jianguo; Lin, Weiran; Fan, Zhongwei; Chen, Yanzhong; Ge, Wenqi; Yu, Jin; Liu, Hao; Mo, Zeqiang; Fan, Lianwen; Jia, Dan

    2017-10-01

    The forced convective heat transfer with the advantages of reliability and durability is widely used in cooling the laser gain medium. However, a flow direction induced temperature gradient always appears. In this paper, a novel cooling configuration based on longitudinal forced convective heat transfer is presented. In comparison with two different types of configurations, it shows a more efficient heat transfer and more homogeneous temperature distribution. The investigation of the flow rate reveals that the higher flow rate the better cooling performance. Furthermore, the simulation results with 20 L/min flow rate shows an adequate temperature level and temperature homogeneity which keeps a lower hydrostatic pressure in the flow path.

  11. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  12. Study on the fine control of atoms by coherent interaction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Han Jae; Rho, S. P.; Park, H. M.; Lee, K. S.; Rhee, Y. J.; Yi, J. H.; Jeong, D. Y.; Jung, E. C.; Choe, A. S.; Lee, J. M

    1999-01-01

    The doppler-free saturation spectroscopy of Na atoms has been performed and the proper conditions for the frequency stabilization of narrow band cw dye lasers, which was used as laser sources for the laser cooling and trapping, have been obtained as follows : a) optimum pressure of a Na vapor cell: 10 mTorr b) intensity of a pump laser : a few {mu}W c) intensity of a probe laser : 1/10 of that of a pump laser. EIT (Electromagnetically Induced Transparency) generated by coherent laser-atom interactions was investigated experimentally and analyzed theoretically. The absorption of a probe laser could be remarkably reduced more than 90 % due to EIT effect. The EIT spectrum as narrow as 6 MHz which is even narrower than the natural linewidth of an excited state could be obtained under proper conditions.

  13. Study on the fine control of atoms by coherent interaction

    International Nuclear Information System (INIS)

    Min, Han Jae; Rho, S. P.; Park, H. M.; Lee, K. S.; Rhee, Y. J.; Yi, J. H.; Jeong, D. Y.; Jung, E. C.; Choe, A. S.; Lee, J. M.

    1999-01-01

    The doppler-free saturation spectroscopy of Na atoms has been performed and the proper conditions for the frequency stabilization of narrow band cw dye lasers, which was used as laser sources for the laser cooling and trapping, have been obtained as follows : a) optimum pressure of a Na vapor cell: 10 mTorr b) intensity of a pump laser : a few μW c) intensity of a probe laser : 1/10 of that of a pump laser. EIT (Electromagnetically Induced Transparency) generated by coherent laser-atom interactions was investigated experimentally and analyzed theoretically. The absorption of a probe laser could be remarkably reduced more than 90 % due to EIT effect. The EIT spectrum as narrow as 6 MHz which is even narrower than the natural linewidth of an excited state could be obtained under proper conditions

  14. Magneto-optical transmission-reflection beam splitter for multi-level atoms

    International Nuclear Information System (INIS)

    Murphy, J.E.; Goodman, P.; Sidorov, A.I.

    1994-01-01

    An atomic de Broglie wave beam splitter is proposed. The interaction of multi-level atoms (J g = 1 - J e = 0) with a laser beam in the presence of a static magnetic field leads to the partial transmission and reflection of the atomic beam. The coherent splitting of the atomic beam occurs due to non-adiabatic transitions between different dressed states in the vicinity of avoided crossings. The transition probabilities and populations of split beams are dependent on the value of the magnetic field, laser detuning, and the ratio between different polarization components in the laser beam. For optimal conditions the population of each of the two transmitted and two reflected beams is 25 per cent. For cooled atoms it is possible to obtain splitting angles of 80 mrad. The effect of spontaneous emission during the atom-light interaction was estimated and for a reasonable detuning losses were reduced to less than 10 per cent. 14 refs., 1 tab., 6 figs

  15. Atom localization via controlled spontaneous emission in a five-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhiping; Yu Benli; Zhu Jun; Cao Zhigang; Zhen Shenglai; Wu Xuqiang; Xu Feng

    2012-01-01

    We investigate the one- and two-dimensional atom localization behaviors via spontaneous emission in a coherently driven five-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization. - Highlights: ► One- and two-dimensional atom localization behaviors via spontaneous emission in five-level atoms are investigated. ► An assisting radio-frequency field is used to control the atom localization behaviors. ► High-precision and high-resolution two-dimensional atom localization can be realized in this scheme.

  16. Biofouling in the condenser cooling conduits of Madras Atomic Power Station

    International Nuclear Information System (INIS)

    Thiyagarajan, V.; Subramoniam, T.; Venugopalan, V.P.; Nair, K.V.K.

    1995-01-01

    The present paper deals with various aspects fouling organisms collected from the condenser cooling water circuit of Madras Atomic Power Station (MAPS II) their biomass, thickness, composition and length frequency distribution of one of the major species namely, B. reticulatus. (author). 8 refs., 1 tab., 2 figs

  17. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Iman Hassani; Mohseni, Hooman, E-mail: hmohseni@ece.northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-07-28

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  18. Switching of light with light using cold atoms inside a hollow optical fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2010-01-01

    We demonstrate a fiber-optical switch that operates with a few hundred photons per switching pulse. The light-light interaction is mediated by laser-cooled atoms. The required strong interaction between atoms and light is achieved by simultaneously confining photons and atoms inside the microscopic...... hollow core of a single-mode photonic-crystal fiber....

  19. Interference of laser-induced resonances in the continuous structures of a helium atom

    International Nuclear Information System (INIS)

    Magunov, A I; Strakhova, S I

    2003-01-01

    Coherent effects in the interference of overlapping laser-induced resonances in helium atoms are considered. The simultaneous action of single-mode radiation of the 294-nm second harmonic of a cw dye laser and a 1064-nm Nd:YAG laser on helium atoms provides the overlap of two resonances induced by transitions from the 1s2s 1 S and 1s4s 1 S helium levels. The shape of the overlapping laser-induced resonances in the rotating-wave approximation is described by analytic expressions, which depend on the laser radiation intensities and the ratio of laser frequencies. (nonlinear optical phenomena)

  20. Dynamics of moving interacting atoms in a laser radiation field and optical size resonances

    International Nuclear Information System (INIS)

    Gadomskii, O.N.; Glukhov, A.G.

    2005-01-01

    The forces acting on interacting moving atoms exposed to resonant laser radiation are calculated. It is shown that the forces acting on the atoms include the radiation pressure forces as well as the external and internal bias forces. The dependences of the forces on the atomic spacing, polarization, and laser radiation frequency are given. It is found that the internal bias force associated with the interaction of atomic dipoles via the reemitted field may play an important role in the dynamics of dense atomic ensembles in a light field. It is shown that optical size resonances appear in the system of interacting atoms at frequencies differing substantially from transition frequencies in the spectrum of atoms. It is noted that optical size resonances as well as the Doppler frequency shift in the spectrum of interacting atoms play a significant role in the processes of laser-radiation-controlled motion of the atoms

  1. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.

    Science.gov (United States)

    Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L

    2016-11-29

    Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.

  2. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  3. Adiabatic interpretation of a two-level atom diode, a laser device for unidirectional transmission of ground-state atoms

    International Nuclear Information System (INIS)

    Ruschhaupt, A.; Muga, J. G.

    2006-01-01

    We present a generalized two-level scheme for an 'atom diode', namely, a laser device that lets a two-level ground-state atom pass in one direction, say from left to right, but not in the opposite direction. The laser field is composed of two lateral state-selective mirror regions and a central pumping region. We demonstrate the robustness of the scheme and propose a physical realization. It is shown that the inclusion of a counterintuitive laser field blocking the excited atoms on the left side of the device is essential for a perfect diode effect. The reason for this, the diodic behavior, and the robustness may be understood with an adiabatic approximation. The conditions to break down the approximation, which imply also the diode failure, are analyzed

  4. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  5. Generation of 99-mW continuous-wave 285-nm radiation for magneto-optical trapping of Mg atoms

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Yu, Ping; Balslev, Søren

    2002-01-01

    We have developed a tunable intense narrow-band 285 nm light source based on frequency doubling of 570 nm light in BBO. At input powers of 840 mW (including 130 mW used for locking purposes) we generate 99 mW UV radiation with an intensity profile suitable for laser-cooling experiments. The light...... is used for laser cooling of neutral magnesium atoms in a magneto-optical trap (MOT). We capture about 5 x 10(6) atoms directly from a thermal beam and find that the major loss mechanism of the magnesium MOT is a near-resonant two-photon ionization process....

  6. Two-step resonance ionization spectroscopy of Na atomic beam using cw and pulsed lasers

    International Nuclear Information System (INIS)

    Katsuragawa, H.; Minowa, T.; Shimazu, M.

    1988-01-01

    Two-step photoionization of sodium atomic beam has been carried out using a cw and a pulsed dye lasers. Sodium ions have been detected by a time of flight method in order to reduce background noise. With a proper power of the pulsed dye laser the sodium atomic beam has been irradiated by a resonant cw dye laser. The density of the sodium atomic beam is estimated to be 10 3 cm -3 at the ionization area. (author)

  7. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Špalek, Otomar; Čenský, Miroslav; Picková, Irena; Kodymová, Jarmila; Jakubec, Ivo

    2007-01-01

    Roč. 334, - (2007), s. 167-174 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Grant - others:USAF European Office for Research and Development(XE) FA 8655-05-M-4027 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.805, year: 2007

  8. Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment

    Science.gov (United States)

    Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2018-03-01

    We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.

  9. Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling

    International Nuclear Information System (INIS)

    Liu, Jie

    2014-01-01

    Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

  10. On the physics of laser-induced selective photothermolysis of hair follicles: Influence of wavelength, pulse duration, and epidermal cooling.

    Science.gov (United States)

    Svaasand, Lars O; Nelson, J Stuart

    2004-01-01

    The physical basis for optimization of wavelength, pulse duration, and cooling for laser-induced selective photothermolysis of hair follicles in human skin is discussed. The results indicate that the most important optimization parameter is the cooling efficiency of the technique utilized for epidermal protection. The optical penetration is approximately the same for lasers at 694, 755, and 800 nm. The penetration of radiation from Nd:yttrium-aluminum-garnet lasers at 1064 nm is, however, somewhat larger. Photothermal damage to the follicle is shown to be almost independent of laser pulse duration up to 100 ms. The results reveal that epidermal cooling by a 30-80-ms-long cryogen spurt immediately before laser exposure is the only efficient technique for laser pulse durations less than 10 ms. For longer pulse durations in the 30-100 ms range, protection can be done efficiently by skin cooling during laser exposure. For laser pulses of 100 ms, an extended precooling period, e.g., by bringing a cold object into good thermal contact with the skin for about 1 s, can be of value. Thermal quenching of laser induced epidermal temperature rise after pulsed exposure can most efficiently be done with a 20 ms cryogen spurt applied immediately after irradiation. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  11. Simultaneous atomization and ionization of large organic molecules using femtosecond laser ablation

    International Nuclear Information System (INIS)

    Kurata-Nishimura, Mizuki; Tokanai, Fuyuki; Matsuo, Yukari; Kobayashi, Tohru; Kawai, Jun; Kumagai, Hiroshi; Midorikawa, Katsumi; Tanihata, Isao; Hayashizaki, Yoshihide

    2002-01-01

    We have experimentally demonstrated femtosecond laser ablation for simultaneous atomization and ionization (fs-SAI) of organic molecules on solid substrates. We find most of the constituent atoms of organic molecules are atomized and ionized non-resonantly by femtosecond laser ablation. This observation is in contrast with that for the photoionization of cyclic aromatic hydrocarbons by femtosecond laser in the gas phase where little fragmentation has been observed. Crucial contribution of ablation plasma of solid sample to fs-SAI process is suggested. The ratio of natural abundance of stable isotopes contained in sample molecules is well reproduced, which confirms fs-SAI can be applied to the quantitative chemical analysis of isotope-labeled large organic molecules

  12. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    Science.gov (United States)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  13. Request for Support for the Conference on Super Intense Laser Atom Physics

    International Nuclear Information System (INIS)

    Todd Ditmire

    2004-01-01

    The Conference on Super Intense Laser Atom Physics (SILAP) was held in November 2003 in Dallas, Texas. The venue for the meeting was South Fork Ranch in the outskirts of Dallas. The topics of the meeting included high harmonic generation and attosecond pulse generation, strong field interactions with molecules and clusters, particle acceleration, and relativistic laser atom interactions

  14. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Raabe, D

    2017-04-01

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Generation of a slow and continuous cesium atomic beam for an atomic clock

    International Nuclear Information System (INIS)

    Park, Sang Eon; Lee, Ho Seong; Shin, Eun-joo; Kwon, Taeg Yong; Yang, Sung Hoon; Cho, Hyuck

    2002-01-01

    A thermal atomic beam from a cesium oven was slowed down by use of the Hoffnagle modified white-light cooling technique. In addition, the atomic beam was collimated by use of a two-dimensional optical molasses that was installed transverse to the atomic-beam direction. The flux of the atomic beam was 2x10 10 atoms/s, an increase of a factor of 16 as a result of the collimation. The mean longitudinal velocity was ∼24.4 m/s, and the rms velocity spread of the slowed atomic beam was ∼1 m/s. Compared with other methods, we found that the Hoffnagle method is suitable for the generation of slow atomic beams to be used in an atomic clock, which requires an ultralow magnetic field environment. This atomic beam was deflected by an angle of 30 deg. by a one-dimensional optical molasses to separate it from laser light and high-velocity atoms

  16. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency doubled dye laser

    International Nuclear Information System (INIS)

    Becker, Th.; Germann, Th.; Thoumany, P.; Stania, G.; Urbonas, L.; Haensch, T.

    2008-01-01

    Full text: Rydberg atoms have played an important role in atomic physics and optical spectroscopy since many years. Due to their long lifetime and the big dipole matrix element between neighbouring Rydberg levels they are an essential tool in microwave cavity-qed experiments. Ultracold Rydberg gases are a promising candidate for realizing controlled quantum gates in atomic ensembles. In most experiments Rydberg atoms are detected destructively, where the optically excited atoms are first ionized followed by an electronic detection of the ionization products. A Doppler-free purely optical detection was reported in a room temperature cell and in an atomic beam apparatus using the technique of electromagnetically induced transparency. In all these experiments the Rydberg atoms are excited with two lasers in a two-step ladder configuration. Here we show that Doppler-free purely optical spectroscopy is also possible with a one step excitation scheme involving a UV laser at 297 nm. We excite the 85 Rb isotope from the 5S 1/2 ground state to the 63P 3/2 state with a frequency doubled dye laser in a room temperature gas cell without buffer gas. Rydberg transitions are detected by monitoring the absorption of 780 nm laser light which is superimposed on the UV light and resonant with one hyperfine component of the Rubidium D2 line. With these two lasers we realize a V-scheme and utilize the quantum amplification effect due to the different natural lifetimes of the upper levels of the two transitions: an excitation into the 63P level hinders many absorption-emission cycles of the D2 transition and leads to a reduced absorption on that line. We discuss the shape of the observed spectra in the context of electron shelving and EIT experiments. By applying a frequency modulation to the UV laser, we can obtain dispersive signals which can be used to stabilize the laser to a specific Rydberg transition. By shifting the frequency of the 780 nm laser to crossover resonances in the

  17. Rotational laser cooling of vibrationally and translationally cold molecular ions

    DEFF Research Database (Denmark)

    Staanum, Peter; Højbjerre, Klaus; Skyt, Peter Sandegaard

    2010-01-01

    Stationary molecules in well-defined internal states are of broad interest for physics and chemistry. In physics, this includes metrology 1, 2, 3 , quantum computing 4, 5 and many-body quantum mechanics 6, 7 , whereas in chemistry, state-prepared molecular targets are of interest for uni......-molecular reactions with coherent light fields 8, 9 , for quantum-state-selected bi-molecular reactions 10, 11, 12 and for astrochemistry 12 . Here, we demonstrate rotational ground-state cooling of vibrationally and translationally cold MgH+ ions, using a laser-cooling scheme based on excitation of a single...

  18. Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

    DEFF Research Database (Denmark)

    Schäffer, S. A.; Christensen, B. T.R.; Henriksen, M. R.

    2017-01-01

    Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approach....... We investigate the phase response of an ensemble of cold Sr88 atoms inside an optical cavity for use as an error signal in laser frequency stabilization. With this system we realize a regime where the high atomic phase shift limits the dynamical locking range. The limitation is caused by the cavity...

  19. Laser-Ablated Beryllium Ions for Cold Antihydrogen in ALPHA

    CERN Document Server

    Sameed, Muhammed; Charlton, Michael

    One of the best ways to study antimatter is to investigate antihydrogen, the bound state of an antiproton and a positron. Antihydrogen atoms do not exist naturally and must be synthesized in the lab by merging carefully-prepared plasmas of positrons and antiprotons. If the atoms are created in a magnetic trap like the one used by the ALPHA experiment at CERN, then a fraction of the coldest atoms remain trapped, while the rest escape and annihilate on the trap walls. The trapped atoms may then be probed using microwaves or lasers to make high-precision comparisons with hydrogen. Increasing the trapping rate would allow us to perform precision measurements on antihydrogen in a shorter period of time and with better systematics. Particle simulations indicate that by sympathetically cooling positrons using laser-cooled beryllium ions, we have the ability to improve the antihydrogen trapping rate by up to two orders of magnitude. This thesis describes the effort to design and qualify a beryllium ion source that is...

  20. Rotational Laser Cooling of Vibrationally and Translationally Cold Molecular Ions

    DEFF Research Database (Denmark)

    Drewsen, Michael

    2011-01-01

    [7,8,9]. Furthermore, in order to learn more about the chemistry in interstellar clouds, astrochemists can benefit greatly from direct measurements on cold reactions in laboratories [9]. Working with MgH+ molecular ions in a linear Paul trap, we routinely cool their translational degree of freedom...... by sympathetic cooling with Doppler laser cooled Mg+ ions. Giving the time for the molecules to equilibrate internally to the room temperature blackbody radiation, the vibrational degree of freedom will freeze out, leaving only the rotational degree of freedom to be cooled. We report here on the implementation...... results imply that, through this technique, cold molecular-ion experiments can now be carried out at cryogenic temperatures in room-temperature set-ups. References [1] Koelemeij, J. C. J., Roth, B., Wicht, A., Ernsting, I. and Schiller, S., Phys. Rev. Lett. 98, 173002 (2007). [2] Hudson, J. J., Sauer, B...

  1. Muonic atoms in super-intense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahbaz, Atif

    2009-01-28

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  2. Muonic atoms in super-intense laser fields

    International Nuclear Information System (INIS)

    Shahbaz, Atif

    2009-01-01

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent γ-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  3. The rates of elementary atomic processes and laser spectroscopy

    International Nuclear Information System (INIS)

    Rudzikas, Z.; Sereapinas, P.; Kaulakys, B.

    1989-01-01

    Laser spectroscopy and physics of the atom are closely interrelated. Spectra are the fundamental characteristics of atoms. Modern atomic spectroscopy deals with the structure and properties of any atom of the periodic table as well as of ions of any ionization degree. Therefore, one has to develop fairly universal and, at the same time, exact methods. In this paper briefly analyze the contemporary status of the theory of many-electron atoms and ions, the peculiarities of their structure and spectra, as well as of the processes of their interaction with radiation, interatomic interaction and of the plasma spectroscopy. The attention mainly is paid to the spectroscopy of multiply charged ions and to the processes with highly excited atoms

  4. Study of helium and beryllium atoms with strong and short laser field; Etude des atomes d'helium et de beryllium en champ laser intense et bref

    Energy Technology Data Exchange (ETDEWEB)

    Laulan, St

    2004-09-01

    We present a theoretical study of the interaction between a two-active electron atom and an intense (10{sup 14} to 10{sup 15} W/cm{sup 2}) and ultrashort (from a few 10{sup -15} to a few 10{sup -18} s) laser field. In the first part, we describe the current experimental techniques able to produce a coherent radiation of high power in the UV-XUV regime and with femtosecond time duration. A theoretical model of a laser pulse is defined with such characteristics. Then, we develop a numerical approach based on B-spline functions to describe the atomic structure of the two-active electron system. A spectral non perturbative method is proposed to solve the time dependent Schroedinger equation. We focalize our attention on the description of the atomic double continuum states. Finally, we expose results on the double ionization of helium and beryllium atoms with intense and short laser field. In particular, we present total cross section calculations and ejected electron energy distributions in the double continuum after one- and two-photon absorption. (author)

  5. Photoionization and cold collision studies using trapped atoms

    International Nuclear Information System (INIS)

    Gould, P.L.

    1996-01-01

    The authors have used laser cooling and trapping techniques to investigate photoionization and cold collisions. With laser-trapped Rb, they have measured the photoionization cross section from the first excited (5P) level by observing the photoionization-induced loss rate of neutral atoms from the trap. This technique has the advantage that it directly measures the photoionization rate per atom. Knowing the ionizing laser intensity and the excited-state fraction, the measured loss rate gives the absolute cross section. Using this technique, the Rb 5P photoionization cross section at ∼400 nm has been determined with an uncertainty of 9%. The authors are currently attempting to extend this method to the 5D level. Using time-ordered pulses of diode-laser light (similar to the STIRAP technique), they have performed very efficient two-photon excitation of trapped Rb atoms to 5D. Finally, they will present results from a recent collaboration which combines measurements form conventional molecular spectroscopy (single photon and double resonance) with photoassociation collisions of ultracold Na atoms to yield a precise (≤1 ppm) value for the dissociation energy of the X Σ g+ ground state of the Na 2 molecule

  6. Magnetic trapping of buffer-gas-cooled chromium atoms and prospects for the extension to paramagnetic molecules

    International Nuclear Information System (INIS)

    Bakker, Joost M; Stoll, Michael; Weise, Dennis R; Vogelsang, Oliver; Meijer, Gerard; Peters, Achim

    2006-01-01

    We report the successful buffer-gas cooling and magnetic trapping of chromium atoms with densities exceeding 10 12 atoms per cm 3 at a temperature of 350 mK for the trapped sample. The possibilities of extending the method to buffer-gas cool and magnetically trap molecules are discussed. To minimize the most important loss mechanism in magnetic trapping, molecules with a small spin-spin interaction and a large rotational constant are preferred. Both the CrH ( 6 Σ + ground state) and MnH ( 7 Σ + ) radicals appear to be suitable systems for future experiments

  7. Generation of even harmonics in a relativistic laser plasma of atomic clusters

    International Nuclear Information System (INIS)

    Krainov, V.P.; Rastunkov, V.S.

    2004-01-01

    It is shown that the irradiation of atomic clusters by a superintense femtosecond laser pulse gives rise to various harmonics of the laser field. They arise as a result of elastic collisions of free electrons with atomic ions inside the clusters in the presence of the laser filed. The yield of even harmonics whose electromagnetic field is transverse is attributed to the relativism of the motion of electrons and the consideration of their drift velocity associated with the internal ionization of atoms and atomic ions of a cluster. These harmonics are emitted in the same direction as odd harmonics. The conductivities and electromagnetic fields of the harmonics are calculated. The generation efficiency of the harmonics slowly decreases as the harmonic number increases. The generation of even harmonics ceases when the drift velocity of electrons becomes equal to zero and only the oscillation velocity of electrons is nonzero. The results can also be applied to the irradiation of solid-state targets inside a skin layer

  8. International Conference on Laser Physics and Quantum Optics

    CERN Document Server

    Xie, Shengwu; Zhu, Shi-Yao; Scully, Marlan

    2000-01-01

    Since the advent of the laser about 40 years ago, the field of laser physics and quantum optics have evolved into a major discipline. The early studies included the optical coherence theory and the semiclassical and quantum mechanical theories of the laser. More recently many new and interesting effects have been predicted. These include the role of coherent atomic effects in lasing without inversion and electromagnetically induced transparency, atom optics, laser cooling and trapping, teleportation, the single-atom micromaser and its role in quantum measurement theory, to name a few. The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss these and many other exciting developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Wi...

  9. Airborne particulate concentration during laser hair removal: A comparison between cold sapphire with aqueous gel and cryogen skin cooling.

    Science.gov (United States)

    Ross, Edward V; Chuang, Gary S; Ortiz, Arisa E; Davenport, Scott A

    2018-04-01

    High concentrations of sub-micron nanoparticles have been shown to be released during laser hair removal (LHR) procedures. These emissions pose a potential biohazard to healthcare workers that have prolonged exposure to LHR plume. We sought to demonstrate that cold sapphire skin cooling done in contact mode might suppress plume dispersion during LHR. A total of 11 patients were recruited for laser hair removal. They were treated on the legs and axilla with a 755 or 1064 nm millisecond-domain laser equipped with either (i) cryogen spray (CSC); (ii) refrigerated air (RA); or (iii) contact cooling with sapphire (CC). Concentration of ultrafine nanoparticles <1 μm were measured just before and during LHR with the three respective cooling methods. For contact cooling (CC), counts remained at baseline levels, below 3,500 parts per cubic centimeter (ppc) for all treatments. In contrast, the CSC system produced large levels of plume, peaking at times to over 400,000 ppc. The CA cooled system produced intermediate levels of plume, about 35,000 ppc (or about 10× baseline). Cold Sapphire Skin cooling with gel suppresses plume during laser hair removal, potentially eliminating the need for smoke evacuators, custom ventilation systems, and respirators during LHR. Lasers Surg. Med. 50:280-283, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Research and development prospects for the atomic uranium laser isotope separation process. Research report 442

    International Nuclear Information System (INIS)

    Janes, G.S.; Forsen, H.K.; Levy, R.H.

    1977-06-01

    Research and development activities are being conducted on many aspects of the atomic uranium laser isotope separation process. Extensive laser spectroscopy studies have been made in order to identify attractive multi-step selective ionization schemes. Using low density (10 10 atoms/cm 3 ) apparatus, the excited state spectra of atomic uranium have been investigated via multiple step laser excitation and photoionization studies using two, three and four pulsed lasers. Observation of the spectra was accomplished by observing the yield of 235 U and 238 U ions as a function of the wavelength, intensities and delays of the various lasers. These data yielded information on the photoexcitation and photoionizatin cross sections, and on the location, J values, lifetimes, isotope shifts and hyperfine structure of the various atomic levels of uranium. Experiments on selective ionization of uranium vapor by multiple step laser excitation followed by ion extraction at 10 13 atoms/cm 3 density have produced 6% enriched 235 U. These indicate that this process is well adapted to produce light water reactor fuel but less suitable for highly enriched material. Application has been made for license for a 1979 experimental facility to provide data for a mid-1980 commercial plant

  11. Cold atoms in optical cavities and lattices

    International Nuclear Information System (INIS)

    Horak, P.

    1996-11-01

    The thesis is organized in three chapters covering different aspects of the interaction of atoms and light in the framework of theoretical quantum optics. In chapter 1 a special case of a microscopic laser where one or two atoms interact with several quantized cavity modes is discussed. In particular I investigate the properties of the light field created in one of the cavity modes. It is shown that a single-atom model already predicts average photon numbers in agreement with a semiclassical many-atom theory. The two-atom model exhibits additional collective features, such as superradiance and subradiance. In chapter 2 effects of the photon recoil on cold atoms in the limit of long-lived atomic transitions are investigated. First, I demonstrate that, in principle, relying on this scheme, a continuous-wave laser in the ultraviolet frequency domain could be established. Second, the splitting of an atomic beam into two coherent subbeams is discussed within the same scheme. Such beamsplitters play an important role in high-precision measurements using atomic interferometers. Finally, chapter 3 deals with cooling and trapping of atoms by the interaction with laser light. I discuss the properties and the light scattering of atoms trapped in a new light field configuration, a so-called dark optical superlattice. In principle, such systems allow the trapping of more than one atom in the ground state of a single optical potential well. This could give rise to the observation of e.g. atom-atom interactions and quantum statistical effects. (author)

  12. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    Science.gov (United States)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  13. New stable multiply charged negative atomic ions in linearly polarized superintense laser fields

    International Nuclear Information System (INIS)

    Wei Qi; Kais, Sabre; Moiseyev, Nimrod

    2006-01-01

    Singly charged negative atomic ions exist in the gas phase and are of fundamental importance in atomic and molecular physics. However, theoretical calculations and experimental results clearly exclude the existence of any stable doubly-negatively-charged atomic ion in the gas phase, only one electron can be added to a free atom in the gas phase. In this report, using the high-frequency Floquet theory, we predict that in a linear superintense laser field one can stabilize multiply charged negative atomic ions in the gas phase. We present self-consistent field calculations for the linear superintense laser fields needed to bind extra one and two electrons to form He - , He 2- , and Li 2- , with detachment energies dependent on the laser intensity and maximal values of 1.2, 0.12, and 0.13 eV, respectively. The fields and frequencies needed for binding extra electrons are within experimental reach. This method of stabilization is general and can be used to predict stability of larger multiply charged negative atomic ions

  14. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Composite Material

    International Nuclear Information System (INIS)

    You-Hua, Jia; Biao, Zhong; Xian-Ming, Ji; Jian-Ping, Yin

    2008-01-01

    We predict enhanced laser cooling performance of rare-earth-ions-doped glasses containing nanometre-sized ul-traBne particles, which can be achieved by the enhancement of local Geld around rare earth ions, owing to the surface plasma resonance of small metallic particles. The influence of energy transfer between ions and the particle is theoretically discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption is predicted. It is concluded that the absorption are greatly enhanced in these composite materials, the cooling power is increased as compared to the bulk material

  15. Pump-probe experiments in atoms involving laser and synchrotron radiation: an overview

    International Nuclear Information System (INIS)

    Wuilleumier, F J; Meyer, M

    2006-01-01

    The combined use of laser and synchrotron radiations for atomic photoionization studies started in the early 1980s. The strong potential of these pump-probe experiments to gain information on excited atomic states is illustrated through some exemplary studies. The first series of experiments carried out with the early synchrotron sources, from 1960 to about 1995, are reviewed, including photoionization of unpolarized and polarized excited atoms, and time-resolved laser-synchrotron studies. With the most advanced generation of synchrotron sources, a whole new class of pump-probe experiments benefiting from the high brightness of the new synchrotron beams has been developed since 1996. A detailed review of these studies as well as possible future applications of pump-probe experiments using third generation synchrotron sources and free electron lasers is presented. (topical review)

  16. High-precision two-dimensional atom localization via quantum interference in a tripod-type system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    A scheme is proposed for high-precision two-dimensional atom localization in a four-level tripod-type atomic system via measurement of the excited state population. It is found that because of the position-dependent atom–field interaction, the precision of 2D atom localization can be significantly improved by appropriately adjusting the system parameters. Our scheme may be helpful in laser cooling or atom nanolithography via high-precision and high-resolution atom localization. (letter)

  17. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  18. Integrated cooling-vacuum-assisted 1540-nm erbium:glass laser is effective in treating mild-to-moderate acne vulgaris.

    Science.gov (United States)

    Politi, Y; Levi, A; Enk, C D; Lapidoth, M

    2015-12-01

    Acne treatment by a mid-infrared laser may be unsatisfactory due to deeply situated acne-affected sebaceous glands which serve as its target. Skin manipulation by vacuum and contact cooling may improve laser-skin interaction, reduce pain sensation, and increase overall safety and efficacy. To evaluate the safety and efficacy of acne treatment using an integrated cooling-vacuum-assisted 1540-nm erbium:glass laser, a prospective interventional study was conducted. It included 12 patients (seven men and five women) suffering from mild-to-moderate acne vulgaris. The device utilizes a mid-infrared 1540-nm laser (Alma Lasers Ltd. Caesarea, Israel), which is integrated with combined cooling-vacuum-assisted technology. An acne lesion is initially manipulated upon contact by a vacuum-cooling-assisted tip, followed by three to four stacked laser pulses (500-600 mJ, 4 mm spot size, and frequency of 2 Hz). Patients underwent four to six treatment sessions with a 2-week interval and were followed-up 1 and 3 months after the last treatment. Clinical photographs were taken by high-resolution digital camera before and after treatment. Clinical evaluation was performed by two independent dermatologists, and results were graded on a scale of 0 (exacerbation) to 4 (76-100 % improvement). Patients' and physicians' satisfaction was also recorded. Pain perception and adverse effects were evaluated as well. All patients demonstrated a moderate to significant improvement (average score of 3.6 and 2.0 within 1 and 3 months, respectively, following last treatment session). No side effects, besides a transient erythema, were observed. Cooling-vacuum-assisted 1540-nm laser is safe and effective for the treatment of acne vulgaris.

  19. Prospects for Precise Measurements with Echo Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Brynle Barrett

    2016-06-01

    Full Text Available Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration g and the determination of the atomic fine structure through measurements of the atomic recoil frequency ω q . Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure ω q with a statistical uncertainty of 37 parts per billion (ppb on a time scale of ∼50 ms and g with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  20. Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms

    Science.gov (United States)

    Miranda, Martin; Inoue, Ryotaro; Tambo, Naoki; Kozuma, Mikio

    2017-10-01

    We demonstrate site-resolved imaging of a strongly correlated quantum system without relying on laser cooling techniques during fluorescence imaging. We observe the formation of Mott shells in the insulating regime and realize thermometry in an atomic cloud. This work proves the feasibility of the noncooled approach and opens the door to extending the detection technology to new atomic species.

  1. Combination of lasers and synchrotron radiation in studies of atomic photoionization

    International Nuclear Information System (INIS)

    Meyer, M.

    2009-01-01

    Recent experiments using the combination of conventional lasers and synchrotron radiation are presented and discussed. The controlled laser-manipulation of atoms prior to ionization by the synchrotron radiation provides an ideal experimental basis for detailed investigations of atomic photoionization. Due to the recent advances in high-resolution electron spectroscopy, it has become possible to analyze the J-resolved fine structure of the final ionic states in the photoionization of laser-excited atoms enabling thereby the determination of the specific influence of the outer electron to the ionization from inner subshells. Especially, the analysis of photoemission satellites and their relative intensities bring out directly the importance of electron correlations. Furthermore, it is shown through some examples of experiments using linearly and circularly polarized radiations, how the study of magnetic dichroisms in the photoionization opens the access to a complete description of the photoionization process, in particular to the determination of partial photoionization cross-sections.

  2. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy

    International Nuclear Information System (INIS)

    Monroe, C.; Meekhof, D.M.; King, B.E.; Jefferts, S.R.; Itano, W.M.; Wineland, D.J.; Gould, P.

    1995-01-01

    We report laser cooling of a single 9 Be + ion held in a rf (Paul) ion trap to where it occupies the quantum-mechanical ground state of motion. With the use of resolved-sideband stimulated Raman cooling, the zero point of motion is achieved 98% of the time in 1D and 92% of the time in 3D. Cooling to the zero-point energy appears to be a crucial prerequisite for future experiments such as the realization of simple quantum logic gates applicable to quantum computation. copyright 1995 The American Physical Society

  3. Magnetic trapping of buffer-gas-cooled chromium atoms and prospects for the extension to paramagnetic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Joost M [Humboldt Universitaet zu Berlin, Institut fuer Physik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Stoll, Michael [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Weise, Dennis R [Universitaet Konstanz, Fachbereich Physik, 78457 Constance (Germany); Vogelsang, Oliver [Universitaet Konstanz, Fachbereich Physik, 78457 Konstanz (Germany); Meijer, Gerard [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Peters, Achim [Humboldt Universitaet zu Berlin, Institut fuer Physik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-10-14

    We report the successful buffer-gas cooling and magnetic trapping of chromium atoms with densities exceeding 10{sup 12} atoms per cm{sup 3} at a temperature of 350 mK for the trapped sample. The possibilities of extending the method to buffer-gas cool and magnetically trap molecules are discussed. To minimize the most important loss mechanism in magnetic trapping, molecules with a small spin-spin interaction and a large rotational constant are preferred. Both the CrH ({sup 6}{sigma}{sup +} ground state) and MnH ({sup 7}{sigma}{sup +}) radicals appear to be suitable systems for future experiments.

  4. Energy loading effects in the scaling of atomic xenon lasers

    International Nuclear Information System (INIS)

    Ohwa, M.; Kushner, M.J.

    1990-01-01

    The intrinsic power efficiency of the atomic xenon (5d → 6p) infrared (1.73--3.65 μm) laser is sensitive to the rate of pumping due to electron collision mixing of the laser levels. Long duration pumping at moderate power deposition may therefore result in higher energy efficiencies than pumping at higher powers. In this paper the authors examine the consequences of high energy deposition (100's J/1 atm) during long pumping pulses (100's μs) on the intrinsic power and energy efficiency and optimum power deposition of the atomic xenon laser. The dominant effect of high energy loading, gas heating, causes an increase in the electron density and therefore an increase in the electron collision mixing of the laser levels. The optimum power deposition for a given gas density therefore shifts to lower values with increasing gas temperature. For sufficiently long pumping pulses, nonuniform gas heating results in convection and rarification of highly pumped regions. The optimum power deposition therefore shifts to even lower values as the length of the pumping pulse increases. As a result, laser efficiency depends on the spatial distribution of power deposition as well as its magnitude

  5. New trends in atomic and molecular physics. Advanced technological applications

    International Nuclear Information System (INIS)

    Mohan, Man

    2013-01-01

    Represents an up-to-date scientific status report on new trends in atomic and molecular physics. Multi-disciplinary approach. Also of interest to researchers in astrophysics and fusion plasma physics. Contains material important for nano- and laser technology. The field of Atomic and Molecular Physics (AMP) has reached significant advances in high-precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy, astrophysics, fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) Tokomak plasma machine which need accurate AMP data.

  6. Manipulating Atoms with Light Achievements and Perspectives

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    During the last few decades spectacular progress has been achieved in the control of atomic systems by light. It will be shown how it is possible to use the basic conservation laws in atom-photon interactions for polarizing atoms, for trapping them, for cooling them to extremely low temperatures, in the microkelvin, and even in the nanokelvin range. A review will be given of recent advances in this field and of new applications, including atomic clocks with very high relative stability and accuracy, atomic interferometers allowing precise measurement of rotation speeds and gravitational fields, the realization of new states of matter such as Bose-Einstein condensates, matter waves and atom lasers, ultracold molecules. New perspectives opened by these results will be also briefly discussed.

  7. The effect of laser beam size in a zig-zag collimator on transverse ...

    Indian Academy of Sciences (India)

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on trans- ... resolution spectroscopy, many-body physics, precision measurements, atom lithogra- ..... torr) at a distance of 180 cm from the Kr gas inlet chamber.

  8. Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser.

    Science.gov (United States)

    Diao, Wenting; He, Jun; Liu, Zhi; Yang, Baodong; Wang, Junmin

    2012-03-26

    By optical injection of an 852-nm extended-cavity diode laser (master laser) to lock the + 1-order sideband of a ~9-GHz-current-modulated diode laser (slave laser), we generate a pair of phase-locked lasers with a frequency difference up to ~9-GHz for a cesium (Cs) magneto-optical trap (MOT) with convenient tuning capability. For a cesium MOT, the master laser acts as repumping laser, locked to the Cs 6S₁/₂ (F = 3) - 6P₃/₂ (F' = 4) transition. When the + 1-order sideband of the 8.9536-GHz-current-modulated slave laser is optically injection-locked, the carrier operates on the Cs 6S₁/₂ (F = 4) - 6P₃/₂ (F' = 5) cooling cycle transition with -12 MHz detuning and acts as cooling/trapping laser. When carrying a 9.1926-GHz modulation signal, this phase-locked laser system can be applied in the fields of coherent population trapping and coherent manipulation of Cs atomic ground states.

  9. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-05

    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  10. Helium in chirped laser fields as a time-asymmetric atomic switch

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Moiseyev, N.

    2014-01-01

    Roč. 141, č. 1 (2014), 014307 ISSN 0021-9606 R&D Projects: GA ČR GAP205/11/0571 Institutional support: RVO:61388955 Keywords : Atom lasers * Laser pulses * Helium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.952, year: 2014

  11. A hybrid system of a membrane oscillator coupled to ultracold atoms

    Science.gov (United States)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  12. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    Science.gov (United States)

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  13. Investigations of Laser Pumped Gas Cell Atomic Frequency Standard

    National Research Council Canada - National Science Library

    Volk, C. H; Camparo, J. C; Frueholz, R. P

    1981-01-01

    Recently it has been suggested that the performance characteristics of a rubidium gas cell atomic frequency standard might be improved by replacing the standard rubidium discharge lamp with a single mode laser diode...

  14. Advanced chip designs and novel cooling techniques for brightness scaling of industrial, high power diode laser bars

    Science.gov (United States)

    Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.

    2018-02-01

    The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications 96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.

  15. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    Science.gov (United States)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  16. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    International Nuclear Information System (INIS)

    Yuan, MingHu; Xin, PeiPei; Liu, HongPing; Chu, TianShu

    2017-01-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system. (paper)

  17. Quantum–classical correspondence in chaotic dynamics of laser-driven atoms

    International Nuclear Information System (INIS)

    Prants, S V

    2017-01-01

    This paper is a review article on some aspects of quantum–classical correspondence in chaotic dynamics of cold atoms interacting with a standing-wave laser field forming an optical lattice. The problem is treated from both (semi)classical and quantum points of view. In both approaches, the interaction of an atomic electic dipole with the laser field is treated quantum mechanically. Translational motion is described, at first, classically (atoms are considered to be point-like objects) and then quantum mechanically as a propagation of matter waves. Semiclassical equations of motion are shown to be chaotic in the sense of classical dynamical chaos. Point-like atoms in an absolutely deterministic and rigid optical lattice can move in a random-like manner demonstrating a chaotic walking with typical features of classical chaos. This behavior is explained by random-like ‘jumps’ of one of the atomic internal variable when atoms cross nodes of the standing wave and occurs in a specific range of the atom-field detuning. When treating atoms as matter waves, we show that they can make nonadiabatic transitions when crossing the standing-wave nodes. The point is that atomic wave packets split at each node in the same range of the atom-field detuning where the classical chaos occurs. The key point is that the squared amplitude of those semiclassical ‘jumps’ equal to the quantum Landau–Zener parameter which defines the probability of nonadiabatic transitions at the nodes. Nonadiabatic atomic wave packets are much more complicated compared to adiabatic ones and may be called chaotic in this sense. A few possible experiments to observe some manifestations of classical and quantum chaos with cold atoms in horizontal and vertical optical lattices are proposed and discussed. (paper)

  18. From a quantum to a classical description of intense laser-atom physics with Bohmian trajectories

    International Nuclear Information System (INIS)

    Lai, X Y; Cai Qingyu; Zhan, M S

    2009-01-01

    In this paper, Bohmian mechanics is applied to intense laser-atom physics. The motion of an atomic electron in an intense laser field is obtained from the Bohm-Newton equation. We find that the quantum potential that dominates the quantum effect of a physical system becomes negligible as the electron is driven far from the parent ion by the intense laser field, i.e. the behavior of the electron smoothly tends towards classical soon after the electron is ionized. Our numerical calculations present direct positive evidence for semiclassical trajectory methods in intense laser-atom physics where the motion of the ionized electron is treated by classical mechanics, while quantum mechanics is needed before the ionization.

  19. Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization

    Science.gov (United States)

    Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.

    1999-01-01

    The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.

  20. Collisional interaction between metastable neon atoms

    International Nuclear Information System (INIS)

    Drunen, Wouter Johannes van

    2008-01-01

    In this thesis, the study of cold gases of neon atoms in different metastable states is described. It contains measurements of the collisional parameters for both the 3s[3/2] 2 and the 3s'[1/2] 0 metastable state and the dependence of the inelastic loss on external fields. Furthermore, the investigation of frequency dependent laser-induced collisions, and the possibility to excite photoassociation resonances is presented. For the measurements described here, neon atoms have been confined in a magnetooptical trap, in a magnetostatic trap, or in an optical dipole trap, respectively. By laser cooling inside the magnetic trap, atomic samples with more than 95 percent occupation of the magnetic substate m J = +2 could be prepared. They have a typical temperature of 0.5 mK, central densities up to 10 11 cm -3 , and a central phase-space density of up to 2.2.10 -7 . After loading the optical dipole trap from the magnetic trap, 2.5.10 6 atoms with typical temperatures of 0.1 mK, and central densities up to 5.10 10 cm -3 were trapped. By evaporative cooling of the atoms in the magnetic trap we could increase the phase-space density by a factor of 200 to 5.10 -5 . Investigating the frequency dependence of laser-induced collisions did not reveal an experimental signature for the excitation of photoassociation resonances. For the 3 D 3 line a frequency dependence of laser enhanced Penning ionization was observed. Measurement of the two-body loss coefficient as function of the magnetic field showed a field dependence of the inelastic loss. These losses increase towards both small and large offset fields. The implementation of an optical dipole trap allowed us to trap the 3 P 0 metastable state. From the trap loss measurements we determined the two-body loss coefficient of the 3 P 0 metastable state for both bosonic isotopes 20 Ne and 22 Ne. For 20 Ne we obtained β=6 +5 -4 .10 -10 cm 3 /s and for 22 Ne β = 11 +7 -6 .10 -10 cm 3 /s. (orig.)

  1. Investigation Into the Utilization of 3D Printing in Laser Cooling Experiments

    Science.gov (United States)

    Hazlett, Eric; Nelson, Brandon; de Leon, Sam Diaz; Shaw, Jonah

    2016-05-01

    With the advancement of 3D printing new opportunities are abound in many different fields, but with the balance between the precisions of atomic physics experiments and the material properties of current 3D printers the benefit of 3D printing technology needs to be investigated. We report on the progress of two investigations of 3D printing of benefit to atomic physics experiments: laser feedback module and the other being an optical chopper. The first investigation looks into creation of a 3D printed laser diode feedback module. This 3D printed module would allow for the quick realization of an external cavity diode laser that would have an adjustable cavity distance. We will report on the first tests of this system, by looking at Rb spectroscopy and mode-hop free tuning range as well as possibilities of using these lasers for MOT generation. We will also discuss our investigation into a 3D-printed optical chopper that utilizes an Arduino and a computer hard drive motor. By implementing an additional Arduino we create a low cost way to quickly measure laser beam waists.

  2. Laser-induced fluorescence of se, as, and sb in an electrothermal atomizer.

    Science.gov (United States)

    Swart, D J; Ezer, M; Pacquette, H L; Simeonsson, J B

    1998-04-01

    Trace detection of Se, As, and Sb atoms has been performed by electrothermal atomization laser-induced fluorescence (ETA-LIF) approaches. Production of far-UV radiation necessary for excitation of As atoms at 193.696 nm and Se atoms at 196.026 nm was accomplished by stimulated Raman shifting (SRS) of the output of a frequency-doubled dye laser operating near 230 nm. Both wavelengths were obtained as second-order anti-Stokes shifts of the dye laser radiation and provided up to 10 μJ/pulse, which was shown through power dependence studies to be sufficient for saturation in the ETA. An excited-state direct line fluorescence approach using excitation at 206.279 nm was also investigated for the LIF detection of Se. High-sensitivity LIF of Sb atoms was accomplished using 206.833-nm excitation and detection at 259.805 nm. The accuracy of the ETA-LIF approaches was demonstrated by determining the As and Se content of aqueous reference samples. The limits of detection (absolute mass) were 200 fg by ground-state LIF and 150 fg by excited-state direct line fluorescence for Se, 200 fg for As, and 10 fg for Sb; these LODs compare favorably with results reported previously in the literature for ETA-LIF, GFAAS, and ICP-MS methods.

  3. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  4. A quasi-electrostatic trap for neutral atoms

    International Nuclear Information System (INIS)

    Engler, H.

    2000-01-01

    This thesis reports on the realization of a ''quasi-electrostatic trap'' (QUEST) for neutral atoms. Cesium ( 133 Cs) and Lithium ( 7 Li) atoms are stored, which represents for the first time a mixture of different species in an optical dipole trap. The trap is formed by the focused Gaussian beam of a 30 W cw CO 2 -laser. For a beam waist of 108 μm the resulting trap depth is κ B x 118 μK for Cesium and κ B x 48 μK for Lithium. We transfer up to 2 x 10 6 Cesium and 10 5 Lithium atoms from a magneto-optical trap into the QUEST. When simultaneously transferred, the atom number currently is reduced by roughly a factor of 10. Since photon scattering from the trapping light can be neglected, the QUEST represents an almost perfect conservative trapping potential. Atoms in the QUEST populate the electronic ground state sublevels. Arbitrary sublevels can be addressed via optical pumping. Due to the very low background gas pressure of 2 x 10 -11 mbar storage times of several minutes are realized. Evaporative cooling of Cesium is observed. In addition, laser cooling is applied to the trapped Cesium sample, which reduces the temperature from 25 μK to a value below 7 μK. If prepared in the upper hyper-fine ground state sublevel, spin changing collisions are observed not only within one single species, but also between the two different species. The corresponding relaxation rates are quantitatively analyzed. (orig.)

  5. Simplified atom trap using a single microwave modulated diode laser

    International Nuclear Information System (INIS)

    Newbury, N.R.; Myatt, C.J.; Wieman, C.E.

    1993-01-01

    We have demonstrated microwave modulation of a diode laser which is operated with optical feedback from a diffraction grating. By directly modulating the diode laser current at frequencies up to 6.8 GHz, we observed 2-30% of the laser power in a single sideband for 20mW of microwave power. Using such a diode laser modulated at 6.6GHz, we have trapped 87 Rb in a vapor cell. With 10mW of microwave power, the number of trapped atoms was only 15% smaller than the number obtained using two lasers in the conventional manner. A microwave modulated diode laser should also be useful for driving stimulated Raman transitions between the hyperfine levels of Rb or Cs

  6. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2014-12-01

    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  7. Laser spectroscopy of collisionally prepared target species: atomic caesium

    International Nuclear Information System (INIS)

    Moreau, J.-P.; Tremblay, Julien; Knystautas, E.J.; Laperriere, S.C.; Larzilliere, Michel

    1989-01-01

    Fast ion beam bombardment was used to collisionally prepare a target gas in excited states, to which conventional laser spectroscopy was then applied. The versatility of this method is demonstrated with atomic targets of caesium, for a state of Cs + that is 16 eV above the ground state, as well as for a short-lived state (38 ns) of the neutral atom. The local temperature in the caesium oven is also obtained. (Author)

  8. Spectroscopy of antiproton helium atoms

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2005-01-01

    Antiproton helium atom is three-body system consisting of an antiproton, electrons and a helium nucleus (denoted by the chemical symbol, p-bar H + ). The authors produced abundant atoms of p-bar 4 He + , and p-bar 3 He + in a cooled He gas target chamber stopping the p-bar beam decelerated to approximately 100 keV in the Antiproton Decelerator at CERN. A precision laser spectroscopy on the atomic transitions in the p-bar 4 He + , and in p-bar 3 He + was performed. Principle of laser spectroscopy and various modifications of the system to eliminate factors affecting the accuracy of the experiment were described. Deduced mass ratio of antiproton and proton, (|m p -bar - m p |)/m p reached to the accuracy of 10 ppb (10 -8 ) as of 2002, as adopted in the recent article of the Particle Data Group by P.J. Mohr and B.N. Taylor. This value is the highest precise data for the CPT invariance in baryon. In future, antihydrogen atoms will be produced in the same facility, and will provide far accurate value of antiproton mass thus enabling a better confirmation of CPT theorem in baryon. (T. Tamura)

  9. Spontaneous emergence of free-space optical and atomic patterns

    International Nuclear Information System (INIS)

    Schmittberger, Bonnie L; Gauthier, Daniel J

    2016-01-01

    The spontaneous formation of patterns in dynamical systems is a rich phenomenon that transcends scientific boundaries. Here, we report our observation of coupled optical–atomic pattern formation, which results in the creation of self-organized, multimode structures in free-space laser-driven cold atoms. We show that this process gives rise to spontaneous three-dimensional Sisyphus cooling even at very low light intensities and the emergence of self-organized structures on both sub- and super-wavelength scales. (paper)

  10. Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms

    Science.gov (United States)

    Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Pinkas, Meirav; Dallal, Yehonatan; Ozeri, Roee

    2018-03-01

    Experimental realizations of charged ions and neutral atoms in overlapping traps are gaining increasing interest due to their wide research application ranging from chemistry at the quantum level to quantum simulations of solid state systems. In this paper, we describe our experimental system in which we overlap a single ground-state cooled ion trapped in a linear Paul trap with a cloud of ultracold atoms such that both constituents are in the ?K regime. Excess micromotion (EMM) currently limits atom-ion interaction energy to the mK energy scale and above. We demonstrate spectroscopy methods and compensation techniques which characterize and reduce the ion's parasitic EMM energy to the ?K regime even for ion crystals of several ions. We further give a substantial review on the non-equilibrium dynamics which governs atom-ion systems. The non-equilibrium dynamics is manifested by a power law distribution of the ion's energy. We also give an overview on the coherent and non-coherent thermometry tools which can be used to characterize the ion's energy distribution after single to many atom-ion collisions.

  11. Liquid Atomization Induced by Pulse Laser Reflection underneath Liquid Surface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2009-05-01

    We observed a novel effect of pulse laser reflection at the interface between transparent materials with different refractive indices. The electric field intensity doubles when a laser beam is completely reflected from a material with a higher refractive index to a material with a lower index. This effect appreciably reduces pulse laser ablation threshold of transparent materials. We performed experiments to observe the entire ablation process for laser incidence on the water-air interface using pulse laser shadowgraphy with high-resolution film; the minimum laser fluence for laser ablation at the water-air interface was approximately 12-16 J/cm2. We confirmed that this laser ablation occurs only when the laser beam is incident on the water-air interface from water. Many slender liquid ligaments extend like a milk crown and seem to be atomized at the tip. Their detailed structures can be resolved only by pulse laser photography using high-resolution film.

  12. Momentum diffusion for coupled atom-cavity oscillators

    International Nuclear Information System (INIS)

    Murr, K.; Maunz, P.; Pinkse, P. W. H.; Puppe, T.; Schuster, I.; Rempe, G.; Vitali, D.

    2006-01-01

    It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion, which is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so-called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light

  13. Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions.

    Science.gov (United States)

    Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama

    2016-02-10

    It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

  14. Collinear laser spectroscopy of atomic cadmium

    CERN Document Server

    Frömmgen, Nadja; Bissell, Mark L.; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M.; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T.

    2015-01-01

    Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculatio...

  15. Microscopic description and simulation of ultracold atoms in optical resonators

    International Nuclear Information System (INIS)

    Niedenzu, W.

    2012-01-01

    Ultracold atoms in optical resonators are an ideal system to investigate the full quantum regime of light-matter interaction. Microscopic insight into the underlying processes can nowadays easily be obtained from numerical calculations, e.g. with Monte Carlo wave function simulations. In the first part we discuss cold atoms in ring resonators, where the modified boundary conditions significantly alter the dynamics as compared to the standing-wave case. Quantum jumps induce momentum correlations and entanglement between the particles. We observe strong non-classical motional correlations, cooling and entanglement heralded by single photon measurements. For deeply trapped particles the complex system Hamiltonian can be mapped onto a generic optomechanical model, allowing for analytical microscopic insight into the dynamics. The rates of cavity-mediated correlated heating and cooling processes are obtained by adiabatically eliminating the cavity field from the dynamics and can be directly related to the steady-state momentum correlation coefficient. The second part is devoted to cooling and self-organisation of a cold gas in a transversally pumped standing-wave resonator, in which the atoms are directly illuminated by a laser beam. Above a certain critical laser intensity the atoms order in a specific pattern, maximising light scattering into the cavity. The particles thus create and sustain their own trap. We derive a nonlinear Fokker-Planck equation for the one-particle distribution function describing the gas dynamics below and above threshold. This kinetic theory predicts dissipation-induced self-organisation and q-Gaussian velocity distributions in steady state. (author)

  16. Improved atom number with a dual color magneto—optical trap

    International Nuclear Information System (INIS)

    Cao Qiang; Luo Xin-Yu; Gao Kui-Yi; Wang Xiao-Rui; Wang Ru-Quan; Chen Dong-Min

    2012-01-01

    We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87 Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems. (rapid communication)

  17. The present state of laser isotope separation of uranium

    International Nuclear Information System (INIS)

    Tashiro, Hideo; Nemoto, Koshichi.

    1994-01-01

    As the methods of uranium enrichment, gas diffusion method and centrifugal separation method in which power consumption is less and the cost is low have been carried out. On the other hand, as the future technology, the research and development of laser isotope separation technology have been carried out. There are the atomic laser separation process in which the laser beam of visible light is irradiated to atomic state uranium and the molecular laser separation process in which far infrared laser beam is irradiated to uranium hexafluoride molecules. The atomic process is divided into three steps, that is, the processes of uranium evaporation, the reaction of uranium with laser beam and the recovery of enriched uranium. The principle of the laser separation is explained. The state of development of laser equipment and separation equipment is reported. The principle and the present state of development of the molecular separation process which consists of the cooling of UF 6 gas, the generation of high power 16 μm laser pulses and the collection of the reaction product are explained. The present state of both processes in foreign countries is reported. (K.I.)

  18. Single-atom trapping and transport in DMD-controlled optical tweezers

    Science.gov (United States)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  19. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  20. Holographic method for site-resolved detection of a 2D array of ultracold atoms

    Science.gov (United States)

    Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes

    2016-08-01

    We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.

  1. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vietze, Andrea, E-mail: anvie@gmx.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Koch, Franziska, E-mail: franzi_koch@hotmail.com [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Laskowski, Ulrich, E-mail: ulrich.laskowski@klinikum-luedenscheid.de [Department of Vascular and Thoracic Surgery, Klinikum Luedenscheid, Paulmannshoeher Strasse 14, 58515 Luedenscheid (Germany); Linder, Albert, E-mail: albert.linder@klinikum-bremen-ost.de [Department of Thoracic Surgery, Klinikum Bremen-Ost, Zuericher Strasse 40, 28325 Bremen (Germany); Hosten, Norbert, E-mail: hosten@uni-greifswald.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany)

    2011-11-15

    Purpose: Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. Materials and methods: An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 deg. C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. Results: The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 deg. C (mean value, P < 0.05); without ventilation it increased about 7.0 deg. C (mean value, P < 0.05). Conclusion: Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation.

  2. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms; Sympathetisches Kuehlen in einer Rubidium-Caesium-Mischung: Erzeugung ultrakalter Caesiumatome

    Energy Technology Data Exchange (ETDEWEB)

    Haas, M.

    2007-07-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m{sub f}=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m{sub f}=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m{sub f}=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The

  3. Extending the applicability of an open-ring trap to perform experiments with a single laser-cooled ion

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, J. M.; Colombano, M.; Doménech, J.; Rodríguez, D., E-mail: danielrodriguez@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada (Spain); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); Institut für Kernchemie, University of Mainz, 55099 Mainz (Germany); Delahaye, P. [Grand Accélérateur National d’Ions Lourds, 14000 Caen (France)

    2015-10-15

    A special ion trap was initially built up to perform β-ν correlation experiments with radioactive ions. The trap geometry is also well suited to perform experiments with laser-cooled ions, serving for the development of a new type of Penning trap, in the framework of the project TRAPSENSOR at the University of Granada. The goal of this project is to use a single {sup 40}Ca{sup +} ion as detector for single-ion mass spectrometry. Within this project and without any modification to the initial electrode configuration, it was possible to perform Doppler cooling on {sup 40}Ca{sup +} ions, starting from large clouds and reaching single ion sensitivity. This new feature of the trap might be important also for other experiments with ions produced at radioactive ion beam facilities. In this publication, the trap and the laser system will be described, together with their performance with respect to laser cooling applied to large ion clouds down to a single ion.

  4. Laser diagnostics of the energy spectrum of Rydberg states of the lithium-7 atom

    Energy Technology Data Exchange (ETDEWEB)

    Zelener, B. B., E-mail: bobozel@mail.ru; Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    The spectra of excited lithium-7 atoms prepared in a magneto-optical trap are studied using a UV laser. The laser diagnostics of the energy of Rydberg atoms is developed based on measurements of the change in resonance fluorescence intensity of ultracold atoms as the exciting UV radiation frequency passes through the Rydberg transition frequency. The energies of various nS configurations are obtained in a broad range of the principal quantum number n from 38 to 165. The values of the quantum defect and ionization energy obtained in experiments and predicted theoretically are discussed.

  5. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  6. Propagation of frequency-chirped laser pulses in a medium of atoms with a Λ-level scheme

    International Nuclear Information System (INIS)

    Demeter, G.; Dzsotjan, D.; Djotyan, G. P.

    2007-01-01

    We study the propagation of frequency-chirped laser pulses in optically thick media. We consider a medium of atoms with a Λ level-scheme (Lambda atoms) and also, for comparison, a medium of two-level atoms. Frequency-chirped laser pulses that induce adiabatic population transfer between the atomic levels are considered. They induce transitions between the two lower (metastable) levels of the Λ-atoms and between the ground and excited states of the two-level atoms. We show that associated with this adiabatic population transfer in Λ-atoms, there is a regime of enhanced transparency of the medium--the pulses are distorted much less than in the medium of two-level atoms and retain their ability to transfer the atomic population much longer during propagation

  7. Concept of electric power output control system for atomic power generation plant utilizing cool energy of stored snow

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Toita, Takayuki

    2003-01-01

    A concept of the SEAGUL system (Snow Enhancing Atomic-power Generation UtiLity) is proposed in this paper. Lowering the temperature of sea water for cooling of atomic-power plant will make a efficiency of power generation better and bring several ten MW additional electric power for 1356 MW class plant. The system concept stands an idea to use huge amount of seasonal storage snow for cooling water temperature control. In a case study for the Kashiwazaki-Kariwa Nuclear Power Station, it is estimated to cool down the sea water of 29degC to 20degC by 80 kt snow for 3 hours in a day would brought 60 MWh electric power per a day. Annually 38.4 Mt of stored snow will bring 1800 MWh electric power. (author)

  8. Bose-Einstein condensation of atomic gases

    International Nuclear Information System (INIS)

    Anglin, J. R.; Ketterle, W.

    2003-01-01

    The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)

  9. Observation of Fano-Type Interference in a Coupled Cavity-Atom System

    International Nuclear Information System (INIS)

    Cheng Yong; Tan Zheng; Wang Jin; Zhan Ming-Sheng; Zhu Yi-Fu

    2016-01-01

    We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled "8"5Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity-atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters. (paper)

  10. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  11. Atomic physics precise measurements and ultracold matter

    CERN Document Server

    Inguscio, Massimo

    2013-01-01

    Atomic Physics provides an expert guide to two spectacular new landscapes in physics: precision measurements, which have been revolutionized by the advent of the optical frequency comb, and atomic physics, which has been revolutionized by laser cooling. These advances are not incremental but transformative: they have generated a consilience between atomic and many-body physics, precipitated an explosion of scientific and technological applications, opened new areas of research, and attracted a brilliant generation of younger scientists. The research is advancing so rapidly, the barrage of applications is so dazzling, that students can be bewildered. For both students and experienced scientists, this book provides an invaluable description of basic principles, experimental methods, and scientific applications.

  12. Quantitative theoretical analysis of lifetimes and decay rates relevant in laser cooling BaH

    Science.gov (United States)

    Moore, Keith; Lane, Ian C.

    2018-05-01

    Tiny radiative losses below the 0.1% level can prove ruinous to the effective laser cooling of a molecule. In this paper the laser cooling of a hydride is studied with rovibronic detail using ab initio quantum chemistry in order to document the decays to all possible electronic states (not just the vibrational branching within a single electronic transition) and to identify the most populated final quantum states. The effect of spin-orbit and associated couplings on the properties of the lowest excited states of BaH are analysed in detail. The lifetimes of the A2Π1/2, H2Δ3/2 and E2Π1/2 states are calculated (136 ns, 5.8 μs and 46 ns respectively) for the first time, while the theoretical value for B2 Σ1/2+ is in good agreement with experiments. Using a simple rate model the numbers of absorption-emission cycles possible for both one- and two-colour cooling on the competing electronic transitions are determined, and it is clearly demonstrated that the A2Π - X2Σ+ transition is superior to B2Σ+ - X2Σ+ , where multiple tiny decay channels degrade its efficiency. Further possible improvements to the cooling method are proposed.

  13. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  14. Conceptual design of 100 J cryogenically-cooled multi-slab laser for fusion research

    Directory of Open Access Journals (Sweden)

    Divoky M.

    2013-11-01

    Full Text Available We present a comparison of two alternative laser layouts for HiLASE and ELI Beamlines projects. The cryogenically cooled laser is 100 J class with 2 ns pulse length and operates at 10 Hz repetition rate. The laser beam is intended for industrial applications in HiLASE, for OPCPA pumping in ELI Beamlines and can serve as a test bed for large scale high repetition rate fusion lasers. First layout utilizes classical scheme with preamplifier and main amplifier, while the second layout utilizes single amplifier scheme with two amplifier heads. The comparison is based on the results obtained from homemade MATLAB code for evaluation of amplified spontaneous emission and stored energy and on a beam propagation simulated in MIRÓ code.

  15. Near resonant absorption by atoms in intense fluctuating laser fields

    International Nuclear Information System (INIS)

    Smith, S.J.

    1994-01-01

    The objective of this program was to make quantitative measurements of the effects of higher-order phase/frequency correlations in a laser beam on nonlinear optical absorption processes in atoms. The success of this program was due in large part to a unique experimental capability for modulating the extracavity beam of a stabilized (approx-lt 200 kHz) continuous-wave laser with statistically-well-characterized stochastic phase (or frequency) fluctuations, in order to synthesize laser bandwidths to ∼20 MHz (depending on noise amplitude), with profiles variable between Gaussian and Lorentzian (depending on noise bandwidth). Laser driven processes investigated included the following: (1) the optical Autler-Towns effect in the 3S 1/2 (F = 2, M F = 2) → 3P 3/2 (F = 3, M F = 3) two- level Na resonance, using a weak probe to the 4D 5/2 level; (2) the variance and spectra of fluorescence intensity fluctuations in the two-level Na resonance; (3) the Hanle effect in the 1 S 0 - 3 P 1 , transition at λ = 555.6 nm in 174 Yb; (4) absorption (and gain) of a weak probe, when the probe is a time-delayed replica of the resonant (with the two-level Na transition) pump laser; and (5) four-wave-mixing in a phase-conjugate geometry, in a sodium cell, and, finally, in a diffuse atomic sodium beam. The experimental results from these several studies have provided important confirmation of advanced theoretical methods

  16. Compton scattering and electron-atom scattering in an elliptically polarized laser field of relativistic radiation power

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2003-01-01

    Presently available laser sources can yield powers for which the ponderomotive energy of an electron U p can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons ω. The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field. (authors)

  17. Quantum information processing with atoms and photons

    International Nuclear Information System (INIS)

    Monroe, C.

    2003-01-01

    Quantum information processors exploit the quantum features of superposition and entanglement for applications not possible in classical devices, offering the potential for significant improvements in the communication and processing of information. Experimental realization of large-scale quantum information processors remains a long term vision, as the required nearly pure quantum behaviour is observed only in exotic hardware such as individual laser-cooled atoms and isolated photons. But recent theoretical and experimental advances suggest that cold atoms and individual photons may lead the way towards bigger and better quantum information processors, effectively building mesoscopic versions of Schroedinger's cat' from the bottom up. (author)

  18. Resonant Laser Manipulation of an Atomic Beam

    Science.gov (United States)

    2010-07-01

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Resonant Laser Manipulation of an Atomic Beam...steering and collimating flows with higher densities and energies than current common practice . One impediment to this extension is the development of...where Δεg is the ground state Stark shift, Ω is the Rabi frequency (related to intensity), Isat is the saturation intensity of the transition, and I(r

  19. Controllable optical bistability in photonic-crystal one-atom laser

    International Nuclear Information System (INIS)

    Guo Xiaoyong; Lue Shuchen

    2009-01-01

    We investigate the property of optical bistability in a photonic-crystal one-atom laser when nonlinear microcavity is present. The physical system consists of a coherently driven two-level light emitter strongly coupled to a high-quality microcavity which is embedded within a photonic crystal and another coherent probing field which has incident into the microcavity. In our case, the microcavity is fabricated by nonlinear material and placed as an impurity in photonic crystal. This study reveals that such a system can exhibit optical bistability. The dependence of threshold value and hysteresis loop on the photonic band gap of the photonic crystal, driving field Rabi frequency and dephasing processes, are studied. Our results clearly illustrate the ability to control optical bistability through suitable photonic-crystal architectures and external coherent driving field, and this study suggests that in a photonic-crystal nonlinear microcavity, the one-atom laser acts as an effective controllable bistable device in the design of all-light digital computing systems in the near future.

  20. Collisional interaction between metastable neon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Drunen, Wouter Johannes van

    2008-07-07

    In this thesis, the study of cold gases of neon atoms in different metastable states is described. It contains measurements of the collisional parameters for both the 3s[3/2]{sub 2} and the 3s'[1/2]{sub 0} metastable state and the dependence of the inelastic loss on external fields. Furthermore, the investigation of frequency dependent laser-induced collisions, and the possibility to excite photoassociation resonances is presented. For the measurements described here, neon atoms have been confined in a magnetooptical trap, in a magnetostatic trap, or in an optical dipole trap, respectively. By laser cooling inside the magnetic trap, atomic samples with more than 95 percent occupation of the magnetic substate m{sub J} = +2 could be prepared. They have a typical temperature of 0.5 mK, central densities up to 10{sup 11} cm{sup -3}, and a central phase-space density of up to 2.2.10{sup -7}. After loading the optical dipole trap from the magnetic trap, 2.5.10{sup 6} atoms with typical temperatures of 0.1 mK, and central densities up to 5.10{sup 10} cm{sup -3} were trapped. By evaporative cooling of the atoms in the magnetic trap we could increase the phase-space density by a factor of 200 to 5.10{sup -5}. Investigating the frequency dependence of laser-induced collisions did not reveal an experimental signature for the excitation of photoassociation resonances. For the {sup 3}D{sub 3} line a frequency dependence of laser enhanced Penning ionization was observed. Measurement of the two-body loss coefficient as function of the magnetic field showed a field dependence of the inelastic loss. These losses increase towards both small and large offset fields. The implementation of an optical dipole trap allowed us to trap the {sup 3}P{sub 0} metastable state. From the trap loss measurements we determined the two-body loss coefficient of the {sup 3}P{sub 0} metastable state for both bosonic isotopes {sup 20}Ne and {sup 22}Ne. For {sup 20}Ne we obtained {beta}=6{sup +5}{sub

  1. Atomic and nuclear physics with stored particles in ion traps

    CERN Document Server

    Kluge, H J; Herfurth, F; Quint, W

    2002-01-01

    Trapping and cooling techniques play an increasingly important role in many areas of science. This review concentrates on recent applications of ion traps installed at accelerator facilities to atomic and nuclear physics such as mass spectrometry of radioactive isotopes, weak interaction studies, symmetry tests, determination of fundamental constants, laser spectroscopy, and spectroscopy of highly-charged ions. In addition, ion traps are proven to be extremely efficient devices for (radioactive) ion beam manipulation as, for example, retardation, accumulation, cooling, beam cleaning, charge-breeding, and bunching.

  2. Hybrid Systems: Cold Atoms Coupled to Micro Mechanical Oscillators =

    Science.gov (United States)

    Montoya Monge, Cris A.

    Micro mechanical oscillators can serve as probes in precision measurements, as transducers to mediate photon-phonon interactions, and when functionalized with magnetic material, as tools to manipulate spins in quantum systems. This dissertation includes two projects where the interactions between cold atoms and mechanical oscillators are studied. In one of the experiments, we have manipulated the Zeeman state of magnetically trapped Rubidium atoms with a magnetic micro cantilever. The results show a spatially localized effect produced by the cantilever that agrees with Landau-Zener theory. In the future, such a scalable system with highly localized interactions and the potential for single-spin sensitivity could be useful for applications in quantum information science or quantum simulation. In a second experiment, work is in progress to couple a sample of optically trapped Rubidium atoms to a levitated nanosphere via an optical lattice. This coupling enables the cooling of the center-of-mass motion of the nanosphere by laser cooling the atoms. In this system, the atoms are trapped in the optical lattice while the sphere is levitated in a separate vacuum chamber by a single-beam optical tweezer. Theoretical analysis of such a system has determined that cooling the center-of-mass motion of the sphere to its quantum ground state is possible, even when starting at room temperature, due to the excellent environmental decoupling achievable in this setup. Nanospheres cooled to the quantum regime can provide new tests of quantum behavior at mesoscopic scales and have novel applications in precision sensing.

  3. Neutral atom traps of radioactives

    International Nuclear Information System (INIS)

    Behr, J.A.

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear β decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left up to other presenters

  4. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  5. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai, E-mail: fengkai@sjtu.edu.cn; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    2016-06-15

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  6. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    International Nuclear Information System (INIS)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai; Li, Zhuguo

    2016-01-01

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  7. Atomic stabilization in superintense laser fields

    International Nuclear Information System (INIS)

    Gavrila, Mihai

    2002-01-01

    Atomic stabilization is a highlight of superintense laser-atom physics. A wealth of information has been gathered on it; established physical concepts have been revised in the process; points of contention have been debated. Recent technological breakthroughs are opening exciting perspectives of experimental study. With this in mind, we present a comprehensive overview of the phenomenon. We discuss the two forms of atomic stabilization identified theoretically. The first one, 'quasistationary (adiabatic) stabilization' (QS), refers to the limiting case of plane-wave monochromatic radiation. QS characterizes the fact that ionization rates, as calculated from single-state Floquet theory, decrease with intensity (possibly in an oscillatory manner) at high values of the field. We present predictions for QS from various forms of Floquet theory: high frequency (that has led to its discovery and offers the best physical insight), complex scaling, Sturmian, radiative close coupling and R-matrix. These predictions all agree quantitatively, and high-accuracy numerical results have been obtained for hydrogen. Predictions from non-Floquet theories are also discussed. Thereafter, we analyse the physical origin of QS. The alternative form of stabilization, 'dynamic stabilization' (DS), is presented next. This expresses the fact that the ionization probability at the end of a laser pulse of fixed shape and duration does not approach unity as the peak intensity is increased, but either starts decreasing with the intensity (possibly in an oscillatory manner), or flattens out at a value smaller than unity. We review the extensive research done on one-dimensional models, that has provided valuable insights into the phenomenon; two- and three-dimensional models are also considered. Full three-dimensional Coulomb calculations have encountered severe numerical handicaps in the past, and it is only recently that a comprehensive mapping of DS could be made for hydrogen. An adiabatic

  8. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  9. Atomic diffusion in laser surface modified AISI H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  10. Another way to approach zero entropy for a finite system of atoms

    International Nuclear Information System (INIS)

    Weiss, D.S.; Vala, J.; Myrgren, S.; Whaley, K.B.; Thapliyal, A.V.; Vazirani, U.

    2004-01-01

    We propose a way to manifestly reduce the entropy of a finite system of atoms to arbitrarily small values. First, the locations of vacancies of laser-cooled atoms in a deep optical lattice are measured. Then, the distribution is efficiently compacted using a combination of site-specific atomic state flips and state-sensitive lattice site translations. In the final state, the central region of the lattice has exactly one atom per site in its vibrational ground state. This is a good initial state for a quantum computer. The process can be understood to be an experimentally viable Maxwell demon with a memory

  11. All-optical spinor Bose-Einstein condensation and the spinor dynamics-driven atom laser

    Science.gov (United States)

    Lundblad, Nathan Eric

    Optical trapping as a viable means of exploring the physics of ultracold dilute atomic gases has revealed a new spectrum of physical phenomena. In particular, macroscopic and sudden occupation of the ground state below a critical temperature---a phenomenon known as Bose-Einstein condensation---has become an even richer system for the study of quantum mechanics, ultracold collisions, and many-body physics in general. Optical trapping liberates the spin degree of the BEC, making the order parameter vectorial ('spinor BEC'), as opposed to the scalar order of traditional magnetically trapped condensates. The work described within is divided into two main efforts. The first encompasses the all-optical creation of a Bose-Einstein condensate in rubidium vapor. An all-optical path to spinor BEC (as opposed to transfer to an optical trap from a magnetic trap condensate) was desired both for the simplicity of the experimental setup and also for the potential gains in speed of creation; evaporative cooling, the only known path to dilute-gas condensation, works only as efficiently as the rate of elastic collisions in the gas, a rate that starts out much higher in optical traps. The first all-optical BEC was formed elsewhere in 2001; the years following saw many groups worldwide seeking to create their own version. Our own all-optical spinor BEC, made with a single-beam dipole trap formed by a focused CO2 laser, is described here, with particular attention paid to trap loading, measurement of trap parameters, and the use of a novel 780 nm high-power laser system. The second part describes initial experiments performed with the nascent condensate. The spinor properties of the condensate are documented, and a measurement is made of the density-dependent rate of spin mixing in the condensate. In addition, we demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of the condensate, whose populations have been coherently evolved through spin

  12. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  13. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    OpenAIRE

    Lobato, I.; Rojas, J.; Landauro, C. V.; Torres, J.

    2008-01-01

    The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidifica...

  14. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  15. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  16. Dissipative Double-Well Potential for Cold Atoms: Kramers Rate and Stochastic Resonance.

    Science.gov (United States)

    Stroescu, Ion; Hume, David B; Oberthaler, Markus K

    2016-12-09

    We experimentally study particle exchange in a dissipative double-well potential using laser-cooled atoms in a hybrid trap. We measure the particle hopping rate as a function of barrier height, temperature, and atom number. Single-particle resolution allows us to measure rates over more than 4 orders of magnitude and distinguish the effects of loss and hopping. Deviations from the Arrhenius-law scaling at high barrier heights occur due to cold collisions between atoms within a well. By driving the system periodically, we characterize the phenomenon of stochastic resonance in the system response.

  17. Improved production of Br atoms near zero speed by photodissociating laser aligned Br2 molecules.

    Science.gov (United States)

    Deng, L Z; Yin, J P

    2014-10-28

    We theoretically investigated the improvement on the production rate of the decelerated bromine (Br) atoms near zero speed by photodissociating laser aligned Br2 precursors. Adiabatic alignment of Br2 precursors exposed to long laser pulses with duration on the order of nanoseconds was investigated by solving the time-dependent Schrödinger equation. The dynamical fragmentation of adiabatically aligned Br2 precursors was simulated and velocity distribution of the Br atoms produced was analyzed. Our study shows that the larger the degree of the precursor alignment, ⟨cos(2) θ⟩, the higher the production rate of the decelerated Br atoms near zero speed. For Br2 molecules with an initial rotational temperature of ~1 K, a ⟨cos(2) θ⟩ value of ~0.88 can result in an improvement factor of over ~20 on the production rate of the decelerated Br atoms near zero speed, requiring a laser intensity of only ~1 × 10(12) W/cm(2) for alignment.

  18. Laser-enhanced ionization of mercury atoms in an inert atmosphere with avalanche amplification of the signal.

    Science.gov (United States)

    Clevenger, W L; Matveev, O I; Cabredo, S; Omenetto, N; Smith, B W; Winefordner, J D

    1997-07-01

    A new method for laser-enhanced ionization detection of mercury atoms in an inert gas atmosphere is described. The method, which is based on the avalanche amplification of the signal resulting from the ionization from a selected Rydberg level reached by a three-step laser excitation of mercury vapor in a simple quartz cell, can be applied to the determination of this element in various matrices by the use of conventional cold atomization techniques. The overall (collisional + photo) ionization efficiency is investigated at different temperatures, and the avalanche amplification effect is reported for Ar and P-10 gases at atmospheric pressure. It is shown that the amplified signal is related to the number of charges produced in the laser-irradiated volume. Under amplifier noise-limited conditions, a detection limit of ∼15 Hg atoms/laser pulse in the interaction region is estimated.

  19. Coupled optical resonance laser locking.

    Science.gov (United States)

    Burd, S C; du Toit, P J W; Uys, H

    2014-10-20

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  20. A laser driven source of spin polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.; Jones, C.E.; Kowalczyk, R.S.; Young, L.; Toporkov, D.

    1993-01-01

    Recent results from a laser-driven source of polarized hydrogen (H) and deuterium (D) are presented. The performance of the source is described as a function of atomic flow rate and magnetic field. The data suggest that because atomic densities in the source are high, the system can approach spin-temperature equilibrium although applied magnetic fields are much larger than the critical field of the atoms. The authors also observe that potassium contamination in the source emittance can be reduced to a negligible amount using a teflon-lined transport tube

  1. Rapidly solidified prealloyed powders by laser spin atomization

    Science.gov (United States)

    Konitzer, D. G.; Walters, K. W.; Heiser, E. L.; Fraser, H. L.

    1984-01-01

    A new technique, termed laser spin atomization, for the production of rapidly solidified prealloyed powders is described. The results of experiments involving the production of powders of two alloys, one based on Ni, the other on Ti, are presented. The powders have been characterized using light optical metallography, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Auger elec-tron spectroscopy, and these various observations are described.

  2. Laser-induced charge exchange in ion-atom collisions

    International Nuclear Information System (INIS)

    Riera, A.

    1986-01-01

    The theory of laser-induced charge transfer (LICT) in ion-atom collisions is presented for the range of impact energies in which a quasimolecular description is appropriate. For each relative orientation of the AC field, LICT cross sections can be obtained with trivial modifications of standard programs. Simpler, perturbative expressions for the orientation-averaged cross sections are accurate for I v -1 6 W s cm -3 , and the analytical Landau-Zener perturbative expression often provides good estimates for these cross sections. The practical advantages of the dressed state formalism as an alternative approach are critically examined, and the general characteristics of LICT cross sections in multicharged ion-atom collisions are shown with the help of an example. (Auth.)

  3. Electron impact excitation and ionization of laser-excited sodium atoms Na*(7d)

    International Nuclear Information System (INIS)

    Nienhaus, J.; Dorn, A.; Mehlhorn, W.; Zatsarinny, O.I.

    1997-01-01

    We have investigated the ejected-electron spectrum following impact excitation and ionization of laser-excited Na * (nl) atoms by 1.5 keV electrons. By means of two-laser excitation 3s → 3p 3/2 → 7d and subsequent cascading transitions about 8% (4%) of the target atoms were in excited states with n > 3 (7d). The experimental ejected-electron spectrum due to the decay of Auger and autoionization states of laser-excited atoms Na * (nl) with n = 4-7 has been fully interpreted by comprehensive calculations of the energies, cross sections and decay probabilities of the corresponding states. The various processes contributing to the ejected-electron spectrum are with decreasing magnitude: 2s ionization leading to 2s2p 6 nl Auger states, 2p → 3s excitation leading to 2p 5 3s( 1 P)nl autoionization states and 2s → 3l' excitation leading to 2s2p 6 3l'( 1 L)nl autoionization states. (Author)

  4. The quantum beat principles and applications of atomic clocks

    CERN Document Server

    Major, F

    2007-01-01

    This work attempts to convey a broad understanding of the physical principles underlying the workings of these quantum-based atomic clocks, with introductory chapters placing them in context with the early development of mechanical clocks and the introduction of electronic time-keeping as embodied in the quartz-controlled clocks. While the book makes no pretense at being a history of atomic clocks, it nevertheless takes a historical perspective in its treatment of the subject. Intended for nonspecialists with some knowledge of physics or engineering, The Quantum Beat covers a wide range of salient topics relevant to atomic clocks, treated in a broad intuitive manner with a minimum of mathematical formalism. Detailed descriptions are given of the design principles of the rubidium, cesium, hydrogen maser, and mercury ion standards; the revolutionary changes that the advent of the laser has made possible, such as laser cooling, optical pumping, the formation of "optical molasses," and the cesium "fountain" stand...

  5. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    Science.gov (United States)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  6. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  7. Light-pressure-induced nonlinear dispersion of a laser field interacting with an atomic gas

    International Nuclear Information System (INIS)

    Grimm, R.; Mlynek, J.

    1990-01-01

    We report on detailed studies of the effect of resonant light pressure on the optical response of an atomic gas to a single monochromatic laser field. In this very elementary situation of laser spectroscopy, the redistribution of atomic velocities that is induced by spontaneous light pressure leads to a novel contribution to the optical dispersion curve of the medium. This light-pressure-induced dispersion phenomenon displays a pronounced nonlinear dependence on the laser intensity. Moreover, for a given intensity, its strength is closely related to the laser beam diameter. As most important feature, this light-pressure-induced dispersion displays an even symmetry with respect to the optical detuning from line center. As a result, the total Doppler-broadened dispersion curve of the gas can become asymmetric, and a significant shift of the dispersion line center can occur. In addition to a detailed theoretical description of the phenomenon, we report on its experimental investigation on the λ=555.6 nm 1 S 0 - 3 P 1 transition in atomic ytterbium vapor with the use of frequency-modulation spectroscopy. The experimental findings are in good quantitative agreement with theoretical predictions

  8. Imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry for determination of mercury in seawater.

    Science.gov (United States)

    Le Bihan, Alain; Cabon, Jean-Yves; Deschamps, Laure; Giamarchi, Philippe

    2011-06-15

    In this study, direct determination of mercury at the nanogram per liter level in the complex seawater matrix by imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry (ITR-ETA-LEAFS) is described. In the case of mercury, the use of a nonresonant line for fluorescence detection with only one laser excitation is not possible. For measurements at the 253.652 nm resonant line, scattering phenomena have been minimized by eliminating the simultaneous vaporization of salts and by using temporal resolution and the imaging mode of the camera. Electrothermal conditions (0.1 M oxalic acid as matrix modifier, low atomization temperature) have been optimized in order to suppress chemical interferences and to obtain a good separation of specific signal and seawater background signal. For ETA-LEAFS, a specific response has been obtained for Hg with the use of time resolution. Moreover, an important improvement of the detection limit has been obtained by selecting, from the furnace image, pixels collecting the lowest number of scattered photons. Using optimal experimental conditions, a detection limit of 10 ng L(-1) for 10 μL of sample, close to the lowest concentration level of total Hg in the open ocean, has been obtained.

  9. Atomic and Molecular Systems in Intense Ultrashort Laser Pulses

    Science.gov (United States)

    Saenz, A.

    2008-07-01

    The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some

  10. Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [TU-Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Auguste, T.; D' Oliveira, P.; Hulin, S.; Monot, P. [Commissariat a lEnergie Atomique DSM/DRECAM/SPAM, Gif-Sur-Yvette Cedex (France); Andreev, N.E.; Chegotov, M.V.; Veisman, M.E. [High Energy Density Research Centre, Institute of High Temperatures of Russian Academy of Sciences, Moscow (Russian Federation)

    1999-03-14

    For the first time registration of high-resolution soft x-ray emission and atomic data calculations of hollow-atom dielectronic satellite spectra of highly charged nitrogen have been performed. Double-electron charge-exchange processes from excited states are proposed for the formation of autoionizing levels nln'l' in high-intensity laser-produced plasmas, when field-ionized ions penetrate into the residual gas. Good agreement is found between theory and experiment. Plasma spectroscopy with hollow ions is proposed and a temperature diagnostic for laser-produced plasmas in the long-lasting recombining regime is developed. (author). Letter-to-the-editor.

  11. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  12. Laser spectroscopy on atoms and ions using short-wavelength radiation

    International Nuclear Information System (INIS)

    Larsson, Joergen.

    1994-05-01

    Radiative properties and energy structures in atoms and ions have been investigated using UV/VUV radiation. In order to obtain radiation at short wavelengths, frequency mixing of pulsed laser radiation in crystals and gases has been performed using recently developed frequency-mixing schemes. To allow the study of radiative lifetimes shorter than the pulses from standard Q-switched lasers, different techniques have been used to obtain sufficiently short pulses. The Hanle effect has been employed following pulsed laser excitation for the same purpose. High-resolution spectroscopic techniques have been adapted for use with the broad-band, pulsed laser sources which are readily available in the UV/VUV spectral region. In order to investigate sources of radiation in the XUV and soft X-ray spectral regions, harmonic generation in rare gases has been studied. The generation of coherent radiation by the interaction between laser radiation and relativistic electrons in a synchrotron storage ring has also been investigated. 60 refs

  13. 6th International Workshop on Application of Lasers in Atomic Nuclei Research

    CERN Document Server

    Błaszczak, Z; Marinova, K; LASER 2004

    2006-01-01

    6th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, 24-27 May, 2004 Researchers and graduate students interested in the Mössbauer Effect and its applications will find this volume indispensable. The volume presents the most recent developments in the methodology of Mössbauer spectroscopy. Reprinted from Hyperfine Interactions (HYPE) Volume 162, 1-4

  14. International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses. Book of abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses was held in Hungary in 2006. This conference which joined the ULTRA COST activity ('Laser-matter interactions with ultra-short pulses, high-frequency pulses and ultra-intense pulses. From attophysics to petawatt physics') and the XTRA ('Ultrashort XUV Pulses for Time-Resolved and Non-Linear Applications') Marie-Curie Research Training Network, intends to offer a possibility to the members of both of these activities to exchange ideas on recent theoretical and experimental results on the interaction of ultrashort laser pulses with matter giving a broad view from theoretical models to practical and technical applications. Ultrashort laser pulses reaching extra high intensities open new windows to obtain information about molecular and atomic processes. These pulses are even able to penetrate into atomic scalelengths not only by generating particles of ultrahigh energy but also inside the spatial and temporal atomic scalelengths. New regimes of laser-matter interaction were opened in the last decade with an increasing number of laboratories and researchers in these fields. (S.I.)

  15. Use of synchrotron and laser radiations for present and future photoionization studies in excited atoms and ions

    International Nuclear Information System (INIS)

    Wuilleumier, F.J.

    1984-01-01

    The status of experiments in photoionization of atoms in excited states is reviewed, with emphasis given to synchrotron and laser photon sources. A technique for exciting the photoionization spectrum of Na atoms using the flux emitted from the bending magnetic of a storage ring is discussed in detail. Some problems in interpreting photoionization spectrum of Ba in the excited state, due to the presence of higher orders are considered. A design approach for a positron storage ring to produce coherent radiation in the VUV is described. It is shown that combined use of a CW dye laser and the positron storage ring will allow new progress to be made in photoionization studies of excited atoms. Some of the experiments to be carried out using the positron storage ring include: measurements of collisional ionization in rare earth metal atoms of low atomic density; photoionization measurements at lower laser powers, leading to an extension of the CW tunability range; and photoionization studies of multiply charged positive ions. 21 references

  16. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Jirasek, Vit; Spalek, Otomar; Censky, Miroslav; Pickova, Irena; Kodymova, Jarmila; Jakubec, Ivo

    2007-01-01

    A method of the chemical generation of atomic iodine for a chemical oxygen-iodine laser (COIL) using atomic fluorine as a reaction intermediate was studied experimentally. This method is based on the reaction between F 2 and NO providing F atoms, and the reaction of F with HI resulting in iodine atoms generation. Atomic iodine was produced with efficiency exceeding 40% relative to initial F 2 flow rate. This efficiency was nearly independent on pressure and total gas flow rate. The F atoms were stable in the reactor up to 2 ms. An optimum ratio of the reactants flow rates was F 2 :NO:HI = 1:1:1. A rate constant of the reaction of F 2 with HI was determined. The numerical modelling showed that remaining HI and IF were probably consumed in their mutual reaction. The reaction system was found suitable for employing in a generator of atomic iodine with its subsequent injection into a supersonic nozzle of a COIL

  17. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms

    DEFF Research Database (Denmark)

    Pfeiffer, Adrian N.; Cirelli, Claudio; Smolarski, Mathias

    2012-01-01

    the attoclock technique4 to obtain experimental information about the electron tunnelling geometry (the natural coordinates of the tunnelling current flow) and exit point. We confirm vanishing tunnelling delay time, show the importance of the inclusion of Stark shifts5, 6 and report on multi-electron effects......In the research area of strong-laser-field interactions and attosecond science1, tunnelling of an electron through the barrier formed by the electric field of the laser and the atomic potential is typically assumed to be the initial key process that triggers subsequent dynamics1, 2, 3. Here we use...... clearly identified by comparing results in argon and helium atoms. Our combined theory and experiment allows us to single out the geometry of the inherently one-dimensional tunnelling problem, through an asymptotic separation of the full three-dimensional problem. Our findings have implications for laser...

  18. Evanescent light-wave atom mirrors, resonators, waveguides, and traps

    International Nuclear Information System (INIS)

    Dowling, J.P.; Gea-Banacloche, J.

    1996-01-01

    For many years, it has been known that light can be used to trap and manipulate small dielectric particles and atoms. In particular, the intense coherent light of lasers has been used to cool neutral atoms down to the micro-Kelvin and now even the nano-Kelvin regimes. At such low temperatures, the de Broglie wavelike character of the atoms becomes pronounced, making it necessary to treat the atoms as wave phenomena. To this end, the study of atom optics has recently developed, in which atom optical elements are fabricated in order to manipulate atoms, while utilizing and preserving the coherence and superposition properties inherent in their wavelike propagation. For example, there has been a concerted effort to study theoretically and produce experimentally the atom optic analogs of photonic optical elements, such as atom beam splitters, atom diffraction gratings, atom lenses, atom interferometers, and-last but not least-atom mirrors. It is light-induced atom mirrors, and their application to making atom resonators, waveguides, and traps, that we shall focus on in this chapter. 133 refs., 26 figs., 1 tab

  19. A quantum-mechanical study of atom-diatom collisions in a laser field

    International Nuclear Information System (INIS)

    Chang, Sintarng.

    1989-01-01

    A quantum-mechanical formalism, in both space-fixed (SF) and body-fixed (BF) coordinate systems, is developed for describing an S-state structureless atom (A) colliding with a Estate vibrating rotor diatomic molecule (BC) in the presence of a laser field. The additional Hamiltonians H rad and H int , which describe the laser field and its interaction with the atom-diatom collision system, have been added to the field-free Hamiltonian Ho. And the collision problem can be solved by this extended Hamiltonian. The laser field Hamiltonian is represented by the number state representation. The interaction Hamiltonian is expressed by rvec μ BC . rvec ε, where rvec μ BC is the dipole moment of the diatomic molecule BC, and rvec ε is the electric field strength of the laser field. Since the field-free total angular momentum J is coupling with the laser field, J and its z-axis projection M are no longer conserved. To facilitate the collision problem, the laser field is restricted to a single mode, and its interaction with the collision only involves dipole allowed transitions in which a single photon is absorbed or emitted. For convenience, the coupled-channel equations are solved by the real boundary conditions instead of the complex boundary conditions. On applying the real boundary conditions, the author obtains the K-matrix, which is related to the S-matrix by S = (I + iK)(I - iK) -1 . A model calculation is discussed for the Ar + CO collision system in a laser intensity of 10 9 W/cm 2

  20. Laser induced fluorescence spectroscopy in atomic beams of radioactive nuclides

    International Nuclear Information System (INIS)

    Rebel, H.; Schatz, G.

    1982-01-01

    Measurements of the resonant scattering of light from CW tunable dye lasers, by a well collimated atomic beam, enable hyperfine splittings and optical isotope shifts to be determined with high precision and high sensitivity. Recent off-line atomic beam experiments with minute samples, comprising measurements with stable and unstable Ba, Ca and Pb isotopes are reviewed. The experimental methods and the analysis of the data are discussed. Information on the variation of the rms charge radii and on electromagnetic moments of nuclei in long isotopic chains is presented. (orig.) [de

  1. Advanced Spectral Library (ASTRAL): Atomic Fluorescence in Cool, Evolved Stars

    Science.gov (United States)

    Carpenter, Ken G.; Nielsen, Krister E.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The "Advanced Spectral Library (ASTRAL) Project: Cool Stars" (PI = T. Ayres) collected a definitive set of representative, high-resolution (R~46,000 in the FUV up to ~1700 Å, R~30,000 for 1700-2150 Å, and R~114,000 >2150 Å) and high signal/noise (S/N>100) UV spectra of eight F-M evolved cool stars. These extremely high-quality STIS UV echelle spectra are available from the HST archive and from the Univ. of Colorado (http://casa.colorado.edu/~ayres/ASTRAL/) and will enable investigations of a broad range of problems -- stellar, interstellar, and beyond -- for many years. In this paper, we extend our study of the very rich emission-line spectra of the four evolved K-M stars in the sample, Beta Gem (K0 IIIb), Gamma Dra (K5 III), Gamma Cru (M3.4 III), and Alpha Ori (M2 Iab), to study the atomic fluorescence processes operating in their outer atmospheres. We summarize the pumping transitions and fluorescent line products known on the basis of previous work (e.g. Carpenter 1988, etc.) and newly identified in our current, on-going analysis of these extraordinary ASTRAL STIS spectra.

  2. Sub-parts-per-quadrillion-level graphite furnace atomic absorption spectrophotometry based on laser wave mixing.

    Science.gov (United States)

    Mickadeit, Fritz K; Berniolles, Sandrine; Kemp, Helen R; Tong, William G

    2004-03-15

    Nonlinear laser wave mixing in a common graphite furnace atomizer is presented as a zeptomole-level, sub-Doppler, high-resolution atomic absorption spectrophotometric method. A nonplanar three-dimensional wave-mixing optical setup is used to generate the signal beam in its own space. Signal collection is efficient and convenient using a template-based optical alignment. The graphite furnace atomizer offers advantages including fast and convenient introduction of solid, liquid, or gas analytes, clean atomization environment, and minimum background noise. Taking advantage of the unique features of the wave-mixing optical method and those of the graphite furnace atomizer, one can obtain both excellent spectral resolution and detection sensitivity. A preliminary concentration detection limit of 0.07 parts-per-quadrillion and a preliminary mass detection limit of 0.7 ag or 8 zmol are determined for rubidium using a compact laser diode as the excitation source.

  3. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.

    1981-01-01

    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  4. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    International Nuclear Information System (INIS)

    Jia Youhua; Zhong Biao; Yin Jianping

    2009-01-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb 3+ -doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser ...

  6. Analysis of atomic distribution in as-fabricated Zircaloy-2 claddings by atom probe tomography under high-energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Sawabe, T., E-mail: sawabe@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Sonoda, T.; Kitajima, S. [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Kameyama, T. [Tokai University, Department of Nuclear Engineering, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-11-15

    The properties of second-phase particles (SPPs) in Zircaloy-2 claddings are key factors influencing the corrosion resistance of the alloy. The chemical compositions of Zr (Fe, Cr){sub 2} and Zr{sub 2}(Fe, Ni) SPPs were investigated by means of pulsed laser atom probe tomography. In order to prevent specimen fracture and to analyse wide regions of the specimen, the pulsed laser energy was increased to 2.0 nJ. This gave a high yield of average of 3 × 10{sup 7} ions per specimen. The Zr (Fe, Cr){sub 2} SPPs contained small amounts of Ni and Si atoms, while in Zr{sub 2}(Fe, Ni) SPPs almost all the Si was concentrated and the ratio of Zr: (Fe + Ni + Si) was 2:1. Atomic concentrations of the Zr-matrix and the SPPs were identified by two approaches: the first by using all the visible peaks of the mass spectrum and the second using the representative peaks with the natural abundance of the corresponding atoms. It was found that the change in the concentration between the Zr-matrix and the SPPs can be estimated more accurately by the second method, although Sn concentration in the Zr{sub 2}(Fe, Ni) SPPs is slightly overestimated.

  7. Interaction of Rydberg atoms with two contrapropagating ultrashort laser pulses

    International Nuclear Information System (INIS)

    Lugovskoy, A. V.; Bray, I.

    2006-01-01

    In this paper we investigate how Rydberg atoms respond to perturbation by two contrapropagating ultrashort laser pulses. We consider the case where the durations of both pulses τ 1 and τ 2 are shorter than the inverse of the initial-state energy ε i -1 . When acting alone such a pulse passes through the atom without noticeable alteration in the atomic state. The situation is different if two such pulses interfere in the region of atom localization. In this case the atomic response is significantly enhanced. This is due to the nonzero momentum transferred to the electron by the interplay of the electric field of one pulse and the magnetic field of the other. The sudden perturbation approximation is used to evaluate the transition probabilities. They are shown to depend on the atom position with respect to the pulse interference region. This dependence is determined by the relationship between the atomic diameter d i and the interference-region size l=c(τ 1 +τ 2 ) (c is the speed of light). If d i i >>l the transition probabilities are sensitive to the electron density distribution along the propagation direction. The probabilities of the initial-state destruction and atom ionization drop as l/d i irrespective of the characteristics of the pulses

  8. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    International Nuclear Information System (INIS)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; Nalda, R. de; Castillejo, M.

    2017-01-01

    Highlights: • Plume species in infrared ns laser ablation of ZnS studied by low-order harmonic generation. • Different spatiotemporal properties of harmonics from atoms and nanoparticles. • Results compared with calculations of optical frequency up-conversion in perturbative regime. - Abstract: Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear

  9. Laser system for cooling of relativistic C{sup 3+}-ion beams in storage rings; Lasersystem zur Kuehlung relativistischer C{sup 3+}-Ionenstrahlen in Speicherringen

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Tobias

    2015-02-15

    Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C{sup 3+} ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results

  10. Wavepacket dynamics of a Rydberg atom monitored by a pair of time-delayed laser pulses

    Science.gov (United States)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Liu, HongPing

    2018-02-01

    We have investigated the Rydberg state population of an argon atom by an intense laser pulse and its wavepacket dynamics monitored by another successive laser pulse in the tunneling regime. A wavepacket comprising a superposition of close high-lying Rydberg states is irradiated by a multicycle laser pulse, where the sub-wave components in the wavepacket have fixed relative phases. A time-delayed second laser pulse is employed to apply on the excited Rydberg atom. If the time is properly chosen, one of the sub-wave components will be guided towards the ionization area while the rest remains intact. By means of this pump-probe technique, we could control and monitor the Rydberg wavepacket dynamics and reveal some interesting phenomenon such as the survival rate of individual Rydberg states related to the classical orbital period of electron.

  11. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study.

    Science.gov (United States)

    Tunnell, J W; Nelson, J S; Torres, J H; Anvari, B

    2000-01-01

    Higher laser fluences than currently used in therapy (5-10 J/cm(2)) are expected to result in more effective treatment of port wine stain (PWS) birthmarks. However, higher incident fluences increase the risk of epidermal damage caused by absorption of light by melanin. Cryogen spray cooling offers an effective method to reduce epidermal injury during laser irradiation. The objective of this study was to determine whether high laser incident fluences (15-30 J/cm(2)) could be used while still protecting the epidermis in ex vivo human skin samples. Non-PWS skin from a human cadaver was irradiated with a Candela ScleroPlus Laser (lambda = 585 nm; pulse duration = 1.5 msec) by using various incident fluences (8-30 J/cm(2)) without and with cryogen spray cooling (refrigerant R-134a; spurt durations: 40-250 msec). Assessment of epidermal damage was based on histologic analysis. Relatively short spurt durations (40-100 msec) protected the epidermis for laser incident fluences comparable to current therapeutic levels (8-10 J/cm(2)). However, longer spurt durations (100-250 msec) increased the fluence threshold for epidermal damage by a factor of three (up to 30 J/cm(2)) in these ex vivo samples. Results of this ex vivo study show that epidermal protection from high laser incident fluences can be achieved by increasing the cryogen spurt duration immediately before pulsed laser exposure. Copyright 2000 Wiley-Liss, Inc.

  12. Atom-chip based quantum gravimetry for the precise determination of absolute local gravity

    Science.gov (United States)

    Abend, S.

    2015-12-01

    We present a novel technique for the precise measurement of absolute local gravity based on cold atom interferometry. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates, as ultra-sensitive probes for gravity. These sources offer unique properties in temperature as well as in ensemble size that will allow to overcome the current limitations with the next generation of sensors. Furthermore, atom-chip technologies offer the possibility to generate Bose-Einstein condensates in a fast and reliable way. We show a lab-based prototype that uses the atom-chip itself to retro-reflect the interrogation laser and thus serving as inertial reference inside the vacuum. With this setup it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal, within an area of 1 cm3 right below the atom-chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will allow for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz. In cooperation with the Müller group at the Institut für Erdmessung the sensor will be characterized in the laboratory first, to be ultimately employed in campaigns to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is part of the center of

  13. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    OpenAIRE

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron beam. A two-stage GM cryocooler, equipped with a first generation ErNi5 regenerator, cools the epoxy impregnated solenoid down to the operating temperature of about 7.5 K. This leaves a conservati...

  14. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  15. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  16. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    Science.gov (United States)

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur.

  17. Laser spectroscopy of exotic RI atoms in superfluid helium-OROCHI experiment

    International Nuclear Information System (INIS)

    Furukawa, T.; Matsuo, Y.; Hatakeyama, A.; Fujikake, K.; Matsuura, Y.; Kobayashi, T.; Shimoda, T.

    2010-01-01

    We have been developing a new laser spectroscopic technique 'OROCHI,' which is based on the combination of superfluid helium as a stopper of radioactive isotope (RI) beam and in-situ laser spectroscopy of RI atoms, for determining spins and moments of exotic RIs. By using this unique technique, it is feasible to measure nuclear spins and electromagnetic moments of extremely low yield RI (estimated as less than 1 pps). Recently, we have demonstrated that nuclear spins and moments are obtained from Zeeman and hyperfine splittings of stable Rb isotopes measured using this OROCHI technique. Details of this laser spectroscopy method in He II 'OROCHI' and the summary of our development are presented.

  18. Measurement of the population densities in Gd atomic vapor using diode laser absorption spectroscopy in UV transitions

    International Nuclear Information System (INIS)

    Kwon, Duck Hee; Jung, E. C.; Ko, Kwang Hoon; Kim, Tack Soo

    2003-01-01

    We report on the ultraviolet laser absorption spectroscopy of atomic Gd at 394-554 nm where two transition lines are place very closely by using a frequency-doubled beam of external-cavity diode laser (ECDL). One is from 999.121 to 26337.071 cm -1 and the other from 0 to 25337.755 cm -1 . If two transition lines are placed closely within a continuous fine tuning range, the real-time measurement of the atomic excitation temperature is possible without any significant time consumption because at least two transition lines originating from different low-lying energy levels need to be investigated for the Boltzmann-plot. Since the spectral difference between the two transitions is only about 0.195 cm -1 (5.85 GHz), it is possible to record both the absorption spectra simultaneously as shown in Fig. 1. But the transition probabilities (or oscillator strengths) of these lines have not been measured accurately yet to the best of our knowledge. We report on the newly measured transition probabilities by analyzing their absorption spectra at known vapor density conditions. The simultaneous measurement of the atomic excitation temperature and the vapor density demonstrated. In addition we present another ultraviolet laser absorption spectroscopy of atomic Gd at 403.540 nm by means of a commercial blue diode laser and investigate the characteristics of the blue diode laser as well.

  19. Expansion-matched passively cooled heatsinks with low thermal resistance for high-power diode laser bars

    Science.gov (United States)

    Leers, Michael; Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart

    2006-02-01

    The lifetime of high-power diode lasers, which are cooled by standard copper heatsinks, is limited. The reasons are the aging of the indium solder normally employed as well as the mechanical stress caused by the mismatch between the copper heatsink (16 - 17ppm/K) and the GaAs diode laser bars (6 - 7.5 ppm/K). For micro - channel heatsinks corrosion and erosion of the micro channels limit the lifetime additionally. The different thermal behavior and the resulting stress cannot be compensated totally by the solder. Expansion matched heatsink materials like tungsten-copper or aluminum nitride reduce this stress. A further possible solution is a combination of copper and molybdenum layers, but all these materials have a high thermal resistance in common. For high-power electronic or low cost medical applications novel materials like copper/carbon compound, compound diamond or high-conductivity ceramics were developed during recent years. Based on these novel materials, passively cooled heatsinks are designed, and thermal and mechanical simulations are performed to check their properties. The expansion of the heatsink and the induced mechanical stress between laser bar and heatsink are the main tasks for the simulations. A comparison of the simulation with experimental results for different material combinations illustrates the advantages and disadvantages of the different approaches. Together with the boundary conditions the ideal applications for packaging with these materials are defined. The goal of the development of passively-cooled expansion-matched heatsinks has to be a long-term reliability of several 10.000h and a thermal resistance below 1 K/W.

  20. International bulletin on atomic and molecular data for fusion. No. 48

    International Nuclear Information System (INIS)

    1994-10-01

    This bulletin provides atomic and molecular data references relevant to thermonuclear fusion research and technology. In part I the indexing of the papers is given separately for (i) structure and spectra (energy levels, wavelengths; transition probabilities, oscillator strengths; interatomic potentials), (ii) atomic and molecular collisions (photon collisions, electron collisions, heavy particle collisions), and (iii) surface interactions (sputtering, surface damage, blistering, flaking, arcing, chemical reactions). Part II contains the bibliographic data for the above listed topics and for plasma composition and impurities, plasma heating, cooling and fuelling, high energy laser- and beam- matter interaction, bibliographic and numerical data collections, and on interaction of atomic particles with fields. Also included are sections on atomic and molecular data needs for fusion research and on news about ALADDIN (A Labelled Atomic Data Interface) and evaluated-data bases

  1. Continuous atom laser with Bose-Einstein condensates involving three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, A V; Michinel, H; Novoa, D [Area de Optica, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain); Olivieri, D N, E-mail: avcarpentier@uvigo.e [Area de Linguaxes e sistemas informaticos, Escola Superior de EnxenerIa Informatica, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain)

    2010-05-28

    We demonstrate, through numerical simulations, the emission of a coherent continuous matter wave of constant amplitude from a Bose-Einstein condensate in a shallow optical dipole trap. The process is achieved by spatial control of the variations of the scattering length along the trapping axis, including elastic three-body interactions due to dipole interactions. In our approach, the outcoupling mechanism is atomic interactions, and thus, the trap remains unaltered. We calculate analytically the parameters for the experimental implementation of this continuous wave atom laser.

  2. Production of pulsed atomic oxygen beams via laser vaporization methods

    International Nuclear Information System (INIS)

    Brinza, D.E.; Coulter, D.R.; Liang, R.H.; Gupta, A.

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P/sub J/) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus

  3. Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.

    Science.gov (United States)

    Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2015-09-15

    We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.

  4. Femtosecond quantum dynamics and laser-cooling in thermal molecular systems

    International Nuclear Information System (INIS)

    Warmuth, C.

    2000-01-01

    This work deals with coherent and incoherent vibrational phenomena in thermal systems, wave packet motion and laser-cooling. In the first part, the principle of COIN (Coherence Observation by Interference Noise) has been applied as a new approach to measuring wave packet motion. In the experiment pairs of phase-randomized femtosecond pulses with relative delay-time τ prepare interference fluctuations in the excited state population, so the variance of the correlated fluorescence intensity directly mimics the dynamics of the propagating wave packet. The scheme is demonstrated by measuring the vibrational coherence of wave packet-motion in the B-state of gaseous iodine. The COIN-interferograms obtained recover propagation, recurrences, spreading, and revivals as the typical signature of wave packets. Due to the disharmony of the B-state-potential, fractional revivals have also been found showing the potential of the COIN-technique in quantum-dynamical research. In the second part the fluorescence lifetime of trans-stilbene, isolated and in the presence of 1 atm of Ar gas, respectively, was measured as a function of the detuning of the excitation frequency from the frequency of the 0-0-transition ω 0 . The lifetime was found to decrease on both sides of ω 0 , but the dependence of the lifetime on detuning in the presence of Ar gas is much weaker than for the isolated molecule. Both observations corroborate previous theoretical predictions of laser-cooling of thermal trans-stilbene upon excitation at the ω 0 frequency. The experimental results are in good agreement with theoretical analysis. (author)

  5. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  6. Non-dipole effects in multiphoton ionization of hydrogen atom in short superintense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Jobunga, Eric O. [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Department of Mathematics and Physics, Technical University of Mombasa, P. O. Box 90420-80100, Mombasa (Kenya); Saenz, Alejandro [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2014-07-01

    The development of novel light sources has enabled the realization of high-precision experiments investigating various non-linear processes in the dynamics of atomic, molecular, and ionic systems interacting with high intense laser pulses. At high intensities or short wavelengths, the analysis of these experiments would definitely require a reliable non-perturbative solution of the time-dependent Schroedinger or Dirac equation. These solutions should consider both the temporal and the spatial intensity variations of the laser pulse.We have solved the non-relativistic time dependent Schroedinger equation for a ground state hydrogen atom interacting with short intense spatially and temporally resolved laser fields corresponding to the multiphoton ATI regime for a monochromatic source with λ= 800 nm. We shall analyse the effects of the A{sup 2} term and the corresponding orders of the multipolar expansion of the transition matrix.

  7. MAGIA - using atom interferometry to determine the Newtonian gravitational constant

    International Nuclear Information System (INIS)

    Stuhler, J; Fattori, M; Petelski, T; Tino, G M

    2003-01-01

    We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy

  8. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  9. Relativistic theory of tunnel and multiphoton ionization of atoms in a strong laser field

    International Nuclear Information System (INIS)

    Popov, V. S.; Karnakov, B. M.; Mur, V. D.; Pozdnyakov, S. G.

    2006-01-01

    Relativistic generalization is developed for the semiclassical theory of tunnel and multiphoton ionization of atoms and ions in the field of an intense electromagnetic wave (Keldysh theory). The cases of linear, circular, and elliptic polarizations of radiation are considered. For arbitrary values of the adiabaticity parameter γ, the exponential factor in the ionization rate for a relativistic bound state is calculated. For low-frequency laser radiation , an asymptotically exact formula for the tunnel ionization rate for the atomic s level is obtained including the Coulomb, spin, and adiabatic corrections and the preexponential factor. The ionization rate for the ground level of a hydrogen-like atom (ion) with Z ≤ 100 is calculated as a function of the laser radiation intensity. The range of applicability is determined for nonrelativistic ionization theory. The imaginary time method is used in the calculations

  10. Evaluation of a tungsten coil atomization-laser-induced fluorescence detection approach for trace elemental analysis

    International Nuclear Information System (INIS)

    Ezer, Muhsin; Elwood, Seth A.; Jones, Bradley T.; Simeonsson, Josef B.

    2006-01-01

    The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 μg/mL. The determined concentrations were 20.05 ± 2.60, 20.70 ± 2.27 and 20.60 ± 2.46 μg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible

  11. Evaluation of a tungsten coil atomization-laser-induced fluorescence detection approach for trace elemental analysis.

    Science.gov (United States)

    Ezer, Muhsin; Elwood, Seth A; Jones, Bradley T; Simeonsson, Josef B

    2006-06-30

    The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 microg/mL. The determined concentrations were 20.05+/-2.60, 20.70+/-2.27 and 20.60+/-2.46 microg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible.

  12. Orientation of Ar(3P2) atoms by laser optical pumping

    International Nuclear Information System (INIS)

    Giberson, K.W.; Hart, M.W.; Hammond, M.S.; Dunning, F.B.; Walters, G.K.

    1984-01-01

    A beam of argon metastable atoms with a high degree of electron-spin polarization has been produced by optical pumping using an Oxazine 750 dye laser. The beam is suitable for the study of electron spin and orbital orientation dependences in a variety of collision processes

  13. Angular distribution of atoms ejected by laser ablation of different metals

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-01-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm 2 ) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos n θ distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  14. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  15. Atomic physics of the antimatter explored with slow antiprotons

    International Nuclear Information System (INIS)

    Torii, Hiroyuki A.

    2010-01-01

    Frontiers of antimatter physics are reviewed, with a focus on our ASACUSA collaboration, doing research on 'Atomic Spectroscopy And Collisions Using Slow Antiprotons' at the 'Antiproton Decelerator' facility at CERN. Antiprotonic helium atoms give a unique test ground for testing CPT invariance between particles and antiparticles. Laser spectroscopy of this exotic atom has reached a precision of a few parts per billion in determation of the antiproton mass. We also have developed techniques to decelerate antiprotons and cool them to sub-eV energies in an electromagnetic trap at ultra-high vacuum and extract them as an ultra-slow beam at typically 250 eV. This unique low-energy beam opens up the possibility to study ionization and formation of antiprotonic atoms. The antihydrogen has been synthesized at low temperature in nested Penning traps by ATRAP and ATHENA(presently ALPHA) collaborations. Confinement of this neutral anti-atoms in a trap with magnetic field gradient is being studied, with an aim of 1S-2S laser spectroscopy in the future. ASACUSA has prepared a cusp trap for production of antihydrogen atoms, and aims at microwave spectroscopy between the hyperfine states of spin-polarized antihydrogen. A wide variety of low-energy antiproton physics also includes measurement of nuclear scattering, radiational biological effects, and gravity test of antimatter. (author)

  16. Influence of the atomic mass of the background gas on laser ablation plume propagation

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2008-01-01

    A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas...... dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point......-blast-wave descriptions of laser ablation plume expansion in gas....

  17. Electron-hydrogen atom collisions in the presence of a laser field

    International Nuclear Information System (INIS)

    Brandi, H.S.; Koiller, B.; Barros, H.G.P.L. de

    1978-01-01

    The collision of an electron and a hydrogen atom in the presence of a laser field is studied within a previously proposed approximation (based on the space translation approximation) for the bound states of the hydrogen atom. Fhe Green's function formalism is applied to derive an expression for the scattering amplitude associated to multiphoton processes. The Born-Oppenheimer approximation is obtained and numerical calculations are performed for the ls→2s inelastic excitation. It is shown as expected that exchange effects are important only for scattering processes involving low energy electrons [pt

  18. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    Directory of Open Access Journals (Sweden)

    J. G. H. Franssen

    2017-07-01

    Full Text Available We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps but hot (∼104 K electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K and ultrafast (∼25 ps electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales.

  19. Preparation of cold Mg+ion clouds for sympathetic cooling of highly charged ions at SPECTRAP

    International Nuclear Information System (INIS)

    Cazan, Radu Mircea

    2012-02-01

    . Additionally, a Mg + ion source based on the electron-impact ionization of a Mg atomic beam was developed for pulsed injection into the trap. It was demonstrated that it delivers ion bunches with small time, momentum and energy spread, and it was used in combination with the laser system to create the first clouds of up to 2600 laser-cooled Mg + ions in SPECTRAP. Fluorescence detection of the ions as well as electronic detection using the FFT-ICR technique was demonstrated. The analysis of the fluorescence lineshape indicated single-ion sensitivity and that a final temperature of about 100 mK was reached within a few seconds of cooling.

  20. All-optical atom trap as a target for MOTRIMS-like collision experiments

    Science.gov (United States)

    Sharma, S.; Acharya, B. P.; De Silva, A. H. N. C.; Parris, N. W.; Ramsey, B. J.; Romans, K. L.; Dorn, A.; de Jesus, V. L. B.; Fischer, D.

    2018-04-01

    Momentum-resolved scattering experiments with laser-cooled atomic targets have been performed since almost two decades with magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) setups. Compared to experiments with gas-jet targets, MOTRIMS features significantly lower target temperatures allowing for an excellent recoil ion momentum resolution. However, the coincident and momentum-resolved detection of electrons was long rendered impossible due to incompatible magnetic field requirements. Here we report on an experimental approach which is based on an all-optical 6Li atom trap that—in contrast to magneto-optical traps—does not require magnetic field gradients in the trapping region. Atom temperatures of about 2 mK and number densities up to 109 cm-3 make this trap ideally suited for momentum-resolved electron-ion coincidence experiments. The overall configuration of the trap is very similar to conventional magneto-optical traps. It mainly requires small modifications of laser beam geometries and polarization which makes it easily implementable in other existing MOTRIMS experiments.